VirtualBox

source: vbox/trunk/src/recompiler_new/VBoxRecompiler.c@ 19219

Last change on this file since 19219 was 19141, checked in by vboxsync, 16 years ago

Action flags breakup.
Fixed PGM saved state loading of 2.2.2 images.
Reduced hacks in PATM state loading (fixups).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 157.4 KB
Line 
1/* $Id: VBoxRecompiler.c 19141 2009-04-23 13:52:18Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "osdep.h"
29#include "exec-all.h"
30#include "config.h"
31#include "cpu-all.h"
32
33#include <VBox/rem.h>
34#include <VBox/vmapi.h>
35#include <VBox/tm.h>
36#include <VBox/ssm.h>
37#include <VBox/em.h>
38#include <VBox/trpm.h>
39#include <VBox/iom.h>
40#include <VBox/mm.h>
41#include <VBox/pgm.h>
42#include <VBox/pdm.h>
43#include <VBox/dbgf.h>
44#include <VBox/dbg.h>
45#include <VBox/hwaccm.h>
46#include <VBox/patm.h>
47#include <VBox/csam.h>
48#include "REMInternal.h"
49#include <VBox/vm.h>
50#include <VBox/param.h>
51#include <VBox/err.h>
52
53#include <VBox/log.h>
54#include <iprt/semaphore.h>
55#include <iprt/asm.h>
56#include <iprt/assert.h>
57#include <iprt/thread.h>
58#include <iprt/string.h>
59
60/* Don't wanna include everything. */
61extern void cpu_exec_init_all(unsigned long tb_size);
62extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
63extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
64extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
65extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
66extern void tlb_flush(CPUState *env, int flush_global);
67extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
68extern void sync_ldtr(CPUX86State *env1, int selector);
69
70#ifdef VBOX_STRICT
71unsigned long get_phys_page_offset(target_ulong addr);
72#endif
73
74
75/*******************************************************************************
76* Defined Constants And Macros *
77*******************************************************************************/
78
79/** Copy 80-bit fpu register at pSrc to pDst.
80 * This is probably faster than *calling* memcpy.
81 */
82#define REM_COPY_FPU_REG(pDst, pSrc) \
83 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
84
85
86/*******************************************************************************
87* Internal Functions *
88*******************************************************************************/
89static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
90static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
91static void remR3StateUpdate(PVM pVM, PVMCPU pVCpu);
92static int remR3InitPhysRamSizeAndDirtyMap(PVM pVM, bool fGuarded);
93
94static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
95static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
96static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
97static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
98static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
99static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
100
101static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
102static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
103static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
104static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
105static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
107
108
109/*******************************************************************************
110* Global Variables *
111*******************************************************************************/
112
113/** @todo Move stats to REM::s some rainy day we have nothing do to. */
114#ifdef VBOX_WITH_STATISTICS
115static STAMPROFILEADV gStatExecuteSingleInstr;
116static STAMPROFILEADV gStatCompilationQEmu;
117static STAMPROFILEADV gStatRunCodeQEmu;
118static STAMPROFILEADV gStatTotalTimeQEmu;
119static STAMPROFILEADV gStatTimers;
120static STAMPROFILEADV gStatTBLookup;
121static STAMPROFILEADV gStatIRQ;
122static STAMPROFILEADV gStatRawCheck;
123static STAMPROFILEADV gStatMemRead;
124static STAMPROFILEADV gStatMemWrite;
125static STAMPROFILE gStatGCPhys2HCVirt;
126static STAMPROFILE gStatHCVirt2GCPhys;
127static STAMCOUNTER gStatCpuGetTSC;
128static STAMCOUNTER gStatRefuseTFInhibit;
129static STAMCOUNTER gStatRefuseVM86;
130static STAMCOUNTER gStatRefusePaging;
131static STAMCOUNTER gStatRefusePAE;
132static STAMCOUNTER gStatRefuseIOPLNot0;
133static STAMCOUNTER gStatRefuseIF0;
134static STAMCOUNTER gStatRefuseCode16;
135static STAMCOUNTER gStatRefuseWP0;
136static STAMCOUNTER gStatRefuseRing1or2;
137static STAMCOUNTER gStatRefuseCanExecute;
138static STAMCOUNTER gStatREMGDTChange;
139static STAMCOUNTER gStatREMIDTChange;
140static STAMCOUNTER gStatREMLDTRChange;
141static STAMCOUNTER gStatREMTRChange;
142static STAMCOUNTER gStatSelOutOfSync[6];
143static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
144static STAMCOUNTER gStatFlushTBs;
145#endif
146/* in exec.c */
147extern uint32_t tlb_flush_count;
148extern uint32_t tb_flush_count;
149extern uint32_t tb_phys_invalidate_count;
150
151/*
152 * Global stuff.
153 */
154
155/** MMIO read callbacks. */
156CPUReadMemoryFunc *g_apfnMMIORead[3] =
157{
158 remR3MMIOReadU8,
159 remR3MMIOReadU16,
160 remR3MMIOReadU32
161};
162
163/** MMIO write callbacks. */
164CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
165{
166 remR3MMIOWriteU8,
167 remR3MMIOWriteU16,
168 remR3MMIOWriteU32
169};
170
171/** Handler read callbacks. */
172CPUReadMemoryFunc *g_apfnHandlerRead[3] =
173{
174 remR3HandlerReadU8,
175 remR3HandlerReadU16,
176 remR3HandlerReadU32
177};
178
179/** Handler write callbacks. */
180CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
181{
182 remR3HandlerWriteU8,
183 remR3HandlerWriteU16,
184 remR3HandlerWriteU32
185};
186
187
188#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
189/*
190 * Debugger commands.
191 */
192static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
193
194/** '.remstep' arguments. */
195static const DBGCVARDESC g_aArgRemStep[] =
196{
197 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
198 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
199};
200
201/** Command descriptors. */
202static const DBGCCMD g_aCmds[] =
203{
204 {
205 .pszCmd ="remstep",
206 .cArgsMin = 0,
207 .cArgsMax = 1,
208 .paArgDescs = &g_aArgRemStep[0],
209 .cArgDescs = RT_ELEMENTS(g_aArgRemStep),
210 .pResultDesc = NULL,
211 .fFlags = 0,
212 .pfnHandler = remR3CmdDisasEnableStepping,
213 .pszSyntax = "[on/off]",
214 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
215 "If no arguments show the current state."
216 }
217};
218#endif
219
220/** Prologue code, must be in lower 4G to simplify jumps to/from generated code. */
221uint8_t *code_gen_prologue;
222
223
224/*******************************************************************************
225* Internal Functions *
226*******************************************************************************/
227void remAbort(int rc, const char *pszTip);
228extern int testmath(void);
229
230/* Put them here to avoid unused variable warning. */
231AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
232#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
233//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
234/* Why did this have to be identical?? */
235AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
236#else
237AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
238#endif
239
240
241/**
242 * Initializes the REM.
243 *
244 * @returns VBox status code.
245 * @param pVM The VM to operate on.
246 */
247REMR3DECL(int) REMR3Init(PVM pVM)
248{
249 uint32_t u32Dummy;
250 int rc;
251
252#ifdef VBOX_ENABLE_VBOXREM64
253 LogRel(("Using 64-bit aware REM\n"));
254#endif
255
256 /*
257 * Assert sanity.
258 */
259 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
260 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
261 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
262#if defined(DEBUG) && !defined(RT_OS_SOLARIS) && !defined(RT_OS_FREEBSD) /// @todo fix the solaris and freebsd math stuff.
263 Assert(!testmath());
264#endif
265
266 /*
267 * Init some internal data members.
268 */
269 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
270 pVM->rem.s.Env.pVM = pVM;
271#ifdef CPU_RAW_MODE_INIT
272 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
273#endif
274
275 /* ctx. */
276 pVM->rem.s.pCtx = NULL; /* set when executing code. */
277 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order has changed! REM depends on notification about ALL physical memory registrations\n"));
278
279 /* ignore all notifications */
280 pVM->rem.s.fIgnoreAll = true;
281
282 code_gen_prologue = RTMemExecAlloc(_1K);
283 AssertLogRelReturn(code_gen_prologue, VERR_NO_MEMORY);
284
285 cpu_exec_init_all(0);
286
287 /*
288 * Init the recompiler.
289 */
290 if (!cpu_x86_init(&pVM->rem.s.Env, "vbox"))
291 {
292 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
293 return VERR_GENERAL_FAILURE;
294 }
295 PVMCPU pVCpu = VMMGetCpu(pVM);
296 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
297 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
298
299 /* allocate code buffer for single instruction emulation. */
300 pVM->rem.s.Env.cbCodeBuffer = 4096;
301 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
302 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
303
304 /* finally, set the cpu_single_env global. */
305 cpu_single_env = &pVM->rem.s.Env;
306
307 /* Nothing is pending by default */
308 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
309
310 /*
311 * Register ram types.
312 */
313 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
314 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
315 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
316 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
317 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
318
319 /* stop ignoring. */
320 pVM->rem.s.fIgnoreAll = false;
321
322 /*
323 * Register the saved state data unit.
324 */
325 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
326 NULL, remR3Save, NULL,
327 NULL, remR3Load, NULL);
328 if (RT_FAILURE(rc))
329 return rc;
330
331#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
332 /*
333 * Debugger commands.
334 */
335 static bool fRegisteredCmds = false;
336 if (!fRegisteredCmds)
337 {
338 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
339 if (RT_SUCCESS(rc))
340 fRegisteredCmds = true;
341 }
342#endif
343
344#ifdef VBOX_WITH_STATISTICS
345 /*
346 * Statistics.
347 */
348 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
349 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
350 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
351 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
352 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
353 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
354 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
355 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
356 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
357 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
358 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
359 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
360
361 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
362
363 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
364 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
365 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
366 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
367 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
368 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
369 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
370 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
371 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
372 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
373 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
374
375 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
376 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
377 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
378 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
379
380 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
383 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
384 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
385 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
386
387 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
388 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
389 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
390 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
391 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
392 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
393
394 STAM_REG(pVM, &pVM->rem.s.Env.StatTbFlush, STAMTYPE_PROFILE, "/REM/TbFlush", STAMUNIT_TICKS_PER_CALL, "profiling tb_flush().");
395#endif /* VBOX_WITH_STATISTICS */
396
397 STAM_REL_REG(pVM, &tb_flush_count, STAMTYPE_U32_RESET, "/REM/TbFlushCount", STAMUNIT_OCCURENCES, "tb_flush() calls");
398 STAM_REL_REG(pVM, &tb_phys_invalidate_count, STAMTYPE_U32_RESET, "/REM/TbPhysInvldCount", STAMUNIT_OCCURENCES, "tb_phys_invalidate() calls");
399 STAM_REL_REG(pVM, &tlb_flush_count, STAMTYPE_U32_RESET, "/REM/TlbFlushCount", STAMUNIT_OCCURENCES, "tlb_flush() calls");
400
401
402#ifdef DEBUG_ALL_LOGGING
403 loglevel = ~0;
404# ifdef DEBUG_TMP_LOGGING
405 logfile = fopen("/tmp/vbox-qemu.log", "w");
406# endif
407#endif
408
409 return rc;
410}
411
412
413/**
414 * Finalizes the REM initialization.
415 *
416 * This is called after all components, devices and drivers has
417 * been initialized. Its main purpose it to finish the RAM related
418 * initialization.
419 *
420 * @returns VBox status code.
421 *
422 * @param pVM The VM handle.
423 */
424REMR3DECL(int) REMR3InitFinalize(PVM pVM)
425{
426 int rc;
427
428 /*
429 * Ram size & dirty bit map.
430 */
431 Assert(!pVM->rem.s.fGCPhysLastRamFixed);
432 pVM->rem.s.fGCPhysLastRamFixed = true;
433#ifdef RT_STRICT
434 rc = remR3InitPhysRamSizeAndDirtyMap(pVM, true /* fGuarded */);
435#else
436 rc = remR3InitPhysRamSizeAndDirtyMap(pVM, false /* fGuarded */);
437#endif
438 return rc;
439}
440
441
442/**
443 * Initializes phys_ram_size, phys_ram_dirty and phys_ram_dirty_size.
444 *
445 * @returns VBox status code.
446 * @param pVM The VM handle.
447 * @param fGuarded Whether to guard the map.
448 */
449static int remR3InitPhysRamSizeAndDirtyMap(PVM pVM, bool fGuarded)
450{
451 int rc = VINF_SUCCESS;
452 RTGCPHYS cb;
453
454 cb = pVM->rem.s.GCPhysLastRam + 1;
455 AssertLogRelMsgReturn(cb > pVM->rem.s.GCPhysLastRam,
456 ("GCPhysLastRam=%RGp - out of range\n", pVM->rem.s.GCPhysLastRam),
457 VERR_OUT_OF_RANGE);
458 phys_ram_size = cb;
459 phys_ram_dirty_size = cb >> PAGE_SHIFT;
460 AssertMsg(((RTGCPHYS)phys_ram_dirty_size << PAGE_SHIFT) == cb, ("%RGp\n", cb));
461
462 if (!fGuarded)
463 {
464 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
465 AssertLogRelMsgReturn(phys_ram_dirty, ("Failed to allocate %u bytes of dirty page map bytes\n", phys_ram_dirty_size), VERR_NO_MEMORY);
466 }
467 else
468 {
469 /*
470 * Fill it up the nearest 4GB RAM and leave at least _64KB of guard after it.
471 */
472 uint32_t cbBitmapAligned = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
473 uint32_t cbBitmapFull = RT_ALIGN_32(phys_ram_dirty_size, (_4G >> PAGE_SHIFT));
474 if (cbBitmapFull == cbBitmapAligned)
475 cbBitmapFull += _4G >> PAGE_SHIFT;
476 else if (cbBitmapFull - cbBitmapAligned < _64K)
477 cbBitmapFull += _64K;
478
479 phys_ram_dirty = RTMemPageAlloc(cbBitmapFull);
480 AssertLogRelMsgReturn(phys_ram_dirty, ("Failed to allocate %u bytes of dirty page map bytes\n", cbBitmapFull), VERR_NO_MEMORY);
481
482 rc = RTMemProtect(phys_ram_dirty + cbBitmapAligned, cbBitmapFull - cbBitmapAligned, RTMEM_PROT_NONE);
483 if (RT_FAILURE(rc))
484 {
485 RTMemPageFree(phys_ram_dirty);
486 AssertLogRelRCReturn(rc, rc);
487 }
488
489 phys_ram_dirty += cbBitmapAligned - phys_ram_dirty_size;
490 }
491
492 /* initialize it. */
493 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
494 return rc;
495}
496
497
498/**
499 * Terminates the REM.
500 *
501 * Termination means cleaning up and freeing all resources,
502 * the VM it self is at this point powered off or suspended.
503 *
504 * @returns VBox status code.
505 * @param pVM The VM to operate on.
506 */
507REMR3DECL(int) REMR3Term(PVM pVM)
508{
509#ifdef VBOX_WITH_STATISTICS
510 /*
511 * Statistics.
512 */
513 STAM_DEREG(pVM, &gStatExecuteSingleInstr);
514 STAM_DEREG(pVM, &gStatCompilationQEmu);
515 STAM_DEREG(pVM, &gStatRunCodeQEmu);
516 STAM_DEREG(pVM, &gStatTotalTimeQEmu);
517 STAM_DEREG(pVM, &gStatTimers);
518 STAM_DEREG(pVM, &gStatTBLookup);
519 STAM_DEREG(pVM, &gStatIRQ);
520 STAM_DEREG(pVM, &gStatRawCheck);
521 STAM_DEREG(pVM, &gStatMemRead);
522 STAM_DEREG(pVM, &gStatMemWrite);
523 STAM_DEREG(pVM, &gStatHCVirt2GCPhys);
524 STAM_DEREG(pVM, &gStatGCPhys2HCVirt);
525
526 STAM_DEREG(pVM, &gStatCpuGetTSC);
527
528 STAM_DEREG(pVM, &gStatRefuseTFInhibit);
529 STAM_DEREG(pVM, &gStatRefuseVM86);
530 STAM_DEREG(pVM, &gStatRefusePaging);
531 STAM_DEREG(pVM, &gStatRefusePAE);
532 STAM_DEREG(pVM, &gStatRefuseIOPLNot0);
533 STAM_DEREG(pVM, &gStatRefuseIF0);
534 STAM_DEREG(pVM, &gStatRefuseCode16);
535 STAM_DEREG(pVM, &gStatRefuseWP0);
536 STAM_DEREG(pVM, &gStatRefuseRing1or2);
537 STAM_DEREG(pVM, &gStatRefuseCanExecute);
538 STAM_DEREG(pVM, &gStatFlushTBs);
539
540 STAM_DEREG(pVM, &gStatREMGDTChange);
541 STAM_DEREG(pVM, &gStatREMLDTRChange);
542 STAM_DEREG(pVM, &gStatREMIDTChange);
543 STAM_DEREG(pVM, &gStatREMTRChange);
544
545 STAM_DEREG(pVM, &gStatSelOutOfSync[0]);
546 STAM_DEREG(pVM, &gStatSelOutOfSync[1]);
547 STAM_DEREG(pVM, &gStatSelOutOfSync[2]);
548 STAM_DEREG(pVM, &gStatSelOutOfSync[3]);
549 STAM_DEREG(pVM, &gStatSelOutOfSync[4]);
550 STAM_DEREG(pVM, &gStatSelOutOfSync[5]);
551
552 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[0]);
553 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[1]);
554 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[2]);
555 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[3]);
556 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[4]);
557 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[5]);
558
559 STAM_DEREG(pVM, &pVM->rem.s.Env.StatTbFlush);
560#endif /* VBOX_WITH_STATISTICS */
561
562 STAM_REL_DEREG(pVM, &tb_flush_count);
563 STAM_REL_DEREG(pVM, &tb_phys_invalidate_count);
564 STAM_REL_DEREG(pVM, &tlb_flush_count);
565
566 return VINF_SUCCESS;
567}
568
569
570/**
571 * The VM is being reset.
572 *
573 * For the REM component this means to call the cpu_reset() and
574 * reinitialize some state variables.
575 *
576 * @param pVM VM handle.
577 */
578REMR3DECL(void) REMR3Reset(PVM pVM)
579{
580 /*
581 * Reset the REM cpu.
582 */
583 pVM->rem.s.fIgnoreAll = true;
584 cpu_reset(&pVM->rem.s.Env);
585 pVM->rem.s.cInvalidatedPages = 0;
586 pVM->rem.s.fIgnoreAll = false;
587
588 /* Clear raw ring 0 init state */
589 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
590
591 /* Flush the TBs the next time we execute code here. */
592 pVM->rem.s.fFlushTBs = true;
593}
594
595
596/**
597 * Execute state save operation.
598 *
599 * @returns VBox status code.
600 * @param pVM VM Handle.
601 * @param pSSM SSM operation handle.
602 */
603static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
604{
605 PREM pRem = &pVM->rem.s;
606
607 /*
608 * Save the required CPU Env bits.
609 * (Not much because we're never in REM when doing the save.)
610 */
611 LogFlow(("remR3Save:\n"));
612 Assert(!pRem->fInREM);
613 SSMR3PutU32(pSSM, pRem->Env.hflags);
614 SSMR3PutU32(pSSM, ~0); /* separator */
615
616 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
617 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
618 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
619
620 return SSMR3PutU32(pSSM, ~0); /* terminator */
621}
622
623
624/**
625 * Execute state load operation.
626 *
627 * @returns VBox status code.
628 * @param pVM VM Handle.
629 * @param pSSM SSM operation handle.
630 * @param u32Version Data layout version.
631 */
632static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
633{
634 uint32_t u32Dummy;
635 uint32_t fRawRing0 = false;
636 uint32_t u32Sep;
637 unsigned i;
638 int rc;
639 PREM pRem;
640 LogFlow(("remR3Load:\n"));
641
642 /*
643 * Validate version.
644 */
645 if ( u32Version != REM_SAVED_STATE_VERSION
646 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
647 {
648 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
649 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
650 }
651
652 /*
653 * Do a reset to be on the safe side...
654 */
655 REMR3Reset(pVM);
656
657 /*
658 * Ignore all ignorable notifications.
659 * (Not doing this will cause serious trouble.)
660 */
661 pVM->rem.s.fIgnoreAll = true;
662
663 /*
664 * Load the required CPU Env bits.
665 * (Not much because we're never in REM when doing the save.)
666 */
667 pRem = &pVM->rem.s;
668 Assert(!pRem->fInREM);
669 SSMR3GetU32(pSSM, &pRem->Env.hflags);
670 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
671 {
672 /* Redundant REM CPU state has to be loaded, but can be ignored. */
673 CPUX86State_Ver16 temp;
674 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
675 }
676
677 rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
678 if (RT_FAILURE(rc))
679 return rc;
680 if (u32Sep != ~0U)
681 {
682 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
683 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
684 }
685
686 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
687 SSMR3GetUInt(pSSM, &fRawRing0);
688 if (fRawRing0)
689 pRem->Env.state |= CPU_RAW_RING0;
690
691 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
692 {
693 /*
694 * Load the REM stuff.
695 */
696 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
697 if (RT_FAILURE(rc))
698 return rc;
699 if (pRem->cInvalidatedPages > RT_ELEMENTS(pRem->aGCPtrInvalidatedPages))
700 {
701 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
702 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
703 }
704 for (i = 0; i < pRem->cInvalidatedPages; i++)
705 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
706 }
707
708 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
709 if (RT_FAILURE(rc))
710 return rc;
711
712 /* check the terminator. */
713 rc = SSMR3GetU32(pSSM, &u32Sep);
714 if (RT_FAILURE(rc))
715 return rc;
716 if (u32Sep != ~0U)
717 {
718 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
719 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
720 }
721
722 /*
723 * Get the CPUID features.
724 */
725 PVMCPU pVCpu = VMMGetCpu(pVM);
726 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
727 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
728
729 /*
730 * Sync the Load Flush the TLB
731 */
732 tlb_flush(&pRem->Env, 1);
733
734 /*
735 * Stop ignoring ignornable notifications.
736 */
737 pVM->rem.s.fIgnoreAll = false;
738
739 /*
740 * Sync the whole CPU state when executing code in the recompiler.
741 */
742 for (i=0;i<pVM->cCPUs;i++)
743 {
744 PVMCPU pVCpu = &pVM->aCpus[i];
745
746 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
747 }
748 return VINF_SUCCESS;
749}
750
751
752
753#undef LOG_GROUP
754#define LOG_GROUP LOG_GROUP_REM_RUN
755
756/**
757 * Single steps an instruction in recompiled mode.
758 *
759 * Before calling this function the REM state needs to be in sync with
760 * the VM. Call REMR3State() to perform the sync. It's only necessary
761 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
762 * and after calling REMR3StateBack().
763 *
764 * @returns VBox status code.
765 *
766 * @param pVM VM Handle.
767 * @param pVCpu VMCPU Handle.
768 */
769REMR3DECL(int) REMR3Step(PVM pVM, PVMCPU pVCpu)
770{
771 int rc, interrupt_request;
772 RTGCPTR GCPtrPC;
773 bool fBp;
774
775 /*
776 * Lock the REM - we don't wanna have anyone interrupting us
777 * while stepping - and enabled single stepping. We also ignore
778 * pending interrupts and suchlike.
779 */
780 interrupt_request = pVM->rem.s.Env.interrupt_request;
781 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
782 pVM->rem.s.Env.interrupt_request = 0;
783 cpu_single_step(&pVM->rem.s.Env, 1);
784
785 /*
786 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
787 */
788 GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
789 fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
790
791 /*
792 * Execute and handle the return code.
793 * We execute without enabling the cpu tick, so on success we'll
794 * just flip it on and off to make sure it moves
795 */
796 rc = cpu_exec(&pVM->rem.s.Env);
797 if (rc == EXCP_DEBUG)
798 {
799 TMCpuTickResume(pVCpu);
800 TMCpuTickPause(pVCpu);
801 TMVirtualResume(pVM);
802 TMVirtualPause(pVM);
803 rc = VINF_EM_DBG_STEPPED;
804 }
805 else
806 {
807 switch (rc)
808 {
809 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
810 case EXCP_HLT:
811 case EXCP_HALTED: rc = VINF_EM_HALT; break;
812 case EXCP_RC:
813 rc = pVM->rem.s.rc;
814 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
815 break;
816 case EXCP_EXECUTE_RAW:
817 case EXCP_EXECUTE_HWACC:
818 /** @todo: is it correct? No! */
819 rc = VINF_SUCCESS;
820 break;
821 default:
822 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
823 rc = VERR_INTERNAL_ERROR;
824 break;
825 }
826 }
827
828 /*
829 * Restore the stuff we changed to prevent interruption.
830 * Unlock the REM.
831 */
832 if (fBp)
833 {
834 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
835 Assert(rc2 == 0); NOREF(rc2);
836 }
837 cpu_single_step(&pVM->rem.s.Env, 0);
838 pVM->rem.s.Env.interrupt_request = interrupt_request;
839
840 return rc;
841}
842
843
844/**
845 * Set a breakpoint using the REM facilities.
846 *
847 * @returns VBox status code.
848 * @param pVM The VM handle.
849 * @param Address The breakpoint address.
850 * @thread The emulation thread.
851 */
852REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
853{
854 VM_ASSERT_EMT(pVM);
855 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
856 {
857 LogFlow(("REMR3BreakpointSet: Address=%RGv\n", Address));
858 return VINF_SUCCESS;
859 }
860 LogFlow(("REMR3BreakpointSet: Address=%RGv - failed!\n", Address));
861 return VERR_REM_NO_MORE_BP_SLOTS;
862}
863
864
865/**
866 * Clears a breakpoint set by REMR3BreakpointSet().
867 *
868 * @returns VBox status code.
869 * @param pVM The VM handle.
870 * @param Address The breakpoint address.
871 * @thread The emulation thread.
872 */
873REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
874{
875 VM_ASSERT_EMT(pVM);
876 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
877 {
878 LogFlow(("REMR3BreakpointClear: Address=%RGv\n", Address));
879 return VINF_SUCCESS;
880 }
881 LogFlow(("REMR3BreakpointClear: Address=%RGv - not found!\n", Address));
882 return VERR_REM_BP_NOT_FOUND;
883}
884
885
886/**
887 * Emulate an instruction.
888 *
889 * This function executes one instruction without letting anyone
890 * interrupt it. This is intended for being called while being in
891 * raw mode and thus will take care of all the state syncing between
892 * REM and the rest.
893 *
894 * @returns VBox status code.
895 * @param pVM VM handle.
896 * @param pVCpu VMCPU Handle.
897 */
898REMR3DECL(int) REMR3EmulateInstruction(PVM pVM, PVMCPU pVCpu)
899{
900 bool fFlushTBs;
901
902 int rc, rc2;
903 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
904
905 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
906 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
907 */
908 if (HWACCMIsEnabled(pVM))
909 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
910
911 /* Skip the TB flush as that's rather expensive and not necessary for single instruction emulation. */
912 fFlushTBs = pVM->rem.s.fFlushTBs;
913 pVM->rem.s.fFlushTBs = false;
914
915 /*
916 * Sync the state and enable single instruction / single stepping.
917 */
918 rc = REMR3State(pVM, pVCpu);
919 pVM->rem.s.fFlushTBs = fFlushTBs;
920 if (RT_SUCCESS(rc))
921 {
922 int interrupt_request = pVM->rem.s.Env.interrupt_request;
923 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
924 Assert(!pVM->rem.s.Env.singlestep_enabled);
925 /*
926 * Now we set the execute single instruction flag and enter the cpu_exec loop.
927 */
928 TMNotifyStartOfExecution(pVCpu);
929 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
930 rc = cpu_exec(&pVM->rem.s.Env);
931 TMNotifyEndOfExecution(pVCpu);
932 switch (rc)
933 {
934 /*
935 * Executed without anything out of the way happening.
936 */
937 case EXCP_SINGLE_INSTR:
938 rc = VINF_EM_RESCHEDULE;
939 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
940 break;
941
942 /*
943 * If we take a trap or start servicing a pending interrupt, we might end up here.
944 * (Timer thread or some other thread wishing EMT's attention.)
945 */
946 case EXCP_INTERRUPT:
947 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
948 rc = VINF_EM_RESCHEDULE;
949 break;
950
951 /*
952 * Single step, we assume!
953 * If there was a breakpoint there we're fucked now.
954 */
955 case EXCP_DEBUG:
956 {
957 /* breakpoint or single step? */
958 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
959 int iBP;
960 rc = VINF_EM_DBG_STEPPED;
961 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
962 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
963 {
964 rc = VINF_EM_DBG_BREAKPOINT;
965 break;
966 }
967 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
968 break;
969 }
970
971 /*
972 * hlt instruction.
973 */
974 case EXCP_HLT:
975 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
976 rc = VINF_EM_HALT;
977 break;
978
979 /*
980 * The VM has halted.
981 */
982 case EXCP_HALTED:
983 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
984 rc = VINF_EM_HALT;
985 break;
986
987 /*
988 * Switch to RAW-mode.
989 */
990 case EXCP_EXECUTE_RAW:
991 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
992 rc = VINF_EM_RESCHEDULE_RAW;
993 break;
994
995 /*
996 * Switch to hardware accelerated RAW-mode.
997 */
998 case EXCP_EXECUTE_HWACC:
999 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1000 rc = VINF_EM_RESCHEDULE_HWACC;
1001 break;
1002
1003 /*
1004 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1005 */
1006 case EXCP_RC:
1007 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
1008 rc = pVM->rem.s.rc;
1009 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1010 break;
1011
1012 /*
1013 * Figure out the rest when they arrive....
1014 */
1015 default:
1016 AssertMsgFailed(("rc=%d\n", rc));
1017 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
1018 rc = VINF_EM_RESCHEDULE;
1019 break;
1020 }
1021
1022 /*
1023 * Switch back the state.
1024 */
1025 pVM->rem.s.Env.interrupt_request = interrupt_request;
1026 rc2 = REMR3StateBack(pVM, pVCpu);
1027 AssertRC(rc2);
1028 }
1029
1030 Log2(("REMR3EmulateInstruction: returns %Rrc (cs:eip=%04x:%RGv)\n",
1031 rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1032 return rc;
1033}
1034
1035
1036/**
1037 * Runs code in recompiled mode.
1038 *
1039 * Before calling this function the REM state needs to be in sync with
1040 * the VM. Call REMR3State() to perform the sync. It's only necessary
1041 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
1042 * and after calling REMR3StateBack().
1043 *
1044 * @returns VBox status code.
1045 *
1046 * @param pVM VM Handle.
1047 * @param pVCpu VMCPU Handle.
1048 */
1049REMR3DECL(int) REMR3Run(PVM pVM, PVMCPU pVCpu)
1050{
1051 int rc;
1052 Log2(("REMR3Run: (cs:eip=%04x:%RGv)\n", pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1053 Assert(pVM->rem.s.fInREM);
1054
1055 TMNotifyStartOfExecution(pVCpu);
1056 rc = cpu_exec(&pVM->rem.s.Env);
1057 TMNotifyEndOfExecution(pVCpu);
1058 switch (rc)
1059 {
1060 /*
1061 * This happens when the execution was interrupted
1062 * by an external event, like pending timers.
1063 */
1064 case EXCP_INTERRUPT:
1065 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
1066 rc = VINF_SUCCESS;
1067 break;
1068
1069 /*
1070 * hlt instruction.
1071 */
1072 case EXCP_HLT:
1073 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1074 rc = VINF_EM_HALT;
1075 break;
1076
1077 /*
1078 * The VM has halted.
1079 */
1080 case EXCP_HALTED:
1081 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1082 rc = VINF_EM_HALT;
1083 break;
1084
1085 /*
1086 * Breakpoint/single step.
1087 */
1088 case EXCP_DEBUG:
1089 {
1090#if 0//def DEBUG_bird
1091 static int iBP = 0;
1092 printf("howdy, breakpoint! iBP=%d\n", iBP);
1093 switch (iBP)
1094 {
1095 case 0:
1096 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1097 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1098 //pVM->rem.s.Env.interrupt_request = 0;
1099 //pVM->rem.s.Env.exception_index = -1;
1100 //g_fInterruptDisabled = 1;
1101 rc = VINF_SUCCESS;
1102 asm("int3");
1103 break;
1104 default:
1105 asm("int3");
1106 break;
1107 }
1108 iBP++;
1109#else
1110 /* breakpoint or single step? */
1111 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1112 int iBP;
1113 rc = VINF_EM_DBG_STEPPED;
1114 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1115 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1116 {
1117 rc = VINF_EM_DBG_BREAKPOINT;
1118 break;
1119 }
1120 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
1121#endif
1122 break;
1123 }
1124
1125 /*
1126 * Switch to RAW-mode.
1127 */
1128 case EXCP_EXECUTE_RAW:
1129 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1130 rc = VINF_EM_RESCHEDULE_RAW;
1131 break;
1132
1133 /*
1134 * Switch to hardware accelerated RAW-mode.
1135 */
1136 case EXCP_EXECUTE_HWACC:
1137 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1138 rc = VINF_EM_RESCHEDULE_HWACC;
1139 break;
1140
1141 /** @todo missing VBOX_WITH_VMI/EXECP_PARAV_CALL */
1142 /*
1143 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1144 */
1145 case EXCP_RC:
1146 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
1147 rc = pVM->rem.s.rc;
1148 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1149 break;
1150
1151 /*
1152 * Figure out the rest when they arrive....
1153 */
1154 default:
1155 AssertMsgFailed(("rc=%d\n", rc));
1156 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1157 rc = VINF_SUCCESS;
1158 break;
1159 }
1160
1161 Log2(("REMR3Run: returns %Rrc (cs:eip=%04x:%RGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1162 return rc;
1163}
1164
1165
1166/**
1167 * Check if the cpu state is suitable for Raw execution.
1168 *
1169 * @returns boolean
1170 * @param env The CPU env struct.
1171 * @param eip The EIP to check this for (might differ from env->eip).
1172 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1173 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1174 *
1175 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1176 */
1177bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1178{
1179 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1180 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1181 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1182 uint32_t u32CR0;
1183
1184 /* Update counter. */
1185 env->pVM->rem.s.cCanExecuteRaw++;
1186
1187 if (HWACCMIsEnabled(env->pVM))
1188 {
1189 CPUMCTX Ctx;
1190
1191 env->state |= CPU_RAW_HWACC;
1192
1193 /*
1194 * Create partial context for HWACCMR3CanExecuteGuest
1195 */
1196 Ctx.cr0 = env->cr[0];
1197 Ctx.cr3 = env->cr[3];
1198 Ctx.cr4 = env->cr[4];
1199
1200 Ctx.tr = env->tr.selector;
1201 Ctx.trHid.u64Base = env->tr.base;
1202 Ctx.trHid.u32Limit = env->tr.limit;
1203 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1204
1205 Ctx.idtr.cbIdt = env->idt.limit;
1206 Ctx.idtr.pIdt = env->idt.base;
1207
1208 Ctx.gdtr.cbGdt = env->gdt.limit;
1209 Ctx.gdtr.pGdt = env->gdt.base;
1210
1211 Ctx.rsp = env->regs[R_ESP];
1212 Ctx.rip = env->eip;
1213
1214 Ctx.eflags.u32 = env->eflags;
1215
1216 Ctx.cs = env->segs[R_CS].selector;
1217 Ctx.csHid.u64Base = env->segs[R_CS].base;
1218 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1219 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1220
1221 Ctx.ds = env->segs[R_DS].selector;
1222 Ctx.dsHid.u64Base = env->segs[R_DS].base;
1223 Ctx.dsHid.u32Limit = env->segs[R_DS].limit;
1224 Ctx.dsHid.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1225
1226 Ctx.es = env->segs[R_ES].selector;
1227 Ctx.esHid.u64Base = env->segs[R_ES].base;
1228 Ctx.esHid.u32Limit = env->segs[R_ES].limit;
1229 Ctx.esHid.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1230
1231 Ctx.fs = env->segs[R_FS].selector;
1232 Ctx.fsHid.u64Base = env->segs[R_FS].base;
1233 Ctx.fsHid.u32Limit = env->segs[R_FS].limit;
1234 Ctx.fsHid.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1235
1236 Ctx.gs = env->segs[R_GS].selector;
1237 Ctx.gsHid.u64Base = env->segs[R_GS].base;
1238 Ctx.gsHid.u32Limit = env->segs[R_GS].limit;
1239 Ctx.gsHid.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1240
1241 Ctx.ss = env->segs[R_SS].selector;
1242 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1243 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1244 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1245
1246 Ctx.msrEFER = env->efer;
1247
1248 /* Hardware accelerated raw-mode:
1249 *
1250 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1251 */
1252 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1253 {
1254 *piException = EXCP_EXECUTE_HWACC;
1255 return true;
1256 }
1257 return false;
1258 }
1259
1260 /*
1261 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1262 * or 32 bits protected mode ring 0 code
1263 *
1264 * The tests are ordered by the likelyhood of being true during normal execution.
1265 */
1266 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1267 {
1268 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1269 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1270 return false;
1271 }
1272
1273#ifndef VBOX_RAW_V86
1274 if (fFlags & VM_MASK) {
1275 STAM_COUNTER_INC(&gStatRefuseVM86);
1276 Log2(("raw mode refused: VM_MASK\n"));
1277 return false;
1278 }
1279#endif
1280
1281 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1282 {
1283#ifndef DEBUG_bird
1284 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1285#endif
1286 return false;
1287 }
1288
1289 if (env->singlestep_enabled)
1290 {
1291 //Log2(("raw mode refused: Single step\n"));
1292 return false;
1293 }
1294
1295 if (env->nb_breakpoints > 0)
1296 {
1297 //Log2(("raw mode refused: Breakpoints\n"));
1298 return false;
1299 }
1300
1301 u32CR0 = env->cr[0];
1302 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1303 {
1304 STAM_COUNTER_INC(&gStatRefusePaging);
1305 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1306 return false;
1307 }
1308
1309 if (env->cr[4] & CR4_PAE_MASK)
1310 {
1311 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1312 {
1313 STAM_COUNTER_INC(&gStatRefusePAE);
1314 return false;
1315 }
1316 }
1317
1318 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1319 {
1320 if (!EMIsRawRing3Enabled(env->pVM))
1321 return false;
1322
1323 if (!(env->eflags & IF_MASK))
1324 {
1325 STAM_COUNTER_INC(&gStatRefuseIF0);
1326 Log2(("raw mode refused: IF (RawR3)\n"));
1327 return false;
1328 }
1329
1330 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1331 {
1332 STAM_COUNTER_INC(&gStatRefuseWP0);
1333 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1334 return false;
1335 }
1336 }
1337 else
1338 {
1339 if (!EMIsRawRing0Enabled(env->pVM))
1340 return false;
1341
1342 // Let's start with pure 32 bits ring 0 code first
1343 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1344 {
1345 STAM_COUNTER_INC(&gStatRefuseCode16);
1346 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1347 return false;
1348 }
1349
1350 // Only R0
1351 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1352 {
1353 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1354 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1355 return false;
1356 }
1357
1358 if (!(u32CR0 & CR0_WP_MASK))
1359 {
1360 STAM_COUNTER_INC(&gStatRefuseWP0);
1361 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1362 return false;
1363 }
1364
1365 if (PATMIsPatchGCAddr(env->pVM, eip))
1366 {
1367 Log2(("raw r0 mode forced: patch code\n"));
1368 *piException = EXCP_EXECUTE_RAW;
1369 return true;
1370 }
1371
1372#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1373 if (!(env->eflags & IF_MASK))
1374 {
1375 STAM_COUNTER_INC(&gStatRefuseIF0);
1376 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1377 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1378 return false;
1379 }
1380#endif
1381
1382 env->state |= CPU_RAW_RING0;
1383 }
1384
1385 /*
1386 * Don't reschedule the first time we're called, because there might be
1387 * special reasons why we're here that is not covered by the above checks.
1388 */
1389 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1390 {
1391 Log2(("raw mode refused: first scheduling\n"));
1392 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1393 return false;
1394 }
1395
1396 Assert(env->pVCpu && PGMPhysIsA20Enabled(env->pVCpu));
1397 *piException = EXCP_EXECUTE_RAW;
1398 return true;
1399}
1400
1401
1402/**
1403 * Fetches a code byte.
1404 *
1405 * @returns Success indicator (bool) for ease of use.
1406 * @param env The CPU environment structure.
1407 * @param GCPtrInstr Where to fetch code.
1408 * @param pu8Byte Where to store the byte on success
1409 */
1410bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1411{
1412 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1413 if (RT_SUCCESS(rc))
1414 return true;
1415 return false;
1416}
1417
1418
1419/**
1420 * Flush (or invalidate if you like) page table/dir entry.
1421 *
1422 * (invlpg instruction; tlb_flush_page)
1423 *
1424 * @param env Pointer to cpu environment.
1425 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1426 */
1427void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1428{
1429 PVM pVM = env->pVM;
1430 PCPUMCTX pCtx;
1431 int rc;
1432
1433 /*
1434 * When we're replaying invlpg instructions or restoring a saved
1435 * state we disable this path.
1436 */
1437 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1438 return;
1439 Log(("remR3FlushPage: GCPtr=%RGv\n", GCPtr));
1440 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1441
1442 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1443
1444 /*
1445 * Update the control registers before calling PGMFlushPage.
1446 */
1447 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1448 Assert(pCtx);
1449 pCtx->cr0 = env->cr[0];
1450 pCtx->cr3 = env->cr[3];
1451 if ((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME)
1452 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1453 pCtx->cr4 = env->cr[4];
1454
1455 /*
1456 * Let PGM do the rest.
1457 */
1458 Assert(env->pVCpu);
1459 rc = PGMInvalidatePage(env->pVCpu, GCPtr);
1460 if (RT_FAILURE(rc))
1461 {
1462 AssertMsgFailed(("remR3FlushPage %RGv failed with %d!!\n", GCPtr, rc));
1463 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1464 }
1465 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1466}
1467
1468
1469#ifndef REM_PHYS_ADDR_IN_TLB
1470/** Wrapper for PGMR3PhysTlbGCPhys2Ptr. */
1471void *remR3TlbGCPhys2Ptr(CPUState *env1, target_ulong physAddr, int fWritable)
1472{
1473 void *pv;
1474 int rc;
1475
1476 /* Address must be aligned enough to fiddle with lower bits */
1477 Assert((physAddr & 0x3) == 0);
1478
1479 rc = PGMR3PhysTlbGCPhys2Ptr(env1->pVM, physAddr, true /*fWritable*/, &pv);
1480 Assert( rc == VINF_SUCCESS
1481 || rc == VINF_PGM_PHYS_TLB_CATCH_WRITE
1482 || rc == VERR_PGM_PHYS_TLB_CATCH_ALL
1483 || rc == VERR_PGM_PHYS_TLB_UNASSIGNED);
1484 if (RT_FAILURE(rc))
1485 return (void *)1;
1486 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
1487 return (void *)((uintptr_t)pv | 2);
1488 return pv;
1489}
1490#endif /* REM_PHYS_ADDR_IN_TLB */
1491
1492
1493/**
1494 * Called from tlb_protect_code in order to write monitor a code page.
1495 *
1496 * @param env Pointer to the CPU environment.
1497 * @param GCPtr Code page to monitor
1498 */
1499void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1500{
1501#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1502 Assert(env->pVM->rem.s.fInREM);
1503 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1504 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1505 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1506 && !(env->eflags & VM_MASK) /* no V86 mode */
1507 && !HWACCMIsEnabled(env->pVM))
1508 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1509#endif
1510}
1511
1512
1513/**
1514 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1515 *
1516 * @param env Pointer to the CPU environment.
1517 * @param GCPtr Code page to monitor
1518 */
1519void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1520{
1521 Assert(env->pVM->rem.s.fInREM);
1522#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1523 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1524 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1525 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1526 && !(env->eflags & VM_MASK) /* no V86 mode */
1527 && !HWACCMIsEnabled(env->pVM))
1528 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1529#endif
1530}
1531
1532
1533/**
1534 * Called when the CPU is initialized, any of the CRx registers are changed or
1535 * when the A20 line is modified.
1536 *
1537 * @param env Pointer to the CPU environment.
1538 * @param fGlobal Set if the flush is global.
1539 */
1540void remR3FlushTLB(CPUState *env, bool fGlobal)
1541{
1542 PVM pVM = env->pVM;
1543 PCPUMCTX pCtx;
1544
1545 /*
1546 * When we're replaying invlpg instructions or restoring a saved
1547 * state we disable this path.
1548 */
1549 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1550 return;
1551 Assert(pVM->rem.s.fInREM);
1552
1553 /*
1554 * The caller doesn't check cr4, so we have to do that for ourselves.
1555 */
1556 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1557 fGlobal = true;
1558 Log(("remR3FlushTLB: CR0=%08RX64 CR3=%08RX64 CR4=%08RX64 %s\n", (uint64_t)env->cr[0], (uint64_t)env->cr[3], (uint64_t)env->cr[4], fGlobal ? " global" : ""));
1559
1560 /*
1561 * Update the control registers before calling PGMR3FlushTLB.
1562 */
1563 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1564 Assert(pCtx);
1565 pCtx->cr0 = env->cr[0];
1566 pCtx->cr3 = env->cr[3];
1567 if ((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME)
1568 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1569 pCtx->cr4 = env->cr[4];
1570
1571 /*
1572 * Let PGM do the rest.
1573 */
1574 Assert(env->pVCpu);
1575 PGMFlushTLB(env->pVCpu, env->cr[3], fGlobal);
1576}
1577
1578
1579/**
1580 * Called when any of the cr0, cr4 or efer registers is updated.
1581 *
1582 * @param env Pointer to the CPU environment.
1583 */
1584void remR3ChangeCpuMode(CPUState *env)
1585{
1586 PVM pVM = env->pVM;
1587 uint64_t efer;
1588 PCPUMCTX pCtx;
1589 int rc;
1590
1591 /*
1592 * When we're replaying loads or restoring a saved
1593 * state this path is disabled.
1594 */
1595 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1596 return;
1597 Assert(pVM->rem.s.fInREM);
1598
1599 /*
1600 * Update the control registers before calling PGMChangeMode()
1601 * as it may need to map whatever cr3 is pointing to.
1602 */
1603 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1604 Assert(pCtx);
1605 pCtx->cr0 = env->cr[0];
1606 pCtx->cr3 = env->cr[3];
1607 if ((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME)
1608 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1609 pCtx->cr4 = env->cr[4];
1610
1611#ifdef TARGET_X86_64
1612 efer = env->efer;
1613#else
1614 efer = 0;
1615#endif
1616 Assert(env->pVCpu);
1617 rc = PGMChangeMode(env->pVCpu, env->cr[0], env->cr[4], efer);
1618 if (rc != VINF_SUCCESS)
1619 {
1620 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
1621 {
1622 Log(("PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc -> remR3RaiseRC\n", env->cr[0], env->cr[4], efer, rc));
1623 remR3RaiseRC(env->pVM, rc);
1624 }
1625 else
1626 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], efer, rc);
1627 }
1628}
1629
1630
1631/**
1632 * Called from compiled code to run dma.
1633 *
1634 * @param env Pointer to the CPU environment.
1635 */
1636void remR3DmaRun(CPUState *env)
1637{
1638 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1639 PDMR3DmaRun(env->pVM);
1640 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1641}
1642
1643
1644/**
1645 * Called from compiled code to schedule pending timers in VMM
1646 *
1647 * @param env Pointer to the CPU environment.
1648 */
1649void remR3TimersRun(CPUState *env)
1650{
1651 LogFlow(("remR3TimersRun:\n"));
1652 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1653 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1654 TMR3TimerQueuesDo(env->pVM);
1655 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1656 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1657}
1658
1659
1660/**
1661 * Record trap occurance
1662 *
1663 * @returns VBox status code
1664 * @param env Pointer to the CPU environment.
1665 * @param uTrap Trap nr
1666 * @param uErrorCode Error code
1667 * @param pvNextEIP Next EIP
1668 */
1669int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, RTGCPTR pvNextEIP)
1670{
1671 PVM pVM = env->pVM;
1672#ifdef VBOX_WITH_STATISTICS
1673 static STAMCOUNTER s_aStatTrap[255];
1674 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1675#endif
1676
1677#ifdef VBOX_WITH_STATISTICS
1678 if (uTrap < 255)
1679 {
1680 if (!s_aRegisters[uTrap])
1681 {
1682 char szStatName[64];
1683 s_aRegisters[uTrap] = true;
1684 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1685 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1686 }
1687 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1688 }
1689#endif
1690 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1691 if( uTrap < 0x20
1692 && (env->cr[0] & X86_CR0_PE)
1693 && !(env->eflags & X86_EFL_VM))
1694 {
1695#ifdef DEBUG
1696 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1697#endif
1698 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1699 {
1700 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1701 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1702 return VERR_REM_TOO_MANY_TRAPS;
1703 }
1704 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1705 pVM->rem.s.cPendingExceptions = 1;
1706 pVM->rem.s.uPendingException = uTrap;
1707 pVM->rem.s.uPendingExcptEIP = env->eip;
1708 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1709 }
1710 else
1711 {
1712 pVM->rem.s.cPendingExceptions = 0;
1713 pVM->rem.s.uPendingException = uTrap;
1714 pVM->rem.s.uPendingExcptEIP = env->eip;
1715 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1716 }
1717 return VINF_SUCCESS;
1718}
1719
1720
1721/*
1722 * Clear current active trap
1723 *
1724 * @param pVM VM Handle.
1725 */
1726void remR3TrapClear(PVM pVM)
1727{
1728 pVM->rem.s.cPendingExceptions = 0;
1729 pVM->rem.s.uPendingException = 0;
1730 pVM->rem.s.uPendingExcptEIP = 0;
1731 pVM->rem.s.uPendingExcptCR2 = 0;
1732}
1733
1734
1735/*
1736 * Record previous call instruction addresses
1737 *
1738 * @param env Pointer to the CPU environment.
1739 */
1740void remR3RecordCall(CPUState *env)
1741{
1742 CSAMR3RecordCallAddress(env->pVM, env->eip);
1743}
1744
1745
1746/**
1747 * Syncs the internal REM state with the VM.
1748 *
1749 * This must be called before REMR3Run() is invoked whenever when the REM
1750 * state is not up to date. Calling it several times in a row is not
1751 * permitted.
1752 *
1753 * @returns VBox status code.
1754 *
1755 * @param pVM VM Handle.
1756 * @param pVCpu VMCPU Handle.
1757 *
1758 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1759 * no do this since the majority of the callers don't want any unnecessary of events
1760 * pending that would immediatly interrupt execution.
1761 */
1762REMR3DECL(int) REMR3State(PVM pVM, PVMCPU pVCpu)
1763{
1764 register const CPUMCTX *pCtx;
1765 register unsigned fFlags;
1766 bool fHiddenSelRegsValid;
1767 unsigned i;
1768 TRPMEVENT enmType;
1769 uint8_t u8TrapNo;
1770 int rc;
1771
1772 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1773 Log2(("REMR3State:\n"));
1774
1775 pVM->rem.s.Env.pVCpu = pVCpu;
1776 pCtx = pVM->rem.s.pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1777 fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1778
1779 Assert(!pVM->rem.s.fInREM);
1780 pVM->rem.s.fInStateSync = true;
1781
1782 /*
1783 * If we have to flush TBs, do that immediately.
1784 */
1785 if (pVM->rem.s.fFlushTBs)
1786 {
1787 STAM_COUNTER_INC(&gStatFlushTBs);
1788 tb_flush(&pVM->rem.s.Env);
1789 pVM->rem.s.fFlushTBs = false;
1790 }
1791
1792 /*
1793 * Copy the registers which require no special handling.
1794 */
1795#ifdef TARGET_X86_64
1796 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1797 Assert(R_EAX == 0);
1798 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1799 Assert(R_ECX == 1);
1800 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1801 Assert(R_EDX == 2);
1802 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1803 Assert(R_EBX == 3);
1804 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1805 Assert(R_ESP == 4);
1806 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1807 Assert(R_EBP == 5);
1808 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1809 Assert(R_ESI == 6);
1810 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1811 Assert(R_EDI == 7);
1812 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1813 pVM->rem.s.Env.regs[8] = pCtx->r8;
1814 pVM->rem.s.Env.regs[9] = pCtx->r9;
1815 pVM->rem.s.Env.regs[10] = pCtx->r10;
1816 pVM->rem.s.Env.regs[11] = pCtx->r11;
1817 pVM->rem.s.Env.regs[12] = pCtx->r12;
1818 pVM->rem.s.Env.regs[13] = pCtx->r13;
1819 pVM->rem.s.Env.regs[14] = pCtx->r14;
1820 pVM->rem.s.Env.regs[15] = pCtx->r15;
1821
1822 pVM->rem.s.Env.eip = pCtx->rip;
1823
1824 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1825#else
1826 Assert(R_EAX == 0);
1827 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1828 Assert(R_ECX == 1);
1829 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1830 Assert(R_EDX == 2);
1831 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1832 Assert(R_EBX == 3);
1833 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1834 Assert(R_ESP == 4);
1835 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1836 Assert(R_EBP == 5);
1837 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1838 Assert(R_ESI == 6);
1839 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1840 Assert(R_EDI == 7);
1841 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1842 pVM->rem.s.Env.eip = pCtx->eip;
1843
1844 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1845#endif
1846
1847 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1848
1849 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1850 for (i=0;i<8;i++)
1851 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
1852
1853 /*
1854 * Clear the halted hidden flag (the interrupt waking up the CPU can
1855 * have been dispatched in raw mode).
1856 */
1857 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1858
1859 /*
1860 * Replay invlpg?
1861 */
1862 if (pVM->rem.s.cInvalidatedPages)
1863 {
1864 RTUINT i;
1865
1866 pVM->rem.s.fIgnoreInvlPg = true;
1867 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1868 {
1869 Log2(("REMR3State: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1870 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1871 }
1872 pVM->rem.s.fIgnoreInvlPg = false;
1873 pVM->rem.s.cInvalidatedPages = 0;
1874 }
1875
1876 /* Replay notification changes? */
1877 if (pVM->rem.s.cHandlerNotifications)
1878 REMR3ReplayHandlerNotifications(pVM);
1879
1880 /* Update MSRs; before CRx registers! */
1881 pVM->rem.s.Env.efer = pCtx->msrEFER;
1882 pVM->rem.s.Env.star = pCtx->msrSTAR;
1883 pVM->rem.s.Env.pat = pCtx->msrPAT;
1884#ifdef TARGET_X86_64
1885 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1886 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1887 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1888 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1889
1890 /* Update the internal long mode activate flag according to the new EFER value. */
1891 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1892 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1893 else
1894 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1895#endif
1896
1897 /*
1898 * Registers which are rarely changed and require special handling / order when changed.
1899 */
1900 fFlags = CPUMGetAndClearChangedFlagsREM(pVCpu);
1901 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1902 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1903 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR
1904 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1905 {
1906 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1907 {
1908 pVM->rem.s.fIgnoreCR3Load = true;
1909 tlb_flush(&pVM->rem.s.Env, true);
1910 pVM->rem.s.fIgnoreCR3Load = false;
1911 }
1912
1913 /* CR4 before CR0! */
1914 if (fFlags & CPUM_CHANGED_CR4)
1915 {
1916 pVM->rem.s.fIgnoreCR3Load = true;
1917 pVM->rem.s.fIgnoreCpuMode = true;
1918 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1919 pVM->rem.s.fIgnoreCpuMode = false;
1920 pVM->rem.s.fIgnoreCR3Load = false;
1921 }
1922
1923 if (fFlags & CPUM_CHANGED_CR0)
1924 {
1925 pVM->rem.s.fIgnoreCR3Load = true;
1926 pVM->rem.s.fIgnoreCpuMode = true;
1927 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1928 pVM->rem.s.fIgnoreCpuMode = false;
1929 pVM->rem.s.fIgnoreCR3Load = false;
1930 }
1931
1932 if (fFlags & CPUM_CHANGED_CR3)
1933 {
1934 pVM->rem.s.fIgnoreCR3Load = true;
1935 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1936 pVM->rem.s.fIgnoreCR3Load = false;
1937 }
1938
1939 if (fFlags & CPUM_CHANGED_GDTR)
1940 {
1941 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1942 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1943 }
1944
1945 if (fFlags & CPUM_CHANGED_IDTR)
1946 {
1947 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1948 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1949 }
1950
1951 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1952 {
1953 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1954 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1955 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1956 }
1957
1958 if (fFlags & CPUM_CHANGED_LDTR)
1959 {
1960 if (fHiddenSelRegsValid)
1961 {
1962 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1963 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1964 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1965 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;
1966 }
1967 else
1968 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1969 }
1970
1971 if (fFlags & CPUM_CHANGED_CPUID)
1972 {
1973 uint32_t u32Dummy;
1974
1975 /*
1976 * Get the CPUID features.
1977 */
1978 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1979 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1980 }
1981
1982 /* Sync FPU state after CR4, CPUID and EFER (!). */
1983 if (fFlags & CPUM_CHANGED_FPU_REM)
1984 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1985 }
1986
1987 /*
1988 * Sync TR unconditionally to make life simpler.
1989 */
1990 pVM->rem.s.Env.tr.selector = pCtx->tr;
1991 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1992 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1993 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;
1994 /* Note! do_interrupt will fault if the busy flag is still set... */
1995 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1996
1997 /*
1998 * Update selector registers.
1999 * This must be done *after* we've synced gdt, ldt and crX registers
2000 * since we're reading the GDT/LDT om sync_seg. This will happen with
2001 * saved state which takes a quick dip into rawmode for instance.
2002 */
2003 /*
2004 * Stack; Note first check this one as the CPL might have changed. The
2005 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
2006 */
2007
2008 if (fHiddenSelRegsValid)
2009 {
2010 /* The hidden selector registers are valid in the CPU context. */
2011 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
2012
2013 /* Set current CPL */
2014 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(pCtx)));
2015
2016 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
2017 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
2018 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
2019 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
2020 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
2021 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
2022 }
2023 else
2024 {
2025 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
2026 if (pVM->rem.s.Env.segs[R_SS].selector != pCtx->ss)
2027 {
2028 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
2029
2030 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(pCtx)));
2031 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
2032#ifdef VBOX_WITH_STATISTICS
2033 if (pVM->rem.s.Env.segs[R_SS].newselector)
2034 {
2035 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
2036 }
2037#endif
2038 }
2039 else
2040 pVM->rem.s.Env.segs[R_SS].newselector = 0;
2041
2042 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
2043 {
2044 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
2045 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
2046#ifdef VBOX_WITH_STATISTICS
2047 if (pVM->rem.s.Env.segs[R_ES].newselector)
2048 {
2049 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
2050 }
2051#endif
2052 }
2053 else
2054 pVM->rem.s.Env.segs[R_ES].newselector = 0;
2055
2056 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
2057 {
2058 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
2059 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
2060#ifdef VBOX_WITH_STATISTICS
2061 if (pVM->rem.s.Env.segs[R_CS].newselector)
2062 {
2063 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
2064 }
2065#endif
2066 }
2067 else
2068 pVM->rem.s.Env.segs[R_CS].newselector = 0;
2069
2070 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
2071 {
2072 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
2073 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
2074#ifdef VBOX_WITH_STATISTICS
2075 if (pVM->rem.s.Env.segs[R_DS].newselector)
2076 {
2077 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
2078 }
2079#endif
2080 }
2081 else
2082 pVM->rem.s.Env.segs[R_DS].newselector = 0;
2083
2084 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
2085 * be the same but not the base/limit. */
2086 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
2087 {
2088 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
2089 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
2090#ifdef VBOX_WITH_STATISTICS
2091 if (pVM->rem.s.Env.segs[R_FS].newselector)
2092 {
2093 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
2094 }
2095#endif
2096 }
2097 else
2098 pVM->rem.s.Env.segs[R_FS].newselector = 0;
2099
2100 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
2101 {
2102 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
2103 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
2104#ifdef VBOX_WITH_STATISTICS
2105 if (pVM->rem.s.Env.segs[R_GS].newselector)
2106 {
2107 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
2108 }
2109#endif
2110 }
2111 else
2112 pVM->rem.s.Env.segs[R_GS].newselector = 0;
2113 }
2114
2115 /*
2116 * Check for traps.
2117 */
2118 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
2119 rc = TRPMQueryTrap(pVCpu, &u8TrapNo, &enmType);
2120 if (RT_SUCCESS(rc))
2121 {
2122#ifdef DEBUG
2123 if (u8TrapNo == 0x80)
2124 {
2125 remR3DumpLnxSyscall(pVCpu);
2126 remR3DumpOBsdSyscall(pVCpu);
2127 }
2128#endif
2129
2130 pVM->rem.s.Env.exception_index = u8TrapNo;
2131 if (enmType != TRPM_SOFTWARE_INT)
2132 {
2133 pVM->rem.s.Env.exception_is_int = 0;
2134 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
2135 }
2136 else
2137 {
2138 /*
2139 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
2140 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
2141 * for int03 and into.
2142 */
2143 pVM->rem.s.Env.exception_is_int = 1;
2144 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
2145 /* int 3 may be generated by one-byte 0xcc */
2146 if (u8TrapNo == 3)
2147 {
2148 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
2149 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2150 }
2151 /* int 4 may be generated by one-byte 0xce */
2152 else if (u8TrapNo == 4)
2153 {
2154 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
2155 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2156 }
2157 }
2158
2159 /* get error code and cr2 if needed. */
2160 switch (u8TrapNo)
2161 {
2162 case 0x0e:
2163 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVCpu);
2164 /* fallthru */
2165 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2166 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVCpu);
2167 break;
2168
2169 case 0x11: case 0x08:
2170 default:
2171 pVM->rem.s.Env.error_code = 0;
2172 break;
2173 }
2174
2175 /*
2176 * We can now reset the active trap since the recompiler is gonna have a go at it.
2177 */
2178 rc = TRPMResetTrap(pVCpu);
2179 AssertRC(rc);
2180 Log2(("REMR3State: trap=%02x errcd=%RGv cr2=%RGv nexteip=%RGv%s\n", pVM->rem.s.Env.exception_index, (RTGCPTR)pVM->rem.s.Env.error_code,
2181 (RTGCPTR)pVM->rem.s.Env.cr[2], (RTGCPTR)pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2182 }
2183
2184 /*
2185 * Clear old interrupt request flags; Check for pending hardware interrupts.
2186 * (See @remark for why we don't check for other FFs.)
2187 */
2188 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2189 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2190 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
2191 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2192
2193 /*
2194 * We're now in REM mode.
2195 */
2196 pVM->rem.s.fInREM = true;
2197 pVM->rem.s.fInStateSync = false;
2198 pVM->rem.s.cCanExecuteRaw = 0;
2199 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2200 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2201 return VINF_SUCCESS;
2202}
2203
2204
2205/**
2206 * Syncs back changes in the REM state to the the VM state.
2207 *
2208 * This must be called after invoking REMR3Run().
2209 * Calling it several times in a row is not permitted.
2210 *
2211 * @returns VBox status code.
2212 *
2213 * @param pVM VM Handle.
2214 * @param pVCpu VMCPU Handle.
2215 */
2216REMR3DECL(int) REMR3StateBack(PVM pVM, PVMCPU pVCpu)
2217{
2218 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2219 Assert(pCtx);
2220 unsigned i;
2221
2222 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2223 Log2(("REMR3StateBack:\n"));
2224 Assert(pVM->rem.s.fInREM);
2225
2226 /*
2227 * Copy back the registers.
2228 * This is done in the order they are declared in the CPUMCTX structure.
2229 */
2230
2231 /** @todo FOP */
2232 /** @todo FPUIP */
2233 /** @todo CS */
2234 /** @todo FPUDP */
2235 /** @todo DS */
2236
2237 /** @todo check if FPU/XMM was actually used in the recompiler */
2238 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2239//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2240
2241#ifdef TARGET_X86_64
2242 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2243 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2244 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2245 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2246 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2247 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2248 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2249 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2250 pCtx->r8 = pVM->rem.s.Env.regs[8];
2251 pCtx->r9 = pVM->rem.s.Env.regs[9];
2252 pCtx->r10 = pVM->rem.s.Env.regs[10];
2253 pCtx->r11 = pVM->rem.s.Env.regs[11];
2254 pCtx->r12 = pVM->rem.s.Env.regs[12];
2255 pCtx->r13 = pVM->rem.s.Env.regs[13];
2256 pCtx->r14 = pVM->rem.s.Env.regs[14];
2257 pCtx->r15 = pVM->rem.s.Env.regs[15];
2258
2259 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2260
2261#else
2262 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2263 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2264 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2265 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2266 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2267 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2268 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2269
2270 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2271#endif
2272
2273 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2274
2275#ifdef VBOX_WITH_STATISTICS
2276 if (pVM->rem.s.Env.segs[R_SS].newselector)
2277 {
2278 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2279 }
2280 if (pVM->rem.s.Env.segs[R_GS].newselector)
2281 {
2282 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2283 }
2284 if (pVM->rem.s.Env.segs[R_FS].newselector)
2285 {
2286 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2287 }
2288 if (pVM->rem.s.Env.segs[R_ES].newselector)
2289 {
2290 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2291 }
2292 if (pVM->rem.s.Env.segs[R_DS].newselector)
2293 {
2294 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2295 }
2296 if (pVM->rem.s.Env.segs[R_CS].newselector)
2297 {
2298 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2299 }
2300#endif
2301 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2302 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2303 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2304 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2305 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2306
2307#ifdef TARGET_X86_64
2308 pCtx->rip = pVM->rem.s.Env.eip;
2309 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2310#else
2311 pCtx->eip = pVM->rem.s.Env.eip;
2312 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2313#endif
2314
2315 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2316 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2317 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2318 if ((pVM->rem.s.Env.cr[4] ^ pCtx->cr4) & X86_CR4_VME)
2319 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2320 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2321
2322 for (i = 0; i < 8; i++)
2323 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2324
2325 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2326 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2327 {
2328 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2329 STAM_COUNTER_INC(&gStatREMGDTChange);
2330 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
2331 }
2332
2333 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2334 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2335 {
2336 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2337 STAM_COUNTER_INC(&gStatREMIDTChange);
2338 VMCPU_FF_SET(pVCpu, VMCPU_FF_TRPM_SYNC_IDT);
2339 }
2340
2341 if ( pCtx->ldtr != pVM->rem.s.Env.ldt.selector
2342 || pCtx->ldtrHid.u64Base != pVM->rem.s.Env.ldt.base
2343 || pCtx->ldtrHid.u32Limit != pVM->rem.s.Env.ldt.limit
2344 || pCtx->ldtrHid.Attr.u != ((pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF))
2345 {
2346 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2347 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2348 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2349 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2350 STAM_COUNTER_INC(&gStatREMLDTRChange);
2351 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
2352 }
2353
2354 if ( pCtx->tr != pVM->rem.s.Env.tr.selector
2355 || pCtx->trHid.u64Base != pVM->rem.s.Env.tr.base
2356 || pCtx->trHid.u32Limit != pVM->rem.s.Env.tr.limit
2357 /* Qemu and AMD/Intel have different ideas about the busy flag ... */
2358 || pCtx->trHid.Attr.u != ( (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF
2359 ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8
2360 : 0) )
2361 {
2362 Log(("REM: TR changed! %#x{%#llx,%#x,%#x} -> %#x{%llx,%#x,%#x}\n",
2363 pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2364 pVM->rem.s.Env.tr.selector, (uint64_t)pVM->rem.s.Env.tr.base, pVM->rem.s.Env.tr.limit,
2365 (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8 : 0));
2366 pCtx->tr = pVM->rem.s.Env.tr.selector;
2367 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2368 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2369 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2370 if (pCtx->trHid.Attr.u)
2371 pCtx->trHid.Attr.u |= DESC_TSS_BUSY_MASK >> 8;
2372 STAM_COUNTER_INC(&gStatREMTRChange);
2373 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2374 }
2375
2376 /** @todo These values could still be out of sync! */
2377 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2378 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2379 /* Note! QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2380 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2381
2382 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2383 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2384 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2385
2386 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2387 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2388 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2389
2390 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2391 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2392 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2393
2394 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2395 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2396 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2397
2398 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2399 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2400 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2401
2402 /* Sysenter MSR */
2403 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2404 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2405 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2406
2407 /* System MSRs. */
2408 pCtx->msrEFER = pVM->rem.s.Env.efer;
2409 pCtx->msrSTAR = pVM->rem.s.Env.star;
2410 pCtx->msrPAT = pVM->rem.s.Env.pat;
2411#ifdef TARGET_X86_64
2412 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2413 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2414 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2415 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2416#endif
2417
2418 remR3TrapClear(pVM);
2419
2420 /*
2421 * Check for traps.
2422 */
2423 if ( pVM->rem.s.Env.exception_index >= 0
2424 && pVM->rem.s.Env.exception_index < 256)
2425 {
2426 int rc;
2427
2428 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2429 rc = TRPMAssertTrap(pVCpu, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2430 AssertRC(rc);
2431 switch (pVM->rem.s.Env.exception_index)
2432 {
2433 case 0x0e:
2434 TRPMSetFaultAddress(pVCpu, pCtx->cr2);
2435 /* fallthru */
2436 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2437 case 0x11: case 0x08: /* 0 */
2438 TRPMSetErrorCode(pVCpu, pVM->rem.s.Env.error_code);
2439 break;
2440 }
2441
2442 }
2443
2444 /*
2445 * We're not longer in REM mode.
2446 */
2447 pVM->rem.s.fInREM = false;
2448 pVM->rem.s.pCtx = NULL;
2449 pVM->rem.s.Env.pVCpu = NULL;
2450 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2451 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2452 return VINF_SUCCESS;
2453}
2454
2455
2456/**
2457 * This is called by the disassembler when it wants to update the cpu state
2458 * before for instance doing a register dump.
2459 */
2460static void remR3StateUpdate(PVM pVM, PVMCPU pVCpu)
2461{
2462 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2463 unsigned i;
2464
2465 Assert(pVM->rem.s.fInREM);
2466
2467 /*
2468 * Copy back the registers.
2469 * This is done in the order they are declared in the CPUMCTX structure.
2470 */
2471
2472 /** @todo FOP */
2473 /** @todo FPUIP */
2474 /** @todo CS */
2475 /** @todo FPUDP */
2476 /** @todo DS */
2477 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2478 pCtx->fpu.MXCSR = 0;
2479 pCtx->fpu.MXCSR_MASK = 0;
2480
2481 /** @todo check if FPU/XMM was actually used in the recompiler */
2482 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2483//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2484
2485#ifdef TARGET_X86_64
2486 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2487 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2488 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2489 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2490 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2491 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2492 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2493 pCtx->r8 = pVM->rem.s.Env.regs[8];
2494 pCtx->r9 = pVM->rem.s.Env.regs[9];
2495 pCtx->r10 = pVM->rem.s.Env.regs[10];
2496 pCtx->r11 = pVM->rem.s.Env.regs[11];
2497 pCtx->r12 = pVM->rem.s.Env.regs[12];
2498 pCtx->r13 = pVM->rem.s.Env.regs[13];
2499 pCtx->r14 = pVM->rem.s.Env.regs[14];
2500 pCtx->r15 = pVM->rem.s.Env.regs[15];
2501
2502 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2503#else
2504 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2505 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2506 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2507 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2508 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2509 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2510 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2511
2512 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2513#endif
2514
2515 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2516
2517 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2518 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2519 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2520 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2521 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2522
2523#ifdef TARGET_X86_64
2524 pCtx->rip = pVM->rem.s.Env.eip;
2525 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2526#else
2527 pCtx->eip = pVM->rem.s.Env.eip;
2528 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2529#endif
2530
2531 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2532 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2533 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2534 if ((pVM->rem.s.Env.cr[4] ^ pCtx->cr4) & X86_CR4_VME)
2535 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2536 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2537
2538 for (i = 0; i < 8; i++)
2539 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2540
2541 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2542 if (pCtx->gdtr.pGdt != (RTGCPTR)pVM->rem.s.Env.gdt.base)
2543 {
2544 pCtx->gdtr.pGdt = (RTGCPTR)pVM->rem.s.Env.gdt.base;
2545 STAM_COUNTER_INC(&gStatREMGDTChange);
2546 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
2547 }
2548
2549 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2550 if (pCtx->idtr.pIdt != (RTGCPTR)pVM->rem.s.Env.idt.base)
2551 {
2552 pCtx->idtr.pIdt = (RTGCPTR)pVM->rem.s.Env.idt.base;
2553 STAM_COUNTER_INC(&gStatREMIDTChange);
2554 VMCPU_FF_SET(pVCpu, VMCPU_FF_TRPM_SYNC_IDT);
2555 }
2556
2557 if ( pCtx->ldtr != pVM->rem.s.Env.ldt.selector
2558 || pCtx->ldtrHid.u64Base != pVM->rem.s.Env.ldt.base
2559 || pCtx->ldtrHid.u32Limit != pVM->rem.s.Env.ldt.limit
2560 || pCtx->ldtrHid.Attr.u != ((pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF))
2561 {
2562 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2563 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2564 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2565 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2566 STAM_COUNTER_INC(&gStatREMLDTRChange);
2567 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
2568 }
2569
2570 if ( pCtx->tr != pVM->rem.s.Env.tr.selector
2571 || pCtx->trHid.u64Base != pVM->rem.s.Env.tr.base
2572 || pCtx->trHid.u32Limit != pVM->rem.s.Env.tr.limit
2573 /* Qemu and AMD/Intel have different ideas about the busy flag ... */
2574 || pCtx->trHid.Attr.u != ( (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF
2575 ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8
2576 : 0) )
2577 {
2578 Log(("REM: TR changed! %#x{%#llx,%#x,%#x} -> %#x{%llx,%#x,%#x}\n",
2579 pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2580 pVM->rem.s.Env.tr.selector, (uint64_t)pVM->rem.s.Env.tr.base, pVM->rem.s.Env.tr.limit,
2581 (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8 : 0));
2582 pCtx->tr = pVM->rem.s.Env.tr.selector;
2583 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2584 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2585 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2586 if (pCtx->trHid.Attr.u)
2587 pCtx->trHid.Attr.u |= DESC_TSS_BUSY_MASK >> 8;
2588 STAM_COUNTER_INC(&gStatREMTRChange);
2589 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2590 }
2591
2592 /** @todo These values could still be out of sync! */
2593 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2594 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2595 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2596 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2597
2598 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2599 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2600 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2601
2602 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2603 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2604 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2605
2606 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2607 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2608 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2609
2610 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2611 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2612 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2613
2614 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2615 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2616 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2617
2618 /* Sysenter MSR */
2619 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2620 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2621 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2622
2623 /* System MSRs. */
2624 pCtx->msrEFER = pVM->rem.s.Env.efer;
2625 pCtx->msrSTAR = pVM->rem.s.Env.star;
2626 pCtx->msrPAT = pVM->rem.s.Env.pat;
2627#ifdef TARGET_X86_64
2628 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2629 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2630 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2631 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2632#endif
2633
2634}
2635
2636
2637/**
2638 * Update the VMM state information if we're currently in REM.
2639 *
2640 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2641 * we're currently executing in REM and the VMM state is invalid. This method will of
2642 * course check that we're executing in REM before syncing any data over to the VMM.
2643 *
2644 * @param pVM The VM handle.
2645 * @param pVCpu The VMCPU handle.
2646 */
2647REMR3DECL(void) REMR3StateUpdate(PVM pVM, PVMCPU pVCpu)
2648{
2649 if (pVM->rem.s.fInREM)
2650 remR3StateUpdate(pVM, pVCpu);
2651}
2652
2653
2654#undef LOG_GROUP
2655#define LOG_GROUP LOG_GROUP_REM
2656
2657
2658/**
2659 * Notify the recompiler about Address Gate 20 state change.
2660 *
2661 * This notification is required since A20 gate changes are
2662 * initialized from a device driver and the VM might just as
2663 * well be in REM mode as in RAW mode.
2664 *
2665 * @param pVM VM handle.
2666 * @param pVCpu VMCPU handle.
2667 * @param fEnable True if the gate should be enabled.
2668 * False if the gate should be disabled.
2669 */
2670REMR3DECL(void) REMR3A20Set(PVM pVM, PVMCPU pVCpu, bool fEnable)
2671{
2672 bool fSaved;
2673
2674 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2675 VM_ASSERT_EMT(pVM);
2676
2677 fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2678 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2679
2680 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2681
2682 pVM->rem.s.fIgnoreAll = fSaved;
2683}
2684
2685
2686/**
2687 * Replays the invalidated recorded pages.
2688 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2689 *
2690 * @param pVM VM handle.
2691 * @param pVCpu VMCPU handle.
2692 */
2693REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM, PVMCPU pVCpu)
2694{
2695 RTUINT i;
2696
2697 VM_ASSERT_EMT(pVM);
2698
2699 /*
2700 * Sync the required registers.
2701 */
2702 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2703 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2704 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2705 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2706
2707 /*
2708 * Replay the flushes.
2709 */
2710 pVM->rem.s.fIgnoreInvlPg = true;
2711 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2712 {
2713 Log2(("REMR3ReplayInvalidatedPages: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2714 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2715 }
2716 pVM->rem.s.fIgnoreInvlPg = false;
2717 pVM->rem.s.cInvalidatedPages = 0;
2718}
2719
2720
2721/**
2722 * Replays the handler notification changes
2723 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2724 *
2725 * @param pVM VM handle.
2726 */
2727REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2728{
2729 /*
2730 * Replay the flushes.
2731 */
2732 RTUINT i;
2733 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2734
2735 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2736 VM_ASSERT_EMT(pVM);
2737
2738 pVM->rem.s.cHandlerNotifications = 0;
2739 for (i = 0; i < c; i++)
2740 {
2741 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2742 switch (pRec->enmKind)
2743 {
2744 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2745 REMR3NotifyHandlerPhysicalRegister(pVM,
2746 pRec->u.PhysicalRegister.enmType,
2747 pRec->u.PhysicalRegister.GCPhys,
2748 pRec->u.PhysicalRegister.cb,
2749 pRec->u.PhysicalRegister.fHasHCHandler);
2750 break;
2751
2752 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2753 REMR3NotifyHandlerPhysicalDeregister(pVM,
2754 pRec->u.PhysicalDeregister.enmType,
2755 pRec->u.PhysicalDeregister.GCPhys,
2756 pRec->u.PhysicalDeregister.cb,
2757 pRec->u.PhysicalDeregister.fHasHCHandler,
2758 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2759 break;
2760
2761 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2762 REMR3NotifyHandlerPhysicalModify(pVM,
2763 pRec->u.PhysicalModify.enmType,
2764 pRec->u.PhysicalModify.GCPhysOld,
2765 pRec->u.PhysicalModify.GCPhysNew,
2766 pRec->u.PhysicalModify.cb,
2767 pRec->u.PhysicalModify.fHasHCHandler,
2768 pRec->u.PhysicalModify.fRestoreAsRAM);
2769 break;
2770
2771 default:
2772 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2773 break;
2774 }
2775 }
2776 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2777}
2778
2779
2780/**
2781 * Notify REM about changed code page.
2782 *
2783 * @returns VBox status code.
2784 * @param pVM VM handle.
2785 * @param pVCpu VMCPU handle.
2786 * @param pvCodePage Code page address
2787 */
2788REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, PVMCPU pVCpu, RTGCPTR pvCodePage)
2789{
2790#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
2791 int rc;
2792 RTGCPHYS PhysGC;
2793 uint64_t flags;
2794
2795 VM_ASSERT_EMT(pVM);
2796
2797 /*
2798 * Get the physical page address.
2799 */
2800 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2801 if (rc == VINF_SUCCESS)
2802 {
2803 /*
2804 * Sync the required registers and flush the whole page.
2805 * (Easier to do the whole page than notifying it about each physical
2806 * byte that was changed.
2807 */
2808 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2809 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2810 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2811 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2812
2813 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2814 }
2815#endif
2816 return VINF_SUCCESS;
2817}
2818
2819
2820/**
2821 * Notification about a successful MMR3PhysRegister() call.
2822 *
2823 * @param pVM VM handle.
2824 * @param GCPhys The physical address the RAM.
2825 * @param cb Size of the memory.
2826 * @param fFlags Flags of the REM_NOTIFY_PHYS_RAM_FLAGS_* defines.
2827 */
2828REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, unsigned fFlags)
2829{
2830 Log(("REMR3NotifyPhysRamRegister: GCPhys=%RGp cb=%RGp fFlags=%#x\n", GCPhys, cb, fFlags));
2831 VM_ASSERT_EMT(pVM);
2832
2833 /*
2834 * Validate input - we trust the caller.
2835 */
2836 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2837 Assert(cb);
2838 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2839 AssertMsg(fFlags == REM_NOTIFY_PHYS_RAM_FLAGS_RAM || fFlags == REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2, ("#x\n", fFlags));
2840
2841 /*
2842 * Base ram? Update GCPhysLastRam.
2843 */
2844 if (fFlags & REM_NOTIFY_PHYS_RAM_FLAGS_RAM)
2845 {
2846 if (GCPhys + (cb - 1) > pVM->rem.s.GCPhysLastRam)
2847 {
2848 AssertReleaseMsg(!pVM->rem.s.fGCPhysLastRamFixed, ("GCPhys=%RGp cb=%RGp\n", GCPhys, cb));
2849 pVM->rem.s.GCPhysLastRam = GCPhys + (cb - 1);
2850 }
2851 }
2852
2853 /*
2854 * Register the ram.
2855 */
2856 Assert(!pVM->rem.s.fIgnoreAll);
2857 pVM->rem.s.fIgnoreAll = true;
2858
2859 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2860 Assert(pVM->rem.s.fIgnoreAll);
2861 pVM->rem.s.fIgnoreAll = false;
2862}
2863
2864
2865/**
2866 * Notification about a successful MMR3PhysRomRegister() call.
2867 *
2868 * @param pVM VM handle.
2869 * @param GCPhys The physical address of the ROM.
2870 * @param cb The size of the ROM.
2871 * @param pvCopy Pointer to the ROM copy.
2872 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2873 * This function will be called when ever the protection of the
2874 * shadow ROM changes (at reset and end of POST).
2875 */
2876REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2877{
2878 Log(("REMR3NotifyPhysRomRegister: GCPhys=%RGp cb=%d fShadow=%RTbool\n", GCPhys, cb, fShadow));
2879 VM_ASSERT_EMT(pVM);
2880
2881 /*
2882 * Validate input - we trust the caller.
2883 */
2884 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2885 Assert(cb);
2886 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2887
2888 /*
2889 * Register the rom.
2890 */
2891 Assert(!pVM->rem.s.fIgnoreAll);
2892 pVM->rem.s.fIgnoreAll = true;
2893
2894 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2895
2896 Assert(pVM->rem.s.fIgnoreAll);
2897 pVM->rem.s.fIgnoreAll = false;
2898}
2899
2900
2901/**
2902 * Notification about a successful memory deregistration or reservation.
2903 *
2904 * @param pVM VM Handle.
2905 * @param GCPhys Start physical address.
2906 * @param cb The size of the range.
2907 */
2908REMR3DECL(void) REMR3NotifyPhysRamDeregister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2909{
2910 Log(("REMR3NotifyPhysRamDeregister: GCPhys=%RGp cb=%d\n", GCPhys, cb));
2911 VM_ASSERT_EMT(pVM);
2912
2913 /*
2914 * Validate input - we trust the caller.
2915 */
2916 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2917 Assert(cb);
2918 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2919
2920 /*
2921 * Unassigning the memory.
2922 */
2923 Assert(!pVM->rem.s.fIgnoreAll);
2924 pVM->rem.s.fIgnoreAll = true;
2925
2926 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2927
2928 Assert(pVM->rem.s.fIgnoreAll);
2929 pVM->rem.s.fIgnoreAll = false;
2930}
2931
2932
2933/**
2934 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2935 *
2936 * @param pVM VM Handle.
2937 * @param enmType Handler type.
2938 * @param GCPhys Handler range address.
2939 * @param cb Size of the handler range.
2940 * @param fHasHCHandler Set if the handler has a HC callback function.
2941 *
2942 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2943 * Handler memory type to memory which has no HC handler.
2944 */
2945REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2946{
2947 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%d\n",
2948 enmType, GCPhys, cb, fHasHCHandler));
2949 VM_ASSERT_EMT(pVM);
2950 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2951 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2952
2953 if (pVM->rem.s.cHandlerNotifications)
2954 REMR3ReplayHandlerNotifications(pVM);
2955
2956 Assert(!pVM->rem.s.fIgnoreAll);
2957 pVM->rem.s.fIgnoreAll = true;
2958
2959 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2960 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2961 else if (fHasHCHandler)
2962 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2963
2964 Assert(pVM->rem.s.fIgnoreAll);
2965 pVM->rem.s.fIgnoreAll = false;
2966}
2967
2968
2969/**
2970 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2971 *
2972 * @param pVM VM Handle.
2973 * @param enmType Handler type.
2974 * @param GCPhys Handler range address.
2975 * @param cb Size of the handler range.
2976 * @param fHasHCHandler Set if the handler has a HC callback function.
2977 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2978 */
2979REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2980{
2981 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2982 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2983 VM_ASSERT_EMT(pVM);
2984
2985 if (pVM->rem.s.cHandlerNotifications)
2986 REMR3ReplayHandlerNotifications(pVM);
2987
2988 Assert(!pVM->rem.s.fIgnoreAll);
2989 pVM->rem.s.fIgnoreAll = true;
2990
2991/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2992 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2993 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2994 else if (fHasHCHandler)
2995 {
2996 if (!fRestoreAsRAM)
2997 {
2998 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2999 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
3000 }
3001 else
3002 {
3003 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3004 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3005 cpu_register_physical_memory(GCPhys, cb, GCPhys);
3006 }
3007 }
3008
3009 Assert(pVM->rem.s.fIgnoreAll);
3010 pVM->rem.s.fIgnoreAll = false;
3011}
3012
3013
3014/**
3015 * Notification about a successful PGMR3HandlerPhysicalModify() call.
3016 *
3017 * @param pVM VM Handle.
3018 * @param enmType Handler type.
3019 * @param GCPhysOld Old handler range address.
3020 * @param GCPhysNew New handler range address.
3021 * @param cb Size of the handler range.
3022 * @param fHasHCHandler Set if the handler has a HC callback function.
3023 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
3024 */
3025REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
3026{
3027 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%RGp GCPhysNew=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
3028 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
3029 VM_ASSERT_EMT(pVM);
3030 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
3031
3032 if (pVM->rem.s.cHandlerNotifications)
3033 REMR3ReplayHandlerNotifications(pVM);
3034
3035 if (fHasHCHandler)
3036 {
3037 Assert(!pVM->rem.s.fIgnoreAll);
3038 pVM->rem.s.fIgnoreAll = true;
3039
3040 /*
3041 * Reset the old page.
3042 */
3043 if (!fRestoreAsRAM)
3044 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
3045 else
3046 {
3047 /* This is not perfect, but it'll do for PD monitoring... */
3048 Assert(cb == PAGE_SIZE);
3049 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
3050 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
3051 }
3052
3053 /*
3054 * Update the new page.
3055 */
3056 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
3057 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3058 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
3059
3060 Assert(pVM->rem.s.fIgnoreAll);
3061 pVM->rem.s.fIgnoreAll = false;
3062 }
3063}
3064
3065
3066/**
3067 * Checks if we're handling access to this page or not.
3068 *
3069 * @returns true if we're trapping access.
3070 * @returns false if we aren't.
3071 * @param pVM The VM handle.
3072 * @param GCPhys The physical address.
3073 *
3074 * @remark This function will only work correctly in VBOX_STRICT builds!
3075 */
3076REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3077{
3078#ifdef VBOX_STRICT
3079 unsigned long off;
3080 if (pVM->rem.s.cHandlerNotifications)
3081 REMR3ReplayHandlerNotifications(pVM);
3082
3083 off = get_phys_page_offset(GCPhys);
3084 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3085 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3086 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3087#else
3088 return false;
3089#endif
3090}
3091
3092
3093/**
3094 * Deals with a rare case in get_phys_addr_code where the code
3095 * is being monitored.
3096 *
3097 * It could also be an MMIO page, in which case we will raise a fatal error.
3098 *
3099 * @returns The physical address corresponding to addr.
3100 * @param env The cpu environment.
3101 * @param addr The virtual address.
3102 * @param pTLBEntry The TLB entry.
3103 */
3104target_ulong remR3PhysGetPhysicalAddressCode(CPUState* env,
3105 target_ulong addr,
3106 CPUTLBEntry* pTLBEntry,
3107 target_phys_addr_t ioTLBEntry)
3108{
3109 PVM pVM = env->pVM;
3110
3111 if ((ioTLBEntry & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3112 {
3113 /* If code memory is being monitored, appropriate IOTLB entry will have
3114 handler IO type, and addend will provide real physical address, no
3115 matter if we store VA in TLB or not, as handlers are always passed PA */
3116 target_ulong ret = (ioTLBEntry & TARGET_PAGE_MASK) + addr;
3117 return ret;
3118 }
3119 LogRel(("\nTrying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv! (iHandlerMemType=%#x iMMIOMemType=%#x IOTLB=%RGp)\n"
3120 "*** handlers\n",
3121 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType, (RTGCPHYS)ioTLBEntry));
3122 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3123 LogRel(("*** mmio\n"));
3124 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3125 LogRel(("*** phys\n"));
3126 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3127 cpu_abort(env, "Trying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3128 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3129 AssertFatalFailed();
3130}
3131
3132/**
3133 * Read guest RAM and ROM.
3134 *
3135 * @param SrcGCPhys The source address (guest physical).
3136 * @param pvDst The destination address.
3137 * @param cb Number of bytes
3138 */
3139void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3140{
3141 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3142 VBOX_CHECK_ADDR(SrcGCPhys);
3143 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3144#ifdef VBOX_DEBUG_PHYS
3145 LogRel(("read(%d): %08x\n", cb, (uint32_t)SrcGCPhys));
3146#endif
3147 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3148}
3149
3150
3151/**
3152 * Read guest RAM and ROM, unsigned 8-bit.
3153 *
3154 * @param SrcGCPhys The source address (guest physical).
3155 */
3156RTCCUINTREG remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3157{
3158 uint8_t val;
3159 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3160 VBOX_CHECK_ADDR(SrcGCPhys);
3161 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3162 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3163#ifdef VBOX_DEBUG_PHYS
3164 LogRel(("readu8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3165#endif
3166 return val;
3167}
3168
3169
3170/**
3171 * Read guest RAM and ROM, signed 8-bit.
3172 *
3173 * @param SrcGCPhys The source address (guest physical).
3174 */
3175RTCCINTREG remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3176{
3177 int8_t val;
3178 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3179 VBOX_CHECK_ADDR(SrcGCPhys);
3180 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3181 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3182#ifdef VBOX_DEBUG_PHYS
3183 LogRel(("reads8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3184#endif
3185 return val;
3186}
3187
3188
3189/**
3190 * Read guest RAM and ROM, unsigned 16-bit.
3191 *
3192 * @param SrcGCPhys The source address (guest physical).
3193 */
3194RTCCUINTREG remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3195{
3196 uint16_t val;
3197 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3198 VBOX_CHECK_ADDR(SrcGCPhys);
3199 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3200 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3201#ifdef VBOX_DEBUG_PHYS
3202 LogRel(("readu16: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3203#endif
3204 return val;
3205}
3206
3207
3208/**
3209 * Read guest RAM and ROM, signed 16-bit.
3210 *
3211 * @param SrcGCPhys The source address (guest physical).
3212 */
3213RTCCINTREG remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3214{
3215 int16_t val;
3216 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3217 VBOX_CHECK_ADDR(SrcGCPhys);
3218 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3219 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3220#ifdef VBOX_DEBUG_PHYS
3221 LogRel(("reads16: %x <- %08x\n", (uint16_t)val, (uint32_t)SrcGCPhys));
3222#endif
3223 return val;
3224}
3225
3226
3227/**
3228 * Read guest RAM and ROM, unsigned 32-bit.
3229 *
3230 * @param SrcGCPhys The source address (guest physical).
3231 */
3232RTCCUINTREG remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3233{
3234 uint32_t val;
3235 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3236 VBOX_CHECK_ADDR(SrcGCPhys);
3237 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3238 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3239#ifdef VBOX_DEBUG_PHYS
3240 LogRel(("readu32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3241#endif
3242 return val;
3243}
3244
3245
3246/**
3247 * Read guest RAM and ROM, signed 32-bit.
3248 *
3249 * @param SrcGCPhys The source address (guest physical).
3250 */
3251RTCCINTREG remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3252{
3253 int32_t val;
3254 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3255 VBOX_CHECK_ADDR(SrcGCPhys);
3256 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3257 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3258#ifdef VBOX_DEBUG_PHYS
3259 LogRel(("reads32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3260#endif
3261 return val;
3262}
3263
3264
3265/**
3266 * Read guest RAM and ROM, unsigned 64-bit.
3267 *
3268 * @param SrcGCPhys The source address (guest physical).
3269 */
3270uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3271{
3272 uint64_t val;
3273 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3274 VBOX_CHECK_ADDR(SrcGCPhys);
3275 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3276 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3277#ifdef VBOX_DEBUG_PHYS
3278 LogRel(("readu64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3279#endif
3280 return val;
3281}
3282
3283
3284/**
3285 * Read guest RAM and ROM, signed 64-bit.
3286 *
3287 * @param SrcGCPhys The source address (guest physical).
3288 */
3289int64_t remR3PhysReadS64(RTGCPHYS SrcGCPhys)
3290{
3291 int64_t val;
3292 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3293 VBOX_CHECK_ADDR(SrcGCPhys);
3294 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3295 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3296#ifdef VBOX_DEBUG_PHYS
3297 LogRel(("reads64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3298#endif
3299 return val;
3300}
3301
3302
3303/**
3304 * Write guest RAM.
3305 *
3306 * @param DstGCPhys The destination address (guest physical).
3307 * @param pvSrc The source address.
3308 * @param cb Number of bytes to write
3309 */
3310void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3311{
3312 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3313 VBOX_CHECK_ADDR(DstGCPhys);
3314 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3315 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3316#ifdef VBOX_DEBUG_PHYS
3317 LogRel(("write(%d): %08x\n", cb, (uint32_t)DstGCPhys));
3318#endif
3319}
3320
3321
3322/**
3323 * Write guest RAM, unsigned 8-bit.
3324 *
3325 * @param DstGCPhys The destination address (guest physical).
3326 * @param val Value
3327 */
3328void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3329{
3330 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3331 VBOX_CHECK_ADDR(DstGCPhys);
3332 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3333 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3334#ifdef VBOX_DEBUG_PHYS
3335 LogRel(("writeu8: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3336#endif
3337}
3338
3339
3340/**
3341 * Write guest RAM, unsigned 8-bit.
3342 *
3343 * @param DstGCPhys The destination address (guest physical).
3344 * @param val Value
3345 */
3346void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3347{
3348 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3349 VBOX_CHECK_ADDR(DstGCPhys);
3350 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3351 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3352#ifdef VBOX_DEBUG_PHYS
3353 LogRel(("writeu16: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3354#endif
3355}
3356
3357
3358/**
3359 * Write guest RAM, unsigned 32-bit.
3360 *
3361 * @param DstGCPhys The destination address (guest physical).
3362 * @param val Value
3363 */
3364void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3365{
3366 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3367 VBOX_CHECK_ADDR(DstGCPhys);
3368 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3369 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3370#ifdef VBOX_DEBUG_PHYS
3371 LogRel(("writeu32: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3372#endif
3373}
3374
3375
3376/**
3377 * Write guest RAM, unsigned 64-bit.
3378 *
3379 * @param DstGCPhys The destination address (guest physical).
3380 * @param val Value
3381 */
3382void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3383{
3384 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3385 VBOX_CHECK_ADDR(DstGCPhys);
3386 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3387 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3388#ifdef VBOX_DEBUG_PHYS
3389 LogRel(("writeu64: %llx -> %08x\n", val, (uint32_t)SrcGCPhys));
3390#endif
3391}
3392
3393#undef LOG_GROUP
3394#define LOG_GROUP LOG_GROUP_REM_MMIO
3395
3396/** Read MMIO memory. */
3397static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3398{
3399 uint32_t u32 = 0;
3400 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3401 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3402 Log2(("remR3MMIOReadU8: GCPhys=%RGp -> %02x\n", GCPhys, u32));
3403 return u32;
3404}
3405
3406/** Read MMIO memory. */
3407static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3408{
3409 uint32_t u32 = 0;
3410 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3411 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3412 Log2(("remR3MMIOReadU16: GCPhys=%RGp -> %04x\n", GCPhys, u32));
3413 return u32;
3414}
3415
3416/** Read MMIO memory. */
3417static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3418{
3419 uint32_t u32 = 0;
3420 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3421 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3422 Log2(("remR3MMIOReadU32: GCPhys=%RGp -> %08x\n", GCPhys, u32));
3423 return u32;
3424}
3425
3426/** Write to MMIO memory. */
3427static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3428{
3429 int rc;
3430 Log2(("remR3MMIOWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3431 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3432 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3433}
3434
3435/** Write to MMIO memory. */
3436static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3437{
3438 int rc;
3439 Log2(("remR3MMIOWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3440 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3441 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3442}
3443
3444/** Write to MMIO memory. */
3445static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3446{
3447 int rc;
3448 Log2(("remR3MMIOWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3449 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3450 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3451}
3452
3453
3454#undef LOG_GROUP
3455#define LOG_GROUP LOG_GROUP_REM_HANDLER
3456
3457/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3458
3459static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3460{
3461 uint8_t u8;
3462 Log2(("remR3HandlerReadU8: GCPhys=%RGp\n", GCPhys));
3463 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3464 return u8;
3465}
3466
3467static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3468{
3469 uint16_t u16;
3470 Log2(("remR3HandlerReadU16: GCPhys=%RGp\n", GCPhys));
3471 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3472 return u16;
3473}
3474
3475static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3476{
3477 uint32_t u32;
3478 Log2(("remR3HandlerReadU32: GCPhys=%RGp\n", GCPhys));
3479 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3480 return u32;
3481}
3482
3483static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3484{
3485 Log2(("remR3HandlerWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3486 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3487}
3488
3489static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3490{
3491 Log2(("remR3HandlerWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3492 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3493}
3494
3495static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3496{
3497 Log2(("remR3HandlerWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3498 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3499}
3500
3501/* -+- disassembly -+- */
3502
3503#undef LOG_GROUP
3504#define LOG_GROUP LOG_GROUP_REM_DISAS
3505
3506
3507/**
3508 * Enables or disables singled stepped disassembly.
3509 *
3510 * @returns VBox status code.
3511 * @param pVM VM handle.
3512 * @param fEnable To enable set this flag, to disable clear it.
3513 */
3514static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3515{
3516 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3517 VM_ASSERT_EMT(pVM);
3518
3519 if (fEnable)
3520 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3521 else
3522 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3523 return VINF_SUCCESS;
3524}
3525
3526
3527/**
3528 * Enables or disables singled stepped disassembly.
3529 *
3530 * @returns VBox status code.
3531 * @param pVM VM handle.
3532 * @param fEnable To enable set this flag, to disable clear it.
3533 */
3534REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3535{
3536 PVMREQ pReq;
3537 int rc;
3538
3539 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3540 if (VM_IS_EMT(pVM))
3541 return remR3DisasEnableStepping(pVM, fEnable);
3542
3543 rc = VMR3ReqCall(pVM, VMREQDEST_ANY, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3544 AssertRC(rc);
3545 if (RT_SUCCESS(rc))
3546 rc = pReq->iStatus;
3547 VMR3ReqFree(pReq);
3548 return rc;
3549}
3550
3551
3552#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3553/**
3554 * External Debugger Command: .remstep [on|off|1|0]
3555 */
3556static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3557{
3558 bool fEnable;
3559 int rc;
3560
3561 /* print status */
3562 if (cArgs == 0)
3563 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3564 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3565
3566 /* convert the argument and change the mode. */
3567 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3568 if (RT_FAILURE(rc))
3569 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3570 rc = REMR3DisasEnableStepping(pVM, fEnable);
3571 if (RT_FAILURE(rc))
3572 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3573 return rc;
3574}
3575#endif
3576
3577
3578/**
3579 * Disassembles one instruction and prints it to the log.
3580 *
3581 * @returns Success indicator.
3582 * @param env Pointer to the recompiler CPU structure.
3583 * @param f32BitCode Indicates that whether or not the code should
3584 * be disassembled as 16 or 32 bit. If -1 the CS
3585 * selector will be inspected.
3586 * @param pszPrefix
3587 */
3588bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3589{
3590 PVM pVM = env->pVM;
3591 const bool fLog = LogIsEnabled();
3592 const bool fLog2 = LogIs2Enabled();
3593 int rc = VINF_SUCCESS;
3594
3595 /*
3596 * Don't bother if there ain't any log output to do.
3597 */
3598 if (!fLog && !fLog2)
3599 return true;
3600
3601 /*
3602 * Update the state so DBGF reads the correct register values.
3603 */
3604 remR3StateUpdate(pVM, env->pVCpu);
3605
3606 /*
3607 * Log registers if requested.
3608 */
3609 if (!fLog2)
3610 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3611
3612 /*
3613 * Disassemble to log.
3614 */
3615 if (fLog)
3616 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3617
3618 return RT_SUCCESS(rc);
3619}
3620
3621
3622/**
3623 * Disassemble recompiled code.
3624 *
3625 * @param phFileIgnored Ignored, logfile usually.
3626 * @param pvCode Pointer to the code block.
3627 * @param cb Size of the code block.
3628 */
3629void disas(FILE *phFile, void *pvCode, unsigned long cb)
3630{
3631#ifdef DEBUG_TMP_LOGGING
3632# define DISAS_PRINTF(x...) fprintf(phFile, x)
3633#else
3634# define DISAS_PRINTF(x...) RTLogPrintf(x)
3635 if (LogIs2Enabled())
3636#endif
3637 {
3638 unsigned off = 0;
3639 char szOutput[256];
3640 DISCPUSTATE Cpu;
3641
3642 memset(&Cpu, 0, sizeof(Cpu));
3643#ifdef RT_ARCH_X86
3644 Cpu.mode = CPUMODE_32BIT;
3645#else
3646 Cpu.mode = CPUMODE_64BIT;
3647#endif
3648
3649 DISAS_PRINTF("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3650 while (off < cb)
3651 {
3652 uint32_t cbInstr;
3653 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3654 DISAS_PRINTF("%s", szOutput);
3655 else
3656 {
3657 DISAS_PRINTF("disas error\n");
3658 cbInstr = 1;
3659#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3660 break;
3661#endif
3662 }
3663 off += cbInstr;
3664 }
3665 }
3666
3667#undef DISAS_PRINTF
3668}
3669
3670
3671/**
3672 * Disassemble guest code.
3673 *
3674 * @param phFileIgnored Ignored, logfile usually.
3675 * @param uCode The guest address of the code to disassemble. (flat?)
3676 * @param cb Number of bytes to disassemble.
3677 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3678 */
3679void target_disas(FILE *phFile, target_ulong uCode, target_ulong cb, int fFlags)
3680{
3681#ifdef DEBUG_TMP_LOGGING
3682# define DISAS_PRINTF(x...) fprintf(phFile, x)
3683#else
3684# define DISAS_PRINTF(x...) RTLogPrintf(x)
3685 if (LogIs2Enabled())
3686#endif
3687 {
3688 PVM pVM = cpu_single_env->pVM;
3689 PVMCPU pVCpu = cpu_single_env->pVCpu;
3690 RTSEL cs;
3691 RTGCUINTPTR eip;
3692
3693 Assert(pVCpu);
3694
3695 /*
3696 * Update the state so DBGF reads the correct register values (flags).
3697 */
3698 remR3StateUpdate(pVM, pVCpu);
3699
3700 /*
3701 * Do the disassembling.
3702 */
3703 DISAS_PRINTF("Guest Code: PC=%llx %llx bytes fFlags=%d\n", (uint64_t)uCode, (uint64_t)cb, fFlags);
3704 cs = cpu_single_env->segs[R_CS].selector;
3705 eip = uCode - cpu_single_env->segs[R_CS].base;
3706 for (;;)
3707 {
3708 char szBuf[256];
3709 uint32_t cbInstr;
3710 int rc = DBGFR3DisasInstrEx(pVM,
3711 pVCpu,
3712 cs,
3713 eip,
3714 0,
3715 szBuf, sizeof(szBuf),
3716 &cbInstr);
3717 if (RT_SUCCESS(rc))
3718 DISAS_PRINTF("%llx %s\n", (uint64_t)uCode, szBuf);
3719 else
3720 {
3721 DISAS_PRINTF("%llx %04x:%llx: %s\n", (uint64_t)uCode, cs, (uint64_t)eip, szBuf);
3722 cbInstr = 1;
3723 }
3724
3725 /* next */
3726 if (cb <= cbInstr)
3727 break;
3728 cb -= cbInstr;
3729 uCode += cbInstr;
3730 eip += cbInstr;
3731 }
3732 }
3733#undef DISAS_PRINTF
3734}
3735
3736
3737/**
3738 * Looks up a guest symbol.
3739 *
3740 * @returns Pointer to symbol name. This is a static buffer.
3741 * @param orig_addr The address in question.
3742 */
3743const char *lookup_symbol(target_ulong orig_addr)
3744{
3745 RTGCINTPTR off = 0;
3746 DBGFSYMBOL Sym;
3747 PVM pVM = cpu_single_env->pVM;
3748 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3749 if (RT_SUCCESS(rc))
3750 {
3751 static char szSym[sizeof(Sym.szName) + 48];
3752 if (!off)
3753 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3754 else if (off > 0)
3755 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3756 else
3757 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3758 return szSym;
3759 }
3760 return "<N/A>";
3761}
3762
3763
3764#undef LOG_GROUP
3765#define LOG_GROUP LOG_GROUP_REM
3766
3767
3768/* -+- FF notifications -+- */
3769
3770
3771/**
3772 * Notification about a pending interrupt.
3773 *
3774 * @param pVM VM Handle.
3775 * @param pVCpu VMCPU Handle.
3776 * @param u8Interrupt Interrupt
3777 * @thread The emulation thread.
3778 */
3779REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, PVMCPU pVCpu, uint8_t u8Interrupt)
3780{
3781 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3782 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3783}
3784
3785/**
3786 * Notification about a pending interrupt.
3787 *
3788 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3789 * @param pVM VM Handle.
3790 * @param pVCpu VMCPU Handle.
3791 * @thread The emulation thread.
3792 */
3793REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM, PVMCPU pVCpu)
3794{
3795 return pVM->rem.s.u32PendingInterrupt;
3796}
3797
3798/**
3799 * Notification about the interrupt FF being set.
3800 *
3801 * @param pVM VM Handle.
3802 * @param pVCpu VMCPU Handle.
3803 * @thread The emulation thread.
3804 */
3805REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM, PVMCPU pVCpu)
3806{
3807 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3808 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3809 if (pVM->rem.s.fInREM)
3810 {
3811 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3812 CPU_INTERRUPT_EXTERNAL_HARD);
3813 }
3814}
3815
3816
3817/**
3818 * Notification about the interrupt FF being set.
3819 *
3820 * @param pVM VM Handle.
3821 * @param pVCpu VMCPU Handle.
3822 * @thread Any.
3823 */
3824REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM, PVMCPU pVCpu)
3825{
3826 LogFlow(("REMR3NotifyInterruptClear:\n"));
3827 if (pVM->rem.s.fInREM)
3828 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3829}
3830
3831
3832/**
3833 * Notification about pending timer(s).
3834 *
3835 * @param pVM VM Handle.
3836 * @thread Any.
3837 */
3838REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3839{
3840#ifndef DEBUG_bird
3841 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3842#endif
3843 if (pVM->rem.s.fInREM)
3844 {
3845 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3846 CPU_INTERRUPT_EXTERNAL_TIMER);
3847 }
3848}
3849
3850
3851/**
3852 * Notification about pending DMA transfers.
3853 *
3854 * @param pVM VM Handle.
3855 * @thread Any.
3856 */
3857REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3858{
3859 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3860 if (pVM->rem.s.fInREM)
3861 {
3862 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3863 CPU_INTERRUPT_EXTERNAL_DMA);
3864 }
3865}
3866
3867
3868/**
3869 * Notification about pending timer(s).
3870 *
3871 * @param pVM VM Handle.
3872 * @thread Any.
3873 */
3874REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3875{
3876 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3877 if (pVM->rem.s.fInREM)
3878 {
3879 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3880 CPU_INTERRUPT_EXTERNAL_EXIT);
3881 }
3882}
3883
3884
3885/**
3886 * Notification about pending FF set by an external thread.
3887 *
3888 * @param pVM VM handle.
3889 * @thread Any.
3890 */
3891REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3892{
3893 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3894 if (pVM->rem.s.fInREM)
3895 {
3896 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3897 CPU_INTERRUPT_EXTERNAL_EXIT);
3898 }
3899}
3900
3901
3902#ifdef VBOX_WITH_STATISTICS
3903void remR3ProfileStart(int statcode)
3904{
3905 STAMPROFILEADV *pStat;
3906 switch(statcode)
3907 {
3908 case STATS_EMULATE_SINGLE_INSTR:
3909 pStat = &gStatExecuteSingleInstr;
3910 break;
3911 case STATS_QEMU_COMPILATION:
3912 pStat = &gStatCompilationQEmu;
3913 break;
3914 case STATS_QEMU_RUN_EMULATED_CODE:
3915 pStat = &gStatRunCodeQEmu;
3916 break;
3917 case STATS_QEMU_TOTAL:
3918 pStat = &gStatTotalTimeQEmu;
3919 break;
3920 case STATS_QEMU_RUN_TIMERS:
3921 pStat = &gStatTimers;
3922 break;
3923 case STATS_TLB_LOOKUP:
3924 pStat= &gStatTBLookup;
3925 break;
3926 case STATS_IRQ_HANDLING:
3927 pStat= &gStatIRQ;
3928 break;
3929 case STATS_RAW_CHECK:
3930 pStat = &gStatRawCheck;
3931 break;
3932
3933 default:
3934 AssertMsgFailed(("unknown stat %d\n", statcode));
3935 return;
3936 }
3937 STAM_PROFILE_ADV_START(pStat, a);
3938}
3939
3940
3941void remR3ProfileStop(int statcode)
3942{
3943 STAMPROFILEADV *pStat;
3944 switch(statcode)
3945 {
3946 case STATS_EMULATE_SINGLE_INSTR:
3947 pStat = &gStatExecuteSingleInstr;
3948 break;
3949 case STATS_QEMU_COMPILATION:
3950 pStat = &gStatCompilationQEmu;
3951 break;
3952 case STATS_QEMU_RUN_EMULATED_CODE:
3953 pStat = &gStatRunCodeQEmu;
3954 break;
3955 case STATS_QEMU_TOTAL:
3956 pStat = &gStatTotalTimeQEmu;
3957 break;
3958 case STATS_QEMU_RUN_TIMERS:
3959 pStat = &gStatTimers;
3960 break;
3961 case STATS_TLB_LOOKUP:
3962 pStat= &gStatTBLookup;
3963 break;
3964 case STATS_IRQ_HANDLING:
3965 pStat= &gStatIRQ;
3966 break;
3967 case STATS_RAW_CHECK:
3968 pStat = &gStatRawCheck;
3969 break;
3970 default:
3971 AssertMsgFailed(("unknown stat %d\n", statcode));
3972 return;
3973 }
3974 STAM_PROFILE_ADV_STOP(pStat, a);
3975}
3976#endif
3977
3978/**
3979 * Raise an RC, force rem exit.
3980 *
3981 * @param pVM VM handle.
3982 * @param rc The rc.
3983 */
3984void remR3RaiseRC(PVM pVM, int rc)
3985{
3986 Log(("remR3RaiseRC: rc=%Rrc\n", rc));
3987 Assert(pVM->rem.s.fInREM);
3988 VM_ASSERT_EMT(pVM);
3989 pVM->rem.s.rc = rc;
3990 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3991}
3992
3993
3994/* -+- timers -+- */
3995
3996uint64_t cpu_get_tsc(CPUX86State *env)
3997{
3998 STAM_COUNTER_INC(&gStatCpuGetTSC);
3999 return TMCpuTickGet(env->pVCpu);
4000}
4001
4002
4003/* -+- interrupts -+- */
4004
4005void cpu_set_ferr(CPUX86State *env)
4006{
4007 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4008 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4009}
4010
4011int cpu_get_pic_interrupt(CPUState *env)
4012{
4013 uint8_t u8Interrupt;
4014 int rc;
4015
4016 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4017 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4018 * with the (a)pic.
4019 */
4020 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4021 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4022 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4023 * remove this kludge. */
4024 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4025 {
4026 rc = VINF_SUCCESS;
4027 Assert(env->pVM->rem.s.u32PendingInterrupt <= 255);
4028 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4029 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4030 }
4031 else
4032 rc = PDMGetInterrupt(env->pVCpu, &u8Interrupt);
4033
4034 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Rrc\n", u8Interrupt, rc));
4035 if (RT_SUCCESS(rc))
4036 {
4037 if (VMCPU_FF_ISPENDING(env->pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
4038 env->interrupt_request |= CPU_INTERRUPT_HARD;
4039 return u8Interrupt;
4040 }
4041 return -1;
4042}
4043
4044
4045/* -+- local apic -+- */
4046
4047void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4048{
4049 int rc = PDMApicSetBase(env->pVM, val);
4050 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Rrc\n", val, rc)); NOREF(rc);
4051}
4052
4053uint64_t cpu_get_apic_base(CPUX86State *env)
4054{
4055 uint64_t u64;
4056 int rc = PDMApicGetBase(env->pVM, &u64);
4057 if (RT_SUCCESS(rc))
4058 {
4059 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4060 return u64;
4061 }
4062 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Rrc)\n", rc));
4063 return 0;
4064}
4065
4066void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4067{
4068 int rc = PDMApicSetTPR(env->pVM, val);
4069 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Rrc\n", val, rc)); NOREF(rc);
4070}
4071
4072uint8_t cpu_get_apic_tpr(CPUX86State *env)
4073{
4074 uint8_t u8;
4075 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4076 if (RT_SUCCESS(rc))
4077 {
4078 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4079 return u8;
4080 }
4081 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Rrc)\n", rc));
4082 return 0;
4083}
4084
4085
4086uint64_t cpu_apic_rdmsr(CPUX86State *env, uint32_t reg)
4087{
4088 uint64_t value;
4089 int rc = PDMApicReadMSR(env->pVM, 0/* cpu */, reg, &value);
4090 if (RT_SUCCESS(rc))
4091 {
4092 LogFlow(("cpu_apic_rdms returns %#x\n", value));
4093 return value;
4094 }
4095 /** @todo: exception ? */
4096 LogFlow(("cpu_apic_rdms returns 0 (rc=%Rrc)\n", rc));
4097 return value;
4098}
4099
4100void cpu_apic_wrmsr(CPUX86State *env, uint32_t reg, uint64_t value)
4101{
4102 int rc = PDMApicWriteMSR(env->pVM, 0 /* cpu */, reg, value);
4103 /** @todo: exception if error ? */
4104 LogFlow(("cpu_apic_wrmsr: rc=%Rrc\n", rc)); NOREF(rc);
4105}
4106
4107uint64_t cpu_rdmsr(CPUX86State *env, uint32_t msr)
4108{
4109 Assert(env->pVCpu);
4110 return CPUMGetGuestMsr(env->pVCpu, msr);
4111}
4112
4113void cpu_wrmsr(CPUX86State *env, uint32_t msr, uint64_t val)
4114{
4115 Assert(env->pVCpu);
4116 CPUMSetGuestMsr(env->pVCpu, msr, val);
4117}
4118
4119/* -+- I/O Ports -+- */
4120
4121#undef LOG_GROUP
4122#define LOG_GROUP LOG_GROUP_REM_IOPORT
4123
4124void cpu_outb(CPUState *env, int addr, int val)
4125{
4126 int rc;
4127
4128 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4129 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4130
4131 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4132 if (RT_LIKELY(rc == VINF_SUCCESS))
4133 return;
4134 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4135 {
4136 Log(("cpu_outb: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4137 remR3RaiseRC(env->pVM, rc);
4138 return;
4139 }
4140 remAbort(rc, __FUNCTION__);
4141}
4142
4143void cpu_outw(CPUState *env, int addr, int val)
4144{
4145 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4146 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4147 if (RT_LIKELY(rc == VINF_SUCCESS))
4148 return;
4149 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4150 {
4151 Log(("cpu_outw: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4152 remR3RaiseRC(env->pVM, rc);
4153 return;
4154 }
4155 remAbort(rc, __FUNCTION__);
4156}
4157
4158void cpu_outl(CPUState *env, int addr, int val)
4159{
4160 int rc;
4161 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4162 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4163 if (RT_LIKELY(rc == VINF_SUCCESS))
4164 return;
4165 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4166 {
4167 Log(("cpu_outl: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4168 remR3RaiseRC(env->pVM, rc);
4169 return;
4170 }
4171 remAbort(rc, __FUNCTION__);
4172}
4173
4174int cpu_inb(CPUState *env, int addr)
4175{
4176 uint32_t u32 = 0;
4177 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4178 if (RT_LIKELY(rc == VINF_SUCCESS))
4179 {
4180 if (/*addr != 0x61 && */addr != 0x71)
4181 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4182 return (int)u32;
4183 }
4184 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4185 {
4186 Log(("cpu_inb: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4187 remR3RaiseRC(env->pVM, rc);
4188 return (int)u32;
4189 }
4190 remAbort(rc, __FUNCTION__);
4191 return 0xff;
4192}
4193
4194int cpu_inw(CPUState *env, int addr)
4195{
4196 uint32_t u32 = 0;
4197 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4198 if (RT_LIKELY(rc == VINF_SUCCESS))
4199 {
4200 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4201 return (int)u32;
4202 }
4203 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4204 {
4205 Log(("cpu_inw: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4206 remR3RaiseRC(env->pVM, rc);
4207 return (int)u32;
4208 }
4209 remAbort(rc, __FUNCTION__);
4210 return 0xffff;
4211}
4212
4213int cpu_inl(CPUState *env, int addr)
4214{
4215 uint32_t u32 = 0;
4216 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4217 if (RT_LIKELY(rc == VINF_SUCCESS))
4218 {
4219//if (addr==0x01f0 && u32 == 0x6b6d)
4220// loglevel = ~0;
4221 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4222 return (int)u32;
4223 }
4224 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4225 {
4226 Log(("cpu_inl: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4227 remR3RaiseRC(env->pVM, rc);
4228 return (int)u32;
4229 }
4230 remAbort(rc, __FUNCTION__);
4231 return 0xffffffff;
4232}
4233
4234#undef LOG_GROUP
4235#define LOG_GROUP LOG_GROUP_REM
4236
4237
4238/* -+- helpers and misc other interfaces -+- */
4239
4240/**
4241 * Perform the CPUID instruction.
4242 *
4243 * ASMCpuId cannot be invoked from some source files where this is used because of global
4244 * register allocations.
4245 *
4246 * @param env Pointer to the recompiler CPU structure.
4247 * @param uOperator CPUID operation (eax).
4248 * @param pvEAX Where to store eax.
4249 * @param pvEBX Where to store ebx.
4250 * @param pvECX Where to store ecx.
4251 * @param pvEDX Where to store edx.
4252 */
4253void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4254{
4255 CPUMGetGuestCpuId(env->pVCpu, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4256}
4257
4258
4259#if 0 /* not used */
4260/**
4261 * Interface for qemu hardware to report back fatal errors.
4262 */
4263void hw_error(const char *pszFormat, ...)
4264{
4265 /*
4266 * Bitch about it.
4267 */
4268 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4269 * this in my Odin32 tree at home! */
4270 va_list args;
4271 va_start(args, pszFormat);
4272 RTLogPrintf("fatal error in virtual hardware:");
4273 RTLogPrintfV(pszFormat, args);
4274 va_end(args);
4275 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4276
4277 /*
4278 * If we're in REM context we'll sync back the state before 'jumping' to
4279 * the EMs failure handling.
4280 */
4281 PVM pVM = cpu_single_env->pVM;
4282 if (pVM->rem.s.fInREM)
4283 REMR3StateBack(pVM);
4284 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4285 AssertMsgFailed(("EMR3FatalError returned!\n"));
4286}
4287#endif
4288
4289/**
4290 * Interface for the qemu cpu to report unhandled situation
4291 * raising a fatal VM error.
4292 */
4293void cpu_abort(CPUState *env, const char *pszFormat, ...)
4294{
4295 va_list args;
4296 PVM pVM;
4297 PVMCPU pVCpu;
4298
4299 /*
4300 * Bitch about it.
4301 */
4302#ifndef _MSC_VER
4303 /** @todo: MSVC is right - it's not valid C */
4304 RTLogFlags(NULL, "nodisabled nobuffered");
4305#endif
4306 va_start(args, pszFormat);
4307 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4308 va_end(args);
4309 va_start(args, pszFormat);
4310 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4311 va_end(args);
4312
4313 /*
4314 * If we're in REM context we'll sync back the state before 'jumping' to
4315 * the EMs failure handling.
4316 */
4317 pVM = cpu_single_env->pVM;
4318 pVCpu = cpu_single_env->pVCpu;
4319 Assert(pVCpu);
4320
4321 if (pVM->rem.s.fInREM)
4322 REMR3StateBack(pVM, pVCpu);
4323 EMR3FatalError(pVCpu, VERR_REM_VIRTUAL_CPU_ERROR);
4324 AssertMsgFailed(("EMR3FatalError returned!\n"));
4325}
4326
4327
4328/**
4329 * Aborts the VM.
4330 *
4331 * @param rc VBox error code.
4332 * @param pszTip Hint about why/when this happend.
4333 */
4334void remAbort(int rc, const char *pszTip)
4335{
4336 PVM pVM;
4337 PVMCPU pVCpu;
4338
4339 /*
4340 * Bitch about it.
4341 */
4342 RTLogPrintf("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip);
4343 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip));
4344
4345 /*
4346 * Jump back to where we entered the recompiler.
4347 */
4348 pVM = cpu_single_env->pVM;
4349 pVCpu = cpu_single_env->pVCpu;
4350 Assert(pVCpu);
4351
4352 if (pVM->rem.s.fInREM)
4353 REMR3StateBack(pVM, pVCpu);
4354
4355 EMR3FatalError(pVCpu, rc);
4356 AssertMsgFailed(("EMR3FatalError returned!\n"));
4357}
4358
4359
4360/**
4361 * Dumps a linux system call.
4362 * @param pVCpu VMCPU handle.
4363 */
4364void remR3DumpLnxSyscall(PVMCPU pVCpu)
4365{
4366 static const char *apsz[] =
4367 {
4368 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4369 "sys_exit",
4370 "sys_fork",
4371 "sys_read",
4372 "sys_write",
4373 "sys_open", /* 5 */
4374 "sys_close",
4375 "sys_waitpid",
4376 "sys_creat",
4377 "sys_link",
4378 "sys_unlink", /* 10 */
4379 "sys_execve",
4380 "sys_chdir",
4381 "sys_time",
4382 "sys_mknod",
4383 "sys_chmod", /* 15 */
4384 "sys_lchown16",
4385 "sys_ni_syscall", /* old break syscall holder */
4386 "sys_stat",
4387 "sys_lseek",
4388 "sys_getpid", /* 20 */
4389 "sys_mount",
4390 "sys_oldumount",
4391 "sys_setuid16",
4392 "sys_getuid16",
4393 "sys_stime", /* 25 */
4394 "sys_ptrace",
4395 "sys_alarm",
4396 "sys_fstat",
4397 "sys_pause",
4398 "sys_utime", /* 30 */
4399 "sys_ni_syscall", /* old stty syscall holder */
4400 "sys_ni_syscall", /* old gtty syscall holder */
4401 "sys_access",
4402 "sys_nice",
4403 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4404 "sys_sync",
4405 "sys_kill",
4406 "sys_rename",
4407 "sys_mkdir",
4408 "sys_rmdir", /* 40 */
4409 "sys_dup",
4410 "sys_pipe",
4411 "sys_times",
4412 "sys_ni_syscall", /* old prof syscall holder */
4413 "sys_brk", /* 45 */
4414 "sys_setgid16",
4415 "sys_getgid16",
4416 "sys_signal",
4417 "sys_geteuid16",
4418 "sys_getegid16", /* 50 */
4419 "sys_acct",
4420 "sys_umount", /* recycled never used phys() */
4421 "sys_ni_syscall", /* old lock syscall holder */
4422 "sys_ioctl",
4423 "sys_fcntl", /* 55 */
4424 "sys_ni_syscall", /* old mpx syscall holder */
4425 "sys_setpgid",
4426 "sys_ni_syscall", /* old ulimit syscall holder */
4427 "sys_olduname",
4428 "sys_umask", /* 60 */
4429 "sys_chroot",
4430 "sys_ustat",
4431 "sys_dup2",
4432 "sys_getppid",
4433 "sys_getpgrp", /* 65 */
4434 "sys_setsid",
4435 "sys_sigaction",
4436 "sys_sgetmask",
4437 "sys_ssetmask",
4438 "sys_setreuid16", /* 70 */
4439 "sys_setregid16",
4440 "sys_sigsuspend",
4441 "sys_sigpending",
4442 "sys_sethostname",
4443 "sys_setrlimit", /* 75 */
4444 "sys_old_getrlimit",
4445 "sys_getrusage",
4446 "sys_gettimeofday",
4447 "sys_settimeofday",
4448 "sys_getgroups16", /* 80 */
4449 "sys_setgroups16",
4450 "old_select",
4451 "sys_symlink",
4452 "sys_lstat",
4453 "sys_readlink", /* 85 */
4454 "sys_uselib",
4455 "sys_swapon",
4456 "sys_reboot",
4457 "old_readdir",
4458 "old_mmap", /* 90 */
4459 "sys_munmap",
4460 "sys_truncate",
4461 "sys_ftruncate",
4462 "sys_fchmod",
4463 "sys_fchown16", /* 95 */
4464 "sys_getpriority",
4465 "sys_setpriority",
4466 "sys_ni_syscall", /* old profil syscall holder */
4467 "sys_statfs",
4468 "sys_fstatfs", /* 100 */
4469 "sys_ioperm",
4470 "sys_socketcall",
4471 "sys_syslog",
4472 "sys_setitimer",
4473 "sys_getitimer", /* 105 */
4474 "sys_newstat",
4475 "sys_newlstat",
4476 "sys_newfstat",
4477 "sys_uname",
4478 "sys_iopl", /* 110 */
4479 "sys_vhangup",
4480 "sys_ni_syscall", /* old "idle" system call */
4481 "sys_vm86old",
4482 "sys_wait4",
4483 "sys_swapoff", /* 115 */
4484 "sys_sysinfo",
4485 "sys_ipc",
4486 "sys_fsync",
4487 "sys_sigreturn",
4488 "sys_clone", /* 120 */
4489 "sys_setdomainname",
4490 "sys_newuname",
4491 "sys_modify_ldt",
4492 "sys_adjtimex",
4493 "sys_mprotect", /* 125 */
4494 "sys_sigprocmask",
4495 "sys_ni_syscall", /* old "create_module" */
4496 "sys_init_module",
4497 "sys_delete_module",
4498 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4499 "sys_quotactl",
4500 "sys_getpgid",
4501 "sys_fchdir",
4502 "sys_bdflush",
4503 "sys_sysfs", /* 135 */
4504 "sys_personality",
4505 "sys_ni_syscall", /* reserved for afs_syscall */
4506 "sys_setfsuid16",
4507 "sys_setfsgid16",
4508 "sys_llseek", /* 140 */
4509 "sys_getdents",
4510 "sys_select",
4511 "sys_flock",
4512 "sys_msync",
4513 "sys_readv", /* 145 */
4514 "sys_writev",
4515 "sys_getsid",
4516 "sys_fdatasync",
4517 "sys_sysctl",
4518 "sys_mlock", /* 150 */
4519 "sys_munlock",
4520 "sys_mlockall",
4521 "sys_munlockall",
4522 "sys_sched_setparam",
4523 "sys_sched_getparam", /* 155 */
4524 "sys_sched_setscheduler",
4525 "sys_sched_getscheduler",
4526 "sys_sched_yield",
4527 "sys_sched_get_priority_max",
4528 "sys_sched_get_priority_min", /* 160 */
4529 "sys_sched_rr_get_interval",
4530 "sys_nanosleep",
4531 "sys_mremap",
4532 "sys_setresuid16",
4533 "sys_getresuid16", /* 165 */
4534 "sys_vm86",
4535 "sys_ni_syscall", /* Old sys_query_module */
4536 "sys_poll",
4537 "sys_nfsservctl",
4538 "sys_setresgid16", /* 170 */
4539 "sys_getresgid16",
4540 "sys_prctl",
4541 "sys_rt_sigreturn",
4542 "sys_rt_sigaction",
4543 "sys_rt_sigprocmask", /* 175 */
4544 "sys_rt_sigpending",
4545 "sys_rt_sigtimedwait",
4546 "sys_rt_sigqueueinfo",
4547 "sys_rt_sigsuspend",
4548 "sys_pread64", /* 180 */
4549 "sys_pwrite64",
4550 "sys_chown16",
4551 "sys_getcwd",
4552 "sys_capget",
4553 "sys_capset", /* 185 */
4554 "sys_sigaltstack",
4555 "sys_sendfile",
4556 "sys_ni_syscall", /* reserved for streams1 */
4557 "sys_ni_syscall", /* reserved for streams2 */
4558 "sys_vfork", /* 190 */
4559 "sys_getrlimit",
4560 "sys_mmap2",
4561 "sys_truncate64",
4562 "sys_ftruncate64",
4563 "sys_stat64", /* 195 */
4564 "sys_lstat64",
4565 "sys_fstat64",
4566 "sys_lchown",
4567 "sys_getuid",
4568 "sys_getgid", /* 200 */
4569 "sys_geteuid",
4570 "sys_getegid",
4571 "sys_setreuid",
4572 "sys_setregid",
4573 "sys_getgroups", /* 205 */
4574 "sys_setgroups",
4575 "sys_fchown",
4576 "sys_setresuid",
4577 "sys_getresuid",
4578 "sys_setresgid", /* 210 */
4579 "sys_getresgid",
4580 "sys_chown",
4581 "sys_setuid",
4582 "sys_setgid",
4583 "sys_setfsuid", /* 215 */
4584 "sys_setfsgid",
4585 "sys_pivot_root",
4586 "sys_mincore",
4587 "sys_madvise",
4588 "sys_getdents64", /* 220 */
4589 "sys_fcntl64",
4590 "sys_ni_syscall", /* reserved for TUX */
4591 "sys_ni_syscall",
4592 "sys_gettid",
4593 "sys_readahead", /* 225 */
4594 "sys_setxattr",
4595 "sys_lsetxattr",
4596 "sys_fsetxattr",
4597 "sys_getxattr",
4598 "sys_lgetxattr", /* 230 */
4599 "sys_fgetxattr",
4600 "sys_listxattr",
4601 "sys_llistxattr",
4602 "sys_flistxattr",
4603 "sys_removexattr", /* 235 */
4604 "sys_lremovexattr",
4605 "sys_fremovexattr",
4606 "sys_tkill",
4607 "sys_sendfile64",
4608 "sys_futex", /* 240 */
4609 "sys_sched_setaffinity",
4610 "sys_sched_getaffinity",
4611 "sys_set_thread_area",
4612 "sys_get_thread_area",
4613 "sys_io_setup", /* 245 */
4614 "sys_io_destroy",
4615 "sys_io_getevents",
4616 "sys_io_submit",
4617 "sys_io_cancel",
4618 "sys_fadvise64", /* 250 */
4619 "sys_ni_syscall",
4620 "sys_exit_group",
4621 "sys_lookup_dcookie",
4622 "sys_epoll_create",
4623 "sys_epoll_ctl", /* 255 */
4624 "sys_epoll_wait",
4625 "sys_remap_file_pages",
4626 "sys_set_tid_address",
4627 "sys_timer_create",
4628 "sys_timer_settime", /* 260 */
4629 "sys_timer_gettime",
4630 "sys_timer_getoverrun",
4631 "sys_timer_delete",
4632 "sys_clock_settime",
4633 "sys_clock_gettime", /* 265 */
4634 "sys_clock_getres",
4635 "sys_clock_nanosleep",
4636 "sys_statfs64",
4637 "sys_fstatfs64",
4638 "sys_tgkill", /* 270 */
4639 "sys_utimes",
4640 "sys_fadvise64_64",
4641 "sys_ni_syscall" /* sys_vserver */
4642 };
4643
4644 uint32_t uEAX = CPUMGetGuestEAX(pVCpu);
4645 switch (uEAX)
4646 {
4647 default:
4648 if (uEAX < RT_ELEMENTS(apsz))
4649 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4650 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVCpu), CPUMGetGuestEBX(pVCpu), CPUMGetGuestECX(pVCpu),
4651 CPUMGetGuestEDX(pVCpu), CPUMGetGuestESI(pVCpu), CPUMGetGuestEDI(pVCpu), CPUMGetGuestEBP(pVCpu)));
4652 else
4653 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVCpu), uEAX, uEAX));
4654 break;
4655
4656 }
4657}
4658
4659
4660/**
4661 * Dumps an OpenBSD system call.
4662 * @param pVCpu VMCPU handle.
4663 */
4664void remR3DumpOBsdSyscall(PVMCPU pVCpu)
4665{
4666 static const char *apsz[] =
4667 {
4668 "SYS_syscall", //0
4669 "SYS_exit", //1
4670 "SYS_fork", //2
4671 "SYS_read", //3
4672 "SYS_write", //4
4673 "SYS_open", //5
4674 "SYS_close", //6
4675 "SYS_wait4", //7
4676 "SYS_8",
4677 "SYS_link", //9
4678 "SYS_unlink", //10
4679 "SYS_11",
4680 "SYS_chdir", //12
4681 "SYS_fchdir", //13
4682 "SYS_mknod", //14
4683 "SYS_chmod", //15
4684 "SYS_chown", //16
4685 "SYS_break", //17
4686 "SYS_18",
4687 "SYS_19",
4688 "SYS_getpid", //20
4689 "SYS_mount", //21
4690 "SYS_unmount", //22
4691 "SYS_setuid", //23
4692 "SYS_getuid", //24
4693 "SYS_geteuid", //25
4694 "SYS_ptrace", //26
4695 "SYS_recvmsg", //27
4696 "SYS_sendmsg", //28
4697 "SYS_recvfrom", //29
4698 "SYS_accept", //30
4699 "SYS_getpeername", //31
4700 "SYS_getsockname", //32
4701 "SYS_access", //33
4702 "SYS_chflags", //34
4703 "SYS_fchflags", //35
4704 "SYS_sync", //36
4705 "SYS_kill", //37
4706 "SYS_38",
4707 "SYS_getppid", //39
4708 "SYS_40",
4709 "SYS_dup", //41
4710 "SYS_opipe", //42
4711 "SYS_getegid", //43
4712 "SYS_profil", //44
4713 "SYS_ktrace", //45
4714 "SYS_sigaction", //46
4715 "SYS_getgid", //47
4716 "SYS_sigprocmask", //48
4717 "SYS_getlogin", //49
4718 "SYS_setlogin", //50
4719 "SYS_acct", //51
4720 "SYS_sigpending", //52
4721 "SYS_osigaltstack", //53
4722 "SYS_ioctl", //54
4723 "SYS_reboot", //55
4724 "SYS_revoke", //56
4725 "SYS_symlink", //57
4726 "SYS_readlink", //58
4727 "SYS_execve", //59
4728 "SYS_umask", //60
4729 "SYS_chroot", //61
4730 "SYS_62",
4731 "SYS_63",
4732 "SYS_64",
4733 "SYS_65",
4734 "SYS_vfork", //66
4735 "SYS_67",
4736 "SYS_68",
4737 "SYS_sbrk", //69
4738 "SYS_sstk", //70
4739 "SYS_61",
4740 "SYS_vadvise", //72
4741 "SYS_munmap", //73
4742 "SYS_mprotect", //74
4743 "SYS_madvise", //75
4744 "SYS_76",
4745 "SYS_77",
4746 "SYS_mincore", //78
4747 "SYS_getgroups", //79
4748 "SYS_setgroups", //80
4749 "SYS_getpgrp", //81
4750 "SYS_setpgid", //82
4751 "SYS_setitimer", //83
4752 "SYS_84",
4753 "SYS_85",
4754 "SYS_getitimer", //86
4755 "SYS_87",
4756 "SYS_88",
4757 "SYS_89",
4758 "SYS_dup2", //90
4759 "SYS_91",
4760 "SYS_fcntl", //92
4761 "SYS_select", //93
4762 "SYS_94",
4763 "SYS_fsync", //95
4764 "SYS_setpriority", //96
4765 "SYS_socket", //97
4766 "SYS_connect", //98
4767 "SYS_99",
4768 "SYS_getpriority", //100
4769 "SYS_101",
4770 "SYS_102",
4771 "SYS_sigreturn", //103
4772 "SYS_bind", //104
4773 "SYS_setsockopt", //105
4774 "SYS_listen", //106
4775 "SYS_107",
4776 "SYS_108",
4777 "SYS_109",
4778 "SYS_110",
4779 "SYS_sigsuspend", //111
4780 "SYS_112",
4781 "SYS_113",
4782 "SYS_114",
4783 "SYS_115",
4784 "SYS_gettimeofday", //116
4785 "SYS_getrusage", //117
4786 "SYS_getsockopt", //118
4787 "SYS_119",
4788 "SYS_readv", //120
4789 "SYS_writev", //121
4790 "SYS_settimeofday", //122
4791 "SYS_fchown", //123
4792 "SYS_fchmod", //124
4793 "SYS_125",
4794 "SYS_setreuid", //126
4795 "SYS_setregid", //127
4796 "SYS_rename", //128
4797 "SYS_129",
4798 "SYS_130",
4799 "SYS_flock", //131
4800 "SYS_mkfifo", //132
4801 "SYS_sendto", //133
4802 "SYS_shutdown", //134
4803 "SYS_socketpair", //135
4804 "SYS_mkdir", //136
4805 "SYS_rmdir", //137
4806 "SYS_utimes", //138
4807 "SYS_139",
4808 "SYS_adjtime", //140
4809 "SYS_141",
4810 "SYS_142",
4811 "SYS_143",
4812 "SYS_144",
4813 "SYS_145",
4814 "SYS_146",
4815 "SYS_setsid", //147
4816 "SYS_quotactl", //148
4817 "SYS_149",
4818 "SYS_150",
4819 "SYS_151",
4820 "SYS_152",
4821 "SYS_153",
4822 "SYS_154",
4823 "SYS_nfssvc", //155
4824 "SYS_156",
4825 "SYS_157",
4826 "SYS_158",
4827 "SYS_159",
4828 "SYS_160",
4829 "SYS_getfh", //161
4830 "SYS_162",
4831 "SYS_163",
4832 "SYS_164",
4833 "SYS_sysarch", //165
4834 "SYS_166",
4835 "SYS_167",
4836 "SYS_168",
4837 "SYS_169",
4838 "SYS_170",
4839 "SYS_171",
4840 "SYS_172",
4841 "SYS_pread", //173
4842 "SYS_pwrite", //174
4843 "SYS_175",
4844 "SYS_176",
4845 "SYS_177",
4846 "SYS_178",
4847 "SYS_179",
4848 "SYS_180",
4849 "SYS_setgid", //181
4850 "SYS_setegid", //182
4851 "SYS_seteuid", //183
4852 "SYS_lfs_bmapv", //184
4853 "SYS_lfs_markv", //185
4854 "SYS_lfs_segclean", //186
4855 "SYS_lfs_segwait", //187
4856 "SYS_188",
4857 "SYS_189",
4858 "SYS_190",
4859 "SYS_pathconf", //191
4860 "SYS_fpathconf", //192
4861 "SYS_swapctl", //193
4862 "SYS_getrlimit", //194
4863 "SYS_setrlimit", //195
4864 "SYS_getdirentries", //196
4865 "SYS_mmap", //197
4866 "SYS___syscall", //198
4867 "SYS_lseek", //199
4868 "SYS_truncate", //200
4869 "SYS_ftruncate", //201
4870 "SYS___sysctl", //202
4871 "SYS_mlock", //203
4872 "SYS_munlock", //204
4873 "SYS_205",
4874 "SYS_futimes", //206
4875 "SYS_getpgid", //207
4876 "SYS_xfspioctl", //208
4877 "SYS_209",
4878 "SYS_210",
4879 "SYS_211",
4880 "SYS_212",
4881 "SYS_213",
4882 "SYS_214",
4883 "SYS_215",
4884 "SYS_216",
4885 "SYS_217",
4886 "SYS_218",
4887 "SYS_219",
4888 "SYS_220",
4889 "SYS_semget", //221
4890 "SYS_222",
4891 "SYS_223",
4892 "SYS_224",
4893 "SYS_msgget", //225
4894 "SYS_msgsnd", //226
4895 "SYS_msgrcv", //227
4896 "SYS_shmat", //228
4897 "SYS_229",
4898 "SYS_shmdt", //230
4899 "SYS_231",
4900 "SYS_clock_gettime", //232
4901 "SYS_clock_settime", //233
4902 "SYS_clock_getres", //234
4903 "SYS_235",
4904 "SYS_236",
4905 "SYS_237",
4906 "SYS_238",
4907 "SYS_239",
4908 "SYS_nanosleep", //240
4909 "SYS_241",
4910 "SYS_242",
4911 "SYS_243",
4912 "SYS_244",
4913 "SYS_245",
4914 "SYS_246",
4915 "SYS_247",
4916 "SYS_248",
4917 "SYS_249",
4918 "SYS_minherit", //250
4919 "SYS_rfork", //251
4920 "SYS_poll", //252
4921 "SYS_issetugid", //253
4922 "SYS_lchown", //254
4923 "SYS_getsid", //255
4924 "SYS_msync", //256
4925 "SYS_257",
4926 "SYS_258",
4927 "SYS_259",
4928 "SYS_getfsstat", //260
4929 "SYS_statfs", //261
4930 "SYS_fstatfs", //262
4931 "SYS_pipe", //263
4932 "SYS_fhopen", //264
4933 "SYS_265",
4934 "SYS_fhstatfs", //266
4935 "SYS_preadv", //267
4936 "SYS_pwritev", //268
4937 "SYS_kqueue", //269
4938 "SYS_kevent", //270
4939 "SYS_mlockall", //271
4940 "SYS_munlockall", //272
4941 "SYS_getpeereid", //273
4942 "SYS_274",
4943 "SYS_275",
4944 "SYS_276",
4945 "SYS_277",
4946 "SYS_278",
4947 "SYS_279",
4948 "SYS_280",
4949 "SYS_getresuid", //281
4950 "SYS_setresuid", //282
4951 "SYS_getresgid", //283
4952 "SYS_setresgid", //284
4953 "SYS_285",
4954 "SYS_mquery", //286
4955 "SYS_closefrom", //287
4956 "SYS_sigaltstack", //288
4957 "SYS_shmget", //289
4958 "SYS_semop", //290
4959 "SYS_stat", //291
4960 "SYS_fstat", //292
4961 "SYS_lstat", //293
4962 "SYS_fhstat", //294
4963 "SYS___semctl", //295
4964 "SYS_shmctl", //296
4965 "SYS_msgctl", //297
4966 "SYS_MAXSYSCALL", //298
4967 //299
4968 //300
4969 };
4970 uint32_t uEAX;
4971 if (!LogIsEnabled())
4972 return;
4973 uEAX = CPUMGetGuestEAX(pVCpu);
4974 switch (uEAX)
4975 {
4976 default:
4977 if (uEAX < RT_ELEMENTS(apsz))
4978 {
4979 uint32_t au32Args[8] = {0};
4980 PGMPhysSimpleReadGCPtr(pVCpu, au32Args, CPUMGetGuestESP(pVCpu), sizeof(au32Args));
4981 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4982 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVCpu), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4983 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4984 }
4985 else
4986 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVCpu), uEAX, uEAX);
4987 break;
4988 }
4989}
4990
4991
4992#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
4993/**
4994 * The Dll main entry point (stub).
4995 */
4996bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
4997{
4998 return true;
4999}
5000
5001void *memcpy(void *dst, const void *src, size_t size)
5002{
5003 uint8_t*pbDst = dst, *pbSrc = src;
5004 while (size-- > 0)
5005 *pbDst++ = *pbSrc++;
5006 return dst;
5007}
5008
5009#endif
5010
5011void cpu_smm_update(CPUState *env)
5012{
5013}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette