1 | /** @file
|
---|
2 | CPUID Leaf 0x15 for Core Crystal Clock frequency instance of Timer Library.
|
---|
3 |
|
---|
4 | Copyright (c) 2019 Intel Corporation. All rights reserved.<BR>
|
---|
5 | SPDX-License-Identifier: BSD-2-Clause-Patent
|
---|
6 |
|
---|
7 | **/
|
---|
8 |
|
---|
9 | #include <Base.h>
|
---|
10 | #include <Library/TimerLib.h>
|
---|
11 | #include <Library/BaseLib.h>
|
---|
12 | #include <Library/PcdLib.h>
|
---|
13 | #include <Library/DebugLib.h>
|
---|
14 | #include <Register/Cpuid.h>
|
---|
15 |
|
---|
16 | GUID mCpuCrystalFrequencyHobGuid = {
|
---|
17 | 0xe1ec5ad0, 0x8569, 0x46bd, { 0x8d, 0xcd, 0x3b, 0x9f, 0x6f, 0x45, 0x82, 0x7a }
|
---|
18 | };
|
---|
19 |
|
---|
20 | /**
|
---|
21 | Internal function to retrieves the 64-bit frequency in Hz.
|
---|
22 |
|
---|
23 | Internal function to retrieves the 64-bit frequency in Hz.
|
---|
24 |
|
---|
25 | @return The frequency in Hz.
|
---|
26 |
|
---|
27 | **/
|
---|
28 | UINT64
|
---|
29 | InternalGetPerformanceCounterFrequency (
|
---|
30 | VOID
|
---|
31 | );
|
---|
32 |
|
---|
33 | /**
|
---|
34 | CPUID Leaf 0x15 for Core Crystal Clock Frequency.
|
---|
35 |
|
---|
36 | The TSC counting frequency is determined by using CPUID leaf 0x15. Frequency in MHz = Core XTAL frequency * EBX/EAX.
|
---|
37 | In newer flavors of the CPU, core xtal frequency is returned in ECX or 0 if not supported.
|
---|
38 | @return The number of TSC counts per second.
|
---|
39 |
|
---|
40 | **/
|
---|
41 | UINT64
|
---|
42 | CpuidCoreClockCalculateTscFrequency (
|
---|
43 | VOID
|
---|
44 | )
|
---|
45 | {
|
---|
46 | UINT64 TscFrequency;
|
---|
47 | UINT64 CoreXtalFrequency;
|
---|
48 | UINT32 RegEax;
|
---|
49 | UINT32 RegEbx;
|
---|
50 | UINT32 RegEcx;
|
---|
51 |
|
---|
52 | //
|
---|
53 | // Use CPUID leaf 0x15 Time Stamp Counter and Nominal Core Crystal Clock Information
|
---|
54 | // EBX returns 0 if not supported. ECX, if non zero, provides Core Xtal Frequency in hertz.
|
---|
55 | // TSC frequency = (ECX, Core Xtal Frequency) * EBX/EAX.
|
---|
56 | //
|
---|
57 | AsmCpuid (CPUID_TIME_STAMP_COUNTER, &RegEax, &RegEbx, &RegEcx, NULL);
|
---|
58 |
|
---|
59 | //
|
---|
60 | // If EAX or EBX returns 0, the XTAL ratio is not enumerated.
|
---|
61 | //
|
---|
62 | if ((RegEax == 0) || (RegEbx == 0)) {
|
---|
63 | ASSERT (RegEax != 0);
|
---|
64 | ASSERT (RegEbx != 0);
|
---|
65 | return 0;
|
---|
66 | }
|
---|
67 |
|
---|
68 | //
|
---|
69 | // If ECX returns 0, the XTAL frequency is not enumerated.
|
---|
70 | // And PcdCpuCoreCrystalClockFrequency defined should base on processor series.
|
---|
71 | //
|
---|
72 | if (RegEcx == 0) {
|
---|
73 | CoreXtalFrequency = PcdGet64 (PcdCpuCoreCrystalClockFrequency);
|
---|
74 | } else {
|
---|
75 | CoreXtalFrequency = (UINT64)RegEcx;
|
---|
76 | }
|
---|
77 |
|
---|
78 | //
|
---|
79 | // Calculate TSC frequency = (ECX, Core Xtal Frequency) * EBX/EAX
|
---|
80 | //
|
---|
81 | TscFrequency = DivU64x32 (MultU64x32 (CoreXtalFrequency, RegEbx) + (UINT64)(RegEax >> 1), RegEax);
|
---|
82 |
|
---|
83 | return TscFrequency;
|
---|
84 | }
|
---|
85 |
|
---|
86 | /**
|
---|
87 | Stalls the CPU for at least the given number of ticks.
|
---|
88 |
|
---|
89 | Stalls the CPU for at least the given number of ticks. It's invoked by
|
---|
90 | MicroSecondDelay() and NanoSecondDelay().
|
---|
91 |
|
---|
92 | @param Delay A period of time to delay in ticks.
|
---|
93 |
|
---|
94 | **/
|
---|
95 | VOID
|
---|
96 | InternalCpuDelay (
|
---|
97 | IN UINT64 Delay
|
---|
98 | )
|
---|
99 | {
|
---|
100 | UINT64 Ticks;
|
---|
101 |
|
---|
102 | //
|
---|
103 | // The target timer count is calculated here
|
---|
104 | //
|
---|
105 | Ticks = AsmReadTsc () + Delay;
|
---|
106 |
|
---|
107 | //
|
---|
108 | // Wait until time out
|
---|
109 | // Timer wrap-arounds are NOT handled correctly by this function.
|
---|
110 | // Thus, this function must be called within 10 years of reset since
|
---|
111 | // Intel guarantees a minimum of 10 years before the TSC wraps.
|
---|
112 | //
|
---|
113 | while (AsmReadTsc () <= Ticks) {
|
---|
114 | CpuPause ();
|
---|
115 | }
|
---|
116 | }
|
---|
117 |
|
---|
118 | /**
|
---|
119 | Stalls the CPU for at least the given number of microseconds.
|
---|
120 |
|
---|
121 | Stalls the CPU for the number of microseconds specified by MicroSeconds.
|
---|
122 |
|
---|
123 | @param[in] MicroSeconds The minimum number of microseconds to delay.
|
---|
124 |
|
---|
125 | @return MicroSeconds
|
---|
126 |
|
---|
127 | **/
|
---|
128 | UINTN
|
---|
129 | EFIAPI
|
---|
130 | MicroSecondDelay (
|
---|
131 | IN UINTN MicroSeconds
|
---|
132 | )
|
---|
133 | {
|
---|
134 | InternalCpuDelay (
|
---|
135 | DivU64x32 (
|
---|
136 | MultU64x64 (
|
---|
137 | MicroSeconds,
|
---|
138 | InternalGetPerformanceCounterFrequency ()
|
---|
139 | ),
|
---|
140 | 1000000u
|
---|
141 | )
|
---|
142 | );
|
---|
143 |
|
---|
144 | return MicroSeconds;
|
---|
145 | }
|
---|
146 |
|
---|
147 | /**
|
---|
148 | Stalls the CPU for at least the given number of nanoseconds.
|
---|
149 |
|
---|
150 | Stalls the CPU for the number of nanoseconds specified by NanoSeconds.
|
---|
151 |
|
---|
152 | @param NanoSeconds The minimum number of nanoseconds to delay.
|
---|
153 |
|
---|
154 | @return NanoSeconds
|
---|
155 |
|
---|
156 | **/
|
---|
157 | UINTN
|
---|
158 | EFIAPI
|
---|
159 | NanoSecondDelay (
|
---|
160 | IN UINTN NanoSeconds
|
---|
161 | )
|
---|
162 | {
|
---|
163 | InternalCpuDelay (
|
---|
164 | DivU64x32 (
|
---|
165 | MultU64x64 (
|
---|
166 | NanoSeconds,
|
---|
167 | InternalGetPerformanceCounterFrequency ()
|
---|
168 | ),
|
---|
169 | 1000000000u
|
---|
170 | )
|
---|
171 | );
|
---|
172 |
|
---|
173 | return NanoSeconds;
|
---|
174 | }
|
---|
175 |
|
---|
176 | /**
|
---|
177 | Retrieves the current value of a 64-bit free running performance counter.
|
---|
178 |
|
---|
179 | Retrieves the current value of a 64-bit free running performance counter. The
|
---|
180 | counter can either count up by 1 or count down by 1. If the physical
|
---|
181 | performance counter counts by a larger increment, then the counter values
|
---|
182 | must be translated. The properties of the counter can be retrieved from
|
---|
183 | GetPerformanceCounterProperties().
|
---|
184 |
|
---|
185 | @return The current value of the free running performance counter.
|
---|
186 |
|
---|
187 | **/
|
---|
188 | UINT64
|
---|
189 | EFIAPI
|
---|
190 | GetPerformanceCounter (
|
---|
191 | VOID
|
---|
192 | )
|
---|
193 | {
|
---|
194 | return AsmReadTsc ();
|
---|
195 | }
|
---|
196 |
|
---|
197 | /**
|
---|
198 | Retrieves the 64-bit frequency in Hz and the range of performance counter
|
---|
199 | values.
|
---|
200 |
|
---|
201 | If StartValue is not NULL, then the value that the performance counter starts
|
---|
202 | with immediately after is it rolls over is returned in StartValue. If
|
---|
203 | EndValue is not NULL, then the value that the performance counter end with
|
---|
204 | immediately before it rolls over is returned in EndValue. The 64-bit
|
---|
205 | frequency of the performance counter in Hz is always returned. If StartValue
|
---|
206 | is less than EndValue, then the performance counter counts up. If StartValue
|
---|
207 | is greater than EndValue, then the performance counter counts down. For
|
---|
208 | example, a 64-bit free running counter that counts up would have a StartValue
|
---|
209 | of 0 and an EndValue of 0xFFFFFFFFFFFFFFFF. A 24-bit free running counter
|
---|
210 | that counts down would have a StartValue of 0xFFFFFF and an EndValue of 0.
|
---|
211 |
|
---|
212 | @param StartValue The value the performance counter starts with when it
|
---|
213 | rolls over.
|
---|
214 | @param EndValue The value that the performance counter ends with before
|
---|
215 | it rolls over.
|
---|
216 |
|
---|
217 | @return The frequency in Hz.
|
---|
218 |
|
---|
219 | **/
|
---|
220 | UINT64
|
---|
221 | EFIAPI
|
---|
222 | GetPerformanceCounterProperties (
|
---|
223 | OUT UINT64 *StartValue OPTIONAL,
|
---|
224 | OUT UINT64 *EndValue OPTIONAL
|
---|
225 | )
|
---|
226 | {
|
---|
227 | if (StartValue != NULL) {
|
---|
228 | *StartValue = 0;
|
---|
229 | }
|
---|
230 |
|
---|
231 | if (EndValue != NULL) {
|
---|
232 | *EndValue = 0xffffffffffffffffULL;
|
---|
233 | }
|
---|
234 |
|
---|
235 | return InternalGetPerformanceCounterFrequency ();
|
---|
236 | }
|
---|
237 |
|
---|
238 | /**
|
---|
239 | Converts elapsed ticks of performance counter to time in nanoseconds.
|
---|
240 |
|
---|
241 | This function converts the elapsed ticks of running performance counter to
|
---|
242 | time value in unit of nanoseconds.
|
---|
243 |
|
---|
244 | @param Ticks The number of elapsed ticks of running performance counter.
|
---|
245 |
|
---|
246 | @return The elapsed time in nanoseconds.
|
---|
247 |
|
---|
248 | **/
|
---|
249 | UINT64
|
---|
250 | EFIAPI
|
---|
251 | GetTimeInNanoSecond (
|
---|
252 | IN UINT64 Ticks
|
---|
253 | )
|
---|
254 | {
|
---|
255 | UINT64 Frequency;
|
---|
256 | UINT64 NanoSeconds;
|
---|
257 | UINT64 Remainder;
|
---|
258 | INTN Shift;
|
---|
259 |
|
---|
260 | Frequency = GetPerformanceCounterProperties (NULL, NULL);
|
---|
261 |
|
---|
262 | //
|
---|
263 | // Ticks
|
---|
264 | // Time = --------- x 1,000,000,000
|
---|
265 | // Frequency
|
---|
266 | //
|
---|
267 | NanoSeconds = MultU64x32 (DivU64x64Remainder (Ticks, Frequency, &Remainder), 1000000000u);
|
---|
268 |
|
---|
269 | //
|
---|
270 | // Ensure (Remainder * 1,000,000,000) will not overflow 64-bit.
|
---|
271 | // Since 2^29 < 1,000,000,000 = 0x3B9ACA00 < 2^30, Remainder should < 2^(64-30) = 2^34,
|
---|
272 | // i.e. highest bit set in Remainder should <= 33.
|
---|
273 | //
|
---|
274 | Shift = MAX (0, HighBitSet64 (Remainder) - 33);
|
---|
275 | Remainder = RShiftU64 (Remainder, (UINTN)Shift);
|
---|
276 | Frequency = RShiftU64 (Frequency, (UINTN)Shift);
|
---|
277 | NanoSeconds += DivU64x64Remainder (MultU64x32 (Remainder, 1000000000u), Frequency, NULL);
|
---|
278 |
|
---|
279 | return NanoSeconds;
|
---|
280 | }
|
---|