VirtualBox

source: vbox/trunk/src/recompiler_new/VBoxRecompiler.c@ 13497

Last change on this file since 13497 was 13456, checked in by vboxsync, 16 years ago

support for helper invocations outside of 32-bit range, compilation fixes

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 157.0 KB
Line 
1/* $Id: VBoxRecompiler.c 13456 2008-10-21 16:55:48Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "osdep.h"
29#include "exec-all.h"
30
31#include <VBox/rem.h>
32#include <VBox/vmapi.h>
33#include <VBox/tm.h>
34#include <VBox/ssm.h>
35#include <VBox/em.h>
36#include <VBox/trpm.h>
37#include <VBox/iom.h>
38#include <VBox/mm.h>
39#include <VBox/pgm.h>
40#include <VBox/pdm.h>
41#include <VBox/dbgf.h>
42#include <VBox/dbg.h>
43#include <VBox/hwaccm.h>
44#include <VBox/patm.h>
45#include <VBox/csam.h>
46#include "REMInternal.h"
47#include <VBox/vm.h>
48#include <VBox/param.h>
49#include <VBox/err.h>
50
51#include <VBox/log.h>
52#include <iprt/semaphore.h>
53#include <iprt/asm.h>
54#include <iprt/assert.h>
55#include <iprt/thread.h>
56#include <iprt/string.h>
57
58/* Don't wanna include everything. */
59extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
60extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
61extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
62extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
63extern void tlb_flush(CPUState *env, int flush_global);
64extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
65extern void sync_ldtr(CPUX86State *env1, int selector);
66extern int sync_tr(CPUX86State *env1, int selector);
67
68#ifdef VBOX_STRICT
69unsigned long get_phys_page_offset(target_ulong addr);
70#endif
71
72
73/*******************************************************************************
74* Defined Constants And Macros *
75*******************************************************************************/
76
77/** Copy 80-bit fpu register at pSrc to pDst.
78 * This is probably faster than *calling* memcpy.
79 */
80#define REM_COPY_FPU_REG(pDst, pSrc) \
81 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
82
83
84/*******************************************************************************
85* Internal Functions *
86*******************************************************************************/
87static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
88static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
89static void remR3StateUpdate(PVM pVM);
90
91static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
93static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
94static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
97
98static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
100static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
101static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
104
105
106/*******************************************************************************
107* Global Variables *
108*******************************************************************************/
109
110/** @todo Move stats to REM::s some rainy day we have nothing do to. */
111#ifdef VBOX_WITH_STATISTICS
112static STAMPROFILEADV gStatExecuteSingleInstr;
113static STAMPROFILEADV gStatCompilationQEmu;
114static STAMPROFILEADV gStatRunCodeQEmu;
115static STAMPROFILEADV gStatTotalTimeQEmu;
116static STAMPROFILEADV gStatTimers;
117static STAMPROFILEADV gStatTBLookup;
118static STAMPROFILEADV gStatIRQ;
119static STAMPROFILEADV gStatRawCheck;
120static STAMPROFILEADV gStatMemRead;
121static STAMPROFILEADV gStatMemWrite;
122static STAMPROFILE gStatGCPhys2HCVirt;
123static STAMPROFILE gStatHCVirt2GCPhys;
124static STAMCOUNTER gStatCpuGetTSC;
125static STAMCOUNTER gStatRefuseTFInhibit;
126static STAMCOUNTER gStatRefuseVM86;
127static STAMCOUNTER gStatRefusePaging;
128static STAMCOUNTER gStatRefusePAE;
129static STAMCOUNTER gStatRefuseIOPLNot0;
130static STAMCOUNTER gStatRefuseIF0;
131static STAMCOUNTER gStatRefuseCode16;
132static STAMCOUNTER gStatRefuseWP0;
133static STAMCOUNTER gStatRefuseRing1or2;
134static STAMCOUNTER gStatRefuseCanExecute;
135static STAMCOUNTER gStatREMGDTChange;
136static STAMCOUNTER gStatREMIDTChange;
137static STAMCOUNTER gStatREMLDTRChange;
138static STAMCOUNTER gStatREMTRChange;
139static STAMCOUNTER gStatSelOutOfSync[6];
140static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
141static STAMCOUNTER gStatFlushTBs;
142#endif
143
144/*
145 * Global stuff.
146 */
147
148/** MMIO read callbacks. */
149CPUReadMemoryFunc *g_apfnMMIORead[3] =
150{
151 remR3MMIOReadU8,
152 remR3MMIOReadU16,
153 remR3MMIOReadU32
154};
155
156/** MMIO write callbacks. */
157CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
158{
159 remR3MMIOWriteU8,
160 remR3MMIOWriteU16,
161 remR3MMIOWriteU32
162};
163
164/** Handler read callbacks. */
165CPUReadMemoryFunc *g_apfnHandlerRead[3] =
166{
167 remR3HandlerReadU8,
168 remR3HandlerReadU16,
169 remR3HandlerReadU32
170};
171
172/** Handler write callbacks. */
173CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
174{
175 remR3HandlerWriteU8,
176 remR3HandlerWriteU16,
177 remR3HandlerWriteU32
178};
179
180
181#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
182/*
183 * Debugger commands.
184 */
185static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
186
187/** '.remstep' arguments. */
188static const DBGCVARDESC g_aArgRemStep[] =
189{
190 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
191 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
192};
193
194/** Command descriptors. */
195static const DBGCCMD g_aCmds[] =
196{
197 {
198 .pszCmd ="remstep",
199 .cArgsMin = 0,
200 .cArgsMax = 1,
201 .paArgDescs = &g_aArgRemStep[0],
202 .cArgDescs = ELEMENTS(g_aArgRemStep),
203 .pResultDesc = NULL,
204 .fFlags = 0,
205 .pfnHandler = remR3CmdDisasEnableStepping,
206 .pszSyntax = "[on/off]",
207 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
208 "If no arguments show the current state."
209 }
210};
211#endif
212
213
214/*******************************************************************************
215* Internal Functions *
216*******************************************************************************/
217static void remAbort(int rc, const char *pszTip);
218extern int testmath(void);
219
220/* Put them here to avoid unused variable warning. */
221AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
222#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
223//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
224/* Why did this have to be identical?? */
225AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
226#else
227AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
228#endif
229
230
231/**
232 * Initializes the REM.
233 *
234 * @returns VBox status code.
235 * @param pVM The VM to operate on.
236 */
237REMR3DECL(int) REMR3Init(PVM pVM)
238{
239 uint32_t u32Dummy;
240 unsigned i;
241 int rc;
242
243 /*
244 * Assert sanity.
245 */
246 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
247 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
248 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
249#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
250 Assert(!testmath());
251#endif
252 /*
253 * Init some internal data members.
254 */
255 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
256 pVM->rem.s.Env.pVM = pVM;
257#ifdef CPU_RAW_MODE_INIT
258 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
259#endif
260
261 /* ctx. */
262 rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
263 if (VBOX_FAILURE(rc))
264 {
265 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
266 return rc;
267 }
268 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
269
270 /* ignore all notifications */
271 pVM->rem.s.fIgnoreAll = true;
272
273 cpu_exec_init_all(0);
274
275 /*
276 * Init the recompiler.
277 */
278 if (!cpu_x86_init(&pVM->rem.s.Env, "vbox"))
279 {
280 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
281 return VERR_GENERAL_FAILURE;
282 }
283 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
284 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
285
286 /* allocate code buffer for single instruction emulation. */
287 pVM->rem.s.Env.cbCodeBuffer = 4096;
288 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
289 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
290
291 /* finally, set the cpu_single_env global. */
292 cpu_single_env = &pVM->rem.s.Env;
293
294 /* Nothing is pending by default */
295 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
296
297 /*
298 * Register ram types.
299 */
300 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
301 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
302 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
303 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
304 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
305
306 /* stop ignoring. */
307 pVM->rem.s.fIgnoreAll = false;
308
309 /*
310 * Register the saved state data unit.
311 */
312 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
313 NULL, remR3Save, NULL,
314 NULL, remR3Load, NULL);
315 if (VBOX_FAILURE(rc))
316 return rc;
317
318#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
319 /*
320 * Debugger commands.
321 */
322 static bool fRegisteredCmds = false;
323 if (!fRegisteredCmds)
324 {
325 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
326 if (VBOX_SUCCESS(rc))
327 fRegisteredCmds = true;
328 }
329#endif
330
331#ifdef VBOX_WITH_STATISTICS
332 /*
333 * Statistics.
334 */
335 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
336 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
337 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
338 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
339 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
340 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
341 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
342 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
343 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
344 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
345 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
346 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
347
348 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
349
350 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
351 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
352 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
353 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
354 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
355 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
356 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
357 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
358 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
359 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
360 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
361
362 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
363 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
364 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
365 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
366
367 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
368 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
369 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
370 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
371 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
372 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
373
374 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
375 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
376 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
377 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
378 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
379 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
380
381
382#endif
383
384#ifdef DEBUG_ALL_LOGGING
385 loglevel = ~0;
386#endif
387
388 return rc;
389}
390
391
392/**
393 * Terminates the REM.
394 *
395 * Termination means cleaning up and freeing all resources,
396 * the VM it self is at this point powered off or suspended.
397 *
398 * @returns VBox status code.
399 * @param pVM The VM to operate on.
400 */
401REMR3DECL(int) REMR3Term(PVM pVM)
402{
403 return VINF_SUCCESS;
404}
405
406
407/**
408 * The VM is being reset.
409 *
410 * For the REM component this means to call the cpu_reset() and
411 * reinitialize some state variables.
412 *
413 * @param pVM VM handle.
414 */
415REMR3DECL(void) REMR3Reset(PVM pVM)
416{
417 /*
418 * Reset the REM cpu.
419 */
420 pVM->rem.s.fIgnoreAll = true;
421 cpu_reset(&pVM->rem.s.Env);
422 pVM->rem.s.cInvalidatedPages = 0;
423 pVM->rem.s.fIgnoreAll = false;
424
425 /* Clear raw ring 0 init state */
426 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
427}
428
429
430/**
431 * Execute state save operation.
432 *
433 * @returns VBox status code.
434 * @param pVM VM Handle.
435 * @param pSSM SSM operation handle.
436 */
437static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
438{
439 /*
440 * Save the required CPU Env bits.
441 * (Not much because we're never in REM when doing the save.)
442 */
443 PREM pRem = &pVM->rem.s;
444 LogFlow(("remR3Save:\n"));
445 Assert(!pRem->fInREM);
446 SSMR3PutU32(pSSM, pRem->Env.hflags);
447 SSMR3PutU32(pSSM, ~0); /* separator */
448
449 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
450 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
451 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
452
453 return SSMR3PutU32(pSSM, ~0); /* terminator */
454}
455
456
457/**
458 * Execute state load operation.
459 *
460 * @returns VBox status code.
461 * @param pVM VM Handle.
462 * @param pSSM SSM operation handle.
463 * @param u32Version Data layout version.
464 */
465static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
466{
467 uint32_t u32Dummy;
468 uint32_t fRawRing0 = false;
469 uint32_t u32Sep;
470 int rc;
471 PREM pRem;
472 LogFlow(("remR3Load:\n"));
473
474 /*
475 * Validate version.
476 */
477 if ( u32Version != REM_SAVED_STATE_VERSION
478 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
479 {
480 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
481 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
482 }
483
484 /*
485 * Do a reset to be on the safe side...
486 */
487 REMR3Reset(pVM);
488
489 /*
490 * Ignore all ignorable notifications.
491 * (Not doing this will cause serious trouble.)
492 */
493 pVM->rem.s.fIgnoreAll = true;
494
495 /*
496 * Load the required CPU Env bits.
497 * (Not much because we're never in REM when doing the save.)
498 */
499 pRem = &pVM->rem.s;
500 Assert(!pRem->fInREM);
501 SSMR3GetU32(pSSM, &pRem->Env.hflags);
502 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
503 {
504 /* Redundant REM CPU state has to be loaded, but can be ignored. */
505 CPUX86State_Ver16 temp;
506 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
507 }
508
509 rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
510 if (VBOX_FAILURE(rc))
511 return rc;
512 if (u32Sep != ~0U)
513 {
514 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
515 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
516 }
517
518 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
519 SSMR3GetUInt(pSSM, &fRawRing0);
520 if (fRawRing0)
521 pRem->Env.state |= CPU_RAW_RING0;
522
523 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
524 {
525 unsigned i;
526
527 /*
528 * Load the REM stuff.
529 */
530 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
531 if (VBOX_FAILURE(rc))
532 return rc;
533 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
534 {
535 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
536 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
537 }
538 for (i = 0; i < pRem->cInvalidatedPages; i++)
539 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
540 }
541
542 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
543 if (VBOX_FAILURE(rc))
544 return rc;
545
546 /* check the terminator. */
547 rc = SSMR3GetU32(pSSM, &u32Sep);
548 if (VBOX_FAILURE(rc))
549 return rc;
550 if (u32Sep != ~0U)
551 {
552 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
553 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
554 }
555
556 /*
557 * Get the CPUID features.
558 */
559 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
560 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
561
562 /*
563 * Sync the Load Flush the TLB
564 */
565 tlb_flush(&pRem->Env, 1);
566
567 /*
568 * Stop ignoring ignornable notifications.
569 */
570 pVM->rem.s.fIgnoreAll = false;
571
572 /*
573 * Sync the whole CPU state when executing code in the recompiler.
574 */
575 CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
576 return VINF_SUCCESS;
577}
578
579
580
581#undef LOG_GROUP
582#define LOG_GROUP LOG_GROUP_REM_RUN
583
584/**
585 * Single steps an instruction in recompiled mode.
586 *
587 * Before calling this function the REM state needs to be in sync with
588 * the VM. Call REMR3State() to perform the sync. It's only necessary
589 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
590 * and after calling REMR3StateBack().
591 *
592 * @returns VBox status code.
593 *
594 * @param pVM VM Handle.
595 */
596REMR3DECL(int) REMR3Step(PVM pVM)
597{
598 int rc, interrupt_request;
599 RTGCPTR GCPtrPC;
600 bool fBp;
601
602 /*
603 * Lock the REM - we don't wanna have anyone interrupting us
604 * while stepping - and enabled single stepping. We also ignore
605 * pending interrupts and suchlike.
606 */
607 interrupt_request = pVM->rem.s.Env.interrupt_request;
608 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
609 pVM->rem.s.Env.interrupt_request = 0;
610 cpu_single_step(&pVM->rem.s.Env, 1);
611
612 /*
613 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
614 */
615 GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
616 fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
617
618 /*
619 * Execute and handle the return code.
620 * We execute without enabling the cpu tick, so on success we'll
621 * just flip it on and off to make sure it moves
622 */
623 rc = cpu_exec(&pVM->rem.s.Env);
624 if (rc == EXCP_DEBUG)
625 {
626 TMCpuTickResume(pVM);
627 TMCpuTickPause(pVM);
628 TMVirtualResume(pVM);
629 TMVirtualPause(pVM);
630 rc = VINF_EM_DBG_STEPPED;
631 }
632 else
633 {
634 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
635 switch (rc)
636 {
637 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
638 case EXCP_HLT:
639 case EXCP_HALTED: rc = VINF_EM_HALT; break;
640 case EXCP_RC:
641 rc = pVM->rem.s.rc;
642 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
643 break;
644 default:
645 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
646 rc = VERR_INTERNAL_ERROR;
647 break;
648 }
649 }
650
651 /*
652 * Restore the stuff we changed to prevent interruption.
653 * Unlock the REM.
654 */
655 if (fBp)
656 {
657 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
658 Assert(rc2 == 0); NOREF(rc2);
659 }
660 cpu_single_step(&pVM->rem.s.Env, 0);
661 pVM->rem.s.Env.interrupt_request = interrupt_request;
662
663 return rc;
664}
665
666
667/**
668 * Set a breakpoint using the REM facilities.
669 *
670 * @returns VBox status code.
671 * @param pVM The VM handle.
672 * @param Address The breakpoint address.
673 * @thread The emulation thread.
674 */
675REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
676{
677 VM_ASSERT_EMT(pVM);
678 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
679 {
680 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
681 return VINF_SUCCESS;
682 }
683 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
684 return VERR_REM_NO_MORE_BP_SLOTS;
685}
686
687
688/**
689 * Clears a breakpoint set by REMR3BreakpointSet().
690 *
691 * @returns VBox status code.
692 * @param pVM The VM handle.
693 * @param Address The breakpoint address.
694 * @thread The emulation thread.
695 */
696REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
697{
698 VM_ASSERT_EMT(pVM);
699 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
700 {
701 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
702 return VINF_SUCCESS;
703 }
704 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
705 return VERR_REM_BP_NOT_FOUND;
706}
707
708
709/**
710 * Emulate an instruction.
711 *
712 * This function executes one instruction without letting anyone
713 * interrupt it. This is intended for being called while being in
714 * raw mode and thus will take care of all the state syncing between
715 * REM and the rest.
716 *
717 * @returns VBox status code.
718 * @param pVM VM handle.
719 */
720REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
721{
722 int rc, rc2;
723 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
724
725 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
726 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
727 */
728 if (HWACCMIsEnabled(pVM))
729 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
730
731 /*
732 * Sync the state and enable single instruction / single stepping.
733 */
734 rc = REMR3State(pVM, false /* no need to flush the TBs; we always compile. */);
735 if (VBOX_SUCCESS(rc))
736 {
737 int interrupt_request = pVM->rem.s.Env.interrupt_request;
738 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
739 Assert(!pVM->rem.s.Env.singlestep_enabled);
740#if 1
741
742 /*
743 * Now we set the execute single instruction flag and enter the cpu_exec loop.
744 */
745 TMNotifyStartOfExecution(pVM);
746 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
747 rc = cpu_exec(&pVM->rem.s.Env);
748 TMNotifyEndOfExecution(pVM);
749 switch (rc)
750 {
751 /*
752 * Executed without anything out of the way happening.
753 */
754 case EXCP_SINGLE_INSTR:
755 rc = VINF_EM_RESCHEDULE;
756 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
757 break;
758
759 /*
760 * If we take a trap or start servicing a pending interrupt, we might end up here.
761 * (Timer thread or some other thread wishing EMT's attention.)
762 */
763 case EXCP_INTERRUPT:
764 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
765 rc = VINF_EM_RESCHEDULE;
766 break;
767
768 /*
769 * Single step, we assume!
770 * If there was a breakpoint there we're fucked now.
771 */
772 case EXCP_DEBUG:
773 {
774 /* breakpoint or single step? */
775 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
776 int iBP;
777 rc = VINF_EM_DBG_STEPPED;
778 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
779 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
780 {
781 rc = VINF_EM_DBG_BREAKPOINT;
782 break;
783 }
784 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
785 break;
786 }
787
788 /*
789 * hlt instruction.
790 */
791 case EXCP_HLT:
792 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
793 rc = VINF_EM_HALT;
794 break;
795
796 /*
797 * The VM has halted.
798 */
799 case EXCP_HALTED:
800 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
801 rc = VINF_EM_HALT;
802 break;
803
804 /*
805 * Switch to RAW-mode.
806 */
807 case EXCP_EXECUTE_RAW:
808 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
809 rc = VINF_EM_RESCHEDULE_RAW;
810 break;
811
812 /*
813 * Switch to hardware accelerated RAW-mode.
814 */
815 case EXCP_EXECUTE_HWACC:
816 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
817 rc = VINF_EM_RESCHEDULE_HWACC;
818 break;
819
820 /*
821 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
822 */
823 case EXCP_RC:
824 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
825 rc = pVM->rem.s.rc;
826 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
827 break;
828
829 /*
830 * Figure out the rest when they arrive....
831 */
832 default:
833 AssertMsgFailed(("rc=%d\n", rc));
834 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
835 rc = VINF_EM_RESCHEDULE;
836 break;
837 }
838
839 /*
840 * Switch back the state.
841 */
842#else
843 pVM->rem.s.Env.interrupt_request = 0;
844 cpu_single_step(&pVM->rem.s.Env, 1);
845
846 /*
847 * Execute and handle the return code.
848 * We execute without enabling the cpu tick, so on success we'll
849 * just flip it on and off to make sure it moves.
850 *
851 * (We do not use emulate_single_instr() because that doesn't enter the
852 * right way in will cause serious trouble if a longjmp was attempted.)
853 */
854# ifdef DEBUG_bird
855 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
856# endif
857 TMNotifyStartOfExecution(pVM);
858 int cTimesMax = 16384;
859 uint32_t eip = pVM->rem.s.Env.eip;
860 do
861 {
862 rc = cpu_exec(&pVM->rem.s.Env);
863
864 } while ( eip == pVM->rem.s.Env.eip
865 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
866 && --cTimesMax > 0);
867 TMNotifyEndOfExecution(pVM);
868 switch (rc)
869 {
870 /*
871 * Single step, we assume!
872 * If there was a breakpoint there we're fucked now.
873 */
874 case EXCP_DEBUG:
875 {
876 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
877 rc = VINF_EM_RESCHEDULE;
878 break;
879 }
880
881 /*
882 * We cannot be interrupted!
883 */
884 case EXCP_INTERRUPT:
885 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
886 rc = VERR_INTERNAL_ERROR;
887 break;
888
889 /*
890 * hlt instruction.
891 */
892 case EXCP_HLT:
893 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
894 rc = VINF_EM_HALT;
895 break;
896
897 /*
898 * The VM has halted.
899 */
900 case EXCP_HALTED:
901 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
902 rc = VINF_EM_HALT;
903 break;
904
905 /*
906 * Switch to RAW-mode.
907 */
908 case EXCP_EXECUTE_RAW:
909 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
910 rc = VINF_EM_RESCHEDULE_RAW;
911 break;
912
913 /*
914 * Switch to hardware accelerated RAW-mode.
915 */
916 case EXCP_EXECUTE_HWACC:
917 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
918 rc = VINF_EM_RESCHEDULE_HWACC;
919 break;
920
921 /*
922 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
923 */
924 case EXCP_RC:
925 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
926 rc = pVM->rem.s.rc;
927 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
928 break;
929
930 /*
931 * Figure out the rest when they arrive....
932 */
933 default:
934 AssertMsgFailed(("rc=%d\n", rc));
935 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
936 rc = VINF_SUCCESS;
937 break;
938 }
939
940 /*
941 * Switch back the state.
942 */
943 cpu_single_step(&pVM->rem.s.Env, 0);
944#endif
945 pVM->rem.s.Env.interrupt_request = interrupt_request;
946 rc2 = REMR3StateBack(pVM);
947 AssertRC(rc2);
948 }
949
950 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%VGv)\n",
951 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
952 return rc;
953}
954
955
956/**
957 * Runs code in recompiled mode.
958 *
959 * Before calling this function the REM state needs to be in sync with
960 * the VM. Call REMR3State() to perform the sync. It's only necessary
961 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
962 * and after calling REMR3StateBack().
963 *
964 * @returns VBox status code.
965 *
966 * @param pVM VM Handle.
967 */
968REMR3DECL(int) REMR3Run(PVM pVM)
969{
970 int rc;
971 Log2(("REMR3Run: (cs:eip=%04x:%VGv)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
972 Assert(pVM->rem.s.fInREM);
973
974 TMNotifyStartOfExecution(pVM);
975 rc = cpu_exec(&pVM->rem.s.Env);
976 TMNotifyEndOfExecution(pVM);
977 switch (rc)
978 {
979 /*
980 * This happens when the execution was interrupted
981 * by an external event, like pending timers.
982 */
983 case EXCP_INTERRUPT:
984 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
985 rc = VINF_SUCCESS;
986 break;
987
988 /*
989 * hlt instruction.
990 */
991 case EXCP_HLT:
992 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
993 rc = VINF_EM_HALT;
994 break;
995
996 /*
997 * The VM has halted.
998 */
999 case EXCP_HALTED:
1000 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1001 rc = VINF_EM_HALT;
1002 break;
1003
1004 /*
1005 * Breakpoint/single step.
1006 */
1007 case EXCP_DEBUG:
1008 {
1009#if 0//def DEBUG_bird
1010 static int iBP = 0;
1011 printf("howdy, breakpoint! iBP=%d\n", iBP);
1012 switch (iBP)
1013 {
1014 case 0:
1015 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1016 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1017 //pVM->rem.s.Env.interrupt_request = 0;
1018 //pVM->rem.s.Env.exception_index = -1;
1019 //g_fInterruptDisabled = 1;
1020 rc = VINF_SUCCESS;
1021 asm("int3");
1022 break;
1023 default:
1024 asm("int3");
1025 break;
1026 }
1027 iBP++;
1028#else
1029 /* breakpoint or single step? */
1030 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1031 int iBP;
1032 rc = VINF_EM_DBG_STEPPED;
1033 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1034 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1035 {
1036 rc = VINF_EM_DBG_BREAKPOINT;
1037 break;
1038 }
1039 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1040#endif
1041 break;
1042 }
1043
1044 /*
1045 * Switch to RAW-mode.
1046 */
1047 case EXCP_EXECUTE_RAW:
1048 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1049 rc = VINF_EM_RESCHEDULE_RAW;
1050 break;
1051
1052 /*
1053 * Switch to hardware accelerated RAW-mode.
1054 */
1055 case EXCP_EXECUTE_HWACC:
1056 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1057 rc = VINF_EM_RESCHEDULE_HWACC;
1058 break;
1059
1060 /*
1061 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1062 */
1063 case EXCP_RC:
1064 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1065 rc = pVM->rem.s.rc;
1066 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1067 break;
1068
1069 /*
1070 * Figure out the rest when they arrive....
1071 */
1072 default:
1073 AssertMsgFailed(("rc=%d\n", rc));
1074 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1075 rc = VINF_SUCCESS;
1076 break;
1077 }
1078
1079 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%VGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1080 return rc;
1081}
1082
1083
1084/**
1085 * Check if the cpu state is suitable for Raw execution.
1086 *
1087 * @returns boolean
1088 * @param env The CPU env struct.
1089 * @param eip The EIP to check this for (might differ from env->eip).
1090 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1091 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1092 *
1093 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1094 */
1095bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1096{
1097 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1098 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1099 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1100 uint32_t u32CR0;
1101
1102 /* Update counter. */
1103 env->pVM->rem.s.cCanExecuteRaw++;
1104
1105 if (HWACCMIsEnabled(env->pVM))
1106 {
1107 CPUMCTX Ctx;
1108
1109 env->state |= CPU_RAW_HWACC;
1110
1111 /*
1112 * Create partial context for HWACCMR3CanExecuteGuest
1113 */
1114 Ctx.cr0 = env->cr[0];
1115 Ctx.cr3 = env->cr[3];
1116 Ctx.cr4 = env->cr[4];
1117
1118 Ctx.tr = env->tr.selector;
1119 Ctx.trHid.u64Base = env->tr.base;
1120 Ctx.trHid.u32Limit = env->tr.limit;
1121 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1122
1123 Ctx.idtr.cbIdt = env->idt.limit;
1124 Ctx.idtr.pIdt = env->idt.base;
1125
1126 Ctx.eflags.u32 = env->eflags;
1127
1128 Ctx.cs = env->segs[R_CS].selector;
1129 Ctx.csHid.u64Base = env->segs[R_CS].base;
1130 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1131 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1132
1133 Ctx.ds = env->segs[R_DS].selector;
1134 Ctx.dsHid.u64Base = env->segs[R_DS].base;
1135 Ctx.dsHid.u32Limit = env->segs[R_DS].limit;
1136 Ctx.dsHid.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1137
1138 Ctx.es = env->segs[R_ES].selector;
1139 Ctx.esHid.u64Base = env->segs[R_ES].base;
1140 Ctx.esHid.u32Limit = env->segs[R_ES].limit;
1141 Ctx.esHid.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1142
1143 Ctx.fs = env->segs[R_FS].selector;
1144 Ctx.fsHid.u64Base = env->segs[R_FS].base;
1145 Ctx.fsHid.u32Limit = env->segs[R_FS].limit;
1146 Ctx.fsHid.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1147
1148 Ctx.gs = env->segs[R_GS].selector;
1149 Ctx.gsHid.u64Base = env->segs[R_GS].base;
1150 Ctx.gsHid.u32Limit = env->segs[R_GS].limit;
1151 Ctx.gsHid.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1152
1153 Ctx.ss = env->segs[R_SS].selector;
1154 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1155 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1156 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1157
1158 Ctx.msrEFER = env->efer;
1159
1160 /* Hardware accelerated raw-mode:
1161 *
1162 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1163 */
1164 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1165 {
1166 *piException = EXCP_EXECUTE_HWACC;
1167 return true;
1168 }
1169 return false;
1170 }
1171
1172 /*
1173 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1174 * or 32 bits protected mode ring 0 code
1175 *
1176 * The tests are ordered by the likelyhood of being true during normal execution.
1177 */
1178 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1179 {
1180 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1181 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1182 return false;
1183 }
1184
1185#ifndef VBOX_RAW_V86
1186 if (fFlags & VM_MASK) {
1187 STAM_COUNTER_INC(&gStatRefuseVM86);
1188 Log2(("raw mode refused: VM_MASK\n"));
1189 return false;
1190 }
1191#endif
1192
1193 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1194 {
1195#ifndef DEBUG_bird
1196 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1197#endif
1198 return false;
1199 }
1200
1201 if (env->singlestep_enabled)
1202 {
1203 //Log2(("raw mode refused: Single step\n"));
1204 return false;
1205 }
1206
1207 if (env->nb_breakpoints > 0)
1208 {
1209 //Log2(("raw mode refused: Breakpoints\n"));
1210 return false;
1211 }
1212
1213 u32CR0 = env->cr[0];
1214 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1215 {
1216 STAM_COUNTER_INC(&gStatRefusePaging);
1217 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1218 return false;
1219 }
1220
1221 if (env->cr[4] & CR4_PAE_MASK)
1222 {
1223 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1224 {
1225 STAM_COUNTER_INC(&gStatRefusePAE);
1226 return false;
1227 }
1228 }
1229
1230 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1231 {
1232 if (!EMIsRawRing3Enabled(env->pVM))
1233 return false;
1234
1235 if (!(env->eflags & IF_MASK))
1236 {
1237 STAM_COUNTER_INC(&gStatRefuseIF0);
1238 Log2(("raw mode refused: IF (RawR3)\n"));
1239 return false;
1240 }
1241
1242 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1243 {
1244 STAM_COUNTER_INC(&gStatRefuseWP0);
1245 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1246 return false;
1247 }
1248 }
1249 else
1250 {
1251 if (!EMIsRawRing0Enabled(env->pVM))
1252 return false;
1253
1254 // Let's start with pure 32 bits ring 0 code first
1255 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1256 {
1257 STAM_COUNTER_INC(&gStatRefuseCode16);
1258 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1259 return false;
1260 }
1261
1262 // Only R0
1263 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1264 {
1265 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1266 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1267 return false;
1268 }
1269
1270 if (!(u32CR0 & CR0_WP_MASK))
1271 {
1272 STAM_COUNTER_INC(&gStatRefuseWP0);
1273 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1274 return false;
1275 }
1276
1277 if (PATMIsPatchGCAddr(env->pVM, eip))
1278 {
1279 Log2(("raw r0 mode forced: patch code\n"));
1280 *piException = EXCP_EXECUTE_RAW;
1281 return true;
1282 }
1283
1284#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1285 if (!(env->eflags & IF_MASK))
1286 {
1287 STAM_COUNTER_INC(&gStatRefuseIF0);
1288 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1289 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1290 return false;
1291 }
1292#endif
1293
1294 env->state |= CPU_RAW_RING0;
1295 }
1296
1297 /*
1298 * Don't reschedule the first time we're called, because there might be
1299 * special reasons why we're here that is not covered by the above checks.
1300 */
1301 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1302 {
1303 Log2(("raw mode refused: first scheduling\n"));
1304 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1305 return false;
1306 }
1307
1308 Assert(PGMPhysIsA20Enabled(env->pVM));
1309 *piException = EXCP_EXECUTE_RAW;
1310 return true;
1311}
1312
1313
1314/**
1315 * Fetches a code byte.
1316 *
1317 * @returns Success indicator (bool) for ease of use.
1318 * @param env The CPU environment structure.
1319 * @param GCPtrInstr Where to fetch code.
1320 * @param pu8Byte Where to store the byte on success
1321 */
1322bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1323{
1324 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1325 if (VBOX_SUCCESS(rc))
1326 return true;
1327 return false;
1328}
1329
1330
1331/**
1332 * Flush (or invalidate if you like) page table/dir entry.
1333 *
1334 * (invlpg instruction; tlb_flush_page)
1335 *
1336 * @param env Pointer to cpu environment.
1337 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1338 */
1339void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1340{
1341 PVM pVM = env->pVM;
1342 PCPUMCTX pCtx;
1343 int rc;
1344
1345 /*
1346 * When we're replaying invlpg instructions or restoring a saved
1347 * state we disable this path.
1348 */
1349 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1350 return;
1351 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1352 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1353
1354 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1355
1356 /*
1357 * Update the control registers before calling PGMFlushPage.
1358 */
1359 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1360 pCtx->cr0 = env->cr[0];
1361 pCtx->cr3 = env->cr[3];
1362 pCtx->cr4 = env->cr[4];
1363
1364 /*
1365 * Let PGM do the rest.
1366 */
1367 rc = PGMInvalidatePage(pVM, GCPtr);
1368 if (VBOX_FAILURE(rc))
1369 {
1370 AssertMsgFailed(("remR3FlushPage %VGv failed with %d!!\n", GCPtr, rc));
1371 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1372 }
1373 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1374}
1375
1376
1377/**
1378 * Called from tlb_protect_code in order to write monitor a code page.
1379 *
1380 * @param env Pointer to the CPU environment.
1381 * @param GCPtr Code page to monitor
1382 */
1383void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1384{
1385#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1386 Assert(env->pVM->rem.s.fInREM);
1387 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1388 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1389 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1390 && !(env->eflags & VM_MASK) /* no V86 mode */
1391 && !HWACCMIsEnabled(env->pVM))
1392 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1393#endif
1394}
1395
1396/**
1397 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1398 *
1399 * @param env Pointer to the CPU environment.
1400 * @param GCPtr Code page to monitor
1401 */
1402void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1403{
1404 Assert(env->pVM->rem.s.fInREM);
1405#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1406 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1407 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1408 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1409 && !(env->eflags & VM_MASK) /* no V86 mode */
1410 && !HWACCMIsEnabled(env->pVM))
1411 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1412#endif
1413}
1414
1415
1416/**
1417 * Called when the CPU is initialized, any of the CRx registers are changed or
1418 * when the A20 line is modified.
1419 *
1420 * @param env Pointer to the CPU environment.
1421 * @param fGlobal Set if the flush is global.
1422 */
1423void remR3FlushTLB(CPUState *env, bool fGlobal)
1424{
1425 PVM pVM = env->pVM;
1426 PCPUMCTX pCtx;
1427
1428 /*
1429 * When we're replaying invlpg instructions or restoring a saved
1430 * state we disable this path.
1431 */
1432 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1433 return;
1434 Assert(pVM->rem.s.fInREM);
1435
1436 /*
1437 * The caller doesn't check cr4, so we have to do that for ourselves.
1438 */
1439 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1440 fGlobal = true;
1441 Log(("remR3FlushTLB: CR0=%RGr CR3=%RGr CR4=%RGr %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1442
1443 /*
1444 * Update the control registers before calling PGMR3FlushTLB.
1445 */
1446 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1447 pCtx->cr0 = env->cr[0];
1448 pCtx->cr3 = env->cr[3];
1449 pCtx->cr4 = env->cr[4];
1450
1451 /*
1452 * Let PGM do the rest.
1453 */
1454 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1455}
1456
1457
1458/**
1459 * Called when any of the cr0, cr4 or efer registers is updated.
1460 *
1461 * @param env Pointer to the CPU environment.
1462 */
1463void remR3ChangeCpuMode(CPUState *env)
1464{
1465 int rc;
1466 PVM pVM = env->pVM;
1467 PCPUMCTX pCtx;
1468
1469 /*
1470 * When we're replaying loads or restoring a saved
1471 * state this path is disabled.
1472 */
1473 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1474 return;
1475 Assert(pVM->rem.s.fInREM);
1476
1477 /*
1478 * Update the control registers before calling PGMChangeMode()
1479 * as it may need to map whatever cr3 is pointing to.
1480 */
1481 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1482 pCtx->cr0 = env->cr[0];
1483 pCtx->cr3 = env->cr[3];
1484 pCtx->cr4 = env->cr[4];
1485
1486#ifdef TARGET_X86_64
1487 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1488 if (rc != VINF_SUCCESS)
1489 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1490#else
1491 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1492 if (rc != VINF_SUCCESS)
1493 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1494#endif
1495}
1496
1497
1498/**
1499 * Called from compiled code to run dma.
1500 *
1501 * @param env Pointer to the CPU environment.
1502 */
1503void remR3DmaRun(CPUState *env)
1504{
1505 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1506 PDMR3DmaRun(env->pVM);
1507 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1508}
1509
1510
1511/**
1512 * Called from compiled code to schedule pending timers in VMM
1513 *
1514 * @param env Pointer to the CPU environment.
1515 */
1516void remR3TimersRun(CPUState *env)
1517{
1518 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1519 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1520 TMR3TimerQueuesDo(env->pVM);
1521 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1522 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1523}
1524
1525
1526/**
1527 * Record trap occurance
1528 *
1529 * @returns VBox status code
1530 * @param env Pointer to the CPU environment.
1531 * @param uTrap Trap nr
1532 * @param uErrorCode Error code
1533 * @param pvNextEIP Next EIP
1534 */
1535int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1536{
1537 PVM pVM = env->pVM;
1538#ifdef VBOX_WITH_STATISTICS
1539 static STAMCOUNTER s_aStatTrap[255];
1540 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1541#endif
1542
1543#ifdef VBOX_WITH_STATISTICS
1544 if (uTrap < 255)
1545 {
1546 if (!s_aRegisters[uTrap])
1547 {
1548 char szStatName[64];
1549 s_aRegisters[uTrap] = true;
1550 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1551 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1552 }
1553 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1554 }
1555#endif
1556 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%VGv\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1557 if( uTrap < 0x20
1558 && (env->cr[0] & X86_CR0_PE)
1559 && !(env->eflags & X86_EFL_VM))
1560 {
1561#ifdef DEBUG
1562 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1563#endif
1564 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1565 {
1566 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%VGv\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1567 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1568 return VERR_REM_TOO_MANY_TRAPS;
1569 }
1570 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1571 pVM->rem.s.cPendingExceptions = 1;
1572 pVM->rem.s.uPendingException = uTrap;
1573 pVM->rem.s.uPendingExcptEIP = env->eip;
1574 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1575 }
1576 else
1577 {
1578 pVM->rem.s.cPendingExceptions = 0;
1579 pVM->rem.s.uPendingException = uTrap;
1580 pVM->rem.s.uPendingExcptEIP = env->eip;
1581 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1582 }
1583 return VINF_SUCCESS;
1584}
1585
1586
1587/*
1588 * Clear current active trap
1589 *
1590 * @param pVM VM Handle.
1591 */
1592void remR3TrapClear(PVM pVM)
1593{
1594 pVM->rem.s.cPendingExceptions = 0;
1595 pVM->rem.s.uPendingException = 0;
1596 pVM->rem.s.uPendingExcptEIP = 0;
1597 pVM->rem.s.uPendingExcptCR2 = 0;
1598}
1599
1600
1601/*
1602 * Record previous call instruction addresses
1603 *
1604 * @param env Pointer to the CPU environment.
1605 */
1606void remR3RecordCall(CPUState *env)
1607{
1608 CSAMR3RecordCallAddress(env->pVM, env->eip);
1609}
1610
1611
1612/**
1613 * Syncs the internal REM state with the VM.
1614 *
1615 * This must be called before REMR3Run() is invoked whenever when the REM
1616 * state is not up to date. Calling it several times in a row is not
1617 * permitted.
1618 *
1619 * @returns VBox status code.
1620 *
1621 * @param pVM VM Handle.
1622 * @param fFlushTBs Flush all translation blocks before executing code
1623 *
1624 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1625 * no do this since the majority of the callers don't want any unnecessary of events
1626 * pending that would immediatly interrupt execution.
1627 */
1628REMR3DECL(int) REMR3State(PVM pVM, bool fFlushTBs)
1629{
1630 register const CPUMCTX *pCtx;
1631 register unsigned fFlags;
1632 bool fHiddenSelRegsValid;
1633 unsigned i;
1634 TRPMEVENT enmType;
1635 uint8_t u8TrapNo;
1636 int rc;
1637
1638 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1639 Log2(("REMR3State:\n"));
1640
1641 pCtx = pVM->rem.s.pCtx;
1642 fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1643
1644 Assert(!pVM->rem.s.fInREM);
1645 pVM->rem.s.fInStateSync = true;
1646
1647 if (fFlushTBs)
1648 {
1649 STAM_COUNTER_INC(&gStatFlushTBs);
1650 tb_flush(&pVM->rem.s.Env);
1651 }
1652
1653 /*
1654 * Copy the registers which require no special handling.
1655 */
1656#ifdef TARGET_X86_64
1657 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1658 Assert(R_EAX == 0);
1659 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1660 Assert(R_ECX == 1);
1661 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1662 Assert(R_EDX == 2);
1663 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1664 Assert(R_EBX == 3);
1665 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1666 Assert(R_ESP == 4);
1667 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1668 Assert(R_EBP == 5);
1669 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1670 Assert(R_ESI == 6);
1671 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1672 Assert(R_EDI == 7);
1673 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1674 pVM->rem.s.Env.regs[8] = pCtx->r8;
1675 pVM->rem.s.Env.regs[9] = pCtx->r9;
1676 pVM->rem.s.Env.regs[10] = pCtx->r10;
1677 pVM->rem.s.Env.regs[11] = pCtx->r11;
1678 pVM->rem.s.Env.regs[12] = pCtx->r12;
1679 pVM->rem.s.Env.regs[13] = pCtx->r13;
1680 pVM->rem.s.Env.regs[14] = pCtx->r14;
1681 pVM->rem.s.Env.regs[15] = pCtx->r15;
1682
1683 pVM->rem.s.Env.eip = pCtx->rip;
1684
1685 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1686#else
1687 Assert(R_EAX == 0);
1688 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1689 Assert(R_ECX == 1);
1690 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1691 Assert(R_EDX == 2);
1692 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1693 Assert(R_EBX == 3);
1694 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1695 Assert(R_ESP == 4);
1696 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1697 Assert(R_EBP == 5);
1698 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1699 Assert(R_ESI == 6);
1700 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1701 Assert(R_EDI == 7);
1702 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1703 pVM->rem.s.Env.eip = pCtx->eip;
1704
1705 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1706#endif
1707
1708 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1709
1710 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1711 for (i=0;i<8;i++)
1712 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
1713
1714 /*
1715 * Clear the halted hidden flag (the interrupt waking up the CPU can
1716 * have been dispatched in raw mode).
1717 */
1718 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1719
1720 /*
1721 * Replay invlpg?
1722 */
1723 if (pVM->rem.s.cInvalidatedPages)
1724 {
1725 RTUINT i;
1726
1727 pVM->rem.s.fIgnoreInvlPg = true;
1728 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1729 {
1730 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1731 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1732 }
1733 pVM->rem.s.fIgnoreInvlPg = false;
1734 pVM->rem.s.cInvalidatedPages = 0;
1735 }
1736
1737 /* Replay notification changes? */
1738 if (pVM->rem.s.cHandlerNotifications)
1739 REMR3ReplayHandlerNotifications(pVM);
1740
1741 /* Update MSRs; before CRx registers! */
1742 pVM->rem.s.Env.efer = pCtx->msrEFER;
1743 pVM->rem.s.Env.star = pCtx->msrSTAR;
1744 pVM->rem.s.Env.pat = pCtx->msrPAT;
1745#ifdef TARGET_X86_64
1746 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1747 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1748 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1749 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1750
1751 /* Update the internal long mode activate flag according to the new EFER value. */
1752 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1753 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1754 else
1755 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1756#endif
1757
1758
1759 /*
1760 * Registers which are rarely changed and require special handling / order when changed.
1761 */
1762 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1763 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1764 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1765 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1766 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1767 {
1768 if (fFlags & CPUM_CHANGED_FPU_REM)
1769 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1770
1771 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1772 {
1773 pVM->rem.s.fIgnoreCR3Load = true;
1774 tlb_flush(&pVM->rem.s.Env, true);
1775 pVM->rem.s.fIgnoreCR3Load = false;
1776 }
1777
1778 /* CR4 before CR0! */
1779 if (fFlags & CPUM_CHANGED_CR4)
1780 {
1781 pVM->rem.s.fIgnoreCR3Load = true;
1782 pVM->rem.s.fIgnoreCpuMode = true;
1783 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1784 pVM->rem.s.fIgnoreCpuMode = false;
1785 pVM->rem.s.fIgnoreCR3Load = false;
1786 }
1787
1788 if (fFlags & CPUM_CHANGED_CR0)
1789 {
1790 pVM->rem.s.fIgnoreCR3Load = true;
1791 pVM->rem.s.fIgnoreCpuMode = true;
1792 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1793 pVM->rem.s.fIgnoreCpuMode = false;
1794 pVM->rem.s.fIgnoreCR3Load = false;
1795 }
1796
1797 if (fFlags & CPUM_CHANGED_CR3)
1798 {
1799 pVM->rem.s.fIgnoreCR3Load = true;
1800 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1801 pVM->rem.s.fIgnoreCR3Load = false;
1802 }
1803
1804 if (fFlags & CPUM_CHANGED_GDTR)
1805 {
1806 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1807 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1808 }
1809
1810 if (fFlags & CPUM_CHANGED_IDTR)
1811 {
1812 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1813 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1814 }
1815
1816 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1817 {
1818 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1819 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1820 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1821 }
1822
1823 if (fFlags & CPUM_CHANGED_LDTR)
1824 {
1825 if (fHiddenSelRegsValid)
1826 {
1827 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1828 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1829 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1830 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1831 }
1832 else
1833 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1834 }
1835
1836 if (fFlags & CPUM_CHANGED_TR)
1837 {
1838 if (fHiddenSelRegsValid)
1839 {
1840 pVM->rem.s.Env.tr.selector = pCtx->tr;
1841 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1842 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1843 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1844 }
1845 else
1846 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1847
1848 /** @note do_interrupt will fault if the busy flag is still set.... */
1849 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1850 }
1851
1852 if (fFlags & CPUM_CHANGED_CPUID)
1853 {
1854 uint32_t u32Dummy;
1855
1856 /*
1857 * Get the CPUID features.
1858 */
1859 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1860 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1861 }
1862 }
1863
1864 /*
1865 * Update selector registers.
1866 * This must be done *after* we've synced gdt, ldt and crX registers
1867 * since we're reading the GDT/LDT om sync_seg. This will happen with
1868 * saved state which takes a quick dip into rawmode for instance.
1869 */
1870 /*
1871 * Stack; Note first check this one as the CPL might have changed. The
1872 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1873 */
1874
1875 if (fHiddenSelRegsValid)
1876 {
1877 /* The hidden selector registers are valid in the CPU context. */
1878 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1879
1880 /* Set current CPL */
1881 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1882
1883 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1884 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1885 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1886 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1887 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1888 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1889 }
1890 else
1891 {
1892 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1893 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1894 {
1895 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1896
1897 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1898 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1899#ifdef VBOX_WITH_STATISTICS
1900 if (pVM->rem.s.Env.segs[R_SS].newselector)
1901 {
1902 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1903 }
1904#endif
1905 }
1906 else
1907 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1908
1909 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1910 {
1911 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1912 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1913#ifdef VBOX_WITH_STATISTICS
1914 if (pVM->rem.s.Env.segs[R_ES].newselector)
1915 {
1916 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1917 }
1918#endif
1919 }
1920 else
1921 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1922
1923 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1924 {
1925 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1926 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1927#ifdef VBOX_WITH_STATISTICS
1928 if (pVM->rem.s.Env.segs[R_CS].newselector)
1929 {
1930 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1931 }
1932#endif
1933 }
1934 else
1935 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1936
1937 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1938 {
1939 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1940 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1941#ifdef VBOX_WITH_STATISTICS
1942 if (pVM->rem.s.Env.segs[R_DS].newselector)
1943 {
1944 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1945 }
1946#endif
1947 }
1948 else
1949 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1950
1951 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1952 * be the same but not the base/limit. */
1953 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1954 {
1955 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1956 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1957#ifdef VBOX_WITH_STATISTICS
1958 if (pVM->rem.s.Env.segs[R_FS].newselector)
1959 {
1960 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1961 }
1962#endif
1963 }
1964 else
1965 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1966
1967 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1968 {
1969 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1970 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1971#ifdef VBOX_WITH_STATISTICS
1972 if (pVM->rem.s.Env.segs[R_GS].newselector)
1973 {
1974 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1975 }
1976#endif
1977 }
1978 else
1979 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1980 }
1981
1982 /*
1983 * Check for traps.
1984 */
1985 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1986 rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1987 if (VBOX_SUCCESS(rc))
1988 {
1989#ifdef DEBUG
1990 if (u8TrapNo == 0x80)
1991 {
1992 remR3DumpLnxSyscall(pVM);
1993 remR3DumpOBsdSyscall(pVM);
1994 }
1995#endif
1996
1997 pVM->rem.s.Env.exception_index = u8TrapNo;
1998 if (enmType != TRPM_SOFTWARE_INT)
1999 {
2000 pVM->rem.s.Env.exception_is_int = 0;
2001 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
2002 }
2003 else
2004 {
2005 /*
2006 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
2007 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
2008 * for int03 and into.
2009 */
2010 pVM->rem.s.Env.exception_is_int = 1;
2011 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
2012 /* int 3 may be generated by one-byte 0xcc */
2013 if (u8TrapNo == 3)
2014 {
2015 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
2016 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2017 }
2018 /* int 4 may be generated by one-byte 0xce */
2019 else if (u8TrapNo == 4)
2020 {
2021 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
2022 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2023 }
2024 }
2025
2026 /* get error code and cr2 if needed. */
2027 switch (u8TrapNo)
2028 {
2029 case 0x0e:
2030 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
2031 /* fallthru */
2032 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2033 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
2034 break;
2035
2036 case 0x11: case 0x08:
2037 default:
2038 pVM->rem.s.Env.error_code = 0;
2039 break;
2040 }
2041
2042 /*
2043 * We can now reset the active trap since the recompiler is gonna have a go at it.
2044 */
2045 rc = TRPMResetTrap(pVM);
2046 AssertRC(rc);
2047 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
2048 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2049 }
2050
2051 /*
2052 * Clear old interrupt request flags; Check for pending hardware interrupts.
2053 * (See @remark for why we don't check for other FFs.)
2054 */
2055 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2056 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2057 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2058 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2059
2060 /*
2061 * We're now in REM mode.
2062 */
2063 pVM->rem.s.fInREM = true;
2064 pVM->rem.s.fInStateSync = false;
2065 pVM->rem.s.cCanExecuteRaw = 0;
2066 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2067 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2068 return VINF_SUCCESS;
2069}
2070
2071
2072/**
2073 * Syncs back changes in the REM state to the the VM state.
2074 *
2075 * This must be called after invoking REMR3Run().
2076 * Calling it several times in a row is not permitted.
2077 *
2078 * @returns VBox status code.
2079 *
2080 * @param pVM VM Handle.
2081 */
2082REMR3DECL(int) REMR3StateBack(PVM pVM)
2083{
2084 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2085 unsigned i;
2086
2087 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2088 Log2(("REMR3StateBack:\n"));
2089 Assert(pVM->rem.s.fInREM);
2090
2091 /*
2092 * Copy back the registers.
2093 * This is done in the order they are declared in the CPUMCTX structure.
2094 */
2095
2096 /** @todo FOP */
2097 /** @todo FPUIP */
2098 /** @todo CS */
2099 /** @todo FPUDP */
2100 /** @todo DS */
2101 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2102 pCtx->fpu.MXCSR = 0;
2103 pCtx->fpu.MXCSR_MASK = 0;
2104
2105 /** @todo check if FPU/XMM was actually used in the recompiler */
2106 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2107//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2108
2109#ifdef TARGET_X86_64
2110 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2111 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2112 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2113 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2114 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2115 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2116 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2117 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2118 pCtx->r8 = pVM->rem.s.Env.regs[8];
2119 pCtx->r9 = pVM->rem.s.Env.regs[9];
2120 pCtx->r10 = pVM->rem.s.Env.regs[10];
2121 pCtx->r11 = pVM->rem.s.Env.regs[11];
2122 pCtx->r12 = pVM->rem.s.Env.regs[12];
2123 pCtx->r13 = pVM->rem.s.Env.regs[13];
2124 pCtx->r14 = pVM->rem.s.Env.regs[14];
2125 pCtx->r15 = pVM->rem.s.Env.regs[15];
2126
2127 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2128
2129#else
2130 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2131 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2132 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2133 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2134 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2135 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2136 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2137
2138 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2139#endif
2140
2141 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2142
2143#ifdef VBOX_WITH_STATISTICS
2144 if (pVM->rem.s.Env.segs[R_SS].newselector)
2145 {
2146 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2147 }
2148 if (pVM->rem.s.Env.segs[R_GS].newselector)
2149 {
2150 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2151 }
2152 if (pVM->rem.s.Env.segs[R_FS].newselector)
2153 {
2154 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2155 }
2156 if (pVM->rem.s.Env.segs[R_ES].newselector)
2157 {
2158 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2159 }
2160 if (pVM->rem.s.Env.segs[R_DS].newselector)
2161 {
2162 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2163 }
2164 if (pVM->rem.s.Env.segs[R_CS].newselector)
2165 {
2166 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2167 }
2168#endif
2169 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2170 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2171 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2172 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2173 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2174
2175#ifdef TARGET_X86_64
2176 pCtx->rip = pVM->rem.s.Env.eip;
2177 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2178#else
2179 pCtx->eip = pVM->rem.s.Env.eip;
2180 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2181#endif
2182
2183 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2184 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2185 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2186 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2187
2188 for (i=0;i<8;i++)
2189 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2190
2191 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2192 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2193 {
2194 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2195 STAM_COUNTER_INC(&gStatREMGDTChange);
2196 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2197 }
2198
2199 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2200 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2201 {
2202 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2203 STAM_COUNTER_INC(&gStatREMIDTChange);
2204 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2205 }
2206
2207 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2208 {
2209 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2210 STAM_COUNTER_INC(&gStatREMLDTRChange);
2211 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2212 }
2213 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2214 {
2215 pCtx->tr = pVM->rem.s.Env.tr.selector;
2216 STAM_COUNTER_INC(&gStatREMTRChange);
2217 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2218 }
2219
2220 /** @todo These values could still be out of sync! */
2221 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2222 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2223 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2224 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2225
2226 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2227 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2228 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2229
2230 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2231 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2232 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2233
2234 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2235 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2236 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2237
2238 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2239 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2240 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2241
2242 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2243 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2244 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2245
2246 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2247 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2248 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2249
2250 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2251 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2252 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2253
2254 /* Sysenter MSR */
2255 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2256 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2257 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2258
2259 /* System MSRs. */
2260 pCtx->msrEFER = pVM->rem.s.Env.efer;
2261 pCtx->msrSTAR = pVM->rem.s.Env.star;
2262 pCtx->msrPAT = pVM->rem.s.Env.pat;
2263#ifdef TARGET_X86_64
2264 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2265 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2266 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2267 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2268#endif
2269
2270 remR3TrapClear(pVM);
2271
2272 /*
2273 * Check for traps.
2274 */
2275 if ( pVM->rem.s.Env.exception_index >= 0
2276 && pVM->rem.s.Env.exception_index < 256)
2277 {
2278 int rc;
2279
2280 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2281 rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2282 AssertRC(rc);
2283 switch (pVM->rem.s.Env.exception_index)
2284 {
2285 case 0x0e:
2286 TRPMSetFaultAddress(pVM, pCtx->cr2);
2287 /* fallthru */
2288 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2289 case 0x11: case 0x08: /* 0 */
2290 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2291 break;
2292 }
2293
2294 }
2295
2296 /*
2297 * We're not longer in REM mode.
2298 */
2299 pVM->rem.s.fInREM = false;
2300 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2301 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2302 return VINF_SUCCESS;
2303}
2304
2305
2306/**
2307 * This is called by the disassembler when it wants to update the cpu state
2308 * before for instance doing a register dump.
2309 */
2310static void remR3StateUpdate(PVM pVM)
2311{
2312 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2313 unsigned i;
2314
2315 Assert(pVM->rem.s.fInREM);
2316
2317 /*
2318 * Copy back the registers.
2319 * This is done in the order they are declared in the CPUMCTX structure.
2320 */
2321
2322 /** @todo FOP */
2323 /** @todo FPUIP */
2324 /** @todo CS */
2325 /** @todo FPUDP */
2326 /** @todo DS */
2327 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2328 pCtx->fpu.MXCSR = 0;
2329 pCtx->fpu.MXCSR_MASK = 0;
2330
2331 /** @todo check if FPU/XMM was actually used in the recompiler */
2332 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2333//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2334
2335#ifdef TARGET_X86_64
2336 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2337 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2338 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2339 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2340 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2341 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2342 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2343 pCtx->r8 = pVM->rem.s.Env.regs[8];
2344 pCtx->r9 = pVM->rem.s.Env.regs[9];
2345 pCtx->r10 = pVM->rem.s.Env.regs[10];
2346 pCtx->r11 = pVM->rem.s.Env.regs[11];
2347 pCtx->r12 = pVM->rem.s.Env.regs[12];
2348 pCtx->r13 = pVM->rem.s.Env.regs[13];
2349 pCtx->r14 = pVM->rem.s.Env.regs[14];
2350 pCtx->r15 = pVM->rem.s.Env.regs[15];
2351
2352 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2353#else
2354 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2355 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2356 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2357 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2358 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2359 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2360 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2361
2362 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2363#endif
2364
2365 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2366
2367 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2368 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2369 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2370 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2371 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2372
2373#ifdef TARGET_X86_64
2374 pCtx->rip = pVM->rem.s.Env.eip;
2375 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2376#else
2377 pCtx->eip = pVM->rem.s.Env.eip;
2378 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2379#endif
2380
2381 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2382 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2383 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2384 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2385
2386 for (i=0;i<8;i++)
2387 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2388
2389 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2390 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2391 {
2392 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2393 STAM_COUNTER_INC(&gStatREMGDTChange);
2394 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2395 }
2396
2397 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2398 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2399 {
2400 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2401 STAM_COUNTER_INC(&gStatREMIDTChange);
2402 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2403 }
2404
2405 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2406 {
2407 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2408 STAM_COUNTER_INC(&gStatREMLDTRChange);
2409 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2410 }
2411 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2412 {
2413 pCtx->tr = pVM->rem.s.Env.tr.selector;
2414 STAM_COUNTER_INC(&gStatREMTRChange);
2415 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2416 }
2417
2418 /** @todo These values could still be out of sync! */
2419 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2420 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2421 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2422 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2423
2424 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2425 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2426 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2427
2428 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2429 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2430 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2431
2432 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2433 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2434 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2435
2436 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2437 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2438 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2439
2440 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2441 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2442 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2443
2444 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2445 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2446 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2447
2448 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2449 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2450 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2451
2452 /* Sysenter MSR */
2453 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2454 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2455 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2456
2457 /* System MSRs. */
2458 pCtx->msrEFER = pVM->rem.s.Env.efer;
2459 pCtx->msrSTAR = pVM->rem.s.Env.star;
2460 pCtx->msrPAT = pVM->rem.s.Env.pat;
2461#ifdef TARGET_X86_64
2462 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2463 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2464 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2465 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2466#endif
2467
2468}
2469
2470
2471/**
2472 * Update the VMM state information if we're currently in REM.
2473 *
2474 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2475 * we're currently executing in REM and the VMM state is invalid. This method will of
2476 * course check that we're executing in REM before syncing any data over to the VMM.
2477 *
2478 * @param pVM The VM handle.
2479 */
2480REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2481{
2482 if (pVM->rem.s.fInREM)
2483 remR3StateUpdate(pVM);
2484}
2485
2486
2487#undef LOG_GROUP
2488#define LOG_GROUP LOG_GROUP_REM
2489
2490
2491/**
2492 * Notify the recompiler about Address Gate 20 state change.
2493 *
2494 * This notification is required since A20 gate changes are
2495 * initialized from a device driver and the VM might just as
2496 * well be in REM mode as in RAW mode.
2497 *
2498 * @param pVM VM handle.
2499 * @param fEnable True if the gate should be enabled.
2500 * False if the gate should be disabled.
2501 */
2502REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2503{
2504 bool fSaved;
2505
2506 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2507 VM_ASSERT_EMT(pVM);
2508
2509 fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2510 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2511
2512 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2513
2514 pVM->rem.s.fIgnoreAll = fSaved;
2515}
2516
2517
2518/**
2519 * Replays the invalidated recorded pages.
2520 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2521 *
2522 * @param pVM VM handle.
2523 */
2524REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2525{
2526 RTUINT i;
2527
2528 VM_ASSERT_EMT(pVM);
2529
2530 /*
2531 * Sync the required registers.
2532 */
2533 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2534 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2535 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2536 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2537
2538 /*
2539 * Replay the flushes.
2540 */
2541 pVM->rem.s.fIgnoreInvlPg = true;
2542 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2543 {
2544 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2545 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2546 }
2547 pVM->rem.s.fIgnoreInvlPg = false;
2548 pVM->rem.s.cInvalidatedPages = 0;
2549}
2550
2551
2552/**
2553 * Replays the handler notification changes
2554 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2555 *
2556 * @param pVM VM handle.
2557 */
2558REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2559{
2560 /*
2561 * Replay the flushes.
2562 */
2563 RTUINT i;
2564 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2565
2566 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2567 VM_ASSERT_EMT(pVM);
2568
2569 pVM->rem.s.cHandlerNotifications = 0;
2570 for (i = 0; i < c; i++)
2571 {
2572 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2573 switch (pRec->enmKind)
2574 {
2575 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2576 REMR3NotifyHandlerPhysicalRegister(pVM,
2577 pRec->u.PhysicalRegister.enmType,
2578 pRec->u.PhysicalRegister.GCPhys,
2579 pRec->u.PhysicalRegister.cb,
2580 pRec->u.PhysicalRegister.fHasHCHandler);
2581 break;
2582
2583 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2584 REMR3NotifyHandlerPhysicalDeregister(pVM,
2585 pRec->u.PhysicalDeregister.enmType,
2586 pRec->u.PhysicalDeregister.GCPhys,
2587 pRec->u.PhysicalDeregister.cb,
2588 pRec->u.PhysicalDeregister.fHasHCHandler,
2589 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2590 break;
2591
2592 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2593 REMR3NotifyHandlerPhysicalModify(pVM,
2594 pRec->u.PhysicalModify.enmType,
2595 pRec->u.PhysicalModify.GCPhysOld,
2596 pRec->u.PhysicalModify.GCPhysNew,
2597 pRec->u.PhysicalModify.cb,
2598 pRec->u.PhysicalModify.fHasHCHandler,
2599 pRec->u.PhysicalModify.fRestoreAsRAM);
2600 break;
2601
2602 default:
2603 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2604 break;
2605 }
2606 }
2607 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2608}
2609
2610
2611/**
2612 * Notify REM about changed code page.
2613 *
2614 * @returns VBox status code.
2615 * @param pVM VM handle.
2616 * @param pvCodePage Code page address
2617 */
2618REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2619{
2620#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
2621 int rc;
2622 RTGCPHYS PhysGC;
2623 uint64_t flags;
2624
2625 VM_ASSERT_EMT(pVM);
2626
2627 /*
2628 * Get the physical page address.
2629 */
2630 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2631 if (rc == VINF_SUCCESS)
2632 {
2633 /*
2634 * Sync the required registers and flush the whole page.
2635 * (Easier to do the whole page than notifying it about each physical
2636 * byte that was changed.
2637 */
2638 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2639 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2640 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2641 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2642
2643 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2644 }
2645#endif
2646 return VINF_SUCCESS;
2647}
2648
2649
2650/**
2651 * Notification about a successful MMR3PhysRegister() call.
2652 *
2653 * @param pVM VM handle.
2654 * @param GCPhys The physical address the RAM.
2655 * @param cb Size of the memory.
2656 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2657 */
2658REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2659{
2660 uint32_t cbBitmap;
2661 int rc;
2662 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2663 VM_ASSERT_EMT(pVM);
2664
2665 /*
2666 * Validate input - we trust the caller.
2667 */
2668 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2669 Assert(cb);
2670 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2671
2672 /*
2673 * Base ram?
2674 */
2675 if (!GCPhys)
2676 {
2677 phys_ram_size = cb;
2678 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2679#ifndef VBOX_STRICT
2680 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2681 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2682#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2683 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2684 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2685 cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2686 rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2687 AssertRC(rc);
2688 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2689#endif
2690 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2691 }
2692
2693 /*
2694 * Register the ram.
2695 */
2696 Assert(!pVM->rem.s.fIgnoreAll);
2697 pVM->rem.s.fIgnoreAll = true;
2698
2699#ifdef VBOX_WITH_NEW_PHYS_CODE
2700 if (fFlags & MM_RAM_FLAGS_RESERVED)
2701 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2702 else
2703 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2704#else
2705 if (!GCPhys)
2706 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2707 else
2708 {
2709 if (fFlags & MM_RAM_FLAGS_RESERVED)
2710 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2711 else
2712 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2713 }
2714#endif
2715 Assert(pVM->rem.s.fIgnoreAll);
2716 pVM->rem.s.fIgnoreAll = false;
2717}
2718
2719#ifndef VBOX_WITH_NEW_PHYS_CODE
2720
2721/**
2722 * Notification about a successful PGMR3PhysRegisterChunk() call.
2723 *
2724 * @param pVM VM handle.
2725 * @param GCPhys The physical address the RAM.
2726 * @param cb Size of the memory.
2727 * @param pvRam The HC address of the RAM.
2728 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2729 */
2730REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2731{
2732 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2733 VM_ASSERT_EMT(pVM);
2734
2735 /*
2736 * Validate input - we trust the caller.
2737 */
2738 Assert(pvRam);
2739 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2740 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2741 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2742 Assert(fFlags == 0 /* normal RAM */);
2743 Assert(!pVM->rem.s.fIgnoreAll);
2744 pVM->rem.s.fIgnoreAll = true;
2745
2746 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2747
2748 Assert(pVM->rem.s.fIgnoreAll);
2749 pVM->rem.s.fIgnoreAll = false;
2750}
2751
2752
2753/**
2754 * Grows dynamically allocated guest RAM.
2755 * Will raise a fatal error if the operation fails.
2756 *
2757 * @param physaddr The physical address.
2758 */
2759void remR3GrowDynRange(unsigned long physaddr)
2760{
2761 int rc;
2762 PVM pVM = cpu_single_env->pVM;
2763 const RTGCPHYS GCPhys = physaddr;
2764
2765 LogFlow(("remR3GrowDynRange %VGp\n", physaddr));
2766 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2767 if (VBOX_SUCCESS(rc))
2768 return;
2769
2770 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2771 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2772 AssertFatalFailed();
2773}
2774
2775#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2776
2777/**
2778 * Notification about a successful MMR3PhysRomRegister() call.
2779 *
2780 * @param pVM VM handle.
2781 * @param GCPhys The physical address of the ROM.
2782 * @param cb The size of the ROM.
2783 * @param pvCopy Pointer to the ROM copy.
2784 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2785 * This function will be called when ever the protection of the
2786 * shadow ROM changes (at reset and end of POST).
2787 */
2788REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2789{
2790 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2791 VM_ASSERT_EMT(pVM);
2792
2793 /*
2794 * Validate input - we trust the caller.
2795 */
2796 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2797 Assert(cb);
2798 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2799 Assert(pvCopy);
2800 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2801
2802 /*
2803 * Register the rom.
2804 */
2805 Assert(!pVM->rem.s.fIgnoreAll);
2806 pVM->rem.s.fIgnoreAll = true;
2807
2808 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2809
2810 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2811
2812 Assert(pVM->rem.s.fIgnoreAll);
2813 pVM->rem.s.fIgnoreAll = false;
2814}
2815
2816
2817/**
2818 * Notification about a successful memory deregistration or reservation.
2819 *
2820 * @param pVM VM Handle.
2821 * @param GCPhys Start physical address.
2822 * @param cb The size of the range.
2823 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2824 * reserve any memory soon.
2825 */
2826REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2827{
2828 Log(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2829 VM_ASSERT_EMT(pVM);
2830
2831 /*
2832 * Validate input - we trust the caller.
2833 */
2834 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2835 Assert(cb);
2836 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2837
2838 /*
2839 * Unassigning the memory.
2840 */
2841 Assert(!pVM->rem.s.fIgnoreAll);
2842 pVM->rem.s.fIgnoreAll = true;
2843
2844 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2845
2846 Assert(pVM->rem.s.fIgnoreAll);
2847 pVM->rem.s.fIgnoreAll = false;
2848}
2849
2850
2851/**
2852 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2853 *
2854 * @param pVM VM Handle.
2855 * @param enmType Handler type.
2856 * @param GCPhys Handler range address.
2857 * @param cb Size of the handler range.
2858 * @param fHasHCHandler Set if the handler has a HC callback function.
2859 *
2860 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2861 * Handler memory type to memory which has no HC handler.
2862 */
2863REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2864{
2865 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%d\n",
2866 enmType, GCPhys, cb, fHasHCHandler));
2867 VM_ASSERT_EMT(pVM);
2868 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2869 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2870
2871 if (pVM->rem.s.cHandlerNotifications)
2872 REMR3ReplayHandlerNotifications(pVM);
2873
2874 Assert(!pVM->rem.s.fIgnoreAll);
2875 pVM->rem.s.fIgnoreAll = true;
2876
2877 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2878 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2879 else if (fHasHCHandler)
2880 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2881
2882 Assert(pVM->rem.s.fIgnoreAll);
2883 pVM->rem.s.fIgnoreAll = false;
2884}
2885
2886
2887/**
2888 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2889 *
2890 * @param pVM VM Handle.
2891 * @param enmType Handler type.
2892 * @param GCPhys Handler range address.
2893 * @param cb Size of the handler range.
2894 * @param fHasHCHandler Set if the handler has a HC callback function.
2895 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2896 */
2897REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2898{
2899 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2900 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2901 VM_ASSERT_EMT(pVM);
2902
2903 if (pVM->rem.s.cHandlerNotifications)
2904 REMR3ReplayHandlerNotifications(pVM);
2905
2906 Assert(!pVM->rem.s.fIgnoreAll);
2907 pVM->rem.s.fIgnoreAll = true;
2908
2909/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2910 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2911 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2912 else if (fHasHCHandler)
2913 {
2914 if (!fRestoreAsRAM)
2915 {
2916 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2917 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2918 }
2919 else
2920 {
2921 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2922 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2923 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2924 }
2925 }
2926
2927 Assert(pVM->rem.s.fIgnoreAll);
2928 pVM->rem.s.fIgnoreAll = false;
2929}
2930
2931
2932/**
2933 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2934 *
2935 * @param pVM VM Handle.
2936 * @param enmType Handler type.
2937 * @param GCPhysOld Old handler range address.
2938 * @param GCPhysNew New handler range address.
2939 * @param cb Size of the handler range.
2940 * @param fHasHCHandler Set if the handler has a HC callback function.
2941 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2942 */
2943REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2944{
2945 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2946 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2947 VM_ASSERT_EMT(pVM);
2948 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2949
2950 if (pVM->rem.s.cHandlerNotifications)
2951 REMR3ReplayHandlerNotifications(pVM);
2952
2953 if (fHasHCHandler)
2954 {
2955 Assert(!pVM->rem.s.fIgnoreAll);
2956 pVM->rem.s.fIgnoreAll = true;
2957
2958 /*
2959 * Reset the old page.
2960 */
2961 if (!fRestoreAsRAM)
2962 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2963 else
2964 {
2965 /* This is not perfect, but it'll do for PD monitoring... */
2966 Assert(cb == PAGE_SIZE);
2967 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2968 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2969 }
2970
2971 /*
2972 * Update the new page.
2973 */
2974 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2975 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2976 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2977
2978 Assert(pVM->rem.s.fIgnoreAll);
2979 pVM->rem.s.fIgnoreAll = false;
2980 }
2981}
2982
2983
2984/**
2985 * Checks if we're handling access to this page or not.
2986 *
2987 * @returns true if we're trapping access.
2988 * @returns false if we aren't.
2989 * @param pVM The VM handle.
2990 * @param GCPhys The physical address.
2991 *
2992 * @remark This function will only work correctly in VBOX_STRICT builds!
2993 */
2994REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2995{
2996#ifdef VBOX_STRICT
2997 unsigned long off;
2998 if (pVM->rem.s.cHandlerNotifications)
2999 REMR3ReplayHandlerNotifications(pVM);
3000
3001 off = get_phys_page_offset(GCPhys);
3002 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3003 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3004 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3005#else
3006 return false;
3007#endif
3008}
3009
3010
3011/**
3012 * Deals with a rare case in get_phys_addr_code where the code
3013 * is being monitored.
3014 *
3015 * It could also be an MMIO page, in which case we will raise a fatal error.
3016 *
3017 * @returns The physical address corresponding to addr.
3018 * @param env The cpu environment.
3019 * @param addr The virtual address.
3020 * @param pTLBEntry The TLB entry.
3021 */
3022target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
3023{
3024 PVM pVM = env->pVM;
3025 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3026 {
3027 target_ulong ret = pTLBEntry->addend + addr;
3028 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
3029 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
3030 return ret;
3031 }
3032 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
3033 "*** handlers\n",
3034 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3035 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3036 LogRel(("*** mmio\n"));
3037 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3038 LogRel(("*** phys\n"));
3039 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3040 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3041 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3042 AssertFatalFailed();
3043}
3044
3045
3046/** Validate the physical address passed to the read functions.
3047 * Useful for finding non-guest-ram reads/writes. */
3048#if 0 //1 /* disable if it becomes bothersome... */
3049# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
3050#else
3051# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
3052#endif
3053
3054/**
3055 * Read guest RAM and ROM.
3056 *
3057 * @param SrcGCPhys The source address (guest physical).
3058 * @param pvDst The destination address.
3059 * @param cb Number of bytes
3060 */
3061void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3062{
3063 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3064 VBOX_CHECK_ADDR(SrcGCPhys);
3065 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3066 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3067}
3068
3069
3070/**
3071 * Read guest RAM and ROM, unsigned 8-bit.
3072 *
3073 * @param SrcGCPhys The source address (guest physical).
3074 */
3075uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3076{
3077 uint8_t val;
3078 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3079 VBOX_CHECK_ADDR(SrcGCPhys);
3080 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3081 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3082 return val;
3083}
3084
3085
3086/**
3087 * Read guest RAM and ROM, signed 8-bit.
3088 *
3089 * @param SrcGCPhys The source address (guest physical).
3090 */
3091int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3092{
3093 int8_t val;
3094 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3095 VBOX_CHECK_ADDR(SrcGCPhys);
3096 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3097 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3098 return val;
3099}
3100
3101
3102/**
3103 * Read guest RAM and ROM, unsigned 16-bit.
3104 *
3105 * @param SrcGCPhys The source address (guest physical).
3106 */
3107uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3108{
3109 uint16_t val;
3110 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3111 VBOX_CHECK_ADDR(SrcGCPhys);
3112 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3113 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3114 return val;
3115}
3116
3117
3118/**
3119 * Read guest RAM and ROM, signed 16-bit.
3120 *
3121 * @param SrcGCPhys The source address (guest physical).
3122 */
3123int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3124{
3125 uint16_t val;
3126 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3127 VBOX_CHECK_ADDR(SrcGCPhys);
3128 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3129 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3130 return val;
3131}
3132
3133
3134/**
3135 * Read guest RAM and ROM, unsigned 32-bit.
3136 *
3137 * @param SrcGCPhys The source address (guest physical).
3138 */
3139uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3140{
3141 uint32_t val;
3142 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3143 VBOX_CHECK_ADDR(SrcGCPhys);
3144 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3145 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3146 return val;
3147}
3148
3149
3150/**
3151 * Read guest RAM and ROM, signed 32-bit.
3152 *
3153 * @param SrcGCPhys The source address (guest physical).
3154 */
3155int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3156{
3157 int32_t val;
3158 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3159 VBOX_CHECK_ADDR(SrcGCPhys);
3160 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3161 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3162 return val;
3163}
3164
3165
3166/**
3167 * Read guest RAM and ROM, unsigned 64-bit.
3168 *
3169 * @param SrcGCPhys The source address (guest physical).
3170 */
3171uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3172{
3173 uint64_t val;
3174 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3175 VBOX_CHECK_ADDR(SrcGCPhys);
3176 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3177 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3178 return val;
3179}
3180
3181
3182/**
3183 * Write guest RAM.
3184 *
3185 * @param DstGCPhys The destination address (guest physical).
3186 * @param pvSrc The source address.
3187 * @param cb Number of bytes to write
3188 */
3189void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3190{
3191 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3192 VBOX_CHECK_ADDR(DstGCPhys);
3193 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3194 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3195}
3196
3197
3198/**
3199 * Write guest RAM, unsigned 8-bit.
3200 *
3201 * @param DstGCPhys The destination address (guest physical).
3202 * @param val Value
3203 */
3204void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3205{
3206 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3207 VBOX_CHECK_ADDR(DstGCPhys);
3208 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3209 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3210}
3211
3212
3213/**
3214 * Write guest RAM, unsigned 8-bit.
3215 *
3216 * @param DstGCPhys The destination address (guest physical).
3217 * @param val Value
3218 */
3219void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3220{
3221 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3222 VBOX_CHECK_ADDR(DstGCPhys);
3223 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3224 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3225}
3226
3227
3228/**
3229 * Write guest RAM, unsigned 32-bit.
3230 *
3231 * @param DstGCPhys The destination address (guest physical).
3232 * @param val Value
3233 */
3234void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3235{
3236 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3237 VBOX_CHECK_ADDR(DstGCPhys);
3238 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3239 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3240}
3241
3242
3243/**
3244 * Write guest RAM, unsigned 64-bit.
3245 *
3246 * @param DstGCPhys The destination address (guest physical).
3247 * @param val Value
3248 */
3249void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3250{
3251 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3252 VBOX_CHECK_ADDR(DstGCPhys);
3253 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3254 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3255}
3256
3257#undef LOG_GROUP
3258#define LOG_GROUP LOG_GROUP_REM_MMIO
3259
3260/** Read MMIO memory. */
3261static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3262{
3263 uint32_t u32 = 0;
3264 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3265 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3266 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3267 return u32;
3268}
3269
3270/** Read MMIO memory. */
3271static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3272{
3273 uint32_t u32 = 0;
3274 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3275 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3276 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3277 return u32;
3278}
3279
3280/** Read MMIO memory. */
3281static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3282{
3283 uint32_t u32 = 0;
3284 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3285 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3286 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3287 return u32;
3288}
3289
3290/** Write to MMIO memory. */
3291static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3292{
3293 int rc;
3294 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3295 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3296 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3297}
3298
3299/** Write to MMIO memory. */
3300static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3301{
3302 int rc;
3303 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3304 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3305 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3306}
3307
3308/** Write to MMIO memory. */
3309static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3310{
3311 int rc;
3312 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3313 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3314 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3315}
3316
3317
3318#undef LOG_GROUP
3319#define LOG_GROUP LOG_GROUP_REM_HANDLER
3320
3321/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3322
3323static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3324{
3325 uint8_t u8;
3326 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3327 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3328 return u8;
3329}
3330
3331static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3332{
3333 uint16_t u16;
3334 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3335 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3336 return u16;
3337}
3338
3339static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3340{
3341 uint32_t u32;
3342 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3343 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3344 return u32;
3345}
3346
3347static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3348{
3349 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3350 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3351}
3352
3353static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3354{
3355 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3356 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3357}
3358
3359static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3360{
3361 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3362 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3363}
3364
3365/* -+- disassembly -+- */
3366
3367#undef LOG_GROUP
3368#define LOG_GROUP LOG_GROUP_REM_DISAS
3369
3370
3371/**
3372 * Enables or disables singled stepped disassembly.
3373 *
3374 * @returns VBox status code.
3375 * @param pVM VM handle.
3376 * @param fEnable To enable set this flag, to disable clear it.
3377 */
3378static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3379{
3380 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3381 VM_ASSERT_EMT(pVM);
3382
3383 if (fEnable)
3384 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3385 else
3386 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3387 return VINF_SUCCESS;
3388}
3389
3390
3391/**
3392 * Enables or disables singled stepped disassembly.
3393 *
3394 * @returns VBox status code.
3395 * @param pVM VM handle.
3396 * @param fEnable To enable set this flag, to disable clear it.
3397 */
3398REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3399{
3400 PVMREQ pReq;
3401 int rc;
3402
3403 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3404 if (VM_IS_EMT(pVM))
3405 return remR3DisasEnableStepping(pVM, fEnable);
3406
3407 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3408 AssertRC(rc);
3409 if (VBOX_SUCCESS(rc))
3410 rc = pReq->iStatus;
3411 VMR3ReqFree(pReq);
3412 return rc;
3413}
3414
3415
3416#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3417/**
3418 * External Debugger Command: .remstep [on|off|1|0]
3419 */
3420static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3421{
3422 bool fEnable;
3423 int rc;
3424
3425 /* print status */
3426 if (cArgs == 0)
3427 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3428 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3429
3430 /* convert the argument and change the mode. */
3431 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3432 if (VBOX_FAILURE(rc))
3433 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3434 rc = REMR3DisasEnableStepping(pVM, fEnable);
3435 if (VBOX_FAILURE(rc))
3436 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3437 return rc;
3438}
3439#endif
3440
3441
3442/**
3443 * Disassembles n instructions and prints them to the log.
3444 *
3445 * @returns Success indicator.
3446 * @param env Pointer to the recompiler CPU structure.
3447 * @param f32BitCode Indicates that whether or not the code should
3448 * be disassembled as 16 or 32 bit. If -1 the CS
3449 * selector will be inspected.
3450 * @param nrInstructions Nr of instructions to disassemble
3451 * @param pszPrefix
3452 * @remark not currently used for anything but ad-hoc debugging.
3453 */
3454bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3455{
3456 int i, rc;
3457 RTGCPTR GCPtrPC;
3458 uint8_t *pvPC;
3459 RTINTPTR off;
3460 DISCPUSTATE Cpu;
3461
3462 /*
3463 * Determin 16/32 bit mode.
3464 */
3465 if (f32BitCode == -1)
3466 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3467
3468 /*
3469 * Convert cs:eip to host context address.
3470 * We don't care to much about cross page correctness presently.
3471 */
3472 GCPtrPC = env->segs[R_CS].base + env->eip;
3473 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3474 {
3475 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3476
3477 /* convert eip to physical address. */
3478 rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3479 GCPtrPC,
3480 env->cr[3],
3481 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3482 (void**)&pvPC);
3483 if (VBOX_FAILURE(rc))
3484 {
3485 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3486 return false;
3487 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3488 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3489 }
3490 }
3491 else
3492 {
3493 /* physical address */
3494 rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16,
3495 (void**)&pvPC);
3496 if (VBOX_FAILURE(rc))
3497 return false;
3498 }
3499
3500 /*
3501 * Disassemble.
3502 */
3503 off = env->eip - (RTGCUINTPTR)pvPC;
3504 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3505 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3506 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3507 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3508 //Cpu.dwUserData[2] = GCPtrPC;
3509
3510 for (i=0;i<nrInstructions;i++)
3511 {
3512 char szOutput[256];
3513 uint32_t cbOp;
3514 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3515 return false;
3516 if (pszPrefix)
3517 Log(("%s: %s", pszPrefix, szOutput));
3518 else
3519 Log(("%s", szOutput));
3520
3521 pvPC += cbOp;
3522 }
3523 return true;
3524}
3525
3526
3527/** @todo need to test the new code, using the old code in the mean while. */
3528#define USE_OLD_DUMP_AND_DISASSEMBLY
3529
3530/**
3531 * Disassembles one instruction and prints it to the log.
3532 *
3533 * @returns Success indicator.
3534 * @param env Pointer to the recompiler CPU structure.
3535 * @param f32BitCode Indicates that whether or not the code should
3536 * be disassembled as 16 or 32 bit. If -1 the CS
3537 * selector will be inspected.
3538 * @param pszPrefix
3539 */
3540bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3541{
3542#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3543 PVM pVM = env->pVM;
3544 RTGCPTR GCPtrPC;
3545 uint8_t *pvPC;
3546 char szOutput[256];
3547 uint32_t cbOp;
3548 RTINTPTR off;
3549 DISCPUSTATE Cpu;
3550
3551
3552 /* Doesn't work in long mode. */
3553 if (env->hflags & HF_LMA_MASK)
3554 return false;
3555
3556 /*
3557 * Determin 16/32 bit mode.
3558 */
3559 if (f32BitCode == -1)
3560 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3561
3562 /*
3563 * Log registers
3564 */
3565 if (LogIs2Enabled())
3566 {
3567 remR3StateUpdate(pVM);
3568 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3569 }
3570
3571 /*
3572 * Convert cs:eip to host context address.
3573 * We don't care to much about cross page correctness presently.
3574 */
3575 GCPtrPC = env->segs[R_CS].base + env->eip;
3576 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3577 {
3578 /* convert eip to physical address. */
3579 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3580 GCPtrPC,
3581 env->cr[3],
3582 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3583 (void**)&pvPC);
3584 if (VBOX_FAILURE(rc))
3585 {
3586 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3587 return false;
3588 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(pVM, NULL)
3589 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3590 }
3591 }
3592 else
3593 {
3594
3595 /* physical address */
3596 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, (void**)&pvPC);
3597 if (VBOX_FAILURE(rc))
3598 return false;
3599 }
3600
3601 /*
3602 * Disassemble.
3603 */
3604 off = env->eip - (RTGCUINTPTR)pvPC;
3605 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3606 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3607 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3608 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3609 //Cpu.dwUserData[2] = GCPtrPC;
3610 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3611 return false;
3612
3613 if (!f32BitCode)
3614 {
3615 if (pszPrefix)
3616 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3617 else
3618 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3619 }
3620 else
3621 {
3622 if (pszPrefix)
3623 Log(("%s: %s", pszPrefix, szOutput));
3624 else
3625 Log(("%s", szOutput));
3626 }
3627 return true;
3628
3629#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3630 PVM pVM = env->pVM;
3631 const bool fLog = LogIsEnabled();
3632 const bool fLog2 = LogIs2Enabled();
3633 int rc = VINF_SUCCESS;
3634
3635 /*
3636 * Don't bother if there ain't any log output to do.
3637 */
3638 if (!fLog && !fLog2)
3639 return true;
3640
3641 /*
3642 * Update the state so DBGF reads the correct register values.
3643 */
3644 remR3StateUpdate(pVM);
3645
3646 /*
3647 * Log registers if requested.
3648 */
3649 if (!fLog2)
3650 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3651
3652 /*
3653 * Disassemble to log.
3654 */
3655 if (fLog)
3656 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3657
3658 return VBOX_SUCCESS(rc);
3659#endif
3660}
3661
3662
3663/**
3664 * Disassemble recompiled code.
3665 *
3666 * @param phFileIgnored Ignored, logfile usually.
3667 * @param pvCode Pointer to the code block.
3668 * @param cb Size of the code block.
3669 */
3670void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3671{
3672 if (LogIs2Enabled())
3673 {
3674 unsigned off = 0;
3675 char szOutput[256];
3676 DISCPUSTATE Cpu;
3677
3678 memset(&Cpu, 0, sizeof(Cpu));
3679#ifdef RT_ARCH_X86
3680 Cpu.mode = CPUMODE_32BIT;
3681#else
3682 Cpu.mode = CPUMODE_64BIT;
3683#endif
3684
3685 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3686 while (off < cb)
3687 {
3688 uint32_t cbInstr;
3689 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3690 RTLogPrintf("%s", szOutput);
3691 else
3692 {
3693 RTLogPrintf("disas error\n");
3694 cbInstr = 1;
3695#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3696 break;
3697#endif
3698 }
3699 off += cbInstr;
3700 }
3701 }
3702 NOREF(phFileIgnored);
3703}
3704
3705
3706/**
3707 * Disassemble guest code.
3708 *
3709 * @param phFileIgnored Ignored, logfile usually.
3710 * @param uCode The guest address of the code to disassemble. (flat?)
3711 * @param cb Number of bytes to disassemble.
3712 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3713 */
3714void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3715{
3716 if (LogIs2Enabled())
3717 {
3718 PVM pVM = cpu_single_env->pVM;
3719 RTSEL cs;
3720 RTGCUINTPTR eip;
3721
3722 /*
3723 * Update the state so DBGF reads the correct register values (flags).
3724 */
3725 remR3StateUpdate(pVM);
3726
3727 /*
3728 * Do the disassembling.
3729 */
3730 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3731 cs = cpu_single_env->segs[R_CS].selector;
3732 eip = uCode - cpu_single_env->segs[R_CS].base;
3733 for (;;)
3734 {
3735 char szBuf[256];
3736 uint32_t cbInstr;
3737 int rc = DBGFR3DisasInstrEx(pVM,
3738 cs,
3739 eip,
3740 0,
3741 szBuf, sizeof(szBuf),
3742 &cbInstr);
3743 if (VBOX_SUCCESS(rc))
3744 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3745 else
3746 {
3747 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3748 cbInstr = 1;
3749 }
3750
3751 /* next */
3752 if (cb <= cbInstr)
3753 break;
3754 cb -= cbInstr;
3755 uCode += cbInstr;
3756 eip += cbInstr;
3757 }
3758 }
3759 NOREF(phFileIgnored);
3760}
3761
3762
3763/**
3764 * Looks up a guest symbol.
3765 *
3766 * @returns Pointer to symbol name. This is a static buffer.
3767 * @param orig_addr The address in question.
3768 */
3769const char *lookup_symbol(target_ulong orig_addr)
3770{
3771 RTGCINTPTR off = 0;
3772 DBGFSYMBOL Sym;
3773 PVM pVM = cpu_single_env->pVM;
3774 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3775 if (VBOX_SUCCESS(rc))
3776 {
3777 static char szSym[sizeof(Sym.szName) + 48];
3778 if (!off)
3779 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3780 else if (off > 0)
3781 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3782 else
3783 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3784 return szSym;
3785 }
3786 return "<N/A>";
3787}
3788
3789
3790#undef LOG_GROUP
3791#define LOG_GROUP LOG_GROUP_REM
3792
3793
3794/* -+- FF notifications -+- */
3795
3796
3797/**
3798 * Notification about a pending interrupt.
3799 *
3800 * @param pVM VM Handle.
3801 * @param u8Interrupt Interrupt
3802 * @thread The emulation thread.
3803 */
3804REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3805{
3806 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3807 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3808}
3809
3810/**
3811 * Notification about a pending interrupt.
3812 *
3813 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3814 * @param pVM VM Handle.
3815 * @thread The emulation thread.
3816 */
3817REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3818{
3819 return pVM->rem.s.u32PendingInterrupt;
3820}
3821
3822/**
3823 * Notification about the interrupt FF being set.
3824 *
3825 * @param pVM VM Handle.
3826 * @thread The emulation thread.
3827 */
3828REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3829{
3830 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3831 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3832 if (pVM->rem.s.fInREM)
3833 {
3834 if (VM_IS_EMT(pVM))
3835 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3836 else
3837 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3838 CPU_INTERRUPT_EXTERNAL_HARD);
3839 }
3840}
3841
3842
3843/**
3844 * Notification about the interrupt FF being set.
3845 *
3846 * @param pVM VM Handle.
3847 * @thread Any.
3848 */
3849REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3850{
3851 LogFlow(("REMR3NotifyInterruptClear:\n"));
3852 if (pVM->rem.s.fInREM)
3853 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3854}
3855
3856
3857/**
3858 * Notification about pending timer(s).
3859 *
3860 * @param pVM VM Handle.
3861 * @thread Any.
3862 */
3863REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3864{
3865#ifndef DEBUG_bird
3866 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3867#endif
3868 if (pVM->rem.s.fInREM)
3869 {
3870 if (VM_IS_EMT(pVM))
3871 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3872 else
3873 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3874 CPU_INTERRUPT_EXTERNAL_TIMER);
3875 }
3876}
3877
3878
3879/**
3880 * Notification about pending DMA transfers.
3881 *
3882 * @param pVM VM Handle.
3883 * @thread Any.
3884 */
3885REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3886{
3887 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3888 if (pVM->rem.s.fInREM)
3889 {
3890 if (VM_IS_EMT(pVM))
3891 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3892 else
3893 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3894 CPU_INTERRUPT_EXTERNAL_DMA);
3895 }
3896}
3897
3898
3899/**
3900 * Notification about pending timer(s).
3901 *
3902 * @param pVM VM Handle.
3903 * @thread Any.
3904 */
3905REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3906{
3907 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3908 if (pVM->rem.s.fInREM)
3909 {
3910 if (VM_IS_EMT(pVM))
3911 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3912 else
3913 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3914 CPU_INTERRUPT_EXTERNAL_EXIT);
3915 }
3916}
3917
3918
3919/**
3920 * Notification about pending FF set by an external thread.
3921 *
3922 * @param pVM VM handle.
3923 * @thread Any.
3924 */
3925REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3926{
3927 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3928 if (pVM->rem.s.fInREM)
3929 {
3930 if (VM_IS_EMT(pVM))
3931 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3932 else
3933 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3934 CPU_INTERRUPT_EXTERNAL_EXIT);
3935 }
3936}
3937
3938
3939#ifdef VBOX_WITH_STATISTICS
3940void remR3ProfileStart(int statcode)
3941{
3942 STAMPROFILEADV *pStat;
3943 switch(statcode)
3944 {
3945 case STATS_EMULATE_SINGLE_INSTR:
3946 pStat = &gStatExecuteSingleInstr;
3947 break;
3948 case STATS_QEMU_COMPILATION:
3949 pStat = &gStatCompilationQEmu;
3950 break;
3951 case STATS_QEMU_RUN_EMULATED_CODE:
3952 pStat = &gStatRunCodeQEmu;
3953 break;
3954 case STATS_QEMU_TOTAL:
3955 pStat = &gStatTotalTimeQEmu;
3956 break;
3957 case STATS_QEMU_RUN_TIMERS:
3958 pStat = &gStatTimers;
3959 break;
3960 case STATS_TLB_LOOKUP:
3961 pStat= &gStatTBLookup;
3962 break;
3963 case STATS_IRQ_HANDLING:
3964 pStat= &gStatIRQ;
3965 break;
3966 case STATS_RAW_CHECK:
3967 pStat = &gStatRawCheck;
3968 break;
3969
3970 default:
3971 AssertMsgFailed(("unknown stat %d\n", statcode));
3972 return;
3973 }
3974 STAM_PROFILE_ADV_START(pStat, a);
3975}
3976
3977
3978void remR3ProfileStop(int statcode)
3979{
3980 STAMPROFILEADV *pStat;
3981 switch(statcode)
3982 {
3983 case STATS_EMULATE_SINGLE_INSTR:
3984 pStat = &gStatExecuteSingleInstr;
3985 break;
3986 case STATS_QEMU_COMPILATION:
3987 pStat = &gStatCompilationQEmu;
3988 break;
3989 case STATS_QEMU_RUN_EMULATED_CODE:
3990 pStat = &gStatRunCodeQEmu;
3991 break;
3992 case STATS_QEMU_TOTAL:
3993 pStat = &gStatTotalTimeQEmu;
3994 break;
3995 case STATS_QEMU_RUN_TIMERS:
3996 pStat = &gStatTimers;
3997 break;
3998 case STATS_TLB_LOOKUP:
3999 pStat= &gStatTBLookup;
4000 break;
4001 case STATS_IRQ_HANDLING:
4002 pStat= &gStatIRQ;
4003 break;
4004 case STATS_RAW_CHECK:
4005 pStat = &gStatRawCheck;
4006 break;
4007 default:
4008 AssertMsgFailed(("unknown stat %d\n", statcode));
4009 return;
4010 }
4011 STAM_PROFILE_ADV_STOP(pStat, a);
4012}
4013#endif
4014
4015/**
4016 * Raise an RC, force rem exit.
4017 *
4018 * @param pVM VM handle.
4019 * @param rc The rc.
4020 */
4021void remR3RaiseRC(PVM pVM, int rc)
4022{
4023 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
4024 Assert(pVM->rem.s.fInREM);
4025 VM_ASSERT_EMT(pVM);
4026 pVM->rem.s.rc = rc;
4027 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4028}
4029
4030
4031/* -+- timers -+- */
4032
4033uint64_t cpu_get_tsc(CPUX86State *env)
4034{
4035 STAM_COUNTER_INC(&gStatCpuGetTSC);
4036 return TMCpuTickGet(env->pVM);
4037}
4038
4039
4040/* -+- interrupts -+- */
4041
4042void cpu_set_ferr(CPUX86State *env)
4043{
4044 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4045 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4046}
4047
4048int cpu_get_pic_interrupt(CPUState *env)
4049{
4050 uint8_t u8Interrupt;
4051 int rc;
4052
4053 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4054 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4055 * with the (a)pic.
4056 */
4057 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4058 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4059 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4060 * remove this kludge. */
4061 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4062 {
4063 rc = VINF_SUCCESS;
4064 Assert(env->pVM->rem.s.u32PendingInterrupt <= 255);
4065 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4066 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4067 }
4068 else
4069 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4070
4071 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4072 if (VBOX_SUCCESS(rc))
4073 {
4074 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4075 env->interrupt_request |= CPU_INTERRUPT_HARD;
4076 return u8Interrupt;
4077 }
4078 return -1;
4079}
4080
4081
4082/* -+- local apic -+- */
4083
4084void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4085{
4086 int rc = PDMApicSetBase(env->pVM, val);
4087 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4088}
4089
4090uint64_t cpu_get_apic_base(CPUX86State *env)
4091{
4092 uint64_t u64;
4093 int rc = PDMApicGetBase(env->pVM, &u64);
4094 if (VBOX_SUCCESS(rc))
4095 {
4096 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4097 return u64;
4098 }
4099 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4100 return 0;
4101}
4102
4103void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4104{
4105 int rc = PDMApicSetTPR(env->pVM, val);
4106 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4107}
4108
4109uint8_t cpu_get_apic_tpr(CPUX86State *env)
4110{
4111 uint8_t u8;
4112 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4113 if (VBOX_SUCCESS(rc))
4114 {
4115 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4116 return u8;
4117 }
4118 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4119 return 0;
4120}
4121
4122
4123uint64_t cpu_apic_rdmsr(CPUX86State *env, uint32_t reg)
4124{
4125 uint64_t value;
4126 int rc = PDMApicReadMSR(env->pVM, 0/* cpu */, reg, &value);
4127 if (VBOX_SUCCESS(rc))
4128 {
4129 LogFlow(("cpu_apic_rdms returns %#x\n", value));
4130 return value;
4131 }
4132 /** @todo: exception ? */
4133 LogFlow(("cpu_apic_rdms returns 0 (rc=%Vrc)\n", rc));
4134 return value;
4135}
4136
4137void cpu_apic_wrmsr(CPUX86State *env, uint32_t reg, uint64_t value)
4138{
4139 int rc = PDMApicWriteMSR(env->pVM, 0 /* cpu */, reg, value);
4140 /** @todo: exception if error ? */
4141 LogFlow(("cpu_apic_wrmsr: rc=%Vrc\n", rc)); NOREF(rc);
4142}
4143/* -+- I/O Ports -+- */
4144
4145#undef LOG_GROUP
4146#define LOG_GROUP LOG_GROUP_REM_IOPORT
4147
4148void cpu_outb(CPUState *env, int addr, int val)
4149{
4150 int rc;
4151
4152 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4153 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4154
4155 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4156 if (RT_LIKELY(rc == VINF_SUCCESS))
4157 return;
4158 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4159 {
4160 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4161 remR3RaiseRC(env->pVM, rc);
4162 return;
4163 }
4164 remAbort(rc, __FUNCTION__);
4165}
4166
4167void cpu_outw(CPUState *env, int addr, int val)
4168{
4169 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4170 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4171 if (RT_LIKELY(rc == VINF_SUCCESS))
4172 return;
4173 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4174 {
4175 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4176 remR3RaiseRC(env->pVM, rc);
4177 return;
4178 }
4179 remAbort(rc, __FUNCTION__);
4180}
4181
4182void cpu_outl(CPUState *env, int addr, int val)
4183{
4184 int rc;
4185 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4186 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4187 if (RT_LIKELY(rc == VINF_SUCCESS))
4188 return;
4189 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4190 {
4191 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4192 remR3RaiseRC(env->pVM, rc);
4193 return;
4194 }
4195 remAbort(rc, __FUNCTION__);
4196}
4197
4198int cpu_inb(CPUState *env, int addr)
4199{
4200 uint32_t u32 = 0;
4201 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4202 if (RT_LIKELY(rc == VINF_SUCCESS))
4203 {
4204 if (/*addr != 0x61 && */addr != 0x71)
4205 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4206 return (int)u32;
4207 }
4208 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4209 {
4210 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4211 remR3RaiseRC(env->pVM, rc);
4212 return (int)u32;
4213 }
4214 remAbort(rc, __FUNCTION__);
4215 return 0xff;
4216}
4217
4218int cpu_inw(CPUState *env, int addr)
4219{
4220 uint32_t u32 = 0;
4221 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4222 if (RT_LIKELY(rc == VINF_SUCCESS))
4223 {
4224 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4225 return (int)u32;
4226 }
4227 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4228 {
4229 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4230 remR3RaiseRC(env->pVM, rc);
4231 return (int)u32;
4232 }
4233 remAbort(rc, __FUNCTION__);
4234 return 0xffff;
4235}
4236
4237int cpu_inl(CPUState *env, int addr)
4238{
4239 uint32_t u32 = 0;
4240 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4241 if (RT_LIKELY(rc == VINF_SUCCESS))
4242 {
4243//if (addr==0x01f0 && u32 == 0x6b6d)
4244// loglevel = ~0;
4245 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4246 return (int)u32;
4247 }
4248 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4249 {
4250 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4251 remR3RaiseRC(env->pVM, rc);
4252 return (int)u32;
4253 }
4254 remAbort(rc, __FUNCTION__);
4255 return 0xffffffff;
4256}
4257
4258#undef LOG_GROUP
4259#define LOG_GROUP LOG_GROUP_REM
4260
4261
4262/* -+- helpers and misc other interfaces -+- */
4263
4264/**
4265 * Perform the CPUID instruction.
4266 *
4267 * ASMCpuId cannot be invoked from some source files where this is used because of global
4268 * register allocations.
4269 *
4270 * @param env Pointer to the recompiler CPU structure.
4271 * @param uOperator CPUID operation (eax).
4272 * @param pvEAX Where to store eax.
4273 * @param pvEBX Where to store ebx.
4274 * @param pvECX Where to store ecx.
4275 * @param pvEDX Where to store edx.
4276 */
4277void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4278{
4279 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4280}
4281
4282
4283#if 0 /* not used */
4284/**
4285 * Interface for qemu hardware to report back fatal errors.
4286 */
4287void hw_error(const char *pszFormat, ...)
4288{
4289 /*
4290 * Bitch about it.
4291 */
4292 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4293 * this in my Odin32 tree at home! */
4294 va_list args;
4295 va_start(args, pszFormat);
4296 RTLogPrintf("fatal error in virtual hardware:");
4297 RTLogPrintfV(pszFormat, args);
4298 va_end(args);
4299 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4300
4301 /*
4302 * If we're in REM context we'll sync back the state before 'jumping' to
4303 * the EMs failure handling.
4304 */
4305 PVM pVM = cpu_single_env->pVM;
4306 if (pVM->rem.s.fInREM)
4307 REMR3StateBack(pVM);
4308 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4309 AssertMsgFailed(("EMR3FatalError returned!\n"));
4310}
4311#endif
4312
4313/**
4314 * Interface for the qemu cpu to report unhandled situation
4315 * raising a fatal VM error.
4316 */
4317void cpu_abort(CPUState *env, const char *pszFormat, ...)
4318{
4319 va_list args;
4320 PVM pVM;
4321
4322 /*
4323 * Bitch about it.
4324 */
4325#ifndef _MSC_VER
4326 /** @todo: MSVC is right - it's not valid C */
4327 RTLogFlags(NULL, "nodisabled nobuffered");
4328#endif
4329 va_start(args, pszFormat);
4330 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4331 va_end(args);
4332 va_start(args, pszFormat);
4333 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4334 va_end(args);
4335
4336 /*
4337 * If we're in REM context we'll sync back the state before 'jumping' to
4338 * the EMs failure handling.
4339 */
4340 pVM = cpu_single_env->pVM;
4341 if (pVM->rem.s.fInREM)
4342 REMR3StateBack(pVM);
4343 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4344 AssertMsgFailed(("EMR3FatalError returned!\n"));
4345}
4346
4347
4348/**
4349 * Aborts the VM.
4350 *
4351 * @param rc VBox error code.
4352 * @param pszTip Hint about why/when this happend.
4353 */
4354static void remAbort(int rc, const char *pszTip)
4355{
4356 PVM pVM;
4357
4358 /*
4359 * Bitch about it.
4360 */
4361 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4362 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4363
4364 /*
4365 * Jump back to where we entered the recompiler.
4366 */
4367 pVM = cpu_single_env->pVM;
4368 if (pVM->rem.s.fInREM)
4369 REMR3StateBack(pVM);
4370 EMR3FatalError(pVM, rc);
4371 AssertMsgFailed(("EMR3FatalError returned!\n"));
4372}
4373
4374
4375/**
4376 * Dumps a linux system call.
4377 * @param pVM VM handle.
4378 */
4379void remR3DumpLnxSyscall(PVM pVM)
4380{
4381 static const char *apsz[] =
4382 {
4383 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4384 "sys_exit",
4385 "sys_fork",
4386 "sys_read",
4387 "sys_write",
4388 "sys_open", /* 5 */
4389 "sys_close",
4390 "sys_waitpid",
4391 "sys_creat",
4392 "sys_link",
4393 "sys_unlink", /* 10 */
4394 "sys_execve",
4395 "sys_chdir",
4396 "sys_time",
4397 "sys_mknod",
4398 "sys_chmod", /* 15 */
4399 "sys_lchown16",
4400 "sys_ni_syscall", /* old break syscall holder */
4401 "sys_stat",
4402 "sys_lseek",
4403 "sys_getpid", /* 20 */
4404 "sys_mount",
4405 "sys_oldumount",
4406 "sys_setuid16",
4407 "sys_getuid16",
4408 "sys_stime", /* 25 */
4409 "sys_ptrace",
4410 "sys_alarm",
4411 "sys_fstat",
4412 "sys_pause",
4413 "sys_utime", /* 30 */
4414 "sys_ni_syscall", /* old stty syscall holder */
4415 "sys_ni_syscall", /* old gtty syscall holder */
4416 "sys_access",
4417 "sys_nice",
4418 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4419 "sys_sync",
4420 "sys_kill",
4421 "sys_rename",
4422 "sys_mkdir",
4423 "sys_rmdir", /* 40 */
4424 "sys_dup",
4425 "sys_pipe",
4426 "sys_times",
4427 "sys_ni_syscall", /* old prof syscall holder */
4428 "sys_brk", /* 45 */
4429 "sys_setgid16",
4430 "sys_getgid16",
4431 "sys_signal",
4432 "sys_geteuid16",
4433 "sys_getegid16", /* 50 */
4434 "sys_acct",
4435 "sys_umount", /* recycled never used phys() */
4436 "sys_ni_syscall", /* old lock syscall holder */
4437 "sys_ioctl",
4438 "sys_fcntl", /* 55 */
4439 "sys_ni_syscall", /* old mpx syscall holder */
4440 "sys_setpgid",
4441 "sys_ni_syscall", /* old ulimit syscall holder */
4442 "sys_olduname",
4443 "sys_umask", /* 60 */
4444 "sys_chroot",
4445 "sys_ustat",
4446 "sys_dup2",
4447 "sys_getppid",
4448 "sys_getpgrp", /* 65 */
4449 "sys_setsid",
4450 "sys_sigaction",
4451 "sys_sgetmask",
4452 "sys_ssetmask",
4453 "sys_setreuid16", /* 70 */
4454 "sys_setregid16",
4455 "sys_sigsuspend",
4456 "sys_sigpending",
4457 "sys_sethostname",
4458 "sys_setrlimit", /* 75 */
4459 "sys_old_getrlimit",
4460 "sys_getrusage",
4461 "sys_gettimeofday",
4462 "sys_settimeofday",
4463 "sys_getgroups16", /* 80 */
4464 "sys_setgroups16",
4465 "old_select",
4466 "sys_symlink",
4467 "sys_lstat",
4468 "sys_readlink", /* 85 */
4469 "sys_uselib",
4470 "sys_swapon",
4471 "sys_reboot",
4472 "old_readdir",
4473 "old_mmap", /* 90 */
4474 "sys_munmap",
4475 "sys_truncate",
4476 "sys_ftruncate",
4477 "sys_fchmod",
4478 "sys_fchown16", /* 95 */
4479 "sys_getpriority",
4480 "sys_setpriority",
4481 "sys_ni_syscall", /* old profil syscall holder */
4482 "sys_statfs",
4483 "sys_fstatfs", /* 100 */
4484 "sys_ioperm",
4485 "sys_socketcall",
4486 "sys_syslog",
4487 "sys_setitimer",
4488 "sys_getitimer", /* 105 */
4489 "sys_newstat",
4490 "sys_newlstat",
4491 "sys_newfstat",
4492 "sys_uname",
4493 "sys_iopl", /* 110 */
4494 "sys_vhangup",
4495 "sys_ni_syscall", /* old "idle" system call */
4496 "sys_vm86old",
4497 "sys_wait4",
4498 "sys_swapoff", /* 115 */
4499 "sys_sysinfo",
4500 "sys_ipc",
4501 "sys_fsync",
4502 "sys_sigreturn",
4503 "sys_clone", /* 120 */
4504 "sys_setdomainname",
4505 "sys_newuname",
4506 "sys_modify_ldt",
4507 "sys_adjtimex",
4508 "sys_mprotect", /* 125 */
4509 "sys_sigprocmask",
4510 "sys_ni_syscall", /* old "create_module" */
4511 "sys_init_module",
4512 "sys_delete_module",
4513 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4514 "sys_quotactl",
4515 "sys_getpgid",
4516 "sys_fchdir",
4517 "sys_bdflush",
4518 "sys_sysfs", /* 135 */
4519 "sys_personality",
4520 "sys_ni_syscall", /* reserved for afs_syscall */
4521 "sys_setfsuid16",
4522 "sys_setfsgid16",
4523 "sys_llseek", /* 140 */
4524 "sys_getdents",
4525 "sys_select",
4526 "sys_flock",
4527 "sys_msync",
4528 "sys_readv", /* 145 */
4529 "sys_writev",
4530 "sys_getsid",
4531 "sys_fdatasync",
4532 "sys_sysctl",
4533 "sys_mlock", /* 150 */
4534 "sys_munlock",
4535 "sys_mlockall",
4536 "sys_munlockall",
4537 "sys_sched_setparam",
4538 "sys_sched_getparam", /* 155 */
4539 "sys_sched_setscheduler",
4540 "sys_sched_getscheduler",
4541 "sys_sched_yield",
4542 "sys_sched_get_priority_max",
4543 "sys_sched_get_priority_min", /* 160 */
4544 "sys_sched_rr_get_interval",
4545 "sys_nanosleep",
4546 "sys_mremap",
4547 "sys_setresuid16",
4548 "sys_getresuid16", /* 165 */
4549 "sys_vm86",
4550 "sys_ni_syscall", /* Old sys_query_module */
4551 "sys_poll",
4552 "sys_nfsservctl",
4553 "sys_setresgid16", /* 170 */
4554 "sys_getresgid16",
4555 "sys_prctl",
4556 "sys_rt_sigreturn",
4557 "sys_rt_sigaction",
4558 "sys_rt_sigprocmask", /* 175 */
4559 "sys_rt_sigpending",
4560 "sys_rt_sigtimedwait",
4561 "sys_rt_sigqueueinfo",
4562 "sys_rt_sigsuspend",
4563 "sys_pread64", /* 180 */
4564 "sys_pwrite64",
4565 "sys_chown16",
4566 "sys_getcwd",
4567 "sys_capget",
4568 "sys_capset", /* 185 */
4569 "sys_sigaltstack",
4570 "sys_sendfile",
4571 "sys_ni_syscall", /* reserved for streams1 */
4572 "sys_ni_syscall", /* reserved for streams2 */
4573 "sys_vfork", /* 190 */
4574 "sys_getrlimit",
4575 "sys_mmap2",
4576 "sys_truncate64",
4577 "sys_ftruncate64",
4578 "sys_stat64", /* 195 */
4579 "sys_lstat64",
4580 "sys_fstat64",
4581 "sys_lchown",
4582 "sys_getuid",
4583 "sys_getgid", /* 200 */
4584 "sys_geteuid",
4585 "sys_getegid",
4586 "sys_setreuid",
4587 "sys_setregid",
4588 "sys_getgroups", /* 205 */
4589 "sys_setgroups",
4590 "sys_fchown",
4591 "sys_setresuid",
4592 "sys_getresuid",
4593 "sys_setresgid", /* 210 */
4594 "sys_getresgid",
4595 "sys_chown",
4596 "sys_setuid",
4597 "sys_setgid",
4598 "sys_setfsuid", /* 215 */
4599 "sys_setfsgid",
4600 "sys_pivot_root",
4601 "sys_mincore",
4602 "sys_madvise",
4603 "sys_getdents64", /* 220 */
4604 "sys_fcntl64",
4605 "sys_ni_syscall", /* reserved for TUX */
4606 "sys_ni_syscall",
4607 "sys_gettid",
4608 "sys_readahead", /* 225 */
4609 "sys_setxattr",
4610 "sys_lsetxattr",
4611 "sys_fsetxattr",
4612 "sys_getxattr",
4613 "sys_lgetxattr", /* 230 */
4614 "sys_fgetxattr",
4615 "sys_listxattr",
4616 "sys_llistxattr",
4617 "sys_flistxattr",
4618 "sys_removexattr", /* 235 */
4619 "sys_lremovexattr",
4620 "sys_fremovexattr",
4621 "sys_tkill",
4622 "sys_sendfile64",
4623 "sys_futex", /* 240 */
4624 "sys_sched_setaffinity",
4625 "sys_sched_getaffinity",
4626 "sys_set_thread_area",
4627 "sys_get_thread_area",
4628 "sys_io_setup", /* 245 */
4629 "sys_io_destroy",
4630 "sys_io_getevents",
4631 "sys_io_submit",
4632 "sys_io_cancel",
4633 "sys_fadvise64", /* 250 */
4634 "sys_ni_syscall",
4635 "sys_exit_group",
4636 "sys_lookup_dcookie",
4637 "sys_epoll_create",
4638 "sys_epoll_ctl", /* 255 */
4639 "sys_epoll_wait",
4640 "sys_remap_file_pages",
4641 "sys_set_tid_address",
4642 "sys_timer_create",
4643 "sys_timer_settime", /* 260 */
4644 "sys_timer_gettime",
4645 "sys_timer_getoverrun",
4646 "sys_timer_delete",
4647 "sys_clock_settime",
4648 "sys_clock_gettime", /* 265 */
4649 "sys_clock_getres",
4650 "sys_clock_nanosleep",
4651 "sys_statfs64",
4652 "sys_fstatfs64",
4653 "sys_tgkill", /* 270 */
4654 "sys_utimes",
4655 "sys_fadvise64_64",
4656 "sys_ni_syscall" /* sys_vserver */
4657 };
4658
4659 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4660 switch (uEAX)
4661 {
4662 default:
4663 if (uEAX < ELEMENTS(apsz))
4664 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4665 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4666 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4667 else
4668 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4669 break;
4670
4671 }
4672}
4673
4674
4675/**
4676 * Dumps an OpenBSD system call.
4677 * @param pVM VM handle.
4678 */
4679void remR3DumpOBsdSyscall(PVM pVM)
4680{
4681 static const char *apsz[] =
4682 {
4683 "SYS_syscall", //0
4684 "SYS_exit", //1
4685 "SYS_fork", //2
4686 "SYS_read", //3
4687 "SYS_write", //4
4688 "SYS_open", //5
4689 "SYS_close", //6
4690 "SYS_wait4", //7
4691 "SYS_8",
4692 "SYS_link", //9
4693 "SYS_unlink", //10
4694 "SYS_11",
4695 "SYS_chdir", //12
4696 "SYS_fchdir", //13
4697 "SYS_mknod", //14
4698 "SYS_chmod", //15
4699 "SYS_chown", //16
4700 "SYS_break", //17
4701 "SYS_18",
4702 "SYS_19",
4703 "SYS_getpid", //20
4704 "SYS_mount", //21
4705 "SYS_unmount", //22
4706 "SYS_setuid", //23
4707 "SYS_getuid", //24
4708 "SYS_geteuid", //25
4709 "SYS_ptrace", //26
4710 "SYS_recvmsg", //27
4711 "SYS_sendmsg", //28
4712 "SYS_recvfrom", //29
4713 "SYS_accept", //30
4714 "SYS_getpeername", //31
4715 "SYS_getsockname", //32
4716 "SYS_access", //33
4717 "SYS_chflags", //34
4718 "SYS_fchflags", //35
4719 "SYS_sync", //36
4720 "SYS_kill", //37
4721 "SYS_38",
4722 "SYS_getppid", //39
4723 "SYS_40",
4724 "SYS_dup", //41
4725 "SYS_opipe", //42
4726 "SYS_getegid", //43
4727 "SYS_profil", //44
4728 "SYS_ktrace", //45
4729 "SYS_sigaction", //46
4730 "SYS_getgid", //47
4731 "SYS_sigprocmask", //48
4732 "SYS_getlogin", //49
4733 "SYS_setlogin", //50
4734 "SYS_acct", //51
4735 "SYS_sigpending", //52
4736 "SYS_osigaltstack", //53
4737 "SYS_ioctl", //54
4738 "SYS_reboot", //55
4739 "SYS_revoke", //56
4740 "SYS_symlink", //57
4741 "SYS_readlink", //58
4742 "SYS_execve", //59
4743 "SYS_umask", //60
4744 "SYS_chroot", //61
4745 "SYS_62",
4746 "SYS_63",
4747 "SYS_64",
4748 "SYS_65",
4749 "SYS_vfork", //66
4750 "SYS_67",
4751 "SYS_68",
4752 "SYS_sbrk", //69
4753 "SYS_sstk", //70
4754 "SYS_61",
4755 "SYS_vadvise", //72
4756 "SYS_munmap", //73
4757 "SYS_mprotect", //74
4758 "SYS_madvise", //75
4759 "SYS_76",
4760 "SYS_77",
4761 "SYS_mincore", //78
4762 "SYS_getgroups", //79
4763 "SYS_setgroups", //80
4764 "SYS_getpgrp", //81
4765 "SYS_setpgid", //82
4766 "SYS_setitimer", //83
4767 "SYS_84",
4768 "SYS_85",
4769 "SYS_getitimer", //86
4770 "SYS_87",
4771 "SYS_88",
4772 "SYS_89",
4773 "SYS_dup2", //90
4774 "SYS_91",
4775 "SYS_fcntl", //92
4776 "SYS_select", //93
4777 "SYS_94",
4778 "SYS_fsync", //95
4779 "SYS_setpriority", //96
4780 "SYS_socket", //97
4781 "SYS_connect", //98
4782 "SYS_99",
4783 "SYS_getpriority", //100
4784 "SYS_101",
4785 "SYS_102",
4786 "SYS_sigreturn", //103
4787 "SYS_bind", //104
4788 "SYS_setsockopt", //105
4789 "SYS_listen", //106
4790 "SYS_107",
4791 "SYS_108",
4792 "SYS_109",
4793 "SYS_110",
4794 "SYS_sigsuspend", //111
4795 "SYS_112",
4796 "SYS_113",
4797 "SYS_114",
4798 "SYS_115",
4799 "SYS_gettimeofday", //116
4800 "SYS_getrusage", //117
4801 "SYS_getsockopt", //118
4802 "SYS_119",
4803 "SYS_readv", //120
4804 "SYS_writev", //121
4805 "SYS_settimeofday", //122
4806 "SYS_fchown", //123
4807 "SYS_fchmod", //124
4808 "SYS_125",
4809 "SYS_setreuid", //126
4810 "SYS_setregid", //127
4811 "SYS_rename", //128
4812 "SYS_129",
4813 "SYS_130",
4814 "SYS_flock", //131
4815 "SYS_mkfifo", //132
4816 "SYS_sendto", //133
4817 "SYS_shutdown", //134
4818 "SYS_socketpair", //135
4819 "SYS_mkdir", //136
4820 "SYS_rmdir", //137
4821 "SYS_utimes", //138
4822 "SYS_139",
4823 "SYS_adjtime", //140
4824 "SYS_141",
4825 "SYS_142",
4826 "SYS_143",
4827 "SYS_144",
4828 "SYS_145",
4829 "SYS_146",
4830 "SYS_setsid", //147
4831 "SYS_quotactl", //148
4832 "SYS_149",
4833 "SYS_150",
4834 "SYS_151",
4835 "SYS_152",
4836 "SYS_153",
4837 "SYS_154",
4838 "SYS_nfssvc", //155
4839 "SYS_156",
4840 "SYS_157",
4841 "SYS_158",
4842 "SYS_159",
4843 "SYS_160",
4844 "SYS_getfh", //161
4845 "SYS_162",
4846 "SYS_163",
4847 "SYS_164",
4848 "SYS_sysarch", //165
4849 "SYS_166",
4850 "SYS_167",
4851 "SYS_168",
4852 "SYS_169",
4853 "SYS_170",
4854 "SYS_171",
4855 "SYS_172",
4856 "SYS_pread", //173
4857 "SYS_pwrite", //174
4858 "SYS_175",
4859 "SYS_176",
4860 "SYS_177",
4861 "SYS_178",
4862 "SYS_179",
4863 "SYS_180",
4864 "SYS_setgid", //181
4865 "SYS_setegid", //182
4866 "SYS_seteuid", //183
4867 "SYS_lfs_bmapv", //184
4868 "SYS_lfs_markv", //185
4869 "SYS_lfs_segclean", //186
4870 "SYS_lfs_segwait", //187
4871 "SYS_188",
4872 "SYS_189",
4873 "SYS_190",
4874 "SYS_pathconf", //191
4875 "SYS_fpathconf", //192
4876 "SYS_swapctl", //193
4877 "SYS_getrlimit", //194
4878 "SYS_setrlimit", //195
4879 "SYS_getdirentries", //196
4880 "SYS_mmap", //197
4881 "SYS___syscall", //198
4882 "SYS_lseek", //199
4883 "SYS_truncate", //200
4884 "SYS_ftruncate", //201
4885 "SYS___sysctl", //202
4886 "SYS_mlock", //203
4887 "SYS_munlock", //204
4888 "SYS_205",
4889 "SYS_futimes", //206
4890 "SYS_getpgid", //207
4891 "SYS_xfspioctl", //208
4892 "SYS_209",
4893 "SYS_210",
4894 "SYS_211",
4895 "SYS_212",
4896 "SYS_213",
4897 "SYS_214",
4898 "SYS_215",
4899 "SYS_216",
4900 "SYS_217",
4901 "SYS_218",
4902 "SYS_219",
4903 "SYS_220",
4904 "SYS_semget", //221
4905 "SYS_222",
4906 "SYS_223",
4907 "SYS_224",
4908 "SYS_msgget", //225
4909 "SYS_msgsnd", //226
4910 "SYS_msgrcv", //227
4911 "SYS_shmat", //228
4912 "SYS_229",
4913 "SYS_shmdt", //230
4914 "SYS_231",
4915 "SYS_clock_gettime", //232
4916 "SYS_clock_settime", //233
4917 "SYS_clock_getres", //234
4918 "SYS_235",
4919 "SYS_236",
4920 "SYS_237",
4921 "SYS_238",
4922 "SYS_239",
4923 "SYS_nanosleep", //240
4924 "SYS_241",
4925 "SYS_242",
4926 "SYS_243",
4927 "SYS_244",
4928 "SYS_245",
4929 "SYS_246",
4930 "SYS_247",
4931 "SYS_248",
4932 "SYS_249",
4933 "SYS_minherit", //250
4934 "SYS_rfork", //251
4935 "SYS_poll", //252
4936 "SYS_issetugid", //253
4937 "SYS_lchown", //254
4938 "SYS_getsid", //255
4939 "SYS_msync", //256
4940 "SYS_257",
4941 "SYS_258",
4942 "SYS_259",
4943 "SYS_getfsstat", //260
4944 "SYS_statfs", //261
4945 "SYS_fstatfs", //262
4946 "SYS_pipe", //263
4947 "SYS_fhopen", //264
4948 "SYS_265",
4949 "SYS_fhstatfs", //266
4950 "SYS_preadv", //267
4951 "SYS_pwritev", //268
4952 "SYS_kqueue", //269
4953 "SYS_kevent", //270
4954 "SYS_mlockall", //271
4955 "SYS_munlockall", //272
4956 "SYS_getpeereid", //273
4957 "SYS_274",
4958 "SYS_275",
4959 "SYS_276",
4960 "SYS_277",
4961 "SYS_278",
4962 "SYS_279",
4963 "SYS_280",
4964 "SYS_getresuid", //281
4965 "SYS_setresuid", //282
4966 "SYS_getresgid", //283
4967 "SYS_setresgid", //284
4968 "SYS_285",
4969 "SYS_mquery", //286
4970 "SYS_closefrom", //287
4971 "SYS_sigaltstack", //288
4972 "SYS_shmget", //289
4973 "SYS_semop", //290
4974 "SYS_stat", //291
4975 "SYS_fstat", //292
4976 "SYS_lstat", //293
4977 "SYS_fhstat", //294
4978 "SYS___semctl", //295
4979 "SYS_shmctl", //296
4980 "SYS_msgctl", //297
4981 "SYS_MAXSYSCALL", //298
4982 //299
4983 //300
4984 };
4985 uint32_t uEAX;
4986 if (!LogIsEnabled())
4987 return;
4988 uEAX = CPUMGetGuestEAX(pVM);
4989 switch (uEAX)
4990 {
4991 default:
4992 if (uEAX < ELEMENTS(apsz))
4993 {
4994 uint32_t au32Args[8] = {0};
4995 PGMPhysSimpleReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4996 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4997 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4998 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4999 }
5000 else
5001 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
5002 break;
5003 }
5004}
5005
5006
5007#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
5008/**
5009 * The Dll main entry point (stub).
5010 */
5011bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5012{
5013 return true;
5014}
5015
5016void *memcpy(void *dst, const void *src, size_t size)
5017{
5018 uint8_t*pbDst = dst, *pbSrc = src;
5019 while (size-- > 0)
5020 *pbDst++ = *pbSrc++;
5021 return dst;
5022}
5023
5024#endif
5025
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette