VirtualBox

source: vbox/trunk/src/recompiler_new/exec.c@ 15284

Last change on this file since 15284 was 15284, checked in by vboxsync, 16 years ago

PGM, REM: Virtual address in TLB - this is what I meant...

  • Property svn:eol-style set to native
File size: 111.3 KB
Line 
1/*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21/*
22 * Sun LGPL Disclaimer: For the avoidance of doubt, except that if any license choice
23 * other than GPL or LGPL is available it will apply instead, Sun elects to use only
24 * the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where
25 * a choice of LGPL license versions is made available with the language indicating
26 * that LGPLv2 or any later version may be used, or where a choice of which version
27 * of the LGPL is applied is otherwise unspecified.
28 */
29#include "config.h"
30#ifndef VBOX
31#ifdef _WIN32
32#include <windows.h>
33#else
34#include <sys/types.h>
35#include <sys/mman.h>
36#endif
37#include <stdlib.h>
38#include <stdio.h>
39#include <stdarg.h>
40#include <string.h>
41#include <errno.h>
42#include <unistd.h>
43#include <inttypes.h>
44#else /* VBOX */
45# include <stdlib.h>
46# include <stdio.h>
47# include <iprt/alloc.h>
48# include <iprt/string.h>
49# include <iprt/param.h>
50# include <VBox/pgm.h> /* PGM_DYNAMIC_RAM_ALLOC */
51#endif /* VBOX */
52
53#include "cpu.h"
54#include "exec-all.h"
55#if defined(CONFIG_USER_ONLY)
56#include <qemu.h>
57#endif
58
59//#define DEBUG_TB_INVALIDATE
60//#define DEBUG_FLUSH
61//#define DEBUG_TLB
62//#define DEBUG_UNASSIGNED
63
64/* make various TB consistency checks */
65//#define DEBUG_TB_CHECK
66//#define DEBUG_TLB_CHECK
67
68#if !defined(CONFIG_USER_ONLY)
69/* TB consistency checks only implemented for usermode emulation. */
70#undef DEBUG_TB_CHECK
71#endif
72
73#define SMC_BITMAP_USE_THRESHOLD 10
74
75#define MMAP_AREA_START 0x00000000
76#define MMAP_AREA_END 0xa8000000
77
78#if defined(TARGET_SPARC64)
79#define TARGET_PHYS_ADDR_SPACE_BITS 41
80#elif defined(TARGET_SPARC)
81#define TARGET_PHYS_ADDR_SPACE_BITS 36
82#elif defined(TARGET_ALPHA)
83#define TARGET_PHYS_ADDR_SPACE_BITS 42
84#define TARGET_VIRT_ADDR_SPACE_BITS 42
85#elif defined(TARGET_PPC64)
86#define TARGET_PHYS_ADDR_SPACE_BITS 42
87#elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
88#define TARGET_PHYS_ADDR_SPACE_BITS 42
89#elif defined(TARGET_I386) && !defined(USE_KQEMU)
90#define TARGET_PHYS_ADDR_SPACE_BITS 36
91#else
92/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
93#define TARGET_PHYS_ADDR_SPACE_BITS 32
94#endif
95
96static TranslationBlock *tbs;
97int code_gen_max_blocks;
98TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
99static int nb_tbs;
100/* any access to the tbs or the page table must use this lock */
101spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
102
103#ifndef VBOX
104#if defined(__arm__) || defined(__sparc_v9__)
105/* The prologue must be reachable with a direct jump. ARM and Sparc64
106 have limited branch ranges (possibly also PPC) so place it in a
107 section close to code segment. */
108#define code_gen_section \
109 __attribute__((__section__(".gen_code"))) \
110 __attribute__((aligned (32)))
111#else
112#define code_gen_section \
113 __attribute__((aligned (32)))
114#endif
115uint8_t code_gen_prologue[1024] code_gen_section;
116
117#else /* VBOX */
118extern uint8_t* code_gen_prologue;
119#endif /* VBOX */
120
121static uint8_t *code_gen_buffer;
122static unsigned long code_gen_buffer_size;
123/* threshold to flush the translated code buffer */
124static unsigned long code_gen_buffer_max_size;
125uint8_t *code_gen_ptr;
126
127#ifndef VBOX
128#if !defined(CONFIG_USER_ONLY)
129ram_addr_t phys_ram_size;
130int phys_ram_fd;
131uint8_t *phys_ram_base;
132uint8_t *phys_ram_dirty;
133static int in_migration;
134static ram_addr_t phys_ram_alloc_offset = 0;
135#endif
136#else /* VBOX */
137RTGCPHYS phys_ram_size;
138/* we have memory ranges (the high PC-BIOS mapping) which
139 causes some pages to fall outside the dirty map here. */
140uint32_t phys_ram_dirty_size;
141#endif /* VBOX */
142#if !defined(VBOX)
143uint8_t *phys_ram_base;
144#endif
145uint8_t *phys_ram_dirty;
146
147CPUState *first_cpu;
148/* current CPU in the current thread. It is only valid inside
149 cpu_exec() */
150CPUState *cpu_single_env;
151/* 0 = Do not count executed instructions.
152 1 = Precise instruction counting.
153 2 = Adaptive rate instruction counting. */
154int use_icount = 0;
155/* Current instruction counter. While executing translated code this may
156 include some instructions that have not yet been executed. */
157int64_t qemu_icount;
158
159typedef struct PageDesc {
160 /* list of TBs intersecting this ram page */
161 TranslationBlock *first_tb;
162 /* in order to optimize self modifying code, we count the number
163 of lookups we do to a given page to use a bitmap */
164 unsigned int code_write_count;
165 uint8_t *code_bitmap;
166#if defined(CONFIG_USER_ONLY)
167 unsigned long flags;
168#endif
169} PageDesc;
170
171typedef struct PhysPageDesc {
172 /* offset in host memory of the page + io_index in the low 12 bits */
173 ram_addr_t phys_offset;
174} PhysPageDesc;
175
176#define L2_BITS 10
177#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
178/* XXX: this is a temporary hack for alpha target.
179 * In the future, this is to be replaced by a multi-level table
180 * to actually be able to handle the complete 64 bits address space.
181 */
182#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
183#else
184#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
185#endif
186
187#define L1_SIZE (1 << L1_BITS)
188#define L2_SIZE (1 << L2_BITS)
189
190static void io_mem_init(void);
191
192unsigned long qemu_real_host_page_size;
193unsigned long qemu_host_page_bits;
194unsigned long qemu_host_page_size;
195unsigned long qemu_host_page_mask;
196
197/* XXX: for system emulation, it could just be an array */
198static PageDesc *l1_map[L1_SIZE];
199static PhysPageDesc **l1_phys_map;
200
201#if !defined(CONFIG_USER_ONLY)
202static void io_mem_init(void);
203
204/* io memory support */
205CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
206CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
207void *io_mem_opaque[IO_MEM_NB_ENTRIES];
208static int io_mem_nb;
209static int io_mem_watch;
210#endif
211
212#ifndef VBOX
213/* log support */
214static const char *logfilename = "/tmp/qemu.log";
215#endif /* !VBOX */
216FILE *logfile;
217int loglevel;
218#ifndef VBOX
219static int log_append = 0;
220#endif
221
222/* statistics */
223static int tlb_flush_count;
224static int tb_flush_count;
225#ifndef VBOX
226static int tb_phys_invalidate_count;
227#endif /* !VBOX */
228
229#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
230typedef struct subpage_t {
231 target_phys_addr_t base;
232 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
233 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
234 void *opaque[TARGET_PAGE_SIZE][2][4];
235} subpage_t;
236
237
238#ifndef VBOX
239#ifdef _WIN32
240static void map_exec(void *addr, long size)
241{
242 DWORD old_protect;
243 VirtualProtect(addr, size,
244 PAGE_EXECUTE_READWRITE, &old_protect);
245
246}
247#else
248static void map_exec(void *addr, long size)
249{
250 unsigned long start, end, page_size;
251
252 page_size = getpagesize();
253 start = (unsigned long)addr;
254 start &= ~(page_size - 1);
255
256 end = (unsigned long)addr + size;
257 end += page_size - 1;
258 end &= ~(page_size - 1);
259
260 mprotect((void *)start, end - start,
261 PROT_READ | PROT_WRITE | PROT_EXEC);
262}
263#endif
264#else // VBOX
265static void map_exec(void *addr, long size)
266{
267 RTMemProtect(addr, size,
268 RTMEM_PROT_EXEC | RTMEM_PROT_READ | RTMEM_PROT_WRITE);
269}
270#endif
271
272static void page_init(void)
273{
274 /* NOTE: we can always suppose that qemu_host_page_size >=
275 TARGET_PAGE_SIZE */
276#ifdef VBOX
277 RTMemProtect(code_gen_buffer, sizeof(code_gen_buffer),
278 RTMEM_PROT_EXEC | RTMEM_PROT_READ | RTMEM_PROT_WRITE);
279 qemu_real_host_page_size = PAGE_SIZE;
280#else /* !VBOX */
281#ifdef _WIN32
282 {
283 SYSTEM_INFO system_info;
284 DWORD old_protect;
285
286 GetSystemInfo(&system_info);
287 qemu_real_host_page_size = system_info.dwPageSize;
288 }
289#else
290 qemu_real_host_page_size = getpagesize();
291#endif
292#endif /* !VBOX */
293
294 if (qemu_host_page_size == 0)
295 qemu_host_page_size = qemu_real_host_page_size;
296 if (qemu_host_page_size < TARGET_PAGE_SIZE)
297 qemu_host_page_size = TARGET_PAGE_SIZE;
298 qemu_host_page_bits = 0;
299#ifndef VBOX
300 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
301#else
302 while ((1 << qemu_host_page_bits) < (int)qemu_host_page_size)
303#endif
304 qemu_host_page_bits++;
305 qemu_host_page_mask = ~(qemu_host_page_size - 1);
306 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
307 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
308#ifdef VBOX
309 /* We use other means to set reserved bit on our pages */
310#else
311#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
312 {
313 long long startaddr, endaddr;
314 FILE *f;
315 int n;
316
317 mmap_lock();
318 last_brk = (unsigned long)sbrk(0);
319 f = fopen("/proc/self/maps", "r");
320 if (f) {
321 do {
322 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
323 if (n == 2) {
324 startaddr = MIN(startaddr,
325 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
326 endaddr = MIN(endaddr,
327 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
328 page_set_flags(startaddr & TARGET_PAGE_MASK,
329 TARGET_PAGE_ALIGN(endaddr),
330 PAGE_RESERVED);
331 }
332 } while (!feof(f));
333 fclose(f);
334 }
335 mmap_unlock();
336 }
337#endif
338#endif
339}
340
341#ifndef VBOX
342static inline PageDesc **page_l1_map(target_ulong index)
343#else
344DECLINLINE(PageDesc **) page_l1_map(target_ulong index)
345#endif
346{
347#if TARGET_LONG_BITS > 32
348 /* Host memory outside guest VM. For 32-bit targets we have already
349 excluded high addresses. */
350 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
351 return NULL;
352#endif
353 return &l1_map[index >> L2_BITS];
354}
355
356#ifndef VBOX
357static inline PageDesc *page_find_alloc(target_ulong index)
358#else
359DECLINLINE(PageDesc *) page_find_alloc(target_ulong index)
360#endif
361{
362 PageDesc **lp, *p;
363 lp = page_l1_map(index);
364 if (!lp)
365 return NULL;
366
367 p = *lp;
368 if (!p) {
369 /* allocate if not found */
370#if defined(CONFIG_USER_ONLY)
371 unsigned long addr;
372 size_t len = sizeof(PageDesc) * L2_SIZE;
373 /* Don't use qemu_malloc because it may recurse. */
374 p = mmap(0, len, PROT_READ | PROT_WRITE,
375 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
376 *lp = p;
377 addr = h2g(p);
378 if (addr == (target_ulong)addr) {
379 page_set_flags(addr & TARGET_PAGE_MASK,
380 TARGET_PAGE_ALIGN(addr + len),
381 PAGE_RESERVED);
382 }
383#else
384 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
385 *lp = p;
386#endif
387 }
388 return p + (index & (L2_SIZE - 1));
389}
390
391#ifndef VBOX
392static inline PageDesc *page_find(target_ulong index)
393#else
394DECLINLINE(PageDesc *) page_find(target_ulong index)
395#endif
396{
397 PageDesc **lp, *p;
398 lp = page_l1_map(index);
399 if (!lp)
400 return NULL;
401
402 p = *lp;
403 if (!p)
404 return 0;
405 return p + (index & (L2_SIZE - 1));
406}
407
408static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
409{
410 void **lp, **p;
411 PhysPageDesc *pd;
412
413 p = (void **)l1_phys_map;
414#if TARGET_PHYS_ADDR_SPACE_BITS > 32
415
416#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
417#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
418#endif
419 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
420 p = *lp;
421 if (!p) {
422 /* allocate if not found */
423 if (!alloc)
424 return NULL;
425 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
426 memset(p, 0, sizeof(void *) * L1_SIZE);
427 *lp = p;
428 }
429#endif
430 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
431 pd = *lp;
432 if (!pd) {
433 int i;
434 /* allocate if not found */
435 if (!alloc)
436 return NULL;
437 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
438 *lp = pd;
439 for (i = 0; i < L2_SIZE; i++)
440 pd[i].phys_offset = IO_MEM_UNASSIGNED;
441 }
442#if defined(VBOX) && !defined(VBOX_WITH_NEW_PHYS_CODE)
443 pd = ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
444 if (RT_UNLIKELY((pd->phys_offset & ~TARGET_PAGE_MASK) == IO_MEM_RAM_MISSING))
445 remR3GrowDynRange(pd->phys_offset & TARGET_PAGE_MASK);
446 return pd;
447#else
448 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
449#endif
450}
451
452#ifndef VBOX
453static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
454#else
455DECLINLINE(PhysPageDesc *) phys_page_find(target_phys_addr_t index)
456#endif
457{
458 return phys_page_find_alloc(index, 0);
459}
460
461#if !defined(CONFIG_USER_ONLY)
462static void tlb_protect_code(ram_addr_t ram_addr);
463static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
464 target_ulong vaddr);
465#define mmap_lock() do { } while(0)
466#define mmap_unlock() do { } while(0)
467#endif
468
469#ifdef VBOX
470/** @todo nike: isn't 32M too much ? */
471#endif
472#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
473
474#if defined(CONFIG_USER_ONLY)
475/* Currently it is not recommanded to allocate big chunks of data in
476 user mode. It will change when a dedicated libc will be used */
477#define USE_STATIC_CODE_GEN_BUFFER
478#endif
479
480/* VBox allocates codegen buffer dynamically */
481#ifndef VBOX
482#ifdef USE_STATIC_CODE_GEN_BUFFER
483static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
484#endif
485#endif
486
487static void code_gen_alloc(unsigned long tb_size)
488{
489#ifdef USE_STATIC_CODE_GEN_BUFFER
490 code_gen_buffer = static_code_gen_buffer;
491 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
492 map_exec(code_gen_buffer, code_gen_buffer_size);
493#else
494 code_gen_buffer_size = tb_size;
495 if (code_gen_buffer_size == 0) {
496#if defined(CONFIG_USER_ONLY)
497 /* in user mode, phys_ram_size is not meaningful */
498 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
499#else
500 /* XXX: needs ajustments */
501 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
502#endif
503 }
504 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
505 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
506 /* The code gen buffer location may have constraints depending on
507 the host cpu and OS */
508#ifdef VBOX
509 code_gen_buffer = RTMemExecAlloc(code_gen_buffer_size);
510
511 if (!code_gen_buffer) {
512 LogRel(("REM: failed allocate codegen buffer %lld\n",
513 code_gen_buffer_size));
514 return;
515 }
516#else //!VBOX
517#if defined(__linux__)
518 {
519 int flags;
520 void *start = NULL;
521
522 flags = MAP_PRIVATE | MAP_ANONYMOUS;
523#if defined(__x86_64__)
524 flags |= MAP_32BIT;
525 /* Cannot map more than that */
526 if (code_gen_buffer_size > (800 * 1024 * 1024))
527 code_gen_buffer_size = (800 * 1024 * 1024);
528#elif defined(__sparc_v9__)
529 // Map the buffer below 2G, so we can use direct calls and branches
530 flags |= MAP_FIXED;
531 start = (void *) 0x60000000UL;
532 if (code_gen_buffer_size > (512 * 1024 * 1024))
533 code_gen_buffer_size = (512 * 1024 * 1024);
534#endif
535 code_gen_buffer = mmap(start, code_gen_buffer_size,
536 PROT_WRITE | PROT_READ | PROT_EXEC,
537 flags, -1, 0);
538 if (code_gen_buffer == MAP_FAILED) {
539 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
540 exit(1);
541 }
542 }
543#elif defined(__FreeBSD__)
544 {
545 int flags;
546 void *addr = NULL;
547 flags = MAP_PRIVATE | MAP_ANONYMOUS;
548#if defined(__x86_64__)
549 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
550 * 0x40000000 is free */
551 flags |= MAP_FIXED;
552 addr = (void *)0x40000000;
553 /* Cannot map more than that */
554 if (code_gen_buffer_size > (800 * 1024 * 1024))
555 code_gen_buffer_size = (800 * 1024 * 1024);
556#endif
557 code_gen_buffer = mmap(addr, code_gen_buffer_size,
558 PROT_WRITE | PROT_READ | PROT_EXEC,
559 flags, -1, 0);
560 if (code_gen_buffer == MAP_FAILED) {
561 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
562 exit(1);
563 }
564 }
565#else
566 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
567 if (!code_gen_buffer) {
568 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
569 exit(1);
570 }
571 map_exec(code_gen_buffer, code_gen_buffer_size);
572#endif
573 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
574#endif /* !VBOX */
575#endif /* !USE_STATIC_CODE_GEN_BUFFER */
576#ifndef VBOX
577 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
578#else
579 map_exec(code_gen_prologue, _1K);
580#endif
581
582 code_gen_buffer_max_size = code_gen_buffer_size -
583 code_gen_max_block_size();
584 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
585 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
586}
587
588/* Must be called before using the QEMU cpus. 'tb_size' is the size
589 (in bytes) allocated to the translation buffer. Zero means default
590 size. */
591void cpu_exec_init_all(unsigned long tb_size)
592{
593 cpu_gen_init();
594 code_gen_alloc(tb_size);
595 code_gen_ptr = code_gen_buffer;
596 page_init();
597#if !defined(CONFIG_USER_ONLY)
598 io_mem_init();
599#endif
600}
601
602#ifndef VBOX
603#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
604
605#define CPU_COMMON_SAVE_VERSION 1
606
607static void cpu_common_save(QEMUFile *f, void *opaque)
608{
609 CPUState *env = opaque;
610
611 qemu_put_be32s(f, &env->halted);
612 qemu_put_be32s(f, &env->interrupt_request);
613}
614
615static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
616{
617 CPUState *env = opaque;
618
619 if (version_id != CPU_COMMON_SAVE_VERSION)
620 return -EINVAL;
621
622 qemu_get_be32s(f, &env->halted);
623 qemu_get_be32s(f, &env->interrupt_request);
624 tlb_flush(env, 1);
625
626 return 0;
627}
628#endif
629#endif //!VBOX
630
631void cpu_exec_init(CPUState *env)
632{
633 CPUState **penv;
634 int cpu_index;
635
636 env->next_cpu = NULL;
637 penv = &first_cpu;
638 cpu_index = 0;
639 while (*penv != NULL) {
640 penv = (CPUState **)&(*penv)->next_cpu;
641 cpu_index++;
642 }
643 env->cpu_index = cpu_index;
644 env->nb_watchpoints = 0;
645 *penv = env;
646#ifndef VBOX
647#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
648 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
649 cpu_common_save, cpu_common_load, env);
650 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
651 cpu_save, cpu_load, env);
652#endif
653#endif // !VBOX
654}
655
656#ifndef VBOX
657static inline void invalidate_page_bitmap(PageDesc *p)
658#else
659DECLINLINE(void) invalidate_page_bitmap(PageDesc *p)
660#endif
661{
662 if (p->code_bitmap) {
663 qemu_free(p->code_bitmap);
664 p->code_bitmap = NULL;
665 }
666 p->code_write_count = 0;
667}
668
669/* set to NULL all the 'first_tb' fields in all PageDescs */
670static void page_flush_tb(void)
671{
672 int i, j;
673 PageDesc *p;
674
675 for(i = 0; i < L1_SIZE; i++) {
676 p = l1_map[i];
677 if (p) {
678 for(j = 0; j < L2_SIZE; j++) {
679 p->first_tb = NULL;
680 invalidate_page_bitmap(p);
681 p++;
682 }
683 }
684 }
685}
686
687/* flush all the translation blocks */
688/* XXX: tb_flush is currently not thread safe */
689void tb_flush(CPUState *env1)
690{
691 CPUState *env;
692#if defined(DEBUG_FLUSH)
693 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
694 (unsigned long)(code_gen_ptr - code_gen_buffer),
695 nb_tbs, nb_tbs > 0 ?
696 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
697#endif
698 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
699 cpu_abort(env1, "Internal error: code buffer overflow\n");
700
701 nb_tbs = 0;
702
703 for(env = first_cpu; env != NULL; env = env->next_cpu) {
704 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
705 }
706
707 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
708 page_flush_tb();
709
710 code_gen_ptr = code_gen_buffer;
711 /* XXX: flush processor icache at this point if cache flush is
712 expensive */
713 tb_flush_count++;
714}
715
716#ifdef DEBUG_TB_CHECK
717static void tb_invalidate_check(target_ulong address)
718{
719 TranslationBlock *tb;
720 int i;
721 address &= TARGET_PAGE_MASK;
722 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
723 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
724 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
725 address >= tb->pc + tb->size)) {
726 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
727 address, (long)tb->pc, tb->size);
728 }
729 }
730 }
731}
732
733/* verify that all the pages have correct rights for code */
734static void tb_page_check(void)
735{
736 TranslationBlock *tb;
737 int i, flags1, flags2;
738
739 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
740 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
741 flags1 = page_get_flags(tb->pc);
742 flags2 = page_get_flags(tb->pc + tb->size - 1);
743 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
744 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
745 (long)tb->pc, tb->size, flags1, flags2);
746 }
747 }
748 }
749}
750
751static void tb_jmp_check(TranslationBlock *tb)
752{
753 TranslationBlock *tb1;
754 unsigned int n1;
755
756 /* suppress any remaining jumps to this TB */
757 tb1 = tb->jmp_first;
758 for(;;) {
759 n1 = (long)tb1 & 3;
760 tb1 = (TranslationBlock *)((long)tb1 & ~3);
761 if (n1 == 2)
762 break;
763 tb1 = tb1->jmp_next[n1];
764 }
765 /* check end of list */
766 if (tb1 != tb) {
767 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
768 }
769}
770#endif // DEBUG_TB_CHECK
771
772/* invalidate one TB */
773#ifndef VBOX
774static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
775 int next_offset)
776#else
777DECLINLINE(void) tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
778 int next_offset)
779#endif
780{
781 TranslationBlock *tb1;
782 for(;;) {
783 tb1 = *ptb;
784 if (tb1 == tb) {
785 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
786 break;
787 }
788 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
789 }
790}
791
792#ifndef VBOX
793static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
794#else
795DECLINLINE(void) tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
796#endif
797{
798 TranslationBlock *tb1;
799 unsigned int n1;
800
801 for(;;) {
802 tb1 = *ptb;
803 n1 = (long)tb1 & 3;
804 tb1 = (TranslationBlock *)((long)tb1 & ~3);
805 if (tb1 == tb) {
806 *ptb = tb1->page_next[n1];
807 break;
808 }
809 ptb = &tb1->page_next[n1];
810 }
811}
812
813#ifndef VBOX
814static inline void tb_jmp_remove(TranslationBlock *tb, int n)
815#else
816DECLINLINE(void) tb_jmp_remove(TranslationBlock *tb, int n)
817#endif
818{
819 TranslationBlock *tb1, **ptb;
820 unsigned int n1;
821
822 ptb = &tb->jmp_next[n];
823 tb1 = *ptb;
824 if (tb1) {
825 /* find tb(n) in circular list */
826 for(;;) {
827 tb1 = *ptb;
828 n1 = (long)tb1 & 3;
829 tb1 = (TranslationBlock *)((long)tb1 & ~3);
830 if (n1 == n && tb1 == tb)
831 break;
832 if (n1 == 2) {
833 ptb = &tb1->jmp_first;
834 } else {
835 ptb = &tb1->jmp_next[n1];
836 }
837 }
838 /* now we can suppress tb(n) from the list */
839 *ptb = tb->jmp_next[n];
840
841 tb->jmp_next[n] = NULL;
842 }
843}
844
845/* reset the jump entry 'n' of a TB so that it is not chained to
846 another TB */
847#ifndef VBOX
848static inline void tb_reset_jump(TranslationBlock *tb, int n)
849#else
850DECLINLINE(void) tb_reset_jump(TranslationBlock *tb, int n)
851#endif
852{
853 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
854}
855
856void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
857{
858 CPUState *env;
859 PageDesc *p;
860 unsigned int h, n1;
861 target_phys_addr_t phys_pc;
862 TranslationBlock *tb1, *tb2;
863
864 /* remove the TB from the hash list */
865 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
866 h = tb_phys_hash_func(phys_pc);
867 tb_remove(&tb_phys_hash[h], tb,
868 offsetof(TranslationBlock, phys_hash_next));
869
870 /* remove the TB from the page list */
871 if (tb->page_addr[0] != page_addr) {
872 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
873 tb_page_remove(&p->first_tb, tb);
874 invalidate_page_bitmap(p);
875 }
876 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
877 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
878 tb_page_remove(&p->first_tb, tb);
879 invalidate_page_bitmap(p);
880 }
881
882 tb_invalidated_flag = 1;
883
884 /* remove the TB from the hash list */
885 h = tb_jmp_cache_hash_func(tb->pc);
886 for(env = first_cpu; env != NULL; env = env->next_cpu) {
887 if (env->tb_jmp_cache[h] == tb)
888 env->tb_jmp_cache[h] = NULL;
889 }
890
891 /* suppress this TB from the two jump lists */
892 tb_jmp_remove(tb, 0);
893 tb_jmp_remove(tb, 1);
894
895 /* suppress any remaining jumps to this TB */
896 tb1 = tb->jmp_first;
897 for(;;) {
898 n1 = (long)tb1 & 3;
899 if (n1 == 2)
900 break;
901 tb1 = (TranslationBlock *)((long)tb1 & ~3);
902 tb2 = tb1->jmp_next[n1];
903 tb_reset_jump(tb1, n1);
904 tb1->jmp_next[n1] = NULL;
905 tb1 = tb2;
906 }
907 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
908
909#ifndef VBOX
910 tb_phys_invalidate_count++;
911#endif
912}
913
914
915#ifdef VBOX
916void tb_invalidate_virt(CPUState *env, uint32_t eip)
917{
918# if 1
919 tb_flush(env);
920# else
921 uint8_t *cs_base, *pc;
922 unsigned int flags, h, phys_pc;
923 TranslationBlock *tb, **ptb;
924
925 flags = env->hflags;
926 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
927 cs_base = env->segs[R_CS].base;
928 pc = cs_base + eip;
929
930 tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base,
931 flags);
932
933 if(tb)
934 {
935# ifdef DEBUG
936 printf("invalidating TB (%08X) at %08X\n", tb, eip);
937# endif
938 tb_invalidate(tb);
939 //Note: this will leak TBs, but the whole cache will be flushed
940 // when it happens too often
941 tb->pc = 0;
942 tb->cs_base = 0;
943 tb->flags = 0;
944 }
945# endif
946}
947
948# ifdef VBOX_STRICT
949/**
950 * Gets the page offset.
951 */
952unsigned long get_phys_page_offset(target_ulong addr)
953{
954 PhysPageDesc *p = phys_page_find(addr >> TARGET_PAGE_BITS);
955 return p ? p->phys_offset : 0;
956}
957# endif /* VBOX_STRICT */
958#endif /* VBOX */
959
960#ifndef VBOX
961static inline void set_bits(uint8_t *tab, int start, int len)
962#else
963DECLINLINE(void) set_bits(uint8_t *tab, int start, int len)
964#endif
965{
966 int end, mask, end1;
967
968 end = start + len;
969 tab += start >> 3;
970 mask = 0xff << (start & 7);
971 if ((start & ~7) == (end & ~7)) {
972 if (start < end) {
973 mask &= ~(0xff << (end & 7));
974 *tab |= mask;
975 }
976 } else {
977 *tab++ |= mask;
978 start = (start + 8) & ~7;
979 end1 = end & ~7;
980 while (start < end1) {
981 *tab++ = 0xff;
982 start += 8;
983 }
984 if (start < end) {
985 mask = ~(0xff << (end & 7));
986 *tab |= mask;
987 }
988 }
989}
990
991static void build_page_bitmap(PageDesc *p)
992{
993 int n, tb_start, tb_end;
994 TranslationBlock *tb;
995
996 p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
997 if (!p->code_bitmap)
998 return;
999 memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
1000
1001 tb = p->first_tb;
1002 while (tb != NULL) {
1003 n = (long)tb & 3;
1004 tb = (TranslationBlock *)((long)tb & ~3);
1005 /* NOTE: this is subtle as a TB may span two physical pages */
1006 if (n == 0) {
1007 /* NOTE: tb_end may be after the end of the page, but
1008 it is not a problem */
1009 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1010 tb_end = tb_start + tb->size;
1011 if (tb_end > TARGET_PAGE_SIZE)
1012 tb_end = TARGET_PAGE_SIZE;
1013 } else {
1014 tb_start = 0;
1015 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1016 }
1017 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1018 tb = tb->page_next[n];
1019 }
1020}
1021
1022TranslationBlock *tb_gen_code(CPUState *env,
1023 target_ulong pc, target_ulong cs_base,
1024 int flags, int cflags)
1025{
1026 TranslationBlock *tb;
1027 uint8_t *tc_ptr;
1028 target_ulong phys_pc, phys_page2, virt_page2;
1029 int code_gen_size;
1030
1031 phys_pc = get_phys_addr_code(env, pc);
1032 tb = tb_alloc(pc);
1033 if (!tb) {
1034 /* flush must be done */
1035 tb_flush(env);
1036 /* cannot fail at this point */
1037 tb = tb_alloc(pc);
1038 /* Don't forget to invalidate previous TB info. */
1039 tb_invalidated_flag = 1;
1040 }
1041 tc_ptr = code_gen_ptr;
1042 tb->tc_ptr = tc_ptr;
1043 tb->cs_base = cs_base;
1044 tb->flags = flags;
1045 tb->cflags = cflags;
1046 cpu_gen_code(env, tb, &code_gen_size);
1047 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1048
1049 /* check next page if needed */
1050 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1051 phys_page2 = -1;
1052 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1053 phys_page2 = get_phys_addr_code(env, virt_page2);
1054 }
1055 tb_link_phys(tb, phys_pc, phys_page2);
1056 return tb;
1057}
1058
1059/* invalidate all TBs which intersect with the target physical page
1060 starting in range [start;end[. NOTE: start and end must refer to
1061 the same physical page. 'is_cpu_write_access' should be true if called
1062 from a real cpu write access: the virtual CPU will exit the current
1063 TB if code is modified inside this TB. */
1064void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
1065 int is_cpu_write_access)
1066{
1067 int n, current_tb_modified, current_tb_not_found, current_flags;
1068 CPUState *env = cpu_single_env;
1069 PageDesc *p;
1070 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
1071 target_ulong tb_start, tb_end;
1072 target_ulong current_pc, current_cs_base;
1073
1074 p = page_find(start >> TARGET_PAGE_BITS);
1075 if (!p)
1076 return;
1077 if (!p->code_bitmap &&
1078 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1079 is_cpu_write_access) {
1080 /* build code bitmap */
1081 build_page_bitmap(p);
1082 }
1083
1084 /* we remove all the TBs in the range [start, end[ */
1085 /* XXX: see if in some cases it could be faster to invalidate all the code */
1086 current_tb_not_found = is_cpu_write_access;
1087 current_tb_modified = 0;
1088 current_tb = NULL; /* avoid warning */
1089 current_pc = 0; /* avoid warning */
1090 current_cs_base = 0; /* avoid warning */
1091 current_flags = 0; /* avoid warning */
1092 tb = p->first_tb;
1093 while (tb != NULL) {
1094 n = (long)tb & 3;
1095 tb = (TranslationBlock *)((long)tb & ~3);
1096 tb_next = tb->page_next[n];
1097 /* NOTE: this is subtle as a TB may span two physical pages */
1098 if (n == 0) {
1099 /* NOTE: tb_end may be after the end of the page, but
1100 it is not a problem */
1101 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1102 tb_end = tb_start + tb->size;
1103 } else {
1104 tb_start = tb->page_addr[1];
1105 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1106 }
1107 if (!(tb_end <= start || tb_start >= end)) {
1108#ifdef TARGET_HAS_PRECISE_SMC
1109 if (current_tb_not_found) {
1110 current_tb_not_found = 0;
1111 current_tb = NULL;
1112 if (env->mem_io_pc) {
1113 /* now we have a real cpu fault */
1114 current_tb = tb_find_pc(env->mem_io_pc);
1115 }
1116 }
1117 if (current_tb == tb &&
1118 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1119 /* If we are modifying the current TB, we must stop
1120 its execution. We could be more precise by checking
1121 that the modification is after the current PC, but it
1122 would require a specialized function to partially
1123 restore the CPU state */
1124
1125 current_tb_modified = 1;
1126 cpu_restore_state(current_tb, env,
1127 env->mem_io_pc, NULL);
1128#if defined(TARGET_I386)
1129 current_flags = env->hflags;
1130 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
1131 current_cs_base = (target_ulong)env->segs[R_CS].base;
1132 current_pc = current_cs_base + env->eip;
1133#else
1134#error unsupported CPU
1135#endif
1136 }
1137#endif /* TARGET_HAS_PRECISE_SMC */
1138 /* we need to do that to handle the case where a signal
1139 occurs while doing tb_phys_invalidate() */
1140 saved_tb = NULL;
1141 if (env) {
1142 saved_tb = env->current_tb;
1143 env->current_tb = NULL;
1144 }
1145 tb_phys_invalidate(tb, -1);
1146 if (env) {
1147 env->current_tb = saved_tb;
1148 if (env->interrupt_request && env->current_tb)
1149 cpu_interrupt(env, env->interrupt_request);
1150 }
1151 }
1152 tb = tb_next;
1153 }
1154#if !defined(CONFIG_USER_ONLY)
1155 /* if no code remaining, no need to continue to use slow writes */
1156 if (!p->first_tb) {
1157 invalidate_page_bitmap(p);
1158 if (is_cpu_write_access) {
1159 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1160 }
1161 }
1162#endif
1163#ifdef TARGET_HAS_PRECISE_SMC
1164 if (current_tb_modified) {
1165 /* we generate a block containing just the instruction
1166 modifying the memory. It will ensure that it cannot modify
1167 itself */
1168 env->current_tb = NULL;
1169 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1170 cpu_resume_from_signal(env, NULL);
1171 }
1172#endif
1173}
1174
1175
1176/* len must be <= 8 and start must be a multiple of len */
1177#ifndef VBOX
1178static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1179#else
1180DECLINLINE(void) tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1181#endif
1182{
1183 PageDesc *p;
1184 int offset, b;
1185#if 0
1186 if (1) {
1187 if (loglevel) {
1188 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1189 cpu_single_env->mem_io_vaddr, len,
1190 cpu_single_env->eip,
1191 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1192 }
1193 }
1194#endif
1195 p = page_find(start >> TARGET_PAGE_BITS);
1196 if (!p)
1197 return;
1198 if (p->code_bitmap) {
1199 offset = start & ~TARGET_PAGE_MASK;
1200 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1201 if (b & ((1 << len) - 1))
1202 goto do_invalidate;
1203 } else {
1204 do_invalidate:
1205 tb_invalidate_phys_page_range(start, start + len, 1);
1206 }
1207}
1208
1209
1210#if !defined(CONFIG_SOFTMMU)
1211static void tb_invalidate_phys_page(target_phys_addr_t addr,
1212 unsigned long pc, void *puc)
1213{
1214 int n, current_flags, current_tb_modified;
1215 target_ulong current_pc, current_cs_base;
1216 PageDesc *p;
1217 TranslationBlock *tb, *current_tb;
1218#ifdef TARGET_HAS_PRECISE_SMC
1219 CPUState *env = cpu_single_env;
1220#endif
1221
1222 addr &= TARGET_PAGE_MASK;
1223 p = page_find(addr >> TARGET_PAGE_BITS);
1224 if (!p)
1225 return;
1226 tb = p->first_tb;
1227 current_tb_modified = 0;
1228 current_tb = NULL;
1229 current_pc = 0; /* avoid warning */
1230 current_cs_base = 0; /* avoid warning */
1231 current_flags = 0; /* avoid warning */
1232#ifdef TARGET_HAS_PRECISE_SMC
1233 if (tb && pc != 0) {
1234 current_tb = tb_find_pc(pc);
1235 }
1236#endif
1237 while (tb != NULL) {
1238 n = (long)tb & 3;
1239 tb = (TranslationBlock *)((long)tb & ~3);
1240#ifdef TARGET_HAS_PRECISE_SMC
1241 if (current_tb == tb &&
1242 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1243 /* If we are modifying the current TB, we must stop
1244 its execution. We could be more precise by checking
1245 that the modification is after the current PC, but it
1246 would require a specialized function to partially
1247 restore the CPU state */
1248
1249 current_tb_modified = 1;
1250 cpu_restore_state(current_tb, env, pc, puc);
1251#if defined(TARGET_I386)
1252 current_flags = env->hflags;
1253 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
1254 current_cs_base = (target_ulong)env->segs[R_CS].base;
1255 current_pc = current_cs_base + env->eip;
1256#else
1257#error unsupported CPU
1258#endif
1259 }
1260#endif /* TARGET_HAS_PRECISE_SMC */
1261 tb_phys_invalidate(tb, addr);
1262 tb = tb->page_next[n];
1263 }
1264 p->first_tb = NULL;
1265#ifdef TARGET_HAS_PRECISE_SMC
1266 if (current_tb_modified) {
1267 /* we generate a block containing just the instruction
1268 modifying the memory. It will ensure that it cannot modify
1269 itself */
1270 env->current_tb = NULL;
1271 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1272 cpu_resume_from_signal(env, puc);
1273 }
1274#endif
1275}
1276#endif
1277
1278/* add the tb in the target page and protect it if necessary */
1279#ifndef VBOX
1280static inline void tb_alloc_page(TranslationBlock *tb,
1281 unsigned int n, target_ulong page_addr)
1282#else
1283DECLINLINE(void) tb_alloc_page(TranslationBlock *tb,
1284 unsigned int n, target_ulong page_addr)
1285#endif
1286{
1287 PageDesc *p;
1288 TranslationBlock *last_first_tb;
1289
1290 tb->page_addr[n] = page_addr;
1291 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1292 tb->page_next[n] = p->first_tb;
1293 last_first_tb = p->first_tb;
1294 p->first_tb = (TranslationBlock *)((long)tb | n);
1295 invalidate_page_bitmap(p);
1296
1297#if defined(TARGET_HAS_SMC) || 1
1298
1299#if defined(CONFIG_USER_ONLY)
1300 if (p->flags & PAGE_WRITE) {
1301 target_ulong addr;
1302 PageDesc *p2;
1303 int prot;
1304
1305 /* force the host page as non writable (writes will have a
1306 page fault + mprotect overhead) */
1307 page_addr &= qemu_host_page_mask;
1308 prot = 0;
1309 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1310 addr += TARGET_PAGE_SIZE) {
1311
1312 p2 = page_find (addr >> TARGET_PAGE_BITS);
1313 if (!p2)
1314 continue;
1315 prot |= p2->flags;
1316 p2->flags &= ~PAGE_WRITE;
1317 page_get_flags(addr);
1318 }
1319 mprotect(g2h(page_addr), qemu_host_page_size,
1320 (prot & PAGE_BITS) & ~PAGE_WRITE);
1321#ifdef DEBUG_TB_INVALIDATE
1322 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1323 page_addr);
1324#endif
1325 }
1326#else
1327 /* if some code is already present, then the pages are already
1328 protected. So we handle the case where only the first TB is
1329 allocated in a physical page */
1330 if (!last_first_tb) {
1331 tlb_protect_code(page_addr);
1332 }
1333#endif
1334
1335#endif /* TARGET_HAS_SMC */
1336}
1337
1338/* Allocate a new translation block. Flush the translation buffer if
1339 too many translation blocks or too much generated code. */
1340TranslationBlock *tb_alloc(target_ulong pc)
1341{
1342 TranslationBlock *tb;
1343
1344 if (nb_tbs >= code_gen_max_blocks ||
1345#ifndef VBOX
1346 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1347#else
1348 (code_gen_ptr - code_gen_buffer) >= (int)code_gen_buffer_max_size)
1349#endif
1350 return NULL;
1351 tb = &tbs[nb_tbs++];
1352 tb->pc = pc;
1353 tb->cflags = 0;
1354 return tb;
1355}
1356
1357void tb_free(TranslationBlock *tb)
1358{
1359 /* In practice this is mostly used for single use temporary TB
1360 Ignore the hard cases and just back up if this TB happens to
1361 be the last one generated. */
1362 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1363 code_gen_ptr = tb->tc_ptr;
1364 nb_tbs--;
1365 }
1366}
1367
1368/* add a new TB and link it to the physical page tables. phys_page2 is
1369 (-1) to indicate that only one page contains the TB. */
1370void tb_link_phys(TranslationBlock *tb,
1371 target_ulong phys_pc, target_ulong phys_page2)
1372{
1373 unsigned int h;
1374 TranslationBlock **ptb;
1375
1376 /* Grab the mmap lock to stop another thread invalidating this TB
1377 before we are done. */
1378 mmap_lock();
1379 /* add in the physical hash table */
1380 h = tb_phys_hash_func(phys_pc);
1381 ptb = &tb_phys_hash[h];
1382 tb->phys_hash_next = *ptb;
1383 *ptb = tb;
1384
1385 /* add in the page list */
1386 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1387 if (phys_page2 != -1)
1388 tb_alloc_page(tb, 1, phys_page2);
1389 else
1390 tb->page_addr[1] = -1;
1391
1392 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1393 tb->jmp_next[0] = NULL;
1394 tb->jmp_next[1] = NULL;
1395
1396 /* init original jump addresses */
1397 if (tb->tb_next_offset[0] != 0xffff)
1398 tb_reset_jump(tb, 0);
1399 if (tb->tb_next_offset[1] != 0xffff)
1400 tb_reset_jump(tb, 1);
1401
1402#ifdef DEBUG_TB_CHECK
1403 tb_page_check();
1404#endif
1405 mmap_unlock();
1406}
1407
1408/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1409 tb[1].tc_ptr. Return NULL if not found */
1410TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1411{
1412 int m_min, m_max, m;
1413 unsigned long v;
1414 TranslationBlock *tb;
1415
1416 if (nb_tbs <= 0)
1417 return NULL;
1418 if (tc_ptr < (unsigned long)code_gen_buffer ||
1419 tc_ptr >= (unsigned long)code_gen_ptr)
1420 return NULL;
1421 /* binary search (cf Knuth) */
1422 m_min = 0;
1423 m_max = nb_tbs - 1;
1424 while (m_min <= m_max) {
1425 m = (m_min + m_max) >> 1;
1426 tb = &tbs[m];
1427 v = (unsigned long)tb->tc_ptr;
1428 if (v == tc_ptr)
1429 return tb;
1430 else if (tc_ptr < v) {
1431 m_max = m - 1;
1432 } else {
1433 m_min = m + 1;
1434 }
1435 }
1436 return &tbs[m_max];
1437}
1438
1439static void tb_reset_jump_recursive(TranslationBlock *tb);
1440
1441#ifndef VBOX
1442static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1443#else
1444DECLINLINE(void) tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1445#endif
1446{
1447 TranslationBlock *tb1, *tb_next, **ptb;
1448 unsigned int n1;
1449
1450 tb1 = tb->jmp_next[n];
1451 if (tb1 != NULL) {
1452 /* find head of list */
1453 for(;;) {
1454 n1 = (long)tb1 & 3;
1455 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1456 if (n1 == 2)
1457 break;
1458 tb1 = tb1->jmp_next[n1];
1459 }
1460 /* we are now sure now that tb jumps to tb1 */
1461 tb_next = tb1;
1462
1463 /* remove tb from the jmp_first list */
1464 ptb = &tb_next->jmp_first;
1465 for(;;) {
1466 tb1 = *ptb;
1467 n1 = (long)tb1 & 3;
1468 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1469 if (n1 == n && tb1 == tb)
1470 break;
1471 ptb = &tb1->jmp_next[n1];
1472 }
1473 *ptb = tb->jmp_next[n];
1474 tb->jmp_next[n] = NULL;
1475
1476 /* suppress the jump to next tb in generated code */
1477 tb_reset_jump(tb, n);
1478
1479 /* suppress jumps in the tb on which we could have jumped */
1480 tb_reset_jump_recursive(tb_next);
1481 }
1482}
1483
1484static void tb_reset_jump_recursive(TranslationBlock *tb)
1485{
1486 tb_reset_jump_recursive2(tb, 0);
1487 tb_reset_jump_recursive2(tb, 1);
1488}
1489
1490#if defined(TARGET_HAS_ICE)
1491static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1492{
1493 target_ulong addr, pd;
1494 ram_addr_t ram_addr;
1495 PhysPageDesc *p;
1496
1497 addr = cpu_get_phys_page_debug(env, pc);
1498 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1499 if (!p) {
1500 pd = IO_MEM_UNASSIGNED;
1501 } else {
1502 pd = p->phys_offset;
1503 }
1504 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1505 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1506}
1507#endif
1508
1509/* Add a watchpoint. */
1510int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type)
1511{
1512 int i;
1513
1514 for (i = 0; i < env->nb_watchpoints; i++) {
1515 if (addr == env->watchpoint[i].vaddr)
1516 return 0;
1517 }
1518 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1519 return -1;
1520
1521 i = env->nb_watchpoints++;
1522 env->watchpoint[i].vaddr = addr;
1523 env->watchpoint[i].type = type;
1524 tlb_flush_page(env, addr);
1525 /* FIXME: This flush is needed because of the hack to make memory ops
1526 terminate the TB. It can be removed once the proper IO trap and
1527 re-execute bits are in. */
1528 tb_flush(env);
1529 return i;
1530}
1531
1532/* Remove a watchpoint. */
1533int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1534{
1535 int i;
1536
1537 for (i = 0; i < env->nb_watchpoints; i++) {
1538 if (addr == env->watchpoint[i].vaddr) {
1539 env->nb_watchpoints--;
1540 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1541 tlb_flush_page(env, addr);
1542 return 0;
1543 }
1544 }
1545 return -1;
1546}
1547
1548/* Remove all watchpoints. */
1549void cpu_watchpoint_remove_all(CPUState *env) {
1550 int i;
1551
1552 for (i = 0; i < env->nb_watchpoints; i++) {
1553 tlb_flush_page(env, env->watchpoint[i].vaddr);
1554 }
1555 env->nb_watchpoints = 0;
1556}
1557
1558/* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1559 breakpoint is reached */
1560int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
1561{
1562#if defined(TARGET_HAS_ICE)
1563 int i;
1564
1565 for(i = 0; i < env->nb_breakpoints; i++) {
1566 if (env->breakpoints[i] == pc)
1567 return 0;
1568 }
1569
1570 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1571 return -1;
1572 env->breakpoints[env->nb_breakpoints++] = pc;
1573
1574 breakpoint_invalidate(env, pc);
1575 return 0;
1576#else
1577 return -1;
1578#endif
1579}
1580
1581/* remove all breakpoints */
1582void cpu_breakpoint_remove_all(CPUState *env) {
1583#if defined(TARGET_HAS_ICE)
1584 int i;
1585 for(i = 0; i < env->nb_breakpoints; i++) {
1586 breakpoint_invalidate(env, env->breakpoints[i]);
1587 }
1588 env->nb_breakpoints = 0;
1589#endif
1590}
1591
1592/* remove a breakpoint */
1593int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
1594{
1595#if defined(TARGET_HAS_ICE)
1596 int i;
1597 for(i = 0; i < env->nb_breakpoints; i++) {
1598 if (env->breakpoints[i] == pc)
1599 goto found;
1600 }
1601 return -1;
1602 found:
1603 env->nb_breakpoints--;
1604 if (i < env->nb_breakpoints)
1605 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
1606
1607 breakpoint_invalidate(env, pc);
1608 return 0;
1609#else
1610 return -1;
1611#endif
1612}
1613
1614/* enable or disable single step mode. EXCP_DEBUG is returned by the
1615 CPU loop after each instruction */
1616void cpu_single_step(CPUState *env, int enabled)
1617{
1618#if defined(TARGET_HAS_ICE)
1619 if (env->singlestep_enabled != enabled) {
1620 env->singlestep_enabled = enabled;
1621 /* must flush all the translated code to avoid inconsistancies */
1622 /* XXX: only flush what is necessary */
1623 tb_flush(env);
1624 }
1625#endif
1626}
1627
1628#ifndef VBOX
1629/* enable or disable low levels log */
1630void cpu_set_log(int log_flags)
1631{
1632 loglevel = log_flags;
1633 if (loglevel && !logfile) {
1634 logfile = fopen(logfilename, "w");
1635 if (!logfile) {
1636 perror(logfilename);
1637 _exit(1);
1638 }
1639#if !defined(CONFIG_SOFTMMU)
1640 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1641 {
1642 static uint8_t logfile_buf[4096];
1643 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1644 }
1645#else
1646 setvbuf(logfile, NULL, _IOLBF, 0);
1647#endif
1648 }
1649}
1650
1651void cpu_set_log_filename(const char *filename)
1652{
1653 logfilename = strdup(filename);
1654}
1655#endif /* !VBOX */
1656
1657/* mask must never be zero, except for A20 change call */
1658void cpu_interrupt(CPUState *env, int mask)
1659{
1660#if !defined(USE_NPTL)
1661 TranslationBlock *tb;
1662 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1663#endif
1664 int old_mask;
1665
1666 old_mask = env->interrupt_request;
1667#ifdef VBOX
1668 VM_ASSERT_EMT(env->pVM);
1669 ASMAtomicOrS32((int32_t volatile *)&env->interrupt_request, mask);
1670#else /* !VBOX */
1671 /* FIXME: This is probably not threadsafe. A different thread could
1672 be in the middle of a read-modify-write operation. */
1673 env->interrupt_request |= mask;
1674#endif /* !VBOX */
1675#if defined(USE_NPTL)
1676 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1677 problem and hope the cpu will stop of its own accord. For userspace
1678 emulation this often isn't actually as bad as it sounds. Often
1679 signals are used primarily to interrupt blocking syscalls. */
1680#else
1681 if (use_icount) {
1682 env->icount_decr.u16.high = 0xffff;
1683#ifndef CONFIG_USER_ONLY
1684 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1685 an async event happened and we need to process it. */
1686 if (!can_do_io(env)
1687 && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
1688 cpu_abort(env, "Raised interrupt while not in I/O function");
1689 }
1690#endif
1691 } else {
1692 tb = env->current_tb;
1693 /* if the cpu is currently executing code, we must unlink it and
1694 all the potentially executing TB */
1695 if (tb && !testandset(&interrupt_lock)) {
1696 env->current_tb = NULL;
1697 tb_reset_jump_recursive(tb);
1698 resetlock(&interrupt_lock);
1699 }
1700 }
1701#endif
1702}
1703
1704void cpu_reset_interrupt(CPUState *env, int mask)
1705{
1706#ifdef VBOX
1707 /*
1708 * Note: the current implementation can be executed by another thread without problems; make sure this remains true
1709 * for future changes!
1710 */
1711 ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~mask);
1712#else /* !VBOX */
1713 env->interrupt_request &= ~mask;
1714#endif /* !VBOX */
1715}
1716
1717#ifndef VBOX
1718CPULogItem cpu_log_items[] = {
1719 { CPU_LOG_TB_OUT_ASM, "out_asm",
1720 "show generated host assembly code for each compiled TB" },
1721 { CPU_LOG_TB_IN_ASM, "in_asm",
1722 "show target assembly code for each compiled TB" },
1723 { CPU_LOG_TB_OP, "op",
1724 "show micro ops for each compiled TB (only usable if 'in_asm' used)" },
1725#ifdef TARGET_I386
1726 { CPU_LOG_TB_OP_OPT, "op_opt",
1727 "show micro ops after optimization for each compiled TB" },
1728#endif
1729 { CPU_LOG_INT, "int",
1730 "show interrupts/exceptions in short format" },
1731 { CPU_LOG_EXEC, "exec",
1732 "show trace before each executed TB (lots of logs)" },
1733 { CPU_LOG_TB_CPU, "cpu",
1734 "show CPU state before bloc translation" },
1735#ifdef TARGET_I386
1736 { CPU_LOG_PCALL, "pcall",
1737 "show protected mode far calls/returns/exceptions" },
1738#endif
1739#ifdef DEBUG_IOPORT
1740 { CPU_LOG_IOPORT, "ioport",
1741 "show all i/o ports accesses" },
1742#endif
1743 { 0, NULL, NULL },
1744};
1745
1746static int cmp1(const char *s1, int n, const char *s2)
1747{
1748 if (strlen(s2) != n)
1749 return 0;
1750 return memcmp(s1, s2, n) == 0;
1751}
1752
1753/* takes a comma separated list of log masks. Return 0 if error. */
1754int cpu_str_to_log_mask(const char *str)
1755{
1756 CPULogItem *item;
1757 int mask;
1758 const char *p, *p1;
1759
1760 p = str;
1761 mask = 0;
1762 for(;;) {
1763 p1 = strchr(p, ',');
1764 if (!p1)
1765 p1 = p + strlen(p);
1766 if(cmp1(p,p1-p,"all")) {
1767 for(item = cpu_log_items; item->mask != 0; item++) {
1768 mask |= item->mask;
1769 }
1770 } else {
1771 for(item = cpu_log_items; item->mask != 0; item++) {
1772 if (cmp1(p, p1 - p, item->name))
1773 goto found;
1774 }
1775 return 0;
1776 }
1777 found:
1778 mask |= item->mask;
1779 if (*p1 != ',')
1780 break;
1781 p = p1 + 1;
1782 }
1783 return mask;
1784}
1785#endif /* !VBOX */
1786
1787#ifndef VBOX /* VBOX: we have our own routine. */
1788void cpu_abort(CPUState *env, const char *fmt, ...)
1789{
1790 va_list ap;
1791
1792 va_start(ap, fmt);
1793 fprintf(stderr, "qemu: fatal: ");
1794 vfprintf(stderr, fmt, ap);
1795 fprintf(stderr, "\n");
1796#ifdef TARGET_I386
1797 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1798#else
1799 cpu_dump_state(env, stderr, fprintf, 0);
1800#endif
1801 va_end(ap);
1802 abort();
1803}
1804#endif /* !VBOX */
1805
1806#ifndef VBOX
1807CPUState *cpu_copy(CPUState *env)
1808{
1809 CPUState *new_env = cpu_init(env->cpu_model_str);
1810 /* preserve chaining and index */
1811 CPUState *next_cpu = new_env->next_cpu;
1812 int cpu_index = new_env->cpu_index;
1813 memcpy(new_env, env, sizeof(CPUState));
1814 new_env->next_cpu = next_cpu;
1815 new_env->cpu_index = cpu_index;
1816 return new_env;
1817}
1818#endif
1819
1820#if !defined(CONFIG_USER_ONLY)
1821
1822#ifndef VBOX
1823static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1824#else
1825DECLINLINE(void) tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1826#endif
1827{
1828 unsigned int i;
1829
1830 /* Discard jump cache entries for any tb which might potentially
1831 overlap the flushed page. */
1832 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1833 memset (&env->tb_jmp_cache[i], 0,
1834 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1835
1836 i = tb_jmp_cache_hash_page(addr);
1837 memset (&env->tb_jmp_cache[i], 0,
1838 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1839
1840#ifdef VBOX
1841 /* inform raw mode about TLB page flush */
1842 remR3FlushPage(env, addr);
1843#endif /* VBOX */
1844}
1845
1846/* NOTE: if flush_global is true, also flush global entries (not
1847 implemented yet) */
1848void tlb_flush(CPUState *env, int flush_global)
1849{
1850 int i;
1851
1852#if defined(DEBUG_TLB)
1853 printf("tlb_flush:\n");
1854#endif
1855 /* must reset current TB so that interrupts cannot modify the
1856 links while we are modifying them */
1857 env->current_tb = NULL;
1858
1859 for(i = 0; i < CPU_TLB_SIZE; i++) {
1860 env->tlb_table[0][i].addr_read = -1;
1861 env->tlb_table[0][i].addr_write = -1;
1862 env->tlb_table[0][i].addr_code = -1;
1863 env->tlb_table[1][i].addr_read = -1;
1864 env->tlb_table[1][i].addr_write = -1;
1865 env->tlb_table[1][i].addr_code = -1;
1866#if (NB_MMU_MODES >= 3)
1867 env->tlb_table[2][i].addr_read = -1;
1868 env->tlb_table[2][i].addr_write = -1;
1869 env->tlb_table[2][i].addr_code = -1;
1870#if (NB_MMU_MODES == 4)
1871 env->tlb_table[3][i].addr_read = -1;
1872 env->tlb_table[3][i].addr_write = -1;
1873 env->tlb_table[3][i].addr_code = -1;
1874#endif
1875#endif
1876 }
1877
1878 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1879
1880#ifdef VBOX
1881 /* inform raw mode about TLB flush */
1882 remR3FlushTLB(env, flush_global);
1883#endif
1884#ifdef USE_KQEMU
1885 if (env->kqemu_enabled) {
1886 kqemu_flush(env, flush_global);
1887 }
1888#endif
1889 tlb_flush_count++;
1890}
1891
1892#ifndef VBOX
1893static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1894#else
1895DECLINLINE(void) tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1896#endif
1897{
1898 if (addr == (tlb_entry->addr_read &
1899 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1900 addr == (tlb_entry->addr_write &
1901 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1902 addr == (tlb_entry->addr_code &
1903 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1904 tlb_entry->addr_read = -1;
1905 tlb_entry->addr_write = -1;
1906 tlb_entry->addr_code = -1;
1907 }
1908}
1909
1910void tlb_flush_page(CPUState *env, target_ulong addr)
1911{
1912 int i;
1913
1914#if defined(DEBUG_TLB)
1915 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1916#endif
1917 /* must reset current TB so that interrupts cannot modify the
1918 links while we are modifying them */
1919 env->current_tb = NULL;
1920
1921 addr &= TARGET_PAGE_MASK;
1922 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1923 tlb_flush_entry(&env->tlb_table[0][i], addr);
1924 tlb_flush_entry(&env->tlb_table[1][i], addr);
1925#if (NB_MMU_MODES >= 3)
1926 tlb_flush_entry(&env->tlb_table[2][i], addr);
1927#if (NB_MMU_MODES == 4)
1928 tlb_flush_entry(&env->tlb_table[3][i], addr);
1929#endif
1930#endif
1931
1932 tlb_flush_jmp_cache(env, addr);
1933
1934#ifdef USE_KQEMU
1935 if (env->kqemu_enabled) {
1936 kqemu_flush_page(env, addr);
1937 }
1938#endif
1939}
1940
1941/* update the TLBs so that writes to code in the virtual page 'addr'
1942 can be detected */
1943static void tlb_protect_code(ram_addr_t ram_addr)
1944{
1945 cpu_physical_memory_reset_dirty(ram_addr,
1946 ram_addr + TARGET_PAGE_SIZE,
1947 CODE_DIRTY_FLAG);
1948#if defined(VBOX) && defined(REM_MONITOR_CODE_PAGES)
1949 /** @todo Retest this? This function has changed... */
1950 remR3ProtectCode(cpu_single_env, ram_addr);
1951#endif
1952}
1953
1954/* update the TLB so that writes in physical page 'phys_addr' are no longer
1955 tested for self modifying code */
1956static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1957 target_ulong vaddr)
1958{
1959#ifdef VBOX
1960 if (RT_LIKELY((ram_addr >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
1961#endif
1962 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1963}
1964
1965#ifndef VBOX
1966static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1967 unsigned long start, unsigned long length)
1968#else
1969DECLINLINE(void) tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1970 unsigned long start, unsigned long length)
1971#endif
1972{
1973 unsigned long addr;
1974
1975#ifdef VBOX
1976 if (start & 3)
1977 return;
1978#endif
1979 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1980 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1981 if ((addr - start) < length) {
1982 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
1983 }
1984 }
1985}
1986
1987void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1988 int dirty_flags)
1989{
1990 CPUState *env;
1991 unsigned long length, start1;
1992 int i, mask, len;
1993 uint8_t *p;
1994
1995 start &= TARGET_PAGE_MASK;
1996 end = TARGET_PAGE_ALIGN(end);
1997
1998 length = end - start;
1999 if (length == 0)
2000 return;
2001 len = length >> TARGET_PAGE_BITS;
2002#ifdef USE_KQEMU
2003 /* XXX: should not depend on cpu context */
2004 env = first_cpu;
2005 if (env->kqemu_enabled) {
2006 ram_addr_t addr;
2007 addr = start;
2008 for(i = 0; i < len; i++) {
2009 kqemu_set_notdirty(env, addr);
2010 addr += TARGET_PAGE_SIZE;
2011 }
2012 }
2013#endif
2014 mask = ~dirty_flags;
2015 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
2016#ifdef VBOX
2017 if (RT_LIKELY((start >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
2018#endif
2019 for(i = 0; i < len; i++)
2020 p[i] &= mask;
2021
2022 /* we modify the TLB cache so that the dirty bit will be set again
2023 when accessing the range */
2024#if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
2025 start1 = start;
2026#elif !defined(VBOX)
2027 start1 = start + (unsigned long)phys_ram_base;
2028#else
2029 start1 = (unsigned long)remR3TlbGCPhys2Ptr(first_cpu, start, 1 /*fWritable*/); /** @todo this can be harmful with VBOX_WITH_NEW_PHYS_CODE, fix interface/whatever. */
2030#endif
2031 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2032 for(i = 0; i < CPU_TLB_SIZE; i++)
2033 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
2034 for(i = 0; i < CPU_TLB_SIZE; i++)
2035 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
2036#if (NB_MMU_MODES >= 3)
2037 for(i = 0; i < CPU_TLB_SIZE; i++)
2038 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
2039#if (NB_MMU_MODES == 4)
2040 for(i = 0; i < CPU_TLB_SIZE; i++)
2041 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
2042#endif
2043#endif
2044 }
2045}
2046
2047#ifndef VBOX
2048int cpu_physical_memory_set_dirty_tracking(int enable)
2049{
2050 in_migration = enable;
2051 return 0;
2052}
2053
2054int cpu_physical_memory_get_dirty_tracking(void)
2055{
2056 return in_migration;
2057}
2058#endif
2059
2060#ifndef VBOX
2061static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2062#else
2063DECLINLINE(void) tlb_update_dirty(CPUTLBEntry *tlb_entry)
2064#endif
2065{
2066 ram_addr_t ram_addr;
2067
2068 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2069 /* RAM case */
2070#if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
2071 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2072#elif !defined(VBOX)
2073 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
2074 tlb_entry->addend - (unsigned long)phys_ram_base;
2075#else
2076 ram_addr = remR3HCVirt2GCPhys(first_cpu, (void*)((tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend));
2077#endif
2078 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2079 tlb_entry->addr_write |= TLB_NOTDIRTY;
2080 }
2081 }
2082}
2083
2084/* update the TLB according to the current state of the dirty bits */
2085void cpu_tlb_update_dirty(CPUState *env)
2086{
2087 int i;
2088 for(i = 0; i < CPU_TLB_SIZE; i++)
2089 tlb_update_dirty(&env->tlb_table[0][i]);
2090 for(i = 0; i < CPU_TLB_SIZE; i++)
2091 tlb_update_dirty(&env->tlb_table[1][i]);
2092#if (NB_MMU_MODES >= 3)
2093 for(i = 0; i < CPU_TLB_SIZE; i++)
2094 tlb_update_dirty(&env->tlb_table[2][i]);
2095#if (NB_MMU_MODES == 4)
2096 for(i = 0; i < CPU_TLB_SIZE; i++)
2097 tlb_update_dirty(&env->tlb_table[3][i]);
2098#endif
2099#endif
2100}
2101
2102#ifndef VBOX
2103static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2104#else
2105DECLINLINE(void) tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2106#endif
2107{
2108 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2109 tlb_entry->addr_write = vaddr;
2110}
2111
2112
2113/* update the TLB corresponding to virtual page vaddr and phys addr
2114 addr so that it is no longer dirty */
2115#ifndef VBOX
2116static inline void tlb_set_dirty(CPUState *env,
2117 unsigned long addr, target_ulong vaddr)
2118#else
2119DECLINLINE(void) tlb_set_dirty(CPUState *env,
2120 unsigned long addr, target_ulong vaddr)
2121#endif
2122{
2123 int i;
2124
2125 addr &= TARGET_PAGE_MASK;
2126 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2127 tlb_set_dirty1(&env->tlb_table[0][i], addr);
2128 tlb_set_dirty1(&env->tlb_table[1][i], addr);
2129#if (NB_MMU_MODES >= 3)
2130 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
2131#if (NB_MMU_MODES == 4)
2132 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
2133#endif
2134#endif
2135}
2136
2137/* add a new TLB entry. At most one entry for a given virtual address
2138 is permitted. Return 0 if OK or 2 if the page could not be mapped
2139 (can only happen in non SOFTMMU mode for I/O pages or pages
2140 conflicting with the host address space). */
2141int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2142 target_phys_addr_t paddr, int prot,
2143 int mmu_idx, int is_softmmu)
2144{
2145 PhysPageDesc *p;
2146 unsigned long pd;
2147 unsigned int index;
2148 target_ulong address;
2149 target_ulong code_address;
2150 target_phys_addr_t addend;
2151 int ret;
2152 CPUTLBEntry *te;
2153 int i;
2154 target_phys_addr_t iotlb;
2155
2156 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2157 if (!p) {
2158 pd = IO_MEM_UNASSIGNED;
2159 } else {
2160 pd = p->phys_offset;
2161 }
2162#if defined(DEBUG_TLB)
2163 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2164 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2165#endif
2166
2167 ret = 0;
2168 address = vaddr;
2169 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2170 /* IO memory case (romd handled later) */
2171 address |= TLB_MMIO;
2172 }
2173#if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
2174 addend = pd & TARGET_PAGE_MASK;
2175#elif !defined(VBOX)
2176 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
2177#else
2178 /** @todo this is racing the phys_page_find call above since it may register
2179 * a new chunk of memory... */
2180 addend = (unsigned long)remR3TlbGCPhys2Ptr(env,
2181 pd & TARGET_PAGE_MASK,
2182 !!(prot & PAGE_WRITE));
2183#endif
2184 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2185 /* Normal RAM. */
2186 iotlb = pd & TARGET_PAGE_MASK;
2187 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2188 iotlb |= IO_MEM_NOTDIRTY;
2189 else
2190 iotlb |= IO_MEM_ROM;
2191 } else {
2192 /* IO handlers are currently passed a phsical address.
2193 It would be nice to pass an offset from the base address
2194 of that region. This would avoid having to special case RAM,
2195 and avoid full address decoding in every device.
2196 We can't use the high bits of pd for this because
2197 IO_MEM_ROMD uses these as a ram address. */
2198 iotlb = (pd & ~TARGET_PAGE_MASK) + paddr;
2199 }
2200
2201 code_address = address;
2202
2203#ifdef VBOX
2204# if !defined(REM_PHYS_ADDR_IN_TLB)
2205 if (addend & 0x2)
2206 {
2207 /* catch write */
2208 addend &= ~(target_ulong)0x3;
2209 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM)
2210 {
2211/** @todo improve this, it's only avoid code reads right now! */
2212 address |= TLB_MMIO;
2213 iotlb = env->pVM->rem.s.iHandlerMemType + paddr;
2214 }
2215 }
2216 else if (addend & 0x1)
2217 {
2218 /* catch all */
2219 addend &= ~(target_ulong)0x3;
2220 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM)
2221 {
2222 address |= TLB_MMIO;
2223 code_address |= TLB_MMIO;
2224 iotlb = env->pVM->rem.s.iHandlerMemType + paddr;
2225 }
2226 }
2227# endif
2228#endif
2229
2230 /* Make accesses to pages with watchpoints go via the
2231 watchpoint trap routines. */
2232 for (i = 0; i < env->nb_watchpoints; i++) {
2233 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
2234 iotlb = io_mem_watch + paddr;
2235 /* TODO: The memory case can be optimized by not trapping
2236 reads of pages with a write breakpoint. */
2237 address |= TLB_MMIO;
2238 }
2239 }
2240
2241 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2242 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2243 te = &env->tlb_table[mmu_idx][index];
2244 te->addend = addend - vaddr;
2245 if (prot & PAGE_READ) {
2246 te->addr_read = address;
2247 } else {
2248 te->addr_read = -1;
2249 }
2250
2251 if (prot & PAGE_EXEC) {
2252 te->addr_code = code_address;
2253 } else {
2254 te->addr_code = -1;
2255 }
2256 if (prot & PAGE_WRITE) {
2257 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2258 (pd & IO_MEM_ROMD)) {
2259 /* Write access calls the I/O callback. */
2260 te->addr_write = address | TLB_MMIO;
2261 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2262 !cpu_physical_memory_is_dirty(pd)) {
2263 te->addr_write = address | TLB_NOTDIRTY;
2264 } else {
2265 te->addr_write = address;
2266 }
2267 } else {
2268 te->addr_write = -1;
2269 }
2270#ifdef VBOX
2271 /* inform raw mode about TLB page change */
2272 remR3FlushPage(env, vaddr);
2273#endif
2274 return ret;
2275}
2276#if 0
2277/* called from signal handler: invalidate the code and unprotect the
2278 page. Return TRUE if the fault was succesfully handled. */
2279int page_unprotect(target_ulong addr, unsigned long pc, void *puc)
2280{
2281#if !defined(CONFIG_SOFTMMU)
2282 VirtPageDesc *vp;
2283
2284#if defined(DEBUG_TLB)
2285 printf("page_unprotect: addr=0x%08x\n", addr);
2286#endif
2287 addr &= TARGET_PAGE_MASK;
2288
2289 /* if it is not mapped, no need to worry here */
2290 if (addr >= MMAP_AREA_END)
2291 return 0;
2292 vp = virt_page_find(addr >> TARGET_PAGE_BITS);
2293 if (!vp)
2294 return 0;
2295 /* NOTE: in this case, validate_tag is _not_ tested as it
2296 validates only the code TLB */
2297 if (vp->valid_tag != virt_valid_tag)
2298 return 0;
2299 if (!(vp->prot & PAGE_WRITE))
2300 return 0;
2301#if defined(DEBUG_TLB)
2302 printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
2303 addr, vp->phys_addr, vp->prot);
2304#endif
2305 if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
2306 cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
2307 (unsigned long)addr, vp->prot);
2308 /* set the dirty bit */
2309 phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 0xff;
2310 /* flush the code inside */
2311 tb_invalidate_phys_page(vp->phys_addr, pc, puc);
2312 return 1;
2313#elif defined(VBOX)
2314 addr &= TARGET_PAGE_MASK;
2315
2316 /* if it is not mapped, no need to worry here */
2317 if (addr >= MMAP_AREA_END)
2318 return 0;
2319 return 1;
2320#else
2321 return 0;
2322#endif
2323}
2324#endif /* 0 */
2325
2326#else
2327
2328void tlb_flush(CPUState *env, int flush_global)
2329{
2330}
2331
2332void tlb_flush_page(CPUState *env, target_ulong addr)
2333{
2334}
2335
2336int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2337 target_phys_addr_t paddr, int prot,
2338 int mmu_idx, int is_softmmu)
2339{
2340 return 0;
2341}
2342
2343#ifndef VBOX
2344/* dump memory mappings */
2345void page_dump(FILE *f)
2346{
2347 unsigned long start, end;
2348 int i, j, prot, prot1;
2349 PageDesc *p;
2350
2351 fprintf(f, "%-8s %-8s %-8s %s\n",
2352 "start", "end", "size", "prot");
2353 start = -1;
2354 end = -1;
2355 prot = 0;
2356 for(i = 0; i <= L1_SIZE; i++) {
2357 if (i < L1_SIZE)
2358 p = l1_map[i];
2359 else
2360 p = NULL;
2361 for(j = 0;j < L2_SIZE; j++) {
2362 if (!p)
2363 prot1 = 0;
2364 else
2365 prot1 = p[j].flags;
2366 if (prot1 != prot) {
2367 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2368 if (start != -1) {
2369 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2370 start, end, end - start,
2371 prot & PAGE_READ ? 'r' : '-',
2372 prot & PAGE_WRITE ? 'w' : '-',
2373 prot & PAGE_EXEC ? 'x' : '-');
2374 }
2375 if (prot1 != 0)
2376 start = end;
2377 else
2378 start = -1;
2379 prot = prot1;
2380 }
2381 if (!p)
2382 break;
2383 }
2384 }
2385}
2386#endif /* !VBOX */
2387
2388int page_get_flags(target_ulong address)
2389{
2390 PageDesc *p;
2391
2392 p = page_find(address >> TARGET_PAGE_BITS);
2393 if (!p)
2394 return 0;
2395 return p->flags;
2396}
2397
2398/* modify the flags of a page and invalidate the code if
2399 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2400 depending on PAGE_WRITE */
2401void page_set_flags(target_ulong start, target_ulong end, int flags)
2402{
2403 PageDesc *p;
2404 target_ulong addr;
2405
2406 start = start & TARGET_PAGE_MASK;
2407 end = TARGET_PAGE_ALIGN(end);
2408 if (flags & PAGE_WRITE)
2409 flags |= PAGE_WRITE_ORG;
2410#ifdef VBOX
2411 AssertMsgFailed(("We shouldn't be here, and if we should, we must have an env to do the proper locking!\n"));
2412#endif
2413 spin_lock(&tb_lock);
2414 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2415 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2416 /* if the write protection is set, then we invalidate the code
2417 inside */
2418 if (!(p->flags & PAGE_WRITE) &&
2419 (flags & PAGE_WRITE) &&
2420 p->first_tb) {
2421 tb_invalidate_phys_page(addr, 0, NULL);
2422 }
2423 p->flags = flags;
2424 }
2425 spin_unlock(&tb_lock);
2426}
2427
2428int page_check_range(target_ulong start, target_ulong len, int flags)
2429{
2430 PageDesc *p;
2431 target_ulong end;
2432 target_ulong addr;
2433
2434 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2435 start = start & TARGET_PAGE_MASK;
2436
2437 if( end < start )
2438 /* we've wrapped around */
2439 return -1;
2440 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2441 p = page_find(addr >> TARGET_PAGE_BITS);
2442 if( !p )
2443 return -1;
2444 if( !(p->flags & PAGE_VALID) )
2445 return -1;
2446
2447 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2448 return -1;
2449 if (flags & PAGE_WRITE) {
2450 if (!(p->flags & PAGE_WRITE_ORG))
2451 return -1;
2452 /* unprotect the page if it was put read-only because it
2453 contains translated code */
2454 if (!(p->flags & PAGE_WRITE)) {
2455 if (!page_unprotect(addr, 0, NULL))
2456 return -1;
2457 }
2458 return 0;
2459 }
2460 }
2461 return 0;
2462}
2463
2464/* called from signal handler: invalidate the code and unprotect the
2465 page. Return TRUE if the fault was succesfully handled. */
2466int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2467{
2468 unsigned int page_index, prot, pindex;
2469 PageDesc *p, *p1;
2470 target_ulong host_start, host_end, addr;
2471
2472 /* Technically this isn't safe inside a signal handler. However we
2473 know this only ever happens in a synchronous SEGV handler, so in
2474 practice it seems to be ok. */
2475 mmap_lock();
2476
2477 host_start = address & qemu_host_page_mask;
2478 page_index = host_start >> TARGET_PAGE_BITS;
2479 p1 = page_find(page_index);
2480 if (!p1) {
2481 mmap_unlock();
2482 return 0;
2483 }
2484 host_end = host_start + qemu_host_page_size;
2485 p = p1;
2486 prot = 0;
2487 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2488 prot |= p->flags;
2489 p++;
2490 }
2491 /* if the page was really writable, then we change its
2492 protection back to writable */
2493 if (prot & PAGE_WRITE_ORG) {
2494 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2495 if (!(p1[pindex].flags & PAGE_WRITE)) {
2496 mprotect((void *)g2h(host_start), qemu_host_page_size,
2497 (prot & PAGE_BITS) | PAGE_WRITE);
2498 p1[pindex].flags |= PAGE_WRITE;
2499 /* and since the content will be modified, we must invalidate
2500 the corresponding translated code. */
2501 tb_invalidate_phys_page(address, pc, puc);
2502#ifdef DEBUG_TB_CHECK
2503 tb_invalidate_check(address);
2504#endif
2505 mmap_unlock();
2506 return 1;
2507 }
2508 }
2509 mmap_unlock();
2510 return 0;
2511}
2512
2513static inline void tlb_set_dirty(CPUState *env,
2514 unsigned long addr, target_ulong vaddr)
2515{
2516}
2517#endif /* defined(CONFIG_USER_ONLY) */
2518
2519#if !defined(CONFIG_USER_ONLY)
2520static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2521 ram_addr_t memory);
2522static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2523 ram_addr_t orig_memory);
2524#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2525 need_subpage) \
2526 do { \
2527 if (addr > start_addr) \
2528 start_addr2 = 0; \
2529 else { \
2530 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2531 if (start_addr2 > 0) \
2532 need_subpage = 1; \
2533 } \
2534 \
2535 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2536 end_addr2 = TARGET_PAGE_SIZE - 1; \
2537 else { \
2538 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2539 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2540 need_subpage = 1; \
2541 } \
2542 } while (0)
2543
2544
2545/* register physical memory. 'size' must be a multiple of the target
2546 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2547 io memory page */
2548void cpu_register_physical_memory(target_phys_addr_t start_addr,
2549 unsigned long size,
2550 unsigned long phys_offset)
2551{
2552 target_phys_addr_t addr, end_addr;
2553 PhysPageDesc *p;
2554 CPUState *env;
2555 ram_addr_t orig_size = size;
2556 void *subpage;
2557
2558#ifdef USE_KQEMU
2559 /* XXX: should not depend on cpu context */
2560 env = first_cpu;
2561 if (env->kqemu_enabled) {
2562 kqemu_set_phys_mem(start_addr, size, phys_offset);
2563 }
2564#endif
2565 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2566 end_addr = start_addr + (target_phys_addr_t)size;
2567 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2568 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2569 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2570 ram_addr_t orig_memory = p->phys_offset;
2571 target_phys_addr_t start_addr2, end_addr2;
2572 int need_subpage = 0;
2573
2574 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2575 need_subpage);
2576 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2577 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2578 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2579 &p->phys_offset, orig_memory);
2580 } else {
2581 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2582 >> IO_MEM_SHIFT];
2583 }
2584 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2585 } else {
2586 p->phys_offset = phys_offset;
2587#if !defined(VBOX) || defined(VBOX_WITH_NEW_PHYS_CODE)
2588 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2589 (phys_offset & IO_MEM_ROMD))
2590#else
2591 if ( (phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM
2592 || (phys_offset & IO_MEM_ROMD)
2593 || (phys_offset & ~TARGET_PAGE_MASK) == IO_MEM_RAM_MISSING)
2594#endif
2595 phys_offset += TARGET_PAGE_SIZE;
2596 }
2597 } else {
2598 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2599 p->phys_offset = phys_offset;
2600#if !defined(VBOX) || defined(VBOX_WITH_NEW_PHYS_CODE)
2601 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2602 (phys_offset & IO_MEM_ROMD))
2603#else
2604 if ( (phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM
2605 || (phys_offset & IO_MEM_ROMD)
2606 || (phys_offset & ~TARGET_PAGE_MASK) == IO_MEM_RAM_MISSING)
2607#endif
2608 phys_offset += TARGET_PAGE_SIZE;
2609 else {
2610 target_phys_addr_t start_addr2, end_addr2;
2611 int need_subpage = 0;
2612
2613 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2614 end_addr2, need_subpage);
2615
2616 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2617 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2618 &p->phys_offset, IO_MEM_UNASSIGNED);
2619 subpage_register(subpage, start_addr2, end_addr2,
2620 phys_offset);
2621 }
2622 }
2623 }
2624 }
2625 /* since each CPU stores ram addresses in its TLB cache, we must
2626 reset the modified entries */
2627 /* XXX: slow ! */
2628 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2629 tlb_flush(env, 1);
2630 }
2631}
2632
2633/* XXX: temporary until new memory mapping API */
2634uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2635{
2636 PhysPageDesc *p;
2637
2638 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2639 if (!p)
2640 return IO_MEM_UNASSIGNED;
2641 return p->phys_offset;
2642}
2643
2644#ifndef VBOX
2645/* XXX: better than nothing */
2646ram_addr_t qemu_ram_alloc(ram_addr_t size)
2647{
2648 ram_addr_t addr;
2649 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
2650 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2651 (uint64_t)size, (uint64_t)phys_ram_size);
2652 abort();
2653 }
2654 addr = phys_ram_alloc_offset;
2655 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2656 return addr;
2657}
2658
2659void qemu_ram_free(ram_addr_t addr)
2660{
2661}
2662#endif
2663
2664
2665static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2666{
2667#ifdef DEBUG_UNASSIGNED
2668 printf("Unassigned mem read 0x%08x\n", (int)addr);
2669#endif
2670#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2671 do_unassigned_access(addr, 0, 0, 0, 1);
2672#endif
2673 return 0;
2674}
2675
2676static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2677{
2678#ifdef DEBUG_UNASSIGNED
2679 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2680#endif
2681#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2682 do_unassigned_access(addr, 0, 0, 0, 2);
2683#endif
2684 return 0;
2685}
2686
2687static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2688{
2689#ifdef DEBUG_UNASSIGNED
2690 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2691#endif
2692#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2693 do_unassigned_access(addr, 0, 0, 0, 4);
2694#endif
2695 return 0;
2696}
2697
2698static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2699{
2700#ifdef DEBUG_UNASSIGNED
2701 printf("Unassigned mem write 0x%08x = 0x%x\n", (int)addr, val);
2702#endif
2703}
2704
2705static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2706{
2707#ifdef DEBUG_UNASSIGNED
2708 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2709#endif
2710#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2711 do_unassigned_access(addr, 1, 0, 0, 2);
2712#endif
2713}
2714
2715static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2716{
2717#ifdef DEBUG_UNASSIGNED
2718 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2719#endif
2720#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2721 do_unassigned_access(addr, 1, 0, 0, 4);
2722#endif
2723}
2724static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2725 unassigned_mem_readb,
2726 unassigned_mem_readw,
2727 unassigned_mem_readl,
2728};
2729
2730static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2731 unassigned_mem_writeb,
2732 unassigned_mem_writew,
2733 unassigned_mem_writel,
2734};
2735
2736static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2737{
2738 unsigned long ram_addr;
2739 int dirty_flags;
2740#if defined(VBOX)
2741 ram_addr = addr;
2742#elif
2743 ram_addr = addr - (unsigned long)phys_ram_base;
2744#endif
2745#ifdef VBOX
2746 if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
2747 dirty_flags = 0xff;
2748 else
2749#endif /* VBOX */
2750 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2751 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2752#if !defined(CONFIG_USER_ONLY)
2753 tb_invalidate_phys_page_fast(ram_addr, 1);
2754# ifdef VBOX
2755 if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
2756 dirty_flags = 0xff;
2757 else
2758# endif /* VBOX */
2759 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2760#endif
2761 }
2762#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
2763 remR3PhysWriteU8(addr, val);
2764#else
2765 stb_p((uint8_t *)(long)addr, val);
2766#endif
2767#ifdef USE_KQEMU
2768 if (cpu_single_env->kqemu_enabled &&
2769 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2770 kqemu_modify_page(cpu_single_env, ram_addr);
2771#endif
2772 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2773#ifdef VBOX
2774 if (RT_LIKELY((ram_addr >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
2775#endif /* !VBOX */
2776 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2777 /* we remove the notdirty callback only if the code has been
2778 flushed */
2779 if (dirty_flags == 0xff)
2780 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_io_vaddr);
2781}
2782
2783static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2784{
2785 unsigned long ram_addr;
2786 int dirty_flags;
2787#if defined(VBOX)
2788 ram_addr = addr;
2789#else
2790 ram_addr = addr - (unsigned long)phys_ram_base;
2791#endif
2792#ifdef VBOX
2793 if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
2794 dirty_flags = 0xff;
2795 else
2796#endif /* VBOX */
2797 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2798 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2799#if !defined(CONFIG_USER_ONLY)
2800 tb_invalidate_phys_page_fast(ram_addr, 2);
2801# ifdef VBOX
2802 if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
2803 dirty_flags = 0xff;
2804 else
2805# endif /* VBOX */
2806 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2807#endif
2808 }
2809#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
2810 remR3PhysWriteU16(addr, val);
2811#else
2812 stw_p((uint8_t *)(long)addr, val);
2813#endif
2814
2815#ifdef USE_KQEMU
2816 if (cpu_single_env->kqemu_enabled &&
2817 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2818 kqemu_modify_page(cpu_single_env, ram_addr);
2819#endif
2820 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2821#ifdef VBOX
2822 if (RT_LIKELY((ram_addr >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
2823#endif
2824 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2825 /* we remove the notdirty callback only if the code has been
2826 flushed */
2827 if (dirty_flags == 0xff)
2828 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_io_vaddr);
2829}
2830
2831static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2832{
2833 unsigned long ram_addr;
2834 int dirty_flags;
2835#if defined(VBOX)
2836 ram_addr = addr;
2837#else
2838 ram_addr = addr - (unsigned long)phys_ram_base;
2839#endif
2840#ifdef VBOX
2841 if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
2842 dirty_flags = 0xff;
2843 else
2844#endif /* VBOX */
2845 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2846 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2847#if !defined(CONFIG_USER_ONLY)
2848 tb_invalidate_phys_page_fast(ram_addr, 4);
2849# ifdef VBOX
2850 if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
2851 dirty_flags = 0xff;
2852 else
2853# endif /* VBOX */
2854 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2855#endif
2856 }
2857#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
2858 remR3PhysWriteU32(addr, val);
2859#else
2860 stl_p((uint8_t *)(long)addr, val);
2861#endif
2862#ifdef USE_KQEMU
2863 if (cpu_single_env->kqemu_enabled &&
2864 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2865 kqemu_modify_page(cpu_single_env, ram_addr);
2866#endif
2867 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2868#ifdef VBOX
2869 if (RT_LIKELY((ram_addr >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
2870#endif
2871 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2872 /* we remove the notdirty callback only if the code has been
2873 flushed */
2874 if (dirty_flags == 0xff)
2875 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_io_vaddr);
2876}
2877
2878static CPUReadMemoryFunc *error_mem_read[3] = {
2879 NULL, /* never used */
2880 NULL, /* never used */
2881 NULL, /* never used */
2882};
2883
2884static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2885 notdirty_mem_writeb,
2886 notdirty_mem_writew,
2887 notdirty_mem_writel,
2888};
2889
2890
2891/* Generate a debug exception if a watchpoint has been hit. */
2892static void check_watchpoint(int offset, int flags)
2893{
2894 CPUState *env = cpu_single_env;
2895 target_ulong vaddr;
2896 int i;
2897
2898 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2899 for (i = 0; i < env->nb_watchpoints; i++) {
2900 if (vaddr == env->watchpoint[i].vaddr
2901 && (env->watchpoint[i].type & flags)) {
2902 env->watchpoint_hit = i + 1;
2903 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2904 break;
2905 }
2906 }
2907}
2908
2909/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2910 so these check for a hit then pass through to the normal out-of-line
2911 phys routines. */
2912static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2913{
2914 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
2915 return ldub_phys(addr);
2916}
2917
2918static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2919{
2920 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
2921 return lduw_phys(addr);
2922}
2923
2924static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2925{
2926 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
2927 return ldl_phys(addr);
2928}
2929
2930static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2931 uint32_t val)
2932{
2933 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
2934 stb_phys(addr, val);
2935}
2936
2937static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2938 uint32_t val)
2939{
2940 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
2941 stw_phys(addr, val);
2942}
2943
2944static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2945 uint32_t val)
2946{
2947 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
2948 stl_phys(addr, val);
2949}
2950
2951static CPUReadMemoryFunc *watch_mem_read[3] = {
2952 watch_mem_readb,
2953 watch_mem_readw,
2954 watch_mem_readl,
2955};
2956
2957static CPUWriteMemoryFunc *watch_mem_write[3] = {
2958 watch_mem_writeb,
2959 watch_mem_writew,
2960 watch_mem_writel,
2961};
2962
2963static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2964 unsigned int len)
2965{
2966 uint32_t ret;
2967 unsigned int idx;
2968
2969 idx = SUBPAGE_IDX(addr - mmio->base);
2970#if defined(DEBUG_SUBPAGE)
2971 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2972 mmio, len, addr, idx);
2973#endif
2974 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
2975
2976 return ret;
2977}
2978
2979static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2980 uint32_t value, unsigned int len)
2981{
2982 unsigned int idx;
2983
2984 idx = SUBPAGE_IDX(addr - mmio->base);
2985#if defined(DEBUG_SUBPAGE)
2986 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2987 mmio, len, addr, idx, value);
2988#endif
2989 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
2990}
2991
2992static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2993{
2994#if defined(DEBUG_SUBPAGE)
2995 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2996#endif
2997
2998 return subpage_readlen(opaque, addr, 0);
2999}
3000
3001static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3002 uint32_t value)
3003{
3004#if defined(DEBUG_SUBPAGE)
3005 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3006#endif
3007 subpage_writelen(opaque, addr, value, 0);
3008}
3009
3010static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3011{
3012#if defined(DEBUG_SUBPAGE)
3013 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3014#endif
3015
3016 return subpage_readlen(opaque, addr, 1);
3017}
3018
3019static void subpage_writew (void *opaque, target_phys_addr_t addr,
3020 uint32_t value)
3021{
3022#if defined(DEBUG_SUBPAGE)
3023 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3024#endif
3025 subpage_writelen(opaque, addr, value, 1);
3026}
3027
3028static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3029{
3030#if defined(DEBUG_SUBPAGE)
3031 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3032#endif
3033
3034 return subpage_readlen(opaque, addr, 2);
3035}
3036
3037static void subpage_writel (void *opaque,
3038 target_phys_addr_t addr, uint32_t value)
3039{
3040#if defined(DEBUG_SUBPAGE)
3041 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3042#endif
3043 subpage_writelen(opaque, addr, value, 2);
3044}
3045
3046static CPUReadMemoryFunc *subpage_read[] = {
3047 &subpage_readb,
3048 &subpage_readw,
3049 &subpage_readl,
3050};
3051
3052static CPUWriteMemoryFunc *subpage_write[] = {
3053 &subpage_writeb,
3054 &subpage_writew,
3055 &subpage_writel,
3056};
3057
3058static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3059 ram_addr_t memory)
3060{
3061 int idx, eidx;
3062 unsigned int i;
3063
3064 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3065 return -1;
3066 idx = SUBPAGE_IDX(start);
3067 eidx = SUBPAGE_IDX(end);
3068#if defined(DEBUG_SUBPAGE)
3069 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
3070 mmio, start, end, idx, eidx, memory);
3071#endif
3072 memory >>= IO_MEM_SHIFT;
3073 for (; idx <= eidx; idx++) {
3074 for (i = 0; i < 4; i++) {
3075 if (io_mem_read[memory][i]) {
3076 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
3077 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
3078 }
3079 if (io_mem_write[memory][i]) {
3080 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3081 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
3082 }
3083 }
3084 }
3085
3086 return 0;
3087}
3088
3089static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3090 ram_addr_t orig_memory)
3091{
3092 subpage_t *mmio;
3093 int subpage_memory;
3094
3095 mmio = qemu_mallocz(sizeof(subpage_t));
3096 if (mmio != NULL) {
3097 mmio->base = base;
3098 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
3099#if defined(DEBUG_SUBPAGE)
3100 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3101 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3102#endif
3103 *phys = subpage_memory | IO_MEM_SUBPAGE;
3104 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
3105 }
3106
3107 return mmio;
3108}
3109
3110static void io_mem_init(void)
3111{
3112 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
3113 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3114 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
3115#if defined(VBOX) && !defined(VBOX_WITH_NEW_PHYS_CODE)
3116 cpu_register_io_memory(IO_MEM_RAM_MISSING >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3117 io_mem_nb = 6;
3118#else
3119 io_mem_nb = 5;
3120#endif
3121
3122 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
3123 watch_mem_write, NULL);
3124
3125#ifndef VBOX /* VBOX: we do this later when the RAM is allocated. */
3126 /* alloc dirty bits array */
3127 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
3128 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
3129#endif /* !VBOX */
3130}
3131
3132/* mem_read and mem_write are arrays of functions containing the
3133 function to access byte (index 0), word (index 1) and dword (index
3134 2). Functions can be omitted with a NULL function pointer. The
3135 registered functions may be modified dynamically later.
3136 If io_index is non zero, the corresponding io zone is
3137 modified. If it is zero, a new io zone is allocated. The return
3138 value can be used with cpu_register_physical_memory(). (-1) is
3139 returned if error. */
3140int cpu_register_io_memory(int io_index,
3141 CPUReadMemoryFunc **mem_read,
3142 CPUWriteMemoryFunc **mem_write,
3143 void *opaque)
3144{
3145 int i, subwidth = 0;
3146
3147 if (io_index <= 0) {
3148 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
3149 return -1;
3150 io_index = io_mem_nb++;
3151 } else {
3152 if (io_index >= IO_MEM_NB_ENTRIES)
3153 return -1;
3154 }
3155
3156 for(i = 0;i < 3; i++) {
3157 if (!mem_read[i] || !mem_write[i])
3158 subwidth = IO_MEM_SUBWIDTH;
3159 io_mem_read[io_index][i] = mem_read[i];
3160 io_mem_write[io_index][i] = mem_write[i];
3161 }
3162 io_mem_opaque[io_index] = opaque;
3163 return (io_index << IO_MEM_SHIFT) | subwidth;
3164}
3165
3166CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
3167{
3168 return io_mem_write[io_index >> IO_MEM_SHIFT];
3169}
3170
3171CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
3172{
3173 return io_mem_read[io_index >> IO_MEM_SHIFT];
3174}
3175#endif /* !defined(CONFIG_USER_ONLY) */
3176
3177/* physical memory access (slow version, mainly for debug) */
3178#if defined(CONFIG_USER_ONLY)
3179void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3180 int len, int is_write)
3181{
3182 int l, flags;
3183 target_ulong page;
3184 void * p;
3185
3186 while (len > 0) {
3187 page = addr & TARGET_PAGE_MASK;
3188 l = (page + TARGET_PAGE_SIZE) - addr;
3189 if (l > len)
3190 l = len;
3191 flags = page_get_flags(page);
3192 if (!(flags & PAGE_VALID))
3193 return;
3194 if (is_write) {
3195 if (!(flags & PAGE_WRITE))
3196 return;
3197 /* XXX: this code should not depend on lock_user */
3198 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3199 /* FIXME - should this return an error rather than just fail? */
3200 return;
3201 memcpy(p, buf, len);
3202 unlock_user(p, addr, len);
3203 } else {
3204 if (!(flags & PAGE_READ))
3205 return;
3206 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3207 /* FIXME - should this return an error rather than just fail? */
3208 return;
3209 memcpy(buf, p, len);
3210 unlock_user(p, addr, 0);
3211 }
3212 len -= l;
3213 buf += l;
3214 addr += l;
3215 }
3216}
3217
3218#else
3219void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3220 int len, int is_write)
3221{
3222 int l, io_index;
3223 uint8_t *ptr;
3224 uint32_t val;
3225 target_phys_addr_t page;
3226 unsigned long pd;
3227 PhysPageDesc *p;
3228
3229 while (len > 0) {
3230 page = addr & TARGET_PAGE_MASK;
3231 l = (page + TARGET_PAGE_SIZE) - addr;
3232 if (l > len)
3233 l = len;
3234 p = phys_page_find(page >> TARGET_PAGE_BITS);
3235 if (!p) {
3236 pd = IO_MEM_UNASSIGNED;
3237 } else {
3238 pd = p->phys_offset;
3239 }
3240
3241 if (is_write) {
3242 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3243 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3244 /* XXX: could force cpu_single_env to NULL to avoid
3245 potential bugs */
3246 if (l >= 4 && ((addr & 3) == 0)) {
3247 /* 32 bit write access */
3248#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
3249 val = ldl_p(buf);
3250#else
3251 val = *(const uint32_t *)buf;
3252#endif
3253 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3254 l = 4;
3255 } else if (l >= 2 && ((addr & 1) == 0)) {
3256 /* 16 bit write access */
3257#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
3258 val = lduw_p(buf);
3259#else
3260 val = *(const uint16_t *)buf;
3261#endif
3262 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
3263 l = 2;
3264 } else {
3265 /* 8 bit write access */
3266#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
3267 val = ldub_p(buf);
3268#else
3269 val = *(const uint8_t *)buf;
3270#endif
3271 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
3272 l = 1;
3273 }
3274 } else {
3275 unsigned long addr1;
3276 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3277 /* RAM case */
3278#ifdef VBOX
3279 remR3PhysWrite(addr1, buf, l); NOREF(ptr);
3280#else
3281 ptr = phys_ram_base + addr1;
3282 memcpy(ptr, buf, l);
3283#endif
3284 if (!cpu_physical_memory_is_dirty(addr1)) {
3285 /* invalidate code */
3286 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3287 /* set dirty bit */
3288#ifdef VBOX
3289 if (RT_LIKELY((addr1 >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
3290#endif
3291 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3292 (0xff & ~CODE_DIRTY_FLAG);
3293 }
3294 }
3295 } else {
3296 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3297 !(pd & IO_MEM_ROMD)) {
3298 /* I/O case */
3299 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3300 if (l >= 4 && ((addr & 3) == 0)) {
3301 /* 32 bit read access */
3302 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3303#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
3304 stl_p(buf, val);
3305#else
3306 *(uint32_t *)buf = val;
3307#endif
3308 l = 4;
3309 } else if (l >= 2 && ((addr & 1) == 0)) {
3310 /* 16 bit read access */
3311 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
3312#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
3313 stw_p(buf, val);
3314#else
3315 *(uint16_t *)buf = val;
3316#endif
3317 l = 2;
3318 } else {
3319 /* 8 bit read access */
3320 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
3321#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
3322 stb_p(buf, val);
3323#else
3324 *(uint8_t *)buf = val;
3325#endif
3326 l = 1;
3327 }
3328 } else {
3329 /* RAM case */
3330#ifdef VBOX
3331 remR3PhysRead((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), buf, l); NOREF(ptr);
3332#else
3333 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3334 (addr & ~TARGET_PAGE_MASK);
3335 memcpy(buf, ptr, l);
3336#endif
3337 }
3338 }
3339 len -= l;
3340 buf += l;
3341 addr += l;
3342 }
3343}
3344
3345#ifndef VBOX
3346/* used for ROM loading : can write in RAM and ROM */
3347void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3348 const uint8_t *buf, int len)
3349{
3350 int l;
3351 uint8_t *ptr;
3352 target_phys_addr_t page;
3353 unsigned long pd;
3354 PhysPageDesc *p;
3355
3356 while (len > 0) {
3357 page = addr & TARGET_PAGE_MASK;
3358 l = (page + TARGET_PAGE_SIZE) - addr;
3359 if (l > len)
3360 l = len;
3361 p = phys_page_find(page >> TARGET_PAGE_BITS);
3362 if (!p) {
3363 pd = IO_MEM_UNASSIGNED;
3364 } else {
3365 pd = p->phys_offset;
3366 }
3367
3368 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3369 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3370 !(pd & IO_MEM_ROMD)) {
3371 /* do nothing */
3372 } else {
3373 unsigned long addr1;
3374 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3375 /* ROM/RAM case */
3376 ptr = phys_ram_base + addr1;
3377 memcpy(ptr, buf, l);
3378 }
3379 len -= l;
3380 buf += l;
3381 addr += l;
3382 }
3383}
3384#endif /* !VBOX */
3385
3386
3387/* warning: addr must be aligned */
3388uint32_t ldl_phys(target_phys_addr_t addr)
3389{
3390 int io_index;
3391 uint8_t *ptr;
3392 uint32_t val;
3393 unsigned long pd;
3394 PhysPageDesc *p;
3395
3396 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3397 if (!p) {
3398 pd = IO_MEM_UNASSIGNED;
3399 } else {
3400 pd = p->phys_offset;
3401 }
3402
3403 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3404 !(pd & IO_MEM_ROMD)) {
3405 /* I/O case */
3406 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3407 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3408 } else {
3409 /* RAM case */
3410#ifndef VBOX
3411 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3412 (addr & ~TARGET_PAGE_MASK);
3413 val = ldl_p(ptr);
3414#else
3415 val = remR3PhysReadU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK)); NOREF(ptr);
3416#endif
3417 }
3418 return val;
3419}
3420
3421/* warning: addr must be aligned */
3422uint64_t ldq_phys(target_phys_addr_t addr)
3423{
3424 int io_index;
3425 uint8_t *ptr;
3426 uint64_t val;
3427 unsigned long pd;
3428 PhysPageDesc *p;
3429
3430 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3431 if (!p) {
3432 pd = IO_MEM_UNASSIGNED;
3433 } else {
3434 pd = p->phys_offset;
3435 }
3436
3437 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3438 !(pd & IO_MEM_ROMD)) {
3439 /* I/O case */
3440 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3441#ifdef TARGET_WORDS_BIGENDIAN
3442 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3443 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3444#else
3445 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3446 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3447#endif
3448 } else {
3449 /* RAM case */
3450#ifndef VBOX
3451 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3452 (addr & ~TARGET_PAGE_MASK);
3453 val = ldq_p(ptr);
3454#else
3455 val = remR3PhysReadU64((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK)); NOREF(ptr);
3456#endif
3457 }
3458 return val;
3459}
3460
3461/* XXX: optimize */
3462uint32_t ldub_phys(target_phys_addr_t addr)
3463{
3464 uint8_t val;
3465 cpu_physical_memory_read(addr, &val, 1);
3466 return val;
3467}
3468
3469/* XXX: optimize */
3470uint32_t lduw_phys(target_phys_addr_t addr)
3471{
3472 uint16_t val;
3473 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3474 return tswap16(val);
3475}
3476
3477/* warning: addr must be aligned. The ram page is not masked as dirty
3478 and the code inside is not invalidated. It is useful if the dirty
3479 bits are used to track modified PTEs */
3480void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3481{
3482 int io_index;
3483 uint8_t *ptr;
3484 unsigned long pd;
3485 PhysPageDesc *p;
3486
3487 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3488 if (!p) {
3489 pd = IO_MEM_UNASSIGNED;
3490 } else {
3491 pd = p->phys_offset;
3492 }
3493
3494 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3495 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3496 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3497 } else {
3498#ifndef VBOX
3499 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3500 (addr & ~TARGET_PAGE_MASK);
3501 stl_p(ptr, val);
3502#else
3503 remR3PhysWriteU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr);
3504#endif
3505#ifndef VBOX
3506 if (unlikely(in_migration)) {
3507 if (!cpu_physical_memory_is_dirty(addr1)) {
3508 /* invalidate code */
3509 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3510 /* set dirty bit */
3511 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3512 (0xff & ~CODE_DIRTY_FLAG);
3513 }
3514 }
3515#endif
3516 }
3517}
3518
3519void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3520{
3521 int io_index;
3522 uint8_t *ptr;
3523 unsigned long pd;
3524 PhysPageDesc *p;
3525
3526 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3527 if (!p) {
3528 pd = IO_MEM_UNASSIGNED;
3529 } else {
3530 pd = p->phys_offset;
3531 }
3532
3533 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3534 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3535#ifdef TARGET_WORDS_BIGENDIAN
3536 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3537 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3538#else
3539 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3540 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3541#endif
3542 } else {
3543#ifndef VBOX
3544 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3545 (addr & ~TARGET_PAGE_MASK);
3546 stq_p(ptr, val);
3547#else
3548 remR3PhysWriteU64((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr);
3549#endif
3550 }
3551}
3552
3553
3554/* warning: addr must be aligned */
3555void stl_phys(target_phys_addr_t addr, uint32_t val)
3556{
3557 int io_index;
3558 uint8_t *ptr;
3559 unsigned long pd;
3560 PhysPageDesc *p;
3561
3562 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3563 if (!p) {
3564 pd = IO_MEM_UNASSIGNED;
3565 } else {
3566 pd = p->phys_offset;
3567 }
3568
3569 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3570 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3571 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3572 } else {
3573 unsigned long addr1;
3574 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3575 /* RAM case */
3576#ifndef VBOX
3577 ptr = phys_ram_base + addr1;
3578 stl_p(ptr, val);
3579#else
3580 remR3PhysWriteU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr);
3581#endif
3582 if (!cpu_physical_memory_is_dirty(addr1)) {
3583 /* invalidate code */
3584 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3585 /* set dirty bit */
3586#ifdef VBOX
3587 if (RT_LIKELY((addr1 >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
3588#endif
3589 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3590 (0xff & ~CODE_DIRTY_FLAG);
3591 }
3592 }
3593}
3594
3595/* XXX: optimize */
3596void stb_phys(target_phys_addr_t addr, uint32_t val)
3597{
3598 uint8_t v = val;
3599 cpu_physical_memory_write(addr, &v, 1);
3600}
3601
3602/* XXX: optimize */
3603void stw_phys(target_phys_addr_t addr, uint32_t val)
3604{
3605 uint16_t v = tswap16(val);
3606 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3607}
3608
3609/* XXX: optimize */
3610void stq_phys(target_phys_addr_t addr, uint64_t val)
3611{
3612 val = tswap64(val);
3613 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3614}
3615
3616#endif
3617
3618/* virtual memory access for debug */
3619int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3620 uint8_t *buf, int len, int is_write)
3621{
3622 int l;
3623 target_ulong page, phys_addr;
3624
3625 while (len > 0) {
3626 page = addr & TARGET_PAGE_MASK;
3627 phys_addr = cpu_get_phys_page_debug(env, page);
3628 /* if no physical page mapped, return an error */
3629 if (phys_addr == -1)
3630 return -1;
3631 l = (page + TARGET_PAGE_SIZE) - addr;
3632 if (l > len)
3633 l = len;
3634 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
3635 buf, l, is_write);
3636 len -= l;
3637 buf += l;
3638 addr += l;
3639 }
3640 return 0;
3641}
3642
3643/* in deterministic execution mode, instructions doing device I/Os
3644 must be at the end of the TB */
3645void cpu_io_recompile(CPUState *env, void *retaddr)
3646{
3647 TranslationBlock *tb;
3648 uint32_t n, cflags;
3649 target_ulong pc, cs_base;
3650 uint64_t flags;
3651
3652 tb = tb_find_pc((unsigned long)retaddr);
3653 if (!tb) {
3654 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3655 retaddr);
3656 }
3657 n = env->icount_decr.u16.low + tb->icount;
3658 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3659 /* Calculate how many instructions had been executed before the fault
3660 occurred. */
3661 n = n - env->icount_decr.u16.low;
3662 /* Generate a new TB ending on the I/O insn. */
3663 n++;
3664 /* On MIPS and SH, delay slot instructions can only be restarted if
3665 they were already the first instruction in the TB. If this is not
3666 the first instruction in a TB then re-execute the preceding
3667 branch. */
3668#if defined(TARGET_MIPS)
3669 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3670 env->active_tc.PC -= 4;
3671 env->icount_decr.u16.low++;
3672 env->hflags &= ~MIPS_HFLAG_BMASK;
3673 }
3674#elif defined(TARGET_SH4)
3675 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3676 && n > 1) {
3677 env->pc -= 2;
3678 env->icount_decr.u16.low++;
3679 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3680 }
3681#endif
3682 /* This should never happen. */
3683 if (n > CF_COUNT_MASK)
3684 cpu_abort(env, "TB too big during recompile");
3685
3686 cflags = n | CF_LAST_IO;
3687 pc = tb->pc;
3688 cs_base = tb->cs_base;
3689 flags = tb->flags;
3690 tb_phys_invalidate(tb, -1);
3691 /* FIXME: In theory this could raise an exception. In practice
3692 we have already translated the block once so it's probably ok. */
3693 tb_gen_code(env, pc, cs_base, flags, cflags);
3694 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3695 the first in the TB) then we end up generating a whole new TB and
3696 repeating the fault, which is horribly inefficient.
3697 Better would be to execute just this insn uncached, or generate a
3698 second new TB. */
3699 cpu_resume_from_signal(env, NULL);
3700}
3701
3702#ifndef VBOX
3703void dump_exec_info(FILE *f,
3704 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3705{
3706 int i, target_code_size, max_target_code_size;
3707 int direct_jmp_count, direct_jmp2_count, cross_page;
3708 TranslationBlock *tb;
3709
3710 target_code_size = 0;
3711 max_target_code_size = 0;
3712 cross_page = 0;
3713 direct_jmp_count = 0;
3714 direct_jmp2_count = 0;
3715 for(i = 0; i < nb_tbs; i++) {
3716 tb = &tbs[i];
3717 target_code_size += tb->size;
3718 if (tb->size > max_target_code_size)
3719 max_target_code_size = tb->size;
3720 if (tb->page_addr[1] != -1)
3721 cross_page++;
3722 if (tb->tb_next_offset[0] != 0xffff) {
3723 direct_jmp_count++;
3724 if (tb->tb_next_offset[1] != 0xffff) {
3725 direct_jmp2_count++;
3726 }
3727 }
3728 }
3729 /* XXX: avoid using doubles ? */
3730 cpu_fprintf(f, "Translation buffer state:\n");
3731 cpu_fprintf(f, "gen code size %ld/%ld\n",
3732 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3733 cpu_fprintf(f, "TB count %d/%d\n",
3734 nb_tbs, code_gen_max_blocks);
3735 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3736 nb_tbs ? target_code_size / nb_tbs : 0,
3737 max_target_code_size);
3738 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3739 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3740 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3741 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3742 cross_page,
3743 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3744 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3745 direct_jmp_count,
3746 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3747 direct_jmp2_count,
3748 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3749 cpu_fprintf(f, "\nStatistics:\n");
3750 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3751 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3752 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3753 tcg_dump_info(f, cpu_fprintf);
3754}
3755#endif /* !VBOX */
3756
3757#if !defined(CONFIG_USER_ONLY)
3758
3759#define MMUSUFFIX _cmmu
3760#define GETPC() NULL
3761#define env cpu_single_env
3762#define SOFTMMU_CODE_ACCESS
3763
3764#define SHIFT 0
3765#include "softmmu_template.h"
3766
3767#define SHIFT 1
3768#include "softmmu_template.h"
3769
3770#define SHIFT 2
3771#include "softmmu_template.h"
3772
3773#define SHIFT 3
3774#include "softmmu_template.h"
3775
3776#undef env
3777
3778#endif
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette