VirtualBox

source: vbox/trunk/src/recompiler_new/VBoxRecompiler.c@ 15284

Last change on this file since 15284 was 15284, checked in by vboxsync, 16 years ago

PGM, REM: Virtual address in TLB - this is what I meant...

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 156.1 KB
Line 
1/* $Id: VBoxRecompiler.c 15284 2008-12-11 03:23:40Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "osdep.h"
29#include "exec-all.h"
30#include "config.h"
31#include "cpu-all.h"
32
33void cpu_exec_init_all(unsigned long tb_size);
34
35#include <VBox/rem.h>
36#include <VBox/vmapi.h>
37#include <VBox/tm.h>
38#include <VBox/ssm.h>
39#include <VBox/em.h>
40#include <VBox/trpm.h>
41#include <VBox/iom.h>
42#include <VBox/mm.h>
43#include <VBox/pgm.h>
44#include <VBox/pdm.h>
45#include <VBox/dbgf.h>
46#include <VBox/dbg.h>
47#include <VBox/hwaccm.h>
48#include <VBox/patm.h>
49#include <VBox/csam.h>
50#include "REMInternal.h"
51#include <VBox/vm.h>
52#include <VBox/param.h>
53#include <VBox/err.h>
54
55#include <VBox/log.h>
56#include <iprt/semaphore.h>
57#include <iprt/asm.h>
58#include <iprt/assert.h>
59#include <iprt/thread.h>
60#include <iprt/string.h>
61
62/* Don't wanna include everything. */
63extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
64extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
65extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
66extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
67extern void tlb_flush(CPUState *env, int flush_global);
68extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
69extern void sync_ldtr(CPUX86State *env1, int selector);
70extern int sync_tr(CPUX86State *env1, int selector);
71
72#ifdef VBOX_STRICT
73unsigned long get_phys_page_offset(target_ulong addr);
74#endif
75
76/*******************************************************************************
77* Defined Constants And Macros *
78*******************************************************************************/
79
80/** Copy 80-bit fpu register at pSrc to pDst.
81 * This is probably faster than *calling* memcpy.
82 */
83#define REM_COPY_FPU_REG(pDst, pSrc) \
84 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
85
86
87/*******************************************************************************
88* Internal Functions *
89*******************************************************************************/
90static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
91static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
92static void remR3StateUpdate(PVM pVM);
93
94static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
95static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
96static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
97static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
98static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
99static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
100
101static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
102static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
103static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
104static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
105static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
107
108
109/*******************************************************************************
110* Global Variables *
111*******************************************************************************/
112
113/** @todo Move stats to REM::s some rainy day we have nothing do to. */
114#ifdef VBOX_WITH_STATISTICS
115static STAMPROFILEADV gStatExecuteSingleInstr;
116static STAMPROFILEADV gStatCompilationQEmu;
117static STAMPROFILEADV gStatRunCodeQEmu;
118static STAMPROFILEADV gStatTotalTimeQEmu;
119static STAMPROFILEADV gStatTimers;
120static STAMPROFILEADV gStatTBLookup;
121static STAMPROFILEADV gStatIRQ;
122static STAMPROFILEADV gStatRawCheck;
123static STAMPROFILEADV gStatMemRead;
124static STAMPROFILEADV gStatMemWrite;
125static STAMPROFILE gStatGCPhys2HCVirt;
126static STAMPROFILE gStatHCVirt2GCPhys;
127static STAMCOUNTER gStatCpuGetTSC;
128static STAMCOUNTER gStatRefuseTFInhibit;
129static STAMCOUNTER gStatRefuseVM86;
130static STAMCOUNTER gStatRefusePaging;
131static STAMCOUNTER gStatRefusePAE;
132static STAMCOUNTER gStatRefuseIOPLNot0;
133static STAMCOUNTER gStatRefuseIF0;
134static STAMCOUNTER gStatRefuseCode16;
135static STAMCOUNTER gStatRefuseWP0;
136static STAMCOUNTER gStatRefuseRing1or2;
137static STAMCOUNTER gStatRefuseCanExecute;
138static STAMCOUNTER gStatREMGDTChange;
139static STAMCOUNTER gStatREMIDTChange;
140static STAMCOUNTER gStatREMLDTRChange;
141static STAMCOUNTER gStatREMTRChange;
142static STAMCOUNTER gStatSelOutOfSync[6];
143static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
144static STAMCOUNTER gStatFlushTBs;
145#endif
146
147/*
148 * Global stuff.
149 */
150
151/** MMIO read callbacks. */
152CPUReadMemoryFunc *g_apfnMMIORead[3] =
153{
154 remR3MMIOReadU8,
155 remR3MMIOReadU16,
156 remR3MMIOReadU32
157};
158
159/** MMIO write callbacks. */
160CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
161{
162 remR3MMIOWriteU8,
163 remR3MMIOWriteU16,
164 remR3MMIOWriteU32
165};
166
167/** Handler read callbacks. */
168CPUReadMemoryFunc *g_apfnHandlerRead[3] =
169{
170 remR3HandlerReadU8,
171 remR3HandlerReadU16,
172 remR3HandlerReadU32
173};
174
175/** Handler write callbacks. */
176CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
177{
178 remR3HandlerWriteU8,
179 remR3HandlerWriteU16,
180 remR3HandlerWriteU32
181};
182
183
184#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
185/*
186 * Debugger commands.
187 */
188static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
189
190/** '.remstep' arguments. */
191static const DBGCVARDESC g_aArgRemStep[] =
192{
193 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
194 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
195};
196
197/** Command descriptors. */
198static const DBGCCMD g_aCmds[] =
199{
200 {
201 .pszCmd ="remstep",
202 .cArgsMin = 0,
203 .cArgsMax = 1,
204 .paArgDescs = &g_aArgRemStep[0],
205 .cArgDescs = RT_ELEMENTS(g_aArgRemStep),
206 .pResultDesc = NULL,
207 .fFlags = 0,
208 .pfnHandler = remR3CmdDisasEnableStepping,
209 .pszSyntax = "[on/off]",
210 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
211 "If no arguments show the current state."
212 }
213};
214#endif
215
216
217/*******************************************************************************
218* Internal Functions *
219*******************************************************************************/
220void remAbort(int rc, const char *pszTip);
221extern int testmath(void);
222
223/* Put them here to avoid unused variable warning. */
224AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
225#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
226//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
227/* Why did this have to be identical?? */
228AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
229#else
230AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
231#endif
232
233
234/* Prologue code, must be in lower 4G to simplify jumps to/from generated code */
235uint8_t* code_gen_prologue;
236
237/**
238 * Initializes the REM.
239 *
240 * @returns VBox status code.
241 * @param pVM The VM to operate on.
242 */
243REMR3DECL(int) REMR3Init(PVM pVM)
244{
245 uint32_t u32Dummy;
246 int rc;
247
248 /*
249 * Assert sanity.
250 */
251 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
252 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
253 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
254#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
255 Assert(!testmath());
256#endif
257 /*
258 * Init some internal data members.
259 */
260 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
261 pVM->rem.s.Env.pVM = pVM;
262#ifdef CPU_RAW_MODE_INIT
263 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
264#endif
265
266 /* ctx. */
267 pVM->rem.s.pCtx = CPUMQueryGuestCtxPtr(pVM);
268 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
269
270 /* ignore all notifications */
271 pVM->rem.s.fIgnoreAll = true;
272
273 code_gen_prologue = RTMemExecAlloc(_1K);
274
275 cpu_exec_init_all(0);
276
277 /*
278 * Init the recompiler.
279 */
280 if (!cpu_x86_init(&pVM->rem.s.Env, "vbox"))
281 {
282 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
283 return VERR_GENERAL_FAILURE;
284 }
285 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
286 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
287
288 /* allocate code buffer for single instruction emulation. */
289 pVM->rem.s.Env.cbCodeBuffer = 4096;
290 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
291 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
292
293 /* finally, set the cpu_single_env global. */
294 cpu_single_env = &pVM->rem.s.Env;
295
296 /* Nothing is pending by default */
297 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
298
299 /*
300 * Register ram types.
301 */
302 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
303 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
304 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
305 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
306 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
307
308 /* stop ignoring. */
309 pVM->rem.s.fIgnoreAll = false;
310
311 /*
312 * Register the saved state data unit.
313 */
314 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
315 NULL, remR3Save, NULL,
316 NULL, remR3Load, NULL);
317 if (RT_FAILURE(rc))
318 return rc;
319
320#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
321 /*
322 * Debugger commands.
323 */
324 static bool fRegisteredCmds = false;
325 if (!fRegisteredCmds)
326 {
327 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
328 if (RT_SUCCESS(rc))
329 fRegisteredCmds = true;
330 }
331#endif
332
333#ifdef VBOX_WITH_STATISTICS
334 /*
335 * Statistics.
336 */
337 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
338 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
339 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
340 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
341 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
342 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
343 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
344 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
345 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
346 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
347 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
348 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
349
350 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
351
352 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
353 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
354 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
355 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
356 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
357 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
358 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
359 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
360 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
361 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
362 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
363
364 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
365 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
366 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
367 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
368
369 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
370 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
371 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
372 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
373 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
374 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
375
376 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
377 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
378 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
379 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
380 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
382
383
384#endif
385
386#ifdef DEBUG_ALL_LOGGING
387 loglevel = ~0;
388 logfile = fopen("/tmp/vbox-qemu.log", "w");
389#endif
390
391 return rc;
392}
393
394
395/**
396 * Terminates the REM.
397 *
398 * Termination means cleaning up and freeing all resources,
399 * the VM it self is at this point powered off or suspended.
400 *
401 * @returns VBox status code.
402 * @param pVM The VM to operate on.
403 */
404REMR3DECL(int) REMR3Term(PVM pVM)
405{
406 return VINF_SUCCESS;
407}
408
409
410/**
411 * The VM is being reset.
412 *
413 * For the REM component this means to call the cpu_reset() and
414 * reinitialize some state variables.
415 *
416 * @param pVM VM handle.
417 */
418REMR3DECL(void) REMR3Reset(PVM pVM)
419{
420 /*
421 * Reset the REM cpu.
422 */
423 pVM->rem.s.fIgnoreAll = true;
424 cpu_reset(&pVM->rem.s.Env);
425 pVM->rem.s.cInvalidatedPages = 0;
426 pVM->rem.s.fIgnoreAll = false;
427
428 /* Clear raw ring 0 init state */
429 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
430
431 /* Flush the TBs the next time we execute code here. */
432 pVM->rem.s.fFlushTBs = true;
433}
434
435
436/**
437 * Execute state save operation.
438 *
439 * @returns VBox status code.
440 * @param pVM VM Handle.
441 * @param pSSM SSM operation handle.
442 */
443static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
444{
445 /*
446 * Save the required CPU Env bits.
447 * (Not much because we're never in REM when doing the save.)
448 */
449 PREM pRem = &pVM->rem.s;
450 LogFlow(("remR3Save:\n"));
451 Assert(!pRem->fInREM);
452 SSMR3PutU32(pSSM, pRem->Env.hflags);
453 SSMR3PutU32(pSSM, ~0); /* separator */
454
455 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
456 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
457 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
458
459 return SSMR3PutU32(pSSM, ~0); /* terminator */
460}
461
462
463/**
464 * Execute state load operation.
465 *
466 * @returns VBox status code.
467 * @param pVM VM Handle.
468 * @param pSSM SSM operation handle.
469 * @param u32Version Data layout version.
470 */
471static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
472{
473 uint32_t u32Dummy;
474 uint32_t fRawRing0 = false;
475 uint32_t u32Sep;
476 int rc;
477 PREM pRem;
478 LogFlow(("remR3Load:\n"));
479
480 /*
481 * Validate version.
482 */
483 if ( u32Version != REM_SAVED_STATE_VERSION
484 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
485 {
486 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
487 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
488 }
489
490 /*
491 * Do a reset to be on the safe side...
492 */
493 REMR3Reset(pVM);
494
495 /*
496 * Ignore all ignorable notifications.
497 * (Not doing this will cause serious trouble.)
498 */
499 pVM->rem.s.fIgnoreAll = true;
500
501 /*
502 * Load the required CPU Env bits.
503 * (Not much because we're never in REM when doing the save.)
504 */
505 pRem = &pVM->rem.s;
506 Assert(!pRem->fInREM);
507 SSMR3GetU32(pSSM, &pRem->Env.hflags);
508 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
509 {
510 /* Redundant REM CPU state has to be loaded, but can be ignored. */
511 CPUX86State_Ver16 temp;
512 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
513 }
514
515 rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
516 if (RT_FAILURE(rc))
517 return rc;
518 if (u32Sep != ~0U)
519 {
520 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
521 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
522 }
523
524 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
525 SSMR3GetUInt(pSSM, &fRawRing0);
526 if (fRawRing0)
527 pRem->Env.state |= CPU_RAW_RING0;
528
529 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
530 {
531 unsigned i;
532
533 /*
534 * Load the REM stuff.
535 */
536 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
537 if (RT_FAILURE(rc))
538 return rc;
539 if (pRem->cInvalidatedPages > RT_ELEMENTS(pRem->aGCPtrInvalidatedPages))
540 {
541 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
542 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
543 }
544 for (i = 0; i < pRem->cInvalidatedPages; i++)
545 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
546 }
547
548 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
549 if (RT_FAILURE(rc))
550 return rc;
551
552 /* check the terminator. */
553 rc = SSMR3GetU32(pSSM, &u32Sep);
554 if (RT_FAILURE(rc))
555 return rc;
556 if (u32Sep != ~0U)
557 {
558 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
559 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
560 }
561
562 /*
563 * Get the CPUID features.
564 */
565 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
566 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
567
568 /*
569 * Sync the Load Flush the TLB
570 */
571 tlb_flush(&pRem->Env, 1);
572
573 /*
574 * Stop ignoring ignornable notifications.
575 */
576 pVM->rem.s.fIgnoreAll = false;
577
578 /*
579 * Sync the whole CPU state when executing code in the recompiler.
580 */
581 CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
582 return VINF_SUCCESS;
583}
584
585
586
587#undef LOG_GROUP
588#define LOG_GROUP LOG_GROUP_REM_RUN
589
590/**
591 * Single steps an instruction in recompiled mode.
592 *
593 * Before calling this function the REM state needs to be in sync with
594 * the VM. Call REMR3State() to perform the sync. It's only necessary
595 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
596 * and after calling REMR3StateBack().
597 *
598 * @returns VBox status code.
599 *
600 * @param pVM VM Handle.
601 */
602REMR3DECL(int) REMR3Step(PVM pVM)
603{
604 int rc, interrupt_request;
605 RTGCPTR GCPtrPC;
606 bool fBp;
607
608 /*
609 * Lock the REM - we don't wanna have anyone interrupting us
610 * while stepping - and enabled single stepping. We also ignore
611 * pending interrupts and suchlike.
612 */
613 interrupt_request = pVM->rem.s.Env.interrupt_request;
614 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
615 pVM->rem.s.Env.interrupt_request = 0;
616 cpu_single_step(&pVM->rem.s.Env, 1);
617
618 /*
619 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
620 */
621 GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
622 fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
623
624 /*
625 * Execute and handle the return code.
626 * We execute without enabling the cpu tick, so on success we'll
627 * just flip it on and off to make sure it moves
628 */
629 rc = cpu_exec(&pVM->rem.s.Env);
630 if (rc == EXCP_DEBUG)
631 {
632 TMCpuTickResume(pVM);
633 TMCpuTickPause(pVM);
634 TMVirtualResume(pVM);
635 TMVirtualPause(pVM);
636 rc = VINF_EM_DBG_STEPPED;
637 }
638 else
639 {
640 switch (rc)
641 {
642 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
643 case EXCP_HLT:
644 case EXCP_HALTED: rc = VINF_EM_HALT; break;
645 case EXCP_RC:
646 rc = pVM->rem.s.rc;
647 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
648 break;
649 default:
650 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
651 rc = VERR_INTERNAL_ERROR;
652 break;
653 }
654 }
655
656 /*
657 * Restore the stuff we changed to prevent interruption.
658 * Unlock the REM.
659 */
660 if (fBp)
661 {
662 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
663 Assert(rc2 == 0); NOREF(rc2);
664 }
665 cpu_single_step(&pVM->rem.s.Env, 0);
666 pVM->rem.s.Env.interrupt_request = interrupt_request;
667
668 return rc;
669}
670
671
672/**
673 * Set a breakpoint using the REM facilities.
674 *
675 * @returns VBox status code.
676 * @param pVM The VM handle.
677 * @param Address The breakpoint address.
678 * @thread The emulation thread.
679 */
680REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
681{
682 VM_ASSERT_EMT(pVM);
683 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
684 {
685 LogFlow(("REMR3BreakpointSet: Address=%RGv\n", Address));
686 return VINF_SUCCESS;
687 }
688 LogFlow(("REMR3BreakpointSet: Address=%RGv - failed!\n", Address));
689 return VERR_REM_NO_MORE_BP_SLOTS;
690}
691
692
693/**
694 * Clears a breakpoint set by REMR3BreakpointSet().
695 *
696 * @returns VBox status code.
697 * @param pVM The VM handle.
698 * @param Address The breakpoint address.
699 * @thread The emulation thread.
700 */
701REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
702{
703 VM_ASSERT_EMT(pVM);
704 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
705 {
706 LogFlow(("REMR3BreakpointClear: Address=%RGv\n", Address));
707 return VINF_SUCCESS;
708 }
709 LogFlow(("REMR3BreakpointClear: Address=%RGv - not found!\n", Address));
710 return VERR_REM_BP_NOT_FOUND;
711}
712
713
714/**
715 * Emulate an instruction.
716 *
717 * This function executes one instruction without letting anyone
718 * interrupt it. This is intended for being called while being in
719 * raw mode and thus will take care of all the state syncing between
720 * REM and the rest.
721 *
722 * @returns VBox status code.
723 * @param pVM VM handle.
724 */
725REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
726{
727 bool fFlushTBs;
728
729 int rc, rc2;
730 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
731
732 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
733 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
734 */
735 if (HWACCMIsEnabled(pVM))
736 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
737
738 /* Skip the TB flush as that's rather expensive and not necessary for single instruction emulation. */
739 fFlushTBs = pVM->rem.s.fFlushTBs;
740 pVM->rem.s.fFlushTBs = false;
741
742 /*
743 * Sync the state and enable single instruction / single stepping.
744 */
745 rc = REMR3State(pVM);
746 pVM->rem.s.fFlushTBs = fFlushTBs;
747 if (RT_SUCCESS(rc))
748 {
749 int interrupt_request = pVM->rem.s.Env.interrupt_request;
750 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
751 Assert(!pVM->rem.s.Env.singlestep_enabled);
752 /*
753 * Now we set the execute single instruction flag and enter the cpu_exec loop.
754 */
755 TMNotifyStartOfExecution(pVM);
756 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
757 rc = cpu_exec(&pVM->rem.s.Env);
758 TMNotifyEndOfExecution(pVM);
759 switch (rc)
760 {
761 /*
762 * Executed without anything out of the way happening.
763 */
764 case EXCP_SINGLE_INSTR:
765 rc = VINF_EM_RESCHEDULE;
766 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
767 break;
768
769 /*
770 * If we take a trap or start servicing a pending interrupt, we might end up here.
771 * (Timer thread or some other thread wishing EMT's attention.)
772 */
773 case EXCP_INTERRUPT:
774 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
775 rc = VINF_EM_RESCHEDULE;
776 break;
777
778 /*
779 * Single step, we assume!
780 * If there was a breakpoint there we're fucked now.
781 */
782 case EXCP_DEBUG:
783 {
784 /* breakpoint or single step? */
785 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
786 int iBP;
787 rc = VINF_EM_DBG_STEPPED;
788 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
789 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
790 {
791 rc = VINF_EM_DBG_BREAKPOINT;
792 break;
793 }
794 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
795 break;
796 }
797
798 /*
799 * hlt instruction.
800 */
801 case EXCP_HLT:
802 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
803 rc = VINF_EM_HALT;
804 break;
805
806 /*
807 * The VM has halted.
808 */
809 case EXCP_HALTED:
810 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
811 rc = VINF_EM_HALT;
812 break;
813
814 /*
815 * Switch to RAW-mode.
816 */
817 case EXCP_EXECUTE_RAW:
818 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
819 rc = VINF_EM_RESCHEDULE_RAW;
820 break;
821
822 /*
823 * Switch to hardware accelerated RAW-mode.
824 */
825 case EXCP_EXECUTE_HWACC:
826 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
827 rc = VINF_EM_RESCHEDULE_HWACC;
828 break;
829
830 /*
831 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
832 */
833 case EXCP_RC:
834 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
835 rc = pVM->rem.s.rc;
836 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
837 break;
838
839 /*
840 * Figure out the rest when they arrive....
841 */
842 default:
843 AssertMsgFailed(("rc=%d\n", rc));
844 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
845 rc = VINF_EM_RESCHEDULE;
846 break;
847 }
848
849 /*
850 * Switch back the state.
851 */
852 pVM->rem.s.Env.interrupt_request = interrupt_request;
853 rc2 = REMR3StateBack(pVM);
854 AssertRC(rc2);
855 }
856
857 Log2(("REMR3EmulateInstruction: returns %Rrc (cs:eip=%04x:%RGv)\n",
858 rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
859 return rc;
860}
861
862
863/**
864 * Runs code in recompiled mode.
865 *
866 * Before calling this function the REM state needs to be in sync with
867 * the VM. Call REMR3State() to perform the sync. It's only necessary
868 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
869 * and after calling REMR3StateBack().
870 *
871 * @returns VBox status code.
872 *
873 * @param pVM VM Handle.
874 */
875REMR3DECL(int) REMR3Run(PVM pVM)
876{
877 int rc;
878 Log2(("REMR3Run: (cs:eip=%04x:%RGv)\n", pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
879 Assert(pVM->rem.s.fInREM);
880
881 TMNotifyStartOfExecution(pVM);
882 rc = cpu_exec(&pVM->rem.s.Env);
883 TMNotifyEndOfExecution(pVM);
884 switch (rc)
885 {
886 /*
887 * This happens when the execution was interrupted
888 * by an external event, like pending timers.
889 */
890 case EXCP_INTERRUPT:
891 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
892 rc = VINF_SUCCESS;
893 break;
894
895 /*
896 * hlt instruction.
897 */
898 case EXCP_HLT:
899 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
900 rc = VINF_EM_HALT;
901 break;
902
903 /*
904 * The VM has halted.
905 */
906 case EXCP_HALTED:
907 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
908 rc = VINF_EM_HALT;
909 break;
910
911 /*
912 * Breakpoint/single step.
913 */
914 case EXCP_DEBUG:
915 {
916#if 0//def DEBUG_bird
917 static int iBP = 0;
918 printf("howdy, breakpoint! iBP=%d\n", iBP);
919 switch (iBP)
920 {
921 case 0:
922 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
923 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
924 //pVM->rem.s.Env.interrupt_request = 0;
925 //pVM->rem.s.Env.exception_index = -1;
926 //g_fInterruptDisabled = 1;
927 rc = VINF_SUCCESS;
928 asm("int3");
929 break;
930 default:
931 asm("int3");
932 break;
933 }
934 iBP++;
935#else
936 /* breakpoint or single step? */
937 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
938 int iBP;
939 rc = VINF_EM_DBG_STEPPED;
940 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
941 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
942 {
943 rc = VINF_EM_DBG_BREAKPOINT;
944 break;
945 }
946 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
947#endif
948 break;
949 }
950
951 /*
952 * Switch to RAW-mode.
953 */
954 case EXCP_EXECUTE_RAW:
955 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
956 rc = VINF_EM_RESCHEDULE_RAW;
957 break;
958
959 /*
960 * Switch to hardware accelerated RAW-mode.
961 */
962 case EXCP_EXECUTE_HWACC:
963 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
964 rc = VINF_EM_RESCHEDULE_HWACC;
965 break;
966
967 /*
968 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
969 */
970 case EXCP_RC:
971 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
972 rc = pVM->rem.s.rc;
973 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
974 break;
975
976 /*
977 * Figure out the rest when they arrive....
978 */
979 default:
980 AssertMsgFailed(("rc=%d\n", rc));
981 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
982 rc = VINF_SUCCESS;
983 break;
984 }
985
986 Log2(("REMR3Run: returns %Rrc (cs:eip=%04x:%RGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
987 return rc;
988}
989
990
991/**
992 * Check if the cpu state is suitable for Raw execution.
993 *
994 * @returns boolean
995 * @param env The CPU env struct.
996 * @param eip The EIP to check this for (might differ from env->eip).
997 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
998 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
999 *
1000 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1001 */
1002bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1003{
1004 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1005 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1006 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1007 uint32_t u32CR0;
1008
1009 /* Update counter. */
1010 env->pVM->rem.s.cCanExecuteRaw++;
1011
1012 if (HWACCMIsEnabled(env->pVM))
1013 {
1014 CPUMCTX Ctx;
1015
1016 env->state |= CPU_RAW_HWACC;
1017
1018 /*
1019 * Create partial context for HWACCMR3CanExecuteGuest
1020 */
1021 Ctx.cr0 = env->cr[0];
1022 Ctx.cr3 = env->cr[3];
1023 Ctx.cr4 = env->cr[4];
1024
1025 Ctx.tr = env->tr.selector;
1026 Ctx.trHid.u64Base = env->tr.base;
1027 Ctx.trHid.u32Limit = env->tr.limit;
1028 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1029
1030 Ctx.idtr.cbIdt = env->idt.limit;
1031 Ctx.idtr.pIdt = env->idt.base;
1032
1033 Ctx.eflags.u32 = env->eflags;
1034
1035 Ctx.cs = env->segs[R_CS].selector;
1036 Ctx.csHid.u64Base = env->segs[R_CS].base;
1037 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1038 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1039
1040 Ctx.ds = env->segs[R_DS].selector;
1041 Ctx.dsHid.u64Base = env->segs[R_DS].base;
1042 Ctx.dsHid.u32Limit = env->segs[R_DS].limit;
1043 Ctx.dsHid.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1044
1045 Ctx.es = env->segs[R_ES].selector;
1046 Ctx.esHid.u64Base = env->segs[R_ES].base;
1047 Ctx.esHid.u32Limit = env->segs[R_ES].limit;
1048 Ctx.esHid.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1049
1050 Ctx.fs = env->segs[R_FS].selector;
1051 Ctx.fsHid.u64Base = env->segs[R_FS].base;
1052 Ctx.fsHid.u32Limit = env->segs[R_FS].limit;
1053 Ctx.fsHid.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1054
1055 Ctx.gs = env->segs[R_GS].selector;
1056 Ctx.gsHid.u64Base = env->segs[R_GS].base;
1057 Ctx.gsHid.u32Limit = env->segs[R_GS].limit;
1058 Ctx.gsHid.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1059
1060 Ctx.ss = env->segs[R_SS].selector;
1061 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1062 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1063 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1064
1065 Ctx.msrEFER = env->efer;
1066
1067 /* Hardware accelerated raw-mode:
1068 *
1069 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1070 */
1071 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1072 {
1073 *piException = EXCP_EXECUTE_HWACC;
1074 return true;
1075 }
1076 return false;
1077 }
1078
1079 /*
1080 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1081 * or 32 bits protected mode ring 0 code
1082 *
1083 * The tests are ordered by the likelyhood of being true during normal execution.
1084 */
1085 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1086 {
1087 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1088 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1089 return false;
1090 }
1091
1092#ifndef VBOX_RAW_V86
1093 if (fFlags & VM_MASK) {
1094 STAM_COUNTER_INC(&gStatRefuseVM86);
1095 Log2(("raw mode refused: VM_MASK\n"));
1096 return false;
1097 }
1098#endif
1099
1100 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1101 {
1102#ifndef DEBUG_bird
1103 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1104#endif
1105 return false;
1106 }
1107
1108 if (env->singlestep_enabled)
1109 {
1110 //Log2(("raw mode refused: Single step\n"));
1111 return false;
1112 }
1113
1114 if (env->nb_breakpoints > 0)
1115 {
1116 //Log2(("raw mode refused: Breakpoints\n"));
1117 return false;
1118 }
1119
1120 u32CR0 = env->cr[0];
1121 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1122 {
1123 STAM_COUNTER_INC(&gStatRefusePaging);
1124 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1125 return false;
1126 }
1127
1128 if (env->cr[4] & CR4_PAE_MASK)
1129 {
1130 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1131 {
1132 STAM_COUNTER_INC(&gStatRefusePAE);
1133 return false;
1134 }
1135 }
1136
1137 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1138 {
1139 if (!EMIsRawRing3Enabled(env->pVM))
1140 return false;
1141
1142 if (!(env->eflags & IF_MASK))
1143 {
1144 STAM_COUNTER_INC(&gStatRefuseIF0);
1145 Log2(("raw mode refused: IF (RawR3)\n"));
1146 return false;
1147 }
1148
1149 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1150 {
1151 STAM_COUNTER_INC(&gStatRefuseWP0);
1152 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1153 return false;
1154 }
1155 }
1156 else
1157 {
1158 if (!EMIsRawRing0Enabled(env->pVM))
1159 return false;
1160
1161 // Let's start with pure 32 bits ring 0 code first
1162 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1163 {
1164 STAM_COUNTER_INC(&gStatRefuseCode16);
1165 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1166 return false;
1167 }
1168
1169 // Only R0
1170 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1171 {
1172 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1173 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1174 return false;
1175 }
1176
1177 if (!(u32CR0 & CR0_WP_MASK))
1178 {
1179 STAM_COUNTER_INC(&gStatRefuseWP0);
1180 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1181 return false;
1182 }
1183
1184 if (PATMIsPatchGCAddr(env->pVM, eip))
1185 {
1186 Log2(("raw r0 mode forced: patch code\n"));
1187 *piException = EXCP_EXECUTE_RAW;
1188 return true;
1189 }
1190
1191#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1192 if (!(env->eflags & IF_MASK))
1193 {
1194 STAM_COUNTER_INC(&gStatRefuseIF0);
1195 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1196 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1197 return false;
1198 }
1199#endif
1200
1201 env->state |= CPU_RAW_RING0;
1202 }
1203
1204 /*
1205 * Don't reschedule the first time we're called, because there might be
1206 * special reasons why we're here that is not covered by the above checks.
1207 */
1208 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1209 {
1210 Log2(("raw mode refused: first scheduling\n"));
1211 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1212 return false;
1213 }
1214
1215 Assert(PGMPhysIsA20Enabled(env->pVM));
1216 *piException = EXCP_EXECUTE_RAW;
1217 return true;
1218}
1219
1220
1221/**
1222 * Fetches a code byte.
1223 *
1224 * @returns Success indicator (bool) for ease of use.
1225 * @param env The CPU environment structure.
1226 * @param GCPtrInstr Where to fetch code.
1227 * @param pu8Byte Where to store the byte on success
1228 */
1229bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1230{
1231 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1232 if (RT_SUCCESS(rc))
1233 return true;
1234 return false;
1235}
1236
1237
1238/**
1239 * Flush (or invalidate if you like) page table/dir entry.
1240 *
1241 * (invlpg instruction; tlb_flush_page)
1242 *
1243 * @param env Pointer to cpu environment.
1244 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1245 */
1246void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1247{
1248 PVM pVM = env->pVM;
1249 PCPUMCTX pCtx;
1250 int rc;
1251
1252 /*
1253 * When we're replaying invlpg instructions or restoring a saved
1254 * state we disable this path.
1255 */
1256 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1257 return;
1258 Log(("remR3FlushPage: GCPtr=%RGv\n", GCPtr));
1259 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1260
1261 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1262
1263 /*
1264 * Update the control registers before calling PGMFlushPage.
1265 */
1266 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1267 pCtx->cr0 = env->cr[0];
1268 pCtx->cr3 = env->cr[3];
1269 pCtx->cr4 = env->cr[4];
1270
1271 /*
1272 * Let PGM do the rest.
1273 */
1274 rc = PGMInvalidatePage(pVM, GCPtr);
1275 if (RT_FAILURE(rc))
1276 {
1277 AssertMsgFailed(("remR3FlushPage %RGv failed with %d!!\n", GCPtr, rc));
1278 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1279 }
1280 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1281}
1282
1283
1284#ifndef REM_PHYS_ADDR_IN_TLB
1285void *remR3TlbGCPhys2Ptr(CPUState *env1, target_ulong physAddr, int fWritable)
1286{
1287 void *pv;
1288 int rc = PGMR3PhysTlbGCPhys2Ptr(env1->pVM, physAddr, true /*fWritable*/, &pv);
1289 Assert( rc == VINF_SUCCESS
1290 || rc == VINF_PGM_PHYS_TLB_CATCH_WRITE
1291 || rc == VERR_PGM_PHYS_TLB_CATCH_ALL
1292 || rc == VERR_PGM_PHYS_TLB_UNASSIGNED);
1293 if (RT_FAILURE(rc))
1294 return (void *)1;
1295 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
1296 return (void *)((uintptr_t)pv | 2);
1297 return pv;
1298}
1299
1300target_ulong remR3HCVirt2GCPhys(CPUState *env1, void *addr)
1301{
1302 RTGCPHYS rv = 0;
1303 int rc;
1304
1305 rc = PGMR3DbgR3Ptr2GCPhys(env1->pVM, (RTR3PTR)addr, &rv);
1306 Assert (RT_SUCCESS(rc));
1307
1308 return (target_ulong)rv;
1309}
1310#endif
1311
1312/**
1313 * Called from tlb_protect_code in order to write monitor a code page.
1314 *
1315 * @param env Pointer to the CPU environment.
1316 * @param GCPtr Code page to monitor
1317 */
1318void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1319{
1320#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1321 Assert(env->pVM->rem.s.fInREM);
1322 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1323 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1324 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1325 && !(env->eflags & VM_MASK) /* no V86 mode */
1326 && !HWACCMIsEnabled(env->pVM))
1327 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1328#endif
1329}
1330
1331/**
1332 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1333 *
1334 * @param env Pointer to the CPU environment.
1335 * @param GCPtr Code page to monitor
1336 */
1337void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1338{
1339 Assert(env->pVM->rem.s.fInREM);
1340#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1341 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1342 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1343 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1344 && !(env->eflags & VM_MASK) /* no V86 mode */
1345 && !HWACCMIsEnabled(env->pVM))
1346 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1347#endif
1348}
1349
1350/**
1351 * Called when the CPU is initialized, any of the CRx registers are changed or
1352 * when the A20 line is modified.
1353 *
1354 * @param env Pointer to the CPU environment.
1355 * @param fGlobal Set if the flush is global.
1356 */
1357void remR3FlushTLB(CPUState *env, bool fGlobal)
1358{
1359 PVM pVM = env->pVM;
1360 PCPUMCTX pCtx;
1361
1362 /*
1363 * When we're replaying invlpg instructions or restoring a saved
1364 * state we disable this path.
1365 */
1366 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1367 return;
1368 Assert(pVM->rem.s.fInREM);
1369
1370 /*
1371 * The caller doesn't check cr4, so we have to do that for ourselves.
1372 */
1373 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1374 fGlobal = true;
1375 Log(("remR3FlushTLB: CR0=%RGr CR3=%RGr CR4=%RGr %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1376
1377 /*
1378 * Update the control registers before calling PGMR3FlushTLB.
1379 */
1380 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1381 pCtx->cr0 = env->cr[0];
1382 pCtx->cr3 = env->cr[3];
1383 pCtx->cr4 = env->cr[4];
1384
1385 /*
1386 * Let PGM do the rest.
1387 */
1388 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1389}
1390
1391
1392/**
1393 * Called when any of the cr0, cr4 or efer registers is updated.
1394 *
1395 * @param env Pointer to the CPU environment.
1396 */
1397void remR3ChangeCpuMode(CPUState *env)
1398{
1399 int rc;
1400 PVM pVM = env->pVM;
1401 PCPUMCTX pCtx;
1402
1403 /*
1404 * When we're replaying loads or restoring a saved
1405 * state this path is disabled.
1406 */
1407 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1408 return;
1409 Assert(pVM->rem.s.fInREM);
1410
1411 /*
1412 * Update the control registers before calling PGMChangeMode()
1413 * as it may need to map whatever cr3 is pointing to.
1414 */
1415 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1416 pCtx->cr0 = env->cr[0];
1417 pCtx->cr3 = env->cr[3];
1418 pCtx->cr4 = env->cr[4];
1419
1420#ifdef TARGET_X86_64
1421 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1422 if (rc != VINF_SUCCESS)
1423 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], env->efer, rc);
1424#else
1425 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1426 if (rc != VINF_SUCCESS)
1427 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], 0LL, rc);
1428#endif
1429}
1430
1431
1432/**
1433 * Called from compiled code to run dma.
1434 *
1435 * @param env Pointer to the CPU environment.
1436 */
1437void remR3DmaRun(CPUState *env)
1438{
1439 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1440 PDMR3DmaRun(env->pVM);
1441 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1442}
1443
1444
1445/**
1446 * Called from compiled code to schedule pending timers in VMM
1447 *
1448 * @param env Pointer to the CPU environment.
1449 */
1450void remR3TimersRun(CPUState *env)
1451{
1452 LogFlow(("remR3TimersRun:\n"));
1453 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1454 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1455 TMR3TimerQueuesDo(env->pVM);
1456 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1457 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1458}
1459
1460
1461/**
1462 * Record trap occurance
1463 *
1464 * @returns VBox status code
1465 * @param env Pointer to the CPU environment.
1466 * @param uTrap Trap nr
1467 * @param uErrorCode Error code
1468 * @param pvNextEIP Next EIP
1469 */
1470int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, RTGCPTR pvNextEIP)
1471{
1472 PVM pVM = env->pVM;
1473#ifdef VBOX_WITH_STATISTICS
1474 static STAMCOUNTER s_aStatTrap[255];
1475 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1476#endif
1477
1478#ifdef VBOX_WITH_STATISTICS
1479 if (uTrap < 255)
1480 {
1481 if (!s_aRegisters[uTrap])
1482 {
1483 char szStatName[64];
1484 s_aRegisters[uTrap] = true;
1485 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1486 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1487 }
1488 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1489 }
1490#endif
1491 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1492 if( uTrap < 0x20
1493 && (env->cr[0] & X86_CR0_PE)
1494 && !(env->eflags & X86_EFL_VM))
1495 {
1496#ifdef DEBUG
1497 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1498#endif
1499 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1500 {
1501 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1502 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1503 return VERR_REM_TOO_MANY_TRAPS;
1504 }
1505 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1506 pVM->rem.s.cPendingExceptions = 1;
1507 pVM->rem.s.uPendingException = uTrap;
1508 pVM->rem.s.uPendingExcptEIP = env->eip;
1509 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1510 }
1511 else
1512 {
1513 pVM->rem.s.cPendingExceptions = 0;
1514 pVM->rem.s.uPendingException = uTrap;
1515 pVM->rem.s.uPendingExcptEIP = env->eip;
1516 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1517 }
1518 return VINF_SUCCESS;
1519}
1520
1521
1522/*
1523 * Clear current active trap
1524 *
1525 * @param pVM VM Handle.
1526 */
1527void remR3TrapClear(PVM pVM)
1528{
1529 pVM->rem.s.cPendingExceptions = 0;
1530 pVM->rem.s.uPendingException = 0;
1531 pVM->rem.s.uPendingExcptEIP = 0;
1532 pVM->rem.s.uPendingExcptCR2 = 0;
1533}
1534
1535
1536/*
1537 * Record previous call instruction addresses
1538 *
1539 * @param env Pointer to the CPU environment.
1540 */
1541void remR3RecordCall(CPUState *env)
1542{
1543 CSAMR3RecordCallAddress(env->pVM, env->eip);
1544}
1545
1546
1547/**
1548 * Syncs the internal REM state with the VM.
1549 *
1550 * This must be called before REMR3Run() is invoked whenever when the REM
1551 * state is not up to date. Calling it several times in a row is not
1552 * permitted.
1553 *
1554 * @returns VBox status code.
1555 *
1556 * @param pVM VM Handle.
1557 * @param fFlushTBs Flush all translation blocks before executing code
1558 *
1559 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1560 * no do this since the majority of the callers don't want any unnecessary of events
1561 * pending that would immediatly interrupt execution.
1562 */
1563REMR3DECL(int) REMR3State(PVM pVM)
1564{
1565 register const CPUMCTX *pCtx;
1566 register unsigned fFlags;
1567 bool fHiddenSelRegsValid;
1568 unsigned i;
1569 TRPMEVENT enmType;
1570 uint8_t u8TrapNo;
1571 int rc;
1572
1573 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1574 Log2(("REMR3State:\n"));
1575
1576 pCtx = pVM->rem.s.pCtx;
1577 fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1578
1579 Assert(!pVM->rem.s.fInREM);
1580 pVM->rem.s.fInStateSync = true;
1581
1582 /*
1583 * If we have to flush TBs, do that immediately.
1584 */
1585 if (pVM->rem.s.fFlushTBs)
1586 {
1587 STAM_COUNTER_INC(&gStatFlushTBs);
1588 tb_flush(&pVM->rem.s.Env);
1589 pVM->rem.s.fFlushTBs = false;
1590 }
1591
1592 /*
1593 * Copy the registers which require no special handling.
1594 */
1595#ifdef TARGET_X86_64
1596 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1597 Assert(R_EAX == 0);
1598 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1599 Assert(R_ECX == 1);
1600 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1601 Assert(R_EDX == 2);
1602 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1603 Assert(R_EBX == 3);
1604 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1605 Assert(R_ESP == 4);
1606 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1607 Assert(R_EBP == 5);
1608 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1609 Assert(R_ESI == 6);
1610 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1611 Assert(R_EDI == 7);
1612 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1613 pVM->rem.s.Env.regs[8] = pCtx->r8;
1614 pVM->rem.s.Env.regs[9] = pCtx->r9;
1615 pVM->rem.s.Env.regs[10] = pCtx->r10;
1616 pVM->rem.s.Env.regs[11] = pCtx->r11;
1617 pVM->rem.s.Env.regs[12] = pCtx->r12;
1618 pVM->rem.s.Env.regs[13] = pCtx->r13;
1619 pVM->rem.s.Env.regs[14] = pCtx->r14;
1620 pVM->rem.s.Env.regs[15] = pCtx->r15;
1621
1622 pVM->rem.s.Env.eip = pCtx->rip;
1623
1624 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1625#else
1626 Assert(R_EAX == 0);
1627 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1628 Assert(R_ECX == 1);
1629 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1630 Assert(R_EDX == 2);
1631 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1632 Assert(R_EBX == 3);
1633 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1634 Assert(R_ESP == 4);
1635 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1636 Assert(R_EBP == 5);
1637 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1638 Assert(R_ESI == 6);
1639 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1640 Assert(R_EDI == 7);
1641 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1642 pVM->rem.s.Env.eip = pCtx->eip;
1643
1644 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1645#endif
1646
1647 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1648
1649 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1650 for (i=0;i<8;i++)
1651 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
1652
1653 /*
1654 * Clear the halted hidden flag (the interrupt waking up the CPU can
1655 * have been dispatched in raw mode).
1656 */
1657 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1658
1659 /*
1660 * Replay invlpg?
1661 */
1662 if (pVM->rem.s.cInvalidatedPages)
1663 {
1664 RTUINT i;
1665
1666 pVM->rem.s.fIgnoreInvlPg = true;
1667 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1668 {
1669 Log2(("REMR3State: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1670 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1671 }
1672 pVM->rem.s.fIgnoreInvlPg = false;
1673 pVM->rem.s.cInvalidatedPages = 0;
1674 }
1675
1676 /* Replay notification changes? */
1677 if (pVM->rem.s.cHandlerNotifications)
1678 REMR3ReplayHandlerNotifications(pVM);
1679
1680 /* Update MSRs; before CRx registers! */
1681 pVM->rem.s.Env.efer = pCtx->msrEFER;
1682 pVM->rem.s.Env.star = pCtx->msrSTAR;
1683 pVM->rem.s.Env.pat = pCtx->msrPAT;
1684#ifdef TARGET_X86_64
1685 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1686 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1687 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1688 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1689
1690 /* Update the internal long mode activate flag according to the new EFER value. */
1691 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1692 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1693 else
1694 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1695#endif
1696
1697
1698 /*
1699 * Registers which are rarely changed and require special handling / order when changed.
1700 */
1701 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1702 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1703 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1704 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1705 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1706 {
1707 if (fFlags & CPUM_CHANGED_FPU_REM)
1708 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1709
1710 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1711 {
1712 pVM->rem.s.fIgnoreCR3Load = true;
1713 tlb_flush(&pVM->rem.s.Env, true);
1714 pVM->rem.s.fIgnoreCR3Load = false;
1715 }
1716
1717 /* CR4 before CR0! */
1718 if (fFlags & CPUM_CHANGED_CR4)
1719 {
1720 pVM->rem.s.fIgnoreCR3Load = true;
1721 pVM->rem.s.fIgnoreCpuMode = true;
1722 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1723 pVM->rem.s.fIgnoreCpuMode = false;
1724 pVM->rem.s.fIgnoreCR3Load = false;
1725 }
1726
1727 if (fFlags & CPUM_CHANGED_CR0)
1728 {
1729 pVM->rem.s.fIgnoreCR3Load = true;
1730 pVM->rem.s.fIgnoreCpuMode = true;
1731 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1732 pVM->rem.s.fIgnoreCpuMode = false;
1733 pVM->rem.s.fIgnoreCR3Load = false;
1734 }
1735
1736 if (fFlags & CPUM_CHANGED_CR3)
1737 {
1738 pVM->rem.s.fIgnoreCR3Load = true;
1739 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1740 pVM->rem.s.fIgnoreCR3Load = false;
1741 }
1742
1743 if (fFlags & CPUM_CHANGED_GDTR)
1744 {
1745 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1746 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1747 }
1748
1749 if (fFlags & CPUM_CHANGED_IDTR)
1750 {
1751 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1752 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1753 }
1754
1755 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1756 {
1757 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1758 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1759 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1760 }
1761
1762 if (fFlags & CPUM_CHANGED_LDTR)
1763 {
1764 if (fHiddenSelRegsValid)
1765 {
1766 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1767 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1768 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1769 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1770 }
1771 else
1772 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1773 }
1774
1775 if (fFlags & CPUM_CHANGED_TR)
1776 {
1777 if (fHiddenSelRegsValid)
1778 {
1779 pVM->rem.s.Env.tr.selector = pCtx->tr;
1780 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1781 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1782 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1783 }
1784 else
1785 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1786
1787 /** @note do_interrupt will fault if the busy flag is still set.... */
1788 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1789 }
1790
1791 if (fFlags & CPUM_CHANGED_CPUID)
1792 {
1793 uint32_t u32Dummy;
1794
1795 /*
1796 * Get the CPUID features.
1797 */
1798 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1799 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1800 }
1801 }
1802
1803 /*
1804 * Update selector registers.
1805 * This must be done *after* we've synced gdt, ldt and crX registers
1806 * since we're reading the GDT/LDT om sync_seg. This will happen with
1807 * saved state which takes a quick dip into rawmode for instance.
1808 */
1809 /*
1810 * Stack; Note first check this one as the CPL might have changed. The
1811 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1812 */
1813
1814 if (fHiddenSelRegsValid)
1815 {
1816 /* The hidden selector registers are valid in the CPU context. */
1817 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1818
1819 /* Set current CPL */
1820 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1821
1822 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1823 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1824 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1825 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1826 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1827 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1828 }
1829 else
1830 {
1831 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1832 if (pVM->rem.s.Env.segs[R_SS].selector != pCtx->ss)
1833 {
1834 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1835
1836 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1837 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1838#ifdef VBOX_WITH_STATISTICS
1839 if (pVM->rem.s.Env.segs[R_SS].newselector)
1840 {
1841 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1842 }
1843#endif
1844 }
1845 else
1846 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1847
1848 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1849 {
1850 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1851 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1852#ifdef VBOX_WITH_STATISTICS
1853 if (pVM->rem.s.Env.segs[R_ES].newselector)
1854 {
1855 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1856 }
1857#endif
1858 }
1859 else
1860 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1861
1862 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1863 {
1864 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1865 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1866#ifdef VBOX_WITH_STATISTICS
1867 if (pVM->rem.s.Env.segs[R_CS].newselector)
1868 {
1869 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1870 }
1871#endif
1872 }
1873 else
1874 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1875
1876 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1877 {
1878 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1879 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1880#ifdef VBOX_WITH_STATISTICS
1881 if (pVM->rem.s.Env.segs[R_DS].newselector)
1882 {
1883 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1884 }
1885#endif
1886 }
1887 else
1888 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1889
1890 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1891 * be the same but not the base/limit. */
1892 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1893 {
1894 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1895 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1896#ifdef VBOX_WITH_STATISTICS
1897 if (pVM->rem.s.Env.segs[R_FS].newselector)
1898 {
1899 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1900 }
1901#endif
1902 }
1903 else
1904 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1905
1906 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1907 {
1908 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1909 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1910#ifdef VBOX_WITH_STATISTICS
1911 if (pVM->rem.s.Env.segs[R_GS].newselector)
1912 {
1913 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1914 }
1915#endif
1916 }
1917 else
1918 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1919 }
1920
1921 /*
1922 * Check for traps.
1923 */
1924 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1925 rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1926 if (RT_SUCCESS(rc))
1927 {
1928#ifdef DEBUG
1929 if (u8TrapNo == 0x80)
1930 {
1931 remR3DumpLnxSyscall(pVM);
1932 remR3DumpOBsdSyscall(pVM);
1933 }
1934#endif
1935
1936 pVM->rem.s.Env.exception_index = u8TrapNo;
1937 if (enmType != TRPM_SOFTWARE_INT)
1938 {
1939 pVM->rem.s.Env.exception_is_int = 0;
1940 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1941 }
1942 else
1943 {
1944 /*
1945 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1946 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1947 * for int03 and into.
1948 */
1949 pVM->rem.s.Env.exception_is_int = 1;
1950 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
1951 /* int 3 may be generated by one-byte 0xcc */
1952 if (u8TrapNo == 3)
1953 {
1954 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
1955 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
1956 }
1957 /* int 4 may be generated by one-byte 0xce */
1958 else if (u8TrapNo == 4)
1959 {
1960 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
1961 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
1962 }
1963 }
1964
1965 /* get error code and cr2 if needed. */
1966 switch (u8TrapNo)
1967 {
1968 case 0x0e:
1969 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1970 /* fallthru */
1971 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1972 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1973 break;
1974
1975 case 0x11: case 0x08:
1976 default:
1977 pVM->rem.s.Env.error_code = 0;
1978 break;
1979 }
1980
1981 /*
1982 * We can now reset the active trap since the recompiler is gonna have a go at it.
1983 */
1984 rc = TRPMResetTrap(pVM);
1985 AssertRC(rc);
1986 Log2(("REMR3State: trap=%02x errcd=%RGv cr2=%RGv nexteip=%RGv%s\n", pVM->rem.s.Env.exception_index, (RTGCPTR)pVM->rem.s.Env.error_code,
1987 (RTGCPTR)pVM->rem.s.Env.cr[2], (RTGCPTR)pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
1988 }
1989
1990 /*
1991 * Clear old interrupt request flags; Check for pending hardware interrupts.
1992 * (See @remark for why we don't check for other FFs.)
1993 */
1994 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
1995 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
1996 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
1997 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
1998
1999 /*
2000 * We're now in REM mode.
2001 */
2002 pVM->rem.s.fInREM = true;
2003 pVM->rem.s.fInStateSync = false;
2004 pVM->rem.s.cCanExecuteRaw = 0;
2005 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2006 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2007 return VINF_SUCCESS;
2008}
2009
2010
2011/**
2012 * Syncs back changes in the REM state to the the VM state.
2013 *
2014 * This must be called after invoking REMR3Run().
2015 * Calling it several times in a row is not permitted.
2016 *
2017 * @returns VBox status code.
2018 *
2019 * @param pVM VM Handle.
2020 */
2021REMR3DECL(int) REMR3StateBack(PVM pVM)
2022{
2023 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2024 unsigned i;
2025
2026 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2027 Log2(("REMR3StateBack:\n"));
2028 Assert(pVM->rem.s.fInREM);
2029
2030 /*
2031 * Copy back the registers.
2032 * This is done in the order they are declared in the CPUMCTX structure.
2033 */
2034
2035 /** @todo FOP */
2036 /** @todo FPUIP */
2037 /** @todo CS */
2038 /** @todo FPUDP */
2039 /** @todo DS */
2040 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2041 pCtx->fpu.MXCSR = 0;
2042 pCtx->fpu.MXCSR_MASK = 0;
2043
2044 /** @todo check if FPU/XMM was actually used in the recompiler */
2045 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2046//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2047
2048#ifdef TARGET_X86_64
2049 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2050 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2051 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2052 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2053 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2054 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2055 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2056 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2057 pCtx->r8 = pVM->rem.s.Env.regs[8];
2058 pCtx->r9 = pVM->rem.s.Env.regs[9];
2059 pCtx->r10 = pVM->rem.s.Env.regs[10];
2060 pCtx->r11 = pVM->rem.s.Env.regs[11];
2061 pCtx->r12 = pVM->rem.s.Env.regs[12];
2062 pCtx->r13 = pVM->rem.s.Env.regs[13];
2063 pCtx->r14 = pVM->rem.s.Env.regs[14];
2064 pCtx->r15 = pVM->rem.s.Env.regs[15];
2065
2066 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2067
2068#else
2069 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2070 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2071 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2072 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2073 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2074 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2075 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2076
2077 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2078#endif
2079
2080 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2081
2082#ifdef VBOX_WITH_STATISTICS
2083 if (pVM->rem.s.Env.segs[R_SS].newselector)
2084 {
2085 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2086 }
2087 if (pVM->rem.s.Env.segs[R_GS].newselector)
2088 {
2089 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2090 }
2091 if (pVM->rem.s.Env.segs[R_FS].newselector)
2092 {
2093 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2094 }
2095 if (pVM->rem.s.Env.segs[R_ES].newselector)
2096 {
2097 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2098 }
2099 if (pVM->rem.s.Env.segs[R_DS].newselector)
2100 {
2101 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2102 }
2103 if (pVM->rem.s.Env.segs[R_CS].newselector)
2104 {
2105 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2106 }
2107#endif
2108 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2109 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2110 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2111 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2112 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2113
2114#ifdef TARGET_X86_64
2115 pCtx->rip = pVM->rem.s.Env.eip;
2116 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2117#else
2118 pCtx->eip = pVM->rem.s.Env.eip;
2119 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2120#endif
2121
2122 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2123 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2124 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2125 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2126
2127 for (i=0;i<8;i++)
2128 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2129
2130 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2131 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2132 {
2133 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2134 STAM_COUNTER_INC(&gStatREMGDTChange);
2135 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2136 }
2137
2138 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2139 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2140 {
2141 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2142 STAM_COUNTER_INC(&gStatREMIDTChange);
2143 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2144 }
2145
2146 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2147 {
2148 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2149 STAM_COUNTER_INC(&gStatREMLDTRChange);
2150 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2151 }
2152 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2153 {
2154 pCtx->tr = pVM->rem.s.Env.tr.selector;
2155 STAM_COUNTER_INC(&gStatREMTRChange);
2156 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2157 }
2158
2159 /** @todo These values could still be out of sync! */
2160 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2161 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2162 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2163 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2164
2165 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2166 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2167 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2168
2169 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2170 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2171 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2172
2173 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2174 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2175 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2176
2177 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2178 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2179 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2180
2181 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2182 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2183 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2184
2185 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2186 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2187 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2188
2189 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2190 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2191 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2192
2193 /* Sysenter MSR */
2194 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2195 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2196 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2197
2198 /* System MSRs. */
2199 pCtx->msrEFER = pVM->rem.s.Env.efer;
2200 pCtx->msrSTAR = pVM->rem.s.Env.star;
2201 pCtx->msrPAT = pVM->rem.s.Env.pat;
2202#ifdef TARGET_X86_64
2203 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2204 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2205 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2206 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2207#endif
2208
2209 remR3TrapClear(pVM);
2210
2211 /*
2212 * Check for traps.
2213 */
2214 if ( pVM->rem.s.Env.exception_index >= 0
2215 && pVM->rem.s.Env.exception_index < 256)
2216 {
2217 int rc;
2218
2219 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2220 rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2221 AssertRC(rc);
2222 switch (pVM->rem.s.Env.exception_index)
2223 {
2224 case 0x0e:
2225 TRPMSetFaultAddress(pVM, pCtx->cr2);
2226 /* fallthru */
2227 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2228 case 0x11: case 0x08: /* 0 */
2229 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2230 break;
2231 }
2232
2233 }
2234
2235 /*
2236 * We're not longer in REM mode.
2237 */
2238 pVM->rem.s.fInREM = false;
2239 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2240 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2241 return VINF_SUCCESS;
2242}
2243
2244
2245/**
2246 * This is called by the disassembler when it wants to update the cpu state
2247 * before for instance doing a register dump.
2248 */
2249static void remR3StateUpdate(PVM pVM)
2250{
2251 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2252 unsigned i;
2253
2254 Assert(pVM->rem.s.fInREM);
2255
2256 /*
2257 * Copy back the registers.
2258 * This is done in the order they are declared in the CPUMCTX structure.
2259 */
2260
2261 /** @todo FOP */
2262 /** @todo FPUIP */
2263 /** @todo CS */
2264 /** @todo FPUDP */
2265 /** @todo DS */
2266 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2267 pCtx->fpu.MXCSR = 0;
2268 pCtx->fpu.MXCSR_MASK = 0;
2269
2270 /** @todo check if FPU/XMM was actually used in the recompiler */
2271 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2272//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2273
2274#ifdef TARGET_X86_64
2275 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2276 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2277 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2278 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2279 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2280 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2281 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2282 pCtx->r8 = pVM->rem.s.Env.regs[8];
2283 pCtx->r9 = pVM->rem.s.Env.regs[9];
2284 pCtx->r10 = pVM->rem.s.Env.regs[10];
2285 pCtx->r11 = pVM->rem.s.Env.regs[11];
2286 pCtx->r12 = pVM->rem.s.Env.regs[12];
2287 pCtx->r13 = pVM->rem.s.Env.regs[13];
2288 pCtx->r14 = pVM->rem.s.Env.regs[14];
2289 pCtx->r15 = pVM->rem.s.Env.regs[15];
2290
2291 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2292#else
2293 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2294 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2295 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2296 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2297 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2298 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2299 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2300
2301 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2302#endif
2303
2304 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2305
2306 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2307 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2308 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2309 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2310 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2311
2312#ifdef TARGET_X86_64
2313 pCtx->rip = pVM->rem.s.Env.eip;
2314 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2315#else
2316 pCtx->eip = pVM->rem.s.Env.eip;
2317 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2318#endif
2319
2320 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2321 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2322 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2323 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2324
2325 for (i=0;i<8;i++)
2326 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2327
2328 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2329 if (pCtx->gdtr.pGdt != (RTGCPTR)pVM->rem.s.Env.gdt.base)
2330 {
2331 pCtx->gdtr.pGdt = (RTGCPTR)pVM->rem.s.Env.gdt.base;
2332 STAM_COUNTER_INC(&gStatREMGDTChange);
2333 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2334 }
2335
2336 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2337 if (pCtx->idtr.pIdt != (RTGCPTR)pVM->rem.s.Env.idt.base)
2338 {
2339 pCtx->idtr.pIdt = (RTGCPTR)pVM->rem.s.Env.idt.base;
2340 STAM_COUNTER_INC(&gStatREMIDTChange);
2341 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2342 }
2343
2344 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2345 {
2346 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2347 STAM_COUNTER_INC(&gStatREMLDTRChange);
2348 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2349 }
2350 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2351 {
2352 pCtx->tr = pVM->rem.s.Env.tr.selector;
2353 STAM_COUNTER_INC(&gStatREMTRChange);
2354 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2355 }
2356
2357 /** @todo These values could still be out of sync! */
2358 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2359 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2360 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2361 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2362
2363 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2364 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2365 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2366
2367 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2368 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2369 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2370
2371 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2372 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2373 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2374
2375 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2376 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2377 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2378
2379 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2380 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2381 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2382
2383 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2384 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2385 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2386
2387 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2388 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2389 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2390
2391 /* Sysenter MSR */
2392 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2393 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2394 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2395
2396 /* System MSRs. */
2397 pCtx->msrEFER = pVM->rem.s.Env.efer;
2398 pCtx->msrSTAR = pVM->rem.s.Env.star;
2399 pCtx->msrPAT = pVM->rem.s.Env.pat;
2400#ifdef TARGET_X86_64
2401 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2402 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2403 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2404 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2405#endif
2406
2407}
2408
2409
2410/**
2411 * Update the VMM state information if we're currently in REM.
2412 *
2413 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2414 * we're currently executing in REM and the VMM state is invalid. This method will of
2415 * course check that we're executing in REM before syncing any data over to the VMM.
2416 *
2417 * @param pVM The VM handle.
2418 */
2419REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2420{
2421 if (pVM->rem.s.fInREM)
2422 remR3StateUpdate(pVM);
2423}
2424
2425
2426#undef LOG_GROUP
2427#define LOG_GROUP LOG_GROUP_REM
2428
2429
2430/**
2431 * Notify the recompiler about Address Gate 20 state change.
2432 *
2433 * This notification is required since A20 gate changes are
2434 * initialized from a device driver and the VM might just as
2435 * well be in REM mode as in RAW mode.
2436 *
2437 * @param pVM VM handle.
2438 * @param fEnable True if the gate should be enabled.
2439 * False if the gate should be disabled.
2440 */
2441REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2442{
2443 bool fSaved;
2444
2445 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2446 VM_ASSERT_EMT(pVM);
2447
2448 fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2449 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2450
2451 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2452
2453 pVM->rem.s.fIgnoreAll = fSaved;
2454}
2455
2456
2457/**
2458 * Replays the invalidated recorded pages.
2459 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2460 *
2461 * @param pVM VM handle.
2462 */
2463REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2464{
2465 RTUINT i;
2466
2467 VM_ASSERT_EMT(pVM);
2468
2469 /*
2470 * Sync the required registers.
2471 */
2472 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2473 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2474 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2475 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2476
2477 /*
2478 * Replay the flushes.
2479 */
2480 pVM->rem.s.fIgnoreInvlPg = true;
2481 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2482 {
2483 Log2(("REMR3ReplayInvalidatedPages: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2484 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2485 }
2486 pVM->rem.s.fIgnoreInvlPg = false;
2487 pVM->rem.s.cInvalidatedPages = 0;
2488}
2489
2490
2491/**
2492 * Replays the handler notification changes
2493 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2494 *
2495 * @param pVM VM handle.
2496 */
2497REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2498{
2499 /*
2500 * Replay the flushes.
2501 */
2502 RTUINT i;
2503 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2504
2505 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2506 VM_ASSERT_EMT(pVM);
2507
2508 pVM->rem.s.cHandlerNotifications = 0;
2509 for (i = 0; i < c; i++)
2510 {
2511 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2512 switch (pRec->enmKind)
2513 {
2514 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2515 REMR3NotifyHandlerPhysicalRegister(pVM,
2516 pRec->u.PhysicalRegister.enmType,
2517 pRec->u.PhysicalRegister.GCPhys,
2518 pRec->u.PhysicalRegister.cb,
2519 pRec->u.PhysicalRegister.fHasHCHandler);
2520 break;
2521
2522 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2523 REMR3NotifyHandlerPhysicalDeregister(pVM,
2524 pRec->u.PhysicalDeregister.enmType,
2525 pRec->u.PhysicalDeregister.GCPhys,
2526 pRec->u.PhysicalDeregister.cb,
2527 pRec->u.PhysicalDeregister.fHasHCHandler,
2528 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2529 break;
2530
2531 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2532 REMR3NotifyHandlerPhysicalModify(pVM,
2533 pRec->u.PhysicalModify.enmType,
2534 pRec->u.PhysicalModify.GCPhysOld,
2535 pRec->u.PhysicalModify.GCPhysNew,
2536 pRec->u.PhysicalModify.cb,
2537 pRec->u.PhysicalModify.fHasHCHandler,
2538 pRec->u.PhysicalModify.fRestoreAsRAM);
2539 break;
2540
2541 default:
2542 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2543 break;
2544 }
2545 }
2546 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2547}
2548
2549
2550/**
2551 * Notify REM about changed code page.
2552 *
2553 * @returns VBox status code.
2554 * @param pVM VM handle.
2555 * @param pvCodePage Code page address
2556 */
2557REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2558{
2559#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
2560 int rc;
2561 RTGCPHYS PhysGC;
2562 uint64_t flags;
2563
2564 VM_ASSERT_EMT(pVM);
2565
2566 /*
2567 * Get the physical page address.
2568 */
2569 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2570 if (rc == VINF_SUCCESS)
2571 {
2572 /*
2573 * Sync the required registers and flush the whole page.
2574 * (Easier to do the whole page than notifying it about each physical
2575 * byte that was changed.
2576 */
2577 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2578 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2579 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2580 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2581
2582 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2583 }
2584#endif
2585 return VINF_SUCCESS;
2586}
2587
2588
2589/**
2590 * Notification about a successful MMR3PhysRegister() call.
2591 *
2592 * @param pVM VM handle.
2593 * @param GCPhys The physical address the RAM.
2594 * @param cb Size of the memory.
2595 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2596 */
2597REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2598{
2599 uint32_t cbBitmap;
2600 int rc;
2601 Log(("REMR3NotifyPhysRamRegister: GCPhys=%RGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2602 VM_ASSERT_EMT(pVM);
2603
2604 /*
2605 * Validate input - we trust the caller.
2606 */
2607 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2608 Assert(cb);
2609 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2610
2611 /*
2612 * Base ram?
2613 */
2614 if (!GCPhys)
2615 {
2616 phys_ram_size = cb;
2617 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2618#ifndef VBOX_STRICT
2619 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2620 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2621#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2622 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2623 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2624 cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2625 rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2626 AssertRC(rc);
2627 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2628#endif
2629 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2630 }
2631
2632 /*
2633 * Register the ram.
2634 */
2635 Assert(!pVM->rem.s.fIgnoreAll);
2636 pVM->rem.s.fIgnoreAll = true;
2637
2638#ifdef VBOX_WITH_NEW_PHYS_CODE
2639 if (fFlags & MM_RAM_FLAGS_RESERVED)
2640 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2641 else
2642 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2643#else
2644 if (!GCPhys)
2645 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2646 else
2647 {
2648 if (fFlags & MM_RAM_FLAGS_RESERVED)
2649 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2650 else
2651 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2652 }
2653#endif
2654 Assert(pVM->rem.s.fIgnoreAll);
2655 pVM->rem.s.fIgnoreAll = false;
2656}
2657
2658#ifndef VBOX_WITH_NEW_PHYS_CODE
2659
2660/**
2661 * Notification about a successful PGMR3PhysRegisterChunk() call.
2662 *
2663 * @param pVM VM handle.
2664 * @param GCPhys The physical address the RAM.
2665 * @param cb Size of the memory.
2666 * @param pvRam The HC address of the RAM.
2667 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2668 */
2669REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2670{
2671 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%RGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2672 VM_ASSERT_EMT(pVM);
2673
2674 /*
2675 * Validate input - we trust the caller.
2676 */
2677 Assert(pvRam);
2678 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2679 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2680 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2681 Assert(fFlags == 0 /* normal RAM */);
2682 Assert(!pVM->rem.s.fIgnoreAll);
2683 pVM->rem.s.fIgnoreAll = true;
2684 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2685 Assert(pVM->rem.s.fIgnoreAll);
2686 pVM->rem.s.fIgnoreAll = false;
2687}
2688
2689
2690/**
2691 * Grows dynamically allocated guest RAM.
2692 * Will raise a fatal error if the operation fails.
2693 *
2694 * @param physaddr The physical address.
2695 */
2696void remR3GrowDynRange(unsigned long physaddr) /** @todo Needs fixing for MSC... */
2697{
2698 int rc;
2699 PVM pVM = cpu_single_env->pVM;
2700 const RTGCPHYS GCPhys = physaddr;
2701
2702 LogFlow(("remR3GrowDynRange %RGp\n", (RTGCPTR)physaddr));
2703 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2704 if (RT_SUCCESS(rc))
2705 return;
2706
2707 LogRel(("\nUnable to allocate guest RAM chunk at %RGp\n", (RTGCPTR)physaddr));
2708 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %RGp\n", (RTGCPTR)physaddr);
2709 AssertFatalFailed();
2710}
2711
2712#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2713
2714/**
2715 * Notification about a successful MMR3PhysRomRegister() call.
2716 *
2717 * @param pVM VM handle.
2718 * @param GCPhys The physical address of the ROM.
2719 * @param cb The size of the ROM.
2720 * @param pvCopy Pointer to the ROM copy.
2721 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2722 * This function will be called when ever the protection of the
2723 * shadow ROM changes (at reset and end of POST).
2724 */
2725REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2726{
2727 Log(("REMR3NotifyPhysRomRegister: GCPhys=%RGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2728 VM_ASSERT_EMT(pVM);
2729
2730 /*
2731 * Validate input - we trust the caller.
2732 */
2733 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2734 Assert(cb);
2735 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2736 Assert(pvCopy);
2737 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2738
2739 /*
2740 * Register the rom.
2741 */
2742 Assert(!pVM->rem.s.fIgnoreAll);
2743 pVM->rem.s.fIgnoreAll = true;
2744
2745 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2746
2747 Log2(("%.64Rhxd\n", (char *)pvCopy + cb - 64));
2748
2749 Assert(pVM->rem.s.fIgnoreAll);
2750 pVM->rem.s.fIgnoreAll = false;
2751}
2752
2753
2754/**
2755 * Notification about a successful memory deregistration or reservation.
2756 *
2757 * @param pVM VM Handle.
2758 * @param GCPhys Start physical address.
2759 * @param cb The size of the range.
2760 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2761 * reserve any memory soon.
2762 */
2763REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2764{
2765 Log(("REMR3NotifyPhysReserve: GCPhys=%RGp cb=%d\n", GCPhys, cb));
2766 VM_ASSERT_EMT(pVM);
2767
2768 /*
2769 * Validate input - we trust the caller.
2770 */
2771 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2772 Assert(cb);
2773 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2774
2775 /*
2776 * Unassigning the memory.
2777 */
2778 Assert(!pVM->rem.s.fIgnoreAll);
2779 pVM->rem.s.fIgnoreAll = true;
2780
2781 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2782
2783 Assert(pVM->rem.s.fIgnoreAll);
2784 pVM->rem.s.fIgnoreAll = false;
2785}
2786
2787
2788/**
2789 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2790 *
2791 * @param pVM VM Handle.
2792 * @param enmType Handler type.
2793 * @param GCPhys Handler range address.
2794 * @param cb Size of the handler range.
2795 * @param fHasHCHandler Set if the handler has a HC callback function.
2796 *
2797 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2798 * Handler memory type to memory which has no HC handler.
2799 */
2800REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2801{
2802 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%d\n",
2803 enmType, GCPhys, cb, fHasHCHandler));
2804 VM_ASSERT_EMT(pVM);
2805 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2806 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2807
2808 if (pVM->rem.s.cHandlerNotifications)
2809 REMR3ReplayHandlerNotifications(pVM);
2810
2811 Assert(!pVM->rem.s.fIgnoreAll);
2812 pVM->rem.s.fIgnoreAll = true;
2813
2814 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2815 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2816 else if (fHasHCHandler)
2817 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2818
2819 Assert(pVM->rem.s.fIgnoreAll);
2820 pVM->rem.s.fIgnoreAll = false;
2821}
2822
2823
2824/**
2825 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2826 *
2827 * @param pVM VM Handle.
2828 * @param enmType Handler type.
2829 * @param GCPhys Handler range address.
2830 * @param cb Size of the handler range.
2831 * @param fHasHCHandler Set if the handler has a HC callback function.
2832 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2833 */
2834REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2835{
2836 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2837 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2838 VM_ASSERT_EMT(pVM);
2839
2840 if (pVM->rem.s.cHandlerNotifications)
2841 REMR3ReplayHandlerNotifications(pVM);
2842
2843 Assert(!pVM->rem.s.fIgnoreAll);
2844 pVM->rem.s.fIgnoreAll = true;
2845
2846/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2847 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2848 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2849 else if (fHasHCHandler)
2850 {
2851 if (!fRestoreAsRAM)
2852 {
2853 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2854 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2855 }
2856 else
2857 {
2858 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2859 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2860 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2861 }
2862 }
2863
2864 Assert(pVM->rem.s.fIgnoreAll);
2865 pVM->rem.s.fIgnoreAll = false;
2866}
2867
2868
2869/**
2870 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2871 *
2872 * @param pVM VM Handle.
2873 * @param enmType Handler type.
2874 * @param GCPhysOld Old handler range address.
2875 * @param GCPhysNew New handler range address.
2876 * @param cb Size of the handler range.
2877 * @param fHasHCHandler Set if the handler has a HC callback function.
2878 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2879 */
2880REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2881{
2882 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%RGp GCPhysNew=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2883 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2884 VM_ASSERT_EMT(pVM);
2885 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2886
2887 if (pVM->rem.s.cHandlerNotifications)
2888 REMR3ReplayHandlerNotifications(pVM);
2889
2890 if (fHasHCHandler)
2891 {
2892 Assert(!pVM->rem.s.fIgnoreAll);
2893 pVM->rem.s.fIgnoreAll = true;
2894
2895 /*
2896 * Reset the old page.
2897 */
2898 if (!fRestoreAsRAM)
2899 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2900 else
2901 {
2902 /* This is not perfect, but it'll do for PD monitoring... */
2903 Assert(cb == PAGE_SIZE);
2904 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2905 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2906 }
2907
2908 /*
2909 * Update the new page.
2910 */
2911 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2912 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2913 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2914
2915 Assert(pVM->rem.s.fIgnoreAll);
2916 pVM->rem.s.fIgnoreAll = false;
2917 }
2918}
2919
2920
2921/**
2922 * Checks if we're handling access to this page or not.
2923 *
2924 * @returns true if we're trapping access.
2925 * @returns false if we aren't.
2926 * @param pVM The VM handle.
2927 * @param GCPhys The physical address.
2928 *
2929 * @remark This function will only work correctly in VBOX_STRICT builds!
2930 */
2931REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2932{
2933#ifdef VBOX_STRICT
2934 unsigned long off;
2935 if (pVM->rem.s.cHandlerNotifications)
2936 REMR3ReplayHandlerNotifications(pVM);
2937
2938 off = get_phys_page_offset(GCPhys);
2939 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2940 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2941 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2942#else
2943 return false;
2944#endif
2945}
2946
2947
2948/**
2949 * Deals with a rare case in get_phys_addr_code where the code
2950 * is being monitored.
2951 *
2952 * It could also be an MMIO page, in which case we will raise a fatal error.
2953 *
2954 * @returns The physical address corresponding to addr.
2955 * @param env The cpu environment.
2956 * @param addr The virtual address.
2957 * @param pTLBEntry The TLB entry.
2958 */
2959target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2960{
2961 PVM pVM = env->pVM;
2962 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2963 {
2964 target_ulong ret = pTLBEntry->addend + addr;
2965 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%RGv addr_code=%RGv addend=%RGp ret=%RGp\n",
2966 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
2967 return ret;
2968 }
2969 LogRel(("\nTrying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
2970 "*** handlers\n",
2971 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
2972 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
2973 LogRel(("*** mmio\n"));
2974 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
2975 LogRel(("*** phys\n"));
2976 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
2977 cpu_abort(env, "Trying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
2978 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
2979 AssertFatalFailed();
2980}
2981
2982/**
2983 * Read guest RAM and ROM.
2984 *
2985 * @param SrcGCPhys The source address (guest physical).
2986 * @param pvDst The destination address.
2987 * @param cb Number of bytes
2988 */
2989void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
2990{
2991 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2992 VBOX_CHECK_ADDR(SrcGCPhys);
2993 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
2994#ifdef VBOX_DEBUG_PHYS
2995 LogRel(("read(%d): %08x\n", cb, (uint32_t)SrcGCPhys));
2996#endif
2997 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2998}
2999
3000
3001/**
3002 * Read guest RAM and ROM, unsigned 8-bit.
3003 *
3004 * @param SrcGCPhys The source address (guest physical).
3005 */
3006RTCCUINTREG remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3007{
3008 uint8_t val;
3009 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3010 VBOX_CHECK_ADDR(SrcGCPhys);
3011 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3012 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3013#ifdef VBOX_DEBUG_PHYS
3014 LogRel(("readu8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3015#endif
3016 return val;
3017}
3018
3019
3020/**
3021 * Read guest RAM and ROM, signed 8-bit.
3022 *
3023 * @param SrcGCPhys The source address (guest physical).
3024 */
3025RTCCINTREG remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3026{
3027 int8_t val;
3028 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3029 VBOX_CHECK_ADDR(SrcGCPhys);
3030 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3031 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3032#ifdef VBOX_DEBUG_PHYS
3033 LogRel(("reads8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3034#endif
3035 return val;
3036}
3037
3038
3039/**
3040 * Read guest RAM and ROM, unsigned 16-bit.
3041 *
3042 * @param SrcGCPhys The source address (guest physical).
3043 */
3044RTCCUINTREG remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3045{
3046 uint16_t val;
3047 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3048 VBOX_CHECK_ADDR(SrcGCPhys);
3049 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3050 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3051#ifdef VBOX_DEBUG_PHYS
3052 LogRel(("readu16: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3053#endif
3054 return val;
3055}
3056
3057
3058/**
3059 * Read guest RAM and ROM, signed 16-bit.
3060 *
3061 * @param SrcGCPhys The source address (guest physical).
3062 */
3063RTCCINTREG remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3064{
3065 int16_t val;
3066 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3067 VBOX_CHECK_ADDR(SrcGCPhys);
3068 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3069 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3070#ifdef VBOX_DEBUG_PHYS
3071 LogRel(("reads16: %x <- %08x\n", (uint16_t)val, (uint32_t)SrcGCPhys));
3072#endif
3073 return val;
3074}
3075
3076
3077/**
3078 * Read guest RAM and ROM, unsigned 32-bit.
3079 *
3080 * @param SrcGCPhys The source address (guest physical).
3081 */
3082RTCCUINTREG remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3083{
3084 uint32_t val;
3085 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3086 VBOX_CHECK_ADDR(SrcGCPhys);
3087 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3088 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3089#ifdef VBOX_DEBUG_PHYS
3090 LogRel(("readu32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3091#endif
3092 return val;
3093}
3094
3095
3096/**
3097 * Read guest RAM and ROM, signed 32-bit.
3098 *
3099 * @param SrcGCPhys The source address (guest physical).
3100 */
3101RTCCINTREG remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3102{
3103 int32_t val;
3104 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3105 VBOX_CHECK_ADDR(SrcGCPhys);
3106 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3107 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3108#ifdef VBOX_DEBUG_PHYS
3109 LogRel(("reads32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3110#endif
3111 return val;
3112}
3113
3114
3115/**
3116 * Read guest RAM and ROM, unsigned 64-bit.
3117 *
3118 * @param SrcGCPhys The source address (guest physical).
3119 */
3120uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3121{
3122 uint64_t val;
3123 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3124 VBOX_CHECK_ADDR(SrcGCPhys);
3125 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3126 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3127#ifdef VBOX_DEBUG_PHYS
3128 LogRel(("readu64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3129#endif
3130 return val;
3131}
3132
3133/**
3134 * Read guest RAM and ROM, signed 64-bit.
3135 *
3136 * @param SrcGCPhys The source address (guest physical).
3137 */
3138int64_t remR3PhysReadS64(RTGCPHYS SrcGCPhys)
3139{
3140 int64_t val;
3141 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3142 VBOX_CHECK_ADDR(SrcGCPhys);
3143 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3144 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3145#ifdef VBOX_DEBUG_PHYS
3146 LogRel(("reads64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3147#endif
3148 return val;
3149}
3150
3151
3152/**
3153 * Write guest RAM.
3154 *
3155 * @param DstGCPhys The destination address (guest physical).
3156 * @param pvSrc The source address.
3157 * @param cb Number of bytes to write
3158 */
3159void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3160{
3161 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3162 VBOX_CHECK_ADDR(DstGCPhys);
3163 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3164 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3165#ifdef VBOX_DEBUG_PHYS
3166 LogRel(("write(%d): %08x\n", cb, (uint32_t)DstGCPhys));
3167#endif
3168}
3169
3170
3171/**
3172 * Write guest RAM, unsigned 8-bit.
3173 *
3174 * @param DstGCPhys The destination address (guest physical).
3175 * @param val Value
3176 */
3177void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3178{
3179 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3180 VBOX_CHECK_ADDR(DstGCPhys);
3181 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3182 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3183#ifdef VBOX_DEBUG_PHYS
3184 LogRel(("writeu8: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3185#endif
3186}
3187
3188
3189/**
3190 * Write guest RAM, unsigned 8-bit.
3191 *
3192 * @param DstGCPhys The destination address (guest physical).
3193 * @param val Value
3194 */
3195void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3196{
3197 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3198 VBOX_CHECK_ADDR(DstGCPhys);
3199 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3200 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3201#ifdef VBOX_DEBUG_PHYS
3202 LogRel(("writeu16: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3203#endif
3204}
3205
3206
3207/**
3208 * Write guest RAM, unsigned 32-bit.
3209 *
3210 * @param DstGCPhys The destination address (guest physical).
3211 * @param val Value
3212 */
3213void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3214{
3215 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3216 VBOX_CHECK_ADDR(DstGCPhys);
3217 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3218 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3219#ifdef VBOX_DEBUG_PHYS
3220 LogRel(("writeu32: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3221#endif
3222}
3223
3224
3225/**
3226 * Write guest RAM, unsigned 64-bit.
3227 *
3228 * @param DstGCPhys The destination address (guest physical).
3229 * @param val Value
3230 */
3231void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3232{
3233 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3234 VBOX_CHECK_ADDR(DstGCPhys);
3235 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3236 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3237#ifdef VBOX_DEBUG_PHYS
3238 LogRel(("writeu64: %llx -> %08x\n", val, (uint32_t)SrcGCPhys));
3239#endif
3240}
3241
3242#undef LOG_GROUP
3243#define LOG_GROUP LOG_GROUP_REM_MMIO
3244
3245/** Read MMIO memory. */
3246static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3247{
3248 uint32_t u32 = 0;
3249 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3250 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3251 Log2(("remR3MMIOReadU8: GCPhys=%RGp -> %02x\n", GCPhys, u32));
3252 return u32;
3253}
3254
3255/** Read MMIO memory. */
3256static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3257{
3258 uint32_t u32 = 0;
3259 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3260 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3261 Log2(("remR3MMIOReadU16: GCPhys=%RGp -> %04x\n", GCPhys, u32));
3262 return u32;
3263}
3264
3265/** Read MMIO memory. */
3266static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3267{
3268 uint32_t u32 = 0;
3269 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3270 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3271 Log2(("remR3MMIOReadU32: GCPhys=%RGp -> %08x\n", GCPhys, u32));
3272 return u32;
3273}
3274
3275/** Write to MMIO memory. */
3276static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3277{
3278 int rc;
3279 Log2(("remR3MMIOWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3280 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3281 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3282}
3283
3284/** Write to MMIO memory. */
3285static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3286{
3287 int rc;
3288 Log2(("remR3MMIOWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3289 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3290 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3291}
3292
3293/** Write to MMIO memory. */
3294static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3295{
3296 int rc;
3297 Log2(("remR3MMIOWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3298 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3299 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3300}
3301
3302
3303#undef LOG_GROUP
3304#define LOG_GROUP LOG_GROUP_REM_HANDLER
3305
3306/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3307
3308static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3309{
3310 uint8_t u8;
3311 Log2(("remR3HandlerReadU8: GCPhys=%RGp\n", GCPhys));
3312 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3313 return u8;
3314}
3315
3316static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3317{
3318 uint16_t u16;
3319 Log2(("remR3HandlerReadU16: GCPhys=%RGp\n", GCPhys));
3320 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3321 return u16;
3322}
3323
3324static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3325{
3326 uint32_t u32;
3327 Log2(("remR3HandlerReadU32: GCPhys=%RGp\n", GCPhys));
3328 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3329 return u32;
3330}
3331
3332static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3333{
3334 Log2(("remR3HandlerWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3335 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3336}
3337
3338static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3339{
3340 Log2(("remR3HandlerWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3341 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3342}
3343
3344static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3345{
3346 Log2(("remR3HandlerWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3347 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3348}
3349
3350/* -+- disassembly -+- */
3351
3352#undef LOG_GROUP
3353#define LOG_GROUP LOG_GROUP_REM_DISAS
3354
3355
3356/**
3357 * Enables or disables singled stepped disassembly.
3358 *
3359 * @returns VBox status code.
3360 * @param pVM VM handle.
3361 * @param fEnable To enable set this flag, to disable clear it.
3362 */
3363static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3364{
3365 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3366 VM_ASSERT_EMT(pVM);
3367
3368 if (fEnable)
3369 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3370 else
3371 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3372 return VINF_SUCCESS;
3373}
3374
3375
3376/**
3377 * Enables or disables singled stepped disassembly.
3378 *
3379 * @returns VBox status code.
3380 * @param pVM VM handle.
3381 * @param fEnable To enable set this flag, to disable clear it.
3382 */
3383REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3384{
3385 PVMREQ pReq;
3386 int rc;
3387
3388 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3389 if (VM_IS_EMT(pVM))
3390 return remR3DisasEnableStepping(pVM, fEnable);
3391
3392 rc = VMR3ReqCall(pVM, VMREQDEST_ANY, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3393 AssertRC(rc);
3394 if (RT_SUCCESS(rc))
3395 rc = pReq->iStatus;
3396 VMR3ReqFree(pReq);
3397 return rc;
3398}
3399
3400
3401#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3402/**
3403 * External Debugger Command: .remstep [on|off|1|0]
3404 */
3405static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3406{
3407 bool fEnable;
3408 int rc;
3409
3410 /* print status */
3411 if (cArgs == 0)
3412 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3413 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3414
3415 /* convert the argument and change the mode. */
3416 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3417 if (RT_FAILURE(rc))
3418 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3419 rc = REMR3DisasEnableStepping(pVM, fEnable);
3420 if (RT_FAILURE(rc))
3421 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3422 return rc;
3423}
3424#endif
3425
3426
3427/**
3428 * Disassembles n instructions and prints them to the log.
3429 *
3430 * @returns Success indicator.
3431 * @param env Pointer to the recompiler CPU structure.
3432 * @param f32BitCode Indicates that whether or not the code should
3433 * be disassembled as 16 or 32 bit. If -1 the CS
3434 * selector will be inspected.
3435 * @param nrInstructions Nr of instructions to disassemble
3436 * @param pszPrefix
3437 * @remark not currently used for anything but ad-hoc debugging.
3438 */
3439bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3440{
3441 int i, rc;
3442 RTGCPTR GCPtrPC;
3443 uint8_t *pvPC;
3444 RTINTPTR off;
3445 DISCPUSTATE Cpu;
3446
3447 /*
3448 * Determin 16/32 bit mode.
3449 */
3450 if (f32BitCode == -1)
3451 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3452
3453 /*
3454 * Convert cs:eip to host context address.
3455 * We don't care to much about cross page correctness presently.
3456 */
3457 GCPtrPC = env->segs[R_CS].base + env->eip;
3458 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3459 {
3460 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3461
3462 /* convert eip to physical address. */
3463 rc = PGMPhysGCPtr2R3PtrByGstCR3(env->pVM,
3464 GCPtrPC,
3465 env->cr[3],
3466 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3467 (void**)&pvPC);
3468 if (RT_FAILURE(rc))
3469 {
3470 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3471 return false;
3472 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3473 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3474 }
3475 }
3476 else
3477 {
3478 /* physical address */
3479 rc = PGMPhysGCPhys2R3Ptr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16,
3480 (void**)&pvPC);
3481 if (RT_FAILURE(rc))
3482 return false;
3483 }
3484
3485 /*
3486 * Disassemble.
3487 */
3488 off = env->eip - (RTGCUINTPTR)(uintptr_t)pvPC;
3489 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3490 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3491 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3492 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3493 //Cpu.dwUserData[2] = GCPtrPC;
3494
3495 for (i=0;i<nrInstructions;i++)
3496 {
3497 char szOutput[256];
3498 uint32_t cbOp;
3499 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3500 return false;
3501 if (pszPrefix)
3502 Log(("%s: %s", pszPrefix, szOutput));
3503 else
3504 Log(("%s", szOutput));
3505
3506 pvPC += cbOp;
3507 }
3508 return true;
3509}
3510
3511
3512/** @todo need to test the new code, using the old code in the mean while. */
3513#define USE_OLD_DUMP_AND_DISASSEMBLY
3514
3515/**
3516 * Disassembles one instruction and prints it to the log.
3517 *
3518 * @returns Success indicator.
3519 * @param env Pointer to the recompiler CPU structure.
3520 * @param f32BitCode Indicates that whether or not the code should
3521 * be disassembled as 16 or 32 bit. If -1 the CS
3522 * selector will be inspected.
3523 * @param pszPrefix
3524 */
3525bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3526{
3527#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3528 PVM pVM = env->pVM;
3529 RTGCPTR GCPtrPC;
3530 uint8_t *pvPC;
3531 char szOutput[256];
3532 uint32_t cbOp;
3533 RTINTPTR off;
3534 DISCPUSTATE Cpu;
3535
3536
3537 /* Doesn't work in long mode. */
3538 if (env->hflags & HF_LMA_MASK)
3539 return false;
3540
3541 /*
3542 * Determin 16/32 bit mode.
3543 */
3544 if (f32BitCode == -1)
3545 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3546
3547 /*
3548 * Log registers
3549 */
3550 if (LogIs2Enabled())
3551 {
3552 remR3StateUpdate(pVM);
3553 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3554 }
3555
3556 /*
3557 * Convert cs:eip to host context address.
3558 * We don't care to much about cross page correctness presently.
3559 */
3560 GCPtrPC = env->segs[R_CS].base + env->eip;
3561 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3562 {
3563 /* convert eip to physical address. */
3564 int rc = PGMPhysGCPtr2R3PtrByGstCR3(pVM,
3565 GCPtrPC,
3566 env->cr[3],
3567 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3568 (void**)&pvPC);
3569 if (RT_FAILURE(rc))
3570 {
3571 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3572 return false;
3573 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(pVM, NULL)
3574 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3575 }
3576 }
3577 else
3578 {
3579
3580 /* physical address */
3581 int rc = PGMPhysGCPhys2R3Ptr(pVM, (RTGCPHYS)GCPtrPC, 16, (void**)&pvPC);
3582 if (RT_FAILURE(rc))
3583 return false;
3584 }
3585
3586 /*
3587 * Disassemble.
3588 */
3589 off = env->eip - (RTGCUINTPTR)(uintptr_t)pvPC;
3590 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3591 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3592 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3593 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3594 //Cpu.dwUserData[2] = GCPtrPC;
3595 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3596 return false;
3597
3598 if (!f32BitCode)
3599 {
3600 if (pszPrefix)
3601 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3602 else
3603 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3604 }
3605 else
3606 {
3607 if (pszPrefix)
3608 Log(("%s: %s", pszPrefix, szOutput));
3609 else
3610 Log(("%s", szOutput));
3611 }
3612 return true;
3613
3614#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3615 PVM pVM = env->pVM;
3616 const bool fLog = LogIsEnabled();
3617 const bool fLog2 = LogIs2Enabled();
3618 int rc = VINF_SUCCESS;
3619
3620 /*
3621 * Don't bother if there ain't any log output to do.
3622 */
3623 if (!fLog && !fLog2)
3624 return true;
3625
3626 /*
3627 * Update the state so DBGF reads the correct register values.
3628 */
3629 remR3StateUpdate(pVM);
3630
3631 /*
3632 * Log registers if requested.
3633 */
3634 if (!fLog2)
3635 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3636
3637 /*
3638 * Disassemble to log.
3639 */
3640 if (fLog)
3641 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3642
3643 return RT_SUCCESS(rc);
3644#endif
3645}
3646
3647
3648/**
3649 * Disassemble recompiled code.
3650 *
3651 * @param phFileIgnored Ignored, logfile usually.
3652 * @param pvCode Pointer to the code block.
3653 * @param cb Size of the code block.
3654 */
3655void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3656{
3657 if (LogIs2Enabled())
3658 {
3659 unsigned off = 0;
3660 char szOutput[256];
3661 DISCPUSTATE Cpu;
3662
3663 memset(&Cpu, 0, sizeof(Cpu));
3664#ifdef RT_ARCH_X86
3665 Cpu.mode = CPUMODE_32BIT;
3666#else
3667 Cpu.mode = CPUMODE_64BIT;
3668#endif
3669
3670 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3671 while (off < cb)
3672 {
3673 uint32_t cbInstr;
3674 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3675 RTLogPrintf("%s", szOutput);
3676 else
3677 {
3678 RTLogPrintf("disas error\n");
3679 cbInstr = 1;
3680#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3681 break;
3682#endif
3683 }
3684 off += cbInstr;
3685 }
3686 }
3687 NOREF(phFileIgnored);
3688}
3689
3690
3691/**
3692 * Disassemble guest code.
3693 *
3694 * @param phFileIgnored Ignored, logfile usually.
3695 * @param uCode The guest address of the code to disassemble. (flat?)
3696 * @param cb Number of bytes to disassemble.
3697 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3698 */
3699void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3700{
3701 if (LogIs2Enabled())
3702 {
3703 PVM pVM = cpu_single_env->pVM;
3704 RTSEL cs;
3705 RTGCUINTPTR eip;
3706
3707 /*
3708 * Update the state so DBGF reads the correct register values (flags).
3709 */
3710 remR3StateUpdate(pVM);
3711
3712 /*
3713 * Do the disassembling.
3714 */
3715 RTLogPrintf("Guest Code: PC=%RGp %RGp bytes fFlags=%d\n", uCode, cb, fFlags);
3716 cs = cpu_single_env->segs[R_CS].selector;
3717 eip = uCode - cpu_single_env->segs[R_CS].base;
3718 for (;;)
3719 {
3720 char szBuf[256];
3721 uint32_t cbInstr;
3722 int rc = DBGFR3DisasInstrEx(pVM,
3723 cs,
3724 eip,
3725 0,
3726 szBuf, sizeof(szBuf),
3727 &cbInstr);
3728 if (RT_SUCCESS(rc))
3729 RTLogPrintf("%RGp %s\n", uCode, szBuf);
3730 else
3731 {
3732 RTLogPrintf("%RGp %04x:%RGp: %s\n", uCode, cs, eip, szBuf);
3733 cbInstr = 1;
3734 }
3735
3736 /* next */
3737 if (cb <= cbInstr)
3738 break;
3739 cb -= cbInstr;
3740 uCode += cbInstr;
3741 eip += cbInstr;
3742 }
3743 }
3744 NOREF(phFileIgnored);
3745}
3746
3747
3748/**
3749 * Looks up a guest symbol.
3750 *
3751 * @returns Pointer to symbol name. This is a static buffer.
3752 * @param orig_addr The address in question.
3753 */
3754const char *lookup_symbol(target_ulong orig_addr)
3755{
3756 RTGCINTPTR off = 0;
3757 DBGFSYMBOL Sym;
3758 PVM pVM = cpu_single_env->pVM;
3759 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3760 if (RT_SUCCESS(rc))
3761 {
3762 static char szSym[sizeof(Sym.szName) + 48];
3763 if (!off)
3764 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3765 else if (off > 0)
3766 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3767 else
3768 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3769 return szSym;
3770 }
3771 return "<N/A>";
3772}
3773
3774
3775#undef LOG_GROUP
3776#define LOG_GROUP LOG_GROUP_REM
3777
3778
3779/* -+- FF notifications -+- */
3780
3781
3782/**
3783 * Notification about a pending interrupt.
3784 *
3785 * @param pVM VM Handle.
3786 * @param u8Interrupt Interrupt
3787 * @thread The emulation thread.
3788 */
3789REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3790{
3791 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3792 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3793}
3794
3795/**
3796 * Notification about a pending interrupt.
3797 *
3798 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3799 * @param pVM VM Handle.
3800 * @thread The emulation thread.
3801 */
3802REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3803{
3804 return pVM->rem.s.u32PendingInterrupt;
3805}
3806
3807/**
3808 * Notification about the interrupt FF being set.
3809 *
3810 * @param pVM VM Handle.
3811 * @thread The emulation thread.
3812 */
3813REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3814{
3815 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3816 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3817 if (pVM->rem.s.fInREM)
3818 {
3819 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3820 CPU_INTERRUPT_EXTERNAL_HARD);
3821 }
3822}
3823
3824
3825/**
3826 * Notification about the interrupt FF being set.
3827 *
3828 * @param pVM VM Handle.
3829 * @thread Any.
3830 */
3831REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3832{
3833 LogFlow(("REMR3NotifyInterruptClear:\n"));
3834 if (pVM->rem.s.fInREM)
3835 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3836}
3837
3838
3839/**
3840 * Notification about pending timer(s).
3841 *
3842 * @param pVM VM Handle.
3843 * @thread Any.
3844 */
3845REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3846{
3847#ifndef DEBUG_bird
3848 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3849#endif
3850 if (pVM->rem.s.fInREM)
3851 {
3852 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3853 CPU_INTERRUPT_EXTERNAL_TIMER);
3854 }
3855}
3856
3857
3858/**
3859 * Notification about pending DMA transfers.
3860 *
3861 * @param pVM VM Handle.
3862 * @thread Any.
3863 */
3864REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3865{
3866 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3867 if (pVM->rem.s.fInREM)
3868 {
3869 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3870 CPU_INTERRUPT_EXTERNAL_DMA);
3871 }
3872}
3873
3874
3875/**
3876 * Notification about pending timer(s).
3877 *
3878 * @param pVM VM Handle.
3879 * @thread Any.
3880 */
3881REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3882{
3883 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3884 if (pVM->rem.s.fInREM)
3885 {
3886 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3887 CPU_INTERRUPT_EXTERNAL_EXIT);
3888 }
3889}
3890
3891
3892/**
3893 * Notification about pending FF set by an external thread.
3894 *
3895 * @param pVM VM handle.
3896 * @thread Any.
3897 */
3898REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3899{
3900 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3901 if (pVM->rem.s.fInREM)
3902 {
3903 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3904 CPU_INTERRUPT_EXTERNAL_EXIT);
3905 }
3906}
3907
3908
3909#ifdef VBOX_WITH_STATISTICS
3910void remR3ProfileStart(int statcode)
3911{
3912 STAMPROFILEADV *pStat;
3913 switch(statcode)
3914 {
3915 case STATS_EMULATE_SINGLE_INSTR:
3916 pStat = &gStatExecuteSingleInstr;
3917 break;
3918 case STATS_QEMU_COMPILATION:
3919 pStat = &gStatCompilationQEmu;
3920 break;
3921 case STATS_QEMU_RUN_EMULATED_CODE:
3922 pStat = &gStatRunCodeQEmu;
3923 break;
3924 case STATS_QEMU_TOTAL:
3925 pStat = &gStatTotalTimeQEmu;
3926 break;
3927 case STATS_QEMU_RUN_TIMERS:
3928 pStat = &gStatTimers;
3929 break;
3930 case STATS_TLB_LOOKUP:
3931 pStat= &gStatTBLookup;
3932 break;
3933 case STATS_IRQ_HANDLING:
3934 pStat= &gStatIRQ;
3935 break;
3936 case STATS_RAW_CHECK:
3937 pStat = &gStatRawCheck;
3938 break;
3939
3940 default:
3941 AssertMsgFailed(("unknown stat %d\n", statcode));
3942 return;
3943 }
3944 STAM_PROFILE_ADV_START(pStat, a);
3945}
3946
3947
3948void remR3ProfileStop(int statcode)
3949{
3950 STAMPROFILEADV *pStat;
3951 switch(statcode)
3952 {
3953 case STATS_EMULATE_SINGLE_INSTR:
3954 pStat = &gStatExecuteSingleInstr;
3955 break;
3956 case STATS_QEMU_COMPILATION:
3957 pStat = &gStatCompilationQEmu;
3958 break;
3959 case STATS_QEMU_RUN_EMULATED_CODE:
3960 pStat = &gStatRunCodeQEmu;
3961 break;
3962 case STATS_QEMU_TOTAL:
3963 pStat = &gStatTotalTimeQEmu;
3964 break;
3965 case STATS_QEMU_RUN_TIMERS:
3966 pStat = &gStatTimers;
3967 break;
3968 case STATS_TLB_LOOKUP:
3969 pStat= &gStatTBLookup;
3970 break;
3971 case STATS_IRQ_HANDLING:
3972 pStat= &gStatIRQ;
3973 break;
3974 case STATS_RAW_CHECK:
3975 pStat = &gStatRawCheck;
3976 break;
3977 default:
3978 AssertMsgFailed(("unknown stat %d\n", statcode));
3979 return;
3980 }
3981 STAM_PROFILE_ADV_STOP(pStat, a);
3982}
3983#endif
3984
3985/**
3986 * Raise an RC, force rem exit.
3987 *
3988 * @param pVM VM handle.
3989 * @param rc The rc.
3990 */
3991void remR3RaiseRC(PVM pVM, int rc)
3992{
3993 Log(("remR3RaiseRC: rc=%Rrc\n", rc));
3994 Assert(pVM->rem.s.fInREM);
3995 VM_ASSERT_EMT(pVM);
3996 pVM->rem.s.rc = rc;
3997 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3998}
3999
4000
4001/* -+- timers -+- */
4002
4003uint64_t cpu_get_tsc(CPUX86State *env)
4004{
4005 STAM_COUNTER_INC(&gStatCpuGetTSC);
4006 return TMCpuTickGet(env->pVM);
4007}
4008
4009
4010/* -+- interrupts -+- */
4011
4012void cpu_set_ferr(CPUX86State *env)
4013{
4014 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4015 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4016}
4017
4018int cpu_get_pic_interrupt(CPUState *env)
4019{
4020 uint8_t u8Interrupt;
4021 int rc;
4022
4023 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4024 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4025 * with the (a)pic.
4026 */
4027 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4028 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4029 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4030 * remove this kludge. */
4031 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4032 {
4033 rc = VINF_SUCCESS;
4034 Assert(env->pVM->rem.s.u32PendingInterrupt <= 255);
4035 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4036 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4037 }
4038 else
4039 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4040
4041 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Rrc\n", u8Interrupt, rc));
4042 if (RT_SUCCESS(rc))
4043 {
4044 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4045 env->interrupt_request |= CPU_INTERRUPT_HARD;
4046 return u8Interrupt;
4047 }
4048 return -1;
4049}
4050
4051
4052/* -+- local apic -+- */
4053
4054void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4055{
4056 int rc = PDMApicSetBase(env->pVM, val);
4057 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Rrc\n", val, rc)); NOREF(rc);
4058}
4059
4060uint64_t cpu_get_apic_base(CPUX86State *env)
4061{
4062 uint64_t u64;
4063 int rc = PDMApicGetBase(env->pVM, &u64);
4064 if (RT_SUCCESS(rc))
4065 {
4066 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4067 return u64;
4068 }
4069 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Rrc)\n", rc));
4070 return 0;
4071}
4072
4073void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4074{
4075 int rc = PDMApicSetTPR(env->pVM, val);
4076 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Rrc\n", val, rc)); NOREF(rc);
4077}
4078
4079uint8_t cpu_get_apic_tpr(CPUX86State *env)
4080{
4081 uint8_t u8;
4082 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4083 if (RT_SUCCESS(rc))
4084 {
4085 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4086 return u8;
4087 }
4088 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Rrc)\n", rc));
4089 return 0;
4090}
4091
4092
4093uint64_t cpu_apic_rdmsr(CPUX86State *env, uint32_t reg)
4094{
4095 uint64_t value;
4096 int rc = PDMApicReadMSR(env->pVM, 0/* cpu */, reg, &value);
4097 if (RT_SUCCESS(rc))
4098 {
4099 LogFlow(("cpu_apic_rdms returns %#x\n", value));
4100 return value;
4101 }
4102 /** @todo: exception ? */
4103 LogFlow(("cpu_apic_rdms returns 0 (rc=%Rrc)\n", rc));
4104 return value;
4105}
4106
4107void cpu_apic_wrmsr(CPUX86State *env, uint32_t reg, uint64_t value)
4108{
4109 int rc = PDMApicWriteMSR(env->pVM, 0 /* cpu */, reg, value);
4110 /** @todo: exception if error ? */
4111 LogFlow(("cpu_apic_wrmsr: rc=%Rrc\n", rc)); NOREF(rc);
4112}
4113
4114uint64_t cpu_rdmsr(CPUX86State *env, uint32_t msr)
4115{
4116 return CPUMGetGuestMsr(env->pVM, msr);
4117}
4118
4119void cpu_wrmsr(CPUX86State *env, uint32_t msr, uint64_t val)
4120{
4121 CPUMSetGuestMsr(env->pVM, msr, val);
4122}
4123/* -+- I/O Ports -+- */
4124
4125#undef LOG_GROUP
4126#define LOG_GROUP LOG_GROUP_REM_IOPORT
4127
4128void cpu_outb(CPUState *env, int addr, int val)
4129{
4130 int rc;
4131
4132 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4133 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4134
4135 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4136 if (RT_LIKELY(rc == VINF_SUCCESS))
4137 return;
4138 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4139 {
4140 Log(("cpu_outb: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4141 remR3RaiseRC(env->pVM, rc);
4142 return;
4143 }
4144 remAbort(rc, __FUNCTION__);
4145}
4146
4147void cpu_outw(CPUState *env, int addr, int val)
4148{
4149 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4150 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4151 if (RT_LIKELY(rc == VINF_SUCCESS))
4152 return;
4153 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4154 {
4155 Log(("cpu_outw: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4156 remR3RaiseRC(env->pVM, rc);
4157 return;
4158 }
4159 remAbort(rc, __FUNCTION__);
4160}
4161
4162void cpu_outl(CPUState *env, int addr, int val)
4163{
4164 int rc;
4165 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4166 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4167 if (RT_LIKELY(rc == VINF_SUCCESS))
4168 return;
4169 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4170 {
4171 Log(("cpu_outl: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4172 remR3RaiseRC(env->pVM, rc);
4173 return;
4174 }
4175 remAbort(rc, __FUNCTION__);
4176}
4177
4178int cpu_inb(CPUState *env, int addr)
4179{
4180 uint32_t u32 = 0;
4181 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4182 if (RT_LIKELY(rc == VINF_SUCCESS))
4183 {
4184 if (/*addr != 0x61 && */addr != 0x71)
4185 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4186 return (int)u32;
4187 }
4188 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4189 {
4190 Log(("cpu_inb: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4191 remR3RaiseRC(env->pVM, rc);
4192 return (int)u32;
4193 }
4194 remAbort(rc, __FUNCTION__);
4195 return 0xff;
4196}
4197
4198int cpu_inw(CPUState *env, int addr)
4199{
4200 uint32_t u32 = 0;
4201 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4202 if (RT_LIKELY(rc == VINF_SUCCESS))
4203 {
4204 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4205 return (int)u32;
4206 }
4207 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4208 {
4209 Log(("cpu_inw: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4210 remR3RaiseRC(env->pVM, rc);
4211 return (int)u32;
4212 }
4213 remAbort(rc, __FUNCTION__);
4214 return 0xffff;
4215}
4216
4217int cpu_inl(CPUState *env, int addr)
4218{
4219 uint32_t u32 = 0;
4220 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4221 if (RT_LIKELY(rc == VINF_SUCCESS))
4222 {
4223//if (addr==0x01f0 && u32 == 0x6b6d)
4224// loglevel = ~0;
4225 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4226 return (int)u32;
4227 }
4228 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4229 {
4230 Log(("cpu_inl: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4231 remR3RaiseRC(env->pVM, rc);
4232 return (int)u32;
4233 }
4234 remAbort(rc, __FUNCTION__);
4235 return 0xffffffff;
4236}
4237
4238#undef LOG_GROUP
4239#define LOG_GROUP LOG_GROUP_REM
4240
4241
4242/* -+- helpers and misc other interfaces -+- */
4243
4244/**
4245 * Perform the CPUID instruction.
4246 *
4247 * ASMCpuId cannot be invoked from some source files where this is used because of global
4248 * register allocations.
4249 *
4250 * @param env Pointer to the recompiler CPU structure.
4251 * @param uOperator CPUID operation (eax).
4252 * @param pvEAX Where to store eax.
4253 * @param pvEBX Where to store ebx.
4254 * @param pvECX Where to store ecx.
4255 * @param pvEDX Where to store edx.
4256 */
4257void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4258{
4259 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4260}
4261
4262
4263#if 0 /* not used */
4264/**
4265 * Interface for qemu hardware to report back fatal errors.
4266 */
4267void hw_error(const char *pszFormat, ...)
4268{
4269 /*
4270 * Bitch about it.
4271 */
4272 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4273 * this in my Odin32 tree at home! */
4274 va_list args;
4275 va_start(args, pszFormat);
4276 RTLogPrintf("fatal error in virtual hardware:");
4277 RTLogPrintfV(pszFormat, args);
4278 va_end(args);
4279 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4280
4281 /*
4282 * If we're in REM context we'll sync back the state before 'jumping' to
4283 * the EMs failure handling.
4284 */
4285 PVM pVM = cpu_single_env->pVM;
4286 if (pVM->rem.s.fInREM)
4287 REMR3StateBack(pVM);
4288 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4289 AssertMsgFailed(("EMR3FatalError returned!\n"));
4290}
4291#endif
4292
4293/**
4294 * Interface for the qemu cpu to report unhandled situation
4295 * raising a fatal VM error.
4296 */
4297void cpu_abort(CPUState *env, const char *pszFormat, ...)
4298{
4299 va_list args;
4300 PVM pVM;
4301
4302 /*
4303 * Bitch about it.
4304 */
4305#ifndef _MSC_VER
4306 /** @todo: MSVC is right - it's not valid C */
4307 RTLogFlags(NULL, "nodisabled nobuffered");
4308#endif
4309 va_start(args, pszFormat);
4310 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4311 va_end(args);
4312 va_start(args, pszFormat);
4313 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4314 va_end(args);
4315
4316 /*
4317 * If we're in REM context we'll sync back the state before 'jumping' to
4318 * the EMs failure handling.
4319 */
4320 pVM = cpu_single_env->pVM;
4321 if (pVM->rem.s.fInREM)
4322 REMR3StateBack(pVM);
4323 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4324 AssertMsgFailed(("EMR3FatalError returned!\n"));
4325}
4326
4327
4328/**
4329 * Aborts the VM.
4330 *
4331 * @param rc VBox error code.
4332 * @param pszTip Hint about why/when this happend.
4333 */
4334void remAbort(int rc, const char *pszTip)
4335{
4336 PVM pVM;
4337
4338 /*
4339 * Bitch about it.
4340 */
4341 RTLogPrintf("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip);
4342 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip));
4343
4344 /*
4345 * Jump back to where we entered the recompiler.
4346 */
4347 pVM = cpu_single_env->pVM;
4348 if (pVM->rem.s.fInREM)
4349 REMR3StateBack(pVM);
4350 EMR3FatalError(pVM, rc);
4351 AssertMsgFailed(("EMR3FatalError returned!\n"));
4352}
4353
4354
4355/**
4356 * Dumps a linux system call.
4357 * @param pVM VM handle.
4358 */
4359void remR3DumpLnxSyscall(PVM pVM)
4360{
4361 static const char *apsz[] =
4362 {
4363 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4364 "sys_exit",
4365 "sys_fork",
4366 "sys_read",
4367 "sys_write",
4368 "sys_open", /* 5 */
4369 "sys_close",
4370 "sys_waitpid",
4371 "sys_creat",
4372 "sys_link",
4373 "sys_unlink", /* 10 */
4374 "sys_execve",
4375 "sys_chdir",
4376 "sys_time",
4377 "sys_mknod",
4378 "sys_chmod", /* 15 */
4379 "sys_lchown16",
4380 "sys_ni_syscall", /* old break syscall holder */
4381 "sys_stat",
4382 "sys_lseek",
4383 "sys_getpid", /* 20 */
4384 "sys_mount",
4385 "sys_oldumount",
4386 "sys_setuid16",
4387 "sys_getuid16",
4388 "sys_stime", /* 25 */
4389 "sys_ptrace",
4390 "sys_alarm",
4391 "sys_fstat",
4392 "sys_pause",
4393 "sys_utime", /* 30 */
4394 "sys_ni_syscall", /* old stty syscall holder */
4395 "sys_ni_syscall", /* old gtty syscall holder */
4396 "sys_access",
4397 "sys_nice",
4398 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4399 "sys_sync",
4400 "sys_kill",
4401 "sys_rename",
4402 "sys_mkdir",
4403 "sys_rmdir", /* 40 */
4404 "sys_dup",
4405 "sys_pipe",
4406 "sys_times",
4407 "sys_ni_syscall", /* old prof syscall holder */
4408 "sys_brk", /* 45 */
4409 "sys_setgid16",
4410 "sys_getgid16",
4411 "sys_signal",
4412 "sys_geteuid16",
4413 "sys_getegid16", /* 50 */
4414 "sys_acct",
4415 "sys_umount", /* recycled never used phys() */
4416 "sys_ni_syscall", /* old lock syscall holder */
4417 "sys_ioctl",
4418 "sys_fcntl", /* 55 */
4419 "sys_ni_syscall", /* old mpx syscall holder */
4420 "sys_setpgid",
4421 "sys_ni_syscall", /* old ulimit syscall holder */
4422 "sys_olduname",
4423 "sys_umask", /* 60 */
4424 "sys_chroot",
4425 "sys_ustat",
4426 "sys_dup2",
4427 "sys_getppid",
4428 "sys_getpgrp", /* 65 */
4429 "sys_setsid",
4430 "sys_sigaction",
4431 "sys_sgetmask",
4432 "sys_ssetmask",
4433 "sys_setreuid16", /* 70 */
4434 "sys_setregid16",
4435 "sys_sigsuspend",
4436 "sys_sigpending",
4437 "sys_sethostname",
4438 "sys_setrlimit", /* 75 */
4439 "sys_old_getrlimit",
4440 "sys_getrusage",
4441 "sys_gettimeofday",
4442 "sys_settimeofday",
4443 "sys_getgroups16", /* 80 */
4444 "sys_setgroups16",
4445 "old_select",
4446 "sys_symlink",
4447 "sys_lstat",
4448 "sys_readlink", /* 85 */
4449 "sys_uselib",
4450 "sys_swapon",
4451 "sys_reboot",
4452 "old_readdir",
4453 "old_mmap", /* 90 */
4454 "sys_munmap",
4455 "sys_truncate",
4456 "sys_ftruncate",
4457 "sys_fchmod",
4458 "sys_fchown16", /* 95 */
4459 "sys_getpriority",
4460 "sys_setpriority",
4461 "sys_ni_syscall", /* old profil syscall holder */
4462 "sys_statfs",
4463 "sys_fstatfs", /* 100 */
4464 "sys_ioperm",
4465 "sys_socketcall",
4466 "sys_syslog",
4467 "sys_setitimer",
4468 "sys_getitimer", /* 105 */
4469 "sys_newstat",
4470 "sys_newlstat",
4471 "sys_newfstat",
4472 "sys_uname",
4473 "sys_iopl", /* 110 */
4474 "sys_vhangup",
4475 "sys_ni_syscall", /* old "idle" system call */
4476 "sys_vm86old",
4477 "sys_wait4",
4478 "sys_swapoff", /* 115 */
4479 "sys_sysinfo",
4480 "sys_ipc",
4481 "sys_fsync",
4482 "sys_sigreturn",
4483 "sys_clone", /* 120 */
4484 "sys_setdomainname",
4485 "sys_newuname",
4486 "sys_modify_ldt",
4487 "sys_adjtimex",
4488 "sys_mprotect", /* 125 */
4489 "sys_sigprocmask",
4490 "sys_ni_syscall", /* old "create_module" */
4491 "sys_init_module",
4492 "sys_delete_module",
4493 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4494 "sys_quotactl",
4495 "sys_getpgid",
4496 "sys_fchdir",
4497 "sys_bdflush",
4498 "sys_sysfs", /* 135 */
4499 "sys_personality",
4500 "sys_ni_syscall", /* reserved for afs_syscall */
4501 "sys_setfsuid16",
4502 "sys_setfsgid16",
4503 "sys_llseek", /* 140 */
4504 "sys_getdents",
4505 "sys_select",
4506 "sys_flock",
4507 "sys_msync",
4508 "sys_readv", /* 145 */
4509 "sys_writev",
4510 "sys_getsid",
4511 "sys_fdatasync",
4512 "sys_sysctl",
4513 "sys_mlock", /* 150 */
4514 "sys_munlock",
4515 "sys_mlockall",
4516 "sys_munlockall",
4517 "sys_sched_setparam",
4518 "sys_sched_getparam", /* 155 */
4519 "sys_sched_setscheduler",
4520 "sys_sched_getscheduler",
4521 "sys_sched_yield",
4522 "sys_sched_get_priority_max",
4523 "sys_sched_get_priority_min", /* 160 */
4524 "sys_sched_rr_get_interval",
4525 "sys_nanosleep",
4526 "sys_mremap",
4527 "sys_setresuid16",
4528 "sys_getresuid16", /* 165 */
4529 "sys_vm86",
4530 "sys_ni_syscall", /* Old sys_query_module */
4531 "sys_poll",
4532 "sys_nfsservctl",
4533 "sys_setresgid16", /* 170 */
4534 "sys_getresgid16",
4535 "sys_prctl",
4536 "sys_rt_sigreturn",
4537 "sys_rt_sigaction",
4538 "sys_rt_sigprocmask", /* 175 */
4539 "sys_rt_sigpending",
4540 "sys_rt_sigtimedwait",
4541 "sys_rt_sigqueueinfo",
4542 "sys_rt_sigsuspend",
4543 "sys_pread64", /* 180 */
4544 "sys_pwrite64",
4545 "sys_chown16",
4546 "sys_getcwd",
4547 "sys_capget",
4548 "sys_capset", /* 185 */
4549 "sys_sigaltstack",
4550 "sys_sendfile",
4551 "sys_ni_syscall", /* reserved for streams1 */
4552 "sys_ni_syscall", /* reserved for streams2 */
4553 "sys_vfork", /* 190 */
4554 "sys_getrlimit",
4555 "sys_mmap2",
4556 "sys_truncate64",
4557 "sys_ftruncate64",
4558 "sys_stat64", /* 195 */
4559 "sys_lstat64",
4560 "sys_fstat64",
4561 "sys_lchown",
4562 "sys_getuid",
4563 "sys_getgid", /* 200 */
4564 "sys_geteuid",
4565 "sys_getegid",
4566 "sys_setreuid",
4567 "sys_setregid",
4568 "sys_getgroups", /* 205 */
4569 "sys_setgroups",
4570 "sys_fchown",
4571 "sys_setresuid",
4572 "sys_getresuid",
4573 "sys_setresgid", /* 210 */
4574 "sys_getresgid",
4575 "sys_chown",
4576 "sys_setuid",
4577 "sys_setgid",
4578 "sys_setfsuid", /* 215 */
4579 "sys_setfsgid",
4580 "sys_pivot_root",
4581 "sys_mincore",
4582 "sys_madvise",
4583 "sys_getdents64", /* 220 */
4584 "sys_fcntl64",
4585 "sys_ni_syscall", /* reserved for TUX */
4586 "sys_ni_syscall",
4587 "sys_gettid",
4588 "sys_readahead", /* 225 */
4589 "sys_setxattr",
4590 "sys_lsetxattr",
4591 "sys_fsetxattr",
4592 "sys_getxattr",
4593 "sys_lgetxattr", /* 230 */
4594 "sys_fgetxattr",
4595 "sys_listxattr",
4596 "sys_llistxattr",
4597 "sys_flistxattr",
4598 "sys_removexattr", /* 235 */
4599 "sys_lremovexattr",
4600 "sys_fremovexattr",
4601 "sys_tkill",
4602 "sys_sendfile64",
4603 "sys_futex", /* 240 */
4604 "sys_sched_setaffinity",
4605 "sys_sched_getaffinity",
4606 "sys_set_thread_area",
4607 "sys_get_thread_area",
4608 "sys_io_setup", /* 245 */
4609 "sys_io_destroy",
4610 "sys_io_getevents",
4611 "sys_io_submit",
4612 "sys_io_cancel",
4613 "sys_fadvise64", /* 250 */
4614 "sys_ni_syscall",
4615 "sys_exit_group",
4616 "sys_lookup_dcookie",
4617 "sys_epoll_create",
4618 "sys_epoll_ctl", /* 255 */
4619 "sys_epoll_wait",
4620 "sys_remap_file_pages",
4621 "sys_set_tid_address",
4622 "sys_timer_create",
4623 "sys_timer_settime", /* 260 */
4624 "sys_timer_gettime",
4625 "sys_timer_getoverrun",
4626 "sys_timer_delete",
4627 "sys_clock_settime",
4628 "sys_clock_gettime", /* 265 */
4629 "sys_clock_getres",
4630 "sys_clock_nanosleep",
4631 "sys_statfs64",
4632 "sys_fstatfs64",
4633 "sys_tgkill", /* 270 */
4634 "sys_utimes",
4635 "sys_fadvise64_64",
4636 "sys_ni_syscall" /* sys_vserver */
4637 };
4638
4639 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4640 switch (uEAX)
4641 {
4642 default:
4643 if (uEAX < RT_ELEMENTS(apsz))
4644 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4645 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4646 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4647 else
4648 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4649 break;
4650
4651 }
4652}
4653
4654
4655/**
4656 * Dumps an OpenBSD system call.
4657 * @param pVM VM handle.
4658 */
4659void remR3DumpOBsdSyscall(PVM pVM)
4660{
4661 static const char *apsz[] =
4662 {
4663 "SYS_syscall", //0
4664 "SYS_exit", //1
4665 "SYS_fork", //2
4666 "SYS_read", //3
4667 "SYS_write", //4
4668 "SYS_open", //5
4669 "SYS_close", //6
4670 "SYS_wait4", //7
4671 "SYS_8",
4672 "SYS_link", //9
4673 "SYS_unlink", //10
4674 "SYS_11",
4675 "SYS_chdir", //12
4676 "SYS_fchdir", //13
4677 "SYS_mknod", //14
4678 "SYS_chmod", //15
4679 "SYS_chown", //16
4680 "SYS_break", //17
4681 "SYS_18",
4682 "SYS_19",
4683 "SYS_getpid", //20
4684 "SYS_mount", //21
4685 "SYS_unmount", //22
4686 "SYS_setuid", //23
4687 "SYS_getuid", //24
4688 "SYS_geteuid", //25
4689 "SYS_ptrace", //26
4690 "SYS_recvmsg", //27
4691 "SYS_sendmsg", //28
4692 "SYS_recvfrom", //29
4693 "SYS_accept", //30
4694 "SYS_getpeername", //31
4695 "SYS_getsockname", //32
4696 "SYS_access", //33
4697 "SYS_chflags", //34
4698 "SYS_fchflags", //35
4699 "SYS_sync", //36
4700 "SYS_kill", //37
4701 "SYS_38",
4702 "SYS_getppid", //39
4703 "SYS_40",
4704 "SYS_dup", //41
4705 "SYS_opipe", //42
4706 "SYS_getegid", //43
4707 "SYS_profil", //44
4708 "SYS_ktrace", //45
4709 "SYS_sigaction", //46
4710 "SYS_getgid", //47
4711 "SYS_sigprocmask", //48
4712 "SYS_getlogin", //49
4713 "SYS_setlogin", //50
4714 "SYS_acct", //51
4715 "SYS_sigpending", //52
4716 "SYS_osigaltstack", //53
4717 "SYS_ioctl", //54
4718 "SYS_reboot", //55
4719 "SYS_revoke", //56
4720 "SYS_symlink", //57
4721 "SYS_readlink", //58
4722 "SYS_execve", //59
4723 "SYS_umask", //60
4724 "SYS_chroot", //61
4725 "SYS_62",
4726 "SYS_63",
4727 "SYS_64",
4728 "SYS_65",
4729 "SYS_vfork", //66
4730 "SYS_67",
4731 "SYS_68",
4732 "SYS_sbrk", //69
4733 "SYS_sstk", //70
4734 "SYS_61",
4735 "SYS_vadvise", //72
4736 "SYS_munmap", //73
4737 "SYS_mprotect", //74
4738 "SYS_madvise", //75
4739 "SYS_76",
4740 "SYS_77",
4741 "SYS_mincore", //78
4742 "SYS_getgroups", //79
4743 "SYS_setgroups", //80
4744 "SYS_getpgrp", //81
4745 "SYS_setpgid", //82
4746 "SYS_setitimer", //83
4747 "SYS_84",
4748 "SYS_85",
4749 "SYS_getitimer", //86
4750 "SYS_87",
4751 "SYS_88",
4752 "SYS_89",
4753 "SYS_dup2", //90
4754 "SYS_91",
4755 "SYS_fcntl", //92
4756 "SYS_select", //93
4757 "SYS_94",
4758 "SYS_fsync", //95
4759 "SYS_setpriority", //96
4760 "SYS_socket", //97
4761 "SYS_connect", //98
4762 "SYS_99",
4763 "SYS_getpriority", //100
4764 "SYS_101",
4765 "SYS_102",
4766 "SYS_sigreturn", //103
4767 "SYS_bind", //104
4768 "SYS_setsockopt", //105
4769 "SYS_listen", //106
4770 "SYS_107",
4771 "SYS_108",
4772 "SYS_109",
4773 "SYS_110",
4774 "SYS_sigsuspend", //111
4775 "SYS_112",
4776 "SYS_113",
4777 "SYS_114",
4778 "SYS_115",
4779 "SYS_gettimeofday", //116
4780 "SYS_getrusage", //117
4781 "SYS_getsockopt", //118
4782 "SYS_119",
4783 "SYS_readv", //120
4784 "SYS_writev", //121
4785 "SYS_settimeofday", //122
4786 "SYS_fchown", //123
4787 "SYS_fchmod", //124
4788 "SYS_125",
4789 "SYS_setreuid", //126
4790 "SYS_setregid", //127
4791 "SYS_rename", //128
4792 "SYS_129",
4793 "SYS_130",
4794 "SYS_flock", //131
4795 "SYS_mkfifo", //132
4796 "SYS_sendto", //133
4797 "SYS_shutdown", //134
4798 "SYS_socketpair", //135
4799 "SYS_mkdir", //136
4800 "SYS_rmdir", //137
4801 "SYS_utimes", //138
4802 "SYS_139",
4803 "SYS_adjtime", //140
4804 "SYS_141",
4805 "SYS_142",
4806 "SYS_143",
4807 "SYS_144",
4808 "SYS_145",
4809 "SYS_146",
4810 "SYS_setsid", //147
4811 "SYS_quotactl", //148
4812 "SYS_149",
4813 "SYS_150",
4814 "SYS_151",
4815 "SYS_152",
4816 "SYS_153",
4817 "SYS_154",
4818 "SYS_nfssvc", //155
4819 "SYS_156",
4820 "SYS_157",
4821 "SYS_158",
4822 "SYS_159",
4823 "SYS_160",
4824 "SYS_getfh", //161
4825 "SYS_162",
4826 "SYS_163",
4827 "SYS_164",
4828 "SYS_sysarch", //165
4829 "SYS_166",
4830 "SYS_167",
4831 "SYS_168",
4832 "SYS_169",
4833 "SYS_170",
4834 "SYS_171",
4835 "SYS_172",
4836 "SYS_pread", //173
4837 "SYS_pwrite", //174
4838 "SYS_175",
4839 "SYS_176",
4840 "SYS_177",
4841 "SYS_178",
4842 "SYS_179",
4843 "SYS_180",
4844 "SYS_setgid", //181
4845 "SYS_setegid", //182
4846 "SYS_seteuid", //183
4847 "SYS_lfs_bmapv", //184
4848 "SYS_lfs_markv", //185
4849 "SYS_lfs_segclean", //186
4850 "SYS_lfs_segwait", //187
4851 "SYS_188",
4852 "SYS_189",
4853 "SYS_190",
4854 "SYS_pathconf", //191
4855 "SYS_fpathconf", //192
4856 "SYS_swapctl", //193
4857 "SYS_getrlimit", //194
4858 "SYS_setrlimit", //195
4859 "SYS_getdirentries", //196
4860 "SYS_mmap", //197
4861 "SYS___syscall", //198
4862 "SYS_lseek", //199
4863 "SYS_truncate", //200
4864 "SYS_ftruncate", //201
4865 "SYS___sysctl", //202
4866 "SYS_mlock", //203
4867 "SYS_munlock", //204
4868 "SYS_205",
4869 "SYS_futimes", //206
4870 "SYS_getpgid", //207
4871 "SYS_xfspioctl", //208
4872 "SYS_209",
4873 "SYS_210",
4874 "SYS_211",
4875 "SYS_212",
4876 "SYS_213",
4877 "SYS_214",
4878 "SYS_215",
4879 "SYS_216",
4880 "SYS_217",
4881 "SYS_218",
4882 "SYS_219",
4883 "SYS_220",
4884 "SYS_semget", //221
4885 "SYS_222",
4886 "SYS_223",
4887 "SYS_224",
4888 "SYS_msgget", //225
4889 "SYS_msgsnd", //226
4890 "SYS_msgrcv", //227
4891 "SYS_shmat", //228
4892 "SYS_229",
4893 "SYS_shmdt", //230
4894 "SYS_231",
4895 "SYS_clock_gettime", //232
4896 "SYS_clock_settime", //233
4897 "SYS_clock_getres", //234
4898 "SYS_235",
4899 "SYS_236",
4900 "SYS_237",
4901 "SYS_238",
4902 "SYS_239",
4903 "SYS_nanosleep", //240
4904 "SYS_241",
4905 "SYS_242",
4906 "SYS_243",
4907 "SYS_244",
4908 "SYS_245",
4909 "SYS_246",
4910 "SYS_247",
4911 "SYS_248",
4912 "SYS_249",
4913 "SYS_minherit", //250
4914 "SYS_rfork", //251
4915 "SYS_poll", //252
4916 "SYS_issetugid", //253
4917 "SYS_lchown", //254
4918 "SYS_getsid", //255
4919 "SYS_msync", //256
4920 "SYS_257",
4921 "SYS_258",
4922 "SYS_259",
4923 "SYS_getfsstat", //260
4924 "SYS_statfs", //261
4925 "SYS_fstatfs", //262
4926 "SYS_pipe", //263
4927 "SYS_fhopen", //264
4928 "SYS_265",
4929 "SYS_fhstatfs", //266
4930 "SYS_preadv", //267
4931 "SYS_pwritev", //268
4932 "SYS_kqueue", //269
4933 "SYS_kevent", //270
4934 "SYS_mlockall", //271
4935 "SYS_munlockall", //272
4936 "SYS_getpeereid", //273
4937 "SYS_274",
4938 "SYS_275",
4939 "SYS_276",
4940 "SYS_277",
4941 "SYS_278",
4942 "SYS_279",
4943 "SYS_280",
4944 "SYS_getresuid", //281
4945 "SYS_setresuid", //282
4946 "SYS_getresgid", //283
4947 "SYS_setresgid", //284
4948 "SYS_285",
4949 "SYS_mquery", //286
4950 "SYS_closefrom", //287
4951 "SYS_sigaltstack", //288
4952 "SYS_shmget", //289
4953 "SYS_semop", //290
4954 "SYS_stat", //291
4955 "SYS_fstat", //292
4956 "SYS_lstat", //293
4957 "SYS_fhstat", //294
4958 "SYS___semctl", //295
4959 "SYS_shmctl", //296
4960 "SYS_msgctl", //297
4961 "SYS_MAXSYSCALL", //298
4962 //299
4963 //300
4964 };
4965 uint32_t uEAX;
4966 if (!LogIsEnabled())
4967 return;
4968 uEAX = CPUMGetGuestEAX(pVM);
4969 switch (uEAX)
4970 {
4971 default:
4972 if (uEAX < RT_ELEMENTS(apsz))
4973 {
4974 uint32_t au32Args[8] = {0};
4975 PGMPhysSimpleReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4976 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4977 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4978 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4979 }
4980 else
4981 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4982 break;
4983 }
4984}
4985
4986
4987#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
4988/**
4989 * The Dll main entry point (stub).
4990 */
4991bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
4992{
4993 return true;
4994}
4995
4996void *memcpy(void *dst, const void *src, size_t size)
4997{
4998 uint8_t*pbDst = dst, *pbSrc = src;
4999 while (size-- > 0)
5000 *pbDst++ = *pbSrc++;
5001 return dst;
5002}
5003
5004#endif
5005
5006void cpu_smm_update(CPUState* env)
5007{
5008}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette