VirtualBox

source: vbox/trunk/src/recompiler_new/VBoxRecompiler.c@ 13968

Last change on this file since 13968 was 13968, checked in by vboxsync, 16 years ago
  • fixed bug in implementation of ARPL with memory operand, perventing OS2 from workings
  • imporved QEMU logging
  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 159.3 KB
Line 
1/* $Id: VBoxRecompiler.c 13968 2008-11-07 15:48:52Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "osdep.h"
29#include "exec-all.h"
30#include "config.h"
31
32void cpu_exec_init_all(unsigned long tb_size);
33
34#include <VBox/rem.h>
35#include <VBox/vmapi.h>
36#include <VBox/tm.h>
37#include <VBox/ssm.h>
38#include <VBox/em.h>
39#include <VBox/trpm.h>
40#include <VBox/iom.h>
41#include <VBox/mm.h>
42#include <VBox/pgm.h>
43#include <VBox/pdm.h>
44#include <VBox/dbgf.h>
45#include <VBox/dbg.h>
46#include <VBox/hwaccm.h>
47#include <VBox/patm.h>
48#include <VBox/csam.h>
49#include "REMInternal.h"
50#include <VBox/vm.h>
51#include <VBox/param.h>
52#include <VBox/err.h>
53
54#include <VBox/log.h>
55#include <iprt/semaphore.h>
56#include <iprt/asm.h>
57#include <iprt/assert.h>
58#include <iprt/thread.h>
59#include <iprt/string.h>
60
61/* Don't wanna include everything. */
62extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
63extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
64extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
65extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
66extern void tlb_flush(CPUState *env, int flush_global);
67extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
68extern void sync_ldtr(CPUX86State *env1, int selector);
69extern int sync_tr(CPUX86State *env1, int selector);
70
71#ifdef VBOX_STRICT
72unsigned long get_phys_page_offset(target_ulong addr);
73#endif
74
75
76/*******************************************************************************
77* Defined Constants And Macros *
78*******************************************************************************/
79
80/** Copy 80-bit fpu register at pSrc to pDst.
81 * This is probably faster than *calling* memcpy.
82 */
83#define REM_COPY_FPU_REG(pDst, pSrc) \
84 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
85
86
87/*******************************************************************************
88* Internal Functions *
89*******************************************************************************/
90static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
91static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
92static void remR3StateUpdate(PVM pVM);
93
94static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
95static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
96static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
97static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
98static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
99static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
100
101static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
102static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
103static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
104static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
105static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
107
108
109/*******************************************************************************
110* Global Variables *
111*******************************************************************************/
112
113/** @todo Move stats to REM::s some rainy day we have nothing do to. */
114#ifdef VBOX_WITH_STATISTICS
115static STAMPROFILEADV gStatExecuteSingleInstr;
116static STAMPROFILEADV gStatCompilationQEmu;
117static STAMPROFILEADV gStatRunCodeQEmu;
118static STAMPROFILEADV gStatTotalTimeQEmu;
119static STAMPROFILEADV gStatTimers;
120static STAMPROFILEADV gStatTBLookup;
121static STAMPROFILEADV gStatIRQ;
122static STAMPROFILEADV gStatRawCheck;
123static STAMPROFILEADV gStatMemRead;
124static STAMPROFILEADV gStatMemWrite;
125static STAMPROFILE gStatGCPhys2HCVirt;
126static STAMPROFILE gStatHCVirt2GCPhys;
127static STAMCOUNTER gStatCpuGetTSC;
128static STAMCOUNTER gStatRefuseTFInhibit;
129static STAMCOUNTER gStatRefuseVM86;
130static STAMCOUNTER gStatRefusePaging;
131static STAMCOUNTER gStatRefusePAE;
132static STAMCOUNTER gStatRefuseIOPLNot0;
133static STAMCOUNTER gStatRefuseIF0;
134static STAMCOUNTER gStatRefuseCode16;
135static STAMCOUNTER gStatRefuseWP0;
136static STAMCOUNTER gStatRefuseRing1or2;
137static STAMCOUNTER gStatRefuseCanExecute;
138static STAMCOUNTER gStatREMGDTChange;
139static STAMCOUNTER gStatREMIDTChange;
140static STAMCOUNTER gStatREMLDTRChange;
141static STAMCOUNTER gStatREMTRChange;
142static STAMCOUNTER gStatSelOutOfSync[6];
143static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
144static STAMCOUNTER gStatFlushTBs;
145#endif
146
147/*
148 * Global stuff.
149 */
150
151/** MMIO read callbacks. */
152CPUReadMemoryFunc *g_apfnMMIORead[3] =
153{
154 remR3MMIOReadU8,
155 remR3MMIOReadU16,
156 remR3MMIOReadU32
157};
158
159/** MMIO write callbacks. */
160CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
161{
162 remR3MMIOWriteU8,
163 remR3MMIOWriteU16,
164 remR3MMIOWriteU32
165};
166
167/** Handler read callbacks. */
168CPUReadMemoryFunc *g_apfnHandlerRead[3] =
169{
170 remR3HandlerReadU8,
171 remR3HandlerReadU16,
172 remR3HandlerReadU32
173};
174
175/** Handler write callbacks. */
176CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
177{
178 remR3HandlerWriteU8,
179 remR3HandlerWriteU16,
180 remR3HandlerWriteU32
181};
182
183
184#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
185/*
186 * Debugger commands.
187 */
188static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
189
190/** '.remstep' arguments. */
191static const DBGCVARDESC g_aArgRemStep[] =
192{
193 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
194 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
195};
196
197/** Command descriptors. */
198static const DBGCCMD g_aCmds[] =
199{
200 {
201 .pszCmd ="remstep",
202 .cArgsMin = 0,
203 .cArgsMax = 1,
204 .paArgDescs = &g_aArgRemStep[0],
205 .cArgDescs = RT_ELEMENTS(g_aArgRemStep),
206 .pResultDesc = NULL,
207 .fFlags = 0,
208 .pfnHandler = remR3CmdDisasEnableStepping,
209 .pszSyntax = "[on/off]",
210 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
211 "If no arguments show the current state."
212 }
213};
214#endif
215
216
217/*******************************************************************************
218* Internal Functions *
219*******************************************************************************/
220static void remAbort(int rc, const char *pszTip);
221extern int testmath(void);
222
223/* Put them here to avoid unused variable warning. */
224AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
225#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
226//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
227/* Why did this have to be identical?? */
228AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
229#else
230AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
231#endif
232
233
234/* Prologue code, must be in lower 4G to simplify jumps to/from generated code */
235uint8_t* code_gen_prologue;
236
237/**
238 * Initializes the REM.
239 *
240 * @returns VBox status code.
241 * @param pVM The VM to operate on.
242 */
243REMR3DECL(int) REMR3Init(PVM pVM)
244{
245 uint32_t u32Dummy;
246 unsigned i;
247 int rc;
248
249 /*
250 * Assert sanity.
251 */
252 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
253 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
254 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
255#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
256 Assert(!testmath());
257#endif
258 /*
259 * Init some internal data members.
260 */
261 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
262 pVM->rem.s.Env.pVM = pVM;
263#ifdef CPU_RAW_MODE_INIT
264 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
265#endif
266
267 /* ctx. */
268 pVM->rem.s.pCtx = CPUMQueryGuestCtxPtr(pVM);
269 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
270
271 /* ignore all notifications */
272 pVM->rem.s.fIgnoreAll = true;
273
274 code_gen_prologue = RTMemExecAlloc(_1K);
275
276 cpu_exec_init_all(0);
277
278 /*
279 * Init the recompiler.
280 */
281 if (!cpu_x86_init(&pVM->rem.s.Env, "vbox"))
282 {
283 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
284 return VERR_GENERAL_FAILURE;
285 }
286 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
287 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
288
289 /* allocate code buffer for single instruction emulation. */
290 pVM->rem.s.Env.cbCodeBuffer = 4096;
291 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
292 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
293
294 /* finally, set the cpu_single_env global. */
295 cpu_single_env = &pVM->rem.s.Env;
296
297 /* Nothing is pending by default */
298 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
299
300 /*
301 * Register ram types.
302 */
303 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
304 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
305 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
306 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
307 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
308
309 /* stop ignoring. */
310 pVM->rem.s.fIgnoreAll = false;
311
312 /*
313 * Register the saved state data unit.
314 */
315 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
316 NULL, remR3Save, NULL,
317 NULL, remR3Load, NULL);
318 if (RT_FAILURE(rc))
319 return rc;
320
321#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
322 /*
323 * Debugger commands.
324 */
325 static bool fRegisteredCmds = false;
326 if (!fRegisteredCmds)
327 {
328 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
329 if (RT_SUCCESS(rc))
330 fRegisteredCmds = true;
331 }
332#endif
333
334#ifdef VBOX_WITH_STATISTICS
335 /*
336 * Statistics.
337 */
338 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
339 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
340 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
341 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
342 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
343 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
344 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
345 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
346 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
347 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
348 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
349 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
350
351 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
352
353 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
354 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
355 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
356 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
357 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
358 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
359 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
360 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
361 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
362 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
363 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
364
365 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
366 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
367 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
368 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
369
370 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
371 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
372 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
373 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
374 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
375 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
376
377 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
378 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
379 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
380 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
383
384
385#endif
386
387#ifdef DEBUG_ALL_LOGGING
388 loglevel = ~0;
389 logfile = fopen("/tmp/vbox-qemu.log", "w");
390#endif
391
392 return rc;
393}
394
395
396/**
397 * Terminates the REM.
398 *
399 * Termination means cleaning up and freeing all resources,
400 * the VM it self is at this point powered off or suspended.
401 *
402 * @returns VBox status code.
403 * @param pVM The VM to operate on.
404 */
405REMR3DECL(int) REMR3Term(PVM pVM)
406{
407 return VINF_SUCCESS;
408}
409
410
411/**
412 * The VM is being reset.
413 *
414 * For the REM component this means to call the cpu_reset() and
415 * reinitialize some state variables.
416 *
417 * @param pVM VM handle.
418 */
419REMR3DECL(void) REMR3Reset(PVM pVM)
420{
421 /*
422 * Reset the REM cpu.
423 */
424 pVM->rem.s.fIgnoreAll = true;
425 cpu_reset(&pVM->rem.s.Env);
426 pVM->rem.s.cInvalidatedPages = 0;
427 pVM->rem.s.fIgnoreAll = false;
428
429 /* Clear raw ring 0 init state */
430 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
431
432 /* Flush the TBs the next time we execute code here. */
433 pVM->rem.s.fFlushTBs = true;
434}
435
436
437/**
438 * Execute state save operation.
439 *
440 * @returns VBox status code.
441 * @param pVM VM Handle.
442 * @param pSSM SSM operation handle.
443 */
444static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
445{
446 /*
447 * Save the required CPU Env bits.
448 * (Not much because we're never in REM when doing the save.)
449 */
450 PREM pRem = &pVM->rem.s;
451 LogFlow(("remR3Save:\n"));
452 Assert(!pRem->fInREM);
453 SSMR3PutU32(pSSM, pRem->Env.hflags);
454 SSMR3PutU32(pSSM, ~0); /* separator */
455
456 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
457 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
458 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
459
460 return SSMR3PutU32(pSSM, ~0); /* terminator */
461}
462
463
464/**
465 * Execute state load operation.
466 *
467 * @returns VBox status code.
468 * @param pVM VM Handle.
469 * @param pSSM SSM operation handle.
470 * @param u32Version Data layout version.
471 */
472static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
473{
474 uint32_t u32Dummy;
475 uint32_t fRawRing0 = false;
476 uint32_t u32Sep;
477 int rc;
478 PREM pRem;
479 LogFlow(("remR3Load:\n"));
480
481 /*
482 * Validate version.
483 */
484 if ( u32Version != REM_SAVED_STATE_VERSION
485 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
486 {
487 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
488 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
489 }
490
491 /*
492 * Do a reset to be on the safe side...
493 */
494 REMR3Reset(pVM);
495
496 /*
497 * Ignore all ignorable notifications.
498 * (Not doing this will cause serious trouble.)
499 */
500 pVM->rem.s.fIgnoreAll = true;
501
502 /*
503 * Load the required CPU Env bits.
504 * (Not much because we're never in REM when doing the save.)
505 */
506 pRem = &pVM->rem.s;
507 Assert(!pRem->fInREM);
508 SSMR3GetU32(pSSM, &pRem->Env.hflags);
509 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
510 {
511 /* Redundant REM CPU state has to be loaded, but can be ignored. */
512 CPUX86State_Ver16 temp;
513 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
514 }
515
516 rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
517 if (RT_FAILURE(rc))
518 return rc;
519 if (u32Sep != ~0U)
520 {
521 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
522 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
523 }
524
525 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
526 SSMR3GetUInt(pSSM, &fRawRing0);
527 if (fRawRing0)
528 pRem->Env.state |= CPU_RAW_RING0;
529
530 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
531 {
532 unsigned i;
533
534 /*
535 * Load the REM stuff.
536 */
537 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
538 if (RT_FAILURE(rc))
539 return rc;
540 if (pRem->cInvalidatedPages > RT_ELEMENTS(pRem->aGCPtrInvalidatedPages))
541 {
542 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
543 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
544 }
545 for (i = 0; i < pRem->cInvalidatedPages; i++)
546 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
547 }
548
549 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
550 if (RT_FAILURE(rc))
551 return rc;
552
553 /* check the terminator. */
554 rc = SSMR3GetU32(pSSM, &u32Sep);
555 if (RT_FAILURE(rc))
556 return rc;
557 if (u32Sep != ~0U)
558 {
559 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
560 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
561 }
562
563 /*
564 * Get the CPUID features.
565 */
566 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
567 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
568
569 /*
570 * Sync the Load Flush the TLB
571 */
572 tlb_flush(&pRem->Env, 1);
573
574 /*
575 * Stop ignoring ignornable notifications.
576 */
577 pVM->rem.s.fIgnoreAll = false;
578
579 /*
580 * Sync the whole CPU state when executing code in the recompiler.
581 */
582 CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
583 return VINF_SUCCESS;
584}
585
586
587
588#undef LOG_GROUP
589#define LOG_GROUP LOG_GROUP_REM_RUN
590
591/**
592 * Single steps an instruction in recompiled mode.
593 *
594 * Before calling this function the REM state needs to be in sync with
595 * the VM. Call REMR3State() to perform the sync. It's only necessary
596 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
597 * and after calling REMR3StateBack().
598 *
599 * @returns VBox status code.
600 *
601 * @param pVM VM Handle.
602 */
603REMR3DECL(int) REMR3Step(PVM pVM)
604{
605 int rc, interrupt_request;
606 RTGCPTR GCPtrPC;
607 bool fBp;
608
609 /*
610 * Lock the REM - we don't wanna have anyone interrupting us
611 * while stepping - and enabled single stepping. We also ignore
612 * pending interrupts and suchlike.
613 */
614 interrupt_request = pVM->rem.s.Env.interrupt_request;
615 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
616 pVM->rem.s.Env.interrupt_request = 0;
617 cpu_single_step(&pVM->rem.s.Env, 1);
618
619 /*
620 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
621 */
622 GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
623 fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
624
625 /*
626 * Execute and handle the return code.
627 * We execute without enabling the cpu tick, so on success we'll
628 * just flip it on and off to make sure it moves
629 */
630 rc = cpu_exec(&pVM->rem.s.Env);
631 if (rc == EXCP_DEBUG)
632 {
633 TMCpuTickResume(pVM);
634 TMCpuTickPause(pVM);
635 TMVirtualResume(pVM);
636 TMVirtualPause(pVM);
637 rc = VINF_EM_DBG_STEPPED;
638 }
639 else
640 {
641 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
642 switch (rc)
643 {
644 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
645 case EXCP_HLT:
646 case EXCP_HALTED: rc = VINF_EM_HALT; break;
647 case EXCP_RC:
648 rc = pVM->rem.s.rc;
649 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
650 break;
651 default:
652 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
653 rc = VERR_INTERNAL_ERROR;
654 break;
655 }
656 }
657
658 /*
659 * Restore the stuff we changed to prevent interruption.
660 * Unlock the REM.
661 */
662 if (fBp)
663 {
664 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
665 Assert(rc2 == 0); NOREF(rc2);
666 }
667 cpu_single_step(&pVM->rem.s.Env, 0);
668 pVM->rem.s.Env.interrupt_request = interrupt_request;
669
670 return rc;
671}
672
673
674/**
675 * Set a breakpoint using the REM facilities.
676 *
677 * @returns VBox status code.
678 * @param pVM The VM handle.
679 * @param Address The breakpoint address.
680 * @thread The emulation thread.
681 */
682REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
683{
684 VM_ASSERT_EMT(pVM);
685 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
686 {
687 LogFlow(("REMR3BreakpointSet: Address=%RGv\n", Address));
688 return VINF_SUCCESS;
689 }
690 LogFlow(("REMR3BreakpointSet: Address=%RGv - failed!\n", Address));
691 return VERR_REM_NO_MORE_BP_SLOTS;
692}
693
694
695/**
696 * Clears a breakpoint set by REMR3BreakpointSet().
697 *
698 * @returns VBox status code.
699 * @param pVM The VM handle.
700 * @param Address The breakpoint address.
701 * @thread The emulation thread.
702 */
703REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
704{
705 VM_ASSERT_EMT(pVM);
706 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
707 {
708 LogFlow(("REMR3BreakpointClear: Address=%RGv\n", Address));
709 return VINF_SUCCESS;
710 }
711 LogFlow(("REMR3BreakpointClear: Address=%RGv - not found!\n", Address));
712 return VERR_REM_BP_NOT_FOUND;
713}
714
715
716/**
717 * Emulate an instruction.
718 *
719 * This function executes one instruction without letting anyone
720 * interrupt it. This is intended for being called while being in
721 * raw mode and thus will take care of all the state syncing between
722 * REM and the rest.
723 *
724 * @returns VBox status code.
725 * @param pVM VM handle.
726 */
727REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
728{
729 bool fFlushTBs;
730
731 int rc, rc2;
732 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
733
734 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
735 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
736 */
737 if (HWACCMIsEnabled(pVM))
738 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
739
740 /* Skip the TB flush as that's rather expensive and not necessary for single instruction emulation. */
741 fFlushTBs = pVM->rem.s.fFlushTBs;
742 pVM->rem.s.fFlushTBs = false;
743
744 /*
745 * Sync the state and enable single instruction / single stepping.
746 */
747 rc = REMR3State(pVM);
748 pVM->rem.s.fFlushTBs = fFlushTBs;
749 if (RT_SUCCESS(rc))
750 {
751 int interrupt_request = pVM->rem.s.Env.interrupt_request;
752 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
753 Assert(!pVM->rem.s.Env.singlestep_enabled);
754#if 1
755
756 /*
757 * Now we set the execute single instruction flag and enter the cpu_exec loop.
758 */
759 TMNotifyStartOfExecution(pVM);
760 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
761 rc = cpu_exec(&pVM->rem.s.Env);
762 TMNotifyEndOfExecution(pVM);
763 switch (rc)
764 {
765 /*
766 * Executed without anything out of the way happening.
767 */
768 case EXCP_SINGLE_INSTR:
769 rc = VINF_EM_RESCHEDULE;
770 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
771 break;
772
773 /*
774 * If we take a trap or start servicing a pending interrupt, we might end up here.
775 * (Timer thread or some other thread wishing EMT's attention.)
776 */
777 case EXCP_INTERRUPT:
778 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
779 rc = VINF_EM_RESCHEDULE;
780 break;
781
782 /*
783 * Single step, we assume!
784 * If there was a breakpoint there we're fucked now.
785 */
786 case EXCP_DEBUG:
787 {
788 /* breakpoint or single step? */
789 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
790 int iBP;
791 rc = VINF_EM_DBG_STEPPED;
792 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
793 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
794 {
795 rc = VINF_EM_DBG_BREAKPOINT;
796 break;
797 }
798 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
799 break;
800 }
801
802 /*
803 * hlt instruction.
804 */
805 case EXCP_HLT:
806 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
807 rc = VINF_EM_HALT;
808 break;
809
810 /*
811 * The VM has halted.
812 */
813 case EXCP_HALTED:
814 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
815 rc = VINF_EM_HALT;
816 break;
817
818 /*
819 * Switch to RAW-mode.
820 */
821 case EXCP_EXECUTE_RAW:
822 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
823 rc = VINF_EM_RESCHEDULE_RAW;
824 break;
825
826 /*
827 * Switch to hardware accelerated RAW-mode.
828 */
829 case EXCP_EXECUTE_HWACC:
830 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
831 rc = VINF_EM_RESCHEDULE_HWACC;
832 break;
833
834 /*
835 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
836 */
837 case EXCP_RC:
838 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
839 rc = pVM->rem.s.rc;
840 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
841 break;
842
843 /*
844 * Figure out the rest when they arrive....
845 */
846 default:
847 AssertMsgFailed(("rc=%d\n", rc));
848 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
849 rc = VINF_EM_RESCHEDULE;
850 break;
851 }
852
853 /*
854 * Switch back the state.
855 */
856#else
857 pVM->rem.s.Env.interrupt_request = 0;
858 cpu_single_step(&pVM->rem.s.Env, 1);
859
860 /*
861 * Execute and handle the return code.
862 * We execute without enabling the cpu tick, so on success we'll
863 * just flip it on and off to make sure it moves.
864 *
865 * (We do not use emulate_single_instr() because that doesn't enter the
866 * right way in will cause serious trouble if a longjmp was attempted.)
867 */
868# ifdef DEBUG_bird
869 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
870# endif
871 TMNotifyStartOfExecution(pVM);
872 int cTimesMax = 16384;
873 uint32_t eip = pVM->rem.s.Env.eip;
874 do
875 {
876 rc = cpu_exec(&pVM->rem.s.Env);
877
878 } while ( eip == pVM->rem.s.Env.eip
879 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
880 && --cTimesMax > 0);
881 TMNotifyEndOfExecution(pVM);
882 switch (rc)
883 {
884 /*
885 * Single step, we assume!
886 * If there was a breakpoint there we're fucked now.
887 */
888 case EXCP_DEBUG:
889 {
890 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
891 rc = VINF_EM_RESCHEDULE;
892 break;
893 }
894
895 /*
896 * We cannot be interrupted!
897 */
898 case EXCP_INTERRUPT:
899 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
900 rc = VERR_INTERNAL_ERROR;
901 break;
902
903 /*
904 * hlt instruction.
905 */
906 case EXCP_HLT:
907 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
908 rc = VINF_EM_HALT;
909 break;
910
911 /*
912 * The VM has halted.
913 */
914 case EXCP_HALTED:
915 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
916 rc = VINF_EM_HALT;
917 break;
918
919 /*
920 * Switch to RAW-mode.
921 */
922 case EXCP_EXECUTE_RAW:
923 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
924 rc = VINF_EM_RESCHEDULE_RAW;
925 break;
926
927 /*
928 * Switch to hardware accelerated RAW-mode.
929 */
930 case EXCP_EXECUTE_HWACC:
931 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
932 rc = VINF_EM_RESCHEDULE_HWACC;
933 break;
934
935 /*
936 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
937 */
938 case EXCP_RC:
939 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
940 rc = pVM->rem.s.rc;
941 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
942 break;
943
944 /*
945 * Figure out the rest when they arrive....
946 */
947 default:
948 AssertMsgFailed(("rc=%d\n", rc));
949 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
950 rc = VINF_SUCCESS;
951 break;
952 }
953
954 /*
955 * Switch back the state.
956 */
957 cpu_single_step(&pVM->rem.s.Env, 0);
958#endif
959 pVM->rem.s.Env.interrupt_request = interrupt_request;
960 rc2 = REMR3StateBack(pVM);
961 AssertRC(rc2);
962 }
963
964 Log2(("REMR3EmulateInstruction: returns %Rrc (cs:eip=%04x:%RGv)\n",
965 rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
966 return rc;
967}
968
969
970/**
971 * Runs code in recompiled mode.
972 *
973 * Before calling this function the REM state needs to be in sync with
974 * the VM. Call REMR3State() to perform the sync. It's only necessary
975 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
976 * and after calling REMR3StateBack().
977 *
978 * @returns VBox status code.
979 *
980 * @param pVM VM Handle.
981 */
982REMR3DECL(int) REMR3Run(PVM pVM)
983{
984 int rc;
985 Log2(("REMR3Run: (cs:eip=%04x:%RGv)\n", pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
986 Assert(pVM->rem.s.fInREM);
987
988 TMNotifyStartOfExecution(pVM);
989 rc = cpu_exec(&pVM->rem.s.Env);
990 TMNotifyEndOfExecution(pVM);
991 switch (rc)
992 {
993 /*
994 * This happens when the execution was interrupted
995 * by an external event, like pending timers.
996 */
997 case EXCP_INTERRUPT:
998 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
999 rc = VINF_SUCCESS;
1000 break;
1001
1002 /*
1003 * hlt instruction.
1004 */
1005 case EXCP_HLT:
1006 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1007 rc = VINF_EM_HALT;
1008 break;
1009
1010 /*
1011 * The VM has halted.
1012 */
1013 case EXCP_HALTED:
1014 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1015 rc = VINF_EM_HALT;
1016 break;
1017
1018 /*
1019 * Breakpoint/single step.
1020 */
1021 case EXCP_DEBUG:
1022 {
1023#if 0//def DEBUG_bird
1024 static int iBP = 0;
1025 printf("howdy, breakpoint! iBP=%d\n", iBP);
1026 switch (iBP)
1027 {
1028 case 0:
1029 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1030 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1031 //pVM->rem.s.Env.interrupt_request = 0;
1032 //pVM->rem.s.Env.exception_index = -1;
1033 //g_fInterruptDisabled = 1;
1034 rc = VINF_SUCCESS;
1035 asm("int3");
1036 break;
1037 default:
1038 asm("int3");
1039 break;
1040 }
1041 iBP++;
1042#else
1043 /* breakpoint or single step? */
1044 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1045 int iBP;
1046 rc = VINF_EM_DBG_STEPPED;
1047 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1048 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1049 {
1050 rc = VINF_EM_DBG_BREAKPOINT;
1051 break;
1052 }
1053 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
1054#endif
1055 break;
1056 }
1057
1058 /*
1059 * Switch to RAW-mode.
1060 */
1061 case EXCP_EXECUTE_RAW:
1062 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1063 rc = VINF_EM_RESCHEDULE_RAW;
1064 break;
1065
1066 /*
1067 * Switch to hardware accelerated RAW-mode.
1068 */
1069 case EXCP_EXECUTE_HWACC:
1070 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1071 rc = VINF_EM_RESCHEDULE_HWACC;
1072 break;
1073
1074 /*
1075 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1076 */
1077 case EXCP_RC:
1078 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
1079 rc = pVM->rem.s.rc;
1080 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1081 break;
1082
1083 /*
1084 * Figure out the rest when they arrive....
1085 */
1086 default:
1087 AssertMsgFailed(("rc=%d\n", rc));
1088 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1089 rc = VINF_SUCCESS;
1090 break;
1091 }
1092
1093 Log2(("REMR3Run: returns %Rrc (cs:eip=%04x:%RGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1094 return rc;
1095}
1096
1097
1098/**
1099 * Check if the cpu state is suitable for Raw execution.
1100 *
1101 * @returns boolean
1102 * @param env The CPU env struct.
1103 * @param eip The EIP to check this for (might differ from env->eip).
1104 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1105 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1106 *
1107 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1108 */
1109bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1110{
1111 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1112 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1113 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1114 uint32_t u32CR0;
1115
1116 /* Update counter. */
1117 env->pVM->rem.s.cCanExecuteRaw++;
1118
1119 if (HWACCMIsEnabled(env->pVM))
1120 {
1121 CPUMCTX Ctx;
1122
1123 env->state |= CPU_RAW_HWACC;
1124
1125 /*
1126 * Create partial context for HWACCMR3CanExecuteGuest
1127 */
1128 Ctx.cr0 = env->cr[0];
1129 Ctx.cr3 = env->cr[3];
1130 Ctx.cr4 = env->cr[4];
1131
1132 Ctx.tr = env->tr.selector;
1133 Ctx.trHid.u64Base = env->tr.base;
1134 Ctx.trHid.u32Limit = env->tr.limit;
1135 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1136
1137 Ctx.idtr.cbIdt = env->idt.limit;
1138 Ctx.idtr.pIdt = env->idt.base;
1139
1140 Ctx.eflags.u32 = env->eflags;
1141
1142 Ctx.cs = env->segs[R_CS].selector;
1143 Ctx.csHid.u64Base = env->segs[R_CS].base;
1144 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1145 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1146
1147 Ctx.ds = env->segs[R_DS].selector;
1148 Ctx.dsHid.u64Base = env->segs[R_DS].base;
1149 Ctx.dsHid.u32Limit = env->segs[R_DS].limit;
1150 Ctx.dsHid.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1151
1152 Ctx.es = env->segs[R_ES].selector;
1153 Ctx.esHid.u64Base = env->segs[R_ES].base;
1154 Ctx.esHid.u32Limit = env->segs[R_ES].limit;
1155 Ctx.esHid.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1156
1157 Ctx.fs = env->segs[R_FS].selector;
1158 Ctx.fsHid.u64Base = env->segs[R_FS].base;
1159 Ctx.fsHid.u32Limit = env->segs[R_FS].limit;
1160 Ctx.fsHid.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1161
1162 Ctx.gs = env->segs[R_GS].selector;
1163 Ctx.gsHid.u64Base = env->segs[R_GS].base;
1164 Ctx.gsHid.u32Limit = env->segs[R_GS].limit;
1165 Ctx.gsHid.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1166
1167 Ctx.ss = env->segs[R_SS].selector;
1168 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1169 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1170 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1171
1172 Ctx.msrEFER = env->efer;
1173
1174 /* Hardware accelerated raw-mode:
1175 *
1176 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1177 */
1178 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1179 {
1180 *piException = EXCP_EXECUTE_HWACC;
1181 return true;
1182 }
1183 return false;
1184 }
1185
1186 /*
1187 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1188 * or 32 bits protected mode ring 0 code
1189 *
1190 * The tests are ordered by the likelyhood of being true during normal execution.
1191 */
1192 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1193 {
1194 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1195 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1196 return false;
1197 }
1198
1199#ifndef VBOX_RAW_V86
1200 if (fFlags & VM_MASK) {
1201 STAM_COUNTER_INC(&gStatRefuseVM86);
1202 Log2(("raw mode refused: VM_MASK\n"));
1203 return false;
1204 }
1205#endif
1206
1207 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1208 {
1209#ifndef DEBUG_bird
1210 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1211#endif
1212 return false;
1213 }
1214
1215 if (env->singlestep_enabled)
1216 {
1217 //Log2(("raw mode refused: Single step\n"));
1218 return false;
1219 }
1220
1221 if (env->nb_breakpoints > 0)
1222 {
1223 //Log2(("raw mode refused: Breakpoints\n"));
1224 return false;
1225 }
1226
1227 u32CR0 = env->cr[0];
1228 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1229 {
1230 STAM_COUNTER_INC(&gStatRefusePaging);
1231 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1232 return false;
1233 }
1234
1235 if (env->cr[4] & CR4_PAE_MASK)
1236 {
1237 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1238 {
1239 STAM_COUNTER_INC(&gStatRefusePAE);
1240 return false;
1241 }
1242 }
1243
1244 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1245 {
1246 if (!EMIsRawRing3Enabled(env->pVM))
1247 return false;
1248
1249 if (!(env->eflags & IF_MASK))
1250 {
1251 STAM_COUNTER_INC(&gStatRefuseIF0);
1252 Log2(("raw mode refused: IF (RawR3)\n"));
1253 return false;
1254 }
1255
1256 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1257 {
1258 STAM_COUNTER_INC(&gStatRefuseWP0);
1259 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1260 return false;
1261 }
1262 }
1263 else
1264 {
1265 if (!EMIsRawRing0Enabled(env->pVM))
1266 return false;
1267
1268 // Let's start with pure 32 bits ring 0 code first
1269 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1270 {
1271 STAM_COUNTER_INC(&gStatRefuseCode16);
1272 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1273 return false;
1274 }
1275
1276 // Only R0
1277 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1278 {
1279 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1280 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1281 return false;
1282 }
1283
1284 if (!(u32CR0 & CR0_WP_MASK))
1285 {
1286 STAM_COUNTER_INC(&gStatRefuseWP0);
1287 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1288 return false;
1289 }
1290
1291 if (PATMIsPatchGCAddr(env->pVM, eip))
1292 {
1293 Log2(("raw r0 mode forced: patch code\n"));
1294 *piException = EXCP_EXECUTE_RAW;
1295 return true;
1296 }
1297
1298#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1299 if (!(env->eflags & IF_MASK))
1300 {
1301 STAM_COUNTER_INC(&gStatRefuseIF0);
1302 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1303 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1304 return false;
1305 }
1306#endif
1307
1308 env->state |= CPU_RAW_RING0;
1309 }
1310
1311 /*
1312 * Don't reschedule the first time we're called, because there might be
1313 * special reasons why we're here that is not covered by the above checks.
1314 */
1315 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1316 {
1317 Log2(("raw mode refused: first scheduling\n"));
1318 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1319 return false;
1320 }
1321
1322 Assert(PGMPhysIsA20Enabled(env->pVM));
1323 *piException = EXCP_EXECUTE_RAW;
1324 return true;
1325}
1326
1327
1328/**
1329 * Fetches a code byte.
1330 *
1331 * @returns Success indicator (bool) for ease of use.
1332 * @param env The CPU environment structure.
1333 * @param GCPtrInstr Where to fetch code.
1334 * @param pu8Byte Where to store the byte on success
1335 */
1336bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1337{
1338 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1339 if (RT_SUCCESS(rc))
1340 return true;
1341 return false;
1342}
1343
1344
1345/**
1346 * Flush (or invalidate if you like) page table/dir entry.
1347 *
1348 * (invlpg instruction; tlb_flush_page)
1349 *
1350 * @param env Pointer to cpu environment.
1351 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1352 */
1353void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1354{
1355 PVM pVM = env->pVM;
1356 PCPUMCTX pCtx;
1357 int rc;
1358
1359 /*
1360 * When we're replaying invlpg instructions or restoring a saved
1361 * state we disable this path.
1362 */
1363 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1364 return;
1365 Log(("remR3FlushPage: GCPtr=%RGv\n", GCPtr));
1366 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1367
1368 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1369
1370 /*
1371 * Update the control registers before calling PGMFlushPage.
1372 */
1373 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1374 pCtx->cr0 = env->cr[0];
1375 pCtx->cr3 = env->cr[3];
1376 pCtx->cr4 = env->cr[4];
1377
1378 /*
1379 * Let PGM do the rest.
1380 */
1381 rc = PGMInvalidatePage(pVM, GCPtr);
1382 if (RT_FAILURE(rc))
1383 {
1384 AssertMsgFailed(("remR3FlushPage %RGv failed with %d!!\n", GCPtr, rc));
1385 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1386 }
1387 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1388}
1389
1390
1391/**
1392 * Called from tlb_protect_code in order to write monitor a code page.
1393 *
1394 * @param env Pointer to the CPU environment.
1395 * @param GCPtr Code page to monitor
1396 */
1397void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1398{
1399#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1400 Assert(env->pVM->rem.s.fInREM);
1401 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1402 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1403 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1404 && !(env->eflags & VM_MASK) /* no V86 mode */
1405 && !HWACCMIsEnabled(env->pVM))
1406 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1407#endif
1408}
1409
1410/**
1411 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1412 *
1413 * @param env Pointer to the CPU environment.
1414 * @param GCPtr Code page to monitor
1415 */
1416void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1417{
1418 Assert(env->pVM->rem.s.fInREM);
1419#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1420 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1421 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1422 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1423 && !(env->eflags & VM_MASK) /* no V86 mode */
1424 && !HWACCMIsEnabled(env->pVM))
1425 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1426#endif
1427}
1428
1429
1430/**
1431 * Called when the CPU is initialized, any of the CRx registers are changed or
1432 * when the A20 line is modified.
1433 *
1434 * @param env Pointer to the CPU environment.
1435 * @param fGlobal Set if the flush is global.
1436 */
1437void remR3FlushTLB(CPUState *env, bool fGlobal)
1438{
1439 PVM pVM = env->pVM;
1440 PCPUMCTX pCtx;
1441
1442 /*
1443 * When we're replaying invlpg instructions or restoring a saved
1444 * state we disable this path.
1445 */
1446 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1447 return;
1448 Assert(pVM->rem.s.fInREM);
1449
1450 /*
1451 * The caller doesn't check cr4, so we have to do that for ourselves.
1452 */
1453 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1454 fGlobal = true;
1455 Log(("remR3FlushTLB: CR0=%RGr CR3=%RGr CR4=%RGr %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1456
1457 /*
1458 * Update the control registers before calling PGMR3FlushTLB.
1459 */
1460 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1461 pCtx->cr0 = env->cr[0];
1462 pCtx->cr3 = env->cr[3];
1463 pCtx->cr4 = env->cr[4];
1464
1465 /*
1466 * Let PGM do the rest.
1467 */
1468 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1469}
1470
1471
1472/**
1473 * Called when any of the cr0, cr4 or efer registers is updated.
1474 *
1475 * @param env Pointer to the CPU environment.
1476 */
1477void remR3ChangeCpuMode(CPUState *env)
1478{
1479 int rc;
1480 PVM pVM = env->pVM;
1481 PCPUMCTX pCtx;
1482
1483 /*
1484 * When we're replaying loads or restoring a saved
1485 * state this path is disabled.
1486 */
1487 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1488 return;
1489 Assert(pVM->rem.s.fInREM);
1490
1491 /*
1492 * Update the control registers before calling PGMChangeMode()
1493 * as it may need to map whatever cr3 is pointing to.
1494 */
1495 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1496 pCtx->cr0 = env->cr[0];
1497 pCtx->cr3 = env->cr[3];
1498 pCtx->cr4 = env->cr[4];
1499
1500#ifdef TARGET_X86_64
1501 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1502 if (rc != VINF_SUCCESS)
1503 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], env->efer, rc);
1504#else
1505 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1506 if (rc != VINF_SUCCESS)
1507 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], 0LL, rc);
1508#endif
1509}
1510
1511
1512/**
1513 * Called from compiled code to run dma.
1514 *
1515 * @param env Pointer to the CPU environment.
1516 */
1517void remR3DmaRun(CPUState *env)
1518{
1519 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1520 PDMR3DmaRun(env->pVM);
1521 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1522}
1523
1524
1525/**
1526 * Called from compiled code to schedule pending timers in VMM
1527 *
1528 * @param env Pointer to the CPU environment.
1529 */
1530void remR3TimersRun(CPUState *env)
1531{
1532 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1533 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1534 TMR3TimerQueuesDo(env->pVM);
1535 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1536 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1537}
1538
1539
1540/**
1541 * Record trap occurance
1542 *
1543 * @returns VBox status code
1544 * @param env Pointer to the CPU environment.
1545 * @param uTrap Trap nr
1546 * @param uErrorCode Error code
1547 * @param pvNextEIP Next EIP
1548 */
1549int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1550{
1551 PVM pVM = env->pVM;
1552#ifdef VBOX_WITH_STATISTICS
1553 static STAMCOUNTER s_aStatTrap[255];
1554 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1555#endif
1556
1557#ifdef VBOX_WITH_STATISTICS
1558 if (uTrap < 255)
1559 {
1560 if (!s_aRegisters[uTrap])
1561 {
1562 char szStatName[64];
1563 s_aRegisters[uTrap] = true;
1564 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1565 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1566 }
1567 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1568 }
1569#endif
1570 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, (RTGCPTR)pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1571 if( uTrap < 0x20
1572 && (env->cr[0] & X86_CR0_PE)
1573 && !(env->eflags & X86_EFL_VM))
1574 {
1575#ifdef DEBUG
1576 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1577#endif
1578 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1579 {
1580 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, (RTGCPTR)pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1581 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1582 return VERR_REM_TOO_MANY_TRAPS;
1583 }
1584 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1585 pVM->rem.s.cPendingExceptions = 1;
1586 pVM->rem.s.uPendingException = uTrap;
1587 pVM->rem.s.uPendingExcptEIP = env->eip;
1588 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1589 }
1590 else
1591 {
1592 pVM->rem.s.cPendingExceptions = 0;
1593 pVM->rem.s.uPendingException = uTrap;
1594 pVM->rem.s.uPendingExcptEIP = env->eip;
1595 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1596 }
1597 return VINF_SUCCESS;
1598}
1599
1600
1601/*
1602 * Clear current active trap
1603 *
1604 * @param pVM VM Handle.
1605 */
1606void remR3TrapClear(PVM pVM)
1607{
1608 pVM->rem.s.cPendingExceptions = 0;
1609 pVM->rem.s.uPendingException = 0;
1610 pVM->rem.s.uPendingExcptEIP = 0;
1611 pVM->rem.s.uPendingExcptCR2 = 0;
1612}
1613
1614
1615/*
1616 * Record previous call instruction addresses
1617 *
1618 * @param env Pointer to the CPU environment.
1619 */
1620void remR3RecordCall(CPUState *env)
1621{
1622 CSAMR3RecordCallAddress(env->pVM, env->eip);
1623}
1624
1625
1626/**
1627 * Syncs the internal REM state with the VM.
1628 *
1629 * This must be called before REMR3Run() is invoked whenever when the REM
1630 * state is not up to date. Calling it several times in a row is not
1631 * permitted.
1632 *
1633 * @returns VBox status code.
1634 *
1635 * @param pVM VM Handle.
1636 * @param fFlushTBs Flush all translation blocks before executing code
1637 *
1638 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1639 * no do this since the majority of the callers don't want any unnecessary of events
1640 * pending that would immediatly interrupt execution.
1641 */
1642REMR3DECL(int) REMR3State(PVM pVM)
1643{
1644 register const CPUMCTX *pCtx;
1645 register unsigned fFlags;
1646 bool fHiddenSelRegsValid;
1647 unsigned i;
1648 TRPMEVENT enmType;
1649 uint8_t u8TrapNo;
1650 int rc;
1651
1652 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1653 Log2(("REMR3State:\n"));
1654
1655 pCtx = pVM->rem.s.pCtx;
1656 fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1657
1658 Assert(!pVM->rem.s.fInREM);
1659 pVM->rem.s.fInStateSync = true;
1660
1661 /*
1662 * If we have to flush TBs, do that immediately.
1663 */
1664 if (pVM->rem.s.fFlushTBs)
1665 {
1666 STAM_COUNTER_INC(&gStatFlushTBs);
1667 tb_flush(&pVM->rem.s.Env);
1668 pVM->rem.s.fFlushTBs = false;
1669 }
1670
1671 /*
1672 * Copy the registers which require no special handling.
1673 */
1674#ifdef TARGET_X86_64
1675 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1676 Assert(R_EAX == 0);
1677 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1678 Assert(R_ECX == 1);
1679 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1680 Assert(R_EDX == 2);
1681 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1682 Assert(R_EBX == 3);
1683 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1684 Assert(R_ESP == 4);
1685 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1686 Assert(R_EBP == 5);
1687 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1688 Assert(R_ESI == 6);
1689 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1690 Assert(R_EDI == 7);
1691 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1692 pVM->rem.s.Env.regs[8] = pCtx->r8;
1693 pVM->rem.s.Env.regs[9] = pCtx->r9;
1694 pVM->rem.s.Env.regs[10] = pCtx->r10;
1695 pVM->rem.s.Env.regs[11] = pCtx->r11;
1696 pVM->rem.s.Env.regs[12] = pCtx->r12;
1697 pVM->rem.s.Env.regs[13] = pCtx->r13;
1698 pVM->rem.s.Env.regs[14] = pCtx->r14;
1699 pVM->rem.s.Env.regs[15] = pCtx->r15;
1700
1701 pVM->rem.s.Env.eip = pCtx->rip;
1702
1703 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1704#else
1705 Assert(R_EAX == 0);
1706 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1707 Assert(R_ECX == 1);
1708 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1709 Assert(R_EDX == 2);
1710 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1711 Assert(R_EBX == 3);
1712 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1713 Assert(R_ESP == 4);
1714 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1715 Assert(R_EBP == 5);
1716 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1717 Assert(R_ESI == 6);
1718 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1719 Assert(R_EDI == 7);
1720 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1721 pVM->rem.s.Env.eip = pCtx->eip;
1722
1723 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1724#endif
1725
1726 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1727
1728 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1729 for (i=0;i<8;i++)
1730 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
1731
1732 /*
1733 * Clear the halted hidden flag (the interrupt waking up the CPU can
1734 * have been dispatched in raw mode).
1735 */
1736 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1737
1738 /*
1739 * Replay invlpg?
1740 */
1741 if (pVM->rem.s.cInvalidatedPages)
1742 {
1743 RTUINT i;
1744
1745 pVM->rem.s.fIgnoreInvlPg = true;
1746 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1747 {
1748 Log2(("REMR3State: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1749 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1750 }
1751 pVM->rem.s.fIgnoreInvlPg = false;
1752 pVM->rem.s.cInvalidatedPages = 0;
1753 }
1754
1755 /* Replay notification changes? */
1756 if (pVM->rem.s.cHandlerNotifications)
1757 REMR3ReplayHandlerNotifications(pVM);
1758
1759 /* Update MSRs; before CRx registers! */
1760 pVM->rem.s.Env.efer = pCtx->msrEFER;
1761 pVM->rem.s.Env.star = pCtx->msrSTAR;
1762 pVM->rem.s.Env.pat = pCtx->msrPAT;
1763#ifdef TARGET_X86_64
1764 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1765 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1766 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1767 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1768
1769 /* Update the internal long mode activate flag according to the new EFER value. */
1770 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1771 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1772 else
1773 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1774#endif
1775
1776
1777 /*
1778 * Registers which are rarely changed and require special handling / order when changed.
1779 */
1780 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1781 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1782 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1783 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1784 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1785 {
1786 if (fFlags & CPUM_CHANGED_FPU_REM)
1787 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1788
1789 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1790 {
1791 pVM->rem.s.fIgnoreCR3Load = true;
1792 tlb_flush(&pVM->rem.s.Env, true);
1793 pVM->rem.s.fIgnoreCR3Load = false;
1794 }
1795
1796 /* CR4 before CR0! */
1797 if (fFlags & CPUM_CHANGED_CR4)
1798 {
1799 pVM->rem.s.fIgnoreCR3Load = true;
1800 pVM->rem.s.fIgnoreCpuMode = true;
1801 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1802 pVM->rem.s.fIgnoreCpuMode = false;
1803 pVM->rem.s.fIgnoreCR3Load = false;
1804 }
1805
1806 if (fFlags & CPUM_CHANGED_CR0)
1807 {
1808 pVM->rem.s.fIgnoreCR3Load = true;
1809 pVM->rem.s.fIgnoreCpuMode = true;
1810 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1811 pVM->rem.s.fIgnoreCpuMode = false;
1812 pVM->rem.s.fIgnoreCR3Load = false;
1813 }
1814
1815 if (fFlags & CPUM_CHANGED_CR3)
1816 {
1817 pVM->rem.s.fIgnoreCR3Load = true;
1818 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1819 pVM->rem.s.fIgnoreCR3Load = false;
1820 }
1821
1822 if (fFlags & CPUM_CHANGED_GDTR)
1823 {
1824 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1825 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1826 }
1827
1828 if (fFlags & CPUM_CHANGED_IDTR)
1829 {
1830 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1831 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1832 }
1833
1834 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1835 {
1836 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1837 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1838 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1839 }
1840
1841 if (fFlags & CPUM_CHANGED_LDTR)
1842 {
1843 if (fHiddenSelRegsValid)
1844 {
1845 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1846 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1847 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1848 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1849 }
1850 else
1851 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1852 }
1853
1854 if (fFlags & CPUM_CHANGED_TR)
1855 {
1856 if (fHiddenSelRegsValid)
1857 {
1858 pVM->rem.s.Env.tr.selector = pCtx->tr;
1859 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1860 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1861 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1862 }
1863 else
1864 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1865
1866 /** @note do_interrupt will fault if the busy flag is still set.... */
1867 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1868 }
1869
1870 if (fFlags & CPUM_CHANGED_CPUID)
1871 {
1872 uint32_t u32Dummy;
1873
1874 /*
1875 * Get the CPUID features.
1876 */
1877 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1878 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1879 }
1880 }
1881
1882 /*
1883 * Update selector registers.
1884 * This must be done *after* we've synced gdt, ldt and crX registers
1885 * since we're reading the GDT/LDT om sync_seg. This will happen with
1886 * saved state which takes a quick dip into rawmode for instance.
1887 */
1888 /*
1889 * Stack; Note first check this one as the CPL might have changed. The
1890 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1891 */
1892
1893 if (fHiddenSelRegsValid)
1894 {
1895 /* The hidden selector registers are valid in the CPU context. */
1896 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1897
1898 /* Set current CPL */
1899 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1900
1901 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1902 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1903 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1904 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1905 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1906 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1907 }
1908 else
1909 {
1910 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1911 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1912 {
1913 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1914
1915 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1916 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1917#ifdef VBOX_WITH_STATISTICS
1918 if (pVM->rem.s.Env.segs[R_SS].newselector)
1919 {
1920 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1921 }
1922#endif
1923 }
1924 else
1925 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1926
1927 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1928 {
1929 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1930 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1931#ifdef VBOX_WITH_STATISTICS
1932 if (pVM->rem.s.Env.segs[R_ES].newselector)
1933 {
1934 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1935 }
1936#endif
1937 }
1938 else
1939 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1940
1941 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1942 {
1943 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1944 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1945#ifdef VBOX_WITH_STATISTICS
1946 if (pVM->rem.s.Env.segs[R_CS].newselector)
1947 {
1948 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1949 }
1950#endif
1951 }
1952 else
1953 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1954
1955 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1956 {
1957 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1958 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1959#ifdef VBOX_WITH_STATISTICS
1960 if (pVM->rem.s.Env.segs[R_DS].newselector)
1961 {
1962 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1963 }
1964#endif
1965 }
1966 else
1967 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1968
1969 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1970 * be the same but not the base/limit. */
1971 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1972 {
1973 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1974 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1975#ifdef VBOX_WITH_STATISTICS
1976 if (pVM->rem.s.Env.segs[R_FS].newselector)
1977 {
1978 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1979 }
1980#endif
1981 }
1982 else
1983 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1984
1985 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1986 {
1987 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1988 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1989#ifdef VBOX_WITH_STATISTICS
1990 if (pVM->rem.s.Env.segs[R_GS].newselector)
1991 {
1992 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1993 }
1994#endif
1995 }
1996 else
1997 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1998 }
1999
2000 /*
2001 * Check for traps.
2002 */
2003 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
2004 rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
2005 if (RT_SUCCESS(rc))
2006 {
2007#ifdef DEBUG
2008 if (u8TrapNo == 0x80)
2009 {
2010 remR3DumpLnxSyscall(pVM);
2011 remR3DumpOBsdSyscall(pVM);
2012 }
2013#endif
2014
2015 pVM->rem.s.Env.exception_index = u8TrapNo;
2016 if (enmType != TRPM_SOFTWARE_INT)
2017 {
2018 pVM->rem.s.Env.exception_is_int = 0;
2019 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
2020 }
2021 else
2022 {
2023 /*
2024 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
2025 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
2026 * for int03 and into.
2027 */
2028 pVM->rem.s.Env.exception_is_int = 1;
2029 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
2030 /* int 3 may be generated by one-byte 0xcc */
2031 if (u8TrapNo == 3)
2032 {
2033 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
2034 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2035 }
2036 /* int 4 may be generated by one-byte 0xce */
2037 else if (u8TrapNo == 4)
2038 {
2039 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
2040 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2041 }
2042 }
2043
2044 /* get error code and cr2 if needed. */
2045 switch (u8TrapNo)
2046 {
2047 case 0x0e:
2048 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
2049 /* fallthru */
2050 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2051 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
2052 break;
2053
2054 case 0x11: case 0x08:
2055 default:
2056 pVM->rem.s.Env.error_code = 0;
2057 break;
2058 }
2059
2060 /*
2061 * We can now reset the active trap since the recompiler is gonna have a go at it.
2062 */
2063 rc = TRPMResetTrap(pVM);
2064 AssertRC(rc);
2065 Log2(("REMR3State: trap=%02x errcd=%RGv cr2=%RGv nexteip=%RGv%s\n", pVM->rem.s.Env.exception_index, (RTGCPTR)pVM->rem.s.Env.error_code,
2066 (RTGCPTR)pVM->rem.s.Env.cr[2], (RTGCPTR)pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2067 }
2068
2069 /*
2070 * Clear old interrupt request flags; Check for pending hardware interrupts.
2071 * (See @remark for why we don't check for other FFs.)
2072 */
2073 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2074 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2075 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2076 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2077
2078 /*
2079 * We're now in REM mode.
2080 */
2081 pVM->rem.s.fInREM = true;
2082 pVM->rem.s.fInStateSync = false;
2083 pVM->rem.s.cCanExecuteRaw = 0;
2084 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2085 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2086 return VINF_SUCCESS;
2087}
2088
2089
2090/**
2091 * Syncs back changes in the REM state to the the VM state.
2092 *
2093 * This must be called after invoking REMR3Run().
2094 * Calling it several times in a row is not permitted.
2095 *
2096 * @returns VBox status code.
2097 *
2098 * @param pVM VM Handle.
2099 */
2100REMR3DECL(int) REMR3StateBack(PVM pVM)
2101{
2102 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2103 unsigned i;
2104
2105 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2106 Log2(("REMR3StateBack:\n"));
2107 Assert(pVM->rem.s.fInREM);
2108
2109 /*
2110 * Copy back the registers.
2111 * This is done in the order they are declared in the CPUMCTX structure.
2112 */
2113
2114 /** @todo FOP */
2115 /** @todo FPUIP */
2116 /** @todo CS */
2117 /** @todo FPUDP */
2118 /** @todo DS */
2119 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2120 pCtx->fpu.MXCSR = 0;
2121 pCtx->fpu.MXCSR_MASK = 0;
2122
2123 /** @todo check if FPU/XMM was actually used in the recompiler */
2124 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2125//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2126
2127#ifdef TARGET_X86_64
2128 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2129 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2130 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2131 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2132 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2133 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2134 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2135 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2136 pCtx->r8 = pVM->rem.s.Env.regs[8];
2137 pCtx->r9 = pVM->rem.s.Env.regs[9];
2138 pCtx->r10 = pVM->rem.s.Env.regs[10];
2139 pCtx->r11 = pVM->rem.s.Env.regs[11];
2140 pCtx->r12 = pVM->rem.s.Env.regs[12];
2141 pCtx->r13 = pVM->rem.s.Env.regs[13];
2142 pCtx->r14 = pVM->rem.s.Env.regs[14];
2143 pCtx->r15 = pVM->rem.s.Env.regs[15];
2144
2145 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2146
2147#else
2148 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2149 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2150 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2151 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2152 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2153 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2154 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2155
2156 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2157#endif
2158
2159 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2160
2161#ifdef VBOX_WITH_STATISTICS
2162 if (pVM->rem.s.Env.segs[R_SS].newselector)
2163 {
2164 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2165 }
2166 if (pVM->rem.s.Env.segs[R_GS].newselector)
2167 {
2168 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2169 }
2170 if (pVM->rem.s.Env.segs[R_FS].newselector)
2171 {
2172 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2173 }
2174 if (pVM->rem.s.Env.segs[R_ES].newselector)
2175 {
2176 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2177 }
2178 if (pVM->rem.s.Env.segs[R_DS].newselector)
2179 {
2180 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2181 }
2182 if (pVM->rem.s.Env.segs[R_CS].newselector)
2183 {
2184 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2185 }
2186#endif
2187 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2188 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2189 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2190 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2191 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2192
2193#ifdef TARGET_X86_64
2194 pCtx->rip = pVM->rem.s.Env.eip;
2195 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2196#else
2197 pCtx->eip = pVM->rem.s.Env.eip;
2198 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2199#endif
2200
2201 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2202 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2203 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2204 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2205
2206 for (i=0;i<8;i++)
2207 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2208
2209 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2210 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2211 {
2212 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2213 STAM_COUNTER_INC(&gStatREMGDTChange);
2214 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2215 }
2216
2217 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2218 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2219 {
2220 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2221 STAM_COUNTER_INC(&gStatREMIDTChange);
2222 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2223 }
2224
2225 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2226 {
2227 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2228 STAM_COUNTER_INC(&gStatREMLDTRChange);
2229 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2230 }
2231 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2232 {
2233 pCtx->tr = pVM->rem.s.Env.tr.selector;
2234 STAM_COUNTER_INC(&gStatREMTRChange);
2235 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2236 }
2237
2238 /** @todo These values could still be out of sync! */
2239 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2240 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2241 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2242 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2243
2244 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2245 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2246 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2247
2248 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2249 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2250 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2251
2252 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2253 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2254 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2255
2256 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2257 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2258 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2259
2260 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2261 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2262 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2263
2264 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2265 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2266 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2267
2268 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2269 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2270 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2271
2272 /* Sysenter MSR */
2273 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2274 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2275 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2276
2277 /* System MSRs. */
2278 pCtx->msrEFER = pVM->rem.s.Env.efer;
2279 pCtx->msrSTAR = pVM->rem.s.Env.star;
2280 pCtx->msrPAT = pVM->rem.s.Env.pat;
2281#ifdef TARGET_X86_64
2282 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2283 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2284 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2285 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2286#endif
2287
2288 remR3TrapClear(pVM);
2289
2290 /*
2291 * Check for traps.
2292 */
2293 if ( pVM->rem.s.Env.exception_index >= 0
2294 && pVM->rem.s.Env.exception_index < 256)
2295 {
2296 int rc;
2297
2298 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2299 rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2300 AssertRC(rc);
2301 switch (pVM->rem.s.Env.exception_index)
2302 {
2303 case 0x0e:
2304 TRPMSetFaultAddress(pVM, pCtx->cr2);
2305 /* fallthru */
2306 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2307 case 0x11: case 0x08: /* 0 */
2308 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2309 break;
2310 }
2311
2312 }
2313
2314 /*
2315 * We're not longer in REM mode.
2316 */
2317 pVM->rem.s.fInREM = false;
2318 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2319 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2320 return VINF_SUCCESS;
2321}
2322
2323
2324/**
2325 * This is called by the disassembler when it wants to update the cpu state
2326 * before for instance doing a register dump.
2327 */
2328static void remR3StateUpdate(PVM pVM)
2329{
2330 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2331 unsigned i;
2332
2333 Assert(pVM->rem.s.fInREM);
2334
2335 /*
2336 * Copy back the registers.
2337 * This is done in the order they are declared in the CPUMCTX structure.
2338 */
2339
2340 /** @todo FOP */
2341 /** @todo FPUIP */
2342 /** @todo CS */
2343 /** @todo FPUDP */
2344 /** @todo DS */
2345 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2346 pCtx->fpu.MXCSR = 0;
2347 pCtx->fpu.MXCSR_MASK = 0;
2348
2349 /** @todo check if FPU/XMM was actually used in the recompiler */
2350 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2351//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2352
2353#ifdef TARGET_X86_64
2354 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2355 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2356 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2357 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2358 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2359 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2360 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2361 pCtx->r8 = pVM->rem.s.Env.regs[8];
2362 pCtx->r9 = pVM->rem.s.Env.regs[9];
2363 pCtx->r10 = pVM->rem.s.Env.regs[10];
2364 pCtx->r11 = pVM->rem.s.Env.regs[11];
2365 pCtx->r12 = pVM->rem.s.Env.regs[12];
2366 pCtx->r13 = pVM->rem.s.Env.regs[13];
2367 pCtx->r14 = pVM->rem.s.Env.regs[14];
2368 pCtx->r15 = pVM->rem.s.Env.regs[15];
2369
2370 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2371#else
2372 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2373 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2374 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2375 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2376 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2377 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2378 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2379
2380 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2381#endif
2382
2383 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2384
2385 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2386 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2387 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2388 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2389 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2390
2391#ifdef TARGET_X86_64
2392 pCtx->rip = pVM->rem.s.Env.eip;
2393 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2394#else
2395 pCtx->eip = pVM->rem.s.Env.eip;
2396 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2397#endif
2398
2399 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2400 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2401 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2402 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2403
2404 for (i=0;i<8;i++)
2405 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2406
2407 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2408 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2409 {
2410 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2411 STAM_COUNTER_INC(&gStatREMGDTChange);
2412 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2413 }
2414
2415 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2416 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2417 {
2418 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2419 STAM_COUNTER_INC(&gStatREMIDTChange);
2420 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2421 }
2422
2423 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2424 {
2425 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2426 STAM_COUNTER_INC(&gStatREMLDTRChange);
2427 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2428 }
2429 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2430 {
2431 pCtx->tr = pVM->rem.s.Env.tr.selector;
2432 STAM_COUNTER_INC(&gStatREMTRChange);
2433 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2434 }
2435
2436 /** @todo These values could still be out of sync! */
2437 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2438 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2439 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2440 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2441
2442 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2443 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2444 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2445
2446 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2447 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2448 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2449
2450 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2451 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2452 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2453
2454 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2455 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2456 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2457
2458 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2459 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2460 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2461
2462 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2463 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2464 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2465
2466 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2467 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2468 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2469
2470 /* Sysenter MSR */
2471 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2472 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2473 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2474
2475 /* System MSRs. */
2476 pCtx->msrEFER = pVM->rem.s.Env.efer;
2477 pCtx->msrSTAR = pVM->rem.s.Env.star;
2478 pCtx->msrPAT = pVM->rem.s.Env.pat;
2479#ifdef TARGET_X86_64
2480 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2481 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2482 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2483 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2484#endif
2485
2486}
2487
2488
2489/**
2490 * Update the VMM state information if we're currently in REM.
2491 *
2492 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2493 * we're currently executing in REM and the VMM state is invalid. This method will of
2494 * course check that we're executing in REM before syncing any data over to the VMM.
2495 *
2496 * @param pVM The VM handle.
2497 */
2498REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2499{
2500 if (pVM->rem.s.fInREM)
2501 remR3StateUpdate(pVM);
2502}
2503
2504
2505#undef LOG_GROUP
2506#define LOG_GROUP LOG_GROUP_REM
2507
2508
2509/**
2510 * Notify the recompiler about Address Gate 20 state change.
2511 *
2512 * This notification is required since A20 gate changes are
2513 * initialized from a device driver and the VM might just as
2514 * well be in REM mode as in RAW mode.
2515 *
2516 * @param pVM VM handle.
2517 * @param fEnable True if the gate should be enabled.
2518 * False if the gate should be disabled.
2519 */
2520REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2521{
2522 bool fSaved;
2523
2524 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2525 VM_ASSERT_EMT(pVM);
2526
2527 fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2528 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2529
2530 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2531
2532 pVM->rem.s.fIgnoreAll = fSaved;
2533}
2534
2535
2536/**
2537 * Replays the invalidated recorded pages.
2538 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2539 *
2540 * @param pVM VM handle.
2541 */
2542REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2543{
2544 RTUINT i;
2545
2546 VM_ASSERT_EMT(pVM);
2547
2548 /*
2549 * Sync the required registers.
2550 */
2551 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2552 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2553 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2554 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2555
2556 /*
2557 * Replay the flushes.
2558 */
2559 pVM->rem.s.fIgnoreInvlPg = true;
2560 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2561 {
2562 Log2(("REMR3ReplayInvalidatedPages: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2563 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2564 }
2565 pVM->rem.s.fIgnoreInvlPg = false;
2566 pVM->rem.s.cInvalidatedPages = 0;
2567}
2568
2569
2570/**
2571 * Replays the handler notification changes
2572 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2573 *
2574 * @param pVM VM handle.
2575 */
2576REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2577{
2578 /*
2579 * Replay the flushes.
2580 */
2581 RTUINT i;
2582 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2583
2584 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2585 VM_ASSERT_EMT(pVM);
2586
2587 pVM->rem.s.cHandlerNotifications = 0;
2588 for (i = 0; i < c; i++)
2589 {
2590 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2591 switch (pRec->enmKind)
2592 {
2593 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2594 REMR3NotifyHandlerPhysicalRegister(pVM,
2595 pRec->u.PhysicalRegister.enmType,
2596 pRec->u.PhysicalRegister.GCPhys,
2597 pRec->u.PhysicalRegister.cb,
2598 pRec->u.PhysicalRegister.fHasHCHandler);
2599 break;
2600
2601 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2602 REMR3NotifyHandlerPhysicalDeregister(pVM,
2603 pRec->u.PhysicalDeregister.enmType,
2604 pRec->u.PhysicalDeregister.GCPhys,
2605 pRec->u.PhysicalDeregister.cb,
2606 pRec->u.PhysicalDeregister.fHasHCHandler,
2607 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2608 break;
2609
2610 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2611 REMR3NotifyHandlerPhysicalModify(pVM,
2612 pRec->u.PhysicalModify.enmType,
2613 pRec->u.PhysicalModify.GCPhysOld,
2614 pRec->u.PhysicalModify.GCPhysNew,
2615 pRec->u.PhysicalModify.cb,
2616 pRec->u.PhysicalModify.fHasHCHandler,
2617 pRec->u.PhysicalModify.fRestoreAsRAM);
2618 break;
2619
2620 default:
2621 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2622 break;
2623 }
2624 }
2625 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2626}
2627
2628
2629/**
2630 * Notify REM about changed code page.
2631 *
2632 * @returns VBox status code.
2633 * @param pVM VM handle.
2634 * @param pvCodePage Code page address
2635 */
2636REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2637{
2638#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
2639 int rc;
2640 RTGCPHYS PhysGC;
2641 uint64_t flags;
2642
2643 VM_ASSERT_EMT(pVM);
2644
2645 /*
2646 * Get the physical page address.
2647 */
2648 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2649 if (rc == VINF_SUCCESS)
2650 {
2651 /*
2652 * Sync the required registers and flush the whole page.
2653 * (Easier to do the whole page than notifying it about each physical
2654 * byte that was changed.
2655 */
2656 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2657 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2658 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2659 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2660
2661 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2662 }
2663#endif
2664 return VINF_SUCCESS;
2665}
2666
2667
2668/**
2669 * Notification about a successful MMR3PhysRegister() call.
2670 *
2671 * @param pVM VM handle.
2672 * @param GCPhys The physical address the RAM.
2673 * @param cb Size of the memory.
2674 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2675 */
2676REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2677{
2678 uint32_t cbBitmap;
2679 int rc;
2680 Log(("REMR3NotifyPhysRamRegister: GCPhys=%RGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2681 VM_ASSERT_EMT(pVM);
2682
2683 /*
2684 * Validate input - we trust the caller.
2685 */
2686 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2687 Assert(cb);
2688 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2689
2690 /*
2691 * Base ram?
2692 */
2693 if (!GCPhys)
2694 {
2695 phys_ram_size = cb;
2696 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2697#ifndef VBOX_STRICT
2698 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2699 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2700#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2701 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2702 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2703 cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2704 rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2705 AssertRC(rc);
2706 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2707#endif
2708 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2709 }
2710
2711 /*
2712 * Register the ram.
2713 */
2714 Assert(!pVM->rem.s.fIgnoreAll);
2715 pVM->rem.s.fIgnoreAll = true;
2716
2717#ifdef VBOX_WITH_NEW_PHYS_CODE
2718 if (fFlags & MM_RAM_FLAGS_RESERVED)
2719 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2720 else
2721 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2722#else
2723 if (!GCPhys)
2724 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2725 else
2726 {
2727 if (fFlags & MM_RAM_FLAGS_RESERVED)
2728 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2729 else
2730 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2731 }
2732#endif
2733 Assert(pVM->rem.s.fIgnoreAll);
2734 pVM->rem.s.fIgnoreAll = false;
2735}
2736
2737#ifndef VBOX_WITH_NEW_PHYS_CODE
2738
2739/**
2740 * Notification about a successful PGMR3PhysRegisterChunk() call.
2741 *
2742 * @param pVM VM handle.
2743 * @param GCPhys The physical address the RAM.
2744 * @param cb Size of the memory.
2745 * @param pvRam The HC address of the RAM.
2746 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2747 */
2748REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2749{
2750 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%RGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2751 VM_ASSERT_EMT(pVM);
2752
2753 /*
2754 * Validate input - we trust the caller.
2755 */
2756 Assert(pvRam);
2757 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2758 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2759 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2760 Assert(fFlags == 0 /* normal RAM */);
2761 Assert(!pVM->rem.s.fIgnoreAll);
2762 pVM->rem.s.fIgnoreAll = true;
2763
2764 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2765
2766 Assert(pVM->rem.s.fIgnoreAll);
2767 pVM->rem.s.fIgnoreAll = false;
2768}
2769
2770
2771/**
2772 * Grows dynamically allocated guest RAM.
2773 * Will raise a fatal error if the operation fails.
2774 *
2775 * @param physaddr The physical address.
2776 */
2777void remR3GrowDynRange(unsigned long physaddr) /** @todo Needs fixing for MSC... */
2778{
2779 int rc;
2780 PVM pVM = cpu_single_env->pVM;
2781 const RTGCPHYS GCPhys = physaddr;
2782
2783 LogFlow(("remR3GrowDynRange %RGp\n", (RTGCPTR)physaddr));
2784 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2785 if (RT_SUCCESS(rc))
2786 return;
2787
2788 LogRel(("\nUnable to allocate guest RAM chunk at %RGp\n", (RTGCPTR)physaddr));
2789 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %RGp\n", (RTGCPTR)physaddr);
2790 AssertFatalFailed();
2791}
2792
2793#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2794
2795/**
2796 * Notification about a successful MMR3PhysRomRegister() call.
2797 *
2798 * @param pVM VM handle.
2799 * @param GCPhys The physical address of the ROM.
2800 * @param cb The size of the ROM.
2801 * @param pvCopy Pointer to the ROM copy.
2802 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2803 * This function will be called when ever the protection of the
2804 * shadow ROM changes (at reset and end of POST).
2805 */
2806REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2807{
2808 Log(("REMR3NotifyPhysRomRegister: GCPhys=%RGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2809 VM_ASSERT_EMT(pVM);
2810
2811 /*
2812 * Validate input - we trust the caller.
2813 */
2814 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2815 Assert(cb);
2816 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2817 Assert(pvCopy);
2818 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2819
2820 /*
2821 * Register the rom.
2822 */
2823 Assert(!pVM->rem.s.fIgnoreAll);
2824 pVM->rem.s.fIgnoreAll = true;
2825
2826 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2827
2828 Log2(("%.64Rhxd\n", (char *)pvCopy + cb - 64));
2829
2830 Assert(pVM->rem.s.fIgnoreAll);
2831 pVM->rem.s.fIgnoreAll = false;
2832}
2833
2834
2835/**
2836 * Notification about a successful memory deregistration or reservation.
2837 *
2838 * @param pVM VM Handle.
2839 * @param GCPhys Start physical address.
2840 * @param cb The size of the range.
2841 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2842 * reserve any memory soon.
2843 */
2844REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2845{
2846 Log(("REMR3NotifyPhysReserve: GCPhys=%RGp cb=%d\n", GCPhys, cb));
2847 VM_ASSERT_EMT(pVM);
2848
2849 /*
2850 * Validate input - we trust the caller.
2851 */
2852 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2853 Assert(cb);
2854 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2855
2856 /*
2857 * Unassigning the memory.
2858 */
2859 Assert(!pVM->rem.s.fIgnoreAll);
2860 pVM->rem.s.fIgnoreAll = true;
2861
2862 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2863
2864 Assert(pVM->rem.s.fIgnoreAll);
2865 pVM->rem.s.fIgnoreAll = false;
2866}
2867
2868
2869/**
2870 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2871 *
2872 * @param pVM VM Handle.
2873 * @param enmType Handler type.
2874 * @param GCPhys Handler range address.
2875 * @param cb Size of the handler range.
2876 * @param fHasHCHandler Set if the handler has a HC callback function.
2877 *
2878 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2879 * Handler memory type to memory which has no HC handler.
2880 */
2881REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2882{
2883 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%d\n",
2884 enmType, GCPhys, cb, fHasHCHandler));
2885 VM_ASSERT_EMT(pVM);
2886 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2887 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2888
2889 if (pVM->rem.s.cHandlerNotifications)
2890 REMR3ReplayHandlerNotifications(pVM);
2891
2892 Assert(!pVM->rem.s.fIgnoreAll);
2893 pVM->rem.s.fIgnoreAll = true;
2894
2895 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2896 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2897 else if (fHasHCHandler)
2898 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2899
2900 Assert(pVM->rem.s.fIgnoreAll);
2901 pVM->rem.s.fIgnoreAll = false;
2902}
2903
2904
2905/**
2906 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2907 *
2908 * @param pVM VM Handle.
2909 * @param enmType Handler type.
2910 * @param GCPhys Handler range address.
2911 * @param cb Size of the handler range.
2912 * @param fHasHCHandler Set if the handler has a HC callback function.
2913 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2914 */
2915REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2916{
2917 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2918 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2919 VM_ASSERT_EMT(pVM);
2920
2921 if (pVM->rem.s.cHandlerNotifications)
2922 REMR3ReplayHandlerNotifications(pVM);
2923
2924 Assert(!pVM->rem.s.fIgnoreAll);
2925 pVM->rem.s.fIgnoreAll = true;
2926
2927/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2928 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2929 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2930 else if (fHasHCHandler)
2931 {
2932 if (!fRestoreAsRAM)
2933 {
2934 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2935 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2936 }
2937 else
2938 {
2939 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2940 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2941 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2942 }
2943 }
2944
2945 Assert(pVM->rem.s.fIgnoreAll);
2946 pVM->rem.s.fIgnoreAll = false;
2947}
2948
2949
2950/**
2951 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2952 *
2953 * @param pVM VM Handle.
2954 * @param enmType Handler type.
2955 * @param GCPhysOld Old handler range address.
2956 * @param GCPhysNew New handler range address.
2957 * @param cb Size of the handler range.
2958 * @param fHasHCHandler Set if the handler has a HC callback function.
2959 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2960 */
2961REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2962{
2963 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%RGp GCPhysNew=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2964 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2965 VM_ASSERT_EMT(pVM);
2966 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2967
2968 if (pVM->rem.s.cHandlerNotifications)
2969 REMR3ReplayHandlerNotifications(pVM);
2970
2971 if (fHasHCHandler)
2972 {
2973 Assert(!pVM->rem.s.fIgnoreAll);
2974 pVM->rem.s.fIgnoreAll = true;
2975
2976 /*
2977 * Reset the old page.
2978 */
2979 if (!fRestoreAsRAM)
2980 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2981 else
2982 {
2983 /* This is not perfect, but it'll do for PD monitoring... */
2984 Assert(cb == PAGE_SIZE);
2985 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2986 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2987 }
2988
2989 /*
2990 * Update the new page.
2991 */
2992 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2993 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2994 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2995
2996 Assert(pVM->rem.s.fIgnoreAll);
2997 pVM->rem.s.fIgnoreAll = false;
2998 }
2999}
3000
3001
3002/**
3003 * Checks if we're handling access to this page or not.
3004 *
3005 * @returns true if we're trapping access.
3006 * @returns false if we aren't.
3007 * @param pVM The VM handle.
3008 * @param GCPhys The physical address.
3009 *
3010 * @remark This function will only work correctly in VBOX_STRICT builds!
3011 */
3012REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3013{
3014#ifdef VBOX_STRICT
3015 unsigned long off;
3016 if (pVM->rem.s.cHandlerNotifications)
3017 REMR3ReplayHandlerNotifications(pVM);
3018
3019 off = get_phys_page_offset(GCPhys);
3020 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3021 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3022 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3023#else
3024 return false;
3025#endif
3026}
3027
3028
3029/**
3030 * Deals with a rare case in get_phys_addr_code where the code
3031 * is being monitored.
3032 *
3033 * It could also be an MMIO page, in which case we will raise a fatal error.
3034 *
3035 * @returns The physical address corresponding to addr.
3036 * @param env The cpu environment.
3037 * @param addr The virtual address.
3038 * @param pTLBEntry The TLB entry.
3039 */
3040target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
3041{
3042 PVM pVM = env->pVM;
3043 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3044 {
3045 target_ulong ret = pTLBEntry->addend + addr;
3046 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%RGv addr_code=%RGv addend=%RGp ret=%RGp\n",
3047 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
3048 return ret;
3049 }
3050 LogRel(("\nTrying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
3051 "*** handlers\n",
3052 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3053 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3054 LogRel(("*** mmio\n"));
3055 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3056 LogRel(("*** phys\n"));
3057 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3058 cpu_abort(env, "Trying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3059 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3060 AssertFatalFailed();
3061}
3062
3063
3064/** Validate the physical address passed to the read functions.
3065 * Useful for finding non-guest-ram reads/writes. */
3066#if 0 //1 /* disable if it becomes bothersome... */
3067# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%RGp\n", (GCPhys)))
3068#else
3069# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
3070#endif
3071
3072/**
3073 * Read guest RAM and ROM.
3074 *
3075 * @param SrcGCPhys The source address (guest physical).
3076 * @param pvDst The destination address.
3077 * @param cb Number of bytes
3078 */
3079void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3080{
3081 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3082 VBOX_CHECK_ADDR(SrcGCPhys);
3083 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3084#ifdef VBOX_DEBUG_PHYS
3085 LogRel(("read(%d): %08x\n", cb, (uint32_t)SrcGCPhys));
3086#endif
3087 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3088}
3089
3090
3091/**
3092 * Read guest RAM and ROM, unsigned 8-bit.
3093 *
3094 * @param SrcGCPhys The source address (guest physical).
3095 */
3096uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3097{
3098 uint8_t val;
3099 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3100 VBOX_CHECK_ADDR(SrcGCPhys);
3101 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3102 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3103#ifdef VBOX_DEBUG_PHYS
3104 LogRel(("readu8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3105#endif
3106 return val;
3107}
3108
3109
3110/**
3111 * Read guest RAM and ROM, signed 8-bit.
3112 *
3113 * @param SrcGCPhys The source address (guest physical).
3114 */
3115int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3116{
3117 int8_t val;
3118 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3119 VBOX_CHECK_ADDR(SrcGCPhys);
3120 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3121 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3122#ifdef VBOX_DEBUG_PHYS
3123 LogRel(("reads8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3124#endif
3125 return val;
3126}
3127
3128
3129/**
3130 * Read guest RAM and ROM, unsigned 16-bit.
3131 *
3132 * @param SrcGCPhys The source address (guest physical).
3133 */
3134uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3135{
3136 uint16_t val;
3137 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3138 VBOX_CHECK_ADDR(SrcGCPhys);
3139 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3140 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3141#ifdef VBOX_DEBUG_PHYS
3142 LogRel(("readu16: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3143#endif
3144 return val;
3145}
3146
3147
3148/**
3149 * Read guest RAM and ROM, signed 16-bit.
3150 *
3151 * @param SrcGCPhys The source address (guest physical).
3152 */
3153int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3154{
3155 uint16_t val;
3156 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3157 VBOX_CHECK_ADDR(SrcGCPhys);
3158 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3159 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3160#ifdef VBOX_DEBUG_PHYS
3161 LogRel(("reads16: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3162#endif
3163 return val;
3164}
3165
3166
3167/**
3168 * Read guest RAM and ROM, unsigned 32-bit.
3169 *
3170 * @param SrcGCPhys The source address (guest physical).
3171 */
3172uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3173{
3174 uint32_t val;
3175 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3176 VBOX_CHECK_ADDR(SrcGCPhys);
3177 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3178 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3179#ifdef VBOX_DEBUG_PHYS
3180 LogRel(("readu32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3181#endif
3182 return val;
3183}
3184
3185
3186/**
3187 * Read guest RAM and ROM, signed 32-bit.
3188 *
3189 * @param SrcGCPhys The source address (guest physical).
3190 */
3191int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3192{
3193 int32_t val;
3194 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3195 VBOX_CHECK_ADDR(SrcGCPhys);
3196 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3197 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3198#ifdef VBOX_DEBUG_PHYS
3199 LogRel(("reads32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3200#endif
3201 return val;
3202}
3203
3204
3205/**
3206 * Read guest RAM and ROM, unsigned 64-bit.
3207 *
3208 * @param SrcGCPhys The source address (guest physical).
3209 */
3210uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3211{
3212 uint64_t val;
3213 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3214 VBOX_CHECK_ADDR(SrcGCPhys);
3215 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3216 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3217#ifdef VBOX_DEBUG_PHYS
3218 LogRel(("readu64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3219#endif
3220 return val;
3221}
3222
3223/**
3224 * Read guest RAM and ROM, signed 64-bit.
3225 *
3226 * @param SrcGCPhys The source address (guest physical).
3227 */
3228int64_t remR3PhysReadS64(RTGCPHYS SrcGCPhys)
3229{
3230 int64_t val;
3231 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3232 VBOX_CHECK_ADDR(SrcGCPhys);
3233 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3234 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3235#ifdef VBOX_DEBUG_PHYS
3236 LogRel(("reads64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3237#endif
3238 return val;
3239}
3240
3241
3242/**
3243 * Write guest RAM.
3244 *
3245 * @param DstGCPhys The destination address (guest physical).
3246 * @param pvSrc The source address.
3247 * @param cb Number of bytes to write
3248 */
3249void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3250{
3251 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3252 VBOX_CHECK_ADDR(DstGCPhys);
3253 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3254 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3255#ifdef VBOX_DEBUG_PHYS
3256 LogRel(("write(%d): %08x\n", cb, (uint32_t)DstGCPhys));
3257#endif
3258}
3259
3260
3261/**
3262 * Write guest RAM, unsigned 8-bit.
3263 *
3264 * @param DstGCPhys The destination address (guest physical).
3265 * @param val Value
3266 */
3267void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3268{
3269 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3270 VBOX_CHECK_ADDR(DstGCPhys);
3271 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3272 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3273#ifdef VBOX_DEBUG_PHYS
3274 LogRel(("writeu8: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3275#endif
3276}
3277
3278
3279/**
3280 * Write guest RAM, unsigned 8-bit.
3281 *
3282 * @param DstGCPhys The destination address (guest physical).
3283 * @param val Value
3284 */
3285void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3286{
3287 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3288 VBOX_CHECK_ADDR(DstGCPhys);
3289 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3290 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3291#ifdef VBOX_DEBUG_PHYS
3292 LogRel(("writeu16: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3293#endif
3294}
3295
3296
3297/**
3298 * Write guest RAM, unsigned 32-bit.
3299 *
3300 * @param DstGCPhys The destination address (guest physical).
3301 * @param val Value
3302 */
3303void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3304{
3305 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3306 VBOX_CHECK_ADDR(DstGCPhys);
3307 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3308 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3309#ifdef VBOX_DEBUG_PHYS
3310 LogRel(("writeu32: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3311#endif
3312}
3313
3314
3315/**
3316 * Write guest RAM, unsigned 64-bit.
3317 *
3318 * @param DstGCPhys The destination address (guest physical).
3319 * @param val Value
3320 */
3321void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3322{
3323 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3324 VBOX_CHECK_ADDR(DstGCPhys);
3325 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3326 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3327#ifdef VBOX_DEBUG_PHYS
3328 LogRel(("writeu64: %llx -> %08x\n", val, (uint32_t)SrcGCPhys));
3329#endif
3330}
3331
3332#undef LOG_GROUP
3333#define LOG_GROUP LOG_GROUP_REM_MMIO
3334
3335/** Read MMIO memory. */
3336static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3337{
3338 uint32_t u32 = 0;
3339 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3340 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3341 Log2(("remR3MMIOReadU8: GCPhys=%RGp -> %02x\n", GCPhys, u32));
3342 return u32;
3343}
3344
3345/** Read MMIO memory. */
3346static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3347{
3348 uint32_t u32 = 0;
3349 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3350 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3351 Log2(("remR3MMIOReadU16: GCPhys=%RGp -> %04x\n", GCPhys, u32));
3352 return u32;
3353}
3354
3355/** Read MMIO memory. */
3356static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3357{
3358 uint32_t u32 = 0;
3359 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3360 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3361 Log2(("remR3MMIOReadU32: GCPhys=%RGp -> %08x\n", GCPhys, u32));
3362 return u32;
3363}
3364
3365/** Write to MMIO memory. */
3366static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3367{
3368 int rc;
3369 Log2(("remR3MMIOWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3370 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3371 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3372}
3373
3374/** Write to MMIO memory. */
3375static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3376{
3377 int rc;
3378 Log2(("remR3MMIOWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3379 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3380 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3381}
3382
3383/** Write to MMIO memory. */
3384static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3385{
3386 int rc;
3387 Log2(("remR3MMIOWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3388 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3389 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3390}
3391
3392
3393#undef LOG_GROUP
3394#define LOG_GROUP LOG_GROUP_REM_HANDLER
3395
3396/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3397
3398static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3399{
3400 uint8_t u8;
3401 Log2(("remR3HandlerReadU8: GCPhys=%RGp\n", GCPhys));
3402 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3403 return u8;
3404}
3405
3406static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3407{
3408 uint16_t u16;
3409 Log2(("remR3HandlerReadU16: GCPhys=%RGp\n", GCPhys));
3410 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3411 return u16;
3412}
3413
3414static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3415{
3416 uint32_t u32;
3417 Log2(("remR3HandlerReadU32: GCPhys=%RGp\n", GCPhys));
3418 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3419 return u32;
3420}
3421
3422static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3423{
3424 Log2(("remR3HandlerWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3425 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3426}
3427
3428static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3429{
3430 Log2(("remR3HandlerWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3431 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3432}
3433
3434static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3435{
3436 Log2(("remR3HandlerWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3437 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3438}
3439
3440/* -+- disassembly -+- */
3441
3442#undef LOG_GROUP
3443#define LOG_GROUP LOG_GROUP_REM_DISAS
3444
3445
3446/**
3447 * Enables or disables singled stepped disassembly.
3448 *
3449 * @returns VBox status code.
3450 * @param pVM VM handle.
3451 * @param fEnable To enable set this flag, to disable clear it.
3452 */
3453static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3454{
3455 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3456 VM_ASSERT_EMT(pVM);
3457
3458 if (fEnable)
3459 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3460 else
3461 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3462 return VINF_SUCCESS;
3463}
3464
3465
3466/**
3467 * Enables or disables singled stepped disassembly.
3468 *
3469 * @returns VBox status code.
3470 * @param pVM VM handle.
3471 * @param fEnable To enable set this flag, to disable clear it.
3472 */
3473REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3474{
3475 PVMREQ pReq;
3476 int rc;
3477
3478 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3479 if (VM_IS_EMT(pVM))
3480 return remR3DisasEnableStepping(pVM, fEnable);
3481
3482 rc = VMR3ReqCall(pVM, VMREQDEST_ANY, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3483 AssertRC(rc);
3484 if (RT_SUCCESS(rc))
3485 rc = pReq->iStatus;
3486 VMR3ReqFree(pReq);
3487 return rc;
3488}
3489
3490
3491#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3492/**
3493 * External Debugger Command: .remstep [on|off|1|0]
3494 */
3495static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3496{
3497 bool fEnable;
3498 int rc;
3499
3500 /* print status */
3501 if (cArgs == 0)
3502 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3503 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3504
3505 /* convert the argument and change the mode. */
3506 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3507 if (RT_FAILURE(rc))
3508 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3509 rc = REMR3DisasEnableStepping(pVM, fEnable);
3510 if (RT_FAILURE(rc))
3511 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3512 return rc;
3513}
3514#endif
3515
3516
3517/**
3518 * Disassembles n instructions and prints them to the log.
3519 *
3520 * @returns Success indicator.
3521 * @param env Pointer to the recompiler CPU structure.
3522 * @param f32BitCode Indicates that whether or not the code should
3523 * be disassembled as 16 or 32 bit. If -1 the CS
3524 * selector will be inspected.
3525 * @param nrInstructions Nr of instructions to disassemble
3526 * @param pszPrefix
3527 * @remark not currently used for anything but ad-hoc debugging.
3528 */
3529bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3530{
3531 int i, rc;
3532 RTGCPTR GCPtrPC;
3533 uint8_t *pvPC;
3534 RTINTPTR off;
3535 DISCPUSTATE Cpu;
3536
3537 /*
3538 * Determin 16/32 bit mode.
3539 */
3540 if (f32BitCode == -1)
3541 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3542
3543 /*
3544 * Convert cs:eip to host context address.
3545 * We don't care to much about cross page correctness presently.
3546 */
3547 GCPtrPC = env->segs[R_CS].base + env->eip;
3548 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3549 {
3550 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3551
3552 /* convert eip to physical address. */
3553 rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3554 GCPtrPC,
3555 env->cr[3],
3556 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3557 (void**)&pvPC);
3558 if (RT_FAILURE(rc))
3559 {
3560 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3561 return false;
3562 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3563 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3564 }
3565 }
3566 else
3567 {
3568 /* physical address */
3569 rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16,
3570 (void**)&pvPC);
3571 if (RT_FAILURE(rc))
3572 return false;
3573 }
3574
3575 /*
3576 * Disassemble.
3577 */
3578 off = env->eip - (RTGCUINTPTR)pvPC;
3579 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3580 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3581 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3582 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3583 //Cpu.dwUserData[2] = GCPtrPC;
3584
3585 for (i=0;i<nrInstructions;i++)
3586 {
3587 char szOutput[256];
3588 uint32_t cbOp;
3589 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3590 return false;
3591 if (pszPrefix)
3592 Log(("%s: %s", pszPrefix, szOutput));
3593 else
3594 Log(("%s", szOutput));
3595
3596 pvPC += cbOp;
3597 }
3598 return true;
3599}
3600
3601
3602/** @todo need to test the new code, using the old code in the mean while. */
3603#define USE_OLD_DUMP_AND_DISASSEMBLY
3604
3605/**
3606 * Disassembles one instruction and prints it to the log.
3607 *
3608 * @returns Success indicator.
3609 * @param env Pointer to the recompiler CPU structure.
3610 * @param f32BitCode Indicates that whether or not the code should
3611 * be disassembled as 16 or 32 bit. If -1 the CS
3612 * selector will be inspected.
3613 * @param pszPrefix
3614 */
3615bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3616{
3617#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3618 PVM pVM = env->pVM;
3619 RTGCPTR GCPtrPC;
3620 uint8_t *pvPC;
3621 char szOutput[256];
3622 uint32_t cbOp;
3623 RTINTPTR off;
3624 DISCPUSTATE Cpu;
3625
3626
3627 /* Doesn't work in long mode. */
3628 if (env->hflags & HF_LMA_MASK)
3629 return false;
3630
3631 /*
3632 * Determin 16/32 bit mode.
3633 */
3634 if (f32BitCode == -1)
3635 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3636
3637 /*
3638 * Log registers
3639 */
3640 if (LogIs2Enabled())
3641 {
3642 remR3StateUpdate(pVM);
3643 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3644 }
3645
3646 /*
3647 * Convert cs:eip to host context address.
3648 * We don't care to much about cross page correctness presently.
3649 */
3650 GCPtrPC = env->segs[R_CS].base + env->eip;
3651 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3652 {
3653 /* convert eip to physical address. */
3654 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3655 GCPtrPC,
3656 env->cr[3],
3657 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3658 (void**)&pvPC);
3659 if (RT_FAILURE(rc))
3660 {
3661 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3662 return false;
3663 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(pVM, NULL)
3664 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3665 }
3666 }
3667 else
3668 {
3669
3670 /* physical address */
3671 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, (void**)&pvPC);
3672 if (RT_FAILURE(rc))
3673 return false;
3674 }
3675
3676 /*
3677 * Disassemble.
3678 */
3679 off = env->eip - (RTGCUINTPTR)pvPC;
3680 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3681 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3682 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3683 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3684 //Cpu.dwUserData[2] = GCPtrPC;
3685 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3686 return false;
3687
3688 if (!f32BitCode)
3689 {
3690 if (pszPrefix)
3691 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3692 else
3693 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3694 }
3695 else
3696 {
3697 if (pszPrefix)
3698 Log(("%s: %s", pszPrefix, szOutput));
3699 else
3700 Log(("%s", szOutput));
3701 }
3702 return true;
3703
3704#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3705 PVM pVM = env->pVM;
3706 const bool fLog = LogIsEnabled();
3707 const bool fLog2 = LogIs2Enabled();
3708 int rc = VINF_SUCCESS;
3709
3710 /*
3711 * Don't bother if there ain't any log output to do.
3712 */
3713 if (!fLog && !fLog2)
3714 return true;
3715
3716 /*
3717 * Update the state so DBGF reads the correct register values.
3718 */
3719 remR3StateUpdate(pVM);
3720
3721 /*
3722 * Log registers if requested.
3723 */
3724 if (!fLog2)
3725 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3726
3727 /*
3728 * Disassemble to log.
3729 */
3730 if (fLog)
3731 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3732
3733 return RT_SUCCESS(rc);
3734#endif
3735}
3736
3737
3738/**
3739 * Disassemble recompiled code.
3740 *
3741 * @param phFileIgnored Ignored, logfile usually.
3742 * @param pvCode Pointer to the code block.
3743 * @param cb Size of the code block.
3744 */
3745void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3746{
3747 if (LogIs2Enabled())
3748 {
3749 unsigned off = 0;
3750 char szOutput[256];
3751 DISCPUSTATE Cpu;
3752
3753 memset(&Cpu, 0, sizeof(Cpu));
3754#ifdef RT_ARCH_X86
3755 Cpu.mode = CPUMODE_32BIT;
3756#else
3757 Cpu.mode = CPUMODE_64BIT;
3758#endif
3759
3760 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3761 while (off < cb)
3762 {
3763 uint32_t cbInstr;
3764 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3765 RTLogPrintf("%s", szOutput);
3766 else
3767 {
3768 RTLogPrintf("disas error\n");
3769 cbInstr = 1;
3770#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3771 break;
3772#endif
3773 }
3774 off += cbInstr;
3775 }
3776 }
3777 NOREF(phFileIgnored);
3778}
3779
3780
3781/**
3782 * Disassemble guest code.
3783 *
3784 * @param phFileIgnored Ignored, logfile usually.
3785 * @param uCode The guest address of the code to disassemble. (flat?)
3786 * @param cb Number of bytes to disassemble.
3787 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3788 */
3789void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3790{
3791 if (LogIs2Enabled())
3792 {
3793 PVM pVM = cpu_single_env->pVM;
3794 RTSEL cs;
3795 RTGCUINTPTR eip;
3796
3797 /*
3798 * Update the state so DBGF reads the correct register values (flags).
3799 */
3800 remR3StateUpdate(pVM);
3801
3802 /*
3803 * Do the disassembling.
3804 */
3805 RTLogPrintf("Guest Code: PC=%RGp %RGp bytes fFlags=%d\n", uCode, cb, fFlags);
3806 cs = cpu_single_env->segs[R_CS].selector;
3807 eip = uCode - cpu_single_env->segs[R_CS].base;
3808 for (;;)
3809 {
3810 char szBuf[256];
3811 uint32_t cbInstr;
3812 int rc = DBGFR3DisasInstrEx(pVM,
3813 cs,
3814 eip,
3815 0,
3816 szBuf, sizeof(szBuf),
3817 &cbInstr);
3818 if (RT_SUCCESS(rc))
3819 RTLogPrintf("%RGp %s\n", uCode, szBuf);
3820 else
3821 {
3822 RTLogPrintf("%RGp %04x:%RGp: %s\n", uCode, cs, eip, szBuf);
3823 cbInstr = 1;
3824 }
3825
3826 /* next */
3827 if (cb <= cbInstr)
3828 break;
3829 cb -= cbInstr;
3830 uCode += cbInstr;
3831 eip += cbInstr;
3832 }
3833 }
3834 NOREF(phFileIgnored);
3835}
3836
3837
3838/**
3839 * Looks up a guest symbol.
3840 *
3841 * @returns Pointer to symbol name. This is a static buffer.
3842 * @param orig_addr The address in question.
3843 */
3844const char *lookup_symbol(target_ulong orig_addr)
3845{
3846 RTGCINTPTR off = 0;
3847 DBGFSYMBOL Sym;
3848 PVM pVM = cpu_single_env->pVM;
3849 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3850 if (RT_SUCCESS(rc))
3851 {
3852 static char szSym[sizeof(Sym.szName) + 48];
3853 if (!off)
3854 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3855 else if (off > 0)
3856 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3857 else
3858 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3859 return szSym;
3860 }
3861 return "<N/A>";
3862}
3863
3864
3865#undef LOG_GROUP
3866#define LOG_GROUP LOG_GROUP_REM
3867
3868
3869/* -+- FF notifications -+- */
3870
3871
3872/**
3873 * Notification about a pending interrupt.
3874 *
3875 * @param pVM VM Handle.
3876 * @param u8Interrupt Interrupt
3877 * @thread The emulation thread.
3878 */
3879REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3880{
3881 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3882 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3883}
3884
3885/**
3886 * Notification about a pending interrupt.
3887 *
3888 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3889 * @param pVM VM Handle.
3890 * @thread The emulation thread.
3891 */
3892REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3893{
3894 return pVM->rem.s.u32PendingInterrupt;
3895}
3896
3897/**
3898 * Notification about the interrupt FF being set.
3899 *
3900 * @param pVM VM Handle.
3901 * @thread The emulation thread.
3902 */
3903REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3904{
3905 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3906 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3907 if (pVM->rem.s.fInREM)
3908 {
3909 if (VM_IS_EMT(pVM))
3910 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3911 else
3912 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3913 CPU_INTERRUPT_EXTERNAL_HARD);
3914 }
3915}
3916
3917
3918/**
3919 * Notification about the interrupt FF being set.
3920 *
3921 * @param pVM VM Handle.
3922 * @thread Any.
3923 */
3924REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3925{
3926 LogFlow(("REMR3NotifyInterruptClear:\n"));
3927 if (pVM->rem.s.fInREM)
3928 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3929}
3930
3931
3932/**
3933 * Notification about pending timer(s).
3934 *
3935 * @param pVM VM Handle.
3936 * @thread Any.
3937 */
3938REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3939{
3940#ifndef DEBUG_bird
3941 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3942#endif
3943 if (pVM->rem.s.fInREM)
3944 {
3945 if (VM_IS_EMT(pVM))
3946 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3947 else
3948 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3949 CPU_INTERRUPT_EXTERNAL_TIMER);
3950 }
3951}
3952
3953
3954/**
3955 * Notification about pending DMA transfers.
3956 *
3957 * @param pVM VM Handle.
3958 * @thread Any.
3959 */
3960REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3961{
3962 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3963 if (pVM->rem.s.fInREM)
3964 {
3965 if (VM_IS_EMT(pVM))
3966 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3967 else
3968 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3969 CPU_INTERRUPT_EXTERNAL_DMA);
3970 }
3971}
3972
3973
3974/**
3975 * Notification about pending timer(s).
3976 *
3977 * @param pVM VM Handle.
3978 * @thread Any.
3979 */
3980REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3981{
3982 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3983 if (pVM->rem.s.fInREM)
3984 {
3985 if (VM_IS_EMT(pVM))
3986 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3987 else
3988 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3989 CPU_INTERRUPT_EXTERNAL_EXIT);
3990 }
3991}
3992
3993
3994/**
3995 * Notification about pending FF set by an external thread.
3996 *
3997 * @param pVM VM handle.
3998 * @thread Any.
3999 */
4000REMR3DECL(void) REMR3NotifyFF(PVM pVM)
4001{
4002 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
4003 if (pVM->rem.s.fInREM)
4004 {
4005 if (VM_IS_EMT(pVM))
4006 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4007 else
4008 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4009 CPU_INTERRUPT_EXTERNAL_EXIT);
4010 }
4011}
4012
4013
4014#ifdef VBOX_WITH_STATISTICS
4015void remR3ProfileStart(int statcode)
4016{
4017 STAMPROFILEADV *pStat;
4018 switch(statcode)
4019 {
4020 case STATS_EMULATE_SINGLE_INSTR:
4021 pStat = &gStatExecuteSingleInstr;
4022 break;
4023 case STATS_QEMU_COMPILATION:
4024 pStat = &gStatCompilationQEmu;
4025 break;
4026 case STATS_QEMU_RUN_EMULATED_CODE:
4027 pStat = &gStatRunCodeQEmu;
4028 break;
4029 case STATS_QEMU_TOTAL:
4030 pStat = &gStatTotalTimeQEmu;
4031 break;
4032 case STATS_QEMU_RUN_TIMERS:
4033 pStat = &gStatTimers;
4034 break;
4035 case STATS_TLB_LOOKUP:
4036 pStat= &gStatTBLookup;
4037 break;
4038 case STATS_IRQ_HANDLING:
4039 pStat= &gStatIRQ;
4040 break;
4041 case STATS_RAW_CHECK:
4042 pStat = &gStatRawCheck;
4043 break;
4044
4045 default:
4046 AssertMsgFailed(("unknown stat %d\n", statcode));
4047 return;
4048 }
4049 STAM_PROFILE_ADV_START(pStat, a);
4050}
4051
4052
4053void remR3ProfileStop(int statcode)
4054{
4055 STAMPROFILEADV *pStat;
4056 switch(statcode)
4057 {
4058 case STATS_EMULATE_SINGLE_INSTR:
4059 pStat = &gStatExecuteSingleInstr;
4060 break;
4061 case STATS_QEMU_COMPILATION:
4062 pStat = &gStatCompilationQEmu;
4063 break;
4064 case STATS_QEMU_RUN_EMULATED_CODE:
4065 pStat = &gStatRunCodeQEmu;
4066 break;
4067 case STATS_QEMU_TOTAL:
4068 pStat = &gStatTotalTimeQEmu;
4069 break;
4070 case STATS_QEMU_RUN_TIMERS:
4071 pStat = &gStatTimers;
4072 break;
4073 case STATS_TLB_LOOKUP:
4074 pStat= &gStatTBLookup;
4075 break;
4076 case STATS_IRQ_HANDLING:
4077 pStat= &gStatIRQ;
4078 break;
4079 case STATS_RAW_CHECK:
4080 pStat = &gStatRawCheck;
4081 break;
4082 default:
4083 AssertMsgFailed(("unknown stat %d\n", statcode));
4084 return;
4085 }
4086 STAM_PROFILE_ADV_STOP(pStat, a);
4087}
4088#endif
4089
4090/**
4091 * Raise an RC, force rem exit.
4092 *
4093 * @param pVM VM handle.
4094 * @param rc The rc.
4095 */
4096void remR3RaiseRC(PVM pVM, int rc)
4097{
4098 Log(("remR3RaiseRC: rc=%Rrc\n", rc));
4099 Assert(pVM->rem.s.fInREM);
4100 VM_ASSERT_EMT(pVM);
4101 pVM->rem.s.rc = rc;
4102 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4103}
4104
4105
4106/* -+- timers -+- */
4107
4108uint64_t cpu_get_tsc(CPUX86State *env)
4109{
4110 STAM_COUNTER_INC(&gStatCpuGetTSC);
4111 return TMCpuTickGet(env->pVM);
4112}
4113
4114
4115/* -+- interrupts -+- */
4116
4117void cpu_set_ferr(CPUX86State *env)
4118{
4119 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4120 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4121}
4122
4123int cpu_get_pic_interrupt(CPUState *env)
4124{
4125 uint8_t u8Interrupt;
4126 int rc;
4127
4128 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4129 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4130 * with the (a)pic.
4131 */
4132 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4133 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4134 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4135 * remove this kludge. */
4136 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4137 {
4138 rc = VINF_SUCCESS;
4139 Assert(env->pVM->rem.s.u32PendingInterrupt <= 255);
4140 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4141 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4142 }
4143 else
4144 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4145
4146 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Rrc\n", u8Interrupt, rc));
4147 if (RT_SUCCESS(rc))
4148 {
4149 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4150 env->interrupt_request |= CPU_INTERRUPT_HARD;
4151 return u8Interrupt;
4152 }
4153 return -1;
4154}
4155
4156
4157/* -+- local apic -+- */
4158
4159void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4160{
4161 int rc = PDMApicSetBase(env->pVM, val);
4162 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Rrc\n", val, rc)); NOREF(rc);
4163}
4164
4165uint64_t cpu_get_apic_base(CPUX86State *env)
4166{
4167 uint64_t u64;
4168 int rc = PDMApicGetBase(env->pVM, &u64);
4169 if (RT_SUCCESS(rc))
4170 {
4171 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4172 return u64;
4173 }
4174 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Rrc)\n", rc));
4175 return 0;
4176}
4177
4178void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4179{
4180 int rc = PDMApicSetTPR(env->pVM, val);
4181 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Rrc\n", val, rc)); NOREF(rc);
4182}
4183
4184uint8_t cpu_get_apic_tpr(CPUX86State *env)
4185{
4186 uint8_t u8;
4187 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4188 if (RT_SUCCESS(rc))
4189 {
4190 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4191 return u8;
4192 }
4193 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Rrc)\n", rc));
4194 return 0;
4195}
4196
4197
4198uint64_t cpu_apic_rdmsr(CPUX86State *env, uint32_t reg)
4199{
4200 uint64_t value;
4201 int rc = PDMApicReadMSR(env->pVM, 0/* cpu */, reg, &value);
4202 if (RT_SUCCESS(rc))
4203 {
4204 LogFlow(("cpu_apic_rdms returns %#x\n", value));
4205 return value;
4206 }
4207 /** @todo: exception ? */
4208 LogFlow(("cpu_apic_rdms returns 0 (rc=%Rrc)\n", rc));
4209 return value;
4210}
4211
4212void cpu_apic_wrmsr(CPUX86State *env, uint32_t reg, uint64_t value)
4213{
4214 int rc = PDMApicWriteMSR(env->pVM, 0 /* cpu */, reg, value);
4215 /** @todo: exception if error ? */
4216 LogFlow(("cpu_apic_wrmsr: rc=%Rrc\n", rc)); NOREF(rc);
4217}
4218/* -+- I/O Ports -+- */
4219
4220#undef LOG_GROUP
4221#define LOG_GROUP LOG_GROUP_REM_IOPORT
4222
4223void cpu_outb(CPUState *env, int addr, int val)
4224{
4225 int rc;
4226
4227 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4228 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4229
4230 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4231 if (RT_LIKELY(rc == VINF_SUCCESS))
4232 return;
4233 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4234 {
4235 Log(("cpu_outb: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4236 remR3RaiseRC(env->pVM, rc);
4237 return;
4238 }
4239 remAbort(rc, __FUNCTION__);
4240}
4241
4242void cpu_outw(CPUState *env, int addr, int val)
4243{
4244 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4245 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4246 if (RT_LIKELY(rc == VINF_SUCCESS))
4247 return;
4248 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4249 {
4250 Log(("cpu_outw: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4251 remR3RaiseRC(env->pVM, rc);
4252 return;
4253 }
4254 remAbort(rc, __FUNCTION__);
4255}
4256
4257void cpu_outl(CPUState *env, int addr, int val)
4258{
4259 int rc;
4260 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4261 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4262 if (RT_LIKELY(rc == VINF_SUCCESS))
4263 return;
4264 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4265 {
4266 Log(("cpu_outl: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4267 remR3RaiseRC(env->pVM, rc);
4268 return;
4269 }
4270 remAbort(rc, __FUNCTION__);
4271}
4272
4273int cpu_inb(CPUState *env, int addr)
4274{
4275 uint32_t u32 = 0;
4276 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4277 if (RT_LIKELY(rc == VINF_SUCCESS))
4278 {
4279 if (/*addr != 0x61 && */addr != 0x71)
4280 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4281 return (int)u32;
4282 }
4283 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4284 {
4285 Log(("cpu_inb: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4286 remR3RaiseRC(env->pVM, rc);
4287 return (int)u32;
4288 }
4289 remAbort(rc, __FUNCTION__);
4290 return 0xff;
4291}
4292
4293int cpu_inw(CPUState *env, int addr)
4294{
4295 uint32_t u32 = 0;
4296 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4297 if (RT_LIKELY(rc == VINF_SUCCESS))
4298 {
4299 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4300 return (int)u32;
4301 }
4302 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4303 {
4304 Log(("cpu_inw: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4305 remR3RaiseRC(env->pVM, rc);
4306 return (int)u32;
4307 }
4308 remAbort(rc, __FUNCTION__);
4309 return 0xffff;
4310}
4311
4312int cpu_inl(CPUState *env, int addr)
4313{
4314 uint32_t u32 = 0;
4315 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4316 if (RT_LIKELY(rc == VINF_SUCCESS))
4317 {
4318//if (addr==0x01f0 && u32 == 0x6b6d)
4319// loglevel = ~0;
4320 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4321 return (int)u32;
4322 }
4323 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4324 {
4325 Log(("cpu_inl: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4326 remR3RaiseRC(env->pVM, rc);
4327 return (int)u32;
4328 }
4329 remAbort(rc, __FUNCTION__);
4330 return 0xffffffff;
4331}
4332
4333#undef LOG_GROUP
4334#define LOG_GROUP LOG_GROUP_REM
4335
4336
4337/* -+- helpers and misc other interfaces -+- */
4338
4339/**
4340 * Perform the CPUID instruction.
4341 *
4342 * ASMCpuId cannot be invoked from some source files where this is used because of global
4343 * register allocations.
4344 *
4345 * @param env Pointer to the recompiler CPU structure.
4346 * @param uOperator CPUID operation (eax).
4347 * @param pvEAX Where to store eax.
4348 * @param pvEBX Where to store ebx.
4349 * @param pvECX Where to store ecx.
4350 * @param pvEDX Where to store edx.
4351 */
4352void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4353{
4354 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4355}
4356
4357
4358#if 0 /* not used */
4359/**
4360 * Interface for qemu hardware to report back fatal errors.
4361 */
4362void hw_error(const char *pszFormat, ...)
4363{
4364 /*
4365 * Bitch about it.
4366 */
4367 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4368 * this in my Odin32 tree at home! */
4369 va_list args;
4370 va_start(args, pszFormat);
4371 RTLogPrintf("fatal error in virtual hardware:");
4372 RTLogPrintfV(pszFormat, args);
4373 va_end(args);
4374 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4375
4376 /*
4377 * If we're in REM context we'll sync back the state before 'jumping' to
4378 * the EMs failure handling.
4379 */
4380 PVM pVM = cpu_single_env->pVM;
4381 if (pVM->rem.s.fInREM)
4382 REMR3StateBack(pVM);
4383 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4384 AssertMsgFailed(("EMR3FatalError returned!\n"));
4385}
4386#endif
4387
4388/**
4389 * Interface for the qemu cpu to report unhandled situation
4390 * raising a fatal VM error.
4391 */
4392void cpu_abort(CPUState *env, const char *pszFormat, ...)
4393{
4394 va_list args;
4395 PVM pVM;
4396
4397 /*
4398 * Bitch about it.
4399 */
4400#ifndef _MSC_VER
4401 /** @todo: MSVC is right - it's not valid C */
4402 RTLogFlags(NULL, "nodisabled nobuffered");
4403#endif
4404 va_start(args, pszFormat);
4405 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4406 va_end(args);
4407 va_start(args, pszFormat);
4408 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4409 va_end(args);
4410
4411 /*
4412 * If we're in REM context we'll sync back the state before 'jumping' to
4413 * the EMs failure handling.
4414 */
4415 pVM = cpu_single_env->pVM;
4416 if (pVM->rem.s.fInREM)
4417 REMR3StateBack(pVM);
4418 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4419 AssertMsgFailed(("EMR3FatalError returned!\n"));
4420}
4421
4422
4423/**
4424 * Aborts the VM.
4425 *
4426 * @param rc VBox error code.
4427 * @param pszTip Hint about why/when this happend.
4428 */
4429static void remAbort(int rc, const char *pszTip)
4430{
4431 PVM pVM;
4432
4433 /*
4434 * Bitch about it.
4435 */
4436 RTLogPrintf("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip);
4437 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip));
4438
4439 /*
4440 * Jump back to where we entered the recompiler.
4441 */
4442 pVM = cpu_single_env->pVM;
4443 if (pVM->rem.s.fInREM)
4444 REMR3StateBack(pVM);
4445 EMR3FatalError(pVM, rc);
4446 AssertMsgFailed(("EMR3FatalError returned!\n"));
4447}
4448
4449
4450/**
4451 * Dumps a linux system call.
4452 * @param pVM VM handle.
4453 */
4454void remR3DumpLnxSyscall(PVM pVM)
4455{
4456 static const char *apsz[] =
4457 {
4458 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4459 "sys_exit",
4460 "sys_fork",
4461 "sys_read",
4462 "sys_write",
4463 "sys_open", /* 5 */
4464 "sys_close",
4465 "sys_waitpid",
4466 "sys_creat",
4467 "sys_link",
4468 "sys_unlink", /* 10 */
4469 "sys_execve",
4470 "sys_chdir",
4471 "sys_time",
4472 "sys_mknod",
4473 "sys_chmod", /* 15 */
4474 "sys_lchown16",
4475 "sys_ni_syscall", /* old break syscall holder */
4476 "sys_stat",
4477 "sys_lseek",
4478 "sys_getpid", /* 20 */
4479 "sys_mount",
4480 "sys_oldumount",
4481 "sys_setuid16",
4482 "sys_getuid16",
4483 "sys_stime", /* 25 */
4484 "sys_ptrace",
4485 "sys_alarm",
4486 "sys_fstat",
4487 "sys_pause",
4488 "sys_utime", /* 30 */
4489 "sys_ni_syscall", /* old stty syscall holder */
4490 "sys_ni_syscall", /* old gtty syscall holder */
4491 "sys_access",
4492 "sys_nice",
4493 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4494 "sys_sync",
4495 "sys_kill",
4496 "sys_rename",
4497 "sys_mkdir",
4498 "sys_rmdir", /* 40 */
4499 "sys_dup",
4500 "sys_pipe",
4501 "sys_times",
4502 "sys_ni_syscall", /* old prof syscall holder */
4503 "sys_brk", /* 45 */
4504 "sys_setgid16",
4505 "sys_getgid16",
4506 "sys_signal",
4507 "sys_geteuid16",
4508 "sys_getegid16", /* 50 */
4509 "sys_acct",
4510 "sys_umount", /* recycled never used phys() */
4511 "sys_ni_syscall", /* old lock syscall holder */
4512 "sys_ioctl",
4513 "sys_fcntl", /* 55 */
4514 "sys_ni_syscall", /* old mpx syscall holder */
4515 "sys_setpgid",
4516 "sys_ni_syscall", /* old ulimit syscall holder */
4517 "sys_olduname",
4518 "sys_umask", /* 60 */
4519 "sys_chroot",
4520 "sys_ustat",
4521 "sys_dup2",
4522 "sys_getppid",
4523 "sys_getpgrp", /* 65 */
4524 "sys_setsid",
4525 "sys_sigaction",
4526 "sys_sgetmask",
4527 "sys_ssetmask",
4528 "sys_setreuid16", /* 70 */
4529 "sys_setregid16",
4530 "sys_sigsuspend",
4531 "sys_sigpending",
4532 "sys_sethostname",
4533 "sys_setrlimit", /* 75 */
4534 "sys_old_getrlimit",
4535 "sys_getrusage",
4536 "sys_gettimeofday",
4537 "sys_settimeofday",
4538 "sys_getgroups16", /* 80 */
4539 "sys_setgroups16",
4540 "old_select",
4541 "sys_symlink",
4542 "sys_lstat",
4543 "sys_readlink", /* 85 */
4544 "sys_uselib",
4545 "sys_swapon",
4546 "sys_reboot",
4547 "old_readdir",
4548 "old_mmap", /* 90 */
4549 "sys_munmap",
4550 "sys_truncate",
4551 "sys_ftruncate",
4552 "sys_fchmod",
4553 "sys_fchown16", /* 95 */
4554 "sys_getpriority",
4555 "sys_setpriority",
4556 "sys_ni_syscall", /* old profil syscall holder */
4557 "sys_statfs",
4558 "sys_fstatfs", /* 100 */
4559 "sys_ioperm",
4560 "sys_socketcall",
4561 "sys_syslog",
4562 "sys_setitimer",
4563 "sys_getitimer", /* 105 */
4564 "sys_newstat",
4565 "sys_newlstat",
4566 "sys_newfstat",
4567 "sys_uname",
4568 "sys_iopl", /* 110 */
4569 "sys_vhangup",
4570 "sys_ni_syscall", /* old "idle" system call */
4571 "sys_vm86old",
4572 "sys_wait4",
4573 "sys_swapoff", /* 115 */
4574 "sys_sysinfo",
4575 "sys_ipc",
4576 "sys_fsync",
4577 "sys_sigreturn",
4578 "sys_clone", /* 120 */
4579 "sys_setdomainname",
4580 "sys_newuname",
4581 "sys_modify_ldt",
4582 "sys_adjtimex",
4583 "sys_mprotect", /* 125 */
4584 "sys_sigprocmask",
4585 "sys_ni_syscall", /* old "create_module" */
4586 "sys_init_module",
4587 "sys_delete_module",
4588 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4589 "sys_quotactl",
4590 "sys_getpgid",
4591 "sys_fchdir",
4592 "sys_bdflush",
4593 "sys_sysfs", /* 135 */
4594 "sys_personality",
4595 "sys_ni_syscall", /* reserved for afs_syscall */
4596 "sys_setfsuid16",
4597 "sys_setfsgid16",
4598 "sys_llseek", /* 140 */
4599 "sys_getdents",
4600 "sys_select",
4601 "sys_flock",
4602 "sys_msync",
4603 "sys_readv", /* 145 */
4604 "sys_writev",
4605 "sys_getsid",
4606 "sys_fdatasync",
4607 "sys_sysctl",
4608 "sys_mlock", /* 150 */
4609 "sys_munlock",
4610 "sys_mlockall",
4611 "sys_munlockall",
4612 "sys_sched_setparam",
4613 "sys_sched_getparam", /* 155 */
4614 "sys_sched_setscheduler",
4615 "sys_sched_getscheduler",
4616 "sys_sched_yield",
4617 "sys_sched_get_priority_max",
4618 "sys_sched_get_priority_min", /* 160 */
4619 "sys_sched_rr_get_interval",
4620 "sys_nanosleep",
4621 "sys_mremap",
4622 "sys_setresuid16",
4623 "sys_getresuid16", /* 165 */
4624 "sys_vm86",
4625 "sys_ni_syscall", /* Old sys_query_module */
4626 "sys_poll",
4627 "sys_nfsservctl",
4628 "sys_setresgid16", /* 170 */
4629 "sys_getresgid16",
4630 "sys_prctl",
4631 "sys_rt_sigreturn",
4632 "sys_rt_sigaction",
4633 "sys_rt_sigprocmask", /* 175 */
4634 "sys_rt_sigpending",
4635 "sys_rt_sigtimedwait",
4636 "sys_rt_sigqueueinfo",
4637 "sys_rt_sigsuspend",
4638 "sys_pread64", /* 180 */
4639 "sys_pwrite64",
4640 "sys_chown16",
4641 "sys_getcwd",
4642 "sys_capget",
4643 "sys_capset", /* 185 */
4644 "sys_sigaltstack",
4645 "sys_sendfile",
4646 "sys_ni_syscall", /* reserved for streams1 */
4647 "sys_ni_syscall", /* reserved for streams2 */
4648 "sys_vfork", /* 190 */
4649 "sys_getrlimit",
4650 "sys_mmap2",
4651 "sys_truncate64",
4652 "sys_ftruncate64",
4653 "sys_stat64", /* 195 */
4654 "sys_lstat64",
4655 "sys_fstat64",
4656 "sys_lchown",
4657 "sys_getuid",
4658 "sys_getgid", /* 200 */
4659 "sys_geteuid",
4660 "sys_getegid",
4661 "sys_setreuid",
4662 "sys_setregid",
4663 "sys_getgroups", /* 205 */
4664 "sys_setgroups",
4665 "sys_fchown",
4666 "sys_setresuid",
4667 "sys_getresuid",
4668 "sys_setresgid", /* 210 */
4669 "sys_getresgid",
4670 "sys_chown",
4671 "sys_setuid",
4672 "sys_setgid",
4673 "sys_setfsuid", /* 215 */
4674 "sys_setfsgid",
4675 "sys_pivot_root",
4676 "sys_mincore",
4677 "sys_madvise",
4678 "sys_getdents64", /* 220 */
4679 "sys_fcntl64",
4680 "sys_ni_syscall", /* reserved for TUX */
4681 "sys_ni_syscall",
4682 "sys_gettid",
4683 "sys_readahead", /* 225 */
4684 "sys_setxattr",
4685 "sys_lsetxattr",
4686 "sys_fsetxattr",
4687 "sys_getxattr",
4688 "sys_lgetxattr", /* 230 */
4689 "sys_fgetxattr",
4690 "sys_listxattr",
4691 "sys_llistxattr",
4692 "sys_flistxattr",
4693 "sys_removexattr", /* 235 */
4694 "sys_lremovexattr",
4695 "sys_fremovexattr",
4696 "sys_tkill",
4697 "sys_sendfile64",
4698 "sys_futex", /* 240 */
4699 "sys_sched_setaffinity",
4700 "sys_sched_getaffinity",
4701 "sys_set_thread_area",
4702 "sys_get_thread_area",
4703 "sys_io_setup", /* 245 */
4704 "sys_io_destroy",
4705 "sys_io_getevents",
4706 "sys_io_submit",
4707 "sys_io_cancel",
4708 "sys_fadvise64", /* 250 */
4709 "sys_ni_syscall",
4710 "sys_exit_group",
4711 "sys_lookup_dcookie",
4712 "sys_epoll_create",
4713 "sys_epoll_ctl", /* 255 */
4714 "sys_epoll_wait",
4715 "sys_remap_file_pages",
4716 "sys_set_tid_address",
4717 "sys_timer_create",
4718 "sys_timer_settime", /* 260 */
4719 "sys_timer_gettime",
4720 "sys_timer_getoverrun",
4721 "sys_timer_delete",
4722 "sys_clock_settime",
4723 "sys_clock_gettime", /* 265 */
4724 "sys_clock_getres",
4725 "sys_clock_nanosleep",
4726 "sys_statfs64",
4727 "sys_fstatfs64",
4728 "sys_tgkill", /* 270 */
4729 "sys_utimes",
4730 "sys_fadvise64_64",
4731 "sys_ni_syscall" /* sys_vserver */
4732 };
4733
4734 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4735 switch (uEAX)
4736 {
4737 default:
4738 if (uEAX < RT_ELEMENTS(apsz))
4739 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4740 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4741 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4742 else
4743 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4744 break;
4745
4746 }
4747}
4748
4749
4750/**
4751 * Dumps an OpenBSD system call.
4752 * @param pVM VM handle.
4753 */
4754void remR3DumpOBsdSyscall(PVM pVM)
4755{
4756 static const char *apsz[] =
4757 {
4758 "SYS_syscall", //0
4759 "SYS_exit", //1
4760 "SYS_fork", //2
4761 "SYS_read", //3
4762 "SYS_write", //4
4763 "SYS_open", //5
4764 "SYS_close", //6
4765 "SYS_wait4", //7
4766 "SYS_8",
4767 "SYS_link", //9
4768 "SYS_unlink", //10
4769 "SYS_11",
4770 "SYS_chdir", //12
4771 "SYS_fchdir", //13
4772 "SYS_mknod", //14
4773 "SYS_chmod", //15
4774 "SYS_chown", //16
4775 "SYS_break", //17
4776 "SYS_18",
4777 "SYS_19",
4778 "SYS_getpid", //20
4779 "SYS_mount", //21
4780 "SYS_unmount", //22
4781 "SYS_setuid", //23
4782 "SYS_getuid", //24
4783 "SYS_geteuid", //25
4784 "SYS_ptrace", //26
4785 "SYS_recvmsg", //27
4786 "SYS_sendmsg", //28
4787 "SYS_recvfrom", //29
4788 "SYS_accept", //30
4789 "SYS_getpeername", //31
4790 "SYS_getsockname", //32
4791 "SYS_access", //33
4792 "SYS_chflags", //34
4793 "SYS_fchflags", //35
4794 "SYS_sync", //36
4795 "SYS_kill", //37
4796 "SYS_38",
4797 "SYS_getppid", //39
4798 "SYS_40",
4799 "SYS_dup", //41
4800 "SYS_opipe", //42
4801 "SYS_getegid", //43
4802 "SYS_profil", //44
4803 "SYS_ktrace", //45
4804 "SYS_sigaction", //46
4805 "SYS_getgid", //47
4806 "SYS_sigprocmask", //48
4807 "SYS_getlogin", //49
4808 "SYS_setlogin", //50
4809 "SYS_acct", //51
4810 "SYS_sigpending", //52
4811 "SYS_osigaltstack", //53
4812 "SYS_ioctl", //54
4813 "SYS_reboot", //55
4814 "SYS_revoke", //56
4815 "SYS_symlink", //57
4816 "SYS_readlink", //58
4817 "SYS_execve", //59
4818 "SYS_umask", //60
4819 "SYS_chroot", //61
4820 "SYS_62",
4821 "SYS_63",
4822 "SYS_64",
4823 "SYS_65",
4824 "SYS_vfork", //66
4825 "SYS_67",
4826 "SYS_68",
4827 "SYS_sbrk", //69
4828 "SYS_sstk", //70
4829 "SYS_61",
4830 "SYS_vadvise", //72
4831 "SYS_munmap", //73
4832 "SYS_mprotect", //74
4833 "SYS_madvise", //75
4834 "SYS_76",
4835 "SYS_77",
4836 "SYS_mincore", //78
4837 "SYS_getgroups", //79
4838 "SYS_setgroups", //80
4839 "SYS_getpgrp", //81
4840 "SYS_setpgid", //82
4841 "SYS_setitimer", //83
4842 "SYS_84",
4843 "SYS_85",
4844 "SYS_getitimer", //86
4845 "SYS_87",
4846 "SYS_88",
4847 "SYS_89",
4848 "SYS_dup2", //90
4849 "SYS_91",
4850 "SYS_fcntl", //92
4851 "SYS_select", //93
4852 "SYS_94",
4853 "SYS_fsync", //95
4854 "SYS_setpriority", //96
4855 "SYS_socket", //97
4856 "SYS_connect", //98
4857 "SYS_99",
4858 "SYS_getpriority", //100
4859 "SYS_101",
4860 "SYS_102",
4861 "SYS_sigreturn", //103
4862 "SYS_bind", //104
4863 "SYS_setsockopt", //105
4864 "SYS_listen", //106
4865 "SYS_107",
4866 "SYS_108",
4867 "SYS_109",
4868 "SYS_110",
4869 "SYS_sigsuspend", //111
4870 "SYS_112",
4871 "SYS_113",
4872 "SYS_114",
4873 "SYS_115",
4874 "SYS_gettimeofday", //116
4875 "SYS_getrusage", //117
4876 "SYS_getsockopt", //118
4877 "SYS_119",
4878 "SYS_readv", //120
4879 "SYS_writev", //121
4880 "SYS_settimeofday", //122
4881 "SYS_fchown", //123
4882 "SYS_fchmod", //124
4883 "SYS_125",
4884 "SYS_setreuid", //126
4885 "SYS_setregid", //127
4886 "SYS_rename", //128
4887 "SYS_129",
4888 "SYS_130",
4889 "SYS_flock", //131
4890 "SYS_mkfifo", //132
4891 "SYS_sendto", //133
4892 "SYS_shutdown", //134
4893 "SYS_socketpair", //135
4894 "SYS_mkdir", //136
4895 "SYS_rmdir", //137
4896 "SYS_utimes", //138
4897 "SYS_139",
4898 "SYS_adjtime", //140
4899 "SYS_141",
4900 "SYS_142",
4901 "SYS_143",
4902 "SYS_144",
4903 "SYS_145",
4904 "SYS_146",
4905 "SYS_setsid", //147
4906 "SYS_quotactl", //148
4907 "SYS_149",
4908 "SYS_150",
4909 "SYS_151",
4910 "SYS_152",
4911 "SYS_153",
4912 "SYS_154",
4913 "SYS_nfssvc", //155
4914 "SYS_156",
4915 "SYS_157",
4916 "SYS_158",
4917 "SYS_159",
4918 "SYS_160",
4919 "SYS_getfh", //161
4920 "SYS_162",
4921 "SYS_163",
4922 "SYS_164",
4923 "SYS_sysarch", //165
4924 "SYS_166",
4925 "SYS_167",
4926 "SYS_168",
4927 "SYS_169",
4928 "SYS_170",
4929 "SYS_171",
4930 "SYS_172",
4931 "SYS_pread", //173
4932 "SYS_pwrite", //174
4933 "SYS_175",
4934 "SYS_176",
4935 "SYS_177",
4936 "SYS_178",
4937 "SYS_179",
4938 "SYS_180",
4939 "SYS_setgid", //181
4940 "SYS_setegid", //182
4941 "SYS_seteuid", //183
4942 "SYS_lfs_bmapv", //184
4943 "SYS_lfs_markv", //185
4944 "SYS_lfs_segclean", //186
4945 "SYS_lfs_segwait", //187
4946 "SYS_188",
4947 "SYS_189",
4948 "SYS_190",
4949 "SYS_pathconf", //191
4950 "SYS_fpathconf", //192
4951 "SYS_swapctl", //193
4952 "SYS_getrlimit", //194
4953 "SYS_setrlimit", //195
4954 "SYS_getdirentries", //196
4955 "SYS_mmap", //197
4956 "SYS___syscall", //198
4957 "SYS_lseek", //199
4958 "SYS_truncate", //200
4959 "SYS_ftruncate", //201
4960 "SYS___sysctl", //202
4961 "SYS_mlock", //203
4962 "SYS_munlock", //204
4963 "SYS_205",
4964 "SYS_futimes", //206
4965 "SYS_getpgid", //207
4966 "SYS_xfspioctl", //208
4967 "SYS_209",
4968 "SYS_210",
4969 "SYS_211",
4970 "SYS_212",
4971 "SYS_213",
4972 "SYS_214",
4973 "SYS_215",
4974 "SYS_216",
4975 "SYS_217",
4976 "SYS_218",
4977 "SYS_219",
4978 "SYS_220",
4979 "SYS_semget", //221
4980 "SYS_222",
4981 "SYS_223",
4982 "SYS_224",
4983 "SYS_msgget", //225
4984 "SYS_msgsnd", //226
4985 "SYS_msgrcv", //227
4986 "SYS_shmat", //228
4987 "SYS_229",
4988 "SYS_shmdt", //230
4989 "SYS_231",
4990 "SYS_clock_gettime", //232
4991 "SYS_clock_settime", //233
4992 "SYS_clock_getres", //234
4993 "SYS_235",
4994 "SYS_236",
4995 "SYS_237",
4996 "SYS_238",
4997 "SYS_239",
4998 "SYS_nanosleep", //240
4999 "SYS_241",
5000 "SYS_242",
5001 "SYS_243",
5002 "SYS_244",
5003 "SYS_245",
5004 "SYS_246",
5005 "SYS_247",
5006 "SYS_248",
5007 "SYS_249",
5008 "SYS_minherit", //250
5009 "SYS_rfork", //251
5010 "SYS_poll", //252
5011 "SYS_issetugid", //253
5012 "SYS_lchown", //254
5013 "SYS_getsid", //255
5014 "SYS_msync", //256
5015 "SYS_257",
5016 "SYS_258",
5017 "SYS_259",
5018 "SYS_getfsstat", //260
5019 "SYS_statfs", //261
5020 "SYS_fstatfs", //262
5021 "SYS_pipe", //263
5022 "SYS_fhopen", //264
5023 "SYS_265",
5024 "SYS_fhstatfs", //266
5025 "SYS_preadv", //267
5026 "SYS_pwritev", //268
5027 "SYS_kqueue", //269
5028 "SYS_kevent", //270
5029 "SYS_mlockall", //271
5030 "SYS_munlockall", //272
5031 "SYS_getpeereid", //273
5032 "SYS_274",
5033 "SYS_275",
5034 "SYS_276",
5035 "SYS_277",
5036 "SYS_278",
5037 "SYS_279",
5038 "SYS_280",
5039 "SYS_getresuid", //281
5040 "SYS_setresuid", //282
5041 "SYS_getresgid", //283
5042 "SYS_setresgid", //284
5043 "SYS_285",
5044 "SYS_mquery", //286
5045 "SYS_closefrom", //287
5046 "SYS_sigaltstack", //288
5047 "SYS_shmget", //289
5048 "SYS_semop", //290
5049 "SYS_stat", //291
5050 "SYS_fstat", //292
5051 "SYS_lstat", //293
5052 "SYS_fhstat", //294
5053 "SYS___semctl", //295
5054 "SYS_shmctl", //296
5055 "SYS_msgctl", //297
5056 "SYS_MAXSYSCALL", //298
5057 //299
5058 //300
5059 };
5060 uint32_t uEAX;
5061 if (!LogIsEnabled())
5062 return;
5063 uEAX = CPUMGetGuestEAX(pVM);
5064 switch (uEAX)
5065 {
5066 default:
5067 if (uEAX < RT_ELEMENTS(apsz))
5068 {
5069 uint32_t au32Args[8] = {0};
5070 PGMPhysSimpleReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
5071 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
5072 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
5073 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
5074 }
5075 else
5076 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
5077 break;
5078 }
5079}
5080
5081
5082#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
5083/**
5084 * The Dll main entry point (stub).
5085 */
5086bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5087{
5088 return true;
5089}
5090
5091void *memcpy(void *dst, const void *src, size_t size)
5092{
5093 uint8_t*pbDst = dst, *pbSrc = src;
5094 while (size-- > 0)
5095 *pbDst++ = *pbSrc++;
5096 return dst;
5097}
5098
5099#endif
5100
5101void cpu_smm_update(CPUState* env)
5102{
5103}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette