VirtualBox

source: vbox/trunk/src/recompiler_new/VBoxRecompiler.c@ 14969

Last change on this file since 14969 was 14969, checked in by vboxsync, 16 years ago

VMM support for completing VA in TLB (not much tested)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 159.4 KB
Line 
1/* $Id: VBoxRecompiler.c 14969 2008-12-04 10:57:17Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "osdep.h"
29#include "exec-all.h"
30#include "config.h"
31#include "cpu-all.h"
32
33void cpu_exec_init_all(unsigned long tb_size);
34
35#include <VBox/rem.h>
36#include <VBox/vmapi.h>
37#include <VBox/tm.h>
38#include <VBox/ssm.h>
39#include <VBox/em.h>
40#include <VBox/trpm.h>
41#include <VBox/iom.h>
42#include <VBox/mm.h>
43#include <VBox/pgm.h>
44#include <VBox/pdm.h>
45#include <VBox/dbgf.h>
46#include <VBox/dbg.h>
47#include <VBox/hwaccm.h>
48#include <VBox/patm.h>
49#include <VBox/csam.h>
50#include "REMInternal.h"
51#include <VBox/vm.h>
52#include <VBox/param.h>
53#include <VBox/err.h>
54
55#include <VBox/log.h>
56#include <iprt/semaphore.h>
57#include <iprt/asm.h>
58#include <iprt/assert.h>
59#include <iprt/thread.h>
60#include <iprt/string.h>
61
62/* Don't wanna include everything. */
63extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
64extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
65extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
66extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
67extern void tlb_flush(CPUState *env, int flush_global);
68extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
69extern void sync_ldtr(CPUX86State *env1, int selector);
70extern int sync_tr(CPUX86State *env1, int selector);
71
72#ifdef VBOX_STRICT
73unsigned long get_phys_page_offset(target_ulong addr);
74#endif
75
76/*******************************************************************************
77* Defined Constants And Macros *
78*******************************************************************************/
79
80/** Copy 80-bit fpu register at pSrc to pDst.
81 * This is probably faster than *calling* memcpy.
82 */
83#define REM_COPY_FPU_REG(pDst, pSrc) \
84 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
85
86
87/*******************************************************************************
88* Internal Functions *
89*******************************************************************************/
90static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
91static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
92static void remR3StateUpdate(PVM pVM);
93
94static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
95static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
96static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
97static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
98static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
99static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
100
101static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
102static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
103static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
104static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
105static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
107
108
109/*******************************************************************************
110* Global Variables *
111*******************************************************************************/
112
113/** @todo Move stats to REM::s some rainy day we have nothing do to. */
114#ifdef VBOX_WITH_STATISTICS
115static STAMPROFILEADV gStatExecuteSingleInstr;
116static STAMPROFILEADV gStatCompilationQEmu;
117static STAMPROFILEADV gStatRunCodeQEmu;
118static STAMPROFILEADV gStatTotalTimeQEmu;
119static STAMPROFILEADV gStatTimers;
120static STAMPROFILEADV gStatTBLookup;
121static STAMPROFILEADV gStatIRQ;
122static STAMPROFILEADV gStatRawCheck;
123static STAMPROFILEADV gStatMemRead;
124static STAMPROFILEADV gStatMemWrite;
125static STAMPROFILE gStatGCPhys2HCVirt;
126static STAMPROFILE gStatHCVirt2GCPhys;
127static STAMCOUNTER gStatCpuGetTSC;
128static STAMCOUNTER gStatRefuseTFInhibit;
129static STAMCOUNTER gStatRefuseVM86;
130static STAMCOUNTER gStatRefusePaging;
131static STAMCOUNTER gStatRefusePAE;
132static STAMCOUNTER gStatRefuseIOPLNot0;
133static STAMCOUNTER gStatRefuseIF0;
134static STAMCOUNTER gStatRefuseCode16;
135static STAMCOUNTER gStatRefuseWP0;
136static STAMCOUNTER gStatRefuseRing1or2;
137static STAMCOUNTER gStatRefuseCanExecute;
138static STAMCOUNTER gStatREMGDTChange;
139static STAMCOUNTER gStatREMIDTChange;
140static STAMCOUNTER gStatREMLDTRChange;
141static STAMCOUNTER gStatREMTRChange;
142static STAMCOUNTER gStatSelOutOfSync[6];
143static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
144static STAMCOUNTER gStatFlushTBs;
145#endif
146
147/*
148 * Global stuff.
149 */
150
151/** MMIO read callbacks. */
152CPUReadMemoryFunc *g_apfnMMIORead[3] =
153{
154 remR3MMIOReadU8,
155 remR3MMIOReadU16,
156 remR3MMIOReadU32
157};
158
159/** MMIO write callbacks. */
160CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
161{
162 remR3MMIOWriteU8,
163 remR3MMIOWriteU16,
164 remR3MMIOWriteU32
165};
166
167/** Handler read callbacks. */
168CPUReadMemoryFunc *g_apfnHandlerRead[3] =
169{
170 remR3HandlerReadU8,
171 remR3HandlerReadU16,
172 remR3HandlerReadU32
173};
174
175/** Handler write callbacks. */
176CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
177{
178 remR3HandlerWriteU8,
179 remR3HandlerWriteU16,
180 remR3HandlerWriteU32
181};
182
183
184#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
185/*
186 * Debugger commands.
187 */
188static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
189
190/** '.remstep' arguments. */
191static const DBGCVARDESC g_aArgRemStep[] =
192{
193 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
194 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
195};
196
197/** Command descriptors. */
198static const DBGCCMD g_aCmds[] =
199{
200 {
201 .pszCmd ="remstep",
202 .cArgsMin = 0,
203 .cArgsMax = 1,
204 .paArgDescs = &g_aArgRemStep[0],
205 .cArgDescs = RT_ELEMENTS(g_aArgRemStep),
206 .pResultDesc = NULL,
207 .fFlags = 0,
208 .pfnHandler = remR3CmdDisasEnableStepping,
209 .pszSyntax = "[on/off]",
210 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
211 "If no arguments show the current state."
212 }
213};
214#endif
215
216
217/*******************************************************************************
218* Internal Functions *
219*******************************************************************************/
220void remAbort(int rc, const char *pszTip);
221extern int testmath(void);
222
223/* Put them here to avoid unused variable warning. */
224AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
225#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
226//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
227/* Why did this have to be identical?? */
228AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
229#else
230AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
231#endif
232
233
234/* Prologue code, must be in lower 4G to simplify jumps to/from generated code */
235uint8_t* code_gen_prologue;
236
237/**
238 * Initializes the REM.
239 *
240 * @returns VBox status code.
241 * @param pVM The VM to operate on.
242 */
243REMR3DECL(int) REMR3Init(PVM pVM)
244{
245 uint32_t u32Dummy;
246 unsigned i;
247 int rc;
248
249 /*
250 * Assert sanity.
251 */
252 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
253 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
254 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
255#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
256 Assert(!testmath());
257#endif
258 /*
259 * Init some internal data members.
260 */
261 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
262 pVM->rem.s.Env.pVM = pVM;
263#ifdef CPU_RAW_MODE_INIT
264 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
265#endif
266
267 /* ctx. */
268 pVM->rem.s.pCtx = CPUMQueryGuestCtxPtr(pVM);
269 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
270
271 /* ignore all notifications */
272 pVM->rem.s.fIgnoreAll = true;
273
274 code_gen_prologue = RTMemExecAlloc(_1K);
275
276 cpu_exec_init_all(0);
277
278 /*
279 * Init the recompiler.
280 */
281 if (!cpu_x86_init(&pVM->rem.s.Env, "vbox"))
282 {
283 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
284 return VERR_GENERAL_FAILURE;
285 }
286 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
287 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
288
289 /* allocate code buffer for single instruction emulation. */
290 pVM->rem.s.Env.cbCodeBuffer = 4096;
291 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
292 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
293
294 /* finally, set the cpu_single_env global. */
295 cpu_single_env = &pVM->rem.s.Env;
296
297 /* Nothing is pending by default */
298 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
299
300 /*
301 * Register ram types.
302 */
303 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
304 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
305 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
306 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
307 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
308
309 /* stop ignoring. */
310 pVM->rem.s.fIgnoreAll = false;
311
312 /*
313 * Register the saved state data unit.
314 */
315 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
316 NULL, remR3Save, NULL,
317 NULL, remR3Load, NULL);
318 if (RT_FAILURE(rc))
319 return rc;
320
321#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
322 /*
323 * Debugger commands.
324 */
325 static bool fRegisteredCmds = false;
326 if (!fRegisteredCmds)
327 {
328 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
329 if (RT_SUCCESS(rc))
330 fRegisteredCmds = true;
331 }
332#endif
333
334#ifdef VBOX_WITH_STATISTICS
335 /*
336 * Statistics.
337 */
338 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
339 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
340 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
341 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
342 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
343 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
344 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
345 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
346 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
347 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
348 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
349 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
350
351 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
352
353 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
354 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
355 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
356 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
357 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
358 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
359 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
360 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
361 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
362 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
363 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
364
365 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
366 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
367 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
368 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
369
370 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
371 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
372 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
373 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
374 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
375 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
376
377 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
378 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
379 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
380 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
383
384
385#endif
386
387#ifdef DEBUG_ALL_LOGGING
388 loglevel = ~0;
389 logfile = fopen("/tmp/vbox-qemu.log", "w");
390#endif
391
392 return rc;
393}
394
395
396/**
397 * Terminates the REM.
398 *
399 * Termination means cleaning up and freeing all resources,
400 * the VM it self is at this point powered off or suspended.
401 *
402 * @returns VBox status code.
403 * @param pVM The VM to operate on.
404 */
405REMR3DECL(int) REMR3Term(PVM pVM)
406{
407 return VINF_SUCCESS;
408}
409
410
411/**
412 * The VM is being reset.
413 *
414 * For the REM component this means to call the cpu_reset() and
415 * reinitialize some state variables.
416 *
417 * @param pVM VM handle.
418 */
419REMR3DECL(void) REMR3Reset(PVM pVM)
420{
421 /*
422 * Reset the REM cpu.
423 */
424 pVM->rem.s.fIgnoreAll = true;
425 cpu_reset(&pVM->rem.s.Env);
426 pVM->rem.s.cInvalidatedPages = 0;
427 pVM->rem.s.fIgnoreAll = false;
428
429 /* Clear raw ring 0 init state */
430 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
431
432 /* Flush the TBs the next time we execute code here. */
433 pVM->rem.s.fFlushTBs = true;
434}
435
436
437/**
438 * Execute state save operation.
439 *
440 * @returns VBox status code.
441 * @param pVM VM Handle.
442 * @param pSSM SSM operation handle.
443 */
444static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
445{
446 /*
447 * Save the required CPU Env bits.
448 * (Not much because we're never in REM when doing the save.)
449 */
450 PREM pRem = &pVM->rem.s;
451 LogFlow(("remR3Save:\n"));
452 Assert(!pRem->fInREM);
453 SSMR3PutU32(pSSM, pRem->Env.hflags);
454 SSMR3PutU32(pSSM, ~0); /* separator */
455
456 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
457 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
458 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
459
460 return SSMR3PutU32(pSSM, ~0); /* terminator */
461}
462
463
464/**
465 * Execute state load operation.
466 *
467 * @returns VBox status code.
468 * @param pVM VM Handle.
469 * @param pSSM SSM operation handle.
470 * @param u32Version Data layout version.
471 */
472static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
473{
474 uint32_t u32Dummy;
475 uint32_t fRawRing0 = false;
476 uint32_t u32Sep;
477 int rc;
478 PREM pRem;
479 LogFlow(("remR3Load:\n"));
480
481 /*
482 * Validate version.
483 */
484 if ( u32Version != REM_SAVED_STATE_VERSION
485 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
486 {
487 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
488 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
489 }
490
491 /*
492 * Do a reset to be on the safe side...
493 */
494 REMR3Reset(pVM);
495
496 /*
497 * Ignore all ignorable notifications.
498 * (Not doing this will cause serious trouble.)
499 */
500 pVM->rem.s.fIgnoreAll = true;
501
502 /*
503 * Load the required CPU Env bits.
504 * (Not much because we're never in REM when doing the save.)
505 */
506 pRem = &pVM->rem.s;
507 Assert(!pRem->fInREM);
508 SSMR3GetU32(pSSM, &pRem->Env.hflags);
509 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
510 {
511 /* Redundant REM CPU state has to be loaded, but can be ignored. */
512 CPUX86State_Ver16 temp;
513 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
514 }
515
516 rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
517 if (RT_FAILURE(rc))
518 return rc;
519 if (u32Sep != ~0U)
520 {
521 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
522 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
523 }
524
525 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
526 SSMR3GetUInt(pSSM, &fRawRing0);
527 if (fRawRing0)
528 pRem->Env.state |= CPU_RAW_RING0;
529
530 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
531 {
532 unsigned i;
533
534 /*
535 * Load the REM stuff.
536 */
537 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
538 if (RT_FAILURE(rc))
539 return rc;
540 if (pRem->cInvalidatedPages > RT_ELEMENTS(pRem->aGCPtrInvalidatedPages))
541 {
542 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
543 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
544 }
545 for (i = 0; i < pRem->cInvalidatedPages; i++)
546 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
547 }
548
549 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
550 if (RT_FAILURE(rc))
551 return rc;
552
553 /* check the terminator. */
554 rc = SSMR3GetU32(pSSM, &u32Sep);
555 if (RT_FAILURE(rc))
556 return rc;
557 if (u32Sep != ~0U)
558 {
559 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
560 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
561 }
562
563 /*
564 * Get the CPUID features.
565 */
566 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
567 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
568
569 /*
570 * Sync the Load Flush the TLB
571 */
572 tlb_flush(&pRem->Env, 1);
573
574 /*
575 * Stop ignoring ignornable notifications.
576 */
577 pVM->rem.s.fIgnoreAll = false;
578
579 /*
580 * Sync the whole CPU state when executing code in the recompiler.
581 */
582 CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
583 return VINF_SUCCESS;
584}
585
586
587
588#undef LOG_GROUP
589#define LOG_GROUP LOG_GROUP_REM_RUN
590
591/**
592 * Single steps an instruction in recompiled mode.
593 *
594 * Before calling this function the REM state needs to be in sync with
595 * the VM. Call REMR3State() to perform the sync. It's only necessary
596 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
597 * and after calling REMR3StateBack().
598 *
599 * @returns VBox status code.
600 *
601 * @param pVM VM Handle.
602 */
603REMR3DECL(int) REMR3Step(PVM pVM)
604{
605 int rc, interrupt_request;
606 RTGCPTR GCPtrPC;
607 bool fBp;
608
609 /*
610 * Lock the REM - we don't wanna have anyone interrupting us
611 * while stepping - and enabled single stepping. We also ignore
612 * pending interrupts and suchlike.
613 */
614 interrupt_request = pVM->rem.s.Env.interrupt_request;
615 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
616 pVM->rem.s.Env.interrupt_request = 0;
617 cpu_single_step(&pVM->rem.s.Env, 1);
618
619 /*
620 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
621 */
622 GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
623 fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
624
625 /*
626 * Execute and handle the return code.
627 * We execute without enabling the cpu tick, so on success we'll
628 * just flip it on and off to make sure it moves
629 */
630 rc = cpu_exec(&pVM->rem.s.Env);
631 if (rc == EXCP_DEBUG)
632 {
633 TMCpuTickResume(pVM);
634 TMCpuTickPause(pVM);
635 TMVirtualResume(pVM);
636 TMVirtualPause(pVM);
637 rc = VINF_EM_DBG_STEPPED;
638 }
639 else
640 {
641 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
642 switch (rc)
643 {
644 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
645 case EXCP_HLT:
646 case EXCP_HALTED: rc = VINF_EM_HALT; break;
647 case EXCP_RC:
648 rc = pVM->rem.s.rc;
649 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
650 break;
651 default:
652 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
653 rc = VERR_INTERNAL_ERROR;
654 break;
655 }
656 }
657
658 /*
659 * Restore the stuff we changed to prevent interruption.
660 * Unlock the REM.
661 */
662 if (fBp)
663 {
664 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
665 Assert(rc2 == 0); NOREF(rc2);
666 }
667 cpu_single_step(&pVM->rem.s.Env, 0);
668 pVM->rem.s.Env.interrupt_request = interrupt_request;
669
670 return rc;
671}
672
673
674/**
675 * Set a breakpoint using the REM facilities.
676 *
677 * @returns VBox status code.
678 * @param pVM The VM handle.
679 * @param Address The breakpoint address.
680 * @thread The emulation thread.
681 */
682REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
683{
684 VM_ASSERT_EMT(pVM);
685 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
686 {
687 LogFlow(("REMR3BreakpointSet: Address=%RGv\n", Address));
688 return VINF_SUCCESS;
689 }
690 LogFlow(("REMR3BreakpointSet: Address=%RGv - failed!\n", Address));
691 return VERR_REM_NO_MORE_BP_SLOTS;
692}
693
694
695/**
696 * Clears a breakpoint set by REMR3BreakpointSet().
697 *
698 * @returns VBox status code.
699 * @param pVM The VM handle.
700 * @param Address The breakpoint address.
701 * @thread The emulation thread.
702 */
703REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
704{
705 VM_ASSERT_EMT(pVM);
706 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
707 {
708 LogFlow(("REMR3BreakpointClear: Address=%RGv\n", Address));
709 return VINF_SUCCESS;
710 }
711 LogFlow(("REMR3BreakpointClear: Address=%RGv - not found!\n", Address));
712 return VERR_REM_BP_NOT_FOUND;
713}
714
715
716/**
717 * Emulate an instruction.
718 *
719 * This function executes one instruction without letting anyone
720 * interrupt it. This is intended for being called while being in
721 * raw mode and thus will take care of all the state syncing between
722 * REM and the rest.
723 *
724 * @returns VBox status code.
725 * @param pVM VM handle.
726 */
727REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
728{
729 bool fFlushTBs;
730
731 int rc, rc2;
732 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
733
734 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
735 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
736 */
737 if (HWACCMIsEnabled(pVM))
738 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
739
740 /* Skip the TB flush as that's rather expensive and not necessary for single instruction emulation. */
741 fFlushTBs = pVM->rem.s.fFlushTBs;
742 pVM->rem.s.fFlushTBs = false;
743
744 /*
745 * Sync the state and enable single instruction / single stepping.
746 */
747 rc = REMR3State(pVM);
748 pVM->rem.s.fFlushTBs = fFlushTBs;
749 if (RT_SUCCESS(rc))
750 {
751 int interrupt_request = pVM->rem.s.Env.interrupt_request;
752 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
753 Assert(!pVM->rem.s.Env.singlestep_enabled);
754#if 1
755
756 /*
757 * Now we set the execute single instruction flag and enter the cpu_exec loop.
758 */
759 TMNotifyStartOfExecution(pVM);
760 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
761 rc = cpu_exec(&pVM->rem.s.Env);
762 TMNotifyEndOfExecution(pVM);
763 switch (rc)
764 {
765 /*
766 * Executed without anything out of the way happening.
767 */
768 case EXCP_SINGLE_INSTR:
769 rc = VINF_EM_RESCHEDULE;
770 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
771 break;
772
773 /*
774 * If we take a trap or start servicing a pending interrupt, we might end up here.
775 * (Timer thread or some other thread wishing EMT's attention.)
776 */
777 case EXCP_INTERRUPT:
778 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
779 rc = VINF_EM_RESCHEDULE;
780 break;
781
782 /*
783 * Single step, we assume!
784 * If there was a breakpoint there we're fucked now.
785 */
786 case EXCP_DEBUG:
787 {
788 /* breakpoint or single step? */
789 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
790 int iBP;
791 rc = VINF_EM_DBG_STEPPED;
792 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
793 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
794 {
795 rc = VINF_EM_DBG_BREAKPOINT;
796 break;
797 }
798 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
799 break;
800 }
801
802 /*
803 * hlt instruction.
804 */
805 case EXCP_HLT:
806 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
807 rc = VINF_EM_HALT;
808 break;
809
810 /*
811 * The VM has halted.
812 */
813 case EXCP_HALTED:
814 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
815 rc = VINF_EM_HALT;
816 break;
817
818 /*
819 * Switch to RAW-mode.
820 */
821 case EXCP_EXECUTE_RAW:
822 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
823 rc = VINF_EM_RESCHEDULE_RAW;
824 break;
825
826 /*
827 * Switch to hardware accelerated RAW-mode.
828 */
829 case EXCP_EXECUTE_HWACC:
830 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
831 rc = VINF_EM_RESCHEDULE_HWACC;
832 break;
833
834 /*
835 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
836 */
837 case EXCP_RC:
838 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
839 rc = pVM->rem.s.rc;
840 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
841 break;
842
843 /*
844 * Figure out the rest when they arrive....
845 */
846 default:
847 AssertMsgFailed(("rc=%d\n", rc));
848 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
849 rc = VINF_EM_RESCHEDULE;
850 break;
851 }
852
853 /*
854 * Switch back the state.
855 */
856#else
857 pVM->rem.s.Env.interrupt_request = 0;
858 cpu_single_step(&pVM->rem.s.Env, 1);
859
860 /*
861 * Execute and handle the return code.
862 * We execute without enabling the cpu tick, so on success we'll
863 * just flip it on and off to make sure it moves.
864 *
865 * (We do not use emulate_single_instr() because that doesn't enter the
866 * right way in will cause serious trouble if a longjmp was attempted.)
867 */
868# ifdef DEBUG_bird
869 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
870# endif
871 TMNotifyStartOfExecution(pVM);
872 int cTimesMax = 16384;
873 uint32_t eip = pVM->rem.s.Env.eip;
874 do
875 {
876 rc = cpu_exec(&pVM->rem.s.Env);
877
878 } while ( eip == pVM->rem.s.Env.eip
879 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
880 && --cTimesMax > 0);
881 TMNotifyEndOfExecution(pVM);
882 switch (rc)
883 {
884 /*
885 * Single step, we assume!
886 * If there was a breakpoint there we're fucked now.
887 */
888 case EXCP_DEBUG:
889 {
890 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
891 rc = VINF_EM_RESCHEDULE;
892 break;
893 }
894
895 /*
896 * We cannot be interrupted!
897 */
898 case EXCP_INTERRUPT:
899 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
900 rc = VERR_INTERNAL_ERROR;
901 break;
902
903 /*
904 * hlt instruction.
905 */
906 case EXCP_HLT:
907 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
908 rc = VINF_EM_HALT;
909 break;
910
911 /*
912 * The VM has halted.
913 */
914 case EXCP_HALTED:
915 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
916 rc = VINF_EM_HALT;
917 break;
918
919 /*
920 * Switch to RAW-mode.
921 */
922 case EXCP_EXECUTE_RAW:
923 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
924 rc = VINF_EM_RESCHEDULE_RAW;
925 break;
926
927 /*
928 * Switch to hardware accelerated RAW-mode.
929 */
930 case EXCP_EXECUTE_HWACC:
931 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
932 rc = VINF_EM_RESCHEDULE_HWACC;
933 break;
934
935 /*
936 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
937 */
938 case EXCP_RC:
939 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
940 rc = pVM->rem.s.rc;
941 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
942 break;
943
944 /*
945 * Figure out the rest when they arrive....
946 */
947 default:
948 AssertMsgFailed(("rc=%d\n", rc));
949 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
950 rc = VINF_SUCCESS;
951 break;
952 }
953
954 /*
955 * Switch back the state.
956 */
957 cpu_single_step(&pVM->rem.s.Env, 0);
958#endif
959 pVM->rem.s.Env.interrupt_request = interrupt_request;
960 rc2 = REMR3StateBack(pVM);
961 AssertRC(rc2);
962 }
963
964 Log2(("REMR3EmulateInstruction: returns %Rrc (cs:eip=%04x:%RGv)\n",
965 rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
966 return rc;
967}
968
969
970/**
971 * Runs code in recompiled mode.
972 *
973 * Before calling this function the REM state needs to be in sync with
974 * the VM. Call REMR3State() to perform the sync. It's only necessary
975 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
976 * and after calling REMR3StateBack().
977 *
978 * @returns VBox status code.
979 *
980 * @param pVM VM Handle.
981 */
982REMR3DECL(int) REMR3Run(PVM pVM)
983{
984 int rc;
985 Log2(("REMR3Run: (cs:eip=%04x:%RGv)\n", pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
986 Assert(pVM->rem.s.fInREM);
987
988 TMNotifyStartOfExecution(pVM);
989 rc = cpu_exec(&pVM->rem.s.Env);
990 TMNotifyEndOfExecution(pVM);
991 switch (rc)
992 {
993 /*
994 * This happens when the execution was interrupted
995 * by an external event, like pending timers.
996 */
997 case EXCP_INTERRUPT:
998 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
999 rc = VINF_SUCCESS;
1000 break;
1001
1002 /*
1003 * hlt instruction.
1004 */
1005 case EXCP_HLT:
1006 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1007 rc = VINF_EM_HALT;
1008 break;
1009
1010 /*
1011 * The VM has halted.
1012 */
1013 case EXCP_HALTED:
1014 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1015 rc = VINF_EM_HALT;
1016 break;
1017
1018 /*
1019 * Breakpoint/single step.
1020 */
1021 case EXCP_DEBUG:
1022 {
1023#if 0//def DEBUG_bird
1024 static int iBP = 0;
1025 printf("howdy, breakpoint! iBP=%d\n", iBP);
1026 switch (iBP)
1027 {
1028 case 0:
1029 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1030 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1031 //pVM->rem.s.Env.interrupt_request = 0;
1032 //pVM->rem.s.Env.exception_index = -1;
1033 //g_fInterruptDisabled = 1;
1034 rc = VINF_SUCCESS;
1035 asm("int3");
1036 break;
1037 default:
1038 asm("int3");
1039 break;
1040 }
1041 iBP++;
1042#else
1043 /* breakpoint or single step? */
1044 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1045 int iBP;
1046 rc = VINF_EM_DBG_STEPPED;
1047 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1048 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1049 {
1050 rc = VINF_EM_DBG_BREAKPOINT;
1051 break;
1052 }
1053 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
1054#endif
1055 break;
1056 }
1057
1058 /*
1059 * Switch to RAW-mode.
1060 */
1061 case EXCP_EXECUTE_RAW:
1062 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1063 rc = VINF_EM_RESCHEDULE_RAW;
1064 break;
1065
1066 /*
1067 * Switch to hardware accelerated RAW-mode.
1068 */
1069 case EXCP_EXECUTE_HWACC:
1070 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1071 rc = VINF_EM_RESCHEDULE_HWACC;
1072 break;
1073
1074 /*
1075 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1076 */
1077 case EXCP_RC:
1078 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
1079 rc = pVM->rem.s.rc;
1080 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1081 break;
1082
1083 /*
1084 * Figure out the rest when they arrive....
1085 */
1086 default:
1087 AssertMsgFailed(("rc=%d\n", rc));
1088 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1089 rc = VINF_SUCCESS;
1090 break;
1091 }
1092
1093 Log2(("REMR3Run: returns %Rrc (cs:eip=%04x:%RGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1094 return rc;
1095}
1096
1097
1098/**
1099 * Check if the cpu state is suitable for Raw execution.
1100 *
1101 * @returns boolean
1102 * @param env The CPU env struct.
1103 * @param eip The EIP to check this for (might differ from env->eip).
1104 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1105 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1106 *
1107 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1108 */
1109bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1110{
1111 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1112 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1113 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1114 uint32_t u32CR0;
1115
1116 /* Update counter. */
1117 env->pVM->rem.s.cCanExecuteRaw++;
1118
1119 if (HWACCMIsEnabled(env->pVM))
1120 {
1121 CPUMCTX Ctx;
1122
1123 env->state |= CPU_RAW_HWACC;
1124
1125 /*
1126 * Create partial context for HWACCMR3CanExecuteGuest
1127 */
1128 Ctx.cr0 = env->cr[0];
1129 Ctx.cr3 = env->cr[3];
1130 Ctx.cr4 = env->cr[4];
1131
1132 Ctx.tr = env->tr.selector;
1133 Ctx.trHid.u64Base = env->tr.base;
1134 Ctx.trHid.u32Limit = env->tr.limit;
1135 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1136
1137 Ctx.idtr.cbIdt = env->idt.limit;
1138 Ctx.idtr.pIdt = env->idt.base;
1139
1140 Ctx.eflags.u32 = env->eflags;
1141
1142 Ctx.cs = env->segs[R_CS].selector;
1143 Ctx.csHid.u64Base = env->segs[R_CS].base;
1144 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1145 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1146
1147 Ctx.ds = env->segs[R_DS].selector;
1148 Ctx.dsHid.u64Base = env->segs[R_DS].base;
1149 Ctx.dsHid.u32Limit = env->segs[R_DS].limit;
1150 Ctx.dsHid.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1151
1152 Ctx.es = env->segs[R_ES].selector;
1153 Ctx.esHid.u64Base = env->segs[R_ES].base;
1154 Ctx.esHid.u32Limit = env->segs[R_ES].limit;
1155 Ctx.esHid.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1156
1157 Ctx.fs = env->segs[R_FS].selector;
1158 Ctx.fsHid.u64Base = env->segs[R_FS].base;
1159 Ctx.fsHid.u32Limit = env->segs[R_FS].limit;
1160 Ctx.fsHid.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1161
1162 Ctx.gs = env->segs[R_GS].selector;
1163 Ctx.gsHid.u64Base = env->segs[R_GS].base;
1164 Ctx.gsHid.u32Limit = env->segs[R_GS].limit;
1165 Ctx.gsHid.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1166
1167 Ctx.ss = env->segs[R_SS].selector;
1168 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1169 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1170 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1171
1172 Ctx.msrEFER = env->efer;
1173
1174 /* Hardware accelerated raw-mode:
1175 *
1176 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1177 */
1178 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1179 {
1180 *piException = EXCP_EXECUTE_HWACC;
1181 return true;
1182 }
1183 return false;
1184 }
1185
1186 /*
1187 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1188 * or 32 bits protected mode ring 0 code
1189 *
1190 * The tests are ordered by the likelyhood of being true during normal execution.
1191 */
1192 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1193 {
1194 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1195 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1196 return false;
1197 }
1198
1199#ifndef VBOX_RAW_V86
1200 if (fFlags & VM_MASK) {
1201 STAM_COUNTER_INC(&gStatRefuseVM86);
1202 Log2(("raw mode refused: VM_MASK\n"));
1203 return false;
1204 }
1205#endif
1206
1207 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1208 {
1209#ifndef DEBUG_bird
1210 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1211#endif
1212 return false;
1213 }
1214
1215 if (env->singlestep_enabled)
1216 {
1217 //Log2(("raw mode refused: Single step\n"));
1218 return false;
1219 }
1220
1221 if (env->nb_breakpoints > 0)
1222 {
1223 //Log2(("raw mode refused: Breakpoints\n"));
1224 return false;
1225 }
1226
1227 u32CR0 = env->cr[0];
1228 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1229 {
1230 STAM_COUNTER_INC(&gStatRefusePaging);
1231 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1232 return false;
1233 }
1234
1235 if (env->cr[4] & CR4_PAE_MASK)
1236 {
1237 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1238 {
1239 STAM_COUNTER_INC(&gStatRefusePAE);
1240 return false;
1241 }
1242 }
1243
1244 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1245 {
1246 if (!EMIsRawRing3Enabled(env->pVM))
1247 return false;
1248
1249 if (!(env->eflags & IF_MASK))
1250 {
1251 STAM_COUNTER_INC(&gStatRefuseIF0);
1252 Log2(("raw mode refused: IF (RawR3)\n"));
1253 return false;
1254 }
1255
1256 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1257 {
1258 STAM_COUNTER_INC(&gStatRefuseWP0);
1259 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1260 return false;
1261 }
1262 }
1263 else
1264 {
1265 if (!EMIsRawRing0Enabled(env->pVM))
1266 return false;
1267
1268 // Let's start with pure 32 bits ring 0 code first
1269 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1270 {
1271 STAM_COUNTER_INC(&gStatRefuseCode16);
1272 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1273 return false;
1274 }
1275
1276 // Only R0
1277 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1278 {
1279 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1280 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1281 return false;
1282 }
1283
1284 if (!(u32CR0 & CR0_WP_MASK))
1285 {
1286 STAM_COUNTER_INC(&gStatRefuseWP0);
1287 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1288 return false;
1289 }
1290
1291 if (PATMIsPatchGCAddr(env->pVM, eip))
1292 {
1293 Log2(("raw r0 mode forced: patch code\n"));
1294 *piException = EXCP_EXECUTE_RAW;
1295 return true;
1296 }
1297
1298#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1299 if (!(env->eflags & IF_MASK))
1300 {
1301 STAM_COUNTER_INC(&gStatRefuseIF0);
1302 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1303 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1304 return false;
1305 }
1306#endif
1307
1308 env->state |= CPU_RAW_RING0;
1309 }
1310
1311 /*
1312 * Don't reschedule the first time we're called, because there might be
1313 * special reasons why we're here that is not covered by the above checks.
1314 */
1315 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1316 {
1317 Log2(("raw mode refused: first scheduling\n"));
1318 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1319 return false;
1320 }
1321
1322 Assert(PGMPhysIsA20Enabled(env->pVM));
1323 *piException = EXCP_EXECUTE_RAW;
1324 return true;
1325}
1326
1327
1328/**
1329 * Fetches a code byte.
1330 *
1331 * @returns Success indicator (bool) for ease of use.
1332 * @param env The CPU environment structure.
1333 * @param GCPtrInstr Where to fetch code.
1334 * @param pu8Byte Where to store the byte on success
1335 */
1336bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1337{
1338 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1339 if (RT_SUCCESS(rc))
1340 return true;
1341 return false;
1342}
1343
1344
1345/**
1346 * Flush (or invalidate if you like) page table/dir entry.
1347 *
1348 * (invlpg instruction; tlb_flush_page)
1349 *
1350 * @param env Pointer to cpu environment.
1351 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1352 */
1353void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1354{
1355 PVM pVM = env->pVM;
1356 PCPUMCTX pCtx;
1357 int rc;
1358
1359 /*
1360 * When we're replaying invlpg instructions or restoring a saved
1361 * state we disable this path.
1362 */
1363 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1364 return;
1365 Log(("remR3FlushPage: GCPtr=%RGv\n", GCPtr));
1366 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1367
1368 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1369
1370 /*
1371 * Update the control registers before calling PGMFlushPage.
1372 */
1373 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1374 pCtx->cr0 = env->cr[0];
1375 pCtx->cr3 = env->cr[3];
1376 pCtx->cr4 = env->cr[4];
1377
1378 /*
1379 * Let PGM do the rest.
1380 */
1381 rc = PGMInvalidatePage(pVM, GCPtr);
1382 if (RT_FAILURE(rc))
1383 {
1384 AssertMsgFailed(("remR3FlushPage %RGv failed with %d!!\n", GCPtr, rc));
1385 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1386 }
1387 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1388}
1389
1390
1391#ifndef REM_PHYS_ADDR_IN_TLB
1392void* remR3GCPhys2HCVirt(CPUState *env1, target_ulong physAddr, target_ulong virtAddr)
1393{
1394 void* rv = NULL;
1395 int rc;
1396 uint32_t flags = PGMPHYS_TRANSLATION_FLAG_CHECK_PHYS_MONITORED;
1397
1398 if (virtAddr != (target_ulong)-1)
1399 flags |= PGMPHYS_TRANSLATION_FLAG_CHECK_VIRT_MONITORED;
1400
1401 rc = PGMPhysGCPhys2R3PtrEx(env1->pVM, (RTGCPHYS)physAddr, (RTGCPTR)virtAddr,
1402 flags, &rv);
1403
1404 if (rc == VERR_PGM_PHYS_PAGE_RESERVED)
1405 {
1406 return (void*)-1;
1407 }
1408 Assert (RT_SUCCESS(rc));
1409
1410 return rv;
1411}
1412
1413target_ulong remR3HCVirt2GCPhys(CPUState *env1, void *addr)
1414{
1415 RTGCPHYS rv = 0;
1416 int rc;
1417
1418 rc = PGMR3DbgR3Ptr2GCPhys(env1->pVM, (RTR3PTR)addr, &rv);
1419 Assert (RT_SUCCESS(rc));
1420
1421 return (target_ulong)rv;
1422}
1423#endif
1424
1425/**
1426 * Called from tlb_protect_code in order to write monitor a code page.
1427 *
1428 * @param env Pointer to the CPU environment.
1429 * @param GCPtr Code page to monitor
1430 */
1431void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1432{
1433#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1434 Assert(env->pVM->rem.s.fInREM);
1435 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1436 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1437 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1438 && !(env->eflags & VM_MASK) /* no V86 mode */
1439 && !HWACCMIsEnabled(env->pVM))
1440 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1441#endif
1442}
1443
1444/**
1445 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1446 *
1447 * @param env Pointer to the CPU environment.
1448 * @param GCPtr Code page to monitor
1449 */
1450void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1451{
1452 Assert(env->pVM->rem.s.fInREM);
1453#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1454 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1455 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1456 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1457 && !(env->eflags & VM_MASK) /* no V86 mode */
1458 && !HWACCMIsEnabled(env->pVM))
1459 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1460#endif
1461}
1462
1463/**
1464 * Called when the CPU is initialized, any of the CRx registers are changed or
1465 * when the A20 line is modified.
1466 *
1467 * @param env Pointer to the CPU environment.
1468 * @param fGlobal Set if the flush is global.
1469 */
1470void remR3FlushTLB(CPUState *env, bool fGlobal)
1471{
1472 PVM pVM = env->pVM;
1473 PCPUMCTX pCtx;
1474
1475 /*
1476 * When we're replaying invlpg instructions or restoring a saved
1477 * state we disable this path.
1478 */
1479 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1480 return;
1481 Assert(pVM->rem.s.fInREM);
1482
1483 /*
1484 * The caller doesn't check cr4, so we have to do that for ourselves.
1485 */
1486 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1487 fGlobal = true;
1488 Log(("remR3FlushTLB: CR0=%RGr CR3=%RGr CR4=%RGr %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1489
1490 /*
1491 * Update the control registers before calling PGMR3FlushTLB.
1492 */
1493 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1494 pCtx->cr0 = env->cr[0];
1495 pCtx->cr3 = env->cr[3];
1496 pCtx->cr4 = env->cr[4];
1497
1498 /*
1499 * Let PGM do the rest.
1500 */
1501 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1502}
1503
1504
1505/**
1506 * Called when any of the cr0, cr4 or efer registers is updated.
1507 *
1508 * @param env Pointer to the CPU environment.
1509 */
1510void remR3ChangeCpuMode(CPUState *env)
1511{
1512 int rc;
1513 PVM pVM = env->pVM;
1514 PCPUMCTX pCtx;
1515
1516 /*
1517 * When we're replaying loads or restoring a saved
1518 * state this path is disabled.
1519 */
1520 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1521 return;
1522 Assert(pVM->rem.s.fInREM);
1523
1524 /*
1525 * Update the control registers before calling PGMChangeMode()
1526 * as it may need to map whatever cr3 is pointing to.
1527 */
1528 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1529 pCtx->cr0 = env->cr[0];
1530 pCtx->cr3 = env->cr[3];
1531 pCtx->cr4 = env->cr[4];
1532
1533#ifdef TARGET_X86_64
1534 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1535 if (rc != VINF_SUCCESS)
1536 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], env->efer, rc);
1537#else
1538 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1539 if (rc != VINF_SUCCESS)
1540 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], 0LL, rc);
1541#endif
1542}
1543
1544
1545/**
1546 * Called from compiled code to run dma.
1547 *
1548 * @param env Pointer to the CPU environment.
1549 */
1550void remR3DmaRun(CPUState *env)
1551{
1552 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1553 PDMR3DmaRun(env->pVM);
1554 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1555}
1556
1557
1558/**
1559 * Called from compiled code to schedule pending timers in VMM
1560 *
1561 * @param env Pointer to the CPU environment.
1562 */
1563void remR3TimersRun(CPUState *env)
1564{
1565 LogFlow(("remR3TimersRun:\n"));
1566 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1567 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1568 TMR3TimerQueuesDo(env->pVM);
1569 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1570 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1571}
1572
1573
1574/**
1575 * Record trap occurance
1576 *
1577 * @returns VBox status code
1578 * @param env Pointer to the CPU environment.
1579 * @param uTrap Trap nr
1580 * @param uErrorCode Error code
1581 * @param pvNextEIP Next EIP
1582 */
1583int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1584{
1585 PVM pVM = env->pVM;
1586#ifdef VBOX_WITH_STATISTICS
1587 static STAMCOUNTER s_aStatTrap[255];
1588 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1589#endif
1590
1591#ifdef VBOX_WITH_STATISTICS
1592 if (uTrap < 255)
1593 {
1594 if (!s_aRegisters[uTrap])
1595 {
1596 char szStatName[64];
1597 s_aRegisters[uTrap] = true;
1598 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1599 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1600 }
1601 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1602 }
1603#endif
1604 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, (RTGCPTR)pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1605 if( uTrap < 0x20
1606 && (env->cr[0] & X86_CR0_PE)
1607 && !(env->eflags & X86_EFL_VM))
1608 {
1609#ifdef DEBUG
1610 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1611#endif
1612 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1613 {
1614 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, (RTGCPTR)pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1615 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1616 return VERR_REM_TOO_MANY_TRAPS;
1617 }
1618 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1619 pVM->rem.s.cPendingExceptions = 1;
1620 pVM->rem.s.uPendingException = uTrap;
1621 pVM->rem.s.uPendingExcptEIP = env->eip;
1622 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1623 }
1624 else
1625 {
1626 pVM->rem.s.cPendingExceptions = 0;
1627 pVM->rem.s.uPendingException = uTrap;
1628 pVM->rem.s.uPendingExcptEIP = env->eip;
1629 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1630 }
1631 return VINF_SUCCESS;
1632}
1633
1634
1635/*
1636 * Clear current active trap
1637 *
1638 * @param pVM VM Handle.
1639 */
1640void remR3TrapClear(PVM pVM)
1641{
1642 pVM->rem.s.cPendingExceptions = 0;
1643 pVM->rem.s.uPendingException = 0;
1644 pVM->rem.s.uPendingExcptEIP = 0;
1645 pVM->rem.s.uPendingExcptCR2 = 0;
1646}
1647
1648
1649/*
1650 * Record previous call instruction addresses
1651 *
1652 * @param env Pointer to the CPU environment.
1653 */
1654void remR3RecordCall(CPUState *env)
1655{
1656 CSAMR3RecordCallAddress(env->pVM, env->eip);
1657}
1658
1659
1660/**
1661 * Syncs the internal REM state with the VM.
1662 *
1663 * This must be called before REMR3Run() is invoked whenever when the REM
1664 * state is not up to date. Calling it several times in a row is not
1665 * permitted.
1666 *
1667 * @returns VBox status code.
1668 *
1669 * @param pVM VM Handle.
1670 * @param fFlushTBs Flush all translation blocks before executing code
1671 *
1672 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1673 * no do this since the majority of the callers don't want any unnecessary of events
1674 * pending that would immediatly interrupt execution.
1675 */
1676REMR3DECL(int) REMR3State(PVM pVM)
1677{
1678 register const CPUMCTX *pCtx;
1679 register unsigned fFlags;
1680 bool fHiddenSelRegsValid;
1681 unsigned i;
1682 TRPMEVENT enmType;
1683 uint8_t u8TrapNo;
1684 int rc;
1685
1686 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1687 Log2(("REMR3State:\n"));
1688
1689 pCtx = pVM->rem.s.pCtx;
1690 fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1691
1692 Assert(!pVM->rem.s.fInREM);
1693 pVM->rem.s.fInStateSync = true;
1694
1695 /*
1696 * If we have to flush TBs, do that immediately.
1697 */
1698 if (pVM->rem.s.fFlushTBs)
1699 {
1700 STAM_COUNTER_INC(&gStatFlushTBs);
1701 tb_flush(&pVM->rem.s.Env);
1702 pVM->rem.s.fFlushTBs = false;
1703 }
1704
1705 /*
1706 * Copy the registers which require no special handling.
1707 */
1708#ifdef TARGET_X86_64
1709 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1710 Assert(R_EAX == 0);
1711 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1712 Assert(R_ECX == 1);
1713 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1714 Assert(R_EDX == 2);
1715 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1716 Assert(R_EBX == 3);
1717 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1718 Assert(R_ESP == 4);
1719 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1720 Assert(R_EBP == 5);
1721 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1722 Assert(R_ESI == 6);
1723 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1724 Assert(R_EDI == 7);
1725 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1726 pVM->rem.s.Env.regs[8] = pCtx->r8;
1727 pVM->rem.s.Env.regs[9] = pCtx->r9;
1728 pVM->rem.s.Env.regs[10] = pCtx->r10;
1729 pVM->rem.s.Env.regs[11] = pCtx->r11;
1730 pVM->rem.s.Env.regs[12] = pCtx->r12;
1731 pVM->rem.s.Env.regs[13] = pCtx->r13;
1732 pVM->rem.s.Env.regs[14] = pCtx->r14;
1733 pVM->rem.s.Env.regs[15] = pCtx->r15;
1734
1735 pVM->rem.s.Env.eip = pCtx->rip;
1736
1737 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1738#else
1739 Assert(R_EAX == 0);
1740 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1741 Assert(R_ECX == 1);
1742 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1743 Assert(R_EDX == 2);
1744 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1745 Assert(R_EBX == 3);
1746 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1747 Assert(R_ESP == 4);
1748 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1749 Assert(R_EBP == 5);
1750 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1751 Assert(R_ESI == 6);
1752 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1753 Assert(R_EDI == 7);
1754 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1755 pVM->rem.s.Env.eip = pCtx->eip;
1756
1757 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1758#endif
1759
1760 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1761
1762 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1763 for (i=0;i<8;i++)
1764 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
1765
1766 /*
1767 * Clear the halted hidden flag (the interrupt waking up the CPU can
1768 * have been dispatched in raw mode).
1769 */
1770 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1771
1772 /*
1773 * Replay invlpg?
1774 */
1775 if (pVM->rem.s.cInvalidatedPages)
1776 {
1777 RTUINT i;
1778
1779 pVM->rem.s.fIgnoreInvlPg = true;
1780 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1781 {
1782 Log2(("REMR3State: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1783 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1784 }
1785 pVM->rem.s.fIgnoreInvlPg = false;
1786 pVM->rem.s.cInvalidatedPages = 0;
1787 }
1788
1789 /* Replay notification changes? */
1790 if (pVM->rem.s.cHandlerNotifications)
1791 REMR3ReplayHandlerNotifications(pVM);
1792
1793 /* Update MSRs; before CRx registers! */
1794 pVM->rem.s.Env.efer = pCtx->msrEFER;
1795 pVM->rem.s.Env.star = pCtx->msrSTAR;
1796 pVM->rem.s.Env.pat = pCtx->msrPAT;
1797#ifdef TARGET_X86_64
1798 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1799 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1800 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1801 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1802
1803 /* Update the internal long mode activate flag according to the new EFER value. */
1804 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1805 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1806 else
1807 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1808#endif
1809
1810
1811 /*
1812 * Registers which are rarely changed and require special handling / order when changed.
1813 */
1814 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1815 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1816 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1817 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1818 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1819 {
1820 if (fFlags & CPUM_CHANGED_FPU_REM)
1821 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1822
1823 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1824 {
1825 pVM->rem.s.fIgnoreCR3Load = true;
1826 tlb_flush(&pVM->rem.s.Env, true);
1827 pVM->rem.s.fIgnoreCR3Load = false;
1828 }
1829
1830 /* CR4 before CR0! */
1831 if (fFlags & CPUM_CHANGED_CR4)
1832 {
1833 pVM->rem.s.fIgnoreCR3Load = true;
1834 pVM->rem.s.fIgnoreCpuMode = true;
1835 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1836 pVM->rem.s.fIgnoreCpuMode = false;
1837 pVM->rem.s.fIgnoreCR3Load = false;
1838 }
1839
1840 if (fFlags & CPUM_CHANGED_CR0)
1841 {
1842 pVM->rem.s.fIgnoreCR3Load = true;
1843 pVM->rem.s.fIgnoreCpuMode = true;
1844 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1845 pVM->rem.s.fIgnoreCpuMode = false;
1846 pVM->rem.s.fIgnoreCR3Load = false;
1847 }
1848
1849 if (fFlags & CPUM_CHANGED_CR3)
1850 {
1851 pVM->rem.s.fIgnoreCR3Load = true;
1852 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1853 pVM->rem.s.fIgnoreCR3Load = false;
1854 }
1855
1856 if (fFlags & CPUM_CHANGED_GDTR)
1857 {
1858 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1859 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1860 }
1861
1862 if (fFlags & CPUM_CHANGED_IDTR)
1863 {
1864 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1865 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1866 }
1867
1868 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1869 {
1870 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1871 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1872 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1873 }
1874
1875 if (fFlags & CPUM_CHANGED_LDTR)
1876 {
1877 if (fHiddenSelRegsValid)
1878 {
1879 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1880 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1881 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1882 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1883 }
1884 else
1885 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1886 }
1887
1888 if (fFlags & CPUM_CHANGED_TR)
1889 {
1890 if (fHiddenSelRegsValid)
1891 {
1892 pVM->rem.s.Env.tr.selector = pCtx->tr;
1893 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1894 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1895 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1896 }
1897 else
1898 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1899
1900 /** @note do_interrupt will fault if the busy flag is still set.... */
1901 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1902 }
1903
1904 if (fFlags & CPUM_CHANGED_CPUID)
1905 {
1906 uint32_t u32Dummy;
1907
1908 /*
1909 * Get the CPUID features.
1910 */
1911 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1912 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1913 }
1914 }
1915
1916 /*
1917 * Update selector registers.
1918 * This must be done *after* we've synced gdt, ldt and crX registers
1919 * since we're reading the GDT/LDT om sync_seg. This will happen with
1920 * saved state which takes a quick dip into rawmode for instance.
1921 */
1922 /*
1923 * Stack; Note first check this one as the CPL might have changed. The
1924 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1925 */
1926
1927 if (fHiddenSelRegsValid)
1928 {
1929 /* The hidden selector registers are valid in the CPU context. */
1930 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1931
1932 /* Set current CPL */
1933 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1934
1935 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1936 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1937 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1938 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1939 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1940 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1941 }
1942 else
1943 {
1944 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1945 if (pVM->rem.s.Env.segs[R_SS].selector != pCtx->ss)
1946 {
1947 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1948
1949 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1950 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1951#ifdef VBOX_WITH_STATISTICS
1952 if (pVM->rem.s.Env.segs[R_SS].newselector)
1953 {
1954 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1955 }
1956#endif
1957 }
1958 else
1959 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1960
1961 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1962 {
1963 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1964 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1965#ifdef VBOX_WITH_STATISTICS
1966 if (pVM->rem.s.Env.segs[R_ES].newselector)
1967 {
1968 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1969 }
1970#endif
1971 }
1972 else
1973 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1974
1975 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1976 {
1977 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1978 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1979#ifdef VBOX_WITH_STATISTICS
1980 if (pVM->rem.s.Env.segs[R_CS].newselector)
1981 {
1982 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1983 }
1984#endif
1985 }
1986 else
1987 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1988
1989 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1990 {
1991 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1992 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1993#ifdef VBOX_WITH_STATISTICS
1994 if (pVM->rem.s.Env.segs[R_DS].newselector)
1995 {
1996 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1997 }
1998#endif
1999 }
2000 else
2001 pVM->rem.s.Env.segs[R_DS].newselector = 0;
2002
2003 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
2004 * be the same but not the base/limit. */
2005 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
2006 {
2007 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
2008 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
2009#ifdef VBOX_WITH_STATISTICS
2010 if (pVM->rem.s.Env.segs[R_FS].newselector)
2011 {
2012 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
2013 }
2014#endif
2015 }
2016 else
2017 pVM->rem.s.Env.segs[R_FS].newselector = 0;
2018
2019 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
2020 {
2021 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
2022 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
2023#ifdef VBOX_WITH_STATISTICS
2024 if (pVM->rem.s.Env.segs[R_GS].newselector)
2025 {
2026 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
2027 }
2028#endif
2029 }
2030 else
2031 pVM->rem.s.Env.segs[R_GS].newselector = 0;
2032 }
2033
2034 /*
2035 * Check for traps.
2036 */
2037 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
2038 rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
2039 if (RT_SUCCESS(rc))
2040 {
2041#ifdef DEBUG
2042 if (u8TrapNo == 0x80)
2043 {
2044 remR3DumpLnxSyscall(pVM);
2045 remR3DumpOBsdSyscall(pVM);
2046 }
2047#endif
2048
2049 pVM->rem.s.Env.exception_index = u8TrapNo;
2050 if (enmType != TRPM_SOFTWARE_INT)
2051 {
2052 pVM->rem.s.Env.exception_is_int = 0;
2053 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
2054 }
2055 else
2056 {
2057 /*
2058 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
2059 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
2060 * for int03 and into.
2061 */
2062 pVM->rem.s.Env.exception_is_int = 1;
2063 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
2064 /* int 3 may be generated by one-byte 0xcc */
2065 if (u8TrapNo == 3)
2066 {
2067 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
2068 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2069 }
2070 /* int 4 may be generated by one-byte 0xce */
2071 else if (u8TrapNo == 4)
2072 {
2073 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
2074 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2075 }
2076 }
2077
2078 /* get error code and cr2 if needed. */
2079 switch (u8TrapNo)
2080 {
2081 case 0x0e:
2082 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
2083 /* fallthru */
2084 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2085 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
2086 break;
2087
2088 case 0x11: case 0x08:
2089 default:
2090 pVM->rem.s.Env.error_code = 0;
2091 break;
2092 }
2093
2094 /*
2095 * We can now reset the active trap since the recompiler is gonna have a go at it.
2096 */
2097 rc = TRPMResetTrap(pVM);
2098 AssertRC(rc);
2099 Log2(("REMR3State: trap=%02x errcd=%RGv cr2=%RGv nexteip=%RGv%s\n", pVM->rem.s.Env.exception_index, (RTGCPTR)pVM->rem.s.Env.error_code,
2100 (RTGCPTR)pVM->rem.s.Env.cr[2], (RTGCPTR)pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2101 }
2102
2103 /*
2104 * Clear old interrupt request flags; Check for pending hardware interrupts.
2105 * (See @remark for why we don't check for other FFs.)
2106 */
2107 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2108 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2109 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2110 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2111
2112 /*
2113 * We're now in REM mode.
2114 */
2115 pVM->rem.s.fInREM = true;
2116 pVM->rem.s.fInStateSync = false;
2117 pVM->rem.s.cCanExecuteRaw = 0;
2118 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2119 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2120 return VINF_SUCCESS;
2121}
2122
2123
2124/**
2125 * Syncs back changes in the REM state to the the VM state.
2126 *
2127 * This must be called after invoking REMR3Run().
2128 * Calling it several times in a row is not permitted.
2129 *
2130 * @returns VBox status code.
2131 *
2132 * @param pVM VM Handle.
2133 */
2134REMR3DECL(int) REMR3StateBack(PVM pVM)
2135{
2136 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2137 unsigned i;
2138
2139 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2140 Log2(("REMR3StateBack:\n"));
2141 Assert(pVM->rem.s.fInREM);
2142
2143 /*
2144 * Copy back the registers.
2145 * This is done in the order they are declared in the CPUMCTX structure.
2146 */
2147
2148 /** @todo FOP */
2149 /** @todo FPUIP */
2150 /** @todo CS */
2151 /** @todo FPUDP */
2152 /** @todo DS */
2153 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2154 pCtx->fpu.MXCSR = 0;
2155 pCtx->fpu.MXCSR_MASK = 0;
2156
2157 /** @todo check if FPU/XMM was actually used in the recompiler */
2158 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2159//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2160
2161#ifdef TARGET_X86_64
2162 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2163 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2164 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2165 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2166 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2167 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2168 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2169 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2170 pCtx->r8 = pVM->rem.s.Env.regs[8];
2171 pCtx->r9 = pVM->rem.s.Env.regs[9];
2172 pCtx->r10 = pVM->rem.s.Env.regs[10];
2173 pCtx->r11 = pVM->rem.s.Env.regs[11];
2174 pCtx->r12 = pVM->rem.s.Env.regs[12];
2175 pCtx->r13 = pVM->rem.s.Env.regs[13];
2176 pCtx->r14 = pVM->rem.s.Env.regs[14];
2177 pCtx->r15 = pVM->rem.s.Env.regs[15];
2178
2179 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2180
2181#else
2182 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2183 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2184 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2185 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2186 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2187 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2188 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2189
2190 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2191#endif
2192
2193 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2194
2195#ifdef VBOX_WITH_STATISTICS
2196 if (pVM->rem.s.Env.segs[R_SS].newselector)
2197 {
2198 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2199 }
2200 if (pVM->rem.s.Env.segs[R_GS].newselector)
2201 {
2202 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2203 }
2204 if (pVM->rem.s.Env.segs[R_FS].newselector)
2205 {
2206 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2207 }
2208 if (pVM->rem.s.Env.segs[R_ES].newselector)
2209 {
2210 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2211 }
2212 if (pVM->rem.s.Env.segs[R_DS].newselector)
2213 {
2214 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2215 }
2216 if (pVM->rem.s.Env.segs[R_CS].newselector)
2217 {
2218 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2219 }
2220#endif
2221 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2222 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2223 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2224 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2225 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2226
2227#ifdef TARGET_X86_64
2228 pCtx->rip = pVM->rem.s.Env.eip;
2229 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2230#else
2231 pCtx->eip = pVM->rem.s.Env.eip;
2232 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2233#endif
2234
2235 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2236 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2237 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2238 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2239
2240 for (i=0;i<8;i++)
2241 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2242
2243 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2244 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2245 {
2246 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2247 STAM_COUNTER_INC(&gStatREMGDTChange);
2248 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2249 }
2250
2251 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2252 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2253 {
2254 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2255 STAM_COUNTER_INC(&gStatREMIDTChange);
2256 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2257 }
2258
2259 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2260 {
2261 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2262 STAM_COUNTER_INC(&gStatREMLDTRChange);
2263 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2264 }
2265 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2266 {
2267 pCtx->tr = pVM->rem.s.Env.tr.selector;
2268 STAM_COUNTER_INC(&gStatREMTRChange);
2269 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2270 }
2271
2272 /** @todo These values could still be out of sync! */
2273 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2274 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2275 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2276 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2277
2278 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2279 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2280 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2281
2282 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2283 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2284 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2285
2286 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2287 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2288 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2289
2290 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2291 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2292 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2293
2294 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2295 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2296 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2297
2298 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2299 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2300 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2301
2302 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2303 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2304 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2305
2306 /* Sysenter MSR */
2307 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2308 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2309 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2310
2311 /* System MSRs. */
2312 pCtx->msrEFER = pVM->rem.s.Env.efer;
2313 pCtx->msrSTAR = pVM->rem.s.Env.star;
2314 pCtx->msrPAT = pVM->rem.s.Env.pat;
2315#ifdef TARGET_X86_64
2316 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2317 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2318 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2319 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2320#endif
2321
2322 remR3TrapClear(pVM);
2323
2324 /*
2325 * Check for traps.
2326 */
2327 if ( pVM->rem.s.Env.exception_index >= 0
2328 && pVM->rem.s.Env.exception_index < 256)
2329 {
2330 int rc;
2331
2332 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2333 rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2334 AssertRC(rc);
2335 switch (pVM->rem.s.Env.exception_index)
2336 {
2337 case 0x0e:
2338 TRPMSetFaultAddress(pVM, pCtx->cr2);
2339 /* fallthru */
2340 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2341 case 0x11: case 0x08: /* 0 */
2342 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2343 break;
2344 }
2345
2346 }
2347
2348 /*
2349 * We're not longer in REM mode.
2350 */
2351 pVM->rem.s.fInREM = false;
2352 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2353 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2354 return VINF_SUCCESS;
2355}
2356
2357
2358/**
2359 * This is called by the disassembler when it wants to update the cpu state
2360 * before for instance doing a register dump.
2361 */
2362static void remR3StateUpdate(PVM pVM)
2363{
2364 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2365 unsigned i;
2366
2367 Assert(pVM->rem.s.fInREM);
2368
2369 /*
2370 * Copy back the registers.
2371 * This is done in the order they are declared in the CPUMCTX structure.
2372 */
2373
2374 /** @todo FOP */
2375 /** @todo FPUIP */
2376 /** @todo CS */
2377 /** @todo FPUDP */
2378 /** @todo DS */
2379 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2380 pCtx->fpu.MXCSR = 0;
2381 pCtx->fpu.MXCSR_MASK = 0;
2382
2383 /** @todo check if FPU/XMM was actually used in the recompiler */
2384 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2385//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2386
2387#ifdef TARGET_X86_64
2388 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2389 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2390 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2391 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2392 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2393 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2394 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2395 pCtx->r8 = pVM->rem.s.Env.regs[8];
2396 pCtx->r9 = pVM->rem.s.Env.regs[9];
2397 pCtx->r10 = pVM->rem.s.Env.regs[10];
2398 pCtx->r11 = pVM->rem.s.Env.regs[11];
2399 pCtx->r12 = pVM->rem.s.Env.regs[12];
2400 pCtx->r13 = pVM->rem.s.Env.regs[13];
2401 pCtx->r14 = pVM->rem.s.Env.regs[14];
2402 pCtx->r15 = pVM->rem.s.Env.regs[15];
2403
2404 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2405#else
2406 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2407 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2408 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2409 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2410 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2411 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2412 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2413
2414 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2415#endif
2416
2417 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2418
2419 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2420 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2421 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2422 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2423 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2424
2425#ifdef TARGET_X86_64
2426 pCtx->rip = pVM->rem.s.Env.eip;
2427 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2428#else
2429 pCtx->eip = pVM->rem.s.Env.eip;
2430 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2431#endif
2432
2433 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2434 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2435 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2436 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2437
2438 for (i=0;i<8;i++)
2439 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2440
2441 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2442 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2443 {
2444 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2445 STAM_COUNTER_INC(&gStatREMGDTChange);
2446 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2447 }
2448
2449 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2450 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2451 {
2452 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2453 STAM_COUNTER_INC(&gStatREMIDTChange);
2454 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2455 }
2456
2457 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2458 {
2459 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2460 STAM_COUNTER_INC(&gStatREMLDTRChange);
2461 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2462 }
2463 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2464 {
2465 pCtx->tr = pVM->rem.s.Env.tr.selector;
2466 STAM_COUNTER_INC(&gStatREMTRChange);
2467 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2468 }
2469
2470 /** @todo These values could still be out of sync! */
2471 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2472 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2473 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2474 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2475
2476 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2477 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2478 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2479
2480 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2481 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2482 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2483
2484 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2485 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2486 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2487
2488 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2489 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2490 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2491
2492 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2493 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2494 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2495
2496 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2497 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2498 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2499
2500 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2501 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2502 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2503
2504 /* Sysenter MSR */
2505 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2506 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2507 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2508
2509 /* System MSRs. */
2510 pCtx->msrEFER = pVM->rem.s.Env.efer;
2511 pCtx->msrSTAR = pVM->rem.s.Env.star;
2512 pCtx->msrPAT = pVM->rem.s.Env.pat;
2513#ifdef TARGET_X86_64
2514 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2515 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2516 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2517 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2518#endif
2519
2520}
2521
2522
2523/**
2524 * Update the VMM state information if we're currently in REM.
2525 *
2526 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2527 * we're currently executing in REM and the VMM state is invalid. This method will of
2528 * course check that we're executing in REM before syncing any data over to the VMM.
2529 *
2530 * @param pVM The VM handle.
2531 */
2532REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2533{
2534 if (pVM->rem.s.fInREM)
2535 remR3StateUpdate(pVM);
2536}
2537
2538
2539#undef LOG_GROUP
2540#define LOG_GROUP LOG_GROUP_REM
2541
2542
2543/**
2544 * Notify the recompiler about Address Gate 20 state change.
2545 *
2546 * This notification is required since A20 gate changes are
2547 * initialized from a device driver and the VM might just as
2548 * well be in REM mode as in RAW mode.
2549 *
2550 * @param pVM VM handle.
2551 * @param fEnable True if the gate should be enabled.
2552 * False if the gate should be disabled.
2553 */
2554REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2555{
2556 bool fSaved;
2557
2558 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2559 VM_ASSERT_EMT(pVM);
2560
2561 fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2562 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2563
2564 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2565
2566 pVM->rem.s.fIgnoreAll = fSaved;
2567}
2568
2569
2570/**
2571 * Replays the invalidated recorded pages.
2572 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2573 *
2574 * @param pVM VM handle.
2575 */
2576REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2577{
2578 RTUINT i;
2579
2580 VM_ASSERT_EMT(pVM);
2581
2582 /*
2583 * Sync the required registers.
2584 */
2585 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2586 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2587 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2588 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2589
2590 /*
2591 * Replay the flushes.
2592 */
2593 pVM->rem.s.fIgnoreInvlPg = true;
2594 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2595 {
2596 Log2(("REMR3ReplayInvalidatedPages: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2597 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2598 }
2599 pVM->rem.s.fIgnoreInvlPg = false;
2600 pVM->rem.s.cInvalidatedPages = 0;
2601}
2602
2603
2604/**
2605 * Replays the handler notification changes
2606 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2607 *
2608 * @param pVM VM handle.
2609 */
2610REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2611{
2612 /*
2613 * Replay the flushes.
2614 */
2615 RTUINT i;
2616 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2617
2618 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2619 VM_ASSERT_EMT(pVM);
2620
2621 pVM->rem.s.cHandlerNotifications = 0;
2622 for (i = 0; i < c; i++)
2623 {
2624 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2625 switch (pRec->enmKind)
2626 {
2627 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2628 REMR3NotifyHandlerPhysicalRegister(pVM,
2629 pRec->u.PhysicalRegister.enmType,
2630 pRec->u.PhysicalRegister.GCPhys,
2631 pRec->u.PhysicalRegister.cb,
2632 pRec->u.PhysicalRegister.fHasHCHandler);
2633 break;
2634
2635 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2636 REMR3NotifyHandlerPhysicalDeregister(pVM,
2637 pRec->u.PhysicalDeregister.enmType,
2638 pRec->u.PhysicalDeregister.GCPhys,
2639 pRec->u.PhysicalDeregister.cb,
2640 pRec->u.PhysicalDeregister.fHasHCHandler,
2641 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2642 break;
2643
2644 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2645 REMR3NotifyHandlerPhysicalModify(pVM,
2646 pRec->u.PhysicalModify.enmType,
2647 pRec->u.PhysicalModify.GCPhysOld,
2648 pRec->u.PhysicalModify.GCPhysNew,
2649 pRec->u.PhysicalModify.cb,
2650 pRec->u.PhysicalModify.fHasHCHandler,
2651 pRec->u.PhysicalModify.fRestoreAsRAM);
2652 break;
2653
2654 default:
2655 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2656 break;
2657 }
2658 }
2659 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2660}
2661
2662
2663/**
2664 * Notify REM about changed code page.
2665 *
2666 * @returns VBox status code.
2667 * @param pVM VM handle.
2668 * @param pvCodePage Code page address
2669 */
2670REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2671{
2672#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
2673 int rc;
2674 RTGCPHYS PhysGC;
2675 uint64_t flags;
2676
2677 VM_ASSERT_EMT(pVM);
2678
2679 /*
2680 * Get the physical page address.
2681 */
2682 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2683 if (rc == VINF_SUCCESS)
2684 {
2685 /*
2686 * Sync the required registers and flush the whole page.
2687 * (Easier to do the whole page than notifying it about each physical
2688 * byte that was changed.
2689 */
2690 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2691 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2692 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2693 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2694
2695 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2696 }
2697#endif
2698 return VINF_SUCCESS;
2699}
2700
2701
2702/**
2703 * Notification about a successful MMR3PhysRegister() call.
2704 *
2705 * @param pVM VM handle.
2706 * @param GCPhys The physical address the RAM.
2707 * @param cb Size of the memory.
2708 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2709 */
2710REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2711{
2712 uint32_t cbBitmap;
2713 int rc;
2714 Log(("REMR3NotifyPhysRamRegister: GCPhys=%RGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2715 VM_ASSERT_EMT(pVM);
2716
2717 /*
2718 * Validate input - we trust the caller.
2719 */
2720 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2721 Assert(cb);
2722 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2723
2724 /*
2725 * Base ram?
2726 */
2727 if (!GCPhys)
2728 {
2729 phys_ram_size = cb;
2730 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2731#ifndef VBOX_STRICT
2732 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2733 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2734#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2735 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2736 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2737 cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2738 rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2739 AssertRC(rc);
2740 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2741#endif
2742 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2743 }
2744
2745 /*
2746 * Register the ram.
2747 */
2748 Assert(!pVM->rem.s.fIgnoreAll);
2749 pVM->rem.s.fIgnoreAll = true;
2750
2751#ifdef VBOX_WITH_NEW_PHYS_CODE
2752 if (fFlags & MM_RAM_FLAGS_RESERVED)
2753 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2754 else
2755 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2756#else
2757 if (!GCPhys)
2758 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2759 else
2760 {
2761 if (fFlags & MM_RAM_FLAGS_RESERVED)
2762 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2763 else
2764 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2765 }
2766#endif
2767 Assert(pVM->rem.s.fIgnoreAll);
2768 pVM->rem.s.fIgnoreAll = false;
2769}
2770
2771#ifndef VBOX_WITH_NEW_PHYS_CODE
2772
2773/**
2774 * Notification about a successful PGMR3PhysRegisterChunk() call.
2775 *
2776 * @param pVM VM handle.
2777 * @param GCPhys The physical address the RAM.
2778 * @param cb Size of the memory.
2779 * @param pvRam The HC address of the RAM.
2780 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2781 */
2782REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2783{
2784 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%RGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2785 VM_ASSERT_EMT(pVM);
2786
2787 /*
2788 * Validate input - we trust the caller.
2789 */
2790 Assert(pvRam);
2791 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2792 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2793 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2794 Assert(fFlags == 0 /* normal RAM */);
2795 Assert(!pVM->rem.s.fIgnoreAll);
2796 pVM->rem.s.fIgnoreAll = true;
2797 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2798 Assert(pVM->rem.s.fIgnoreAll);
2799 pVM->rem.s.fIgnoreAll = false;
2800}
2801
2802
2803/**
2804 * Grows dynamically allocated guest RAM.
2805 * Will raise a fatal error if the operation fails.
2806 *
2807 * @param physaddr The physical address.
2808 */
2809void remR3GrowDynRange(unsigned long physaddr) /** @todo Needs fixing for MSC... */
2810{
2811 int rc;
2812 PVM pVM = cpu_single_env->pVM;
2813 const RTGCPHYS GCPhys = physaddr;
2814
2815 LogFlow(("remR3GrowDynRange %RGp\n", (RTGCPTR)physaddr));
2816 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2817 if (RT_SUCCESS(rc))
2818 return;
2819
2820 LogRel(("\nUnable to allocate guest RAM chunk at %RGp\n", (RTGCPTR)physaddr));
2821 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %RGp\n", (RTGCPTR)physaddr);
2822 AssertFatalFailed();
2823}
2824
2825#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2826
2827/**
2828 * Notification about a successful MMR3PhysRomRegister() call.
2829 *
2830 * @param pVM VM handle.
2831 * @param GCPhys The physical address of the ROM.
2832 * @param cb The size of the ROM.
2833 * @param pvCopy Pointer to the ROM copy.
2834 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2835 * This function will be called when ever the protection of the
2836 * shadow ROM changes (at reset and end of POST).
2837 */
2838REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2839{
2840 Log(("REMR3NotifyPhysRomRegister: GCPhys=%RGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2841 VM_ASSERT_EMT(pVM);
2842
2843 /*
2844 * Validate input - we trust the caller.
2845 */
2846 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2847 Assert(cb);
2848 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2849 Assert(pvCopy);
2850 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2851
2852 /*
2853 * Register the rom.
2854 */
2855 Assert(!pVM->rem.s.fIgnoreAll);
2856 pVM->rem.s.fIgnoreAll = true;
2857
2858 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2859
2860 Log2(("%.64Rhxd\n", (char *)pvCopy + cb - 64));
2861
2862 Assert(pVM->rem.s.fIgnoreAll);
2863 pVM->rem.s.fIgnoreAll = false;
2864}
2865
2866
2867/**
2868 * Notification about a successful memory deregistration or reservation.
2869 *
2870 * @param pVM VM Handle.
2871 * @param GCPhys Start physical address.
2872 * @param cb The size of the range.
2873 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2874 * reserve any memory soon.
2875 */
2876REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2877{
2878 Log(("REMR3NotifyPhysReserve: GCPhys=%RGp cb=%d\n", GCPhys, cb));
2879 VM_ASSERT_EMT(pVM);
2880
2881 /*
2882 * Validate input - we trust the caller.
2883 */
2884 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2885 Assert(cb);
2886 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2887
2888 /*
2889 * Unassigning the memory.
2890 */
2891 Assert(!pVM->rem.s.fIgnoreAll);
2892 pVM->rem.s.fIgnoreAll = true;
2893
2894 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2895
2896 Assert(pVM->rem.s.fIgnoreAll);
2897 pVM->rem.s.fIgnoreAll = false;
2898}
2899
2900
2901/**
2902 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2903 *
2904 * @param pVM VM Handle.
2905 * @param enmType Handler type.
2906 * @param GCPhys Handler range address.
2907 * @param cb Size of the handler range.
2908 * @param fHasHCHandler Set if the handler has a HC callback function.
2909 *
2910 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2911 * Handler memory type to memory which has no HC handler.
2912 */
2913REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2914{
2915 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%d\n",
2916 enmType, GCPhys, cb, fHasHCHandler));
2917 VM_ASSERT_EMT(pVM);
2918 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2919 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2920
2921 if (pVM->rem.s.cHandlerNotifications)
2922 REMR3ReplayHandlerNotifications(pVM);
2923
2924 Assert(!pVM->rem.s.fIgnoreAll);
2925 pVM->rem.s.fIgnoreAll = true;
2926
2927 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2928 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2929 else if (fHasHCHandler)
2930 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2931
2932 Assert(pVM->rem.s.fIgnoreAll);
2933 pVM->rem.s.fIgnoreAll = false;
2934}
2935
2936
2937/**
2938 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2939 *
2940 * @param pVM VM Handle.
2941 * @param enmType Handler type.
2942 * @param GCPhys Handler range address.
2943 * @param cb Size of the handler range.
2944 * @param fHasHCHandler Set if the handler has a HC callback function.
2945 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2946 */
2947REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2948{
2949 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2950 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2951 VM_ASSERT_EMT(pVM);
2952
2953 if (pVM->rem.s.cHandlerNotifications)
2954 REMR3ReplayHandlerNotifications(pVM);
2955
2956 Assert(!pVM->rem.s.fIgnoreAll);
2957 pVM->rem.s.fIgnoreAll = true;
2958
2959/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2960 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2961 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2962 else if (fHasHCHandler)
2963 {
2964 if (!fRestoreAsRAM)
2965 {
2966 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2967 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2968 }
2969 else
2970 {
2971 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2972 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2973 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2974 }
2975 }
2976
2977 Assert(pVM->rem.s.fIgnoreAll);
2978 pVM->rem.s.fIgnoreAll = false;
2979}
2980
2981
2982/**
2983 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2984 *
2985 * @param pVM VM Handle.
2986 * @param enmType Handler type.
2987 * @param GCPhysOld Old handler range address.
2988 * @param GCPhysNew New handler range address.
2989 * @param cb Size of the handler range.
2990 * @param fHasHCHandler Set if the handler has a HC callback function.
2991 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2992 */
2993REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2994{
2995 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%RGp GCPhysNew=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2996 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2997 VM_ASSERT_EMT(pVM);
2998 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2999
3000 if (pVM->rem.s.cHandlerNotifications)
3001 REMR3ReplayHandlerNotifications(pVM);
3002
3003 if (fHasHCHandler)
3004 {
3005 Assert(!pVM->rem.s.fIgnoreAll);
3006 pVM->rem.s.fIgnoreAll = true;
3007
3008 /*
3009 * Reset the old page.
3010 */
3011 if (!fRestoreAsRAM)
3012 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
3013 else
3014 {
3015 /* This is not perfect, but it'll do for PD monitoring... */
3016 Assert(cb == PAGE_SIZE);
3017 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
3018 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
3019 }
3020
3021 /*
3022 * Update the new page.
3023 */
3024 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
3025 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3026 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
3027
3028 Assert(pVM->rem.s.fIgnoreAll);
3029 pVM->rem.s.fIgnoreAll = false;
3030 }
3031}
3032
3033
3034/**
3035 * Checks if we're handling access to this page or not.
3036 *
3037 * @returns true if we're trapping access.
3038 * @returns false if we aren't.
3039 * @param pVM The VM handle.
3040 * @param GCPhys The physical address.
3041 *
3042 * @remark This function will only work correctly in VBOX_STRICT builds!
3043 */
3044REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3045{
3046#ifdef VBOX_STRICT
3047 unsigned long off;
3048 if (pVM->rem.s.cHandlerNotifications)
3049 REMR3ReplayHandlerNotifications(pVM);
3050
3051 off = get_phys_page_offset(GCPhys);
3052 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3053 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3054 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3055#else
3056 return false;
3057#endif
3058}
3059
3060
3061/**
3062 * Deals with a rare case in get_phys_addr_code where the code
3063 * is being monitored.
3064 *
3065 * It could also be an MMIO page, in which case we will raise a fatal error.
3066 *
3067 * @returns The physical address corresponding to addr.
3068 * @param env The cpu environment.
3069 * @param addr The virtual address.
3070 * @param pTLBEntry The TLB entry.
3071 */
3072target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
3073{
3074 PVM pVM = env->pVM;
3075 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3076 {
3077 target_ulong ret = pTLBEntry->addend + addr;
3078 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%RGv addr_code=%RGv addend=%RGp ret=%RGp\n",
3079 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
3080 return ret;
3081 }
3082 LogRel(("\nTrying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
3083 "*** handlers\n",
3084 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3085 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3086 LogRel(("*** mmio\n"));
3087 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3088 LogRel(("*** phys\n"));
3089 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3090 cpu_abort(env, "Trying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3091 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3092 AssertFatalFailed();
3093}
3094
3095/**
3096 * Read guest RAM and ROM.
3097 *
3098 * @param SrcGCPhys The source address (guest physical).
3099 * @param pvDst The destination address.
3100 * @param cb Number of bytes
3101 */
3102void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3103{
3104 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3105 VBOX_CHECK_ADDR(SrcGCPhys);
3106 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3107#ifdef VBOX_DEBUG_PHYS
3108 LogRel(("read(%d): %08x\n", cb, (uint32_t)SrcGCPhys));
3109#endif
3110 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3111}
3112
3113
3114/**
3115 * Read guest RAM and ROM, unsigned 8-bit.
3116 *
3117 * @param SrcGCPhys The source address (guest physical).
3118 */
3119RTCCUINTREG remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3120{
3121 uint8_t val;
3122 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3123 VBOX_CHECK_ADDR(SrcGCPhys);
3124 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3125 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3126#ifdef VBOX_DEBUG_PHYS
3127 LogRel(("readu8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3128#endif
3129 return val;
3130}
3131
3132
3133/**
3134 * Read guest RAM and ROM, signed 8-bit.
3135 *
3136 * @param SrcGCPhys The source address (guest physical).
3137 */
3138RTCCINTREG remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3139{
3140 int8_t val;
3141 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3142 VBOX_CHECK_ADDR(SrcGCPhys);
3143 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3144 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3145#ifdef VBOX_DEBUG_PHYS
3146 LogRel(("reads8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3147#endif
3148 return val;
3149}
3150
3151
3152/**
3153 * Read guest RAM and ROM, unsigned 16-bit.
3154 *
3155 * @param SrcGCPhys The source address (guest physical).
3156 */
3157RTCCUINTREG remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3158{
3159 uint16_t val;
3160 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3161 VBOX_CHECK_ADDR(SrcGCPhys);
3162 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3163 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3164#ifdef VBOX_DEBUG_PHYS
3165 LogRel(("readu16: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3166#endif
3167 return val;
3168}
3169
3170
3171/**
3172 * Read guest RAM and ROM, signed 16-bit.
3173 *
3174 * @param SrcGCPhys The source address (guest physical).
3175 */
3176RTCCINTREG remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3177{
3178 int16_t val;
3179 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3180 VBOX_CHECK_ADDR(SrcGCPhys);
3181 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3182 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3183#ifdef VBOX_DEBUG_PHYS
3184 LogRel(("reads16: %x <- %08x\n", (uint16_t)val, (uint32_t)SrcGCPhys));
3185#endif
3186 return val;
3187}
3188
3189
3190/**
3191 * Read guest RAM and ROM, unsigned 32-bit.
3192 *
3193 * @param SrcGCPhys The source address (guest physical).
3194 */
3195RTCCUINTREG remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3196{
3197 uint32_t val;
3198 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3199 VBOX_CHECK_ADDR(SrcGCPhys);
3200 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3201 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3202#ifdef VBOX_DEBUG_PHYS
3203 LogRel(("readu32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3204#endif
3205 return val;
3206}
3207
3208
3209/**
3210 * Read guest RAM and ROM, signed 32-bit.
3211 *
3212 * @param SrcGCPhys The source address (guest physical).
3213 */
3214RTCCINTREG remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3215{
3216 int32_t val;
3217 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3218 VBOX_CHECK_ADDR(SrcGCPhys);
3219 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3220 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3221#ifdef VBOX_DEBUG_PHYS
3222 LogRel(("reads32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3223#endif
3224 return val;
3225}
3226
3227
3228/**
3229 * Read guest RAM and ROM, unsigned 64-bit.
3230 *
3231 * @param SrcGCPhys The source address (guest physical).
3232 */
3233uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3234{
3235 uint64_t val;
3236 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3237 VBOX_CHECK_ADDR(SrcGCPhys);
3238 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3239 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3240#ifdef VBOX_DEBUG_PHYS
3241 LogRel(("readu64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3242#endif
3243 return val;
3244}
3245
3246/**
3247 * Read guest RAM and ROM, signed 64-bit.
3248 *
3249 * @param SrcGCPhys The source address (guest physical).
3250 */
3251int64_t remR3PhysReadS64(RTGCPHYS SrcGCPhys)
3252{
3253 int64_t val;
3254 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3255 VBOX_CHECK_ADDR(SrcGCPhys);
3256 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3257 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3258#ifdef VBOX_DEBUG_PHYS
3259 LogRel(("reads64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3260#endif
3261 return val;
3262}
3263
3264
3265/**
3266 * Write guest RAM.
3267 *
3268 * @param DstGCPhys The destination address (guest physical).
3269 * @param pvSrc The source address.
3270 * @param cb Number of bytes to write
3271 */
3272void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3273{
3274 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3275 VBOX_CHECK_ADDR(DstGCPhys);
3276 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3277 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3278#ifdef VBOX_DEBUG_PHYS
3279 LogRel(("write(%d): %08x\n", cb, (uint32_t)DstGCPhys));
3280#endif
3281}
3282
3283
3284/**
3285 * Write guest RAM, unsigned 8-bit.
3286 *
3287 * @param DstGCPhys The destination address (guest physical).
3288 * @param val Value
3289 */
3290void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3291{
3292 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3293 VBOX_CHECK_ADDR(DstGCPhys);
3294 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3295 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3296#ifdef VBOX_DEBUG_PHYS
3297 LogRel(("writeu8: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3298#endif
3299}
3300
3301
3302/**
3303 * Write guest RAM, unsigned 8-bit.
3304 *
3305 * @param DstGCPhys The destination address (guest physical).
3306 * @param val Value
3307 */
3308void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3309{
3310 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3311 VBOX_CHECK_ADDR(DstGCPhys);
3312 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3313 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3314#ifdef VBOX_DEBUG_PHYS
3315 LogRel(("writeu16: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3316#endif
3317}
3318
3319
3320/**
3321 * Write guest RAM, unsigned 32-bit.
3322 *
3323 * @param DstGCPhys The destination address (guest physical).
3324 * @param val Value
3325 */
3326void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3327{
3328 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3329 VBOX_CHECK_ADDR(DstGCPhys);
3330 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3331 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3332#ifdef VBOX_DEBUG_PHYS
3333 LogRel(("writeu32: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3334#endif
3335}
3336
3337
3338/**
3339 * Write guest RAM, unsigned 64-bit.
3340 *
3341 * @param DstGCPhys The destination address (guest physical).
3342 * @param val Value
3343 */
3344void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3345{
3346 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3347 VBOX_CHECK_ADDR(DstGCPhys);
3348 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3349 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3350#ifdef VBOX_DEBUG_PHYS
3351 LogRel(("writeu64: %llx -> %08x\n", val, (uint32_t)SrcGCPhys));
3352#endif
3353}
3354
3355#undef LOG_GROUP
3356#define LOG_GROUP LOG_GROUP_REM_MMIO
3357
3358/** Read MMIO memory. */
3359static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3360{
3361 uint32_t u32 = 0;
3362 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3363 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3364 Log2(("remR3MMIOReadU8: GCPhys=%RGp -> %02x\n", GCPhys, u32));
3365 return u32;
3366}
3367
3368/** Read MMIO memory. */
3369static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3370{
3371 uint32_t u32 = 0;
3372 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3373 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3374 Log2(("remR3MMIOReadU16: GCPhys=%RGp -> %04x\n", GCPhys, u32));
3375 return u32;
3376}
3377
3378/** Read MMIO memory. */
3379static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3380{
3381 uint32_t u32 = 0;
3382 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3383 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3384 Log2(("remR3MMIOReadU32: GCPhys=%RGp -> %08x\n", GCPhys, u32));
3385 return u32;
3386}
3387
3388/** Write to MMIO memory. */
3389static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3390{
3391 int rc;
3392 Log2(("remR3MMIOWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3393 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3394 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3395}
3396
3397/** Write to MMIO memory. */
3398static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3399{
3400 int rc;
3401 Log2(("remR3MMIOWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3402 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3403 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3404}
3405
3406/** Write to MMIO memory. */
3407static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3408{
3409 int rc;
3410 Log2(("remR3MMIOWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3411 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3412 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3413}
3414
3415
3416#undef LOG_GROUP
3417#define LOG_GROUP LOG_GROUP_REM_HANDLER
3418
3419/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3420
3421static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3422{
3423 uint8_t u8;
3424 Log2(("remR3HandlerReadU8: GCPhys=%RGp\n", GCPhys));
3425 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3426 return u8;
3427}
3428
3429static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3430{
3431 uint16_t u16;
3432 Log2(("remR3HandlerReadU16: GCPhys=%RGp\n", GCPhys));
3433 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3434 return u16;
3435}
3436
3437static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3438{
3439 uint32_t u32;
3440 Log2(("remR3HandlerReadU32: GCPhys=%RGp\n", GCPhys));
3441 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3442 return u32;
3443}
3444
3445static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3446{
3447 Log2(("remR3HandlerWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3448 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3449}
3450
3451static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3452{
3453 Log2(("remR3HandlerWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3454 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3455}
3456
3457static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3458{
3459 Log2(("remR3HandlerWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3460 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3461}
3462
3463/* -+- disassembly -+- */
3464
3465#undef LOG_GROUP
3466#define LOG_GROUP LOG_GROUP_REM_DISAS
3467
3468
3469/**
3470 * Enables or disables singled stepped disassembly.
3471 *
3472 * @returns VBox status code.
3473 * @param pVM VM handle.
3474 * @param fEnable To enable set this flag, to disable clear it.
3475 */
3476static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3477{
3478 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3479 VM_ASSERT_EMT(pVM);
3480
3481 if (fEnable)
3482 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3483 else
3484 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3485 return VINF_SUCCESS;
3486}
3487
3488
3489/**
3490 * Enables or disables singled stepped disassembly.
3491 *
3492 * @returns VBox status code.
3493 * @param pVM VM handle.
3494 * @param fEnable To enable set this flag, to disable clear it.
3495 */
3496REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3497{
3498 PVMREQ pReq;
3499 int rc;
3500
3501 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3502 if (VM_IS_EMT(pVM))
3503 return remR3DisasEnableStepping(pVM, fEnable);
3504
3505 rc = VMR3ReqCall(pVM, VMREQDEST_ANY, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3506 AssertRC(rc);
3507 if (RT_SUCCESS(rc))
3508 rc = pReq->iStatus;
3509 VMR3ReqFree(pReq);
3510 return rc;
3511}
3512
3513
3514#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3515/**
3516 * External Debugger Command: .remstep [on|off|1|0]
3517 */
3518static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3519{
3520 bool fEnable;
3521 int rc;
3522
3523 /* print status */
3524 if (cArgs == 0)
3525 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3526 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3527
3528 /* convert the argument and change the mode. */
3529 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3530 if (RT_FAILURE(rc))
3531 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3532 rc = REMR3DisasEnableStepping(pVM, fEnable);
3533 if (RT_FAILURE(rc))
3534 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3535 return rc;
3536}
3537#endif
3538
3539
3540/**
3541 * Disassembles n instructions and prints them to the log.
3542 *
3543 * @returns Success indicator.
3544 * @param env Pointer to the recompiler CPU structure.
3545 * @param f32BitCode Indicates that whether or not the code should
3546 * be disassembled as 16 or 32 bit. If -1 the CS
3547 * selector will be inspected.
3548 * @param nrInstructions Nr of instructions to disassemble
3549 * @param pszPrefix
3550 * @remark not currently used for anything but ad-hoc debugging.
3551 */
3552bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3553{
3554 int i, rc;
3555 RTGCPTR GCPtrPC;
3556 uint8_t *pvPC;
3557 RTINTPTR off;
3558 DISCPUSTATE Cpu;
3559
3560 /*
3561 * Determin 16/32 bit mode.
3562 */
3563 if (f32BitCode == -1)
3564 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3565
3566 /*
3567 * Convert cs:eip to host context address.
3568 * We don't care to much about cross page correctness presently.
3569 */
3570 GCPtrPC = env->segs[R_CS].base + env->eip;
3571 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3572 {
3573 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3574
3575 /* convert eip to physical address. */
3576 rc = PGMPhysGCPtr2R3PtrByGstCR3(env->pVM,
3577 GCPtrPC,
3578 env->cr[3],
3579 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3580 (void**)&pvPC);
3581 if (RT_FAILURE(rc))
3582 {
3583 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3584 return false;
3585 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3586 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3587 }
3588 }
3589 else
3590 {
3591 /* physical address */
3592 rc = PGMPhysGCPhys2R3Ptr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16,
3593 (void**)&pvPC);
3594 if (RT_FAILURE(rc))
3595 return false;
3596 }
3597
3598 /*
3599 * Disassemble.
3600 */
3601 off = env->eip - (RTGCUINTPTR)pvPC;
3602 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3603 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3604 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3605 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3606 //Cpu.dwUserData[2] = GCPtrPC;
3607
3608 for (i=0;i<nrInstructions;i++)
3609 {
3610 char szOutput[256];
3611 uint32_t cbOp;
3612 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3613 return false;
3614 if (pszPrefix)
3615 Log(("%s: %s", pszPrefix, szOutput));
3616 else
3617 Log(("%s", szOutput));
3618
3619 pvPC += cbOp;
3620 }
3621 return true;
3622}
3623
3624
3625/** @todo need to test the new code, using the old code in the mean while. */
3626#define USE_OLD_DUMP_AND_DISASSEMBLY
3627
3628/**
3629 * Disassembles one instruction and prints it to the log.
3630 *
3631 * @returns Success indicator.
3632 * @param env Pointer to the recompiler CPU structure.
3633 * @param f32BitCode Indicates that whether or not the code should
3634 * be disassembled as 16 or 32 bit. If -1 the CS
3635 * selector will be inspected.
3636 * @param pszPrefix
3637 */
3638bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3639{
3640#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3641 PVM pVM = env->pVM;
3642 RTGCPTR GCPtrPC;
3643 uint8_t *pvPC;
3644 char szOutput[256];
3645 uint32_t cbOp;
3646 RTINTPTR off;
3647 DISCPUSTATE Cpu;
3648
3649
3650 /* Doesn't work in long mode. */
3651 if (env->hflags & HF_LMA_MASK)
3652 return false;
3653
3654 /*
3655 * Determin 16/32 bit mode.
3656 */
3657 if (f32BitCode == -1)
3658 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3659
3660 /*
3661 * Log registers
3662 */
3663 if (LogIs2Enabled())
3664 {
3665 remR3StateUpdate(pVM);
3666 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3667 }
3668
3669 /*
3670 * Convert cs:eip to host context address.
3671 * We don't care to much about cross page correctness presently.
3672 */
3673 GCPtrPC = env->segs[R_CS].base + env->eip;
3674 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3675 {
3676 /* convert eip to physical address. */
3677 int rc = PGMPhysGCPtr2R3PtrByGstCR3(pVM,
3678 GCPtrPC,
3679 env->cr[3],
3680 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3681 (void**)&pvPC);
3682 if (RT_FAILURE(rc))
3683 {
3684 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3685 return false;
3686 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(pVM, NULL)
3687 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3688 }
3689 }
3690 else
3691 {
3692
3693 /* physical address */
3694 int rc = PGMPhysGCPhys2R3Ptr(pVM, (RTGCPHYS)GCPtrPC, 16, (void**)&pvPC);
3695 if (RT_FAILURE(rc))
3696 return false;
3697 }
3698
3699 /*
3700 * Disassemble.
3701 */
3702 off = env->eip - (RTGCUINTPTR)pvPC;
3703 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3704 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3705 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3706 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3707 //Cpu.dwUserData[2] = GCPtrPC;
3708 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3709 return false;
3710
3711 if (!f32BitCode)
3712 {
3713 if (pszPrefix)
3714 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3715 else
3716 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3717 }
3718 else
3719 {
3720 if (pszPrefix)
3721 Log(("%s: %s", pszPrefix, szOutput));
3722 else
3723 Log(("%s", szOutput));
3724 }
3725 return true;
3726
3727#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3728 PVM pVM = env->pVM;
3729 const bool fLog = LogIsEnabled();
3730 const bool fLog2 = LogIs2Enabled();
3731 int rc = VINF_SUCCESS;
3732
3733 /*
3734 * Don't bother if there ain't any log output to do.
3735 */
3736 if (!fLog && !fLog2)
3737 return true;
3738
3739 /*
3740 * Update the state so DBGF reads the correct register values.
3741 */
3742 remR3StateUpdate(pVM);
3743
3744 /*
3745 * Log registers if requested.
3746 */
3747 if (!fLog2)
3748 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3749
3750 /*
3751 * Disassemble to log.
3752 */
3753 if (fLog)
3754 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3755
3756 return RT_SUCCESS(rc);
3757#endif
3758}
3759
3760
3761/**
3762 * Disassemble recompiled code.
3763 *
3764 * @param phFileIgnored Ignored, logfile usually.
3765 * @param pvCode Pointer to the code block.
3766 * @param cb Size of the code block.
3767 */
3768void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3769{
3770 if (LogIs2Enabled())
3771 {
3772 unsigned off = 0;
3773 char szOutput[256];
3774 DISCPUSTATE Cpu;
3775
3776 memset(&Cpu, 0, sizeof(Cpu));
3777#ifdef RT_ARCH_X86
3778 Cpu.mode = CPUMODE_32BIT;
3779#else
3780 Cpu.mode = CPUMODE_64BIT;
3781#endif
3782
3783 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3784 while (off < cb)
3785 {
3786 uint32_t cbInstr;
3787 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3788 RTLogPrintf("%s", szOutput);
3789 else
3790 {
3791 RTLogPrintf("disas error\n");
3792 cbInstr = 1;
3793#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3794 break;
3795#endif
3796 }
3797 off += cbInstr;
3798 }
3799 }
3800 NOREF(phFileIgnored);
3801}
3802
3803
3804/**
3805 * Disassemble guest code.
3806 *
3807 * @param phFileIgnored Ignored, logfile usually.
3808 * @param uCode The guest address of the code to disassemble. (flat?)
3809 * @param cb Number of bytes to disassemble.
3810 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3811 */
3812void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3813{
3814 if (LogIs2Enabled())
3815 {
3816 PVM pVM = cpu_single_env->pVM;
3817 RTSEL cs;
3818 RTGCUINTPTR eip;
3819
3820 /*
3821 * Update the state so DBGF reads the correct register values (flags).
3822 */
3823 remR3StateUpdate(pVM);
3824
3825 /*
3826 * Do the disassembling.
3827 */
3828 RTLogPrintf("Guest Code: PC=%RGp %RGp bytes fFlags=%d\n", uCode, cb, fFlags);
3829 cs = cpu_single_env->segs[R_CS].selector;
3830 eip = uCode - cpu_single_env->segs[R_CS].base;
3831 for (;;)
3832 {
3833 char szBuf[256];
3834 uint32_t cbInstr;
3835 int rc = DBGFR3DisasInstrEx(pVM,
3836 cs,
3837 eip,
3838 0,
3839 szBuf, sizeof(szBuf),
3840 &cbInstr);
3841 if (RT_SUCCESS(rc))
3842 RTLogPrintf("%RGp %s\n", uCode, szBuf);
3843 else
3844 {
3845 RTLogPrintf("%RGp %04x:%RGp: %s\n", uCode, cs, eip, szBuf);
3846 cbInstr = 1;
3847 }
3848
3849 /* next */
3850 if (cb <= cbInstr)
3851 break;
3852 cb -= cbInstr;
3853 uCode += cbInstr;
3854 eip += cbInstr;
3855 }
3856 }
3857 NOREF(phFileIgnored);
3858}
3859
3860
3861/**
3862 * Looks up a guest symbol.
3863 *
3864 * @returns Pointer to symbol name. This is a static buffer.
3865 * @param orig_addr The address in question.
3866 */
3867const char *lookup_symbol(target_ulong orig_addr)
3868{
3869 RTGCINTPTR off = 0;
3870 DBGFSYMBOL Sym;
3871 PVM pVM = cpu_single_env->pVM;
3872 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3873 if (RT_SUCCESS(rc))
3874 {
3875 static char szSym[sizeof(Sym.szName) + 48];
3876 if (!off)
3877 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3878 else if (off > 0)
3879 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3880 else
3881 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3882 return szSym;
3883 }
3884 return "<N/A>";
3885}
3886
3887
3888#undef LOG_GROUP
3889#define LOG_GROUP LOG_GROUP_REM
3890
3891
3892/* -+- FF notifications -+- */
3893
3894
3895/**
3896 * Notification about a pending interrupt.
3897 *
3898 * @param pVM VM Handle.
3899 * @param u8Interrupt Interrupt
3900 * @thread The emulation thread.
3901 */
3902REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3903{
3904 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3905 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3906}
3907
3908/**
3909 * Notification about a pending interrupt.
3910 *
3911 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3912 * @param pVM VM Handle.
3913 * @thread The emulation thread.
3914 */
3915REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3916{
3917 return pVM->rem.s.u32PendingInterrupt;
3918}
3919
3920/**
3921 * Notification about the interrupt FF being set.
3922 *
3923 * @param pVM VM Handle.
3924 * @thread The emulation thread.
3925 */
3926REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3927{
3928 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3929 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3930 if (pVM->rem.s.fInREM)
3931 {
3932 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3933 CPU_INTERRUPT_EXTERNAL_HARD);
3934 }
3935}
3936
3937
3938/**
3939 * Notification about the interrupt FF being set.
3940 *
3941 * @param pVM VM Handle.
3942 * @thread Any.
3943 */
3944REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3945{
3946 LogFlow(("REMR3NotifyInterruptClear:\n"));
3947 if (pVM->rem.s.fInREM)
3948 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3949}
3950
3951
3952/**
3953 * Notification about pending timer(s).
3954 *
3955 * @param pVM VM Handle.
3956 * @thread Any.
3957 */
3958REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3959{
3960#ifndef DEBUG_bird
3961 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3962#endif
3963 if (pVM->rem.s.fInREM)
3964 {
3965 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3966 CPU_INTERRUPT_EXTERNAL_TIMER);
3967 }
3968}
3969
3970
3971/**
3972 * Notification about pending DMA transfers.
3973 *
3974 * @param pVM VM Handle.
3975 * @thread Any.
3976 */
3977REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3978{
3979 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3980 if (pVM->rem.s.fInREM)
3981 {
3982 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3983 CPU_INTERRUPT_EXTERNAL_DMA);
3984 }
3985}
3986
3987
3988/**
3989 * Notification about pending timer(s).
3990 *
3991 * @param pVM VM Handle.
3992 * @thread Any.
3993 */
3994REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3995{
3996 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3997 if (pVM->rem.s.fInREM)
3998 {
3999 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4000 CPU_INTERRUPT_EXTERNAL_EXIT);
4001 }
4002}
4003
4004
4005/**
4006 * Notification about pending FF set by an external thread.
4007 *
4008 * @param pVM VM handle.
4009 * @thread Any.
4010 */
4011REMR3DECL(void) REMR3NotifyFF(PVM pVM)
4012{
4013 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
4014 if (pVM->rem.s.fInREM)
4015 {
4016 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4017 CPU_INTERRUPT_EXTERNAL_EXIT);
4018 }
4019}
4020
4021
4022#ifdef VBOX_WITH_STATISTICS
4023void remR3ProfileStart(int statcode)
4024{
4025 STAMPROFILEADV *pStat;
4026 switch(statcode)
4027 {
4028 case STATS_EMULATE_SINGLE_INSTR:
4029 pStat = &gStatExecuteSingleInstr;
4030 break;
4031 case STATS_QEMU_COMPILATION:
4032 pStat = &gStatCompilationQEmu;
4033 break;
4034 case STATS_QEMU_RUN_EMULATED_CODE:
4035 pStat = &gStatRunCodeQEmu;
4036 break;
4037 case STATS_QEMU_TOTAL:
4038 pStat = &gStatTotalTimeQEmu;
4039 break;
4040 case STATS_QEMU_RUN_TIMERS:
4041 pStat = &gStatTimers;
4042 break;
4043 case STATS_TLB_LOOKUP:
4044 pStat= &gStatTBLookup;
4045 break;
4046 case STATS_IRQ_HANDLING:
4047 pStat= &gStatIRQ;
4048 break;
4049 case STATS_RAW_CHECK:
4050 pStat = &gStatRawCheck;
4051 break;
4052
4053 default:
4054 AssertMsgFailed(("unknown stat %d\n", statcode));
4055 return;
4056 }
4057 STAM_PROFILE_ADV_START(pStat, a);
4058}
4059
4060
4061void remR3ProfileStop(int statcode)
4062{
4063 STAMPROFILEADV *pStat;
4064 switch(statcode)
4065 {
4066 case STATS_EMULATE_SINGLE_INSTR:
4067 pStat = &gStatExecuteSingleInstr;
4068 break;
4069 case STATS_QEMU_COMPILATION:
4070 pStat = &gStatCompilationQEmu;
4071 break;
4072 case STATS_QEMU_RUN_EMULATED_CODE:
4073 pStat = &gStatRunCodeQEmu;
4074 break;
4075 case STATS_QEMU_TOTAL:
4076 pStat = &gStatTotalTimeQEmu;
4077 break;
4078 case STATS_QEMU_RUN_TIMERS:
4079 pStat = &gStatTimers;
4080 break;
4081 case STATS_TLB_LOOKUP:
4082 pStat= &gStatTBLookup;
4083 break;
4084 case STATS_IRQ_HANDLING:
4085 pStat= &gStatIRQ;
4086 break;
4087 case STATS_RAW_CHECK:
4088 pStat = &gStatRawCheck;
4089 break;
4090 default:
4091 AssertMsgFailed(("unknown stat %d\n", statcode));
4092 return;
4093 }
4094 STAM_PROFILE_ADV_STOP(pStat, a);
4095}
4096#endif
4097
4098/**
4099 * Raise an RC, force rem exit.
4100 *
4101 * @param pVM VM handle.
4102 * @param rc The rc.
4103 */
4104void remR3RaiseRC(PVM pVM, int rc)
4105{
4106 Log(("remR3RaiseRC: rc=%Rrc\n", rc));
4107 Assert(pVM->rem.s.fInREM);
4108 VM_ASSERT_EMT(pVM);
4109 pVM->rem.s.rc = rc;
4110 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4111}
4112
4113
4114/* -+- timers -+- */
4115
4116uint64_t cpu_get_tsc(CPUX86State *env)
4117{
4118 STAM_COUNTER_INC(&gStatCpuGetTSC);
4119 return TMCpuTickGet(env->pVM);
4120}
4121
4122
4123/* -+- interrupts -+- */
4124
4125void cpu_set_ferr(CPUX86State *env)
4126{
4127 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4128 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4129}
4130
4131int cpu_get_pic_interrupt(CPUState *env)
4132{
4133 uint8_t u8Interrupt;
4134 int rc;
4135
4136 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4137 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4138 * with the (a)pic.
4139 */
4140 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4141 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4142 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4143 * remove this kludge. */
4144 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4145 {
4146 rc = VINF_SUCCESS;
4147 Assert(env->pVM->rem.s.u32PendingInterrupt <= 255);
4148 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4149 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4150 }
4151 else
4152 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4153
4154 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Rrc\n", u8Interrupt, rc));
4155 if (RT_SUCCESS(rc))
4156 {
4157 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4158 env->interrupt_request |= CPU_INTERRUPT_HARD;
4159 return u8Interrupt;
4160 }
4161 return -1;
4162}
4163
4164
4165/* -+- local apic -+- */
4166
4167void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4168{
4169 int rc = PDMApicSetBase(env->pVM, val);
4170 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Rrc\n", val, rc)); NOREF(rc);
4171}
4172
4173uint64_t cpu_get_apic_base(CPUX86State *env)
4174{
4175 uint64_t u64;
4176 int rc = PDMApicGetBase(env->pVM, &u64);
4177 if (RT_SUCCESS(rc))
4178 {
4179 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4180 return u64;
4181 }
4182 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Rrc)\n", rc));
4183 return 0;
4184}
4185
4186void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4187{
4188 int rc = PDMApicSetTPR(env->pVM, val);
4189 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Rrc\n", val, rc)); NOREF(rc);
4190}
4191
4192uint8_t cpu_get_apic_tpr(CPUX86State *env)
4193{
4194 uint8_t u8;
4195 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4196 if (RT_SUCCESS(rc))
4197 {
4198 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4199 return u8;
4200 }
4201 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Rrc)\n", rc));
4202 return 0;
4203}
4204
4205
4206uint64_t cpu_apic_rdmsr(CPUX86State *env, uint32_t reg)
4207{
4208 uint64_t value;
4209 int rc = PDMApicReadMSR(env->pVM, 0/* cpu */, reg, &value);
4210 if (RT_SUCCESS(rc))
4211 {
4212 LogFlow(("cpu_apic_rdms returns %#x\n", value));
4213 return value;
4214 }
4215 /** @todo: exception ? */
4216 LogFlow(("cpu_apic_rdms returns 0 (rc=%Rrc)\n", rc));
4217 return value;
4218}
4219
4220void cpu_apic_wrmsr(CPUX86State *env, uint32_t reg, uint64_t value)
4221{
4222 int rc = PDMApicWriteMSR(env->pVM, 0 /* cpu */, reg, value);
4223 /** @todo: exception if error ? */
4224 LogFlow(("cpu_apic_wrmsr: rc=%Rrc\n", rc)); NOREF(rc);
4225}
4226
4227uint64_t cpu_rdmsr(CPUX86State *env, uint32_t msr)
4228{
4229 return CPUMGetGuestMsr(env->pVM, msr);
4230}
4231
4232void cpu_wrmsr(CPUX86State *env, uint32_t msr, uint64_t val)
4233{
4234 CPUMSetGuestMsr(env->pVM, msr, val);
4235}
4236/* -+- I/O Ports -+- */
4237
4238#undef LOG_GROUP
4239#define LOG_GROUP LOG_GROUP_REM_IOPORT
4240
4241void cpu_outb(CPUState *env, int addr, int val)
4242{
4243 int rc;
4244
4245 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4246 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4247
4248 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4249 if (RT_LIKELY(rc == VINF_SUCCESS))
4250 return;
4251 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4252 {
4253 Log(("cpu_outb: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4254 remR3RaiseRC(env->pVM, rc);
4255 return;
4256 }
4257 remAbort(rc, __FUNCTION__);
4258}
4259
4260void cpu_outw(CPUState *env, int addr, int val)
4261{
4262 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4263 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4264 if (RT_LIKELY(rc == VINF_SUCCESS))
4265 return;
4266 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4267 {
4268 Log(("cpu_outw: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4269 remR3RaiseRC(env->pVM, rc);
4270 return;
4271 }
4272 remAbort(rc, __FUNCTION__);
4273}
4274
4275void cpu_outl(CPUState *env, int addr, int val)
4276{
4277 int rc;
4278 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4279 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4280 if (RT_LIKELY(rc == VINF_SUCCESS))
4281 return;
4282 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4283 {
4284 Log(("cpu_outl: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4285 remR3RaiseRC(env->pVM, rc);
4286 return;
4287 }
4288 remAbort(rc, __FUNCTION__);
4289}
4290
4291int cpu_inb(CPUState *env, int addr)
4292{
4293 uint32_t u32 = 0;
4294 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4295 if (RT_LIKELY(rc == VINF_SUCCESS))
4296 {
4297 if (/*addr != 0x61 && */addr != 0x71)
4298 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4299 return (int)u32;
4300 }
4301 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4302 {
4303 Log(("cpu_inb: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4304 remR3RaiseRC(env->pVM, rc);
4305 return (int)u32;
4306 }
4307 remAbort(rc, __FUNCTION__);
4308 return 0xff;
4309}
4310
4311int cpu_inw(CPUState *env, int addr)
4312{
4313 uint32_t u32 = 0;
4314 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4315 if (RT_LIKELY(rc == VINF_SUCCESS))
4316 {
4317 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4318 return (int)u32;
4319 }
4320 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4321 {
4322 Log(("cpu_inw: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4323 remR3RaiseRC(env->pVM, rc);
4324 return (int)u32;
4325 }
4326 remAbort(rc, __FUNCTION__);
4327 return 0xffff;
4328}
4329
4330int cpu_inl(CPUState *env, int addr)
4331{
4332 uint32_t u32 = 0;
4333 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4334 if (RT_LIKELY(rc == VINF_SUCCESS))
4335 {
4336//if (addr==0x01f0 && u32 == 0x6b6d)
4337// loglevel = ~0;
4338 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4339 return (int)u32;
4340 }
4341 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4342 {
4343 Log(("cpu_inl: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4344 remR3RaiseRC(env->pVM, rc);
4345 return (int)u32;
4346 }
4347 remAbort(rc, __FUNCTION__);
4348 return 0xffffffff;
4349}
4350
4351#undef LOG_GROUP
4352#define LOG_GROUP LOG_GROUP_REM
4353
4354
4355/* -+- helpers and misc other interfaces -+- */
4356
4357/**
4358 * Perform the CPUID instruction.
4359 *
4360 * ASMCpuId cannot be invoked from some source files where this is used because of global
4361 * register allocations.
4362 *
4363 * @param env Pointer to the recompiler CPU structure.
4364 * @param uOperator CPUID operation (eax).
4365 * @param pvEAX Where to store eax.
4366 * @param pvEBX Where to store ebx.
4367 * @param pvECX Where to store ecx.
4368 * @param pvEDX Where to store edx.
4369 */
4370void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4371{
4372 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4373}
4374
4375
4376#if 0 /* not used */
4377/**
4378 * Interface for qemu hardware to report back fatal errors.
4379 */
4380void hw_error(const char *pszFormat, ...)
4381{
4382 /*
4383 * Bitch about it.
4384 */
4385 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4386 * this in my Odin32 tree at home! */
4387 va_list args;
4388 va_start(args, pszFormat);
4389 RTLogPrintf("fatal error in virtual hardware:");
4390 RTLogPrintfV(pszFormat, args);
4391 va_end(args);
4392 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4393
4394 /*
4395 * If we're in REM context we'll sync back the state before 'jumping' to
4396 * the EMs failure handling.
4397 */
4398 PVM pVM = cpu_single_env->pVM;
4399 if (pVM->rem.s.fInREM)
4400 REMR3StateBack(pVM);
4401 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4402 AssertMsgFailed(("EMR3FatalError returned!\n"));
4403}
4404#endif
4405
4406/**
4407 * Interface for the qemu cpu to report unhandled situation
4408 * raising a fatal VM error.
4409 */
4410void cpu_abort(CPUState *env, const char *pszFormat, ...)
4411{
4412 va_list args;
4413 PVM pVM;
4414
4415 /*
4416 * Bitch about it.
4417 */
4418#ifndef _MSC_VER
4419 /** @todo: MSVC is right - it's not valid C */
4420 RTLogFlags(NULL, "nodisabled nobuffered");
4421#endif
4422 va_start(args, pszFormat);
4423 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4424 va_end(args);
4425 va_start(args, pszFormat);
4426 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4427 va_end(args);
4428
4429 /*
4430 * If we're in REM context we'll sync back the state before 'jumping' to
4431 * the EMs failure handling.
4432 */
4433 pVM = cpu_single_env->pVM;
4434 if (pVM->rem.s.fInREM)
4435 REMR3StateBack(pVM);
4436 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4437 AssertMsgFailed(("EMR3FatalError returned!\n"));
4438}
4439
4440
4441/**
4442 * Aborts the VM.
4443 *
4444 * @param rc VBox error code.
4445 * @param pszTip Hint about why/when this happend.
4446 */
4447void remAbort(int rc, const char *pszTip)
4448{
4449 PVM pVM;
4450
4451 /*
4452 * Bitch about it.
4453 */
4454 RTLogPrintf("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip);
4455 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip));
4456
4457 /*
4458 * Jump back to where we entered the recompiler.
4459 */
4460 pVM = cpu_single_env->pVM;
4461 if (pVM->rem.s.fInREM)
4462 REMR3StateBack(pVM);
4463 EMR3FatalError(pVM, rc);
4464 AssertMsgFailed(("EMR3FatalError returned!\n"));
4465}
4466
4467
4468/**
4469 * Dumps a linux system call.
4470 * @param pVM VM handle.
4471 */
4472void remR3DumpLnxSyscall(PVM pVM)
4473{
4474 static const char *apsz[] =
4475 {
4476 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4477 "sys_exit",
4478 "sys_fork",
4479 "sys_read",
4480 "sys_write",
4481 "sys_open", /* 5 */
4482 "sys_close",
4483 "sys_waitpid",
4484 "sys_creat",
4485 "sys_link",
4486 "sys_unlink", /* 10 */
4487 "sys_execve",
4488 "sys_chdir",
4489 "sys_time",
4490 "sys_mknod",
4491 "sys_chmod", /* 15 */
4492 "sys_lchown16",
4493 "sys_ni_syscall", /* old break syscall holder */
4494 "sys_stat",
4495 "sys_lseek",
4496 "sys_getpid", /* 20 */
4497 "sys_mount",
4498 "sys_oldumount",
4499 "sys_setuid16",
4500 "sys_getuid16",
4501 "sys_stime", /* 25 */
4502 "sys_ptrace",
4503 "sys_alarm",
4504 "sys_fstat",
4505 "sys_pause",
4506 "sys_utime", /* 30 */
4507 "sys_ni_syscall", /* old stty syscall holder */
4508 "sys_ni_syscall", /* old gtty syscall holder */
4509 "sys_access",
4510 "sys_nice",
4511 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4512 "sys_sync",
4513 "sys_kill",
4514 "sys_rename",
4515 "sys_mkdir",
4516 "sys_rmdir", /* 40 */
4517 "sys_dup",
4518 "sys_pipe",
4519 "sys_times",
4520 "sys_ni_syscall", /* old prof syscall holder */
4521 "sys_brk", /* 45 */
4522 "sys_setgid16",
4523 "sys_getgid16",
4524 "sys_signal",
4525 "sys_geteuid16",
4526 "sys_getegid16", /* 50 */
4527 "sys_acct",
4528 "sys_umount", /* recycled never used phys() */
4529 "sys_ni_syscall", /* old lock syscall holder */
4530 "sys_ioctl",
4531 "sys_fcntl", /* 55 */
4532 "sys_ni_syscall", /* old mpx syscall holder */
4533 "sys_setpgid",
4534 "sys_ni_syscall", /* old ulimit syscall holder */
4535 "sys_olduname",
4536 "sys_umask", /* 60 */
4537 "sys_chroot",
4538 "sys_ustat",
4539 "sys_dup2",
4540 "sys_getppid",
4541 "sys_getpgrp", /* 65 */
4542 "sys_setsid",
4543 "sys_sigaction",
4544 "sys_sgetmask",
4545 "sys_ssetmask",
4546 "sys_setreuid16", /* 70 */
4547 "sys_setregid16",
4548 "sys_sigsuspend",
4549 "sys_sigpending",
4550 "sys_sethostname",
4551 "sys_setrlimit", /* 75 */
4552 "sys_old_getrlimit",
4553 "sys_getrusage",
4554 "sys_gettimeofday",
4555 "sys_settimeofday",
4556 "sys_getgroups16", /* 80 */
4557 "sys_setgroups16",
4558 "old_select",
4559 "sys_symlink",
4560 "sys_lstat",
4561 "sys_readlink", /* 85 */
4562 "sys_uselib",
4563 "sys_swapon",
4564 "sys_reboot",
4565 "old_readdir",
4566 "old_mmap", /* 90 */
4567 "sys_munmap",
4568 "sys_truncate",
4569 "sys_ftruncate",
4570 "sys_fchmod",
4571 "sys_fchown16", /* 95 */
4572 "sys_getpriority",
4573 "sys_setpriority",
4574 "sys_ni_syscall", /* old profil syscall holder */
4575 "sys_statfs",
4576 "sys_fstatfs", /* 100 */
4577 "sys_ioperm",
4578 "sys_socketcall",
4579 "sys_syslog",
4580 "sys_setitimer",
4581 "sys_getitimer", /* 105 */
4582 "sys_newstat",
4583 "sys_newlstat",
4584 "sys_newfstat",
4585 "sys_uname",
4586 "sys_iopl", /* 110 */
4587 "sys_vhangup",
4588 "sys_ni_syscall", /* old "idle" system call */
4589 "sys_vm86old",
4590 "sys_wait4",
4591 "sys_swapoff", /* 115 */
4592 "sys_sysinfo",
4593 "sys_ipc",
4594 "sys_fsync",
4595 "sys_sigreturn",
4596 "sys_clone", /* 120 */
4597 "sys_setdomainname",
4598 "sys_newuname",
4599 "sys_modify_ldt",
4600 "sys_adjtimex",
4601 "sys_mprotect", /* 125 */
4602 "sys_sigprocmask",
4603 "sys_ni_syscall", /* old "create_module" */
4604 "sys_init_module",
4605 "sys_delete_module",
4606 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4607 "sys_quotactl",
4608 "sys_getpgid",
4609 "sys_fchdir",
4610 "sys_bdflush",
4611 "sys_sysfs", /* 135 */
4612 "sys_personality",
4613 "sys_ni_syscall", /* reserved for afs_syscall */
4614 "sys_setfsuid16",
4615 "sys_setfsgid16",
4616 "sys_llseek", /* 140 */
4617 "sys_getdents",
4618 "sys_select",
4619 "sys_flock",
4620 "sys_msync",
4621 "sys_readv", /* 145 */
4622 "sys_writev",
4623 "sys_getsid",
4624 "sys_fdatasync",
4625 "sys_sysctl",
4626 "sys_mlock", /* 150 */
4627 "sys_munlock",
4628 "sys_mlockall",
4629 "sys_munlockall",
4630 "sys_sched_setparam",
4631 "sys_sched_getparam", /* 155 */
4632 "sys_sched_setscheduler",
4633 "sys_sched_getscheduler",
4634 "sys_sched_yield",
4635 "sys_sched_get_priority_max",
4636 "sys_sched_get_priority_min", /* 160 */
4637 "sys_sched_rr_get_interval",
4638 "sys_nanosleep",
4639 "sys_mremap",
4640 "sys_setresuid16",
4641 "sys_getresuid16", /* 165 */
4642 "sys_vm86",
4643 "sys_ni_syscall", /* Old sys_query_module */
4644 "sys_poll",
4645 "sys_nfsservctl",
4646 "sys_setresgid16", /* 170 */
4647 "sys_getresgid16",
4648 "sys_prctl",
4649 "sys_rt_sigreturn",
4650 "sys_rt_sigaction",
4651 "sys_rt_sigprocmask", /* 175 */
4652 "sys_rt_sigpending",
4653 "sys_rt_sigtimedwait",
4654 "sys_rt_sigqueueinfo",
4655 "sys_rt_sigsuspend",
4656 "sys_pread64", /* 180 */
4657 "sys_pwrite64",
4658 "sys_chown16",
4659 "sys_getcwd",
4660 "sys_capget",
4661 "sys_capset", /* 185 */
4662 "sys_sigaltstack",
4663 "sys_sendfile",
4664 "sys_ni_syscall", /* reserved for streams1 */
4665 "sys_ni_syscall", /* reserved for streams2 */
4666 "sys_vfork", /* 190 */
4667 "sys_getrlimit",
4668 "sys_mmap2",
4669 "sys_truncate64",
4670 "sys_ftruncate64",
4671 "sys_stat64", /* 195 */
4672 "sys_lstat64",
4673 "sys_fstat64",
4674 "sys_lchown",
4675 "sys_getuid",
4676 "sys_getgid", /* 200 */
4677 "sys_geteuid",
4678 "sys_getegid",
4679 "sys_setreuid",
4680 "sys_setregid",
4681 "sys_getgroups", /* 205 */
4682 "sys_setgroups",
4683 "sys_fchown",
4684 "sys_setresuid",
4685 "sys_getresuid",
4686 "sys_setresgid", /* 210 */
4687 "sys_getresgid",
4688 "sys_chown",
4689 "sys_setuid",
4690 "sys_setgid",
4691 "sys_setfsuid", /* 215 */
4692 "sys_setfsgid",
4693 "sys_pivot_root",
4694 "sys_mincore",
4695 "sys_madvise",
4696 "sys_getdents64", /* 220 */
4697 "sys_fcntl64",
4698 "sys_ni_syscall", /* reserved for TUX */
4699 "sys_ni_syscall",
4700 "sys_gettid",
4701 "sys_readahead", /* 225 */
4702 "sys_setxattr",
4703 "sys_lsetxattr",
4704 "sys_fsetxattr",
4705 "sys_getxattr",
4706 "sys_lgetxattr", /* 230 */
4707 "sys_fgetxattr",
4708 "sys_listxattr",
4709 "sys_llistxattr",
4710 "sys_flistxattr",
4711 "sys_removexattr", /* 235 */
4712 "sys_lremovexattr",
4713 "sys_fremovexattr",
4714 "sys_tkill",
4715 "sys_sendfile64",
4716 "sys_futex", /* 240 */
4717 "sys_sched_setaffinity",
4718 "sys_sched_getaffinity",
4719 "sys_set_thread_area",
4720 "sys_get_thread_area",
4721 "sys_io_setup", /* 245 */
4722 "sys_io_destroy",
4723 "sys_io_getevents",
4724 "sys_io_submit",
4725 "sys_io_cancel",
4726 "sys_fadvise64", /* 250 */
4727 "sys_ni_syscall",
4728 "sys_exit_group",
4729 "sys_lookup_dcookie",
4730 "sys_epoll_create",
4731 "sys_epoll_ctl", /* 255 */
4732 "sys_epoll_wait",
4733 "sys_remap_file_pages",
4734 "sys_set_tid_address",
4735 "sys_timer_create",
4736 "sys_timer_settime", /* 260 */
4737 "sys_timer_gettime",
4738 "sys_timer_getoverrun",
4739 "sys_timer_delete",
4740 "sys_clock_settime",
4741 "sys_clock_gettime", /* 265 */
4742 "sys_clock_getres",
4743 "sys_clock_nanosleep",
4744 "sys_statfs64",
4745 "sys_fstatfs64",
4746 "sys_tgkill", /* 270 */
4747 "sys_utimes",
4748 "sys_fadvise64_64",
4749 "sys_ni_syscall" /* sys_vserver */
4750 };
4751
4752 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4753 switch (uEAX)
4754 {
4755 default:
4756 if (uEAX < RT_ELEMENTS(apsz))
4757 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4758 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4759 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4760 else
4761 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4762 break;
4763
4764 }
4765}
4766
4767
4768/**
4769 * Dumps an OpenBSD system call.
4770 * @param pVM VM handle.
4771 */
4772void remR3DumpOBsdSyscall(PVM pVM)
4773{
4774 static const char *apsz[] =
4775 {
4776 "SYS_syscall", //0
4777 "SYS_exit", //1
4778 "SYS_fork", //2
4779 "SYS_read", //3
4780 "SYS_write", //4
4781 "SYS_open", //5
4782 "SYS_close", //6
4783 "SYS_wait4", //7
4784 "SYS_8",
4785 "SYS_link", //9
4786 "SYS_unlink", //10
4787 "SYS_11",
4788 "SYS_chdir", //12
4789 "SYS_fchdir", //13
4790 "SYS_mknod", //14
4791 "SYS_chmod", //15
4792 "SYS_chown", //16
4793 "SYS_break", //17
4794 "SYS_18",
4795 "SYS_19",
4796 "SYS_getpid", //20
4797 "SYS_mount", //21
4798 "SYS_unmount", //22
4799 "SYS_setuid", //23
4800 "SYS_getuid", //24
4801 "SYS_geteuid", //25
4802 "SYS_ptrace", //26
4803 "SYS_recvmsg", //27
4804 "SYS_sendmsg", //28
4805 "SYS_recvfrom", //29
4806 "SYS_accept", //30
4807 "SYS_getpeername", //31
4808 "SYS_getsockname", //32
4809 "SYS_access", //33
4810 "SYS_chflags", //34
4811 "SYS_fchflags", //35
4812 "SYS_sync", //36
4813 "SYS_kill", //37
4814 "SYS_38",
4815 "SYS_getppid", //39
4816 "SYS_40",
4817 "SYS_dup", //41
4818 "SYS_opipe", //42
4819 "SYS_getegid", //43
4820 "SYS_profil", //44
4821 "SYS_ktrace", //45
4822 "SYS_sigaction", //46
4823 "SYS_getgid", //47
4824 "SYS_sigprocmask", //48
4825 "SYS_getlogin", //49
4826 "SYS_setlogin", //50
4827 "SYS_acct", //51
4828 "SYS_sigpending", //52
4829 "SYS_osigaltstack", //53
4830 "SYS_ioctl", //54
4831 "SYS_reboot", //55
4832 "SYS_revoke", //56
4833 "SYS_symlink", //57
4834 "SYS_readlink", //58
4835 "SYS_execve", //59
4836 "SYS_umask", //60
4837 "SYS_chroot", //61
4838 "SYS_62",
4839 "SYS_63",
4840 "SYS_64",
4841 "SYS_65",
4842 "SYS_vfork", //66
4843 "SYS_67",
4844 "SYS_68",
4845 "SYS_sbrk", //69
4846 "SYS_sstk", //70
4847 "SYS_61",
4848 "SYS_vadvise", //72
4849 "SYS_munmap", //73
4850 "SYS_mprotect", //74
4851 "SYS_madvise", //75
4852 "SYS_76",
4853 "SYS_77",
4854 "SYS_mincore", //78
4855 "SYS_getgroups", //79
4856 "SYS_setgroups", //80
4857 "SYS_getpgrp", //81
4858 "SYS_setpgid", //82
4859 "SYS_setitimer", //83
4860 "SYS_84",
4861 "SYS_85",
4862 "SYS_getitimer", //86
4863 "SYS_87",
4864 "SYS_88",
4865 "SYS_89",
4866 "SYS_dup2", //90
4867 "SYS_91",
4868 "SYS_fcntl", //92
4869 "SYS_select", //93
4870 "SYS_94",
4871 "SYS_fsync", //95
4872 "SYS_setpriority", //96
4873 "SYS_socket", //97
4874 "SYS_connect", //98
4875 "SYS_99",
4876 "SYS_getpriority", //100
4877 "SYS_101",
4878 "SYS_102",
4879 "SYS_sigreturn", //103
4880 "SYS_bind", //104
4881 "SYS_setsockopt", //105
4882 "SYS_listen", //106
4883 "SYS_107",
4884 "SYS_108",
4885 "SYS_109",
4886 "SYS_110",
4887 "SYS_sigsuspend", //111
4888 "SYS_112",
4889 "SYS_113",
4890 "SYS_114",
4891 "SYS_115",
4892 "SYS_gettimeofday", //116
4893 "SYS_getrusage", //117
4894 "SYS_getsockopt", //118
4895 "SYS_119",
4896 "SYS_readv", //120
4897 "SYS_writev", //121
4898 "SYS_settimeofday", //122
4899 "SYS_fchown", //123
4900 "SYS_fchmod", //124
4901 "SYS_125",
4902 "SYS_setreuid", //126
4903 "SYS_setregid", //127
4904 "SYS_rename", //128
4905 "SYS_129",
4906 "SYS_130",
4907 "SYS_flock", //131
4908 "SYS_mkfifo", //132
4909 "SYS_sendto", //133
4910 "SYS_shutdown", //134
4911 "SYS_socketpair", //135
4912 "SYS_mkdir", //136
4913 "SYS_rmdir", //137
4914 "SYS_utimes", //138
4915 "SYS_139",
4916 "SYS_adjtime", //140
4917 "SYS_141",
4918 "SYS_142",
4919 "SYS_143",
4920 "SYS_144",
4921 "SYS_145",
4922 "SYS_146",
4923 "SYS_setsid", //147
4924 "SYS_quotactl", //148
4925 "SYS_149",
4926 "SYS_150",
4927 "SYS_151",
4928 "SYS_152",
4929 "SYS_153",
4930 "SYS_154",
4931 "SYS_nfssvc", //155
4932 "SYS_156",
4933 "SYS_157",
4934 "SYS_158",
4935 "SYS_159",
4936 "SYS_160",
4937 "SYS_getfh", //161
4938 "SYS_162",
4939 "SYS_163",
4940 "SYS_164",
4941 "SYS_sysarch", //165
4942 "SYS_166",
4943 "SYS_167",
4944 "SYS_168",
4945 "SYS_169",
4946 "SYS_170",
4947 "SYS_171",
4948 "SYS_172",
4949 "SYS_pread", //173
4950 "SYS_pwrite", //174
4951 "SYS_175",
4952 "SYS_176",
4953 "SYS_177",
4954 "SYS_178",
4955 "SYS_179",
4956 "SYS_180",
4957 "SYS_setgid", //181
4958 "SYS_setegid", //182
4959 "SYS_seteuid", //183
4960 "SYS_lfs_bmapv", //184
4961 "SYS_lfs_markv", //185
4962 "SYS_lfs_segclean", //186
4963 "SYS_lfs_segwait", //187
4964 "SYS_188",
4965 "SYS_189",
4966 "SYS_190",
4967 "SYS_pathconf", //191
4968 "SYS_fpathconf", //192
4969 "SYS_swapctl", //193
4970 "SYS_getrlimit", //194
4971 "SYS_setrlimit", //195
4972 "SYS_getdirentries", //196
4973 "SYS_mmap", //197
4974 "SYS___syscall", //198
4975 "SYS_lseek", //199
4976 "SYS_truncate", //200
4977 "SYS_ftruncate", //201
4978 "SYS___sysctl", //202
4979 "SYS_mlock", //203
4980 "SYS_munlock", //204
4981 "SYS_205",
4982 "SYS_futimes", //206
4983 "SYS_getpgid", //207
4984 "SYS_xfspioctl", //208
4985 "SYS_209",
4986 "SYS_210",
4987 "SYS_211",
4988 "SYS_212",
4989 "SYS_213",
4990 "SYS_214",
4991 "SYS_215",
4992 "SYS_216",
4993 "SYS_217",
4994 "SYS_218",
4995 "SYS_219",
4996 "SYS_220",
4997 "SYS_semget", //221
4998 "SYS_222",
4999 "SYS_223",
5000 "SYS_224",
5001 "SYS_msgget", //225
5002 "SYS_msgsnd", //226
5003 "SYS_msgrcv", //227
5004 "SYS_shmat", //228
5005 "SYS_229",
5006 "SYS_shmdt", //230
5007 "SYS_231",
5008 "SYS_clock_gettime", //232
5009 "SYS_clock_settime", //233
5010 "SYS_clock_getres", //234
5011 "SYS_235",
5012 "SYS_236",
5013 "SYS_237",
5014 "SYS_238",
5015 "SYS_239",
5016 "SYS_nanosleep", //240
5017 "SYS_241",
5018 "SYS_242",
5019 "SYS_243",
5020 "SYS_244",
5021 "SYS_245",
5022 "SYS_246",
5023 "SYS_247",
5024 "SYS_248",
5025 "SYS_249",
5026 "SYS_minherit", //250
5027 "SYS_rfork", //251
5028 "SYS_poll", //252
5029 "SYS_issetugid", //253
5030 "SYS_lchown", //254
5031 "SYS_getsid", //255
5032 "SYS_msync", //256
5033 "SYS_257",
5034 "SYS_258",
5035 "SYS_259",
5036 "SYS_getfsstat", //260
5037 "SYS_statfs", //261
5038 "SYS_fstatfs", //262
5039 "SYS_pipe", //263
5040 "SYS_fhopen", //264
5041 "SYS_265",
5042 "SYS_fhstatfs", //266
5043 "SYS_preadv", //267
5044 "SYS_pwritev", //268
5045 "SYS_kqueue", //269
5046 "SYS_kevent", //270
5047 "SYS_mlockall", //271
5048 "SYS_munlockall", //272
5049 "SYS_getpeereid", //273
5050 "SYS_274",
5051 "SYS_275",
5052 "SYS_276",
5053 "SYS_277",
5054 "SYS_278",
5055 "SYS_279",
5056 "SYS_280",
5057 "SYS_getresuid", //281
5058 "SYS_setresuid", //282
5059 "SYS_getresgid", //283
5060 "SYS_setresgid", //284
5061 "SYS_285",
5062 "SYS_mquery", //286
5063 "SYS_closefrom", //287
5064 "SYS_sigaltstack", //288
5065 "SYS_shmget", //289
5066 "SYS_semop", //290
5067 "SYS_stat", //291
5068 "SYS_fstat", //292
5069 "SYS_lstat", //293
5070 "SYS_fhstat", //294
5071 "SYS___semctl", //295
5072 "SYS_shmctl", //296
5073 "SYS_msgctl", //297
5074 "SYS_MAXSYSCALL", //298
5075 //299
5076 //300
5077 };
5078 uint32_t uEAX;
5079 if (!LogIsEnabled())
5080 return;
5081 uEAX = CPUMGetGuestEAX(pVM);
5082 switch (uEAX)
5083 {
5084 default:
5085 if (uEAX < RT_ELEMENTS(apsz))
5086 {
5087 uint32_t au32Args[8] = {0};
5088 PGMPhysSimpleReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
5089 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
5090 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
5091 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
5092 }
5093 else
5094 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
5095 break;
5096 }
5097}
5098
5099
5100#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
5101/**
5102 * The Dll main entry point (stub).
5103 */
5104bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5105{
5106 return true;
5107}
5108
5109void *memcpy(void *dst, const void *src, size_t size)
5110{
5111 uint8_t*pbDst = dst, *pbSrc = src;
5112 while (size-- > 0)
5113 *pbDst++ = *pbSrc++;
5114 return dst;
5115}
5116
5117#endif
5118
5119void cpu_smm_update(CPUState* env)
5120{
5121}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette