VirtualBox

source: vbox/trunk/src/recompiler_new/VBoxRecompiler.c@ 13782

Last change on this file since 13782 was 13782, checked in by vboxsync, 16 years ago

More SMP groundwork.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 158.7 KB
Line 
1/* $Id: VBoxRecompiler.c 13782 2008-11-04 12:16:30Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "osdep.h"
29#include "exec-all.h"
30
31void cpu_exec_init_all(unsigned long tb_size);
32
33#include <VBox/rem.h>
34#include <VBox/vmapi.h>
35#include <VBox/tm.h>
36#include <VBox/ssm.h>
37#include <VBox/em.h>
38#include <VBox/trpm.h>
39#include <VBox/iom.h>
40#include <VBox/mm.h>
41#include <VBox/pgm.h>
42#include <VBox/pdm.h>
43#include <VBox/dbgf.h>
44#include <VBox/dbg.h>
45#include <VBox/hwaccm.h>
46#include <VBox/patm.h>
47#include <VBox/csam.h>
48#include "REMInternal.h"
49#include <VBox/vm.h>
50#include <VBox/param.h>
51#include <VBox/err.h>
52
53#include <VBox/log.h>
54#include <iprt/semaphore.h>
55#include <iprt/asm.h>
56#include <iprt/assert.h>
57#include <iprt/thread.h>
58#include <iprt/string.h>
59
60/* Don't wanna include everything. */
61extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
62extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
63extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
64extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
65extern void tlb_flush(CPUState *env, int flush_global);
66extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
67extern void sync_ldtr(CPUX86State *env1, int selector);
68extern int sync_tr(CPUX86State *env1, int selector);
69
70#ifdef VBOX_STRICT
71unsigned long get_phys_page_offset(target_ulong addr);
72#endif
73
74
75/*******************************************************************************
76* Defined Constants And Macros *
77*******************************************************************************/
78
79/** Copy 80-bit fpu register at pSrc to pDst.
80 * This is probably faster than *calling* memcpy.
81 */
82#define REM_COPY_FPU_REG(pDst, pSrc) \
83 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
84
85
86/*******************************************************************************
87* Internal Functions *
88*******************************************************************************/
89static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
90static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
91static void remR3StateUpdate(PVM pVM);
92
93static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
94static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
95static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
96static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
97static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
98static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
99
100static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
101static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
102static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
103static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
104static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
105static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106
107
108/*******************************************************************************
109* Global Variables *
110*******************************************************************************/
111
112/** @todo Move stats to REM::s some rainy day we have nothing do to. */
113#ifdef VBOX_WITH_STATISTICS
114static STAMPROFILEADV gStatExecuteSingleInstr;
115static STAMPROFILEADV gStatCompilationQEmu;
116static STAMPROFILEADV gStatRunCodeQEmu;
117static STAMPROFILEADV gStatTotalTimeQEmu;
118static STAMPROFILEADV gStatTimers;
119static STAMPROFILEADV gStatTBLookup;
120static STAMPROFILEADV gStatIRQ;
121static STAMPROFILEADV gStatRawCheck;
122static STAMPROFILEADV gStatMemRead;
123static STAMPROFILEADV gStatMemWrite;
124static STAMPROFILE gStatGCPhys2HCVirt;
125static STAMPROFILE gStatHCVirt2GCPhys;
126static STAMCOUNTER gStatCpuGetTSC;
127static STAMCOUNTER gStatRefuseTFInhibit;
128static STAMCOUNTER gStatRefuseVM86;
129static STAMCOUNTER gStatRefusePaging;
130static STAMCOUNTER gStatRefusePAE;
131static STAMCOUNTER gStatRefuseIOPLNot0;
132static STAMCOUNTER gStatRefuseIF0;
133static STAMCOUNTER gStatRefuseCode16;
134static STAMCOUNTER gStatRefuseWP0;
135static STAMCOUNTER gStatRefuseRing1or2;
136static STAMCOUNTER gStatRefuseCanExecute;
137static STAMCOUNTER gStatREMGDTChange;
138static STAMCOUNTER gStatREMIDTChange;
139static STAMCOUNTER gStatREMLDTRChange;
140static STAMCOUNTER gStatREMTRChange;
141static STAMCOUNTER gStatSelOutOfSync[6];
142static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
143static STAMCOUNTER gStatFlushTBs;
144#endif
145
146/*
147 * Global stuff.
148 */
149
150/** MMIO read callbacks. */
151CPUReadMemoryFunc *g_apfnMMIORead[3] =
152{
153 remR3MMIOReadU8,
154 remR3MMIOReadU16,
155 remR3MMIOReadU32
156};
157
158/** MMIO write callbacks. */
159CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
160{
161 remR3MMIOWriteU8,
162 remR3MMIOWriteU16,
163 remR3MMIOWriteU32
164};
165
166/** Handler read callbacks. */
167CPUReadMemoryFunc *g_apfnHandlerRead[3] =
168{
169 remR3HandlerReadU8,
170 remR3HandlerReadU16,
171 remR3HandlerReadU32
172};
173
174/** Handler write callbacks. */
175CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
176{
177 remR3HandlerWriteU8,
178 remR3HandlerWriteU16,
179 remR3HandlerWriteU32
180};
181
182
183#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
184/*
185 * Debugger commands.
186 */
187static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
188
189/** '.remstep' arguments. */
190static const DBGCVARDESC g_aArgRemStep[] =
191{
192 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
193 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
194};
195
196/** Command descriptors. */
197static const DBGCCMD g_aCmds[] =
198{
199 {
200 .pszCmd ="remstep",
201 .cArgsMin = 0,
202 .cArgsMax = 1,
203 .paArgDescs = &g_aArgRemStep[0],
204 .cArgDescs = ELEMENTS(g_aArgRemStep),
205 .pResultDesc = NULL,
206 .fFlags = 0,
207 .pfnHandler = remR3CmdDisasEnableStepping,
208 .pszSyntax = "[on/off]",
209 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
210 "If no arguments show the current state."
211 }
212};
213#endif
214
215
216/*******************************************************************************
217* Internal Functions *
218*******************************************************************************/
219static void remAbort(int rc, const char *pszTip);
220extern int testmath(void);
221
222/* Put them here to avoid unused variable warning. */
223AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
224#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
225//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
226/* Why did this have to be identical?? */
227AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
228#else
229AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
230#endif
231
232
233/* Prologue code, must be in lower 4G to simplify jumps to/from generated code */
234uint8_t* code_gen_prologue;
235
236/**
237 * Initializes the REM.
238 *
239 * @returns VBox status code.
240 * @param pVM The VM to operate on.
241 */
242REMR3DECL(int) REMR3Init(PVM pVM)
243{
244 uint32_t u32Dummy;
245 unsigned i;
246 int rc;
247
248 /*
249 * Assert sanity.
250 */
251 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
252 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
253 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
254#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
255 Assert(!testmath());
256#endif
257 /*
258 * Init some internal data members.
259 */
260 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
261 pVM->rem.s.Env.pVM = pVM;
262#ifdef CPU_RAW_MODE_INIT
263 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
264#endif
265
266 /* ctx. */
267 pVM->rem.s.pCtx = CPUMQueryGuestCtxPtr(pVM);
268 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
269
270 /* ignore all notifications */
271 pVM->rem.s.fIgnoreAll = true;
272
273 code_gen_prologue = RTMemExecAlloc(_1K);
274
275 cpu_exec_init_all(0);
276
277 /*
278 * Init the recompiler.
279 */
280 if (!cpu_x86_init(&pVM->rem.s.Env, "vbox"))
281 {
282 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
283 return VERR_GENERAL_FAILURE;
284 }
285 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
286 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
287
288 /* allocate code buffer for single instruction emulation. */
289 pVM->rem.s.Env.cbCodeBuffer = 4096;
290 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
291 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
292
293 /* finally, set the cpu_single_env global. */
294 cpu_single_env = &pVM->rem.s.Env;
295
296 /* Nothing is pending by default */
297 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
298
299 /*
300 * Register ram types.
301 */
302 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
303 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
304 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
305 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
306 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
307
308 /* stop ignoring. */
309 pVM->rem.s.fIgnoreAll = false;
310
311 /*
312 * Register the saved state data unit.
313 */
314 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
315 NULL, remR3Save, NULL,
316 NULL, remR3Load, NULL);
317 if (VBOX_FAILURE(rc))
318 return rc;
319
320#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
321 /*
322 * Debugger commands.
323 */
324 static bool fRegisteredCmds = false;
325 if (!fRegisteredCmds)
326 {
327 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
328 if (VBOX_SUCCESS(rc))
329 fRegisteredCmds = true;
330 }
331#endif
332
333#ifdef VBOX_WITH_STATISTICS
334 /*
335 * Statistics.
336 */
337 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
338 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
339 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
340 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
341 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
342 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
343 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
344 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
345 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
346 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
347 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
348 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
349
350 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
351
352 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
353 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
354 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
355 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
356 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
357 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
358 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
359 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
360 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
361 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
362 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
363
364 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
365 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
366 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
367 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
368
369 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
370 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
371 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
372 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
373 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
374 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
375
376 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
377 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
378 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
379 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
380 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
382
383
384#endif
385
386#ifdef DEBUG_ALL_LOGGING
387 loglevel = ~0;
388#endif
389
390 return rc;
391}
392
393
394/**
395 * Terminates the REM.
396 *
397 * Termination means cleaning up and freeing all resources,
398 * the VM it self is at this point powered off or suspended.
399 *
400 * @returns VBox status code.
401 * @param pVM The VM to operate on.
402 */
403REMR3DECL(int) REMR3Term(PVM pVM)
404{
405 return VINF_SUCCESS;
406}
407
408
409/**
410 * The VM is being reset.
411 *
412 * For the REM component this means to call the cpu_reset() and
413 * reinitialize some state variables.
414 *
415 * @param pVM VM handle.
416 */
417REMR3DECL(void) REMR3Reset(PVM pVM)
418{
419 /*
420 * Reset the REM cpu.
421 */
422 pVM->rem.s.fIgnoreAll = true;
423 cpu_reset(&pVM->rem.s.Env);
424 pVM->rem.s.cInvalidatedPages = 0;
425 pVM->rem.s.fIgnoreAll = false;
426
427 /* Clear raw ring 0 init state */
428 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
429
430 /* Flush the TBs the next time we execute code here. */
431 pVM->rem.s.fFlushTBs = true;
432}
433
434
435/**
436 * Execute state save operation.
437 *
438 * @returns VBox status code.
439 * @param pVM VM Handle.
440 * @param pSSM SSM operation handle.
441 */
442static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
443{
444 /*
445 * Save the required CPU Env bits.
446 * (Not much because we're never in REM when doing the save.)
447 */
448 PREM pRem = &pVM->rem.s;
449 LogFlow(("remR3Save:\n"));
450 Assert(!pRem->fInREM);
451 SSMR3PutU32(pSSM, pRem->Env.hflags);
452 SSMR3PutU32(pSSM, ~0); /* separator */
453
454 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
455 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
456 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
457
458 return SSMR3PutU32(pSSM, ~0); /* terminator */
459}
460
461
462/**
463 * Execute state load operation.
464 *
465 * @returns VBox status code.
466 * @param pVM VM Handle.
467 * @param pSSM SSM operation handle.
468 * @param u32Version Data layout version.
469 */
470static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
471{
472 uint32_t u32Dummy;
473 uint32_t fRawRing0 = false;
474 uint32_t u32Sep;
475 int rc;
476 PREM pRem;
477 LogFlow(("remR3Load:\n"));
478
479 /*
480 * Validate version.
481 */
482 if ( u32Version != REM_SAVED_STATE_VERSION
483 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
484 {
485 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
486 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
487 }
488
489 /*
490 * Do a reset to be on the safe side...
491 */
492 REMR3Reset(pVM);
493
494 /*
495 * Ignore all ignorable notifications.
496 * (Not doing this will cause serious trouble.)
497 */
498 pVM->rem.s.fIgnoreAll = true;
499
500 /*
501 * Load the required CPU Env bits.
502 * (Not much because we're never in REM when doing the save.)
503 */
504 pRem = &pVM->rem.s;
505 Assert(!pRem->fInREM);
506 SSMR3GetU32(pSSM, &pRem->Env.hflags);
507 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
508 {
509 /* Redundant REM CPU state has to be loaded, but can be ignored. */
510 CPUX86State_Ver16 temp;
511 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
512 }
513
514 rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
515 if (VBOX_FAILURE(rc))
516 return rc;
517 if (u32Sep != ~0U)
518 {
519 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
520 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
521 }
522
523 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
524 SSMR3GetUInt(pSSM, &fRawRing0);
525 if (fRawRing0)
526 pRem->Env.state |= CPU_RAW_RING0;
527
528 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
529 {
530 unsigned i;
531
532 /*
533 * Load the REM stuff.
534 */
535 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
536 if (VBOX_FAILURE(rc))
537 return rc;
538 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
539 {
540 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
541 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
542 }
543 for (i = 0; i < pRem->cInvalidatedPages; i++)
544 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
545 }
546
547 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
548 if (VBOX_FAILURE(rc))
549 return rc;
550
551 /* check the terminator. */
552 rc = SSMR3GetU32(pSSM, &u32Sep);
553 if (VBOX_FAILURE(rc))
554 return rc;
555 if (u32Sep != ~0U)
556 {
557 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
558 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
559 }
560
561 /*
562 * Get the CPUID features.
563 */
564 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
565 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
566
567 /*
568 * Sync the Load Flush the TLB
569 */
570 tlb_flush(&pRem->Env, 1);
571
572 /*
573 * Stop ignoring ignornable notifications.
574 */
575 pVM->rem.s.fIgnoreAll = false;
576
577 /*
578 * Sync the whole CPU state when executing code in the recompiler.
579 */
580 CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
581 return VINF_SUCCESS;
582}
583
584
585
586#undef LOG_GROUP
587#define LOG_GROUP LOG_GROUP_REM_RUN
588
589/**
590 * Single steps an instruction in recompiled mode.
591 *
592 * Before calling this function the REM state needs to be in sync with
593 * the VM. Call REMR3State() to perform the sync. It's only necessary
594 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
595 * and after calling REMR3StateBack().
596 *
597 * @returns VBox status code.
598 *
599 * @param pVM VM Handle.
600 */
601REMR3DECL(int) REMR3Step(PVM pVM)
602{
603 int rc, interrupt_request;
604 RTGCPTR GCPtrPC;
605 bool fBp;
606
607 /*
608 * Lock the REM - we don't wanna have anyone interrupting us
609 * while stepping - and enabled single stepping. We also ignore
610 * pending interrupts and suchlike.
611 */
612 interrupt_request = pVM->rem.s.Env.interrupt_request;
613 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
614 pVM->rem.s.Env.interrupt_request = 0;
615 cpu_single_step(&pVM->rem.s.Env, 1);
616
617 /*
618 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
619 */
620 GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
621 fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
622
623 /*
624 * Execute and handle the return code.
625 * We execute without enabling the cpu tick, so on success we'll
626 * just flip it on and off to make sure it moves
627 */
628 rc = cpu_exec(&pVM->rem.s.Env);
629 if (rc == EXCP_DEBUG)
630 {
631 TMCpuTickResume(pVM);
632 TMCpuTickPause(pVM);
633 TMVirtualResume(pVM);
634 TMVirtualPause(pVM);
635 rc = VINF_EM_DBG_STEPPED;
636 }
637 else
638 {
639 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
640 switch (rc)
641 {
642 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
643 case EXCP_HLT:
644 case EXCP_HALTED: rc = VINF_EM_HALT; break;
645 case EXCP_RC:
646 rc = pVM->rem.s.rc;
647 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
648 break;
649 default:
650 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
651 rc = VERR_INTERNAL_ERROR;
652 break;
653 }
654 }
655
656 /*
657 * Restore the stuff we changed to prevent interruption.
658 * Unlock the REM.
659 */
660 if (fBp)
661 {
662 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
663 Assert(rc2 == 0); NOREF(rc2);
664 }
665 cpu_single_step(&pVM->rem.s.Env, 0);
666 pVM->rem.s.Env.interrupt_request = interrupt_request;
667
668 return rc;
669}
670
671
672/**
673 * Set a breakpoint using the REM facilities.
674 *
675 * @returns VBox status code.
676 * @param pVM The VM handle.
677 * @param Address The breakpoint address.
678 * @thread The emulation thread.
679 */
680REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
681{
682 VM_ASSERT_EMT(pVM);
683 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
684 {
685 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
686 return VINF_SUCCESS;
687 }
688 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
689 return VERR_REM_NO_MORE_BP_SLOTS;
690}
691
692
693/**
694 * Clears a breakpoint set by REMR3BreakpointSet().
695 *
696 * @returns VBox status code.
697 * @param pVM The VM handle.
698 * @param Address The breakpoint address.
699 * @thread The emulation thread.
700 */
701REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
702{
703 VM_ASSERT_EMT(pVM);
704 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
705 {
706 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
707 return VINF_SUCCESS;
708 }
709 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
710 return VERR_REM_BP_NOT_FOUND;
711}
712
713
714/**
715 * Emulate an instruction.
716 *
717 * This function executes one instruction without letting anyone
718 * interrupt it. This is intended for being called while being in
719 * raw mode and thus will take care of all the state syncing between
720 * REM and the rest.
721 *
722 * @returns VBox status code.
723 * @param pVM VM handle.
724 */
725REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
726{
727 bool fFlushTBs;
728
729 int rc, rc2;
730 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
731
732 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
733 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
734 */
735 if (HWACCMIsEnabled(pVM))
736 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
737
738 /* Skip the TB flush as that's rather expensive and not necessary for single instruction emulation. */
739 fFlushTBs = pVM->rem.s.fFlushTBs;
740 pVM->rem.s.fFlushTBs = false;
741
742 /*
743 * Sync the state and enable single instruction / single stepping.
744 */
745 rc = REMR3State(pVM);
746 pVM->rem.s.fFlushTBs = fFlushTBs;
747 if (VBOX_SUCCESS(rc))
748 {
749 int interrupt_request = pVM->rem.s.Env.interrupt_request;
750 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
751 Assert(!pVM->rem.s.Env.singlestep_enabled);
752#if 1
753
754 /*
755 * Now we set the execute single instruction flag and enter the cpu_exec loop.
756 */
757 TMNotifyStartOfExecution(pVM);
758 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
759 rc = cpu_exec(&pVM->rem.s.Env);
760 TMNotifyEndOfExecution(pVM);
761 switch (rc)
762 {
763 /*
764 * Executed without anything out of the way happening.
765 */
766 case EXCP_SINGLE_INSTR:
767 rc = VINF_EM_RESCHEDULE;
768 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
769 break;
770
771 /*
772 * If we take a trap or start servicing a pending interrupt, we might end up here.
773 * (Timer thread or some other thread wishing EMT's attention.)
774 */
775 case EXCP_INTERRUPT:
776 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
777 rc = VINF_EM_RESCHEDULE;
778 break;
779
780 /*
781 * Single step, we assume!
782 * If there was a breakpoint there we're fucked now.
783 */
784 case EXCP_DEBUG:
785 {
786 /* breakpoint or single step? */
787 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
788 int iBP;
789 rc = VINF_EM_DBG_STEPPED;
790 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
791 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
792 {
793 rc = VINF_EM_DBG_BREAKPOINT;
794 break;
795 }
796 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
797 break;
798 }
799
800 /*
801 * hlt instruction.
802 */
803 case EXCP_HLT:
804 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
805 rc = VINF_EM_HALT;
806 break;
807
808 /*
809 * The VM has halted.
810 */
811 case EXCP_HALTED:
812 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
813 rc = VINF_EM_HALT;
814 break;
815
816 /*
817 * Switch to RAW-mode.
818 */
819 case EXCP_EXECUTE_RAW:
820 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
821 rc = VINF_EM_RESCHEDULE_RAW;
822 break;
823
824 /*
825 * Switch to hardware accelerated RAW-mode.
826 */
827 case EXCP_EXECUTE_HWACC:
828 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
829 rc = VINF_EM_RESCHEDULE_HWACC;
830 break;
831
832 /*
833 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
834 */
835 case EXCP_RC:
836 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
837 rc = pVM->rem.s.rc;
838 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
839 break;
840
841 /*
842 * Figure out the rest when they arrive....
843 */
844 default:
845 AssertMsgFailed(("rc=%d\n", rc));
846 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
847 rc = VINF_EM_RESCHEDULE;
848 break;
849 }
850
851 /*
852 * Switch back the state.
853 */
854#else
855 pVM->rem.s.Env.interrupt_request = 0;
856 cpu_single_step(&pVM->rem.s.Env, 1);
857
858 /*
859 * Execute and handle the return code.
860 * We execute without enabling the cpu tick, so on success we'll
861 * just flip it on and off to make sure it moves.
862 *
863 * (We do not use emulate_single_instr() because that doesn't enter the
864 * right way in will cause serious trouble if a longjmp was attempted.)
865 */
866# ifdef DEBUG_bird
867 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
868# endif
869 TMNotifyStartOfExecution(pVM);
870 int cTimesMax = 16384;
871 uint32_t eip = pVM->rem.s.Env.eip;
872 do
873 {
874 rc = cpu_exec(&pVM->rem.s.Env);
875
876 } while ( eip == pVM->rem.s.Env.eip
877 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
878 && --cTimesMax > 0);
879 TMNotifyEndOfExecution(pVM);
880 switch (rc)
881 {
882 /*
883 * Single step, we assume!
884 * If there was a breakpoint there we're fucked now.
885 */
886 case EXCP_DEBUG:
887 {
888 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
889 rc = VINF_EM_RESCHEDULE;
890 break;
891 }
892
893 /*
894 * We cannot be interrupted!
895 */
896 case EXCP_INTERRUPT:
897 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
898 rc = VERR_INTERNAL_ERROR;
899 break;
900
901 /*
902 * hlt instruction.
903 */
904 case EXCP_HLT:
905 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
906 rc = VINF_EM_HALT;
907 break;
908
909 /*
910 * The VM has halted.
911 */
912 case EXCP_HALTED:
913 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
914 rc = VINF_EM_HALT;
915 break;
916
917 /*
918 * Switch to RAW-mode.
919 */
920 case EXCP_EXECUTE_RAW:
921 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
922 rc = VINF_EM_RESCHEDULE_RAW;
923 break;
924
925 /*
926 * Switch to hardware accelerated RAW-mode.
927 */
928 case EXCP_EXECUTE_HWACC:
929 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
930 rc = VINF_EM_RESCHEDULE_HWACC;
931 break;
932
933 /*
934 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
935 */
936 case EXCP_RC:
937 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
938 rc = pVM->rem.s.rc;
939 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
940 break;
941
942 /*
943 * Figure out the rest when they arrive....
944 */
945 default:
946 AssertMsgFailed(("rc=%d\n", rc));
947 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
948 rc = VINF_SUCCESS;
949 break;
950 }
951
952 /*
953 * Switch back the state.
954 */
955 cpu_single_step(&pVM->rem.s.Env, 0);
956#endif
957 pVM->rem.s.Env.interrupt_request = interrupt_request;
958 rc2 = REMR3StateBack(pVM);
959 AssertRC(rc2);
960 }
961
962 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%VGv)\n",
963 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
964 return rc;
965}
966
967
968/**
969 * Runs code in recompiled mode.
970 *
971 * Before calling this function the REM state needs to be in sync with
972 * the VM. Call REMR3State() to perform the sync. It's only necessary
973 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
974 * and after calling REMR3StateBack().
975 *
976 * @returns VBox status code.
977 *
978 * @param pVM VM Handle.
979 */
980REMR3DECL(int) REMR3Run(PVM pVM)
981{
982 int rc;
983 Log2(("REMR3Run: (cs:eip=%04x:%VGv)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
984 Assert(pVM->rem.s.fInREM);
985
986 TMNotifyStartOfExecution(pVM);
987 rc = cpu_exec(&pVM->rem.s.Env);
988 TMNotifyEndOfExecution(pVM);
989 switch (rc)
990 {
991 /*
992 * This happens when the execution was interrupted
993 * by an external event, like pending timers.
994 */
995 case EXCP_INTERRUPT:
996 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
997 rc = VINF_SUCCESS;
998 break;
999
1000 /*
1001 * hlt instruction.
1002 */
1003 case EXCP_HLT:
1004 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1005 rc = VINF_EM_HALT;
1006 break;
1007
1008 /*
1009 * The VM has halted.
1010 */
1011 case EXCP_HALTED:
1012 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1013 rc = VINF_EM_HALT;
1014 break;
1015
1016 /*
1017 * Breakpoint/single step.
1018 */
1019 case EXCP_DEBUG:
1020 {
1021#if 0//def DEBUG_bird
1022 static int iBP = 0;
1023 printf("howdy, breakpoint! iBP=%d\n", iBP);
1024 switch (iBP)
1025 {
1026 case 0:
1027 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1028 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1029 //pVM->rem.s.Env.interrupt_request = 0;
1030 //pVM->rem.s.Env.exception_index = -1;
1031 //g_fInterruptDisabled = 1;
1032 rc = VINF_SUCCESS;
1033 asm("int3");
1034 break;
1035 default:
1036 asm("int3");
1037 break;
1038 }
1039 iBP++;
1040#else
1041 /* breakpoint or single step? */
1042 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1043 int iBP;
1044 rc = VINF_EM_DBG_STEPPED;
1045 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1046 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1047 {
1048 rc = VINF_EM_DBG_BREAKPOINT;
1049 break;
1050 }
1051 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1052#endif
1053 break;
1054 }
1055
1056 /*
1057 * Switch to RAW-mode.
1058 */
1059 case EXCP_EXECUTE_RAW:
1060 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1061 rc = VINF_EM_RESCHEDULE_RAW;
1062 break;
1063
1064 /*
1065 * Switch to hardware accelerated RAW-mode.
1066 */
1067 case EXCP_EXECUTE_HWACC:
1068 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1069 rc = VINF_EM_RESCHEDULE_HWACC;
1070 break;
1071
1072 /*
1073 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1074 */
1075 case EXCP_RC:
1076 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1077 rc = pVM->rem.s.rc;
1078 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1079 break;
1080
1081 /*
1082 * Figure out the rest when they arrive....
1083 */
1084 default:
1085 AssertMsgFailed(("rc=%d\n", rc));
1086 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1087 rc = VINF_SUCCESS;
1088 break;
1089 }
1090
1091 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%VGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1092 return rc;
1093}
1094
1095
1096/**
1097 * Check if the cpu state is suitable for Raw execution.
1098 *
1099 * @returns boolean
1100 * @param env The CPU env struct.
1101 * @param eip The EIP to check this for (might differ from env->eip).
1102 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1103 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1104 *
1105 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1106 */
1107bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1108{
1109 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1110 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1111 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1112 uint32_t u32CR0;
1113
1114 /* Update counter. */
1115 env->pVM->rem.s.cCanExecuteRaw++;
1116
1117 if (HWACCMIsEnabled(env->pVM))
1118 {
1119 CPUMCTX Ctx;
1120
1121 env->state |= CPU_RAW_HWACC;
1122
1123 /*
1124 * Create partial context for HWACCMR3CanExecuteGuest
1125 */
1126 Ctx.cr0 = env->cr[0];
1127 Ctx.cr3 = env->cr[3];
1128 Ctx.cr4 = env->cr[4];
1129
1130 Ctx.tr = env->tr.selector;
1131 Ctx.trHid.u64Base = env->tr.base;
1132 Ctx.trHid.u32Limit = env->tr.limit;
1133 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1134
1135 Ctx.idtr.cbIdt = env->idt.limit;
1136 Ctx.idtr.pIdt = env->idt.base;
1137
1138 Ctx.eflags.u32 = env->eflags;
1139
1140 Ctx.cs = env->segs[R_CS].selector;
1141 Ctx.csHid.u64Base = env->segs[R_CS].base;
1142 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1143 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1144
1145 Ctx.ds = env->segs[R_DS].selector;
1146 Ctx.dsHid.u64Base = env->segs[R_DS].base;
1147 Ctx.dsHid.u32Limit = env->segs[R_DS].limit;
1148 Ctx.dsHid.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1149
1150 Ctx.es = env->segs[R_ES].selector;
1151 Ctx.esHid.u64Base = env->segs[R_ES].base;
1152 Ctx.esHid.u32Limit = env->segs[R_ES].limit;
1153 Ctx.esHid.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1154
1155 Ctx.fs = env->segs[R_FS].selector;
1156 Ctx.fsHid.u64Base = env->segs[R_FS].base;
1157 Ctx.fsHid.u32Limit = env->segs[R_FS].limit;
1158 Ctx.fsHid.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1159
1160 Ctx.gs = env->segs[R_GS].selector;
1161 Ctx.gsHid.u64Base = env->segs[R_GS].base;
1162 Ctx.gsHid.u32Limit = env->segs[R_GS].limit;
1163 Ctx.gsHid.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1164
1165 Ctx.ss = env->segs[R_SS].selector;
1166 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1167 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1168 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1169
1170 Ctx.msrEFER = env->efer;
1171
1172 /* Hardware accelerated raw-mode:
1173 *
1174 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1175 */
1176 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1177 {
1178 *piException = EXCP_EXECUTE_HWACC;
1179 return true;
1180 }
1181 return false;
1182 }
1183
1184 /*
1185 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1186 * or 32 bits protected mode ring 0 code
1187 *
1188 * The tests are ordered by the likelyhood of being true during normal execution.
1189 */
1190 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1191 {
1192 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1193 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1194 return false;
1195 }
1196
1197#ifndef VBOX_RAW_V86
1198 if (fFlags & VM_MASK) {
1199 STAM_COUNTER_INC(&gStatRefuseVM86);
1200 Log2(("raw mode refused: VM_MASK\n"));
1201 return false;
1202 }
1203#endif
1204
1205 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1206 {
1207#ifndef DEBUG_bird
1208 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1209#endif
1210 return false;
1211 }
1212
1213 if (env->singlestep_enabled)
1214 {
1215 //Log2(("raw mode refused: Single step\n"));
1216 return false;
1217 }
1218
1219 if (env->nb_breakpoints > 0)
1220 {
1221 //Log2(("raw mode refused: Breakpoints\n"));
1222 return false;
1223 }
1224
1225 u32CR0 = env->cr[0];
1226 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1227 {
1228 STAM_COUNTER_INC(&gStatRefusePaging);
1229 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1230 return false;
1231 }
1232
1233 if (env->cr[4] & CR4_PAE_MASK)
1234 {
1235 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1236 {
1237 STAM_COUNTER_INC(&gStatRefusePAE);
1238 return false;
1239 }
1240 }
1241
1242 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1243 {
1244 if (!EMIsRawRing3Enabled(env->pVM))
1245 return false;
1246
1247 if (!(env->eflags & IF_MASK))
1248 {
1249 STAM_COUNTER_INC(&gStatRefuseIF0);
1250 Log2(("raw mode refused: IF (RawR3)\n"));
1251 return false;
1252 }
1253
1254 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1255 {
1256 STAM_COUNTER_INC(&gStatRefuseWP0);
1257 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1258 return false;
1259 }
1260 }
1261 else
1262 {
1263 if (!EMIsRawRing0Enabled(env->pVM))
1264 return false;
1265
1266 // Let's start with pure 32 bits ring 0 code first
1267 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1268 {
1269 STAM_COUNTER_INC(&gStatRefuseCode16);
1270 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1271 return false;
1272 }
1273
1274 // Only R0
1275 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1276 {
1277 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1278 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1279 return false;
1280 }
1281
1282 if (!(u32CR0 & CR0_WP_MASK))
1283 {
1284 STAM_COUNTER_INC(&gStatRefuseWP0);
1285 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1286 return false;
1287 }
1288
1289 if (PATMIsPatchGCAddr(env->pVM, eip))
1290 {
1291 Log2(("raw r0 mode forced: patch code\n"));
1292 *piException = EXCP_EXECUTE_RAW;
1293 return true;
1294 }
1295
1296#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1297 if (!(env->eflags & IF_MASK))
1298 {
1299 STAM_COUNTER_INC(&gStatRefuseIF0);
1300 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1301 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1302 return false;
1303 }
1304#endif
1305
1306 env->state |= CPU_RAW_RING0;
1307 }
1308
1309 /*
1310 * Don't reschedule the first time we're called, because there might be
1311 * special reasons why we're here that is not covered by the above checks.
1312 */
1313 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1314 {
1315 Log2(("raw mode refused: first scheduling\n"));
1316 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1317 return false;
1318 }
1319
1320 Assert(PGMPhysIsA20Enabled(env->pVM));
1321 *piException = EXCP_EXECUTE_RAW;
1322 return true;
1323}
1324
1325
1326/**
1327 * Fetches a code byte.
1328 *
1329 * @returns Success indicator (bool) for ease of use.
1330 * @param env The CPU environment structure.
1331 * @param GCPtrInstr Where to fetch code.
1332 * @param pu8Byte Where to store the byte on success
1333 */
1334bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1335{
1336 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1337 if (VBOX_SUCCESS(rc))
1338 return true;
1339 return false;
1340}
1341
1342
1343/**
1344 * Flush (or invalidate if you like) page table/dir entry.
1345 *
1346 * (invlpg instruction; tlb_flush_page)
1347 *
1348 * @param env Pointer to cpu environment.
1349 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1350 */
1351void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1352{
1353 PVM pVM = env->pVM;
1354 PCPUMCTX pCtx;
1355 int rc;
1356
1357 /*
1358 * When we're replaying invlpg instructions or restoring a saved
1359 * state we disable this path.
1360 */
1361 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1362 return;
1363 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1364 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1365
1366 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1367
1368 /*
1369 * Update the control registers before calling PGMFlushPage.
1370 */
1371 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1372 pCtx->cr0 = env->cr[0];
1373 pCtx->cr3 = env->cr[3];
1374 pCtx->cr4 = env->cr[4];
1375
1376 /*
1377 * Let PGM do the rest.
1378 */
1379 rc = PGMInvalidatePage(pVM, GCPtr);
1380 if (VBOX_FAILURE(rc))
1381 {
1382 AssertMsgFailed(("remR3FlushPage %VGv failed with %d!!\n", GCPtr, rc));
1383 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1384 }
1385 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1386}
1387
1388
1389/**
1390 * Called from tlb_protect_code in order to write monitor a code page.
1391 *
1392 * @param env Pointer to the CPU environment.
1393 * @param GCPtr Code page to monitor
1394 */
1395void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1396{
1397#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1398 Assert(env->pVM->rem.s.fInREM);
1399 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1400 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1401 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1402 && !(env->eflags & VM_MASK) /* no V86 mode */
1403 && !HWACCMIsEnabled(env->pVM))
1404 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1405#endif
1406}
1407
1408/**
1409 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1410 *
1411 * @param env Pointer to the CPU environment.
1412 * @param GCPtr Code page to monitor
1413 */
1414void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1415{
1416 Assert(env->pVM->rem.s.fInREM);
1417#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1418 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1419 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1420 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1421 && !(env->eflags & VM_MASK) /* no V86 mode */
1422 && !HWACCMIsEnabled(env->pVM))
1423 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1424#endif
1425}
1426
1427
1428/**
1429 * Called when the CPU is initialized, any of the CRx registers are changed or
1430 * when the A20 line is modified.
1431 *
1432 * @param env Pointer to the CPU environment.
1433 * @param fGlobal Set if the flush is global.
1434 */
1435void remR3FlushTLB(CPUState *env, bool fGlobal)
1436{
1437 PVM pVM = env->pVM;
1438 PCPUMCTX pCtx;
1439
1440 /*
1441 * When we're replaying invlpg instructions or restoring a saved
1442 * state we disable this path.
1443 */
1444 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1445 return;
1446 Assert(pVM->rem.s.fInREM);
1447
1448 /*
1449 * The caller doesn't check cr4, so we have to do that for ourselves.
1450 */
1451 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1452 fGlobal = true;
1453 Log(("remR3FlushTLB: CR0=%RGr CR3=%RGr CR4=%RGr %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1454
1455 /*
1456 * Update the control registers before calling PGMR3FlushTLB.
1457 */
1458 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1459 pCtx->cr0 = env->cr[0];
1460 pCtx->cr3 = env->cr[3];
1461 pCtx->cr4 = env->cr[4];
1462
1463 /*
1464 * Let PGM do the rest.
1465 */
1466 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1467}
1468
1469
1470/**
1471 * Called when any of the cr0, cr4 or efer registers is updated.
1472 *
1473 * @param env Pointer to the CPU environment.
1474 */
1475void remR3ChangeCpuMode(CPUState *env)
1476{
1477 int rc;
1478 PVM pVM = env->pVM;
1479 PCPUMCTX pCtx;
1480
1481 /*
1482 * When we're replaying loads or restoring a saved
1483 * state this path is disabled.
1484 */
1485 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1486 return;
1487 Assert(pVM->rem.s.fInREM);
1488
1489 /*
1490 * Update the control registers before calling PGMChangeMode()
1491 * as it may need to map whatever cr3 is pointing to.
1492 */
1493 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1494 pCtx->cr0 = env->cr[0];
1495 pCtx->cr3 = env->cr[3];
1496 pCtx->cr4 = env->cr[4];
1497
1498#ifdef TARGET_X86_64
1499 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1500 if (rc != VINF_SUCCESS)
1501 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1502#else
1503 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1504 if (rc != VINF_SUCCESS)
1505 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1506#endif
1507}
1508
1509
1510/**
1511 * Called from compiled code to run dma.
1512 *
1513 * @param env Pointer to the CPU environment.
1514 */
1515void remR3DmaRun(CPUState *env)
1516{
1517 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1518 PDMR3DmaRun(env->pVM);
1519 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1520}
1521
1522
1523/**
1524 * Called from compiled code to schedule pending timers in VMM
1525 *
1526 * @param env Pointer to the CPU environment.
1527 */
1528void remR3TimersRun(CPUState *env)
1529{
1530 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1531 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1532 TMR3TimerQueuesDo(env->pVM);
1533 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1534 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1535}
1536
1537
1538/**
1539 * Record trap occurance
1540 *
1541 * @returns VBox status code
1542 * @param env Pointer to the CPU environment.
1543 * @param uTrap Trap nr
1544 * @param uErrorCode Error code
1545 * @param pvNextEIP Next EIP
1546 */
1547int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1548{
1549 PVM pVM = env->pVM;
1550#ifdef VBOX_WITH_STATISTICS
1551 static STAMCOUNTER s_aStatTrap[255];
1552 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1553#endif
1554
1555#ifdef VBOX_WITH_STATISTICS
1556 if (uTrap < 255)
1557 {
1558 if (!s_aRegisters[uTrap])
1559 {
1560 char szStatName[64];
1561 s_aRegisters[uTrap] = true;
1562 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1563 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1564 }
1565 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1566 }
1567#endif
1568 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%VGv\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1569 if( uTrap < 0x20
1570 && (env->cr[0] & X86_CR0_PE)
1571 && !(env->eflags & X86_EFL_VM))
1572 {
1573#ifdef DEBUG
1574 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1575#endif
1576 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1577 {
1578 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%VGv\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1579 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1580 return VERR_REM_TOO_MANY_TRAPS;
1581 }
1582 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1583 pVM->rem.s.cPendingExceptions = 1;
1584 pVM->rem.s.uPendingException = uTrap;
1585 pVM->rem.s.uPendingExcptEIP = env->eip;
1586 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1587 }
1588 else
1589 {
1590 pVM->rem.s.cPendingExceptions = 0;
1591 pVM->rem.s.uPendingException = uTrap;
1592 pVM->rem.s.uPendingExcptEIP = env->eip;
1593 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1594 }
1595 return VINF_SUCCESS;
1596}
1597
1598
1599/*
1600 * Clear current active trap
1601 *
1602 * @param pVM VM Handle.
1603 */
1604void remR3TrapClear(PVM pVM)
1605{
1606 pVM->rem.s.cPendingExceptions = 0;
1607 pVM->rem.s.uPendingException = 0;
1608 pVM->rem.s.uPendingExcptEIP = 0;
1609 pVM->rem.s.uPendingExcptCR2 = 0;
1610}
1611
1612
1613/*
1614 * Record previous call instruction addresses
1615 *
1616 * @param env Pointer to the CPU environment.
1617 */
1618void remR3RecordCall(CPUState *env)
1619{
1620 CSAMR3RecordCallAddress(env->pVM, env->eip);
1621}
1622
1623
1624/**
1625 * Syncs the internal REM state with the VM.
1626 *
1627 * This must be called before REMR3Run() is invoked whenever when the REM
1628 * state is not up to date. Calling it several times in a row is not
1629 * permitted.
1630 *
1631 * @returns VBox status code.
1632 *
1633 * @param pVM VM Handle.
1634 * @param fFlushTBs Flush all translation blocks before executing code
1635 *
1636 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1637 * no do this since the majority of the callers don't want any unnecessary of events
1638 * pending that would immediatly interrupt execution.
1639 */
1640REMR3DECL(int) REMR3State(PVM pVM)
1641{
1642 register const CPUMCTX *pCtx;
1643 register unsigned fFlags;
1644 bool fHiddenSelRegsValid;
1645 unsigned i;
1646 TRPMEVENT enmType;
1647 uint8_t u8TrapNo;
1648 int rc;
1649
1650 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1651 Log2(("REMR3State:\n"));
1652
1653 pCtx = pVM->rem.s.pCtx;
1654 fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1655
1656 Assert(!pVM->rem.s.fInREM);
1657 pVM->rem.s.fInStateSync = true;
1658
1659 /*
1660 * If we have to flush TBs, do that immediately.
1661 */
1662 if (pVM->rem.s.fFlushTBs)
1663 {
1664 STAM_COUNTER_INC(&gStatFlushTBs);
1665 tb_flush(&pVM->rem.s.Env);
1666 pVM->rem.s.fFlushTBs = false;
1667 }
1668
1669 /*
1670 * Copy the registers which require no special handling.
1671 */
1672#ifdef TARGET_X86_64
1673 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1674 Assert(R_EAX == 0);
1675 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1676 Assert(R_ECX == 1);
1677 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1678 Assert(R_EDX == 2);
1679 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1680 Assert(R_EBX == 3);
1681 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1682 Assert(R_ESP == 4);
1683 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1684 Assert(R_EBP == 5);
1685 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1686 Assert(R_ESI == 6);
1687 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1688 Assert(R_EDI == 7);
1689 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1690 pVM->rem.s.Env.regs[8] = pCtx->r8;
1691 pVM->rem.s.Env.regs[9] = pCtx->r9;
1692 pVM->rem.s.Env.regs[10] = pCtx->r10;
1693 pVM->rem.s.Env.regs[11] = pCtx->r11;
1694 pVM->rem.s.Env.regs[12] = pCtx->r12;
1695 pVM->rem.s.Env.regs[13] = pCtx->r13;
1696 pVM->rem.s.Env.regs[14] = pCtx->r14;
1697 pVM->rem.s.Env.regs[15] = pCtx->r15;
1698
1699 pVM->rem.s.Env.eip = pCtx->rip;
1700
1701 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1702#else
1703 Assert(R_EAX == 0);
1704 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1705 Assert(R_ECX == 1);
1706 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1707 Assert(R_EDX == 2);
1708 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1709 Assert(R_EBX == 3);
1710 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1711 Assert(R_ESP == 4);
1712 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1713 Assert(R_EBP == 5);
1714 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1715 Assert(R_ESI == 6);
1716 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1717 Assert(R_EDI == 7);
1718 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1719 pVM->rem.s.Env.eip = pCtx->eip;
1720
1721 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1722#endif
1723
1724 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1725
1726 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1727 for (i=0;i<8;i++)
1728 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
1729
1730 /*
1731 * Clear the halted hidden flag (the interrupt waking up the CPU can
1732 * have been dispatched in raw mode).
1733 */
1734 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1735
1736 /*
1737 * Replay invlpg?
1738 */
1739 if (pVM->rem.s.cInvalidatedPages)
1740 {
1741 RTUINT i;
1742
1743 pVM->rem.s.fIgnoreInvlPg = true;
1744 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1745 {
1746 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1747 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1748 }
1749 pVM->rem.s.fIgnoreInvlPg = false;
1750 pVM->rem.s.cInvalidatedPages = 0;
1751 }
1752
1753 /* Replay notification changes? */
1754 if (pVM->rem.s.cHandlerNotifications)
1755 REMR3ReplayHandlerNotifications(pVM);
1756
1757 /* Update MSRs; before CRx registers! */
1758 pVM->rem.s.Env.efer = pCtx->msrEFER;
1759 pVM->rem.s.Env.star = pCtx->msrSTAR;
1760 pVM->rem.s.Env.pat = pCtx->msrPAT;
1761#ifdef TARGET_X86_64
1762 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1763 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1764 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1765 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1766
1767 /* Update the internal long mode activate flag according to the new EFER value. */
1768 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1769 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1770 else
1771 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1772#endif
1773
1774
1775 /*
1776 * Registers which are rarely changed and require special handling / order when changed.
1777 */
1778 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1779 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1780 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1781 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1782 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1783 {
1784 if (fFlags & CPUM_CHANGED_FPU_REM)
1785 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1786
1787 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1788 {
1789 pVM->rem.s.fIgnoreCR3Load = true;
1790 tlb_flush(&pVM->rem.s.Env, true);
1791 pVM->rem.s.fIgnoreCR3Load = false;
1792 }
1793
1794 /* CR4 before CR0! */
1795 if (fFlags & CPUM_CHANGED_CR4)
1796 {
1797 pVM->rem.s.fIgnoreCR3Load = true;
1798 pVM->rem.s.fIgnoreCpuMode = true;
1799 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1800 pVM->rem.s.fIgnoreCpuMode = false;
1801 pVM->rem.s.fIgnoreCR3Load = false;
1802 }
1803
1804 if (fFlags & CPUM_CHANGED_CR0)
1805 {
1806 pVM->rem.s.fIgnoreCR3Load = true;
1807 pVM->rem.s.fIgnoreCpuMode = true;
1808 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1809 pVM->rem.s.fIgnoreCpuMode = false;
1810 pVM->rem.s.fIgnoreCR3Load = false;
1811 }
1812
1813 if (fFlags & CPUM_CHANGED_CR3)
1814 {
1815 pVM->rem.s.fIgnoreCR3Load = true;
1816 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1817 pVM->rem.s.fIgnoreCR3Load = false;
1818 }
1819
1820 if (fFlags & CPUM_CHANGED_GDTR)
1821 {
1822 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1823 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1824 }
1825
1826 if (fFlags & CPUM_CHANGED_IDTR)
1827 {
1828 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1829 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1830 }
1831
1832 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1833 {
1834 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1835 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1836 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1837 }
1838
1839 if (fFlags & CPUM_CHANGED_LDTR)
1840 {
1841 if (fHiddenSelRegsValid)
1842 {
1843 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1844 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1845 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1846 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1847 }
1848 else
1849 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1850 }
1851
1852 if (fFlags & CPUM_CHANGED_TR)
1853 {
1854 if (fHiddenSelRegsValid)
1855 {
1856 pVM->rem.s.Env.tr.selector = pCtx->tr;
1857 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1858 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1859 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1860 }
1861 else
1862 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1863
1864 /** @note do_interrupt will fault if the busy flag is still set.... */
1865 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1866 }
1867
1868 if (fFlags & CPUM_CHANGED_CPUID)
1869 {
1870 uint32_t u32Dummy;
1871
1872 /*
1873 * Get the CPUID features.
1874 */
1875 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1876 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1877 }
1878 }
1879
1880 /*
1881 * Update selector registers.
1882 * This must be done *after* we've synced gdt, ldt and crX registers
1883 * since we're reading the GDT/LDT om sync_seg. This will happen with
1884 * saved state which takes a quick dip into rawmode for instance.
1885 */
1886 /*
1887 * Stack; Note first check this one as the CPL might have changed. The
1888 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1889 */
1890
1891 if (fHiddenSelRegsValid)
1892 {
1893 /* The hidden selector registers are valid in the CPU context. */
1894 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1895
1896 /* Set current CPL */
1897 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1898
1899 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1900 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1901 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1902 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1903 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1904 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1905 }
1906 else
1907 {
1908 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1909 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1910 {
1911 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1912
1913 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1914 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1915#ifdef VBOX_WITH_STATISTICS
1916 if (pVM->rem.s.Env.segs[R_SS].newselector)
1917 {
1918 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1919 }
1920#endif
1921 }
1922 else
1923 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1924
1925 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1926 {
1927 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1928 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1929#ifdef VBOX_WITH_STATISTICS
1930 if (pVM->rem.s.Env.segs[R_ES].newselector)
1931 {
1932 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1933 }
1934#endif
1935 }
1936 else
1937 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1938
1939 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1940 {
1941 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1942 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1943#ifdef VBOX_WITH_STATISTICS
1944 if (pVM->rem.s.Env.segs[R_CS].newselector)
1945 {
1946 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1947 }
1948#endif
1949 }
1950 else
1951 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1952
1953 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1954 {
1955 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1956 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1957#ifdef VBOX_WITH_STATISTICS
1958 if (pVM->rem.s.Env.segs[R_DS].newselector)
1959 {
1960 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1961 }
1962#endif
1963 }
1964 else
1965 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1966
1967 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1968 * be the same but not the base/limit. */
1969 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1970 {
1971 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1972 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1973#ifdef VBOX_WITH_STATISTICS
1974 if (pVM->rem.s.Env.segs[R_FS].newselector)
1975 {
1976 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1977 }
1978#endif
1979 }
1980 else
1981 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1982
1983 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1984 {
1985 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1986 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1987#ifdef VBOX_WITH_STATISTICS
1988 if (pVM->rem.s.Env.segs[R_GS].newselector)
1989 {
1990 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1991 }
1992#endif
1993 }
1994 else
1995 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1996 }
1997
1998 /*
1999 * Check for traps.
2000 */
2001 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
2002 rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
2003 if (VBOX_SUCCESS(rc))
2004 {
2005#ifdef DEBUG
2006 if (u8TrapNo == 0x80)
2007 {
2008 remR3DumpLnxSyscall(pVM);
2009 remR3DumpOBsdSyscall(pVM);
2010 }
2011#endif
2012
2013 pVM->rem.s.Env.exception_index = u8TrapNo;
2014 if (enmType != TRPM_SOFTWARE_INT)
2015 {
2016 pVM->rem.s.Env.exception_is_int = 0;
2017 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
2018 }
2019 else
2020 {
2021 /*
2022 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
2023 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
2024 * for int03 and into.
2025 */
2026 pVM->rem.s.Env.exception_is_int = 1;
2027 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
2028 /* int 3 may be generated by one-byte 0xcc */
2029 if (u8TrapNo == 3)
2030 {
2031 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
2032 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2033 }
2034 /* int 4 may be generated by one-byte 0xce */
2035 else if (u8TrapNo == 4)
2036 {
2037 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
2038 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2039 }
2040 }
2041
2042 /* get error code and cr2 if needed. */
2043 switch (u8TrapNo)
2044 {
2045 case 0x0e:
2046 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
2047 /* fallthru */
2048 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2049 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
2050 break;
2051
2052 case 0x11: case 0x08:
2053 default:
2054 pVM->rem.s.Env.error_code = 0;
2055 break;
2056 }
2057
2058 /*
2059 * We can now reset the active trap since the recompiler is gonna have a go at it.
2060 */
2061 rc = TRPMResetTrap(pVM);
2062 AssertRC(rc);
2063 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
2064 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2065 }
2066
2067 /*
2068 * Clear old interrupt request flags; Check for pending hardware interrupts.
2069 * (See @remark for why we don't check for other FFs.)
2070 */
2071 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2072 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2073 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2074 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2075
2076 /*
2077 * We're now in REM mode.
2078 */
2079 pVM->rem.s.fInREM = true;
2080 pVM->rem.s.fInStateSync = false;
2081 pVM->rem.s.cCanExecuteRaw = 0;
2082 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2083 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2084 return VINF_SUCCESS;
2085}
2086
2087
2088/**
2089 * Syncs back changes in the REM state to the the VM state.
2090 *
2091 * This must be called after invoking REMR3Run().
2092 * Calling it several times in a row is not permitted.
2093 *
2094 * @returns VBox status code.
2095 *
2096 * @param pVM VM Handle.
2097 */
2098REMR3DECL(int) REMR3StateBack(PVM pVM)
2099{
2100 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2101 unsigned i;
2102
2103 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2104 Log2(("REMR3StateBack:\n"));
2105 Assert(pVM->rem.s.fInREM);
2106
2107 /*
2108 * Copy back the registers.
2109 * This is done in the order they are declared in the CPUMCTX structure.
2110 */
2111
2112 /** @todo FOP */
2113 /** @todo FPUIP */
2114 /** @todo CS */
2115 /** @todo FPUDP */
2116 /** @todo DS */
2117 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2118 pCtx->fpu.MXCSR = 0;
2119 pCtx->fpu.MXCSR_MASK = 0;
2120
2121 /** @todo check if FPU/XMM was actually used in the recompiler */
2122 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2123//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2124
2125#ifdef TARGET_X86_64
2126 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2127 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2128 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2129 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2130 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2131 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2132 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2133 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2134 pCtx->r8 = pVM->rem.s.Env.regs[8];
2135 pCtx->r9 = pVM->rem.s.Env.regs[9];
2136 pCtx->r10 = pVM->rem.s.Env.regs[10];
2137 pCtx->r11 = pVM->rem.s.Env.regs[11];
2138 pCtx->r12 = pVM->rem.s.Env.regs[12];
2139 pCtx->r13 = pVM->rem.s.Env.regs[13];
2140 pCtx->r14 = pVM->rem.s.Env.regs[14];
2141 pCtx->r15 = pVM->rem.s.Env.regs[15];
2142
2143 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2144
2145#else
2146 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2147 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2148 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2149 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2150 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2151 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2152 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2153
2154 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2155#endif
2156
2157 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2158
2159#ifdef VBOX_WITH_STATISTICS
2160 if (pVM->rem.s.Env.segs[R_SS].newselector)
2161 {
2162 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2163 }
2164 if (pVM->rem.s.Env.segs[R_GS].newselector)
2165 {
2166 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2167 }
2168 if (pVM->rem.s.Env.segs[R_FS].newselector)
2169 {
2170 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2171 }
2172 if (pVM->rem.s.Env.segs[R_ES].newselector)
2173 {
2174 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2175 }
2176 if (pVM->rem.s.Env.segs[R_DS].newselector)
2177 {
2178 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2179 }
2180 if (pVM->rem.s.Env.segs[R_CS].newselector)
2181 {
2182 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2183 }
2184#endif
2185 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2186 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2187 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2188 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2189 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2190
2191#ifdef TARGET_X86_64
2192 pCtx->rip = pVM->rem.s.Env.eip;
2193 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2194#else
2195 pCtx->eip = pVM->rem.s.Env.eip;
2196 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2197#endif
2198
2199 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2200 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2201 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2202 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2203
2204 for (i=0;i<8;i++)
2205 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2206
2207 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2208 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2209 {
2210 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2211 STAM_COUNTER_INC(&gStatREMGDTChange);
2212 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2213 }
2214
2215 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2216 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2217 {
2218 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2219 STAM_COUNTER_INC(&gStatREMIDTChange);
2220 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2221 }
2222
2223 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2224 {
2225 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2226 STAM_COUNTER_INC(&gStatREMLDTRChange);
2227 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2228 }
2229 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2230 {
2231 pCtx->tr = pVM->rem.s.Env.tr.selector;
2232 STAM_COUNTER_INC(&gStatREMTRChange);
2233 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2234 }
2235
2236 /** @todo These values could still be out of sync! */
2237 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2238 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2239 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2240 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2241
2242 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2243 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2244 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2245
2246 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2247 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2248 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2249
2250 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2251 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2252 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2253
2254 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2255 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2256 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2257
2258 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2259 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2260 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2261
2262 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2263 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2264 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2265
2266 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2267 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2268 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2269
2270 /* Sysenter MSR */
2271 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2272 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2273 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2274
2275 /* System MSRs. */
2276 pCtx->msrEFER = pVM->rem.s.Env.efer;
2277 pCtx->msrSTAR = pVM->rem.s.Env.star;
2278 pCtx->msrPAT = pVM->rem.s.Env.pat;
2279#ifdef TARGET_X86_64
2280 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2281 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2282 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2283 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2284#endif
2285
2286 remR3TrapClear(pVM);
2287
2288 /*
2289 * Check for traps.
2290 */
2291 if ( pVM->rem.s.Env.exception_index >= 0
2292 && pVM->rem.s.Env.exception_index < 256)
2293 {
2294 int rc;
2295
2296 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2297 rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2298 AssertRC(rc);
2299 switch (pVM->rem.s.Env.exception_index)
2300 {
2301 case 0x0e:
2302 TRPMSetFaultAddress(pVM, pCtx->cr2);
2303 /* fallthru */
2304 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2305 case 0x11: case 0x08: /* 0 */
2306 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2307 break;
2308 }
2309
2310 }
2311
2312 /*
2313 * We're not longer in REM mode.
2314 */
2315 pVM->rem.s.fInREM = false;
2316 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2317 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2318 return VINF_SUCCESS;
2319}
2320
2321
2322/**
2323 * This is called by the disassembler when it wants to update the cpu state
2324 * before for instance doing a register dump.
2325 */
2326static void remR3StateUpdate(PVM pVM)
2327{
2328 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2329 unsigned i;
2330
2331 Assert(pVM->rem.s.fInREM);
2332
2333 /*
2334 * Copy back the registers.
2335 * This is done in the order they are declared in the CPUMCTX structure.
2336 */
2337
2338 /** @todo FOP */
2339 /** @todo FPUIP */
2340 /** @todo CS */
2341 /** @todo FPUDP */
2342 /** @todo DS */
2343 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2344 pCtx->fpu.MXCSR = 0;
2345 pCtx->fpu.MXCSR_MASK = 0;
2346
2347 /** @todo check if FPU/XMM was actually used in the recompiler */
2348 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2349//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2350
2351#ifdef TARGET_X86_64
2352 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2353 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2354 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2355 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2356 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2357 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2358 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2359 pCtx->r8 = pVM->rem.s.Env.regs[8];
2360 pCtx->r9 = pVM->rem.s.Env.regs[9];
2361 pCtx->r10 = pVM->rem.s.Env.regs[10];
2362 pCtx->r11 = pVM->rem.s.Env.regs[11];
2363 pCtx->r12 = pVM->rem.s.Env.regs[12];
2364 pCtx->r13 = pVM->rem.s.Env.regs[13];
2365 pCtx->r14 = pVM->rem.s.Env.regs[14];
2366 pCtx->r15 = pVM->rem.s.Env.regs[15];
2367
2368 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2369#else
2370 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2371 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2372 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2373 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2374 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2375 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2376 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2377
2378 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2379#endif
2380
2381 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2382
2383 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2384 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2385 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2386 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2387 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2388
2389#ifdef TARGET_X86_64
2390 pCtx->rip = pVM->rem.s.Env.eip;
2391 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2392#else
2393 pCtx->eip = pVM->rem.s.Env.eip;
2394 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2395#endif
2396
2397 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2398 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2399 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2400 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2401
2402 for (i=0;i<8;i++)
2403 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2404
2405 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2406 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2407 {
2408 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2409 STAM_COUNTER_INC(&gStatREMGDTChange);
2410 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2411 }
2412
2413 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2414 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2415 {
2416 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2417 STAM_COUNTER_INC(&gStatREMIDTChange);
2418 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2419 }
2420
2421 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2422 {
2423 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2424 STAM_COUNTER_INC(&gStatREMLDTRChange);
2425 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2426 }
2427 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2428 {
2429 pCtx->tr = pVM->rem.s.Env.tr.selector;
2430 STAM_COUNTER_INC(&gStatREMTRChange);
2431 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2432 }
2433
2434 /** @todo These values could still be out of sync! */
2435 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2436 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2437 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2438 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2439
2440 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2441 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2442 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2443
2444 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2445 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2446 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2447
2448 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2449 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2450 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2451
2452 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2453 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2454 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2455
2456 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2457 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2458 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2459
2460 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2461 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2462 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2463
2464 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2465 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2466 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2467
2468 /* Sysenter MSR */
2469 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2470 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2471 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2472
2473 /* System MSRs. */
2474 pCtx->msrEFER = pVM->rem.s.Env.efer;
2475 pCtx->msrSTAR = pVM->rem.s.Env.star;
2476 pCtx->msrPAT = pVM->rem.s.Env.pat;
2477#ifdef TARGET_X86_64
2478 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2479 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2480 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2481 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2482#endif
2483
2484}
2485
2486
2487/**
2488 * Update the VMM state information if we're currently in REM.
2489 *
2490 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2491 * we're currently executing in REM and the VMM state is invalid. This method will of
2492 * course check that we're executing in REM before syncing any data over to the VMM.
2493 *
2494 * @param pVM The VM handle.
2495 */
2496REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2497{
2498 if (pVM->rem.s.fInREM)
2499 remR3StateUpdate(pVM);
2500}
2501
2502
2503#undef LOG_GROUP
2504#define LOG_GROUP LOG_GROUP_REM
2505
2506
2507/**
2508 * Notify the recompiler about Address Gate 20 state change.
2509 *
2510 * This notification is required since A20 gate changes are
2511 * initialized from a device driver and the VM might just as
2512 * well be in REM mode as in RAW mode.
2513 *
2514 * @param pVM VM handle.
2515 * @param fEnable True if the gate should be enabled.
2516 * False if the gate should be disabled.
2517 */
2518REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2519{
2520 bool fSaved;
2521
2522 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2523 VM_ASSERT_EMT(pVM);
2524
2525 fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2526 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2527
2528 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2529
2530 pVM->rem.s.fIgnoreAll = fSaved;
2531}
2532
2533
2534/**
2535 * Replays the invalidated recorded pages.
2536 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2537 *
2538 * @param pVM VM handle.
2539 */
2540REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2541{
2542 RTUINT i;
2543
2544 VM_ASSERT_EMT(pVM);
2545
2546 /*
2547 * Sync the required registers.
2548 */
2549 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2550 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2551 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2552 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2553
2554 /*
2555 * Replay the flushes.
2556 */
2557 pVM->rem.s.fIgnoreInvlPg = true;
2558 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2559 {
2560 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2561 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2562 }
2563 pVM->rem.s.fIgnoreInvlPg = false;
2564 pVM->rem.s.cInvalidatedPages = 0;
2565}
2566
2567
2568/**
2569 * Replays the handler notification changes
2570 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2571 *
2572 * @param pVM VM handle.
2573 */
2574REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2575{
2576 /*
2577 * Replay the flushes.
2578 */
2579 RTUINT i;
2580 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2581
2582 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2583 VM_ASSERT_EMT(pVM);
2584
2585 pVM->rem.s.cHandlerNotifications = 0;
2586 for (i = 0; i < c; i++)
2587 {
2588 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2589 switch (pRec->enmKind)
2590 {
2591 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2592 REMR3NotifyHandlerPhysicalRegister(pVM,
2593 pRec->u.PhysicalRegister.enmType,
2594 pRec->u.PhysicalRegister.GCPhys,
2595 pRec->u.PhysicalRegister.cb,
2596 pRec->u.PhysicalRegister.fHasHCHandler);
2597 break;
2598
2599 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2600 REMR3NotifyHandlerPhysicalDeregister(pVM,
2601 pRec->u.PhysicalDeregister.enmType,
2602 pRec->u.PhysicalDeregister.GCPhys,
2603 pRec->u.PhysicalDeregister.cb,
2604 pRec->u.PhysicalDeregister.fHasHCHandler,
2605 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2606 break;
2607
2608 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2609 REMR3NotifyHandlerPhysicalModify(pVM,
2610 pRec->u.PhysicalModify.enmType,
2611 pRec->u.PhysicalModify.GCPhysOld,
2612 pRec->u.PhysicalModify.GCPhysNew,
2613 pRec->u.PhysicalModify.cb,
2614 pRec->u.PhysicalModify.fHasHCHandler,
2615 pRec->u.PhysicalModify.fRestoreAsRAM);
2616 break;
2617
2618 default:
2619 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2620 break;
2621 }
2622 }
2623 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2624}
2625
2626
2627/**
2628 * Notify REM about changed code page.
2629 *
2630 * @returns VBox status code.
2631 * @param pVM VM handle.
2632 * @param pvCodePage Code page address
2633 */
2634REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2635{
2636#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
2637 int rc;
2638 RTGCPHYS PhysGC;
2639 uint64_t flags;
2640
2641 VM_ASSERT_EMT(pVM);
2642
2643 /*
2644 * Get the physical page address.
2645 */
2646 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2647 if (rc == VINF_SUCCESS)
2648 {
2649 /*
2650 * Sync the required registers and flush the whole page.
2651 * (Easier to do the whole page than notifying it about each physical
2652 * byte that was changed.
2653 */
2654 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2655 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2656 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2657 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2658
2659 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2660 }
2661#endif
2662 return VINF_SUCCESS;
2663}
2664
2665
2666/**
2667 * Notification about a successful MMR3PhysRegister() call.
2668 *
2669 * @param pVM VM handle.
2670 * @param GCPhys The physical address the RAM.
2671 * @param cb Size of the memory.
2672 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2673 */
2674REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2675{
2676 uint32_t cbBitmap;
2677 int rc;
2678 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2679 VM_ASSERT_EMT(pVM);
2680
2681 /*
2682 * Validate input - we trust the caller.
2683 */
2684 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2685 Assert(cb);
2686 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2687
2688 /*
2689 * Base ram?
2690 */
2691 if (!GCPhys)
2692 {
2693 phys_ram_size = cb;
2694 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2695#ifndef VBOX_STRICT
2696 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2697 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2698#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2699 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2700 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2701 cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2702 rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2703 AssertRC(rc);
2704 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2705#endif
2706 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2707 }
2708
2709 /*
2710 * Register the ram.
2711 */
2712 Assert(!pVM->rem.s.fIgnoreAll);
2713 pVM->rem.s.fIgnoreAll = true;
2714
2715#ifdef VBOX_WITH_NEW_PHYS_CODE
2716 if (fFlags & MM_RAM_FLAGS_RESERVED)
2717 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2718 else
2719 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2720#else
2721 if (!GCPhys)
2722 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2723 else
2724 {
2725 if (fFlags & MM_RAM_FLAGS_RESERVED)
2726 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2727 else
2728 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2729 }
2730#endif
2731 Assert(pVM->rem.s.fIgnoreAll);
2732 pVM->rem.s.fIgnoreAll = false;
2733}
2734
2735#ifndef VBOX_WITH_NEW_PHYS_CODE
2736
2737/**
2738 * Notification about a successful PGMR3PhysRegisterChunk() call.
2739 *
2740 * @param pVM VM handle.
2741 * @param GCPhys The physical address the RAM.
2742 * @param cb Size of the memory.
2743 * @param pvRam The HC address of the RAM.
2744 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2745 */
2746REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2747{
2748 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2749 VM_ASSERT_EMT(pVM);
2750
2751 /*
2752 * Validate input - we trust the caller.
2753 */
2754 Assert(pvRam);
2755 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2756 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2757 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2758 Assert(fFlags == 0 /* normal RAM */);
2759 Assert(!pVM->rem.s.fIgnoreAll);
2760 pVM->rem.s.fIgnoreAll = true;
2761
2762 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2763
2764 Assert(pVM->rem.s.fIgnoreAll);
2765 pVM->rem.s.fIgnoreAll = false;
2766}
2767
2768
2769/**
2770 * Grows dynamically allocated guest RAM.
2771 * Will raise a fatal error if the operation fails.
2772 *
2773 * @param physaddr The physical address.
2774 */
2775void remR3GrowDynRange(unsigned long physaddr)
2776{
2777 int rc;
2778 PVM pVM = cpu_single_env->pVM;
2779 const RTGCPHYS GCPhys = physaddr;
2780
2781 LogFlow(("remR3GrowDynRange %VGp\n", physaddr));
2782 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2783 if (VBOX_SUCCESS(rc))
2784 return;
2785
2786 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2787 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2788 AssertFatalFailed();
2789}
2790
2791#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2792
2793/**
2794 * Notification about a successful MMR3PhysRomRegister() call.
2795 *
2796 * @param pVM VM handle.
2797 * @param GCPhys The physical address of the ROM.
2798 * @param cb The size of the ROM.
2799 * @param pvCopy Pointer to the ROM copy.
2800 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2801 * This function will be called when ever the protection of the
2802 * shadow ROM changes (at reset and end of POST).
2803 */
2804REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2805{
2806 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2807 VM_ASSERT_EMT(pVM);
2808
2809 /*
2810 * Validate input - we trust the caller.
2811 */
2812 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2813 Assert(cb);
2814 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2815 Assert(pvCopy);
2816 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2817
2818 /*
2819 * Register the rom.
2820 */
2821 Assert(!pVM->rem.s.fIgnoreAll);
2822 pVM->rem.s.fIgnoreAll = true;
2823
2824 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2825
2826 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2827
2828 Assert(pVM->rem.s.fIgnoreAll);
2829 pVM->rem.s.fIgnoreAll = false;
2830}
2831
2832
2833/**
2834 * Notification about a successful memory deregistration or reservation.
2835 *
2836 * @param pVM VM Handle.
2837 * @param GCPhys Start physical address.
2838 * @param cb The size of the range.
2839 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2840 * reserve any memory soon.
2841 */
2842REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2843{
2844 Log(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2845 VM_ASSERT_EMT(pVM);
2846
2847 /*
2848 * Validate input - we trust the caller.
2849 */
2850 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2851 Assert(cb);
2852 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2853
2854 /*
2855 * Unassigning the memory.
2856 */
2857 Assert(!pVM->rem.s.fIgnoreAll);
2858 pVM->rem.s.fIgnoreAll = true;
2859
2860 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2861
2862 Assert(pVM->rem.s.fIgnoreAll);
2863 pVM->rem.s.fIgnoreAll = false;
2864}
2865
2866
2867/**
2868 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2869 *
2870 * @param pVM VM Handle.
2871 * @param enmType Handler type.
2872 * @param GCPhys Handler range address.
2873 * @param cb Size of the handler range.
2874 * @param fHasHCHandler Set if the handler has a HC callback function.
2875 *
2876 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2877 * Handler memory type to memory which has no HC handler.
2878 */
2879REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2880{
2881 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%d\n",
2882 enmType, GCPhys, cb, fHasHCHandler));
2883 VM_ASSERT_EMT(pVM);
2884 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2885 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2886
2887 if (pVM->rem.s.cHandlerNotifications)
2888 REMR3ReplayHandlerNotifications(pVM);
2889
2890 Assert(!pVM->rem.s.fIgnoreAll);
2891 pVM->rem.s.fIgnoreAll = true;
2892
2893 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2894 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2895 else if (fHasHCHandler)
2896 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2897
2898 Assert(pVM->rem.s.fIgnoreAll);
2899 pVM->rem.s.fIgnoreAll = false;
2900}
2901
2902
2903/**
2904 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2905 *
2906 * @param pVM VM Handle.
2907 * @param enmType Handler type.
2908 * @param GCPhys Handler range address.
2909 * @param cb Size of the handler range.
2910 * @param fHasHCHandler Set if the handler has a HC callback function.
2911 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2912 */
2913REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2914{
2915 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2916 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2917 VM_ASSERT_EMT(pVM);
2918
2919 if (pVM->rem.s.cHandlerNotifications)
2920 REMR3ReplayHandlerNotifications(pVM);
2921
2922 Assert(!pVM->rem.s.fIgnoreAll);
2923 pVM->rem.s.fIgnoreAll = true;
2924
2925/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2926 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2927 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2928 else if (fHasHCHandler)
2929 {
2930 if (!fRestoreAsRAM)
2931 {
2932 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2933 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2934 }
2935 else
2936 {
2937 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2938 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2939 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2940 }
2941 }
2942
2943 Assert(pVM->rem.s.fIgnoreAll);
2944 pVM->rem.s.fIgnoreAll = false;
2945}
2946
2947
2948/**
2949 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2950 *
2951 * @param pVM VM Handle.
2952 * @param enmType Handler type.
2953 * @param GCPhysOld Old handler range address.
2954 * @param GCPhysNew New handler range address.
2955 * @param cb Size of the handler range.
2956 * @param fHasHCHandler Set if the handler has a HC callback function.
2957 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2958 */
2959REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2960{
2961 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2962 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2963 VM_ASSERT_EMT(pVM);
2964 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2965
2966 if (pVM->rem.s.cHandlerNotifications)
2967 REMR3ReplayHandlerNotifications(pVM);
2968
2969 if (fHasHCHandler)
2970 {
2971 Assert(!pVM->rem.s.fIgnoreAll);
2972 pVM->rem.s.fIgnoreAll = true;
2973
2974 /*
2975 * Reset the old page.
2976 */
2977 if (!fRestoreAsRAM)
2978 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2979 else
2980 {
2981 /* This is not perfect, but it'll do for PD monitoring... */
2982 Assert(cb == PAGE_SIZE);
2983 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2984 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2985 }
2986
2987 /*
2988 * Update the new page.
2989 */
2990 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2991 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2992 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2993
2994 Assert(pVM->rem.s.fIgnoreAll);
2995 pVM->rem.s.fIgnoreAll = false;
2996 }
2997}
2998
2999
3000/**
3001 * Checks if we're handling access to this page or not.
3002 *
3003 * @returns true if we're trapping access.
3004 * @returns false if we aren't.
3005 * @param pVM The VM handle.
3006 * @param GCPhys The physical address.
3007 *
3008 * @remark This function will only work correctly in VBOX_STRICT builds!
3009 */
3010REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3011{
3012#ifdef VBOX_STRICT
3013 unsigned long off;
3014 if (pVM->rem.s.cHandlerNotifications)
3015 REMR3ReplayHandlerNotifications(pVM);
3016
3017 off = get_phys_page_offset(GCPhys);
3018 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3019 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3020 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3021#else
3022 return false;
3023#endif
3024}
3025
3026
3027/**
3028 * Deals with a rare case in get_phys_addr_code where the code
3029 * is being monitored.
3030 *
3031 * It could also be an MMIO page, in which case we will raise a fatal error.
3032 *
3033 * @returns The physical address corresponding to addr.
3034 * @param env The cpu environment.
3035 * @param addr The virtual address.
3036 * @param pTLBEntry The TLB entry.
3037 */
3038target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
3039{
3040 PVM pVM = env->pVM;
3041 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3042 {
3043 target_ulong ret = pTLBEntry->addend + addr;
3044 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
3045 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
3046 return ret;
3047 }
3048 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
3049 "*** handlers\n",
3050 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3051 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3052 LogRel(("*** mmio\n"));
3053 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3054 LogRel(("*** phys\n"));
3055 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3056 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3057 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3058 AssertFatalFailed();
3059}
3060
3061
3062/** Validate the physical address passed to the read functions.
3063 * Useful for finding non-guest-ram reads/writes. */
3064#if 0 //1 /* disable if it becomes bothersome... */
3065# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
3066#else
3067# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
3068#endif
3069
3070/**
3071 * Read guest RAM and ROM.
3072 *
3073 * @param SrcGCPhys The source address (guest physical).
3074 * @param pvDst The destination address.
3075 * @param cb Number of bytes
3076 */
3077void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3078{
3079 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3080 VBOX_CHECK_ADDR(SrcGCPhys);
3081 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3082#ifdef DEBUG_PHYS
3083 LogRel(("read(%d): %p\n", cb, SrcGCPhys));
3084#endif
3085 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3086}
3087
3088
3089/**
3090 * Read guest RAM and ROM, unsigned 8-bit.
3091 *
3092 * @param SrcGCPhys The source address (guest physical).
3093 */
3094uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3095{
3096 uint8_t val;
3097 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3098 VBOX_CHECK_ADDR(SrcGCPhys);
3099 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3100 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3101#ifdef DEBUG_PHYS
3102 LogRel(("readu8: %x <- %p\n", val, SrcGCPhys));
3103#endif
3104 return val;
3105}
3106
3107
3108/**
3109 * Read guest RAM and ROM, signed 8-bit.
3110 *
3111 * @param SrcGCPhys The source address (guest physical).
3112 */
3113int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3114{
3115 int8_t val;
3116 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3117 VBOX_CHECK_ADDR(SrcGCPhys);
3118 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3119 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3120#ifdef DEBUG_PHYS
3121 LogRel(("reads8: %x <- %p\n", val, SrcGCPhys));
3122#endif
3123 return val;
3124}
3125
3126
3127/**
3128 * Read guest RAM and ROM, unsigned 16-bit.
3129 *
3130 * @param SrcGCPhys The source address (guest physical).
3131 */
3132uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3133{
3134 uint16_t val;
3135 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3136 VBOX_CHECK_ADDR(SrcGCPhys);
3137 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3138 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3139#ifdef DEBUG_PHYS
3140 LogRel(("readu16: %x <- %p\n", val, SrcGCPhys));
3141#endif
3142 return val;
3143}
3144
3145
3146/**
3147 * Read guest RAM and ROM, signed 16-bit.
3148 *
3149 * @param SrcGCPhys The source address (guest physical).
3150 */
3151int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3152{
3153 uint16_t val;
3154 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3155 VBOX_CHECK_ADDR(SrcGCPhys);
3156 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3157 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3158#ifdef DEBUG_PHYS
3159 LogRel(("reads16: %x <- %p\n", val, SrcGCPhys));
3160#endif
3161 return val;
3162}
3163
3164
3165/**
3166 * Read guest RAM and ROM, unsigned 32-bit.
3167 *
3168 * @param SrcGCPhys The source address (guest physical).
3169 */
3170uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3171{
3172 uint32_t val;
3173 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3174 VBOX_CHECK_ADDR(SrcGCPhys);
3175 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3176 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3177#ifdef DEBUG_PHYS
3178 LogRel(("readu32: %x <- %p\n", val, SrcGCPhys));
3179#endif
3180 return val;
3181}
3182
3183
3184/**
3185 * Read guest RAM and ROM, signed 32-bit.
3186 *
3187 * @param SrcGCPhys The source address (guest physical).
3188 */
3189int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3190{
3191 int32_t val;
3192 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3193 VBOX_CHECK_ADDR(SrcGCPhys);
3194 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3195 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3196#ifdef DEBUG_PHYS
3197 LogRel(("reads32: %x <- %p\n", val, SrcGCPhys));
3198#endif
3199 return val;
3200}
3201
3202
3203/**
3204 * Read guest RAM and ROM, unsigned 64-bit.
3205 *
3206 * @param SrcGCPhys The source address (guest physical).
3207 */
3208uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3209{
3210 uint64_t val;
3211 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3212 VBOX_CHECK_ADDR(SrcGCPhys);
3213 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3214 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3215 return val;
3216}
3217
3218/**
3219 * Read guest RAM and ROM, signed 64-bit.
3220 *
3221 * @param SrcGCPhys The source address (guest physical).
3222 */
3223int64_t remR3PhysReadS64(RTGCPHYS SrcGCPhys)
3224{
3225 int64_t val;
3226 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3227 VBOX_CHECK_ADDR(SrcGCPhys);
3228 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3229 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3230 return val;
3231}
3232
3233
3234/**
3235 * Write guest RAM.
3236 *
3237 * @param DstGCPhys The destination address (guest physical).
3238 * @param pvSrc The source address.
3239 * @param cb Number of bytes to write
3240 */
3241void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3242{
3243 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3244 VBOX_CHECK_ADDR(DstGCPhys);
3245 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3246 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3247#ifdef DEBUG_PHYS
3248 LogRel(("write(%d): %p\n", cb, DstGCPhys));
3249#endif
3250}
3251
3252
3253/**
3254 * Write guest RAM, unsigned 8-bit.
3255 *
3256 * @param DstGCPhys The destination address (guest physical).
3257 * @param val Value
3258 */
3259void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3260{
3261 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3262 VBOX_CHECK_ADDR(DstGCPhys);
3263 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3264 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3265#ifdef DEBUG_PHYS
3266 LogRel(("writeu8: %x -> %p\n", val, DstGCPhys));
3267#endif
3268}
3269
3270
3271/**
3272 * Write guest RAM, unsigned 8-bit.
3273 *
3274 * @param DstGCPhys The destination address (guest physical).
3275 * @param val Value
3276 */
3277void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3278{
3279 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3280 VBOX_CHECK_ADDR(DstGCPhys);
3281 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3282 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3283#ifdef DEBUG_PHYS
3284 LogRel(("writeu16: %x -> %p\n", val, DstGCPhys));
3285#endif
3286}
3287
3288
3289/**
3290 * Write guest RAM, unsigned 32-bit.
3291 *
3292 * @param DstGCPhys The destination address (guest physical).
3293 * @param val Value
3294 */
3295void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3296{
3297 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3298 VBOX_CHECK_ADDR(DstGCPhys);
3299 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3300 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3301#ifdef DEBUG_PHYS
3302 LogRel(("writeu32: %x -> %p\n", val, DstGCPhys));
3303#endif
3304}
3305
3306
3307/**
3308 * Write guest RAM, unsigned 64-bit.
3309 *
3310 * @param DstGCPhys The destination address (guest physical).
3311 * @param val Value
3312 */
3313void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3314{
3315 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3316 VBOX_CHECK_ADDR(DstGCPhys);
3317 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3318 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3319}
3320
3321#undef LOG_GROUP
3322#define LOG_GROUP LOG_GROUP_REM_MMIO
3323
3324/** Read MMIO memory. */
3325static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3326{
3327 uint32_t u32 = 0;
3328 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3329 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3330 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3331 return u32;
3332}
3333
3334/** Read MMIO memory. */
3335static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3336{
3337 uint32_t u32 = 0;
3338 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3339 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3340 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3341 return u32;
3342}
3343
3344/** Read MMIO memory. */
3345static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3346{
3347 uint32_t u32 = 0;
3348 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3349 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3350 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3351 return u32;
3352}
3353
3354/** Write to MMIO memory. */
3355static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3356{
3357 int rc;
3358 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3359 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3360 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3361}
3362
3363/** Write to MMIO memory. */
3364static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3365{
3366 int rc;
3367 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3368 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3369 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3370}
3371
3372/** Write to MMIO memory. */
3373static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3374{
3375 int rc;
3376 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3377 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3378 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3379}
3380
3381
3382#undef LOG_GROUP
3383#define LOG_GROUP LOG_GROUP_REM_HANDLER
3384
3385/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3386
3387static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3388{
3389 uint8_t u8;
3390 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3391 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3392 return u8;
3393}
3394
3395static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3396{
3397 uint16_t u16;
3398 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3399 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3400 return u16;
3401}
3402
3403static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3404{
3405 uint32_t u32;
3406 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3407 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3408 return u32;
3409}
3410
3411static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3412{
3413 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3414 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3415}
3416
3417static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3418{
3419 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3420 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3421}
3422
3423static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3424{
3425 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3426 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3427}
3428
3429/* -+- disassembly -+- */
3430
3431#undef LOG_GROUP
3432#define LOG_GROUP LOG_GROUP_REM_DISAS
3433
3434
3435/**
3436 * Enables or disables singled stepped disassembly.
3437 *
3438 * @returns VBox status code.
3439 * @param pVM VM handle.
3440 * @param fEnable To enable set this flag, to disable clear it.
3441 */
3442static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3443{
3444 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3445 VM_ASSERT_EMT(pVM);
3446
3447 if (fEnable)
3448 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3449 else
3450 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3451 return VINF_SUCCESS;
3452}
3453
3454
3455/**
3456 * Enables or disables singled stepped disassembly.
3457 *
3458 * @returns VBox status code.
3459 * @param pVM VM handle.
3460 * @param fEnable To enable set this flag, to disable clear it.
3461 */
3462REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3463{
3464 PVMREQ pReq;
3465 int rc;
3466
3467 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3468 if (VM_IS_EMT(pVM))
3469 return remR3DisasEnableStepping(pVM, fEnable);
3470
3471 rc = VMR3ReqCall(pVM, VMREQDEST_ANY, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3472 AssertRC(rc);
3473 if (VBOX_SUCCESS(rc))
3474 rc = pReq->iStatus;
3475 VMR3ReqFree(pReq);
3476 return rc;
3477}
3478
3479
3480#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3481/**
3482 * External Debugger Command: .remstep [on|off|1|0]
3483 */
3484static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3485{
3486 bool fEnable;
3487 int rc;
3488
3489 /* print status */
3490 if (cArgs == 0)
3491 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3492 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3493
3494 /* convert the argument and change the mode. */
3495 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3496 if (VBOX_FAILURE(rc))
3497 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3498 rc = REMR3DisasEnableStepping(pVM, fEnable);
3499 if (VBOX_FAILURE(rc))
3500 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3501 return rc;
3502}
3503#endif
3504
3505
3506/**
3507 * Disassembles n instructions and prints them to the log.
3508 *
3509 * @returns Success indicator.
3510 * @param env Pointer to the recompiler CPU structure.
3511 * @param f32BitCode Indicates that whether or not the code should
3512 * be disassembled as 16 or 32 bit. If -1 the CS
3513 * selector will be inspected.
3514 * @param nrInstructions Nr of instructions to disassemble
3515 * @param pszPrefix
3516 * @remark not currently used for anything but ad-hoc debugging.
3517 */
3518bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3519{
3520 int i, rc;
3521 RTGCPTR GCPtrPC;
3522 uint8_t *pvPC;
3523 RTINTPTR off;
3524 DISCPUSTATE Cpu;
3525
3526 /*
3527 * Determin 16/32 bit mode.
3528 */
3529 if (f32BitCode == -1)
3530 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3531
3532 /*
3533 * Convert cs:eip to host context address.
3534 * We don't care to much about cross page correctness presently.
3535 */
3536 GCPtrPC = env->segs[R_CS].base + env->eip;
3537 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3538 {
3539 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3540
3541 /* convert eip to physical address. */
3542 rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3543 GCPtrPC,
3544 env->cr[3],
3545 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3546 (void**)&pvPC);
3547 if (VBOX_FAILURE(rc))
3548 {
3549 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3550 return false;
3551 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3552 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3553 }
3554 }
3555 else
3556 {
3557 /* physical address */
3558 rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16,
3559 (void**)&pvPC);
3560 if (VBOX_FAILURE(rc))
3561 return false;
3562 }
3563
3564 /*
3565 * Disassemble.
3566 */
3567 off = env->eip - (RTGCUINTPTR)pvPC;
3568 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3569 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3570 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3571 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3572 //Cpu.dwUserData[2] = GCPtrPC;
3573
3574 for (i=0;i<nrInstructions;i++)
3575 {
3576 char szOutput[256];
3577 uint32_t cbOp;
3578 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3579 return false;
3580 if (pszPrefix)
3581 Log(("%s: %s", pszPrefix, szOutput));
3582 else
3583 Log(("%s", szOutput));
3584
3585 pvPC += cbOp;
3586 }
3587 return true;
3588}
3589
3590
3591/** @todo need to test the new code, using the old code in the mean while. */
3592#define USE_OLD_DUMP_AND_DISASSEMBLY
3593
3594/**
3595 * Disassembles one instruction and prints it to the log.
3596 *
3597 * @returns Success indicator.
3598 * @param env Pointer to the recompiler CPU structure.
3599 * @param f32BitCode Indicates that whether or not the code should
3600 * be disassembled as 16 or 32 bit. If -1 the CS
3601 * selector will be inspected.
3602 * @param pszPrefix
3603 */
3604bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3605{
3606#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3607 PVM pVM = env->pVM;
3608 RTGCPTR GCPtrPC;
3609 uint8_t *pvPC;
3610 char szOutput[256];
3611 uint32_t cbOp;
3612 RTINTPTR off;
3613 DISCPUSTATE Cpu;
3614
3615
3616 /* Doesn't work in long mode. */
3617 if (env->hflags & HF_LMA_MASK)
3618 return false;
3619
3620 /*
3621 * Determin 16/32 bit mode.
3622 */
3623 if (f32BitCode == -1)
3624 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3625
3626 /*
3627 * Log registers
3628 */
3629 if (LogIs2Enabled())
3630 {
3631 remR3StateUpdate(pVM);
3632 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3633 }
3634
3635 /*
3636 * Convert cs:eip to host context address.
3637 * We don't care to much about cross page correctness presently.
3638 */
3639 GCPtrPC = env->segs[R_CS].base + env->eip;
3640 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3641 {
3642 /* convert eip to physical address. */
3643 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3644 GCPtrPC,
3645 env->cr[3],
3646 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3647 (void**)&pvPC);
3648 if (VBOX_FAILURE(rc))
3649 {
3650 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3651 return false;
3652 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(pVM, NULL)
3653 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3654 }
3655 }
3656 else
3657 {
3658
3659 /* physical address */
3660 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, (void**)&pvPC);
3661 if (VBOX_FAILURE(rc))
3662 return false;
3663 }
3664
3665 /*
3666 * Disassemble.
3667 */
3668 off = env->eip - (RTGCUINTPTR)pvPC;
3669 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3670 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3671 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3672 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3673 //Cpu.dwUserData[2] = GCPtrPC;
3674 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3675 return false;
3676
3677 if (!f32BitCode)
3678 {
3679 if (pszPrefix)
3680 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3681 else
3682 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3683 }
3684 else
3685 {
3686 if (pszPrefix)
3687 Log(("%s: %s", pszPrefix, szOutput));
3688 else
3689 Log(("%s", szOutput));
3690 }
3691 return true;
3692
3693#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3694 PVM pVM = env->pVM;
3695 const bool fLog = LogIsEnabled();
3696 const bool fLog2 = LogIs2Enabled();
3697 int rc = VINF_SUCCESS;
3698
3699 /*
3700 * Don't bother if there ain't any log output to do.
3701 */
3702 if (!fLog && !fLog2)
3703 return true;
3704
3705 /*
3706 * Update the state so DBGF reads the correct register values.
3707 */
3708 remR3StateUpdate(pVM);
3709
3710 /*
3711 * Log registers if requested.
3712 */
3713 if (!fLog2)
3714 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3715
3716 /*
3717 * Disassemble to log.
3718 */
3719 if (fLog)
3720 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3721
3722 return VBOX_SUCCESS(rc);
3723#endif
3724}
3725
3726
3727/**
3728 * Disassemble recompiled code.
3729 *
3730 * @param phFileIgnored Ignored, logfile usually.
3731 * @param pvCode Pointer to the code block.
3732 * @param cb Size of the code block.
3733 */
3734void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3735{
3736 if (LogIs2Enabled())
3737 {
3738 unsigned off = 0;
3739 char szOutput[256];
3740 DISCPUSTATE Cpu;
3741
3742 memset(&Cpu, 0, sizeof(Cpu));
3743#ifdef RT_ARCH_X86
3744 Cpu.mode = CPUMODE_32BIT;
3745#else
3746 Cpu.mode = CPUMODE_64BIT;
3747#endif
3748
3749 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3750 while (off < cb)
3751 {
3752 uint32_t cbInstr;
3753 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3754 RTLogPrintf("%s", szOutput);
3755 else
3756 {
3757 RTLogPrintf("disas error\n");
3758 cbInstr = 1;
3759#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3760 break;
3761#endif
3762 }
3763 off += cbInstr;
3764 }
3765 }
3766 NOREF(phFileIgnored);
3767}
3768
3769
3770/**
3771 * Disassemble guest code.
3772 *
3773 * @param phFileIgnored Ignored, logfile usually.
3774 * @param uCode The guest address of the code to disassemble. (flat?)
3775 * @param cb Number of bytes to disassemble.
3776 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3777 */
3778void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3779{
3780 if (LogIs2Enabled())
3781 {
3782 PVM pVM = cpu_single_env->pVM;
3783 RTSEL cs;
3784 RTGCUINTPTR eip;
3785
3786 /*
3787 * Update the state so DBGF reads the correct register values (flags).
3788 */
3789 remR3StateUpdate(pVM);
3790
3791 /*
3792 * Do the disassembling.
3793 */
3794 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3795 cs = cpu_single_env->segs[R_CS].selector;
3796 eip = uCode - cpu_single_env->segs[R_CS].base;
3797 for (;;)
3798 {
3799 char szBuf[256];
3800 uint32_t cbInstr;
3801 int rc = DBGFR3DisasInstrEx(pVM,
3802 cs,
3803 eip,
3804 0,
3805 szBuf, sizeof(szBuf),
3806 &cbInstr);
3807 if (VBOX_SUCCESS(rc))
3808 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3809 else
3810 {
3811 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3812 cbInstr = 1;
3813 }
3814
3815 /* next */
3816 if (cb <= cbInstr)
3817 break;
3818 cb -= cbInstr;
3819 uCode += cbInstr;
3820 eip += cbInstr;
3821 }
3822 }
3823 NOREF(phFileIgnored);
3824}
3825
3826
3827/**
3828 * Looks up a guest symbol.
3829 *
3830 * @returns Pointer to symbol name. This is a static buffer.
3831 * @param orig_addr The address in question.
3832 */
3833const char *lookup_symbol(target_ulong orig_addr)
3834{
3835 RTGCINTPTR off = 0;
3836 DBGFSYMBOL Sym;
3837 PVM pVM = cpu_single_env->pVM;
3838 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3839 if (VBOX_SUCCESS(rc))
3840 {
3841 static char szSym[sizeof(Sym.szName) + 48];
3842 if (!off)
3843 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3844 else if (off > 0)
3845 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3846 else
3847 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3848 return szSym;
3849 }
3850 return "<N/A>";
3851}
3852
3853
3854#undef LOG_GROUP
3855#define LOG_GROUP LOG_GROUP_REM
3856
3857
3858/* -+- FF notifications -+- */
3859
3860
3861/**
3862 * Notification about a pending interrupt.
3863 *
3864 * @param pVM VM Handle.
3865 * @param u8Interrupt Interrupt
3866 * @thread The emulation thread.
3867 */
3868REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3869{
3870 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3871 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3872}
3873
3874/**
3875 * Notification about a pending interrupt.
3876 *
3877 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3878 * @param pVM VM Handle.
3879 * @thread The emulation thread.
3880 */
3881REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3882{
3883 return pVM->rem.s.u32PendingInterrupt;
3884}
3885
3886/**
3887 * Notification about the interrupt FF being set.
3888 *
3889 * @param pVM VM Handle.
3890 * @thread The emulation thread.
3891 */
3892REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3893{
3894 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3895 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3896 if (pVM->rem.s.fInREM)
3897 {
3898 if (VM_IS_EMT(pVM))
3899 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3900 else
3901 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3902 CPU_INTERRUPT_EXTERNAL_HARD);
3903 }
3904}
3905
3906
3907/**
3908 * Notification about the interrupt FF being set.
3909 *
3910 * @param pVM VM Handle.
3911 * @thread Any.
3912 */
3913REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3914{
3915 LogFlow(("REMR3NotifyInterruptClear:\n"));
3916 if (pVM->rem.s.fInREM)
3917 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3918}
3919
3920
3921/**
3922 * Notification about pending timer(s).
3923 *
3924 * @param pVM VM Handle.
3925 * @thread Any.
3926 */
3927REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3928{
3929#ifndef DEBUG_bird
3930 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3931#endif
3932 if (pVM->rem.s.fInREM)
3933 {
3934 if (VM_IS_EMT(pVM))
3935 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3936 else
3937 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3938 CPU_INTERRUPT_EXTERNAL_TIMER);
3939 }
3940}
3941
3942
3943/**
3944 * Notification about pending DMA transfers.
3945 *
3946 * @param pVM VM Handle.
3947 * @thread Any.
3948 */
3949REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3950{
3951 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3952 if (pVM->rem.s.fInREM)
3953 {
3954 if (VM_IS_EMT(pVM))
3955 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3956 else
3957 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3958 CPU_INTERRUPT_EXTERNAL_DMA);
3959 }
3960}
3961
3962
3963/**
3964 * Notification about pending timer(s).
3965 *
3966 * @param pVM VM Handle.
3967 * @thread Any.
3968 */
3969REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3970{
3971 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3972 if (pVM->rem.s.fInREM)
3973 {
3974 if (VM_IS_EMT(pVM))
3975 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3976 else
3977 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3978 CPU_INTERRUPT_EXTERNAL_EXIT);
3979 }
3980}
3981
3982
3983/**
3984 * Notification about pending FF set by an external thread.
3985 *
3986 * @param pVM VM handle.
3987 * @thread Any.
3988 */
3989REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3990{
3991 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3992 if (pVM->rem.s.fInREM)
3993 {
3994 if (VM_IS_EMT(pVM))
3995 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3996 else
3997 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3998 CPU_INTERRUPT_EXTERNAL_EXIT);
3999 }
4000}
4001
4002
4003#ifdef VBOX_WITH_STATISTICS
4004void remR3ProfileStart(int statcode)
4005{
4006 STAMPROFILEADV *pStat;
4007 switch(statcode)
4008 {
4009 case STATS_EMULATE_SINGLE_INSTR:
4010 pStat = &gStatExecuteSingleInstr;
4011 break;
4012 case STATS_QEMU_COMPILATION:
4013 pStat = &gStatCompilationQEmu;
4014 break;
4015 case STATS_QEMU_RUN_EMULATED_CODE:
4016 pStat = &gStatRunCodeQEmu;
4017 break;
4018 case STATS_QEMU_TOTAL:
4019 pStat = &gStatTotalTimeQEmu;
4020 break;
4021 case STATS_QEMU_RUN_TIMERS:
4022 pStat = &gStatTimers;
4023 break;
4024 case STATS_TLB_LOOKUP:
4025 pStat= &gStatTBLookup;
4026 break;
4027 case STATS_IRQ_HANDLING:
4028 pStat= &gStatIRQ;
4029 break;
4030 case STATS_RAW_CHECK:
4031 pStat = &gStatRawCheck;
4032 break;
4033
4034 default:
4035 AssertMsgFailed(("unknown stat %d\n", statcode));
4036 return;
4037 }
4038 STAM_PROFILE_ADV_START(pStat, a);
4039}
4040
4041
4042void remR3ProfileStop(int statcode)
4043{
4044 STAMPROFILEADV *pStat;
4045 switch(statcode)
4046 {
4047 case STATS_EMULATE_SINGLE_INSTR:
4048 pStat = &gStatExecuteSingleInstr;
4049 break;
4050 case STATS_QEMU_COMPILATION:
4051 pStat = &gStatCompilationQEmu;
4052 break;
4053 case STATS_QEMU_RUN_EMULATED_CODE:
4054 pStat = &gStatRunCodeQEmu;
4055 break;
4056 case STATS_QEMU_TOTAL:
4057 pStat = &gStatTotalTimeQEmu;
4058 break;
4059 case STATS_QEMU_RUN_TIMERS:
4060 pStat = &gStatTimers;
4061 break;
4062 case STATS_TLB_LOOKUP:
4063 pStat= &gStatTBLookup;
4064 break;
4065 case STATS_IRQ_HANDLING:
4066 pStat= &gStatIRQ;
4067 break;
4068 case STATS_RAW_CHECK:
4069 pStat = &gStatRawCheck;
4070 break;
4071 default:
4072 AssertMsgFailed(("unknown stat %d\n", statcode));
4073 return;
4074 }
4075 STAM_PROFILE_ADV_STOP(pStat, a);
4076}
4077#endif
4078
4079/**
4080 * Raise an RC, force rem exit.
4081 *
4082 * @param pVM VM handle.
4083 * @param rc The rc.
4084 */
4085void remR3RaiseRC(PVM pVM, int rc)
4086{
4087 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
4088 Assert(pVM->rem.s.fInREM);
4089 VM_ASSERT_EMT(pVM);
4090 pVM->rem.s.rc = rc;
4091 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4092}
4093
4094
4095/* -+- timers -+- */
4096
4097uint64_t cpu_get_tsc(CPUX86State *env)
4098{
4099 STAM_COUNTER_INC(&gStatCpuGetTSC);
4100 return TMCpuTickGet(env->pVM);
4101}
4102
4103
4104/* -+- interrupts -+- */
4105
4106void cpu_set_ferr(CPUX86State *env)
4107{
4108 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4109 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4110}
4111
4112int cpu_get_pic_interrupt(CPUState *env)
4113{
4114 uint8_t u8Interrupt;
4115 int rc;
4116
4117 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4118 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4119 * with the (a)pic.
4120 */
4121 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4122 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4123 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4124 * remove this kludge. */
4125 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4126 {
4127 rc = VINF_SUCCESS;
4128 Assert(env->pVM->rem.s.u32PendingInterrupt <= 255);
4129 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4130 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4131 }
4132 else
4133 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4134
4135 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4136 if (VBOX_SUCCESS(rc))
4137 {
4138 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4139 env->interrupt_request |= CPU_INTERRUPT_HARD;
4140 return u8Interrupt;
4141 }
4142 return -1;
4143}
4144
4145
4146/* -+- local apic -+- */
4147
4148void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4149{
4150 int rc = PDMApicSetBase(env->pVM, val);
4151 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4152}
4153
4154uint64_t cpu_get_apic_base(CPUX86State *env)
4155{
4156 uint64_t u64;
4157 int rc = PDMApicGetBase(env->pVM, &u64);
4158 if (VBOX_SUCCESS(rc))
4159 {
4160 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4161 return u64;
4162 }
4163 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4164 return 0;
4165}
4166
4167void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4168{
4169 int rc = PDMApicSetTPR(env->pVM, val);
4170 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4171}
4172
4173uint8_t cpu_get_apic_tpr(CPUX86State *env)
4174{
4175 uint8_t u8;
4176 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4177 if (VBOX_SUCCESS(rc))
4178 {
4179 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4180 return u8;
4181 }
4182 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4183 return 0;
4184}
4185
4186
4187uint64_t cpu_apic_rdmsr(CPUX86State *env, uint32_t reg)
4188{
4189 uint64_t value;
4190 int rc = PDMApicReadMSR(env->pVM, 0/* cpu */, reg, &value);
4191 if (VBOX_SUCCESS(rc))
4192 {
4193 LogFlow(("cpu_apic_rdms returns %#x\n", value));
4194 return value;
4195 }
4196 /** @todo: exception ? */
4197 LogFlow(("cpu_apic_rdms returns 0 (rc=%Vrc)\n", rc));
4198 return value;
4199}
4200
4201void cpu_apic_wrmsr(CPUX86State *env, uint32_t reg, uint64_t value)
4202{
4203 int rc = PDMApicWriteMSR(env->pVM, 0 /* cpu */, reg, value);
4204 /** @todo: exception if error ? */
4205 LogFlow(("cpu_apic_wrmsr: rc=%Vrc\n", rc)); NOREF(rc);
4206}
4207/* -+- I/O Ports -+- */
4208
4209#undef LOG_GROUP
4210#define LOG_GROUP LOG_GROUP_REM_IOPORT
4211
4212void cpu_outb(CPUState *env, int addr, int val)
4213{
4214 int rc;
4215
4216 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4217 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4218
4219 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4220 if (RT_LIKELY(rc == VINF_SUCCESS))
4221 return;
4222 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4223 {
4224 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4225 remR3RaiseRC(env->pVM, rc);
4226 return;
4227 }
4228 remAbort(rc, __FUNCTION__);
4229}
4230
4231void cpu_outw(CPUState *env, int addr, int val)
4232{
4233 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4234 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4235 if (RT_LIKELY(rc == VINF_SUCCESS))
4236 return;
4237 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4238 {
4239 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4240 remR3RaiseRC(env->pVM, rc);
4241 return;
4242 }
4243 remAbort(rc, __FUNCTION__);
4244}
4245
4246void cpu_outl(CPUState *env, int addr, int val)
4247{
4248 int rc;
4249 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4250 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4251 if (RT_LIKELY(rc == VINF_SUCCESS))
4252 return;
4253 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4254 {
4255 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4256 remR3RaiseRC(env->pVM, rc);
4257 return;
4258 }
4259 remAbort(rc, __FUNCTION__);
4260}
4261
4262int cpu_inb(CPUState *env, int addr)
4263{
4264 uint32_t u32 = 0;
4265 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4266 if (RT_LIKELY(rc == VINF_SUCCESS))
4267 {
4268 if (/*addr != 0x61 && */addr != 0x71)
4269 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4270 return (int)u32;
4271 }
4272 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4273 {
4274 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4275 remR3RaiseRC(env->pVM, rc);
4276 return (int)u32;
4277 }
4278 remAbort(rc, __FUNCTION__);
4279 return 0xff;
4280}
4281
4282int cpu_inw(CPUState *env, int addr)
4283{
4284 uint32_t u32 = 0;
4285 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4286 if (RT_LIKELY(rc == VINF_SUCCESS))
4287 {
4288 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4289 return (int)u32;
4290 }
4291 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4292 {
4293 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4294 remR3RaiseRC(env->pVM, rc);
4295 return (int)u32;
4296 }
4297 remAbort(rc, __FUNCTION__);
4298 return 0xffff;
4299}
4300
4301int cpu_inl(CPUState *env, int addr)
4302{
4303 uint32_t u32 = 0;
4304 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4305 if (RT_LIKELY(rc == VINF_SUCCESS))
4306 {
4307//if (addr==0x01f0 && u32 == 0x6b6d)
4308// loglevel = ~0;
4309 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4310 return (int)u32;
4311 }
4312 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4313 {
4314 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4315 remR3RaiseRC(env->pVM, rc);
4316 return (int)u32;
4317 }
4318 remAbort(rc, __FUNCTION__);
4319 return 0xffffffff;
4320}
4321
4322#undef LOG_GROUP
4323#define LOG_GROUP LOG_GROUP_REM
4324
4325
4326/* -+- helpers and misc other interfaces -+- */
4327
4328/**
4329 * Perform the CPUID instruction.
4330 *
4331 * ASMCpuId cannot be invoked from some source files where this is used because of global
4332 * register allocations.
4333 *
4334 * @param env Pointer to the recompiler CPU structure.
4335 * @param uOperator CPUID operation (eax).
4336 * @param pvEAX Where to store eax.
4337 * @param pvEBX Where to store ebx.
4338 * @param pvECX Where to store ecx.
4339 * @param pvEDX Where to store edx.
4340 */
4341void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4342{
4343 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4344}
4345
4346
4347#if 0 /* not used */
4348/**
4349 * Interface for qemu hardware to report back fatal errors.
4350 */
4351void hw_error(const char *pszFormat, ...)
4352{
4353 /*
4354 * Bitch about it.
4355 */
4356 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4357 * this in my Odin32 tree at home! */
4358 va_list args;
4359 va_start(args, pszFormat);
4360 RTLogPrintf("fatal error in virtual hardware:");
4361 RTLogPrintfV(pszFormat, args);
4362 va_end(args);
4363 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4364
4365 /*
4366 * If we're in REM context we'll sync back the state before 'jumping' to
4367 * the EMs failure handling.
4368 */
4369 PVM pVM = cpu_single_env->pVM;
4370 if (pVM->rem.s.fInREM)
4371 REMR3StateBack(pVM);
4372 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4373 AssertMsgFailed(("EMR3FatalError returned!\n"));
4374}
4375#endif
4376
4377/**
4378 * Interface for the qemu cpu to report unhandled situation
4379 * raising a fatal VM error.
4380 */
4381void cpu_abort(CPUState *env, const char *pszFormat, ...)
4382{
4383 va_list args;
4384 PVM pVM;
4385
4386 /*
4387 * Bitch about it.
4388 */
4389#ifndef _MSC_VER
4390 /** @todo: MSVC is right - it's not valid C */
4391 RTLogFlags(NULL, "nodisabled nobuffered");
4392#endif
4393 va_start(args, pszFormat);
4394 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4395 va_end(args);
4396 va_start(args, pszFormat);
4397 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4398 va_end(args);
4399
4400 /*
4401 * If we're in REM context we'll sync back the state before 'jumping' to
4402 * the EMs failure handling.
4403 */
4404 pVM = cpu_single_env->pVM;
4405 if (pVM->rem.s.fInREM)
4406 REMR3StateBack(pVM);
4407 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4408 AssertMsgFailed(("EMR3FatalError returned!\n"));
4409}
4410
4411
4412/**
4413 * Aborts the VM.
4414 *
4415 * @param rc VBox error code.
4416 * @param pszTip Hint about why/when this happend.
4417 */
4418static void remAbort(int rc, const char *pszTip)
4419{
4420 PVM pVM;
4421
4422 /*
4423 * Bitch about it.
4424 */
4425 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4426 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4427
4428 /*
4429 * Jump back to where we entered the recompiler.
4430 */
4431 pVM = cpu_single_env->pVM;
4432 if (pVM->rem.s.fInREM)
4433 REMR3StateBack(pVM);
4434 EMR3FatalError(pVM, rc);
4435 AssertMsgFailed(("EMR3FatalError returned!\n"));
4436}
4437
4438
4439/**
4440 * Dumps a linux system call.
4441 * @param pVM VM handle.
4442 */
4443void remR3DumpLnxSyscall(PVM pVM)
4444{
4445 static const char *apsz[] =
4446 {
4447 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4448 "sys_exit",
4449 "sys_fork",
4450 "sys_read",
4451 "sys_write",
4452 "sys_open", /* 5 */
4453 "sys_close",
4454 "sys_waitpid",
4455 "sys_creat",
4456 "sys_link",
4457 "sys_unlink", /* 10 */
4458 "sys_execve",
4459 "sys_chdir",
4460 "sys_time",
4461 "sys_mknod",
4462 "sys_chmod", /* 15 */
4463 "sys_lchown16",
4464 "sys_ni_syscall", /* old break syscall holder */
4465 "sys_stat",
4466 "sys_lseek",
4467 "sys_getpid", /* 20 */
4468 "sys_mount",
4469 "sys_oldumount",
4470 "sys_setuid16",
4471 "sys_getuid16",
4472 "sys_stime", /* 25 */
4473 "sys_ptrace",
4474 "sys_alarm",
4475 "sys_fstat",
4476 "sys_pause",
4477 "sys_utime", /* 30 */
4478 "sys_ni_syscall", /* old stty syscall holder */
4479 "sys_ni_syscall", /* old gtty syscall holder */
4480 "sys_access",
4481 "sys_nice",
4482 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4483 "sys_sync",
4484 "sys_kill",
4485 "sys_rename",
4486 "sys_mkdir",
4487 "sys_rmdir", /* 40 */
4488 "sys_dup",
4489 "sys_pipe",
4490 "sys_times",
4491 "sys_ni_syscall", /* old prof syscall holder */
4492 "sys_brk", /* 45 */
4493 "sys_setgid16",
4494 "sys_getgid16",
4495 "sys_signal",
4496 "sys_geteuid16",
4497 "sys_getegid16", /* 50 */
4498 "sys_acct",
4499 "sys_umount", /* recycled never used phys() */
4500 "sys_ni_syscall", /* old lock syscall holder */
4501 "sys_ioctl",
4502 "sys_fcntl", /* 55 */
4503 "sys_ni_syscall", /* old mpx syscall holder */
4504 "sys_setpgid",
4505 "sys_ni_syscall", /* old ulimit syscall holder */
4506 "sys_olduname",
4507 "sys_umask", /* 60 */
4508 "sys_chroot",
4509 "sys_ustat",
4510 "sys_dup2",
4511 "sys_getppid",
4512 "sys_getpgrp", /* 65 */
4513 "sys_setsid",
4514 "sys_sigaction",
4515 "sys_sgetmask",
4516 "sys_ssetmask",
4517 "sys_setreuid16", /* 70 */
4518 "sys_setregid16",
4519 "sys_sigsuspend",
4520 "sys_sigpending",
4521 "sys_sethostname",
4522 "sys_setrlimit", /* 75 */
4523 "sys_old_getrlimit",
4524 "sys_getrusage",
4525 "sys_gettimeofday",
4526 "sys_settimeofday",
4527 "sys_getgroups16", /* 80 */
4528 "sys_setgroups16",
4529 "old_select",
4530 "sys_symlink",
4531 "sys_lstat",
4532 "sys_readlink", /* 85 */
4533 "sys_uselib",
4534 "sys_swapon",
4535 "sys_reboot",
4536 "old_readdir",
4537 "old_mmap", /* 90 */
4538 "sys_munmap",
4539 "sys_truncate",
4540 "sys_ftruncate",
4541 "sys_fchmod",
4542 "sys_fchown16", /* 95 */
4543 "sys_getpriority",
4544 "sys_setpriority",
4545 "sys_ni_syscall", /* old profil syscall holder */
4546 "sys_statfs",
4547 "sys_fstatfs", /* 100 */
4548 "sys_ioperm",
4549 "sys_socketcall",
4550 "sys_syslog",
4551 "sys_setitimer",
4552 "sys_getitimer", /* 105 */
4553 "sys_newstat",
4554 "sys_newlstat",
4555 "sys_newfstat",
4556 "sys_uname",
4557 "sys_iopl", /* 110 */
4558 "sys_vhangup",
4559 "sys_ni_syscall", /* old "idle" system call */
4560 "sys_vm86old",
4561 "sys_wait4",
4562 "sys_swapoff", /* 115 */
4563 "sys_sysinfo",
4564 "sys_ipc",
4565 "sys_fsync",
4566 "sys_sigreturn",
4567 "sys_clone", /* 120 */
4568 "sys_setdomainname",
4569 "sys_newuname",
4570 "sys_modify_ldt",
4571 "sys_adjtimex",
4572 "sys_mprotect", /* 125 */
4573 "sys_sigprocmask",
4574 "sys_ni_syscall", /* old "create_module" */
4575 "sys_init_module",
4576 "sys_delete_module",
4577 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4578 "sys_quotactl",
4579 "sys_getpgid",
4580 "sys_fchdir",
4581 "sys_bdflush",
4582 "sys_sysfs", /* 135 */
4583 "sys_personality",
4584 "sys_ni_syscall", /* reserved for afs_syscall */
4585 "sys_setfsuid16",
4586 "sys_setfsgid16",
4587 "sys_llseek", /* 140 */
4588 "sys_getdents",
4589 "sys_select",
4590 "sys_flock",
4591 "sys_msync",
4592 "sys_readv", /* 145 */
4593 "sys_writev",
4594 "sys_getsid",
4595 "sys_fdatasync",
4596 "sys_sysctl",
4597 "sys_mlock", /* 150 */
4598 "sys_munlock",
4599 "sys_mlockall",
4600 "sys_munlockall",
4601 "sys_sched_setparam",
4602 "sys_sched_getparam", /* 155 */
4603 "sys_sched_setscheduler",
4604 "sys_sched_getscheduler",
4605 "sys_sched_yield",
4606 "sys_sched_get_priority_max",
4607 "sys_sched_get_priority_min", /* 160 */
4608 "sys_sched_rr_get_interval",
4609 "sys_nanosleep",
4610 "sys_mremap",
4611 "sys_setresuid16",
4612 "sys_getresuid16", /* 165 */
4613 "sys_vm86",
4614 "sys_ni_syscall", /* Old sys_query_module */
4615 "sys_poll",
4616 "sys_nfsservctl",
4617 "sys_setresgid16", /* 170 */
4618 "sys_getresgid16",
4619 "sys_prctl",
4620 "sys_rt_sigreturn",
4621 "sys_rt_sigaction",
4622 "sys_rt_sigprocmask", /* 175 */
4623 "sys_rt_sigpending",
4624 "sys_rt_sigtimedwait",
4625 "sys_rt_sigqueueinfo",
4626 "sys_rt_sigsuspend",
4627 "sys_pread64", /* 180 */
4628 "sys_pwrite64",
4629 "sys_chown16",
4630 "sys_getcwd",
4631 "sys_capget",
4632 "sys_capset", /* 185 */
4633 "sys_sigaltstack",
4634 "sys_sendfile",
4635 "sys_ni_syscall", /* reserved for streams1 */
4636 "sys_ni_syscall", /* reserved for streams2 */
4637 "sys_vfork", /* 190 */
4638 "sys_getrlimit",
4639 "sys_mmap2",
4640 "sys_truncate64",
4641 "sys_ftruncate64",
4642 "sys_stat64", /* 195 */
4643 "sys_lstat64",
4644 "sys_fstat64",
4645 "sys_lchown",
4646 "sys_getuid",
4647 "sys_getgid", /* 200 */
4648 "sys_geteuid",
4649 "sys_getegid",
4650 "sys_setreuid",
4651 "sys_setregid",
4652 "sys_getgroups", /* 205 */
4653 "sys_setgroups",
4654 "sys_fchown",
4655 "sys_setresuid",
4656 "sys_getresuid",
4657 "sys_setresgid", /* 210 */
4658 "sys_getresgid",
4659 "sys_chown",
4660 "sys_setuid",
4661 "sys_setgid",
4662 "sys_setfsuid", /* 215 */
4663 "sys_setfsgid",
4664 "sys_pivot_root",
4665 "sys_mincore",
4666 "sys_madvise",
4667 "sys_getdents64", /* 220 */
4668 "sys_fcntl64",
4669 "sys_ni_syscall", /* reserved for TUX */
4670 "sys_ni_syscall",
4671 "sys_gettid",
4672 "sys_readahead", /* 225 */
4673 "sys_setxattr",
4674 "sys_lsetxattr",
4675 "sys_fsetxattr",
4676 "sys_getxattr",
4677 "sys_lgetxattr", /* 230 */
4678 "sys_fgetxattr",
4679 "sys_listxattr",
4680 "sys_llistxattr",
4681 "sys_flistxattr",
4682 "sys_removexattr", /* 235 */
4683 "sys_lremovexattr",
4684 "sys_fremovexattr",
4685 "sys_tkill",
4686 "sys_sendfile64",
4687 "sys_futex", /* 240 */
4688 "sys_sched_setaffinity",
4689 "sys_sched_getaffinity",
4690 "sys_set_thread_area",
4691 "sys_get_thread_area",
4692 "sys_io_setup", /* 245 */
4693 "sys_io_destroy",
4694 "sys_io_getevents",
4695 "sys_io_submit",
4696 "sys_io_cancel",
4697 "sys_fadvise64", /* 250 */
4698 "sys_ni_syscall",
4699 "sys_exit_group",
4700 "sys_lookup_dcookie",
4701 "sys_epoll_create",
4702 "sys_epoll_ctl", /* 255 */
4703 "sys_epoll_wait",
4704 "sys_remap_file_pages",
4705 "sys_set_tid_address",
4706 "sys_timer_create",
4707 "sys_timer_settime", /* 260 */
4708 "sys_timer_gettime",
4709 "sys_timer_getoverrun",
4710 "sys_timer_delete",
4711 "sys_clock_settime",
4712 "sys_clock_gettime", /* 265 */
4713 "sys_clock_getres",
4714 "sys_clock_nanosleep",
4715 "sys_statfs64",
4716 "sys_fstatfs64",
4717 "sys_tgkill", /* 270 */
4718 "sys_utimes",
4719 "sys_fadvise64_64",
4720 "sys_ni_syscall" /* sys_vserver */
4721 };
4722
4723 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4724 switch (uEAX)
4725 {
4726 default:
4727 if (uEAX < ELEMENTS(apsz))
4728 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4729 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4730 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4731 else
4732 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4733 break;
4734
4735 }
4736}
4737
4738
4739/**
4740 * Dumps an OpenBSD system call.
4741 * @param pVM VM handle.
4742 */
4743void remR3DumpOBsdSyscall(PVM pVM)
4744{
4745 static const char *apsz[] =
4746 {
4747 "SYS_syscall", //0
4748 "SYS_exit", //1
4749 "SYS_fork", //2
4750 "SYS_read", //3
4751 "SYS_write", //4
4752 "SYS_open", //5
4753 "SYS_close", //6
4754 "SYS_wait4", //7
4755 "SYS_8",
4756 "SYS_link", //9
4757 "SYS_unlink", //10
4758 "SYS_11",
4759 "SYS_chdir", //12
4760 "SYS_fchdir", //13
4761 "SYS_mknod", //14
4762 "SYS_chmod", //15
4763 "SYS_chown", //16
4764 "SYS_break", //17
4765 "SYS_18",
4766 "SYS_19",
4767 "SYS_getpid", //20
4768 "SYS_mount", //21
4769 "SYS_unmount", //22
4770 "SYS_setuid", //23
4771 "SYS_getuid", //24
4772 "SYS_geteuid", //25
4773 "SYS_ptrace", //26
4774 "SYS_recvmsg", //27
4775 "SYS_sendmsg", //28
4776 "SYS_recvfrom", //29
4777 "SYS_accept", //30
4778 "SYS_getpeername", //31
4779 "SYS_getsockname", //32
4780 "SYS_access", //33
4781 "SYS_chflags", //34
4782 "SYS_fchflags", //35
4783 "SYS_sync", //36
4784 "SYS_kill", //37
4785 "SYS_38",
4786 "SYS_getppid", //39
4787 "SYS_40",
4788 "SYS_dup", //41
4789 "SYS_opipe", //42
4790 "SYS_getegid", //43
4791 "SYS_profil", //44
4792 "SYS_ktrace", //45
4793 "SYS_sigaction", //46
4794 "SYS_getgid", //47
4795 "SYS_sigprocmask", //48
4796 "SYS_getlogin", //49
4797 "SYS_setlogin", //50
4798 "SYS_acct", //51
4799 "SYS_sigpending", //52
4800 "SYS_osigaltstack", //53
4801 "SYS_ioctl", //54
4802 "SYS_reboot", //55
4803 "SYS_revoke", //56
4804 "SYS_symlink", //57
4805 "SYS_readlink", //58
4806 "SYS_execve", //59
4807 "SYS_umask", //60
4808 "SYS_chroot", //61
4809 "SYS_62",
4810 "SYS_63",
4811 "SYS_64",
4812 "SYS_65",
4813 "SYS_vfork", //66
4814 "SYS_67",
4815 "SYS_68",
4816 "SYS_sbrk", //69
4817 "SYS_sstk", //70
4818 "SYS_61",
4819 "SYS_vadvise", //72
4820 "SYS_munmap", //73
4821 "SYS_mprotect", //74
4822 "SYS_madvise", //75
4823 "SYS_76",
4824 "SYS_77",
4825 "SYS_mincore", //78
4826 "SYS_getgroups", //79
4827 "SYS_setgroups", //80
4828 "SYS_getpgrp", //81
4829 "SYS_setpgid", //82
4830 "SYS_setitimer", //83
4831 "SYS_84",
4832 "SYS_85",
4833 "SYS_getitimer", //86
4834 "SYS_87",
4835 "SYS_88",
4836 "SYS_89",
4837 "SYS_dup2", //90
4838 "SYS_91",
4839 "SYS_fcntl", //92
4840 "SYS_select", //93
4841 "SYS_94",
4842 "SYS_fsync", //95
4843 "SYS_setpriority", //96
4844 "SYS_socket", //97
4845 "SYS_connect", //98
4846 "SYS_99",
4847 "SYS_getpriority", //100
4848 "SYS_101",
4849 "SYS_102",
4850 "SYS_sigreturn", //103
4851 "SYS_bind", //104
4852 "SYS_setsockopt", //105
4853 "SYS_listen", //106
4854 "SYS_107",
4855 "SYS_108",
4856 "SYS_109",
4857 "SYS_110",
4858 "SYS_sigsuspend", //111
4859 "SYS_112",
4860 "SYS_113",
4861 "SYS_114",
4862 "SYS_115",
4863 "SYS_gettimeofday", //116
4864 "SYS_getrusage", //117
4865 "SYS_getsockopt", //118
4866 "SYS_119",
4867 "SYS_readv", //120
4868 "SYS_writev", //121
4869 "SYS_settimeofday", //122
4870 "SYS_fchown", //123
4871 "SYS_fchmod", //124
4872 "SYS_125",
4873 "SYS_setreuid", //126
4874 "SYS_setregid", //127
4875 "SYS_rename", //128
4876 "SYS_129",
4877 "SYS_130",
4878 "SYS_flock", //131
4879 "SYS_mkfifo", //132
4880 "SYS_sendto", //133
4881 "SYS_shutdown", //134
4882 "SYS_socketpair", //135
4883 "SYS_mkdir", //136
4884 "SYS_rmdir", //137
4885 "SYS_utimes", //138
4886 "SYS_139",
4887 "SYS_adjtime", //140
4888 "SYS_141",
4889 "SYS_142",
4890 "SYS_143",
4891 "SYS_144",
4892 "SYS_145",
4893 "SYS_146",
4894 "SYS_setsid", //147
4895 "SYS_quotactl", //148
4896 "SYS_149",
4897 "SYS_150",
4898 "SYS_151",
4899 "SYS_152",
4900 "SYS_153",
4901 "SYS_154",
4902 "SYS_nfssvc", //155
4903 "SYS_156",
4904 "SYS_157",
4905 "SYS_158",
4906 "SYS_159",
4907 "SYS_160",
4908 "SYS_getfh", //161
4909 "SYS_162",
4910 "SYS_163",
4911 "SYS_164",
4912 "SYS_sysarch", //165
4913 "SYS_166",
4914 "SYS_167",
4915 "SYS_168",
4916 "SYS_169",
4917 "SYS_170",
4918 "SYS_171",
4919 "SYS_172",
4920 "SYS_pread", //173
4921 "SYS_pwrite", //174
4922 "SYS_175",
4923 "SYS_176",
4924 "SYS_177",
4925 "SYS_178",
4926 "SYS_179",
4927 "SYS_180",
4928 "SYS_setgid", //181
4929 "SYS_setegid", //182
4930 "SYS_seteuid", //183
4931 "SYS_lfs_bmapv", //184
4932 "SYS_lfs_markv", //185
4933 "SYS_lfs_segclean", //186
4934 "SYS_lfs_segwait", //187
4935 "SYS_188",
4936 "SYS_189",
4937 "SYS_190",
4938 "SYS_pathconf", //191
4939 "SYS_fpathconf", //192
4940 "SYS_swapctl", //193
4941 "SYS_getrlimit", //194
4942 "SYS_setrlimit", //195
4943 "SYS_getdirentries", //196
4944 "SYS_mmap", //197
4945 "SYS___syscall", //198
4946 "SYS_lseek", //199
4947 "SYS_truncate", //200
4948 "SYS_ftruncate", //201
4949 "SYS___sysctl", //202
4950 "SYS_mlock", //203
4951 "SYS_munlock", //204
4952 "SYS_205",
4953 "SYS_futimes", //206
4954 "SYS_getpgid", //207
4955 "SYS_xfspioctl", //208
4956 "SYS_209",
4957 "SYS_210",
4958 "SYS_211",
4959 "SYS_212",
4960 "SYS_213",
4961 "SYS_214",
4962 "SYS_215",
4963 "SYS_216",
4964 "SYS_217",
4965 "SYS_218",
4966 "SYS_219",
4967 "SYS_220",
4968 "SYS_semget", //221
4969 "SYS_222",
4970 "SYS_223",
4971 "SYS_224",
4972 "SYS_msgget", //225
4973 "SYS_msgsnd", //226
4974 "SYS_msgrcv", //227
4975 "SYS_shmat", //228
4976 "SYS_229",
4977 "SYS_shmdt", //230
4978 "SYS_231",
4979 "SYS_clock_gettime", //232
4980 "SYS_clock_settime", //233
4981 "SYS_clock_getres", //234
4982 "SYS_235",
4983 "SYS_236",
4984 "SYS_237",
4985 "SYS_238",
4986 "SYS_239",
4987 "SYS_nanosleep", //240
4988 "SYS_241",
4989 "SYS_242",
4990 "SYS_243",
4991 "SYS_244",
4992 "SYS_245",
4993 "SYS_246",
4994 "SYS_247",
4995 "SYS_248",
4996 "SYS_249",
4997 "SYS_minherit", //250
4998 "SYS_rfork", //251
4999 "SYS_poll", //252
5000 "SYS_issetugid", //253
5001 "SYS_lchown", //254
5002 "SYS_getsid", //255
5003 "SYS_msync", //256
5004 "SYS_257",
5005 "SYS_258",
5006 "SYS_259",
5007 "SYS_getfsstat", //260
5008 "SYS_statfs", //261
5009 "SYS_fstatfs", //262
5010 "SYS_pipe", //263
5011 "SYS_fhopen", //264
5012 "SYS_265",
5013 "SYS_fhstatfs", //266
5014 "SYS_preadv", //267
5015 "SYS_pwritev", //268
5016 "SYS_kqueue", //269
5017 "SYS_kevent", //270
5018 "SYS_mlockall", //271
5019 "SYS_munlockall", //272
5020 "SYS_getpeereid", //273
5021 "SYS_274",
5022 "SYS_275",
5023 "SYS_276",
5024 "SYS_277",
5025 "SYS_278",
5026 "SYS_279",
5027 "SYS_280",
5028 "SYS_getresuid", //281
5029 "SYS_setresuid", //282
5030 "SYS_getresgid", //283
5031 "SYS_setresgid", //284
5032 "SYS_285",
5033 "SYS_mquery", //286
5034 "SYS_closefrom", //287
5035 "SYS_sigaltstack", //288
5036 "SYS_shmget", //289
5037 "SYS_semop", //290
5038 "SYS_stat", //291
5039 "SYS_fstat", //292
5040 "SYS_lstat", //293
5041 "SYS_fhstat", //294
5042 "SYS___semctl", //295
5043 "SYS_shmctl", //296
5044 "SYS_msgctl", //297
5045 "SYS_MAXSYSCALL", //298
5046 //299
5047 //300
5048 };
5049 uint32_t uEAX;
5050 if (!LogIsEnabled())
5051 return;
5052 uEAX = CPUMGetGuestEAX(pVM);
5053 switch (uEAX)
5054 {
5055 default:
5056 if (uEAX < ELEMENTS(apsz))
5057 {
5058 uint32_t au32Args[8] = {0};
5059 PGMPhysSimpleReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
5060 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
5061 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
5062 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
5063 }
5064 else
5065 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
5066 break;
5067 }
5068}
5069
5070
5071#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
5072/**
5073 * The Dll main entry point (stub).
5074 */
5075bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5076{
5077 return true;
5078}
5079
5080void *memcpy(void *dst, const void *src, size_t size)
5081{
5082 uint8_t*pbDst = dst, *pbSrc = src;
5083 while (size-- > 0)
5084 *pbDst++ = *pbSrc++;
5085 return dst;
5086}
5087
5088#endif
5089
5090void cpu_smm_update(CPUState* env)
5091{
5092}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette