VirtualBox

source: vbox/trunk/src/recompiler_new/VBoxRecompiler.c@ 15658

Last change on this file since 15658 was 15605, checked in by vboxsync, 16 years ago

#3281: Making #undef HWACCM_VMX_EMULATE_REALMODE work again, looks like the Windows XP hacks doesn't work and that VT-x doesn't like esp >= ss.limit. Make sure we update the limit and everything else in that case.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 156.4 KB
Line 
1/* $Id: VBoxRecompiler.c 15605 2008-12-16 19:54:21Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "osdep.h"
29#include "exec-all.h"
30#include "config.h"
31#include "cpu-all.h"
32
33void cpu_exec_init_all(unsigned long tb_size);
34
35#include <VBox/rem.h>
36#include <VBox/vmapi.h>
37#include <VBox/tm.h>
38#include <VBox/ssm.h>
39#include <VBox/em.h>
40#include <VBox/trpm.h>
41#include <VBox/iom.h>
42#include <VBox/mm.h>
43#include <VBox/pgm.h>
44#include <VBox/pdm.h>
45#include <VBox/dbgf.h>
46#include <VBox/dbg.h>
47#include <VBox/hwaccm.h>
48#include <VBox/patm.h>
49#include <VBox/csam.h>
50#include "REMInternal.h"
51#include <VBox/vm.h>
52#include <VBox/param.h>
53#include <VBox/err.h>
54
55#include <VBox/log.h>
56#include <iprt/semaphore.h>
57#include <iprt/asm.h>
58#include <iprt/assert.h>
59#include <iprt/thread.h>
60#include <iprt/string.h>
61
62/* Don't wanna include everything. */
63extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
64extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
65extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
66extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
67extern void tlb_flush(CPUState *env, int flush_global);
68extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
69extern void sync_ldtr(CPUX86State *env1, int selector);
70extern int sync_tr(CPUX86State *env1, int selector);
71
72#ifdef VBOX_STRICT
73unsigned long get_phys_page_offset(target_ulong addr);
74#endif
75
76/*******************************************************************************
77* Defined Constants And Macros *
78*******************************************************************************/
79
80/** Copy 80-bit fpu register at pSrc to pDst.
81 * This is probably faster than *calling* memcpy.
82 */
83#define REM_COPY_FPU_REG(pDst, pSrc) \
84 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
85
86
87/*******************************************************************************
88* Internal Functions *
89*******************************************************************************/
90static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
91static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
92static void remR3StateUpdate(PVM pVM);
93
94static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
95static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
96static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
97static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
98static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
99static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
100
101static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
102static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
103static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
104static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
105static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
107
108
109/*******************************************************************************
110* Global Variables *
111*******************************************************************************/
112
113/** @todo Move stats to REM::s some rainy day we have nothing do to. */
114#ifdef VBOX_WITH_STATISTICS
115static STAMPROFILEADV gStatExecuteSingleInstr;
116static STAMPROFILEADV gStatCompilationQEmu;
117static STAMPROFILEADV gStatRunCodeQEmu;
118static STAMPROFILEADV gStatTotalTimeQEmu;
119static STAMPROFILEADV gStatTimers;
120static STAMPROFILEADV gStatTBLookup;
121static STAMPROFILEADV gStatIRQ;
122static STAMPROFILEADV gStatRawCheck;
123static STAMPROFILEADV gStatMemRead;
124static STAMPROFILEADV gStatMemWrite;
125static STAMPROFILE gStatGCPhys2HCVirt;
126static STAMPROFILE gStatHCVirt2GCPhys;
127static STAMCOUNTER gStatCpuGetTSC;
128static STAMCOUNTER gStatRefuseTFInhibit;
129static STAMCOUNTER gStatRefuseVM86;
130static STAMCOUNTER gStatRefusePaging;
131static STAMCOUNTER gStatRefusePAE;
132static STAMCOUNTER gStatRefuseIOPLNot0;
133static STAMCOUNTER gStatRefuseIF0;
134static STAMCOUNTER gStatRefuseCode16;
135static STAMCOUNTER gStatRefuseWP0;
136static STAMCOUNTER gStatRefuseRing1or2;
137static STAMCOUNTER gStatRefuseCanExecute;
138static STAMCOUNTER gStatREMGDTChange;
139static STAMCOUNTER gStatREMIDTChange;
140static STAMCOUNTER gStatREMLDTRChange;
141static STAMCOUNTER gStatREMTRChange;
142static STAMCOUNTER gStatSelOutOfSync[6];
143static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
144static STAMCOUNTER gStatFlushTBs;
145#endif
146
147/*
148 * Global stuff.
149 */
150
151/** MMIO read callbacks. */
152CPUReadMemoryFunc *g_apfnMMIORead[3] =
153{
154 remR3MMIOReadU8,
155 remR3MMIOReadU16,
156 remR3MMIOReadU32
157};
158
159/** MMIO write callbacks. */
160CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
161{
162 remR3MMIOWriteU8,
163 remR3MMIOWriteU16,
164 remR3MMIOWriteU32
165};
166
167/** Handler read callbacks. */
168CPUReadMemoryFunc *g_apfnHandlerRead[3] =
169{
170 remR3HandlerReadU8,
171 remR3HandlerReadU16,
172 remR3HandlerReadU32
173};
174
175/** Handler write callbacks. */
176CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
177{
178 remR3HandlerWriteU8,
179 remR3HandlerWriteU16,
180 remR3HandlerWriteU32
181};
182
183
184#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
185/*
186 * Debugger commands.
187 */
188static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
189
190/** '.remstep' arguments. */
191static const DBGCVARDESC g_aArgRemStep[] =
192{
193 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
194 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
195};
196
197/** Command descriptors. */
198static const DBGCCMD g_aCmds[] =
199{
200 {
201 .pszCmd ="remstep",
202 .cArgsMin = 0,
203 .cArgsMax = 1,
204 .paArgDescs = &g_aArgRemStep[0],
205 .cArgDescs = RT_ELEMENTS(g_aArgRemStep),
206 .pResultDesc = NULL,
207 .fFlags = 0,
208 .pfnHandler = remR3CmdDisasEnableStepping,
209 .pszSyntax = "[on/off]",
210 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
211 "If no arguments show the current state."
212 }
213};
214#endif
215
216
217/*******************************************************************************
218* Internal Functions *
219*******************************************************************************/
220void remAbort(int rc, const char *pszTip);
221extern int testmath(void);
222
223/* Put them here to avoid unused variable warning. */
224AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
225#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
226//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
227/* Why did this have to be identical?? */
228AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
229#else
230AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
231#endif
232
233
234/* Prologue code, must be in lower 4G to simplify jumps to/from generated code */
235uint8_t* code_gen_prologue;
236
237/**
238 * Initializes the REM.
239 *
240 * @returns VBox status code.
241 * @param pVM The VM to operate on.
242 */
243REMR3DECL(int) REMR3Init(PVM pVM)
244{
245 uint32_t u32Dummy;
246 int rc;
247
248#ifdef VBOX_ENABLE_VBOXREM64
249 LogRel(("Using 64-bit aware REM\n"));
250#endif
251
252 /*
253 * Assert sanity.
254 */
255 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
256 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
257 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
258#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
259 Assert(!testmath());
260#endif
261 /*
262 * Init some internal data members.
263 */
264 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
265 pVM->rem.s.Env.pVM = pVM;
266#ifdef CPU_RAW_MODE_INIT
267 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
268#endif
269
270 /* ctx. */
271 pVM->rem.s.pCtx = CPUMQueryGuestCtxPtr(pVM);
272 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
273
274 /* ignore all notifications */
275 pVM->rem.s.fIgnoreAll = true;
276
277 code_gen_prologue = RTMemExecAlloc(_1K);
278
279 cpu_exec_init_all(0);
280
281 /*
282 * Init the recompiler.
283 */
284 if (!cpu_x86_init(&pVM->rem.s.Env, "vbox"))
285 {
286 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
287 return VERR_GENERAL_FAILURE;
288 }
289 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
290 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
291
292 /* allocate code buffer for single instruction emulation. */
293 pVM->rem.s.Env.cbCodeBuffer = 4096;
294 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
295 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
296
297 /* finally, set the cpu_single_env global. */
298 cpu_single_env = &pVM->rem.s.Env;
299
300 /* Nothing is pending by default */
301 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
302
303 /*
304 * Register ram types.
305 */
306 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
307 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
308 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
309 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
310 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
311
312 /* stop ignoring. */
313 pVM->rem.s.fIgnoreAll = false;
314
315 /*
316 * Register the saved state data unit.
317 */
318 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
319 NULL, remR3Save, NULL,
320 NULL, remR3Load, NULL);
321 if (RT_FAILURE(rc))
322 return rc;
323
324#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
325 /*
326 * Debugger commands.
327 */
328 static bool fRegisteredCmds = false;
329 if (!fRegisteredCmds)
330 {
331 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
332 if (RT_SUCCESS(rc))
333 fRegisteredCmds = true;
334 }
335#endif
336
337#ifdef VBOX_WITH_STATISTICS
338 /*
339 * Statistics.
340 */
341 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
342 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
343 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
344 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
345 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
346 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
347 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
348 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
349 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
350 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
351 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
352 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
353
354 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
355
356 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
357 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
358 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
359 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
360 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
361 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
362 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
363 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
364 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
365 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
366 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
367
368 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
369 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
370 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
371 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
372
373 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
374 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
375 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
376 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
377 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
378 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
379
380 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
383 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
384 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
385 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
386
387
388#endif
389
390#ifdef DEBUG_ALL_LOGGING
391 loglevel = ~0;
392 logfile = fopen("/tmp/vbox-qemu.log", "w");
393#endif
394
395 return rc;
396}
397
398
399/**
400 * Terminates the REM.
401 *
402 * Termination means cleaning up and freeing all resources,
403 * the VM it self is at this point powered off or suspended.
404 *
405 * @returns VBox status code.
406 * @param pVM The VM to operate on.
407 */
408REMR3DECL(int) REMR3Term(PVM pVM)
409{
410 return VINF_SUCCESS;
411}
412
413
414/**
415 * The VM is being reset.
416 *
417 * For the REM component this means to call the cpu_reset() and
418 * reinitialize some state variables.
419 *
420 * @param pVM VM handle.
421 */
422REMR3DECL(void) REMR3Reset(PVM pVM)
423{
424 /*
425 * Reset the REM cpu.
426 */
427 pVM->rem.s.fIgnoreAll = true;
428 cpu_reset(&pVM->rem.s.Env);
429 pVM->rem.s.cInvalidatedPages = 0;
430 pVM->rem.s.fIgnoreAll = false;
431
432 /* Clear raw ring 0 init state */
433 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
434
435 /* Flush the TBs the next time we execute code here. */
436 pVM->rem.s.fFlushTBs = true;
437}
438
439
440/**
441 * Execute state save operation.
442 *
443 * @returns VBox status code.
444 * @param pVM VM Handle.
445 * @param pSSM SSM operation handle.
446 */
447static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
448{
449 /*
450 * Save the required CPU Env bits.
451 * (Not much because we're never in REM when doing the save.)
452 */
453 PREM pRem = &pVM->rem.s;
454 LogFlow(("remR3Save:\n"));
455 Assert(!pRem->fInREM);
456 SSMR3PutU32(pSSM, pRem->Env.hflags);
457 SSMR3PutU32(pSSM, ~0); /* separator */
458
459 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
460 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
461 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
462
463 return SSMR3PutU32(pSSM, ~0); /* terminator */
464}
465
466
467/**
468 * Execute state load operation.
469 *
470 * @returns VBox status code.
471 * @param pVM VM Handle.
472 * @param pSSM SSM operation handle.
473 * @param u32Version Data layout version.
474 */
475static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
476{
477 uint32_t u32Dummy;
478 uint32_t fRawRing0 = false;
479 uint32_t u32Sep;
480 int rc;
481 PREM pRem;
482 LogFlow(("remR3Load:\n"));
483
484 /*
485 * Validate version.
486 */
487 if ( u32Version != REM_SAVED_STATE_VERSION
488 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
489 {
490 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
491 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
492 }
493
494 /*
495 * Do a reset to be on the safe side...
496 */
497 REMR3Reset(pVM);
498
499 /*
500 * Ignore all ignorable notifications.
501 * (Not doing this will cause serious trouble.)
502 */
503 pVM->rem.s.fIgnoreAll = true;
504
505 /*
506 * Load the required CPU Env bits.
507 * (Not much because we're never in REM when doing the save.)
508 */
509 pRem = &pVM->rem.s;
510 Assert(!pRem->fInREM);
511 SSMR3GetU32(pSSM, &pRem->Env.hflags);
512 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
513 {
514 /* Redundant REM CPU state has to be loaded, but can be ignored. */
515 CPUX86State_Ver16 temp;
516 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
517 }
518
519 rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
520 if (RT_FAILURE(rc))
521 return rc;
522 if (u32Sep != ~0U)
523 {
524 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
525 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
526 }
527
528 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
529 SSMR3GetUInt(pSSM, &fRawRing0);
530 if (fRawRing0)
531 pRem->Env.state |= CPU_RAW_RING0;
532
533 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
534 {
535 unsigned i;
536
537 /*
538 * Load the REM stuff.
539 */
540 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
541 if (RT_FAILURE(rc))
542 return rc;
543 if (pRem->cInvalidatedPages > RT_ELEMENTS(pRem->aGCPtrInvalidatedPages))
544 {
545 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
546 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
547 }
548 for (i = 0; i < pRem->cInvalidatedPages; i++)
549 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
550 }
551
552 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
553 if (RT_FAILURE(rc))
554 return rc;
555
556 /* check the terminator. */
557 rc = SSMR3GetU32(pSSM, &u32Sep);
558 if (RT_FAILURE(rc))
559 return rc;
560 if (u32Sep != ~0U)
561 {
562 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
563 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
564 }
565
566 /*
567 * Get the CPUID features.
568 */
569 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
570 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
571
572 /*
573 * Sync the Load Flush the TLB
574 */
575 tlb_flush(&pRem->Env, 1);
576
577 /*
578 * Stop ignoring ignornable notifications.
579 */
580 pVM->rem.s.fIgnoreAll = false;
581
582 /*
583 * Sync the whole CPU state when executing code in the recompiler.
584 */
585 CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
586 return VINF_SUCCESS;
587}
588
589
590
591#undef LOG_GROUP
592#define LOG_GROUP LOG_GROUP_REM_RUN
593
594/**
595 * Single steps an instruction in recompiled mode.
596 *
597 * Before calling this function the REM state needs to be in sync with
598 * the VM. Call REMR3State() to perform the sync. It's only necessary
599 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
600 * and after calling REMR3StateBack().
601 *
602 * @returns VBox status code.
603 *
604 * @param pVM VM Handle.
605 */
606REMR3DECL(int) REMR3Step(PVM pVM)
607{
608 int rc, interrupt_request;
609 RTGCPTR GCPtrPC;
610 bool fBp;
611
612 /*
613 * Lock the REM - we don't wanna have anyone interrupting us
614 * while stepping - and enabled single stepping. We also ignore
615 * pending interrupts and suchlike.
616 */
617 interrupt_request = pVM->rem.s.Env.interrupt_request;
618 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
619 pVM->rem.s.Env.interrupt_request = 0;
620 cpu_single_step(&pVM->rem.s.Env, 1);
621
622 /*
623 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
624 */
625 GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
626 fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
627
628 /*
629 * Execute and handle the return code.
630 * We execute without enabling the cpu tick, so on success we'll
631 * just flip it on and off to make sure it moves
632 */
633 rc = cpu_exec(&pVM->rem.s.Env);
634 if (rc == EXCP_DEBUG)
635 {
636 TMCpuTickResume(pVM);
637 TMCpuTickPause(pVM);
638 TMVirtualResume(pVM);
639 TMVirtualPause(pVM);
640 rc = VINF_EM_DBG_STEPPED;
641 }
642 else
643 {
644 switch (rc)
645 {
646 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
647 case EXCP_HLT:
648 case EXCP_HALTED: rc = VINF_EM_HALT; break;
649 case EXCP_RC:
650 rc = pVM->rem.s.rc;
651 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
652 break;
653 default:
654 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
655 rc = VERR_INTERNAL_ERROR;
656 break;
657 }
658 }
659
660 /*
661 * Restore the stuff we changed to prevent interruption.
662 * Unlock the REM.
663 */
664 if (fBp)
665 {
666 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
667 Assert(rc2 == 0); NOREF(rc2);
668 }
669 cpu_single_step(&pVM->rem.s.Env, 0);
670 pVM->rem.s.Env.interrupt_request = interrupt_request;
671
672 return rc;
673}
674
675
676/**
677 * Set a breakpoint using the REM facilities.
678 *
679 * @returns VBox status code.
680 * @param pVM The VM handle.
681 * @param Address The breakpoint address.
682 * @thread The emulation thread.
683 */
684REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
685{
686 VM_ASSERT_EMT(pVM);
687 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
688 {
689 LogFlow(("REMR3BreakpointSet: Address=%RGv\n", Address));
690 return VINF_SUCCESS;
691 }
692 LogFlow(("REMR3BreakpointSet: Address=%RGv - failed!\n", Address));
693 return VERR_REM_NO_MORE_BP_SLOTS;
694}
695
696
697/**
698 * Clears a breakpoint set by REMR3BreakpointSet().
699 *
700 * @returns VBox status code.
701 * @param pVM The VM handle.
702 * @param Address The breakpoint address.
703 * @thread The emulation thread.
704 */
705REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
706{
707 VM_ASSERT_EMT(pVM);
708 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
709 {
710 LogFlow(("REMR3BreakpointClear: Address=%RGv\n", Address));
711 return VINF_SUCCESS;
712 }
713 LogFlow(("REMR3BreakpointClear: Address=%RGv - not found!\n", Address));
714 return VERR_REM_BP_NOT_FOUND;
715}
716
717
718/**
719 * Emulate an instruction.
720 *
721 * This function executes one instruction without letting anyone
722 * interrupt it. This is intended for being called while being in
723 * raw mode and thus will take care of all the state syncing between
724 * REM and the rest.
725 *
726 * @returns VBox status code.
727 * @param pVM VM handle.
728 */
729REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
730{
731 bool fFlushTBs;
732
733 int rc, rc2;
734 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
735
736 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
737 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
738 */
739 if (HWACCMIsEnabled(pVM))
740 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
741
742 /* Skip the TB flush as that's rather expensive and not necessary for single instruction emulation. */
743 fFlushTBs = pVM->rem.s.fFlushTBs;
744 pVM->rem.s.fFlushTBs = false;
745
746 /*
747 * Sync the state and enable single instruction / single stepping.
748 */
749 rc = REMR3State(pVM);
750 pVM->rem.s.fFlushTBs = fFlushTBs;
751 if (RT_SUCCESS(rc))
752 {
753 int interrupt_request = pVM->rem.s.Env.interrupt_request;
754 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
755 Assert(!pVM->rem.s.Env.singlestep_enabled);
756 /*
757 * Now we set the execute single instruction flag and enter the cpu_exec loop.
758 */
759 TMNotifyStartOfExecution(pVM);
760 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
761 rc = cpu_exec(&pVM->rem.s.Env);
762 TMNotifyEndOfExecution(pVM);
763 switch (rc)
764 {
765 /*
766 * Executed without anything out of the way happening.
767 */
768 case EXCP_SINGLE_INSTR:
769 rc = VINF_EM_RESCHEDULE;
770 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
771 break;
772
773 /*
774 * If we take a trap or start servicing a pending interrupt, we might end up here.
775 * (Timer thread or some other thread wishing EMT's attention.)
776 */
777 case EXCP_INTERRUPT:
778 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
779 rc = VINF_EM_RESCHEDULE;
780 break;
781
782 /*
783 * Single step, we assume!
784 * If there was a breakpoint there we're fucked now.
785 */
786 case EXCP_DEBUG:
787 {
788 /* breakpoint or single step? */
789 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
790 int iBP;
791 rc = VINF_EM_DBG_STEPPED;
792 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
793 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
794 {
795 rc = VINF_EM_DBG_BREAKPOINT;
796 break;
797 }
798 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
799 break;
800 }
801
802 /*
803 * hlt instruction.
804 */
805 case EXCP_HLT:
806 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
807 rc = VINF_EM_HALT;
808 break;
809
810 /*
811 * The VM has halted.
812 */
813 case EXCP_HALTED:
814 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
815 rc = VINF_EM_HALT;
816 break;
817
818 /*
819 * Switch to RAW-mode.
820 */
821 case EXCP_EXECUTE_RAW:
822 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
823 rc = VINF_EM_RESCHEDULE_RAW;
824 break;
825
826 /*
827 * Switch to hardware accelerated RAW-mode.
828 */
829 case EXCP_EXECUTE_HWACC:
830 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
831 rc = VINF_EM_RESCHEDULE_HWACC;
832 break;
833
834 /*
835 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
836 */
837 case EXCP_RC:
838 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
839 rc = pVM->rem.s.rc;
840 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
841 break;
842
843 /*
844 * Figure out the rest when they arrive....
845 */
846 default:
847 AssertMsgFailed(("rc=%d\n", rc));
848 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
849 rc = VINF_EM_RESCHEDULE;
850 break;
851 }
852
853 /*
854 * Switch back the state.
855 */
856 pVM->rem.s.Env.interrupt_request = interrupt_request;
857 rc2 = REMR3StateBack(pVM);
858 AssertRC(rc2);
859 }
860
861 Log2(("REMR3EmulateInstruction: returns %Rrc (cs:eip=%04x:%RGv)\n",
862 rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
863 return rc;
864}
865
866
867/**
868 * Runs code in recompiled mode.
869 *
870 * Before calling this function the REM state needs to be in sync with
871 * the VM. Call REMR3State() to perform the sync. It's only necessary
872 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
873 * and after calling REMR3StateBack().
874 *
875 * @returns VBox status code.
876 *
877 * @param pVM VM Handle.
878 */
879REMR3DECL(int) REMR3Run(PVM pVM)
880{
881 int rc;
882 Log2(("REMR3Run: (cs:eip=%04x:%RGv)\n", pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
883 Assert(pVM->rem.s.fInREM);
884
885 TMNotifyStartOfExecution(pVM);
886 rc = cpu_exec(&pVM->rem.s.Env);
887 TMNotifyEndOfExecution(pVM);
888 switch (rc)
889 {
890 /*
891 * This happens when the execution was interrupted
892 * by an external event, like pending timers.
893 */
894 case EXCP_INTERRUPT:
895 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
896 rc = VINF_SUCCESS;
897 break;
898
899 /*
900 * hlt instruction.
901 */
902 case EXCP_HLT:
903 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
904 rc = VINF_EM_HALT;
905 break;
906
907 /*
908 * The VM has halted.
909 */
910 case EXCP_HALTED:
911 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
912 rc = VINF_EM_HALT;
913 break;
914
915 /*
916 * Breakpoint/single step.
917 */
918 case EXCP_DEBUG:
919 {
920#if 0//def DEBUG_bird
921 static int iBP = 0;
922 printf("howdy, breakpoint! iBP=%d\n", iBP);
923 switch (iBP)
924 {
925 case 0:
926 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
927 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
928 //pVM->rem.s.Env.interrupt_request = 0;
929 //pVM->rem.s.Env.exception_index = -1;
930 //g_fInterruptDisabled = 1;
931 rc = VINF_SUCCESS;
932 asm("int3");
933 break;
934 default:
935 asm("int3");
936 break;
937 }
938 iBP++;
939#else
940 /* breakpoint or single step? */
941 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
942 int iBP;
943 rc = VINF_EM_DBG_STEPPED;
944 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
945 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
946 {
947 rc = VINF_EM_DBG_BREAKPOINT;
948 break;
949 }
950 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
951#endif
952 break;
953 }
954
955 /*
956 * Switch to RAW-mode.
957 */
958 case EXCP_EXECUTE_RAW:
959 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
960 rc = VINF_EM_RESCHEDULE_RAW;
961 break;
962
963 /*
964 * Switch to hardware accelerated RAW-mode.
965 */
966 case EXCP_EXECUTE_HWACC:
967 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
968 rc = VINF_EM_RESCHEDULE_HWACC;
969 break;
970
971 /*
972 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
973 */
974 case EXCP_RC:
975 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
976 rc = pVM->rem.s.rc;
977 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
978 break;
979
980 /*
981 * Figure out the rest when they arrive....
982 */
983 default:
984 AssertMsgFailed(("rc=%d\n", rc));
985 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
986 rc = VINF_SUCCESS;
987 break;
988 }
989
990 Log2(("REMR3Run: returns %Rrc (cs:eip=%04x:%RGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
991 return rc;
992}
993
994
995/**
996 * Check if the cpu state is suitable for Raw execution.
997 *
998 * @returns boolean
999 * @param env The CPU env struct.
1000 * @param eip The EIP to check this for (might differ from env->eip).
1001 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1002 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1003 *
1004 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1005 */
1006bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1007{
1008 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1009 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1010 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1011 uint32_t u32CR0;
1012
1013 /* Update counter. */
1014 env->pVM->rem.s.cCanExecuteRaw++;
1015
1016 if (HWACCMIsEnabled(env->pVM))
1017 {
1018 CPUMCTX Ctx;
1019
1020 env->state |= CPU_RAW_HWACC;
1021
1022 /*
1023 * Create partial context for HWACCMR3CanExecuteGuest
1024 */
1025 Ctx.cr0 = env->cr[0];
1026 Ctx.cr3 = env->cr[3];
1027 Ctx.cr4 = env->cr[4];
1028
1029 Ctx.tr = env->tr.selector;
1030 Ctx.trHid.u64Base = env->tr.base;
1031 Ctx.trHid.u32Limit = env->tr.limit;
1032 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1033
1034 Ctx.idtr.cbIdt = env->idt.limit;
1035 Ctx.idtr.pIdt = env->idt.base;
1036
1037 Ctx.gdtr.cbGdt = env->gdt.limit;
1038 Ctx.gdtr.pGdt = env->gdt.base;
1039
1040 Ctx.rsp = env->regs[R_ESP];
1041#ifdef LOG_ENABLED
1042 Ctx.rip = env->eip;
1043#endif
1044
1045 Ctx.eflags.u32 = env->eflags;
1046
1047 Ctx.cs = env->segs[R_CS].selector;
1048 Ctx.csHid.u64Base = env->segs[R_CS].base;
1049 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1050 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1051
1052 Ctx.ds = env->segs[R_DS].selector;
1053 Ctx.dsHid.u64Base = env->segs[R_DS].base;
1054 Ctx.dsHid.u32Limit = env->segs[R_DS].limit;
1055 Ctx.dsHid.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1056
1057 Ctx.es = env->segs[R_ES].selector;
1058 Ctx.esHid.u64Base = env->segs[R_ES].base;
1059 Ctx.esHid.u32Limit = env->segs[R_ES].limit;
1060 Ctx.esHid.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1061
1062 Ctx.fs = env->segs[R_FS].selector;
1063 Ctx.fsHid.u64Base = env->segs[R_FS].base;
1064 Ctx.fsHid.u32Limit = env->segs[R_FS].limit;
1065 Ctx.fsHid.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1066
1067 Ctx.gs = env->segs[R_GS].selector;
1068 Ctx.gsHid.u64Base = env->segs[R_GS].base;
1069 Ctx.gsHid.u32Limit = env->segs[R_GS].limit;
1070 Ctx.gsHid.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1071
1072 Ctx.ss = env->segs[R_SS].selector;
1073 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1074 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1075 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1076
1077 Ctx.msrEFER = env->efer;
1078
1079 /* Hardware accelerated raw-mode:
1080 *
1081 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1082 */
1083 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1084 {
1085 *piException = EXCP_EXECUTE_HWACC;
1086 return true;
1087 }
1088 return false;
1089 }
1090
1091 /*
1092 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1093 * or 32 bits protected mode ring 0 code
1094 *
1095 * The tests are ordered by the likelyhood of being true during normal execution.
1096 */
1097 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1098 {
1099 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1100 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1101 return false;
1102 }
1103
1104#ifndef VBOX_RAW_V86
1105 if (fFlags & VM_MASK) {
1106 STAM_COUNTER_INC(&gStatRefuseVM86);
1107 Log2(("raw mode refused: VM_MASK\n"));
1108 return false;
1109 }
1110#endif
1111
1112 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1113 {
1114#ifndef DEBUG_bird
1115 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1116#endif
1117 return false;
1118 }
1119
1120 if (env->singlestep_enabled)
1121 {
1122 //Log2(("raw mode refused: Single step\n"));
1123 return false;
1124 }
1125
1126 if (env->nb_breakpoints > 0)
1127 {
1128 //Log2(("raw mode refused: Breakpoints\n"));
1129 return false;
1130 }
1131
1132 u32CR0 = env->cr[0];
1133 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1134 {
1135 STAM_COUNTER_INC(&gStatRefusePaging);
1136 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1137 return false;
1138 }
1139
1140 if (env->cr[4] & CR4_PAE_MASK)
1141 {
1142 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1143 {
1144 STAM_COUNTER_INC(&gStatRefusePAE);
1145 return false;
1146 }
1147 }
1148
1149 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1150 {
1151 if (!EMIsRawRing3Enabled(env->pVM))
1152 return false;
1153
1154 if (!(env->eflags & IF_MASK))
1155 {
1156 STAM_COUNTER_INC(&gStatRefuseIF0);
1157 Log2(("raw mode refused: IF (RawR3)\n"));
1158 return false;
1159 }
1160
1161 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1162 {
1163 STAM_COUNTER_INC(&gStatRefuseWP0);
1164 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1165 return false;
1166 }
1167 }
1168 else
1169 {
1170 if (!EMIsRawRing0Enabled(env->pVM))
1171 return false;
1172
1173 // Let's start with pure 32 bits ring 0 code first
1174 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1175 {
1176 STAM_COUNTER_INC(&gStatRefuseCode16);
1177 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1178 return false;
1179 }
1180
1181 // Only R0
1182 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1183 {
1184 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1185 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1186 return false;
1187 }
1188
1189 if (!(u32CR0 & CR0_WP_MASK))
1190 {
1191 STAM_COUNTER_INC(&gStatRefuseWP0);
1192 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1193 return false;
1194 }
1195
1196 if (PATMIsPatchGCAddr(env->pVM, eip))
1197 {
1198 Log2(("raw r0 mode forced: patch code\n"));
1199 *piException = EXCP_EXECUTE_RAW;
1200 return true;
1201 }
1202
1203#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1204 if (!(env->eflags & IF_MASK))
1205 {
1206 STAM_COUNTER_INC(&gStatRefuseIF0);
1207 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1208 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1209 return false;
1210 }
1211#endif
1212
1213 env->state |= CPU_RAW_RING0;
1214 }
1215
1216 /*
1217 * Don't reschedule the first time we're called, because there might be
1218 * special reasons why we're here that is not covered by the above checks.
1219 */
1220 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1221 {
1222 Log2(("raw mode refused: first scheduling\n"));
1223 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1224 return false;
1225 }
1226
1227 Assert(PGMPhysIsA20Enabled(env->pVM));
1228 *piException = EXCP_EXECUTE_RAW;
1229 return true;
1230}
1231
1232
1233/**
1234 * Fetches a code byte.
1235 *
1236 * @returns Success indicator (bool) for ease of use.
1237 * @param env The CPU environment structure.
1238 * @param GCPtrInstr Where to fetch code.
1239 * @param pu8Byte Where to store the byte on success
1240 */
1241bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1242{
1243 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1244 if (RT_SUCCESS(rc))
1245 return true;
1246 return false;
1247}
1248
1249
1250/**
1251 * Flush (or invalidate if you like) page table/dir entry.
1252 *
1253 * (invlpg instruction; tlb_flush_page)
1254 *
1255 * @param env Pointer to cpu environment.
1256 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1257 */
1258void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1259{
1260 PVM pVM = env->pVM;
1261 PCPUMCTX pCtx;
1262 int rc;
1263
1264 /*
1265 * When we're replaying invlpg instructions or restoring a saved
1266 * state we disable this path.
1267 */
1268 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1269 return;
1270 Log(("remR3FlushPage: GCPtr=%RGv\n", GCPtr));
1271 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1272
1273 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1274
1275 /*
1276 * Update the control registers before calling PGMFlushPage.
1277 */
1278 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1279 pCtx->cr0 = env->cr[0];
1280 pCtx->cr3 = env->cr[3];
1281 pCtx->cr4 = env->cr[4];
1282
1283 /*
1284 * Let PGM do the rest.
1285 */
1286 rc = PGMInvalidatePage(pVM, GCPtr);
1287 if (RT_FAILURE(rc))
1288 {
1289 AssertMsgFailed(("remR3FlushPage %RGv failed with %d!!\n", GCPtr, rc));
1290 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1291 }
1292 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1293}
1294
1295
1296#ifndef REM_PHYS_ADDR_IN_TLB
1297void *remR3TlbGCPhys2Ptr(CPUState *env1, target_ulong physAddr, int fWritable)
1298{
1299 void *pv;
1300 int rc = PGMR3PhysTlbGCPhys2Ptr(env1->pVM, physAddr, true /*fWritable*/, &pv);
1301 Assert( rc == VINF_SUCCESS
1302 || rc == VINF_PGM_PHYS_TLB_CATCH_WRITE
1303 || rc == VERR_PGM_PHYS_TLB_CATCH_ALL
1304 || rc == VERR_PGM_PHYS_TLB_UNASSIGNED);
1305 if (RT_FAILURE(rc))
1306 return (void *)1;
1307 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
1308 return (void *)((uintptr_t)pv | 2);
1309 return pv;
1310}
1311
1312target_ulong remR3HCVirt2GCPhys(CPUState *env1, void *addr)
1313{
1314 RTGCPHYS rv = 0;
1315 int rc;
1316
1317 rc = PGMR3DbgR3Ptr2GCPhys(env1->pVM, (RTR3PTR)addr, &rv);
1318 Assert (RT_SUCCESS(rc));
1319
1320 return (target_ulong)rv;
1321}
1322#endif
1323
1324/**
1325 * Called from tlb_protect_code in order to write monitor a code page.
1326 *
1327 * @param env Pointer to the CPU environment.
1328 * @param GCPtr Code page to monitor
1329 */
1330void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1331{
1332#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1333 Assert(env->pVM->rem.s.fInREM);
1334 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1335 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1336 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1337 && !(env->eflags & VM_MASK) /* no V86 mode */
1338 && !HWACCMIsEnabled(env->pVM))
1339 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1340#endif
1341}
1342
1343/**
1344 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1345 *
1346 * @param env Pointer to the CPU environment.
1347 * @param GCPtr Code page to monitor
1348 */
1349void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1350{
1351 Assert(env->pVM->rem.s.fInREM);
1352#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1353 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1354 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1355 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1356 && !(env->eflags & VM_MASK) /* no V86 mode */
1357 && !HWACCMIsEnabled(env->pVM))
1358 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1359#endif
1360}
1361
1362/**
1363 * Called when the CPU is initialized, any of the CRx registers are changed or
1364 * when the A20 line is modified.
1365 *
1366 * @param env Pointer to the CPU environment.
1367 * @param fGlobal Set if the flush is global.
1368 */
1369void remR3FlushTLB(CPUState *env, bool fGlobal)
1370{
1371 PVM pVM = env->pVM;
1372 PCPUMCTX pCtx;
1373
1374 /*
1375 * When we're replaying invlpg instructions or restoring a saved
1376 * state we disable this path.
1377 */
1378 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1379 return;
1380 Assert(pVM->rem.s.fInREM);
1381
1382 /*
1383 * The caller doesn't check cr4, so we have to do that for ourselves.
1384 */
1385 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1386 fGlobal = true;
1387 Log(("remR3FlushTLB: CR0=%08RX64 CR3=%08RX64 CR4=%08RX64 %s\n", (uint64_t)env->cr[0], (uint64_t)env->cr[3], (uint64_t)env->cr[4], fGlobal ? " global" : ""));
1388
1389 /*
1390 * Update the control registers before calling PGMR3FlushTLB.
1391 */
1392 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1393 pCtx->cr0 = env->cr[0];
1394 pCtx->cr3 = env->cr[3];
1395 pCtx->cr4 = env->cr[4];
1396
1397 /*
1398 * Let PGM do the rest.
1399 */
1400 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1401}
1402
1403
1404/**
1405 * Called when any of the cr0, cr4 or efer registers is updated.
1406 *
1407 * @param env Pointer to the CPU environment.
1408 */
1409void remR3ChangeCpuMode(CPUState *env)
1410{
1411 int rc;
1412 PVM pVM = env->pVM;
1413 PCPUMCTX pCtx;
1414
1415 /*
1416 * When we're replaying loads or restoring a saved
1417 * state this path is disabled.
1418 */
1419 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1420 return;
1421 Assert(pVM->rem.s.fInREM);
1422
1423 /*
1424 * Update the control registers before calling PGMChangeMode()
1425 * as it may need to map whatever cr3 is pointing to.
1426 */
1427 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1428 pCtx->cr0 = env->cr[0];
1429 pCtx->cr3 = env->cr[3];
1430 pCtx->cr4 = env->cr[4];
1431
1432#ifdef TARGET_X86_64
1433 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1434 if (rc != VINF_SUCCESS)
1435 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], env->efer, rc);
1436#else
1437 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1438 if (rc != VINF_SUCCESS)
1439 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], 0LL, rc);
1440#endif
1441}
1442
1443
1444/**
1445 * Called from compiled code to run dma.
1446 *
1447 * @param env Pointer to the CPU environment.
1448 */
1449void remR3DmaRun(CPUState *env)
1450{
1451 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1452 PDMR3DmaRun(env->pVM);
1453 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1454}
1455
1456
1457/**
1458 * Called from compiled code to schedule pending timers in VMM
1459 *
1460 * @param env Pointer to the CPU environment.
1461 */
1462void remR3TimersRun(CPUState *env)
1463{
1464 LogFlow(("remR3TimersRun:\n"));
1465 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1466 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1467 TMR3TimerQueuesDo(env->pVM);
1468 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1469 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1470}
1471
1472
1473/**
1474 * Record trap occurance
1475 *
1476 * @returns VBox status code
1477 * @param env Pointer to the CPU environment.
1478 * @param uTrap Trap nr
1479 * @param uErrorCode Error code
1480 * @param pvNextEIP Next EIP
1481 */
1482int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, RTGCPTR pvNextEIP)
1483{
1484 PVM pVM = env->pVM;
1485#ifdef VBOX_WITH_STATISTICS
1486 static STAMCOUNTER s_aStatTrap[255];
1487 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1488#endif
1489
1490#ifdef VBOX_WITH_STATISTICS
1491 if (uTrap < 255)
1492 {
1493 if (!s_aRegisters[uTrap])
1494 {
1495 char szStatName[64];
1496 s_aRegisters[uTrap] = true;
1497 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1498 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1499 }
1500 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1501 }
1502#endif
1503 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1504 if( uTrap < 0x20
1505 && (env->cr[0] & X86_CR0_PE)
1506 && !(env->eflags & X86_EFL_VM))
1507 {
1508#ifdef DEBUG
1509 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1510#endif
1511 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1512 {
1513 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1514 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1515 return VERR_REM_TOO_MANY_TRAPS;
1516 }
1517 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1518 pVM->rem.s.cPendingExceptions = 1;
1519 pVM->rem.s.uPendingException = uTrap;
1520 pVM->rem.s.uPendingExcptEIP = env->eip;
1521 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1522 }
1523 else
1524 {
1525 pVM->rem.s.cPendingExceptions = 0;
1526 pVM->rem.s.uPendingException = uTrap;
1527 pVM->rem.s.uPendingExcptEIP = env->eip;
1528 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1529 }
1530 return VINF_SUCCESS;
1531}
1532
1533
1534/*
1535 * Clear current active trap
1536 *
1537 * @param pVM VM Handle.
1538 */
1539void remR3TrapClear(PVM pVM)
1540{
1541 pVM->rem.s.cPendingExceptions = 0;
1542 pVM->rem.s.uPendingException = 0;
1543 pVM->rem.s.uPendingExcptEIP = 0;
1544 pVM->rem.s.uPendingExcptCR2 = 0;
1545}
1546
1547
1548/*
1549 * Record previous call instruction addresses
1550 *
1551 * @param env Pointer to the CPU environment.
1552 */
1553void remR3RecordCall(CPUState *env)
1554{
1555 CSAMR3RecordCallAddress(env->pVM, env->eip);
1556}
1557
1558
1559/**
1560 * Syncs the internal REM state with the VM.
1561 *
1562 * This must be called before REMR3Run() is invoked whenever when the REM
1563 * state is not up to date. Calling it several times in a row is not
1564 * permitted.
1565 *
1566 * @returns VBox status code.
1567 *
1568 * @param pVM VM Handle.
1569 * @param fFlushTBs Flush all translation blocks before executing code
1570 *
1571 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1572 * no do this since the majority of the callers don't want any unnecessary of events
1573 * pending that would immediatly interrupt execution.
1574 */
1575REMR3DECL(int) REMR3State(PVM pVM)
1576{
1577 register const CPUMCTX *pCtx;
1578 register unsigned fFlags;
1579 bool fHiddenSelRegsValid;
1580 unsigned i;
1581 TRPMEVENT enmType;
1582 uint8_t u8TrapNo;
1583 int rc;
1584
1585 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1586 Log2(("REMR3State:\n"));
1587
1588 pCtx = pVM->rem.s.pCtx;
1589 fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1590
1591 Assert(!pVM->rem.s.fInREM);
1592 pVM->rem.s.fInStateSync = true;
1593
1594 /*
1595 * If we have to flush TBs, do that immediately.
1596 */
1597 if (pVM->rem.s.fFlushTBs)
1598 {
1599 STAM_COUNTER_INC(&gStatFlushTBs);
1600 tb_flush(&pVM->rem.s.Env);
1601 pVM->rem.s.fFlushTBs = false;
1602 }
1603
1604 /*
1605 * Copy the registers which require no special handling.
1606 */
1607#ifdef TARGET_X86_64
1608 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1609 Assert(R_EAX == 0);
1610 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1611 Assert(R_ECX == 1);
1612 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1613 Assert(R_EDX == 2);
1614 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1615 Assert(R_EBX == 3);
1616 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1617 Assert(R_ESP == 4);
1618 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1619 Assert(R_EBP == 5);
1620 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1621 Assert(R_ESI == 6);
1622 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1623 Assert(R_EDI == 7);
1624 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1625 pVM->rem.s.Env.regs[8] = pCtx->r8;
1626 pVM->rem.s.Env.regs[9] = pCtx->r9;
1627 pVM->rem.s.Env.regs[10] = pCtx->r10;
1628 pVM->rem.s.Env.regs[11] = pCtx->r11;
1629 pVM->rem.s.Env.regs[12] = pCtx->r12;
1630 pVM->rem.s.Env.regs[13] = pCtx->r13;
1631 pVM->rem.s.Env.regs[14] = pCtx->r14;
1632 pVM->rem.s.Env.regs[15] = pCtx->r15;
1633
1634 pVM->rem.s.Env.eip = pCtx->rip;
1635
1636 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1637#else
1638 Assert(R_EAX == 0);
1639 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1640 Assert(R_ECX == 1);
1641 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1642 Assert(R_EDX == 2);
1643 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1644 Assert(R_EBX == 3);
1645 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1646 Assert(R_ESP == 4);
1647 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1648 Assert(R_EBP == 5);
1649 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1650 Assert(R_ESI == 6);
1651 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1652 Assert(R_EDI == 7);
1653 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1654 pVM->rem.s.Env.eip = pCtx->eip;
1655
1656 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1657#endif
1658
1659 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1660
1661 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1662 for (i=0;i<8;i++)
1663 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
1664
1665 /*
1666 * Clear the halted hidden flag (the interrupt waking up the CPU can
1667 * have been dispatched in raw mode).
1668 */
1669 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1670
1671 /*
1672 * Replay invlpg?
1673 */
1674 if (pVM->rem.s.cInvalidatedPages)
1675 {
1676 RTUINT i;
1677
1678 pVM->rem.s.fIgnoreInvlPg = true;
1679 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1680 {
1681 Log2(("REMR3State: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1682 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1683 }
1684 pVM->rem.s.fIgnoreInvlPg = false;
1685 pVM->rem.s.cInvalidatedPages = 0;
1686 }
1687
1688 /* Replay notification changes? */
1689 if (pVM->rem.s.cHandlerNotifications)
1690 REMR3ReplayHandlerNotifications(pVM);
1691
1692 /* Update MSRs; before CRx registers! */
1693 pVM->rem.s.Env.efer = pCtx->msrEFER;
1694 pVM->rem.s.Env.star = pCtx->msrSTAR;
1695 pVM->rem.s.Env.pat = pCtx->msrPAT;
1696#ifdef TARGET_X86_64
1697 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1698 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1699 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1700 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1701
1702 /* Update the internal long mode activate flag according to the new EFER value. */
1703 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1704 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1705 else
1706 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1707#endif
1708
1709
1710 /*
1711 * Registers which are rarely changed and require special handling / order when changed.
1712 */
1713 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1714 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1715 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1716 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1717 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1718 {
1719 if (fFlags & CPUM_CHANGED_FPU_REM)
1720 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1721
1722 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1723 {
1724 pVM->rem.s.fIgnoreCR3Load = true;
1725 tlb_flush(&pVM->rem.s.Env, true);
1726 pVM->rem.s.fIgnoreCR3Load = false;
1727 }
1728
1729 /* CR4 before CR0! */
1730 if (fFlags & CPUM_CHANGED_CR4)
1731 {
1732 pVM->rem.s.fIgnoreCR3Load = true;
1733 pVM->rem.s.fIgnoreCpuMode = true;
1734 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1735 pVM->rem.s.fIgnoreCpuMode = false;
1736 pVM->rem.s.fIgnoreCR3Load = false;
1737 }
1738
1739 if (fFlags & CPUM_CHANGED_CR0)
1740 {
1741 pVM->rem.s.fIgnoreCR3Load = true;
1742 pVM->rem.s.fIgnoreCpuMode = true;
1743 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1744 pVM->rem.s.fIgnoreCpuMode = false;
1745 pVM->rem.s.fIgnoreCR3Load = false;
1746 }
1747
1748 if (fFlags & CPUM_CHANGED_CR3)
1749 {
1750 pVM->rem.s.fIgnoreCR3Load = true;
1751 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1752 pVM->rem.s.fIgnoreCR3Load = false;
1753 }
1754
1755 if (fFlags & CPUM_CHANGED_GDTR)
1756 {
1757 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1758 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1759 }
1760
1761 if (fFlags & CPUM_CHANGED_IDTR)
1762 {
1763 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1764 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1765 }
1766
1767 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1768 {
1769 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1770 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1771 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1772 }
1773
1774 if (fFlags & CPUM_CHANGED_LDTR)
1775 {
1776 if (fHiddenSelRegsValid)
1777 {
1778 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1779 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1780 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1781 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1782 }
1783 else
1784 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1785 }
1786
1787 if (fFlags & CPUM_CHANGED_TR)
1788 {
1789 if (fHiddenSelRegsValid)
1790 {
1791 pVM->rem.s.Env.tr.selector = pCtx->tr;
1792 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1793 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1794 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1795 }
1796 else
1797 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1798
1799 /** @note do_interrupt will fault if the busy flag is still set.... */
1800 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1801 }
1802
1803 if (fFlags & CPUM_CHANGED_CPUID)
1804 {
1805 uint32_t u32Dummy;
1806
1807 /*
1808 * Get the CPUID features.
1809 */
1810 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1811 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1812 }
1813 }
1814
1815 /*
1816 * Update selector registers.
1817 * This must be done *after* we've synced gdt, ldt and crX registers
1818 * since we're reading the GDT/LDT om sync_seg. This will happen with
1819 * saved state which takes a quick dip into rawmode for instance.
1820 */
1821 /*
1822 * Stack; Note first check this one as the CPL might have changed. The
1823 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1824 */
1825
1826 if (fHiddenSelRegsValid)
1827 {
1828 /* The hidden selector registers are valid in the CPU context. */
1829 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1830
1831 /* Set current CPL */
1832 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1833
1834 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1835 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1836 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1837 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1838 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1839 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1840 }
1841 else
1842 {
1843 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1844 if (pVM->rem.s.Env.segs[R_SS].selector != pCtx->ss)
1845 {
1846 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1847
1848 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1849 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1850#ifdef VBOX_WITH_STATISTICS
1851 if (pVM->rem.s.Env.segs[R_SS].newselector)
1852 {
1853 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1854 }
1855#endif
1856 }
1857 else
1858 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1859
1860 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1861 {
1862 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1863 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1864#ifdef VBOX_WITH_STATISTICS
1865 if (pVM->rem.s.Env.segs[R_ES].newselector)
1866 {
1867 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1868 }
1869#endif
1870 }
1871 else
1872 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1873
1874 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1875 {
1876 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1877 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1878#ifdef VBOX_WITH_STATISTICS
1879 if (pVM->rem.s.Env.segs[R_CS].newselector)
1880 {
1881 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1882 }
1883#endif
1884 }
1885 else
1886 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1887
1888 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1889 {
1890 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1891 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1892#ifdef VBOX_WITH_STATISTICS
1893 if (pVM->rem.s.Env.segs[R_DS].newselector)
1894 {
1895 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1896 }
1897#endif
1898 }
1899 else
1900 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1901
1902 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1903 * be the same but not the base/limit. */
1904 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1905 {
1906 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1907 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1908#ifdef VBOX_WITH_STATISTICS
1909 if (pVM->rem.s.Env.segs[R_FS].newselector)
1910 {
1911 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1912 }
1913#endif
1914 }
1915 else
1916 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1917
1918 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1919 {
1920 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1921 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1922#ifdef VBOX_WITH_STATISTICS
1923 if (pVM->rem.s.Env.segs[R_GS].newselector)
1924 {
1925 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1926 }
1927#endif
1928 }
1929 else
1930 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1931 }
1932
1933 /*
1934 * Check for traps.
1935 */
1936 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1937 rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1938 if (RT_SUCCESS(rc))
1939 {
1940#ifdef DEBUG
1941 if (u8TrapNo == 0x80)
1942 {
1943 remR3DumpLnxSyscall(pVM);
1944 remR3DumpOBsdSyscall(pVM);
1945 }
1946#endif
1947
1948 pVM->rem.s.Env.exception_index = u8TrapNo;
1949 if (enmType != TRPM_SOFTWARE_INT)
1950 {
1951 pVM->rem.s.Env.exception_is_int = 0;
1952 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1953 }
1954 else
1955 {
1956 /*
1957 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1958 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1959 * for int03 and into.
1960 */
1961 pVM->rem.s.Env.exception_is_int = 1;
1962 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
1963 /* int 3 may be generated by one-byte 0xcc */
1964 if (u8TrapNo == 3)
1965 {
1966 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
1967 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
1968 }
1969 /* int 4 may be generated by one-byte 0xce */
1970 else if (u8TrapNo == 4)
1971 {
1972 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
1973 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
1974 }
1975 }
1976
1977 /* get error code and cr2 if needed. */
1978 switch (u8TrapNo)
1979 {
1980 case 0x0e:
1981 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1982 /* fallthru */
1983 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1984 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1985 break;
1986
1987 case 0x11: case 0x08:
1988 default:
1989 pVM->rem.s.Env.error_code = 0;
1990 break;
1991 }
1992
1993 /*
1994 * We can now reset the active trap since the recompiler is gonna have a go at it.
1995 */
1996 rc = TRPMResetTrap(pVM);
1997 AssertRC(rc);
1998 Log2(("REMR3State: trap=%02x errcd=%RGv cr2=%RGv nexteip=%RGv%s\n", pVM->rem.s.Env.exception_index, (RTGCPTR)pVM->rem.s.Env.error_code,
1999 (RTGCPTR)pVM->rem.s.Env.cr[2], (RTGCPTR)pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2000 }
2001
2002 /*
2003 * Clear old interrupt request flags; Check for pending hardware interrupts.
2004 * (See @remark for why we don't check for other FFs.)
2005 */
2006 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2007 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2008 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2009 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2010
2011 /*
2012 * We're now in REM mode.
2013 */
2014 pVM->rem.s.fInREM = true;
2015 pVM->rem.s.fInStateSync = false;
2016 pVM->rem.s.cCanExecuteRaw = 0;
2017 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2018 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2019 return VINF_SUCCESS;
2020}
2021
2022
2023/**
2024 * Syncs back changes in the REM state to the the VM state.
2025 *
2026 * This must be called after invoking REMR3Run().
2027 * Calling it several times in a row is not permitted.
2028 *
2029 * @returns VBox status code.
2030 *
2031 * @param pVM VM Handle.
2032 */
2033REMR3DECL(int) REMR3StateBack(PVM pVM)
2034{
2035 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2036 unsigned i;
2037
2038 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2039 Log2(("REMR3StateBack:\n"));
2040 Assert(pVM->rem.s.fInREM);
2041
2042 /*
2043 * Copy back the registers.
2044 * This is done in the order they are declared in the CPUMCTX structure.
2045 */
2046
2047 /** @todo FOP */
2048 /** @todo FPUIP */
2049 /** @todo CS */
2050 /** @todo FPUDP */
2051 /** @todo DS */
2052 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2053 pCtx->fpu.MXCSR = 0;
2054 pCtx->fpu.MXCSR_MASK = 0;
2055
2056 /** @todo check if FPU/XMM was actually used in the recompiler */
2057 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2058//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2059
2060#ifdef TARGET_X86_64
2061 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2062 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2063 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2064 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2065 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2066 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2067 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2068 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2069 pCtx->r8 = pVM->rem.s.Env.regs[8];
2070 pCtx->r9 = pVM->rem.s.Env.regs[9];
2071 pCtx->r10 = pVM->rem.s.Env.regs[10];
2072 pCtx->r11 = pVM->rem.s.Env.regs[11];
2073 pCtx->r12 = pVM->rem.s.Env.regs[12];
2074 pCtx->r13 = pVM->rem.s.Env.regs[13];
2075 pCtx->r14 = pVM->rem.s.Env.regs[14];
2076 pCtx->r15 = pVM->rem.s.Env.regs[15];
2077
2078 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2079
2080#else
2081 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2082 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2083 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2084 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2085 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2086 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2087 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2088
2089 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2090#endif
2091
2092 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2093
2094#ifdef VBOX_WITH_STATISTICS
2095 if (pVM->rem.s.Env.segs[R_SS].newselector)
2096 {
2097 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2098 }
2099 if (pVM->rem.s.Env.segs[R_GS].newselector)
2100 {
2101 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2102 }
2103 if (pVM->rem.s.Env.segs[R_FS].newselector)
2104 {
2105 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2106 }
2107 if (pVM->rem.s.Env.segs[R_ES].newselector)
2108 {
2109 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2110 }
2111 if (pVM->rem.s.Env.segs[R_DS].newselector)
2112 {
2113 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2114 }
2115 if (pVM->rem.s.Env.segs[R_CS].newselector)
2116 {
2117 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2118 }
2119#endif
2120 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2121 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2122 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2123 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2124 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2125
2126#ifdef TARGET_X86_64
2127 pCtx->rip = pVM->rem.s.Env.eip;
2128 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2129#else
2130 pCtx->eip = pVM->rem.s.Env.eip;
2131 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2132#endif
2133
2134 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2135 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2136 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2137 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2138
2139 for (i=0;i<8;i++)
2140 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2141
2142 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2143 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2144 {
2145 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2146 STAM_COUNTER_INC(&gStatREMGDTChange);
2147 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2148 }
2149
2150 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2151 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2152 {
2153 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2154 STAM_COUNTER_INC(&gStatREMIDTChange);
2155 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2156 }
2157
2158 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2159 {
2160 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2161 STAM_COUNTER_INC(&gStatREMLDTRChange);
2162 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2163 }
2164 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2165 {
2166 pCtx->tr = pVM->rem.s.Env.tr.selector;
2167 STAM_COUNTER_INC(&gStatREMTRChange);
2168 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2169 }
2170
2171 /** @todo These values could still be out of sync! */
2172 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2173 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2174 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2175 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2176
2177 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2178 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2179 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2180
2181 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2182 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2183 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2184
2185 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2186 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2187 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2188
2189 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2190 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2191 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2192
2193 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2194 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2195 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2196
2197 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2198 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2199 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2200
2201 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2202 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2203 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2204
2205 /* Sysenter MSR */
2206 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2207 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2208 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2209
2210 /* System MSRs. */
2211 pCtx->msrEFER = pVM->rem.s.Env.efer;
2212 pCtx->msrSTAR = pVM->rem.s.Env.star;
2213 pCtx->msrPAT = pVM->rem.s.Env.pat;
2214#ifdef TARGET_X86_64
2215 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2216 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2217 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2218 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2219#endif
2220
2221 remR3TrapClear(pVM);
2222
2223 /*
2224 * Check for traps.
2225 */
2226 if ( pVM->rem.s.Env.exception_index >= 0
2227 && pVM->rem.s.Env.exception_index < 256)
2228 {
2229 int rc;
2230
2231 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2232 rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2233 AssertRC(rc);
2234 switch (pVM->rem.s.Env.exception_index)
2235 {
2236 case 0x0e:
2237 TRPMSetFaultAddress(pVM, pCtx->cr2);
2238 /* fallthru */
2239 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2240 case 0x11: case 0x08: /* 0 */
2241 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2242 break;
2243 }
2244
2245 }
2246
2247 /*
2248 * We're not longer in REM mode.
2249 */
2250 pVM->rem.s.fInREM = false;
2251 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2252 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2253 return VINF_SUCCESS;
2254}
2255
2256
2257/**
2258 * This is called by the disassembler when it wants to update the cpu state
2259 * before for instance doing a register dump.
2260 */
2261static void remR3StateUpdate(PVM pVM)
2262{
2263 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2264 unsigned i;
2265
2266 Assert(pVM->rem.s.fInREM);
2267
2268 /*
2269 * Copy back the registers.
2270 * This is done in the order they are declared in the CPUMCTX structure.
2271 */
2272
2273 /** @todo FOP */
2274 /** @todo FPUIP */
2275 /** @todo CS */
2276 /** @todo FPUDP */
2277 /** @todo DS */
2278 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2279 pCtx->fpu.MXCSR = 0;
2280 pCtx->fpu.MXCSR_MASK = 0;
2281
2282 /** @todo check if FPU/XMM was actually used in the recompiler */
2283 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2284//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2285
2286#ifdef TARGET_X86_64
2287 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2288 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2289 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2290 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2291 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2292 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2293 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2294 pCtx->r8 = pVM->rem.s.Env.regs[8];
2295 pCtx->r9 = pVM->rem.s.Env.regs[9];
2296 pCtx->r10 = pVM->rem.s.Env.regs[10];
2297 pCtx->r11 = pVM->rem.s.Env.regs[11];
2298 pCtx->r12 = pVM->rem.s.Env.regs[12];
2299 pCtx->r13 = pVM->rem.s.Env.regs[13];
2300 pCtx->r14 = pVM->rem.s.Env.regs[14];
2301 pCtx->r15 = pVM->rem.s.Env.regs[15];
2302
2303 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2304#else
2305 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2306 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2307 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2308 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2309 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2310 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2311 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2312
2313 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2314#endif
2315
2316 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2317
2318 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2319 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2320 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2321 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2322 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2323
2324#ifdef TARGET_X86_64
2325 pCtx->rip = pVM->rem.s.Env.eip;
2326 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2327#else
2328 pCtx->eip = pVM->rem.s.Env.eip;
2329 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2330#endif
2331
2332 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2333 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2334 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2335 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2336
2337 for (i=0;i<8;i++)
2338 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2339
2340 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2341 if (pCtx->gdtr.pGdt != (RTGCPTR)pVM->rem.s.Env.gdt.base)
2342 {
2343 pCtx->gdtr.pGdt = (RTGCPTR)pVM->rem.s.Env.gdt.base;
2344 STAM_COUNTER_INC(&gStatREMGDTChange);
2345 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2346 }
2347
2348 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2349 if (pCtx->idtr.pIdt != (RTGCPTR)pVM->rem.s.Env.idt.base)
2350 {
2351 pCtx->idtr.pIdt = (RTGCPTR)pVM->rem.s.Env.idt.base;
2352 STAM_COUNTER_INC(&gStatREMIDTChange);
2353 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2354 }
2355
2356 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2357 {
2358 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2359 STAM_COUNTER_INC(&gStatREMLDTRChange);
2360 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2361 }
2362 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2363 {
2364 pCtx->tr = pVM->rem.s.Env.tr.selector;
2365 STAM_COUNTER_INC(&gStatREMTRChange);
2366 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2367 }
2368
2369 /** @todo These values could still be out of sync! */
2370 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2371 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2372 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2373 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2374
2375 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2376 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2377 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2378
2379 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2380 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2381 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2382
2383 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2384 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2385 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2386
2387 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2388 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2389 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2390
2391 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2392 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2393 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2394
2395 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2396 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2397 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2398
2399 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2400 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2401 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2402
2403 /* Sysenter MSR */
2404 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2405 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2406 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2407
2408 /* System MSRs. */
2409 pCtx->msrEFER = pVM->rem.s.Env.efer;
2410 pCtx->msrSTAR = pVM->rem.s.Env.star;
2411 pCtx->msrPAT = pVM->rem.s.Env.pat;
2412#ifdef TARGET_X86_64
2413 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2414 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2415 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2416 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2417#endif
2418
2419}
2420
2421
2422/**
2423 * Update the VMM state information if we're currently in REM.
2424 *
2425 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2426 * we're currently executing in REM and the VMM state is invalid. This method will of
2427 * course check that we're executing in REM before syncing any data over to the VMM.
2428 *
2429 * @param pVM The VM handle.
2430 */
2431REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2432{
2433 if (pVM->rem.s.fInREM)
2434 remR3StateUpdate(pVM);
2435}
2436
2437
2438#undef LOG_GROUP
2439#define LOG_GROUP LOG_GROUP_REM
2440
2441
2442/**
2443 * Notify the recompiler about Address Gate 20 state change.
2444 *
2445 * This notification is required since A20 gate changes are
2446 * initialized from a device driver and the VM might just as
2447 * well be in REM mode as in RAW mode.
2448 *
2449 * @param pVM VM handle.
2450 * @param fEnable True if the gate should be enabled.
2451 * False if the gate should be disabled.
2452 */
2453REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2454{
2455 bool fSaved;
2456
2457 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2458 VM_ASSERT_EMT(pVM);
2459
2460 fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2461 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2462
2463 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2464
2465 pVM->rem.s.fIgnoreAll = fSaved;
2466}
2467
2468
2469/**
2470 * Replays the invalidated recorded pages.
2471 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2472 *
2473 * @param pVM VM handle.
2474 */
2475REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2476{
2477 RTUINT i;
2478
2479 VM_ASSERT_EMT(pVM);
2480
2481 /*
2482 * Sync the required registers.
2483 */
2484 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2485 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2486 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2487 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2488
2489 /*
2490 * Replay the flushes.
2491 */
2492 pVM->rem.s.fIgnoreInvlPg = true;
2493 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2494 {
2495 Log2(("REMR3ReplayInvalidatedPages: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2496 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2497 }
2498 pVM->rem.s.fIgnoreInvlPg = false;
2499 pVM->rem.s.cInvalidatedPages = 0;
2500}
2501
2502
2503/**
2504 * Replays the handler notification changes
2505 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2506 *
2507 * @param pVM VM handle.
2508 */
2509REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2510{
2511 /*
2512 * Replay the flushes.
2513 */
2514 RTUINT i;
2515 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2516
2517 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2518 VM_ASSERT_EMT(pVM);
2519
2520 pVM->rem.s.cHandlerNotifications = 0;
2521 for (i = 0; i < c; i++)
2522 {
2523 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2524 switch (pRec->enmKind)
2525 {
2526 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2527 REMR3NotifyHandlerPhysicalRegister(pVM,
2528 pRec->u.PhysicalRegister.enmType,
2529 pRec->u.PhysicalRegister.GCPhys,
2530 pRec->u.PhysicalRegister.cb,
2531 pRec->u.PhysicalRegister.fHasHCHandler);
2532 break;
2533
2534 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2535 REMR3NotifyHandlerPhysicalDeregister(pVM,
2536 pRec->u.PhysicalDeregister.enmType,
2537 pRec->u.PhysicalDeregister.GCPhys,
2538 pRec->u.PhysicalDeregister.cb,
2539 pRec->u.PhysicalDeregister.fHasHCHandler,
2540 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2541 break;
2542
2543 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2544 REMR3NotifyHandlerPhysicalModify(pVM,
2545 pRec->u.PhysicalModify.enmType,
2546 pRec->u.PhysicalModify.GCPhysOld,
2547 pRec->u.PhysicalModify.GCPhysNew,
2548 pRec->u.PhysicalModify.cb,
2549 pRec->u.PhysicalModify.fHasHCHandler,
2550 pRec->u.PhysicalModify.fRestoreAsRAM);
2551 break;
2552
2553 default:
2554 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2555 break;
2556 }
2557 }
2558 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2559}
2560
2561
2562/**
2563 * Notify REM about changed code page.
2564 *
2565 * @returns VBox status code.
2566 * @param pVM VM handle.
2567 * @param pvCodePage Code page address
2568 */
2569REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2570{
2571#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
2572 int rc;
2573 RTGCPHYS PhysGC;
2574 uint64_t flags;
2575
2576 VM_ASSERT_EMT(pVM);
2577
2578 /*
2579 * Get the physical page address.
2580 */
2581 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2582 if (rc == VINF_SUCCESS)
2583 {
2584 /*
2585 * Sync the required registers and flush the whole page.
2586 * (Easier to do the whole page than notifying it about each physical
2587 * byte that was changed.
2588 */
2589 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2590 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2591 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2592 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2593
2594 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2595 }
2596#endif
2597 return VINF_SUCCESS;
2598}
2599
2600
2601/**
2602 * Notification about a successful MMR3PhysRegister() call.
2603 *
2604 * @param pVM VM handle.
2605 * @param GCPhys The physical address the RAM.
2606 * @param cb Size of the memory.
2607 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2608 */
2609REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2610{
2611 uint32_t cbBitmap;
2612 int rc;
2613 Log(("REMR3NotifyPhysRamRegister: GCPhys=%RGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2614 VM_ASSERT_EMT(pVM);
2615
2616 /*
2617 * Validate input - we trust the caller.
2618 */
2619 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2620 Assert(cb);
2621 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2622
2623 /*
2624 * Base ram?
2625 */
2626 if (!GCPhys)
2627 {
2628 phys_ram_size = cb;
2629 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2630#ifndef VBOX_STRICT
2631 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2632 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2633#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2634 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2635 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2636 cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2637 rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2638 AssertRC(rc);
2639 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2640#endif
2641 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2642 }
2643
2644 /*
2645 * Register the ram.
2646 */
2647 Assert(!pVM->rem.s.fIgnoreAll);
2648 pVM->rem.s.fIgnoreAll = true;
2649
2650#ifdef VBOX_WITH_NEW_PHYS_CODE
2651 if (fFlags & MM_RAM_FLAGS_RESERVED)
2652 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2653 else
2654 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2655#else
2656 if (!GCPhys)
2657 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2658 else
2659 {
2660 if (fFlags & MM_RAM_FLAGS_RESERVED)
2661 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2662 else
2663 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2664 }
2665#endif
2666 Assert(pVM->rem.s.fIgnoreAll);
2667 pVM->rem.s.fIgnoreAll = false;
2668}
2669
2670#ifndef VBOX_WITH_NEW_PHYS_CODE
2671
2672/**
2673 * Notification about a successful PGMR3PhysRegisterChunk() call.
2674 *
2675 * @param pVM VM handle.
2676 * @param GCPhys The physical address the RAM.
2677 * @param cb Size of the memory.
2678 * @param pvRam The HC address of the RAM.
2679 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2680 */
2681REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2682{
2683 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%RGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2684 VM_ASSERT_EMT(pVM);
2685
2686 /*
2687 * Validate input - we trust the caller.
2688 */
2689 Assert(pvRam);
2690 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2691 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2692 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2693 Assert(fFlags == 0 /* normal RAM */);
2694 Assert(!pVM->rem.s.fIgnoreAll);
2695 pVM->rem.s.fIgnoreAll = true;
2696 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2697 Assert(pVM->rem.s.fIgnoreAll);
2698 pVM->rem.s.fIgnoreAll = false;
2699}
2700
2701
2702/**
2703 * Grows dynamically allocated guest RAM.
2704 * Will raise a fatal error if the operation fails.
2705 *
2706 * @param physaddr The physical address.
2707 */
2708void remR3GrowDynRange(unsigned long physaddr) /** @todo Needs fixing for MSC... */
2709{
2710 int rc;
2711 PVM pVM = cpu_single_env->pVM;
2712 const RTGCPHYS GCPhys = physaddr;
2713
2714 LogFlow(("remR3GrowDynRange %RGp\n", (RTGCPTR)physaddr));
2715 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2716 if (RT_SUCCESS(rc))
2717 return;
2718
2719 LogRel(("\nUnable to allocate guest RAM chunk at %RGp\n", (RTGCPTR)physaddr));
2720 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %RGp\n", (RTGCPTR)physaddr);
2721 AssertFatalFailed();
2722}
2723
2724#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2725
2726/**
2727 * Notification about a successful MMR3PhysRomRegister() call.
2728 *
2729 * @param pVM VM handle.
2730 * @param GCPhys The physical address of the ROM.
2731 * @param cb The size of the ROM.
2732 * @param pvCopy Pointer to the ROM copy.
2733 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2734 * This function will be called when ever the protection of the
2735 * shadow ROM changes (at reset and end of POST).
2736 */
2737REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2738{
2739 Log(("REMR3NotifyPhysRomRegister: GCPhys=%RGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2740 VM_ASSERT_EMT(pVM);
2741
2742 /*
2743 * Validate input - we trust the caller.
2744 */
2745 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2746 Assert(cb);
2747 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2748 Assert(pvCopy);
2749 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2750
2751 /*
2752 * Register the rom.
2753 */
2754 Assert(!pVM->rem.s.fIgnoreAll);
2755 pVM->rem.s.fIgnoreAll = true;
2756
2757 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2758
2759 Log2(("%.64Rhxd\n", (char *)pvCopy + cb - 64));
2760
2761 Assert(pVM->rem.s.fIgnoreAll);
2762 pVM->rem.s.fIgnoreAll = false;
2763}
2764
2765
2766/**
2767 * Notification about a successful memory deregistration or reservation.
2768 *
2769 * @param pVM VM Handle.
2770 * @param GCPhys Start physical address.
2771 * @param cb The size of the range.
2772 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2773 * reserve any memory soon.
2774 */
2775REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2776{
2777 Log(("REMR3NotifyPhysReserve: GCPhys=%RGp cb=%d\n", GCPhys, cb));
2778 VM_ASSERT_EMT(pVM);
2779
2780 /*
2781 * Validate input - we trust the caller.
2782 */
2783 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2784 Assert(cb);
2785 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2786
2787 /*
2788 * Unassigning the memory.
2789 */
2790 Assert(!pVM->rem.s.fIgnoreAll);
2791 pVM->rem.s.fIgnoreAll = true;
2792
2793 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2794
2795 Assert(pVM->rem.s.fIgnoreAll);
2796 pVM->rem.s.fIgnoreAll = false;
2797}
2798
2799
2800/**
2801 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2802 *
2803 * @param pVM VM Handle.
2804 * @param enmType Handler type.
2805 * @param GCPhys Handler range address.
2806 * @param cb Size of the handler range.
2807 * @param fHasHCHandler Set if the handler has a HC callback function.
2808 *
2809 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2810 * Handler memory type to memory which has no HC handler.
2811 */
2812REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2813{
2814 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%d\n",
2815 enmType, GCPhys, cb, fHasHCHandler));
2816 VM_ASSERT_EMT(pVM);
2817 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2818 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2819
2820 if (pVM->rem.s.cHandlerNotifications)
2821 REMR3ReplayHandlerNotifications(pVM);
2822
2823 Assert(!pVM->rem.s.fIgnoreAll);
2824 pVM->rem.s.fIgnoreAll = true;
2825
2826 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2827 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2828 else if (fHasHCHandler)
2829 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2830
2831 Assert(pVM->rem.s.fIgnoreAll);
2832 pVM->rem.s.fIgnoreAll = false;
2833}
2834
2835
2836/**
2837 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2838 *
2839 * @param pVM VM Handle.
2840 * @param enmType Handler type.
2841 * @param GCPhys Handler range address.
2842 * @param cb Size of the handler range.
2843 * @param fHasHCHandler Set if the handler has a HC callback function.
2844 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2845 */
2846REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2847{
2848 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2849 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2850 VM_ASSERT_EMT(pVM);
2851
2852 if (pVM->rem.s.cHandlerNotifications)
2853 REMR3ReplayHandlerNotifications(pVM);
2854
2855 Assert(!pVM->rem.s.fIgnoreAll);
2856 pVM->rem.s.fIgnoreAll = true;
2857
2858/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2859 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2860 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2861 else if (fHasHCHandler)
2862 {
2863 if (!fRestoreAsRAM)
2864 {
2865 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2866 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2867 }
2868 else
2869 {
2870 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2871 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2872 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2873 }
2874 }
2875
2876 Assert(pVM->rem.s.fIgnoreAll);
2877 pVM->rem.s.fIgnoreAll = false;
2878}
2879
2880
2881/**
2882 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2883 *
2884 * @param pVM VM Handle.
2885 * @param enmType Handler type.
2886 * @param GCPhysOld Old handler range address.
2887 * @param GCPhysNew New handler range address.
2888 * @param cb Size of the handler range.
2889 * @param fHasHCHandler Set if the handler has a HC callback function.
2890 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2891 */
2892REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2893{
2894 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%RGp GCPhysNew=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2895 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2896 VM_ASSERT_EMT(pVM);
2897 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2898
2899 if (pVM->rem.s.cHandlerNotifications)
2900 REMR3ReplayHandlerNotifications(pVM);
2901
2902 if (fHasHCHandler)
2903 {
2904 Assert(!pVM->rem.s.fIgnoreAll);
2905 pVM->rem.s.fIgnoreAll = true;
2906
2907 /*
2908 * Reset the old page.
2909 */
2910 if (!fRestoreAsRAM)
2911 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2912 else
2913 {
2914 /* This is not perfect, but it'll do for PD monitoring... */
2915 Assert(cb == PAGE_SIZE);
2916 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2917 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2918 }
2919
2920 /*
2921 * Update the new page.
2922 */
2923 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2924 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2925 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2926
2927 Assert(pVM->rem.s.fIgnoreAll);
2928 pVM->rem.s.fIgnoreAll = false;
2929 }
2930}
2931
2932
2933/**
2934 * Checks if we're handling access to this page or not.
2935 *
2936 * @returns true if we're trapping access.
2937 * @returns false if we aren't.
2938 * @param pVM The VM handle.
2939 * @param GCPhys The physical address.
2940 *
2941 * @remark This function will only work correctly in VBOX_STRICT builds!
2942 */
2943REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2944{
2945#ifdef VBOX_STRICT
2946 unsigned long off;
2947 if (pVM->rem.s.cHandlerNotifications)
2948 REMR3ReplayHandlerNotifications(pVM);
2949
2950 off = get_phys_page_offset(GCPhys);
2951 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2952 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2953 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2954#else
2955 return false;
2956#endif
2957}
2958
2959
2960/**
2961 * Deals with a rare case in get_phys_addr_code where the code
2962 * is being monitored.
2963 *
2964 * It could also be an MMIO page, in which case we will raise a fatal error.
2965 *
2966 * @returns The physical address corresponding to addr.
2967 * @param env The cpu environment.
2968 * @param addr The virtual address.
2969 * @param pTLBEntry The TLB entry.
2970 */
2971target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2972{
2973 PVM pVM = env->pVM;
2974 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2975 {
2976 target_ulong ret = pTLBEntry->addend + addr;
2977 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%RGv addr_code=%RGv addend=%RGp ret=%RGp\n",
2978 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
2979 return ret;
2980 }
2981 LogRel(("\nTrying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
2982 "*** handlers\n",
2983 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
2984 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
2985 LogRel(("*** mmio\n"));
2986 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
2987 LogRel(("*** phys\n"));
2988 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
2989 cpu_abort(env, "Trying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
2990 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
2991 AssertFatalFailed();
2992}
2993
2994/**
2995 * Read guest RAM and ROM.
2996 *
2997 * @param SrcGCPhys The source address (guest physical).
2998 * @param pvDst The destination address.
2999 * @param cb Number of bytes
3000 */
3001void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3002{
3003 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3004 VBOX_CHECK_ADDR(SrcGCPhys);
3005 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3006#ifdef VBOX_DEBUG_PHYS
3007 LogRel(("read(%d): %08x\n", cb, (uint32_t)SrcGCPhys));
3008#endif
3009 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3010}
3011
3012
3013/**
3014 * Read guest RAM and ROM, unsigned 8-bit.
3015 *
3016 * @param SrcGCPhys The source address (guest physical).
3017 */
3018RTCCUINTREG remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3019{
3020 uint8_t val;
3021 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3022 VBOX_CHECK_ADDR(SrcGCPhys);
3023 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3024 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3025#ifdef VBOX_DEBUG_PHYS
3026 LogRel(("readu8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3027#endif
3028 return val;
3029}
3030
3031
3032/**
3033 * Read guest RAM and ROM, signed 8-bit.
3034 *
3035 * @param SrcGCPhys The source address (guest physical).
3036 */
3037RTCCINTREG remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3038{
3039 int8_t val;
3040 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3041 VBOX_CHECK_ADDR(SrcGCPhys);
3042 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3043 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3044#ifdef VBOX_DEBUG_PHYS
3045 LogRel(("reads8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3046#endif
3047 return val;
3048}
3049
3050
3051/**
3052 * Read guest RAM and ROM, unsigned 16-bit.
3053 *
3054 * @param SrcGCPhys The source address (guest physical).
3055 */
3056RTCCUINTREG remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3057{
3058 uint16_t val;
3059 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3060 VBOX_CHECK_ADDR(SrcGCPhys);
3061 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3062 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3063#ifdef VBOX_DEBUG_PHYS
3064 LogRel(("readu16: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3065#endif
3066 return val;
3067}
3068
3069
3070/**
3071 * Read guest RAM and ROM, signed 16-bit.
3072 *
3073 * @param SrcGCPhys The source address (guest physical).
3074 */
3075RTCCINTREG remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3076{
3077 int16_t val;
3078 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3079 VBOX_CHECK_ADDR(SrcGCPhys);
3080 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3081 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3082#ifdef VBOX_DEBUG_PHYS
3083 LogRel(("reads16: %x <- %08x\n", (uint16_t)val, (uint32_t)SrcGCPhys));
3084#endif
3085 return val;
3086}
3087
3088
3089/**
3090 * Read guest RAM and ROM, unsigned 32-bit.
3091 *
3092 * @param SrcGCPhys The source address (guest physical).
3093 */
3094RTCCUINTREG remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3095{
3096 uint32_t val;
3097 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3098 VBOX_CHECK_ADDR(SrcGCPhys);
3099 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3100 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3101#ifdef VBOX_DEBUG_PHYS
3102 LogRel(("readu32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3103#endif
3104 return val;
3105}
3106
3107
3108/**
3109 * Read guest RAM and ROM, signed 32-bit.
3110 *
3111 * @param SrcGCPhys The source address (guest physical).
3112 */
3113RTCCINTREG remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3114{
3115 int32_t val;
3116 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3117 VBOX_CHECK_ADDR(SrcGCPhys);
3118 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3119 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3120#ifdef VBOX_DEBUG_PHYS
3121 LogRel(("reads32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3122#endif
3123 return val;
3124}
3125
3126
3127/**
3128 * Read guest RAM and ROM, unsigned 64-bit.
3129 *
3130 * @param SrcGCPhys The source address (guest physical).
3131 */
3132uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3133{
3134 uint64_t val;
3135 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3136 VBOX_CHECK_ADDR(SrcGCPhys);
3137 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3138 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3139#ifdef VBOX_DEBUG_PHYS
3140 LogRel(("readu64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3141#endif
3142 return val;
3143}
3144
3145/**
3146 * Read guest RAM and ROM, signed 64-bit.
3147 *
3148 * @param SrcGCPhys The source address (guest physical).
3149 */
3150int64_t remR3PhysReadS64(RTGCPHYS SrcGCPhys)
3151{
3152 int64_t val;
3153 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3154 VBOX_CHECK_ADDR(SrcGCPhys);
3155 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3156 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3157#ifdef VBOX_DEBUG_PHYS
3158 LogRel(("reads64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3159#endif
3160 return val;
3161}
3162
3163
3164/**
3165 * Write guest RAM.
3166 *
3167 * @param DstGCPhys The destination address (guest physical).
3168 * @param pvSrc The source address.
3169 * @param cb Number of bytes to write
3170 */
3171void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3172{
3173 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3174 VBOX_CHECK_ADDR(DstGCPhys);
3175 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3176 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3177#ifdef VBOX_DEBUG_PHYS
3178 LogRel(("write(%d): %08x\n", cb, (uint32_t)DstGCPhys));
3179#endif
3180}
3181
3182
3183/**
3184 * Write guest RAM, unsigned 8-bit.
3185 *
3186 * @param DstGCPhys The destination address (guest physical).
3187 * @param val Value
3188 */
3189void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3190{
3191 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3192 VBOX_CHECK_ADDR(DstGCPhys);
3193 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3194 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3195#ifdef VBOX_DEBUG_PHYS
3196 LogRel(("writeu8: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3197#endif
3198}
3199
3200
3201/**
3202 * Write guest RAM, unsigned 8-bit.
3203 *
3204 * @param DstGCPhys The destination address (guest physical).
3205 * @param val Value
3206 */
3207void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3208{
3209 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3210 VBOX_CHECK_ADDR(DstGCPhys);
3211 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3212 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3213#ifdef VBOX_DEBUG_PHYS
3214 LogRel(("writeu16: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3215#endif
3216}
3217
3218
3219/**
3220 * Write guest RAM, unsigned 32-bit.
3221 *
3222 * @param DstGCPhys The destination address (guest physical).
3223 * @param val Value
3224 */
3225void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3226{
3227 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3228 VBOX_CHECK_ADDR(DstGCPhys);
3229 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3230 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3231#ifdef VBOX_DEBUG_PHYS
3232 LogRel(("writeu32: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3233#endif
3234}
3235
3236
3237/**
3238 * Write guest RAM, unsigned 64-bit.
3239 *
3240 * @param DstGCPhys The destination address (guest physical).
3241 * @param val Value
3242 */
3243void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3244{
3245 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3246 VBOX_CHECK_ADDR(DstGCPhys);
3247 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3248 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3249#ifdef VBOX_DEBUG_PHYS
3250 LogRel(("writeu64: %llx -> %08x\n", val, (uint32_t)SrcGCPhys));
3251#endif
3252}
3253
3254#undef LOG_GROUP
3255#define LOG_GROUP LOG_GROUP_REM_MMIO
3256
3257/** Read MMIO memory. */
3258static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3259{
3260 uint32_t u32 = 0;
3261 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3262 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3263 Log2(("remR3MMIOReadU8: GCPhys=%RGp -> %02x\n", GCPhys, u32));
3264 return u32;
3265}
3266
3267/** Read MMIO memory. */
3268static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3269{
3270 uint32_t u32 = 0;
3271 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3272 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3273 Log2(("remR3MMIOReadU16: GCPhys=%RGp -> %04x\n", GCPhys, u32));
3274 return u32;
3275}
3276
3277/** Read MMIO memory. */
3278static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3279{
3280 uint32_t u32 = 0;
3281 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3282 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3283 Log2(("remR3MMIOReadU32: GCPhys=%RGp -> %08x\n", GCPhys, u32));
3284 return u32;
3285}
3286
3287/** Write to MMIO memory. */
3288static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3289{
3290 int rc;
3291 Log2(("remR3MMIOWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3292 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3293 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3294}
3295
3296/** Write to MMIO memory. */
3297static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3298{
3299 int rc;
3300 Log2(("remR3MMIOWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3301 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3302 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3303}
3304
3305/** Write to MMIO memory. */
3306static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3307{
3308 int rc;
3309 Log2(("remR3MMIOWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3310 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3311 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3312}
3313
3314
3315#undef LOG_GROUP
3316#define LOG_GROUP LOG_GROUP_REM_HANDLER
3317
3318/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3319
3320static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3321{
3322 uint8_t u8;
3323 Log2(("remR3HandlerReadU8: GCPhys=%RGp\n", GCPhys));
3324 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3325 return u8;
3326}
3327
3328static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3329{
3330 uint16_t u16;
3331 Log2(("remR3HandlerReadU16: GCPhys=%RGp\n", GCPhys));
3332 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3333 return u16;
3334}
3335
3336static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3337{
3338 uint32_t u32;
3339 Log2(("remR3HandlerReadU32: GCPhys=%RGp\n", GCPhys));
3340 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3341 return u32;
3342}
3343
3344static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3345{
3346 Log2(("remR3HandlerWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3347 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3348}
3349
3350static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3351{
3352 Log2(("remR3HandlerWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3353 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3354}
3355
3356static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3357{
3358 Log2(("remR3HandlerWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3359 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3360}
3361
3362/* -+- disassembly -+- */
3363
3364#undef LOG_GROUP
3365#define LOG_GROUP LOG_GROUP_REM_DISAS
3366
3367
3368/**
3369 * Enables or disables singled stepped disassembly.
3370 *
3371 * @returns VBox status code.
3372 * @param pVM VM handle.
3373 * @param fEnable To enable set this flag, to disable clear it.
3374 */
3375static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3376{
3377 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3378 VM_ASSERT_EMT(pVM);
3379
3380 if (fEnable)
3381 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3382 else
3383 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3384 return VINF_SUCCESS;
3385}
3386
3387
3388/**
3389 * Enables or disables singled stepped disassembly.
3390 *
3391 * @returns VBox status code.
3392 * @param pVM VM handle.
3393 * @param fEnable To enable set this flag, to disable clear it.
3394 */
3395REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3396{
3397 PVMREQ pReq;
3398 int rc;
3399
3400 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3401 if (VM_IS_EMT(pVM))
3402 return remR3DisasEnableStepping(pVM, fEnable);
3403
3404 rc = VMR3ReqCall(pVM, VMREQDEST_ANY, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3405 AssertRC(rc);
3406 if (RT_SUCCESS(rc))
3407 rc = pReq->iStatus;
3408 VMR3ReqFree(pReq);
3409 return rc;
3410}
3411
3412
3413#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3414/**
3415 * External Debugger Command: .remstep [on|off|1|0]
3416 */
3417static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3418{
3419 bool fEnable;
3420 int rc;
3421
3422 /* print status */
3423 if (cArgs == 0)
3424 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3425 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3426
3427 /* convert the argument and change the mode. */
3428 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3429 if (RT_FAILURE(rc))
3430 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3431 rc = REMR3DisasEnableStepping(pVM, fEnable);
3432 if (RT_FAILURE(rc))
3433 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3434 return rc;
3435}
3436#endif
3437
3438
3439/**
3440 * Disassembles n instructions and prints them to the log.
3441 *
3442 * @returns Success indicator.
3443 * @param env Pointer to the recompiler CPU structure.
3444 * @param f32BitCode Indicates that whether or not the code should
3445 * be disassembled as 16 or 32 bit. If -1 the CS
3446 * selector will be inspected.
3447 * @param nrInstructions Nr of instructions to disassemble
3448 * @param pszPrefix
3449 * @remark not currently used for anything but ad-hoc debugging.
3450 */
3451bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3452{
3453 int i, rc;
3454 RTGCPTR GCPtrPC;
3455 uint8_t *pvPC;
3456 RTINTPTR off;
3457 DISCPUSTATE Cpu;
3458
3459 /*
3460 * Determin 16/32 bit mode.
3461 */
3462 if (f32BitCode == -1)
3463 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3464
3465 /*
3466 * Convert cs:eip to host context address.
3467 * We don't care to much about cross page correctness presently.
3468 */
3469 GCPtrPC = env->segs[R_CS].base + env->eip;
3470 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3471 {
3472 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3473
3474 /* convert eip to physical address. */
3475 rc = PGMPhysGCPtr2R3PtrByGstCR3(env->pVM,
3476 GCPtrPC,
3477 env->cr[3],
3478 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3479 (void**)&pvPC);
3480 if (RT_FAILURE(rc))
3481 {
3482 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3483 return false;
3484 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3485 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3486 }
3487 }
3488 else
3489 {
3490 /* physical address */
3491 rc = PGMPhysGCPhys2R3Ptr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16,
3492 (void**)&pvPC);
3493 if (RT_FAILURE(rc))
3494 return false;
3495 }
3496
3497 /*
3498 * Disassemble.
3499 */
3500 off = env->eip - (RTGCUINTPTR)(uintptr_t)pvPC;
3501 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3502 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3503 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3504 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3505 //Cpu.dwUserData[2] = GCPtrPC;
3506
3507 for (i=0;i<nrInstructions;i++)
3508 {
3509 char szOutput[256];
3510 uint32_t cbOp;
3511 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3512 return false;
3513 if (pszPrefix)
3514 Log(("%s: %s", pszPrefix, szOutput));
3515 else
3516 Log(("%s", szOutput));
3517
3518 pvPC += cbOp;
3519 }
3520 return true;
3521}
3522
3523
3524/** @todo need to test the new code, using the old code in the mean while. */
3525#define USE_OLD_DUMP_AND_DISASSEMBLY
3526
3527/**
3528 * Disassembles one instruction and prints it to the log.
3529 *
3530 * @returns Success indicator.
3531 * @param env Pointer to the recompiler CPU structure.
3532 * @param f32BitCode Indicates that whether or not the code should
3533 * be disassembled as 16 or 32 bit. If -1 the CS
3534 * selector will be inspected.
3535 * @param pszPrefix
3536 */
3537bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3538{
3539#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3540 PVM pVM = env->pVM;
3541 RTGCPTR GCPtrPC;
3542 uint8_t *pvPC;
3543 char szOutput[256];
3544 uint32_t cbOp;
3545 RTINTPTR off;
3546 DISCPUSTATE Cpu;
3547
3548
3549 /* Doesn't work in long mode. */
3550 if (env->hflags & HF_LMA_MASK)
3551 return false;
3552
3553 /*
3554 * Determin 16/32 bit mode.
3555 */
3556 if (f32BitCode == -1)
3557 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3558
3559 /*
3560 * Log registers
3561 */
3562 if (LogIs2Enabled())
3563 {
3564 remR3StateUpdate(pVM);
3565 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3566 }
3567
3568 /*
3569 * Convert cs:eip to host context address.
3570 * We don't care to much about cross page correctness presently.
3571 */
3572 GCPtrPC = env->segs[R_CS].base + env->eip;
3573 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3574 {
3575 /* convert eip to physical address. */
3576 int rc = PGMPhysGCPtr2R3PtrByGstCR3(pVM,
3577 GCPtrPC,
3578 env->cr[3],
3579 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3580 (void**)&pvPC);
3581 if (RT_FAILURE(rc))
3582 {
3583 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3584 return false;
3585 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(pVM, NULL)
3586 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3587 }
3588 }
3589 else
3590 {
3591
3592 /* physical address */
3593 int rc = PGMPhysGCPhys2R3Ptr(pVM, (RTGCPHYS)GCPtrPC, 16, (void**)&pvPC);
3594 if (RT_FAILURE(rc))
3595 return false;
3596 }
3597
3598 /*
3599 * Disassemble.
3600 */
3601 off = env->eip - (RTGCUINTPTR)(uintptr_t)pvPC;
3602 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3603 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3604 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3605 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3606 //Cpu.dwUserData[2] = GCPtrPC;
3607 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3608 return false;
3609
3610 if (!f32BitCode)
3611 {
3612 if (pszPrefix)
3613 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3614 else
3615 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3616 }
3617 else
3618 {
3619 if (pszPrefix)
3620 Log(("%s: %s", pszPrefix, szOutput));
3621 else
3622 Log(("%s", szOutput));
3623 }
3624 return true;
3625
3626#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3627 PVM pVM = env->pVM;
3628 const bool fLog = LogIsEnabled();
3629 const bool fLog2 = LogIs2Enabled();
3630 int rc = VINF_SUCCESS;
3631
3632 /*
3633 * Don't bother if there ain't any log output to do.
3634 */
3635 if (!fLog && !fLog2)
3636 return true;
3637
3638 /*
3639 * Update the state so DBGF reads the correct register values.
3640 */
3641 remR3StateUpdate(pVM);
3642
3643 /*
3644 * Log registers if requested.
3645 */
3646 if (!fLog2)
3647 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3648
3649 /*
3650 * Disassemble to log.
3651 */
3652 if (fLog)
3653 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3654
3655 return RT_SUCCESS(rc);
3656#endif
3657}
3658
3659
3660/**
3661 * Disassemble recompiled code.
3662 *
3663 * @param phFileIgnored Ignored, logfile usually.
3664 * @param pvCode Pointer to the code block.
3665 * @param cb Size of the code block.
3666 */
3667void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3668{
3669 if (LogIs2Enabled())
3670 {
3671 unsigned off = 0;
3672 char szOutput[256];
3673 DISCPUSTATE Cpu;
3674
3675 memset(&Cpu, 0, sizeof(Cpu));
3676#ifdef RT_ARCH_X86
3677 Cpu.mode = CPUMODE_32BIT;
3678#else
3679 Cpu.mode = CPUMODE_64BIT;
3680#endif
3681
3682 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3683 while (off < cb)
3684 {
3685 uint32_t cbInstr;
3686 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3687 RTLogPrintf("%s", szOutput);
3688 else
3689 {
3690 RTLogPrintf("disas error\n");
3691 cbInstr = 1;
3692#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3693 break;
3694#endif
3695 }
3696 off += cbInstr;
3697 }
3698 }
3699 NOREF(phFileIgnored);
3700}
3701
3702
3703/**
3704 * Disassemble guest code.
3705 *
3706 * @param phFileIgnored Ignored, logfile usually.
3707 * @param uCode The guest address of the code to disassemble. (flat?)
3708 * @param cb Number of bytes to disassemble.
3709 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3710 */
3711void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3712{
3713 if (LogIs2Enabled())
3714 {
3715 PVM pVM = cpu_single_env->pVM;
3716 RTSEL cs;
3717 RTGCUINTPTR eip;
3718
3719 /*
3720 * Update the state so DBGF reads the correct register values (flags).
3721 */
3722 remR3StateUpdate(pVM);
3723
3724 /*
3725 * Do the disassembling.
3726 */
3727 RTLogPrintf("Guest Code: PC=%RGp %RGp bytes fFlags=%d\n", uCode, cb, fFlags);
3728 cs = cpu_single_env->segs[R_CS].selector;
3729 eip = uCode - cpu_single_env->segs[R_CS].base;
3730 for (;;)
3731 {
3732 char szBuf[256];
3733 uint32_t cbInstr;
3734 int rc = DBGFR3DisasInstrEx(pVM,
3735 cs,
3736 eip,
3737 0,
3738 szBuf, sizeof(szBuf),
3739 &cbInstr);
3740 if (RT_SUCCESS(rc))
3741 RTLogPrintf("%RGp %s\n", uCode, szBuf);
3742 else
3743 {
3744 RTLogPrintf("%RGp %04x:%RGp: %s\n", uCode, cs, eip, szBuf);
3745 cbInstr = 1;
3746 }
3747
3748 /* next */
3749 if (cb <= cbInstr)
3750 break;
3751 cb -= cbInstr;
3752 uCode += cbInstr;
3753 eip += cbInstr;
3754 }
3755 }
3756 NOREF(phFileIgnored);
3757}
3758
3759
3760/**
3761 * Looks up a guest symbol.
3762 *
3763 * @returns Pointer to symbol name. This is a static buffer.
3764 * @param orig_addr The address in question.
3765 */
3766const char *lookup_symbol(target_ulong orig_addr)
3767{
3768 RTGCINTPTR off = 0;
3769 DBGFSYMBOL Sym;
3770 PVM pVM = cpu_single_env->pVM;
3771 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3772 if (RT_SUCCESS(rc))
3773 {
3774 static char szSym[sizeof(Sym.szName) + 48];
3775 if (!off)
3776 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3777 else if (off > 0)
3778 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3779 else
3780 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3781 return szSym;
3782 }
3783 return "<N/A>";
3784}
3785
3786
3787#undef LOG_GROUP
3788#define LOG_GROUP LOG_GROUP_REM
3789
3790
3791/* -+- FF notifications -+- */
3792
3793
3794/**
3795 * Notification about a pending interrupt.
3796 *
3797 * @param pVM VM Handle.
3798 * @param u8Interrupt Interrupt
3799 * @thread The emulation thread.
3800 */
3801REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3802{
3803 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3804 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3805}
3806
3807/**
3808 * Notification about a pending interrupt.
3809 *
3810 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3811 * @param pVM VM Handle.
3812 * @thread The emulation thread.
3813 */
3814REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3815{
3816 return pVM->rem.s.u32PendingInterrupt;
3817}
3818
3819/**
3820 * Notification about the interrupt FF being set.
3821 *
3822 * @param pVM VM Handle.
3823 * @thread The emulation thread.
3824 */
3825REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3826{
3827 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3828 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3829 if (pVM->rem.s.fInREM)
3830 {
3831 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3832 CPU_INTERRUPT_EXTERNAL_HARD);
3833 }
3834}
3835
3836
3837/**
3838 * Notification about the interrupt FF being set.
3839 *
3840 * @param pVM VM Handle.
3841 * @thread Any.
3842 */
3843REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3844{
3845 LogFlow(("REMR3NotifyInterruptClear:\n"));
3846 if (pVM->rem.s.fInREM)
3847 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3848}
3849
3850
3851/**
3852 * Notification about pending timer(s).
3853 *
3854 * @param pVM VM Handle.
3855 * @thread Any.
3856 */
3857REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3858{
3859#ifndef DEBUG_bird
3860 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3861#endif
3862 if (pVM->rem.s.fInREM)
3863 {
3864 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3865 CPU_INTERRUPT_EXTERNAL_TIMER);
3866 }
3867}
3868
3869
3870/**
3871 * Notification about pending DMA transfers.
3872 *
3873 * @param pVM VM Handle.
3874 * @thread Any.
3875 */
3876REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3877{
3878 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3879 if (pVM->rem.s.fInREM)
3880 {
3881 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3882 CPU_INTERRUPT_EXTERNAL_DMA);
3883 }
3884}
3885
3886
3887/**
3888 * Notification about pending timer(s).
3889 *
3890 * @param pVM VM Handle.
3891 * @thread Any.
3892 */
3893REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3894{
3895 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3896 if (pVM->rem.s.fInREM)
3897 {
3898 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3899 CPU_INTERRUPT_EXTERNAL_EXIT);
3900 }
3901}
3902
3903
3904/**
3905 * Notification about pending FF set by an external thread.
3906 *
3907 * @param pVM VM handle.
3908 * @thread Any.
3909 */
3910REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3911{
3912 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3913 if (pVM->rem.s.fInREM)
3914 {
3915 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3916 CPU_INTERRUPT_EXTERNAL_EXIT);
3917 }
3918}
3919
3920
3921#ifdef VBOX_WITH_STATISTICS
3922void remR3ProfileStart(int statcode)
3923{
3924 STAMPROFILEADV *pStat;
3925 switch(statcode)
3926 {
3927 case STATS_EMULATE_SINGLE_INSTR:
3928 pStat = &gStatExecuteSingleInstr;
3929 break;
3930 case STATS_QEMU_COMPILATION:
3931 pStat = &gStatCompilationQEmu;
3932 break;
3933 case STATS_QEMU_RUN_EMULATED_CODE:
3934 pStat = &gStatRunCodeQEmu;
3935 break;
3936 case STATS_QEMU_TOTAL:
3937 pStat = &gStatTotalTimeQEmu;
3938 break;
3939 case STATS_QEMU_RUN_TIMERS:
3940 pStat = &gStatTimers;
3941 break;
3942 case STATS_TLB_LOOKUP:
3943 pStat= &gStatTBLookup;
3944 break;
3945 case STATS_IRQ_HANDLING:
3946 pStat= &gStatIRQ;
3947 break;
3948 case STATS_RAW_CHECK:
3949 pStat = &gStatRawCheck;
3950 break;
3951
3952 default:
3953 AssertMsgFailed(("unknown stat %d\n", statcode));
3954 return;
3955 }
3956 STAM_PROFILE_ADV_START(pStat, a);
3957}
3958
3959
3960void remR3ProfileStop(int statcode)
3961{
3962 STAMPROFILEADV *pStat;
3963 switch(statcode)
3964 {
3965 case STATS_EMULATE_SINGLE_INSTR:
3966 pStat = &gStatExecuteSingleInstr;
3967 break;
3968 case STATS_QEMU_COMPILATION:
3969 pStat = &gStatCompilationQEmu;
3970 break;
3971 case STATS_QEMU_RUN_EMULATED_CODE:
3972 pStat = &gStatRunCodeQEmu;
3973 break;
3974 case STATS_QEMU_TOTAL:
3975 pStat = &gStatTotalTimeQEmu;
3976 break;
3977 case STATS_QEMU_RUN_TIMERS:
3978 pStat = &gStatTimers;
3979 break;
3980 case STATS_TLB_LOOKUP:
3981 pStat= &gStatTBLookup;
3982 break;
3983 case STATS_IRQ_HANDLING:
3984 pStat= &gStatIRQ;
3985 break;
3986 case STATS_RAW_CHECK:
3987 pStat = &gStatRawCheck;
3988 break;
3989 default:
3990 AssertMsgFailed(("unknown stat %d\n", statcode));
3991 return;
3992 }
3993 STAM_PROFILE_ADV_STOP(pStat, a);
3994}
3995#endif
3996
3997/**
3998 * Raise an RC, force rem exit.
3999 *
4000 * @param pVM VM handle.
4001 * @param rc The rc.
4002 */
4003void remR3RaiseRC(PVM pVM, int rc)
4004{
4005 Log(("remR3RaiseRC: rc=%Rrc\n", rc));
4006 Assert(pVM->rem.s.fInREM);
4007 VM_ASSERT_EMT(pVM);
4008 pVM->rem.s.rc = rc;
4009 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4010}
4011
4012
4013/* -+- timers -+- */
4014
4015uint64_t cpu_get_tsc(CPUX86State *env)
4016{
4017 STAM_COUNTER_INC(&gStatCpuGetTSC);
4018 return TMCpuTickGet(env->pVM);
4019}
4020
4021
4022/* -+- interrupts -+- */
4023
4024void cpu_set_ferr(CPUX86State *env)
4025{
4026 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4027 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4028}
4029
4030int cpu_get_pic_interrupt(CPUState *env)
4031{
4032 uint8_t u8Interrupt;
4033 int rc;
4034
4035 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4036 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4037 * with the (a)pic.
4038 */
4039 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4040 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4041 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4042 * remove this kludge. */
4043 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4044 {
4045 rc = VINF_SUCCESS;
4046 Assert(env->pVM->rem.s.u32PendingInterrupt <= 255);
4047 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4048 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4049 }
4050 else
4051 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4052
4053 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Rrc\n", u8Interrupt, rc));
4054 if (RT_SUCCESS(rc))
4055 {
4056 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4057 env->interrupt_request |= CPU_INTERRUPT_HARD;
4058 return u8Interrupt;
4059 }
4060 return -1;
4061}
4062
4063
4064/* -+- local apic -+- */
4065
4066void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4067{
4068 int rc = PDMApicSetBase(env->pVM, val);
4069 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Rrc\n", val, rc)); NOREF(rc);
4070}
4071
4072uint64_t cpu_get_apic_base(CPUX86State *env)
4073{
4074 uint64_t u64;
4075 int rc = PDMApicGetBase(env->pVM, &u64);
4076 if (RT_SUCCESS(rc))
4077 {
4078 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4079 return u64;
4080 }
4081 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Rrc)\n", rc));
4082 return 0;
4083}
4084
4085void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4086{
4087 int rc = PDMApicSetTPR(env->pVM, val);
4088 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Rrc\n", val, rc)); NOREF(rc);
4089}
4090
4091uint8_t cpu_get_apic_tpr(CPUX86State *env)
4092{
4093 uint8_t u8;
4094 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4095 if (RT_SUCCESS(rc))
4096 {
4097 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4098 return u8;
4099 }
4100 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Rrc)\n", rc));
4101 return 0;
4102}
4103
4104
4105uint64_t cpu_apic_rdmsr(CPUX86State *env, uint32_t reg)
4106{
4107 uint64_t value;
4108 int rc = PDMApicReadMSR(env->pVM, 0/* cpu */, reg, &value);
4109 if (RT_SUCCESS(rc))
4110 {
4111 LogFlow(("cpu_apic_rdms returns %#x\n", value));
4112 return value;
4113 }
4114 /** @todo: exception ? */
4115 LogFlow(("cpu_apic_rdms returns 0 (rc=%Rrc)\n", rc));
4116 return value;
4117}
4118
4119void cpu_apic_wrmsr(CPUX86State *env, uint32_t reg, uint64_t value)
4120{
4121 int rc = PDMApicWriteMSR(env->pVM, 0 /* cpu */, reg, value);
4122 /** @todo: exception if error ? */
4123 LogFlow(("cpu_apic_wrmsr: rc=%Rrc\n", rc)); NOREF(rc);
4124}
4125
4126uint64_t cpu_rdmsr(CPUX86State *env, uint32_t msr)
4127{
4128 return CPUMGetGuestMsr(env->pVM, msr);
4129}
4130
4131void cpu_wrmsr(CPUX86State *env, uint32_t msr, uint64_t val)
4132{
4133 CPUMSetGuestMsr(env->pVM, msr, val);
4134}
4135/* -+- I/O Ports -+- */
4136
4137#undef LOG_GROUP
4138#define LOG_GROUP LOG_GROUP_REM_IOPORT
4139
4140void cpu_outb(CPUState *env, int addr, int val)
4141{
4142 int rc;
4143
4144 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4145 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4146
4147 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4148 if (RT_LIKELY(rc == VINF_SUCCESS))
4149 return;
4150 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4151 {
4152 Log(("cpu_outb: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4153 remR3RaiseRC(env->pVM, rc);
4154 return;
4155 }
4156 remAbort(rc, __FUNCTION__);
4157}
4158
4159void cpu_outw(CPUState *env, int addr, int val)
4160{
4161 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4162 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4163 if (RT_LIKELY(rc == VINF_SUCCESS))
4164 return;
4165 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4166 {
4167 Log(("cpu_outw: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4168 remR3RaiseRC(env->pVM, rc);
4169 return;
4170 }
4171 remAbort(rc, __FUNCTION__);
4172}
4173
4174void cpu_outl(CPUState *env, int addr, int val)
4175{
4176 int rc;
4177 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4178 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4179 if (RT_LIKELY(rc == VINF_SUCCESS))
4180 return;
4181 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4182 {
4183 Log(("cpu_outl: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4184 remR3RaiseRC(env->pVM, rc);
4185 return;
4186 }
4187 remAbort(rc, __FUNCTION__);
4188}
4189
4190int cpu_inb(CPUState *env, int addr)
4191{
4192 uint32_t u32 = 0;
4193 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4194 if (RT_LIKELY(rc == VINF_SUCCESS))
4195 {
4196 if (/*addr != 0x61 && */addr != 0x71)
4197 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4198 return (int)u32;
4199 }
4200 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4201 {
4202 Log(("cpu_inb: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4203 remR3RaiseRC(env->pVM, rc);
4204 return (int)u32;
4205 }
4206 remAbort(rc, __FUNCTION__);
4207 return 0xff;
4208}
4209
4210int cpu_inw(CPUState *env, int addr)
4211{
4212 uint32_t u32 = 0;
4213 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4214 if (RT_LIKELY(rc == VINF_SUCCESS))
4215 {
4216 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4217 return (int)u32;
4218 }
4219 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4220 {
4221 Log(("cpu_inw: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4222 remR3RaiseRC(env->pVM, rc);
4223 return (int)u32;
4224 }
4225 remAbort(rc, __FUNCTION__);
4226 return 0xffff;
4227}
4228
4229int cpu_inl(CPUState *env, int addr)
4230{
4231 uint32_t u32 = 0;
4232 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4233 if (RT_LIKELY(rc == VINF_SUCCESS))
4234 {
4235//if (addr==0x01f0 && u32 == 0x6b6d)
4236// loglevel = ~0;
4237 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4238 return (int)u32;
4239 }
4240 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4241 {
4242 Log(("cpu_inl: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4243 remR3RaiseRC(env->pVM, rc);
4244 return (int)u32;
4245 }
4246 remAbort(rc, __FUNCTION__);
4247 return 0xffffffff;
4248}
4249
4250#undef LOG_GROUP
4251#define LOG_GROUP LOG_GROUP_REM
4252
4253
4254/* -+- helpers and misc other interfaces -+- */
4255
4256/**
4257 * Perform the CPUID instruction.
4258 *
4259 * ASMCpuId cannot be invoked from some source files where this is used because of global
4260 * register allocations.
4261 *
4262 * @param env Pointer to the recompiler CPU structure.
4263 * @param uOperator CPUID operation (eax).
4264 * @param pvEAX Where to store eax.
4265 * @param pvEBX Where to store ebx.
4266 * @param pvECX Where to store ecx.
4267 * @param pvEDX Where to store edx.
4268 */
4269void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4270{
4271 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4272}
4273
4274
4275#if 0 /* not used */
4276/**
4277 * Interface for qemu hardware to report back fatal errors.
4278 */
4279void hw_error(const char *pszFormat, ...)
4280{
4281 /*
4282 * Bitch about it.
4283 */
4284 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4285 * this in my Odin32 tree at home! */
4286 va_list args;
4287 va_start(args, pszFormat);
4288 RTLogPrintf("fatal error in virtual hardware:");
4289 RTLogPrintfV(pszFormat, args);
4290 va_end(args);
4291 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4292
4293 /*
4294 * If we're in REM context we'll sync back the state before 'jumping' to
4295 * the EMs failure handling.
4296 */
4297 PVM pVM = cpu_single_env->pVM;
4298 if (pVM->rem.s.fInREM)
4299 REMR3StateBack(pVM);
4300 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4301 AssertMsgFailed(("EMR3FatalError returned!\n"));
4302}
4303#endif
4304
4305/**
4306 * Interface for the qemu cpu to report unhandled situation
4307 * raising a fatal VM error.
4308 */
4309void cpu_abort(CPUState *env, const char *pszFormat, ...)
4310{
4311 va_list args;
4312 PVM pVM;
4313
4314 /*
4315 * Bitch about it.
4316 */
4317#ifndef _MSC_VER
4318 /** @todo: MSVC is right - it's not valid C */
4319 RTLogFlags(NULL, "nodisabled nobuffered");
4320#endif
4321 va_start(args, pszFormat);
4322 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4323 va_end(args);
4324 va_start(args, pszFormat);
4325 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4326 va_end(args);
4327
4328 /*
4329 * If we're in REM context we'll sync back the state before 'jumping' to
4330 * the EMs failure handling.
4331 */
4332 pVM = cpu_single_env->pVM;
4333 if (pVM->rem.s.fInREM)
4334 REMR3StateBack(pVM);
4335 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4336 AssertMsgFailed(("EMR3FatalError returned!\n"));
4337}
4338
4339
4340/**
4341 * Aborts the VM.
4342 *
4343 * @param rc VBox error code.
4344 * @param pszTip Hint about why/when this happend.
4345 */
4346void remAbort(int rc, const char *pszTip)
4347{
4348 PVM pVM;
4349
4350 /*
4351 * Bitch about it.
4352 */
4353 RTLogPrintf("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip);
4354 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip));
4355
4356 /*
4357 * Jump back to where we entered the recompiler.
4358 */
4359 pVM = cpu_single_env->pVM;
4360 if (pVM->rem.s.fInREM)
4361 REMR3StateBack(pVM);
4362 EMR3FatalError(pVM, rc);
4363 AssertMsgFailed(("EMR3FatalError returned!\n"));
4364}
4365
4366
4367/**
4368 * Dumps a linux system call.
4369 * @param pVM VM handle.
4370 */
4371void remR3DumpLnxSyscall(PVM pVM)
4372{
4373 static const char *apsz[] =
4374 {
4375 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4376 "sys_exit",
4377 "sys_fork",
4378 "sys_read",
4379 "sys_write",
4380 "sys_open", /* 5 */
4381 "sys_close",
4382 "sys_waitpid",
4383 "sys_creat",
4384 "sys_link",
4385 "sys_unlink", /* 10 */
4386 "sys_execve",
4387 "sys_chdir",
4388 "sys_time",
4389 "sys_mknod",
4390 "sys_chmod", /* 15 */
4391 "sys_lchown16",
4392 "sys_ni_syscall", /* old break syscall holder */
4393 "sys_stat",
4394 "sys_lseek",
4395 "sys_getpid", /* 20 */
4396 "sys_mount",
4397 "sys_oldumount",
4398 "sys_setuid16",
4399 "sys_getuid16",
4400 "sys_stime", /* 25 */
4401 "sys_ptrace",
4402 "sys_alarm",
4403 "sys_fstat",
4404 "sys_pause",
4405 "sys_utime", /* 30 */
4406 "sys_ni_syscall", /* old stty syscall holder */
4407 "sys_ni_syscall", /* old gtty syscall holder */
4408 "sys_access",
4409 "sys_nice",
4410 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4411 "sys_sync",
4412 "sys_kill",
4413 "sys_rename",
4414 "sys_mkdir",
4415 "sys_rmdir", /* 40 */
4416 "sys_dup",
4417 "sys_pipe",
4418 "sys_times",
4419 "sys_ni_syscall", /* old prof syscall holder */
4420 "sys_brk", /* 45 */
4421 "sys_setgid16",
4422 "sys_getgid16",
4423 "sys_signal",
4424 "sys_geteuid16",
4425 "sys_getegid16", /* 50 */
4426 "sys_acct",
4427 "sys_umount", /* recycled never used phys() */
4428 "sys_ni_syscall", /* old lock syscall holder */
4429 "sys_ioctl",
4430 "sys_fcntl", /* 55 */
4431 "sys_ni_syscall", /* old mpx syscall holder */
4432 "sys_setpgid",
4433 "sys_ni_syscall", /* old ulimit syscall holder */
4434 "sys_olduname",
4435 "sys_umask", /* 60 */
4436 "sys_chroot",
4437 "sys_ustat",
4438 "sys_dup2",
4439 "sys_getppid",
4440 "sys_getpgrp", /* 65 */
4441 "sys_setsid",
4442 "sys_sigaction",
4443 "sys_sgetmask",
4444 "sys_ssetmask",
4445 "sys_setreuid16", /* 70 */
4446 "sys_setregid16",
4447 "sys_sigsuspend",
4448 "sys_sigpending",
4449 "sys_sethostname",
4450 "sys_setrlimit", /* 75 */
4451 "sys_old_getrlimit",
4452 "sys_getrusage",
4453 "sys_gettimeofday",
4454 "sys_settimeofday",
4455 "sys_getgroups16", /* 80 */
4456 "sys_setgroups16",
4457 "old_select",
4458 "sys_symlink",
4459 "sys_lstat",
4460 "sys_readlink", /* 85 */
4461 "sys_uselib",
4462 "sys_swapon",
4463 "sys_reboot",
4464 "old_readdir",
4465 "old_mmap", /* 90 */
4466 "sys_munmap",
4467 "sys_truncate",
4468 "sys_ftruncate",
4469 "sys_fchmod",
4470 "sys_fchown16", /* 95 */
4471 "sys_getpriority",
4472 "sys_setpriority",
4473 "sys_ni_syscall", /* old profil syscall holder */
4474 "sys_statfs",
4475 "sys_fstatfs", /* 100 */
4476 "sys_ioperm",
4477 "sys_socketcall",
4478 "sys_syslog",
4479 "sys_setitimer",
4480 "sys_getitimer", /* 105 */
4481 "sys_newstat",
4482 "sys_newlstat",
4483 "sys_newfstat",
4484 "sys_uname",
4485 "sys_iopl", /* 110 */
4486 "sys_vhangup",
4487 "sys_ni_syscall", /* old "idle" system call */
4488 "sys_vm86old",
4489 "sys_wait4",
4490 "sys_swapoff", /* 115 */
4491 "sys_sysinfo",
4492 "sys_ipc",
4493 "sys_fsync",
4494 "sys_sigreturn",
4495 "sys_clone", /* 120 */
4496 "sys_setdomainname",
4497 "sys_newuname",
4498 "sys_modify_ldt",
4499 "sys_adjtimex",
4500 "sys_mprotect", /* 125 */
4501 "sys_sigprocmask",
4502 "sys_ni_syscall", /* old "create_module" */
4503 "sys_init_module",
4504 "sys_delete_module",
4505 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4506 "sys_quotactl",
4507 "sys_getpgid",
4508 "sys_fchdir",
4509 "sys_bdflush",
4510 "sys_sysfs", /* 135 */
4511 "sys_personality",
4512 "sys_ni_syscall", /* reserved for afs_syscall */
4513 "sys_setfsuid16",
4514 "sys_setfsgid16",
4515 "sys_llseek", /* 140 */
4516 "sys_getdents",
4517 "sys_select",
4518 "sys_flock",
4519 "sys_msync",
4520 "sys_readv", /* 145 */
4521 "sys_writev",
4522 "sys_getsid",
4523 "sys_fdatasync",
4524 "sys_sysctl",
4525 "sys_mlock", /* 150 */
4526 "sys_munlock",
4527 "sys_mlockall",
4528 "sys_munlockall",
4529 "sys_sched_setparam",
4530 "sys_sched_getparam", /* 155 */
4531 "sys_sched_setscheduler",
4532 "sys_sched_getscheduler",
4533 "sys_sched_yield",
4534 "sys_sched_get_priority_max",
4535 "sys_sched_get_priority_min", /* 160 */
4536 "sys_sched_rr_get_interval",
4537 "sys_nanosleep",
4538 "sys_mremap",
4539 "sys_setresuid16",
4540 "sys_getresuid16", /* 165 */
4541 "sys_vm86",
4542 "sys_ni_syscall", /* Old sys_query_module */
4543 "sys_poll",
4544 "sys_nfsservctl",
4545 "sys_setresgid16", /* 170 */
4546 "sys_getresgid16",
4547 "sys_prctl",
4548 "sys_rt_sigreturn",
4549 "sys_rt_sigaction",
4550 "sys_rt_sigprocmask", /* 175 */
4551 "sys_rt_sigpending",
4552 "sys_rt_sigtimedwait",
4553 "sys_rt_sigqueueinfo",
4554 "sys_rt_sigsuspend",
4555 "sys_pread64", /* 180 */
4556 "sys_pwrite64",
4557 "sys_chown16",
4558 "sys_getcwd",
4559 "sys_capget",
4560 "sys_capset", /* 185 */
4561 "sys_sigaltstack",
4562 "sys_sendfile",
4563 "sys_ni_syscall", /* reserved for streams1 */
4564 "sys_ni_syscall", /* reserved for streams2 */
4565 "sys_vfork", /* 190 */
4566 "sys_getrlimit",
4567 "sys_mmap2",
4568 "sys_truncate64",
4569 "sys_ftruncate64",
4570 "sys_stat64", /* 195 */
4571 "sys_lstat64",
4572 "sys_fstat64",
4573 "sys_lchown",
4574 "sys_getuid",
4575 "sys_getgid", /* 200 */
4576 "sys_geteuid",
4577 "sys_getegid",
4578 "sys_setreuid",
4579 "sys_setregid",
4580 "sys_getgroups", /* 205 */
4581 "sys_setgroups",
4582 "sys_fchown",
4583 "sys_setresuid",
4584 "sys_getresuid",
4585 "sys_setresgid", /* 210 */
4586 "sys_getresgid",
4587 "sys_chown",
4588 "sys_setuid",
4589 "sys_setgid",
4590 "sys_setfsuid", /* 215 */
4591 "sys_setfsgid",
4592 "sys_pivot_root",
4593 "sys_mincore",
4594 "sys_madvise",
4595 "sys_getdents64", /* 220 */
4596 "sys_fcntl64",
4597 "sys_ni_syscall", /* reserved for TUX */
4598 "sys_ni_syscall",
4599 "sys_gettid",
4600 "sys_readahead", /* 225 */
4601 "sys_setxattr",
4602 "sys_lsetxattr",
4603 "sys_fsetxattr",
4604 "sys_getxattr",
4605 "sys_lgetxattr", /* 230 */
4606 "sys_fgetxattr",
4607 "sys_listxattr",
4608 "sys_llistxattr",
4609 "sys_flistxattr",
4610 "sys_removexattr", /* 235 */
4611 "sys_lremovexattr",
4612 "sys_fremovexattr",
4613 "sys_tkill",
4614 "sys_sendfile64",
4615 "sys_futex", /* 240 */
4616 "sys_sched_setaffinity",
4617 "sys_sched_getaffinity",
4618 "sys_set_thread_area",
4619 "sys_get_thread_area",
4620 "sys_io_setup", /* 245 */
4621 "sys_io_destroy",
4622 "sys_io_getevents",
4623 "sys_io_submit",
4624 "sys_io_cancel",
4625 "sys_fadvise64", /* 250 */
4626 "sys_ni_syscall",
4627 "sys_exit_group",
4628 "sys_lookup_dcookie",
4629 "sys_epoll_create",
4630 "sys_epoll_ctl", /* 255 */
4631 "sys_epoll_wait",
4632 "sys_remap_file_pages",
4633 "sys_set_tid_address",
4634 "sys_timer_create",
4635 "sys_timer_settime", /* 260 */
4636 "sys_timer_gettime",
4637 "sys_timer_getoverrun",
4638 "sys_timer_delete",
4639 "sys_clock_settime",
4640 "sys_clock_gettime", /* 265 */
4641 "sys_clock_getres",
4642 "sys_clock_nanosleep",
4643 "sys_statfs64",
4644 "sys_fstatfs64",
4645 "sys_tgkill", /* 270 */
4646 "sys_utimes",
4647 "sys_fadvise64_64",
4648 "sys_ni_syscall" /* sys_vserver */
4649 };
4650
4651 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4652 switch (uEAX)
4653 {
4654 default:
4655 if (uEAX < RT_ELEMENTS(apsz))
4656 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4657 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4658 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4659 else
4660 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4661 break;
4662
4663 }
4664}
4665
4666
4667/**
4668 * Dumps an OpenBSD system call.
4669 * @param pVM VM handle.
4670 */
4671void remR3DumpOBsdSyscall(PVM pVM)
4672{
4673 static const char *apsz[] =
4674 {
4675 "SYS_syscall", //0
4676 "SYS_exit", //1
4677 "SYS_fork", //2
4678 "SYS_read", //3
4679 "SYS_write", //4
4680 "SYS_open", //5
4681 "SYS_close", //6
4682 "SYS_wait4", //7
4683 "SYS_8",
4684 "SYS_link", //9
4685 "SYS_unlink", //10
4686 "SYS_11",
4687 "SYS_chdir", //12
4688 "SYS_fchdir", //13
4689 "SYS_mknod", //14
4690 "SYS_chmod", //15
4691 "SYS_chown", //16
4692 "SYS_break", //17
4693 "SYS_18",
4694 "SYS_19",
4695 "SYS_getpid", //20
4696 "SYS_mount", //21
4697 "SYS_unmount", //22
4698 "SYS_setuid", //23
4699 "SYS_getuid", //24
4700 "SYS_geteuid", //25
4701 "SYS_ptrace", //26
4702 "SYS_recvmsg", //27
4703 "SYS_sendmsg", //28
4704 "SYS_recvfrom", //29
4705 "SYS_accept", //30
4706 "SYS_getpeername", //31
4707 "SYS_getsockname", //32
4708 "SYS_access", //33
4709 "SYS_chflags", //34
4710 "SYS_fchflags", //35
4711 "SYS_sync", //36
4712 "SYS_kill", //37
4713 "SYS_38",
4714 "SYS_getppid", //39
4715 "SYS_40",
4716 "SYS_dup", //41
4717 "SYS_opipe", //42
4718 "SYS_getegid", //43
4719 "SYS_profil", //44
4720 "SYS_ktrace", //45
4721 "SYS_sigaction", //46
4722 "SYS_getgid", //47
4723 "SYS_sigprocmask", //48
4724 "SYS_getlogin", //49
4725 "SYS_setlogin", //50
4726 "SYS_acct", //51
4727 "SYS_sigpending", //52
4728 "SYS_osigaltstack", //53
4729 "SYS_ioctl", //54
4730 "SYS_reboot", //55
4731 "SYS_revoke", //56
4732 "SYS_symlink", //57
4733 "SYS_readlink", //58
4734 "SYS_execve", //59
4735 "SYS_umask", //60
4736 "SYS_chroot", //61
4737 "SYS_62",
4738 "SYS_63",
4739 "SYS_64",
4740 "SYS_65",
4741 "SYS_vfork", //66
4742 "SYS_67",
4743 "SYS_68",
4744 "SYS_sbrk", //69
4745 "SYS_sstk", //70
4746 "SYS_61",
4747 "SYS_vadvise", //72
4748 "SYS_munmap", //73
4749 "SYS_mprotect", //74
4750 "SYS_madvise", //75
4751 "SYS_76",
4752 "SYS_77",
4753 "SYS_mincore", //78
4754 "SYS_getgroups", //79
4755 "SYS_setgroups", //80
4756 "SYS_getpgrp", //81
4757 "SYS_setpgid", //82
4758 "SYS_setitimer", //83
4759 "SYS_84",
4760 "SYS_85",
4761 "SYS_getitimer", //86
4762 "SYS_87",
4763 "SYS_88",
4764 "SYS_89",
4765 "SYS_dup2", //90
4766 "SYS_91",
4767 "SYS_fcntl", //92
4768 "SYS_select", //93
4769 "SYS_94",
4770 "SYS_fsync", //95
4771 "SYS_setpriority", //96
4772 "SYS_socket", //97
4773 "SYS_connect", //98
4774 "SYS_99",
4775 "SYS_getpriority", //100
4776 "SYS_101",
4777 "SYS_102",
4778 "SYS_sigreturn", //103
4779 "SYS_bind", //104
4780 "SYS_setsockopt", //105
4781 "SYS_listen", //106
4782 "SYS_107",
4783 "SYS_108",
4784 "SYS_109",
4785 "SYS_110",
4786 "SYS_sigsuspend", //111
4787 "SYS_112",
4788 "SYS_113",
4789 "SYS_114",
4790 "SYS_115",
4791 "SYS_gettimeofday", //116
4792 "SYS_getrusage", //117
4793 "SYS_getsockopt", //118
4794 "SYS_119",
4795 "SYS_readv", //120
4796 "SYS_writev", //121
4797 "SYS_settimeofday", //122
4798 "SYS_fchown", //123
4799 "SYS_fchmod", //124
4800 "SYS_125",
4801 "SYS_setreuid", //126
4802 "SYS_setregid", //127
4803 "SYS_rename", //128
4804 "SYS_129",
4805 "SYS_130",
4806 "SYS_flock", //131
4807 "SYS_mkfifo", //132
4808 "SYS_sendto", //133
4809 "SYS_shutdown", //134
4810 "SYS_socketpair", //135
4811 "SYS_mkdir", //136
4812 "SYS_rmdir", //137
4813 "SYS_utimes", //138
4814 "SYS_139",
4815 "SYS_adjtime", //140
4816 "SYS_141",
4817 "SYS_142",
4818 "SYS_143",
4819 "SYS_144",
4820 "SYS_145",
4821 "SYS_146",
4822 "SYS_setsid", //147
4823 "SYS_quotactl", //148
4824 "SYS_149",
4825 "SYS_150",
4826 "SYS_151",
4827 "SYS_152",
4828 "SYS_153",
4829 "SYS_154",
4830 "SYS_nfssvc", //155
4831 "SYS_156",
4832 "SYS_157",
4833 "SYS_158",
4834 "SYS_159",
4835 "SYS_160",
4836 "SYS_getfh", //161
4837 "SYS_162",
4838 "SYS_163",
4839 "SYS_164",
4840 "SYS_sysarch", //165
4841 "SYS_166",
4842 "SYS_167",
4843 "SYS_168",
4844 "SYS_169",
4845 "SYS_170",
4846 "SYS_171",
4847 "SYS_172",
4848 "SYS_pread", //173
4849 "SYS_pwrite", //174
4850 "SYS_175",
4851 "SYS_176",
4852 "SYS_177",
4853 "SYS_178",
4854 "SYS_179",
4855 "SYS_180",
4856 "SYS_setgid", //181
4857 "SYS_setegid", //182
4858 "SYS_seteuid", //183
4859 "SYS_lfs_bmapv", //184
4860 "SYS_lfs_markv", //185
4861 "SYS_lfs_segclean", //186
4862 "SYS_lfs_segwait", //187
4863 "SYS_188",
4864 "SYS_189",
4865 "SYS_190",
4866 "SYS_pathconf", //191
4867 "SYS_fpathconf", //192
4868 "SYS_swapctl", //193
4869 "SYS_getrlimit", //194
4870 "SYS_setrlimit", //195
4871 "SYS_getdirentries", //196
4872 "SYS_mmap", //197
4873 "SYS___syscall", //198
4874 "SYS_lseek", //199
4875 "SYS_truncate", //200
4876 "SYS_ftruncate", //201
4877 "SYS___sysctl", //202
4878 "SYS_mlock", //203
4879 "SYS_munlock", //204
4880 "SYS_205",
4881 "SYS_futimes", //206
4882 "SYS_getpgid", //207
4883 "SYS_xfspioctl", //208
4884 "SYS_209",
4885 "SYS_210",
4886 "SYS_211",
4887 "SYS_212",
4888 "SYS_213",
4889 "SYS_214",
4890 "SYS_215",
4891 "SYS_216",
4892 "SYS_217",
4893 "SYS_218",
4894 "SYS_219",
4895 "SYS_220",
4896 "SYS_semget", //221
4897 "SYS_222",
4898 "SYS_223",
4899 "SYS_224",
4900 "SYS_msgget", //225
4901 "SYS_msgsnd", //226
4902 "SYS_msgrcv", //227
4903 "SYS_shmat", //228
4904 "SYS_229",
4905 "SYS_shmdt", //230
4906 "SYS_231",
4907 "SYS_clock_gettime", //232
4908 "SYS_clock_settime", //233
4909 "SYS_clock_getres", //234
4910 "SYS_235",
4911 "SYS_236",
4912 "SYS_237",
4913 "SYS_238",
4914 "SYS_239",
4915 "SYS_nanosleep", //240
4916 "SYS_241",
4917 "SYS_242",
4918 "SYS_243",
4919 "SYS_244",
4920 "SYS_245",
4921 "SYS_246",
4922 "SYS_247",
4923 "SYS_248",
4924 "SYS_249",
4925 "SYS_minherit", //250
4926 "SYS_rfork", //251
4927 "SYS_poll", //252
4928 "SYS_issetugid", //253
4929 "SYS_lchown", //254
4930 "SYS_getsid", //255
4931 "SYS_msync", //256
4932 "SYS_257",
4933 "SYS_258",
4934 "SYS_259",
4935 "SYS_getfsstat", //260
4936 "SYS_statfs", //261
4937 "SYS_fstatfs", //262
4938 "SYS_pipe", //263
4939 "SYS_fhopen", //264
4940 "SYS_265",
4941 "SYS_fhstatfs", //266
4942 "SYS_preadv", //267
4943 "SYS_pwritev", //268
4944 "SYS_kqueue", //269
4945 "SYS_kevent", //270
4946 "SYS_mlockall", //271
4947 "SYS_munlockall", //272
4948 "SYS_getpeereid", //273
4949 "SYS_274",
4950 "SYS_275",
4951 "SYS_276",
4952 "SYS_277",
4953 "SYS_278",
4954 "SYS_279",
4955 "SYS_280",
4956 "SYS_getresuid", //281
4957 "SYS_setresuid", //282
4958 "SYS_getresgid", //283
4959 "SYS_setresgid", //284
4960 "SYS_285",
4961 "SYS_mquery", //286
4962 "SYS_closefrom", //287
4963 "SYS_sigaltstack", //288
4964 "SYS_shmget", //289
4965 "SYS_semop", //290
4966 "SYS_stat", //291
4967 "SYS_fstat", //292
4968 "SYS_lstat", //293
4969 "SYS_fhstat", //294
4970 "SYS___semctl", //295
4971 "SYS_shmctl", //296
4972 "SYS_msgctl", //297
4973 "SYS_MAXSYSCALL", //298
4974 //299
4975 //300
4976 };
4977 uint32_t uEAX;
4978 if (!LogIsEnabled())
4979 return;
4980 uEAX = CPUMGetGuestEAX(pVM);
4981 switch (uEAX)
4982 {
4983 default:
4984 if (uEAX < RT_ELEMENTS(apsz))
4985 {
4986 uint32_t au32Args[8] = {0};
4987 PGMPhysSimpleReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4988 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4989 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4990 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4991 }
4992 else
4993 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4994 break;
4995 }
4996}
4997
4998
4999#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
5000/**
5001 * The Dll main entry point (stub).
5002 */
5003bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5004{
5005 return true;
5006}
5007
5008void *memcpy(void *dst, const void *src, size_t size)
5009{
5010 uint8_t*pbDst = dst, *pbSrc = src;
5011 while (size-- > 0)
5012 *pbDst++ = *pbSrc++;
5013 return dst;
5014}
5015
5016#endif
5017
5018void cpu_smm_update(CPUState* env)
5019{
5020}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette