VirtualBox

source: vbox/trunk/src/VBox/VMM/CPUM.cpp@ 34328

Last change on this file since 34328 was 34328, checked in by vboxsync, 14 years ago

CPUM: updated the CPUID processor feature flags

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 188.0 KB
Line 
1/* $Id: CPUM.cpp 34328 2010-11-24 14:33:57Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2010 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 */
33
34/*******************************************************************************
35* Header Files *
36*******************************************************************************/
37#define LOG_GROUP LOG_GROUP_CPUM
38#include <VBox/cpum.h>
39#include <VBox/cpumdis.h>
40#include <VBox/pgm.h>
41#include <VBox/mm.h>
42#include <VBox/selm.h>
43#include <VBox/dbgf.h>
44#include <VBox/patm.h>
45#include <VBox/hwaccm.h>
46#include <VBox/ssm.h>
47#include "CPUMInternal.h"
48#include <VBox/vm.h>
49
50#include <VBox/param.h>
51#include <VBox/dis.h>
52#include <VBox/err.h>
53#include <VBox/log.h>
54#include <iprt/assert.h>
55#include <iprt/asm-amd64-x86.h>
56#include <iprt/string.h>
57#include <iprt/mp.h>
58#include <iprt/cpuset.h>
59#include <include/internal/pgm.h>
60
61/*******************************************************************************
62* Defined Constants And Macros *
63*******************************************************************************/
64/** The current saved state version. */
65#define CPUM_SAVED_STATE_VERSION 12
66/** The saved state version of 3.2, 3.1 and 3.3 trunk before the hidden
67 * selector register change (CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID). */
68#define CPUM_SAVED_STATE_VERSION_VER3_2 11
69/** The saved state version of 3.0 and 3.1 trunk before the teleportation
70 * changes. */
71#define CPUM_SAVED_STATE_VERSION_VER3_0 10
72/** The saved state version for the 2.1 trunk before the MSR changes. */
73#define CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR 9
74/** The saved state version of 2.0, used for backwards compatibility. */
75#define CPUM_SAVED_STATE_VERSION_VER2_0 8
76/** The saved state version of 1.6, used for backwards compatibility. */
77#define CPUM_SAVED_STATE_VERSION_VER1_6 6
78
79
80/*******************************************************************************
81* Structures and Typedefs *
82*******************************************************************************/
83
84/**
85 * What kind of cpu info dump to perform.
86 */
87typedef enum CPUMDUMPTYPE
88{
89 CPUMDUMPTYPE_TERSE,
90 CPUMDUMPTYPE_DEFAULT,
91 CPUMDUMPTYPE_VERBOSE
92} CPUMDUMPTYPE;
93/** Pointer to a cpu info dump type. */
94typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
95
96
97/*******************************************************************************
98* Internal Functions *
99*******************************************************************************/
100static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX);
101static int cpumR3CpuIdInit(PVM pVM);
102static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
103static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
104static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
105static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
106static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
107static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
108static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
109static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
110static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
111static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
112static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
113
114
115/**
116 * Initializes the CPUM.
117 *
118 * @returns VBox status code.
119 * @param pVM The VM to operate on.
120 */
121VMMR3DECL(int) CPUMR3Init(PVM pVM)
122{
123 LogFlow(("CPUMR3Init\n"));
124
125 /*
126 * Assert alignment and sizes.
127 */
128 AssertCompileMemberAlignment(VM, cpum.s, 32);
129 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
130 AssertCompileSizeAlignment(CPUMCTX, 64);
131 AssertCompileSizeAlignment(CPUMCTXMSR, 64);
132 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
133 AssertCompileMemberAlignment(VM, cpum, 64);
134 AssertCompileMemberAlignment(VM, aCpus, 64);
135 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
136 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
137
138 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
139 pVM->cpum.s.offCPUMCPU0 = RT_OFFSETOF(VM, aCpus[0].cpum) - RT_OFFSETOF(VM, cpum);
140 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
141
142 /* Calculate the offset from CPUMCPU to CPUM. */
143 for (VMCPUID i = 0; i < pVM->cCpus; i++)
144 {
145 PVMCPU pVCpu = &pVM->aCpus[i];
146
147 /*
148 * Setup any fixed pointers and offsets.
149 */
150 pVCpu->cpum.s.pHyperCoreR3 = CPUMCTX2CORE(&pVCpu->cpum.s.Hyper);
151 pVCpu->cpum.s.pHyperCoreR0 = VM_R0_ADDR(pVM, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper));
152
153 pVCpu->cpum.s.offCPUM = RT_OFFSETOF(VM, aCpus[i].cpum) - RT_OFFSETOF(VM, cpum);
154 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
155 }
156
157 /*
158 * Check that the CPU supports the minimum features we require.
159 */
160 if (!ASMHasCpuId())
161 {
162 Log(("The CPU doesn't support CPUID!\n"));
163 return VERR_UNSUPPORTED_CPU;
164 }
165 ASMCpuId_ECX_EDX(1, &pVM->cpum.s.CPUFeatures.ecx, &pVM->cpum.s.CPUFeatures.edx);
166 ASMCpuId_ECX_EDX(0x80000001, &pVM->cpum.s.CPUFeaturesExt.ecx, &pVM->cpum.s.CPUFeaturesExt.edx);
167
168 /* Setup the CR4 AND and OR masks used in the switcher */
169 /* Depends on the presence of FXSAVE(SSE) support on the host CPU */
170 if (!pVM->cpum.s.CPUFeatures.edx.u1FXSR)
171 {
172 Log(("The CPU doesn't support FXSAVE/FXRSTOR!\n"));
173 /* No FXSAVE implies no SSE */
174 pVM->cpum.s.CR4.AndMask = X86_CR4_PVI | X86_CR4_VME;
175 pVM->cpum.s.CR4.OrMask = 0;
176 }
177 else
178 {
179 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
180 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFSXR;
181 }
182
183 if (!pVM->cpum.s.CPUFeatures.edx.u1MMX)
184 {
185 Log(("The CPU doesn't support MMX!\n"));
186 return VERR_UNSUPPORTED_CPU;
187 }
188 if (!pVM->cpum.s.CPUFeatures.edx.u1TSC)
189 {
190 Log(("The CPU doesn't support TSC!\n"));
191 return VERR_UNSUPPORTED_CPU;
192 }
193 /* Bogus on AMD? */
194 if (!pVM->cpum.s.CPUFeatures.edx.u1SEP)
195 Log(("The CPU doesn't support SYSENTER/SYSEXIT!\n"));
196
197 /*
198 * Detect the host CPU vendor.
199 * (The guest CPU vendor is re-detected later on.)
200 */
201 uint32_t uEAX, uEBX, uECX, uEDX;
202 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
203 pVM->cpum.s.enmHostCpuVendor = cpumR3DetectVendor(uEAX, uEBX, uECX, uEDX);
204 pVM->cpum.s.enmGuestCpuVendor = pVM->cpum.s.enmHostCpuVendor;
205
206 /*
207 * Setup hypervisor startup values.
208 */
209
210 /*
211 * Register saved state data item.
212 */
213 int rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
214 NULL, cpumR3LiveExec, NULL,
215 NULL, cpumR3SaveExec, NULL,
216 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
217 if (RT_FAILURE(rc))
218 return rc;
219
220 /*
221 * Register info handlers.
222 */
223 DBGFR3InfoRegisterInternal(pVM, "cpum", "Displays the all the cpu states.", &cpumR3InfoAll);
224 DBGFR3InfoRegisterInternal(pVM, "cpumguest", "Displays the guest cpu state.", &cpumR3InfoGuest);
225 DBGFR3InfoRegisterInternal(pVM, "cpumhyper", "Displays the hypervisor cpu state.", &cpumR3InfoHyper);
226 DBGFR3InfoRegisterInternal(pVM, "cpumhost", "Displays the host cpu state.", &cpumR3InfoHost);
227 DBGFR3InfoRegisterInternal(pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
228 DBGFR3InfoRegisterInternal(pVM, "cpumguestinstr", "Displays the current guest instruction.", &cpumR3InfoGuestInstr);
229
230 /*
231 * Initialize the Guest CPUID state.
232 */
233 rc = cpumR3CpuIdInit(pVM);
234 if (RT_FAILURE(rc))
235 return rc;
236 CPUMR3Reset(pVM);
237 return VINF_SUCCESS;
238}
239
240
241/**
242 * Detect the CPU vendor give n the
243 *
244 * @returns The vendor.
245 * @param uEAX EAX from CPUID(0).
246 * @param uEBX EBX from CPUID(0).
247 * @param uECX ECX from CPUID(0).
248 * @param uEDX EDX from CPUID(0).
249 */
250static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX)
251{
252 if ( uEAX >= 1
253 && uEBX == X86_CPUID_VENDOR_AMD_EBX
254 && uECX == X86_CPUID_VENDOR_AMD_ECX
255 && uEDX == X86_CPUID_VENDOR_AMD_EDX)
256 return CPUMCPUVENDOR_AMD;
257
258 if ( uEAX >= 1
259 && uEBX == X86_CPUID_VENDOR_INTEL_EBX
260 && uECX == X86_CPUID_VENDOR_INTEL_ECX
261 && uEDX == X86_CPUID_VENDOR_INTEL_EDX)
262 return CPUMCPUVENDOR_INTEL;
263
264 /** @todo detect the other buggers... */
265 return CPUMCPUVENDOR_UNKNOWN;
266}
267
268
269/**
270 * Fetches overrides for a CPUID leaf.
271 *
272 * @returns VBox status code.
273 * @param pLeaf The leaf to load the overrides into.
274 * @param pCfgNode The CFGM node containing the overrides
275 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
276 * @param iLeaf The CPUID leaf number.
277 */
278static int cpumR3CpuIdFetchLeafOverride(PCPUMCPUID pLeaf, PCFGMNODE pCfgNode, uint32_t iLeaf)
279{
280 PCFGMNODE pLeafNode = CFGMR3GetChildF(pCfgNode, "%RX32", iLeaf);
281 if (pLeafNode)
282 {
283 uint32_t u32;
284 int rc = CFGMR3QueryU32(pLeafNode, "eax", &u32);
285 if (RT_SUCCESS(rc))
286 pLeaf->eax = u32;
287 else
288 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
289
290 rc = CFGMR3QueryU32(pLeafNode, "ebx", &u32);
291 if (RT_SUCCESS(rc))
292 pLeaf->ebx = u32;
293 else
294 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
295
296 rc = CFGMR3QueryU32(pLeafNode, "ecx", &u32);
297 if (RT_SUCCESS(rc))
298 pLeaf->ecx = u32;
299 else
300 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
301
302 rc = CFGMR3QueryU32(pLeafNode, "edx", &u32);
303 if (RT_SUCCESS(rc))
304 pLeaf->edx = u32;
305 else
306 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
307
308 }
309 return VINF_SUCCESS;
310}
311
312
313/**
314 * Load the overrides for a set of CPUID leaves.
315 *
316 * @returns VBox status code.
317 * @param paLeaves The leaf array.
318 * @param cLeaves The number of leaves.
319 * @param uStart The start leaf number.
320 * @param pCfgNode The CFGM node containing the overrides
321 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
322 */
323static int cpumR3CpuIdInitLoadOverrideSet(uint32_t uStart, PCPUMCPUID paLeaves, uint32_t cLeaves, PCFGMNODE pCfgNode)
324{
325 for (uint32_t i = 0; i < cLeaves; i++)
326 {
327 int rc = cpumR3CpuIdFetchLeafOverride(&paLeaves[i], pCfgNode, uStart + i);
328 if (RT_FAILURE(rc))
329 return rc;
330 }
331
332 return VINF_SUCCESS;
333}
334
335/**
336 * Init a set of host CPUID leaves.
337 *
338 * @returns VBox status code.
339 * @param paLeaves The leaf array.
340 * @param cLeaves The number of leaves.
341 * @param uStart The start leaf number.
342 * @param pCfgNode The /CPUM/HostCPUID/ node.
343 */
344static int cpumR3CpuIdInitHostSet(uint32_t uStart, PCPUMCPUID paLeaves, uint32_t cLeaves, PCFGMNODE pCfgNode)
345{
346 /* Using the ECX variant for all of them can't hurt... */
347 for (uint32_t i = 0; i < cLeaves; i++)
348 ASMCpuId_Idx_ECX(uStart + i, 0, &paLeaves[i].eax, &paLeaves[i].ebx, &paLeaves[i].ecx, &paLeaves[i].edx);
349
350 /* Load CPUID leaf override; we currently don't care if the user
351 specifies features the host CPU doesn't support. */
352 return cpumR3CpuIdInitLoadOverrideSet(uStart, paLeaves, cLeaves, pCfgNode);
353}
354
355
356/**
357 * Initializes the emulated CPU's cpuid information.
358 *
359 * @returns VBox status code.
360 * @param pVM The VM to operate on.
361 */
362static int cpumR3CpuIdInit(PVM pVM)
363{
364 PCPUM pCPUM = &pVM->cpum.s;
365 PCFGMNODE pCpumCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM");
366 uint32_t i;
367 int rc;
368
369#define PORTABLE_CLEAR_BITS_WHEN(Lvl, LeafSuffReg, FeatNm, fMask, uValue) \
370 if (pCPUM->u8PortableCpuIdLevel >= (Lvl) && (pCPUM->aGuestCpuId##LeafSuffReg & (fMask)) == (uValue) ) \
371 { \
372 LogRel(("PortableCpuId: " #LeafSuffReg "[" #FeatNm "]: %#x -> 0\n", pCPUM->aGuestCpuId##LeafSuffReg & (fMask))); \
373 pCPUM->aGuestCpuId##LeafSuffReg &= ~(uint32_t)(fMask); \
374 }
375#define PORTABLE_DISABLE_FEATURE_BIT(Lvl, LeafSuffReg, FeatNm, fBitMask) \
376 if (pCPUM->u8PortableCpuIdLevel >= (Lvl) && (pCPUM->aGuestCpuId##LeafSuffReg & (fBitMask)) ) \
377 { \
378 LogRel(("PortableCpuId: " #LeafSuffReg "[" #FeatNm "]: 1 -> 0\n")); \
379 pCPUM->aGuestCpuId##LeafSuffReg &= ~(uint32_t)(fBitMask); \
380 }
381
382 /*
383 * Read the configuration.
384 */
385 /** @cfgm{CPUM/SyntheticCpu, boolean, false}
386 * Enables the Synthetic CPU. The Vendor ID and Processor Name are
387 * completely overridden by VirtualBox custom strings. Some
388 * CPUID information is withheld, like the cache info. */
389 rc = CFGMR3QueryBoolDef(pCpumCfg, "SyntheticCpu", &pCPUM->fSyntheticCpu, false);
390 AssertRCReturn(rc, rc);
391
392 /** @cfgm{CPUM/PortableCpuIdLevel, 8-bit, 0, 3, 0}
393 * When non-zero CPUID features that could cause portability issues will be
394 * stripped. The higher the value the more features gets stripped. Higher
395 * values should only be used when older CPUs are involved since it may
396 * harm performance and maybe also cause problems with specific guests. */
397 rc = CFGMR3QueryU8Def(pCpumCfg, "PortableCpuIdLevel", &pCPUM->u8PortableCpuIdLevel, 0);
398 AssertRCReturn(rc, rc);
399
400 AssertLogRelReturn(!pCPUM->fSyntheticCpu || !pCPUM->u8PortableCpuIdLevel, VERR_INTERNAL_ERROR_2);
401
402 /*
403 * Get the host CPUID leaves and redetect the guest CPU vendor (could've
404 * been overridden).
405 */
406 /** @cfgm{CPUM/HostCPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
407 * Overrides the host CPUID leaf values used for calculating the guest CPUID
408 * leaves. This can be used to preserve the CPUID values when moving a VM
409 * to a different machine. Another use is restricting (or extending) the
410 * feature set exposed to the guest. */
411 PCFGMNODE pHostOverrideCfg = CFGMR3GetChild(pCpumCfg, "HostCPUID");
412 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pHostOverrideCfg);
413 AssertRCReturn(rc, rc);
414 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pHostOverrideCfg);
415 AssertRCReturn(rc, rc);
416 rc = cpumR3CpuIdInitHostSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pHostOverrideCfg);
417 AssertRCReturn(rc, rc);
418
419 pCPUM->enmGuestCpuVendor = cpumR3DetectVendor(pCPUM->aGuestCpuIdStd[0].eax, pCPUM->aGuestCpuIdStd[0].ebx,
420 pCPUM->aGuestCpuIdStd[0].ecx, pCPUM->aGuestCpuIdStd[0].edx);
421
422 /*
423 * Determine the default leaf.
424 *
425 * Intel returns values of the highest standard function, while AMD
426 * returns zeros. VIA on the other hand seems to returning nothing or
427 * perhaps some random garbage, we don't try to duplicate this behavior.
428 */
429 ASMCpuId(pCPUM->aGuestCpuIdStd[0].eax + 10, /** @todo r=bird: Use the host value here in case of overrides and more than 10 leaves being stripped already. */
430 &pCPUM->GuestCpuIdDef.eax, &pCPUM->GuestCpuIdDef.ebx,
431 &pCPUM->GuestCpuIdDef.ecx, &pCPUM->GuestCpuIdDef.edx);
432
433
434 /* Cpuid 1 & 0x80000001:
435 * Only report features we can support.
436 *
437 * Note! When enabling new features the Synthetic CPU and Portable CPUID
438 * options may require adjusting (i.e. stripping what was enabled).
439 */
440 pCPUM->aGuestCpuIdStd[1].edx &= X86_CPUID_FEATURE_EDX_FPU
441 | X86_CPUID_FEATURE_EDX_VME
442 | X86_CPUID_FEATURE_EDX_DE
443 | X86_CPUID_FEATURE_EDX_PSE
444 | X86_CPUID_FEATURE_EDX_TSC
445 | X86_CPUID_FEATURE_EDX_MSR
446 //| X86_CPUID_FEATURE_EDX_PAE - set later if configured.
447 | X86_CPUID_FEATURE_EDX_MCE
448 | X86_CPUID_FEATURE_EDX_CX8
449 //| X86_CPUID_FEATURE_EDX_APIC - set by the APIC device if present.
450 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
451 //| X86_CPUID_FEATURE_EDX_SEP
452 | X86_CPUID_FEATURE_EDX_MTRR
453 | X86_CPUID_FEATURE_EDX_PGE
454 | X86_CPUID_FEATURE_EDX_MCA
455 | X86_CPUID_FEATURE_EDX_CMOV
456 | X86_CPUID_FEATURE_EDX_PAT
457 | X86_CPUID_FEATURE_EDX_PSE36
458 //| X86_CPUID_FEATURE_EDX_PSN - no serial number.
459 | X86_CPUID_FEATURE_EDX_CLFSH
460 //| X86_CPUID_FEATURE_EDX_DS - no debug store.
461 //| X86_CPUID_FEATURE_EDX_ACPI - not virtualized yet.
462 | X86_CPUID_FEATURE_EDX_MMX
463 | X86_CPUID_FEATURE_EDX_FXSR
464 | X86_CPUID_FEATURE_EDX_SSE
465 | X86_CPUID_FEATURE_EDX_SSE2
466 //| X86_CPUID_FEATURE_EDX_SS - no self snoop.
467 //| X86_CPUID_FEATURE_EDX_HTT - no hyperthreading.
468 //| X86_CPUID_FEATURE_EDX_TM - no thermal monitor.
469 //| X86_CPUID_FEATURE_EDX_PBE - no pending break enabled.
470 | 0;
471 pCPUM->aGuestCpuIdStd[1].ecx &= 0
472 | X86_CPUID_FEATURE_ECX_SSE3
473 /* Can't properly emulate monitor & mwait with guest SMP; force the guest to use hlt for idling VCPUs. */
474 | ((pVM->cCpus == 1) ? X86_CPUID_FEATURE_ECX_MONITOR : 0)
475 //| X86_CPUID_FEATURE_ECX_CPLDS - no CPL qualified debug store.
476 //| X86_CPUID_FEATURE_ECX_VMX - not virtualized.
477 //| X86_CPUID_FEATURE_ECX_EST - no extended speed step.
478 //| X86_CPUID_FEATURE_ECX_TM2 - no thermal monitor 2.
479 | X86_CPUID_FEATURE_ECX_SSSE3
480 //| X86_CPUID_FEATURE_ECX_CNTXID - no L1 context id (MSR++).
481 //| X86_CPUID_FEATURE_ECX_CX16 - no cmpxchg16b
482 /* ECX Bit 14 - xTPR Update Control. Processor supports changing IA32_MISC_ENABLES[bit 23]. */
483 //| X86_CPUID_FEATURE_ECX_TPRUPDATE
484 /* ECX Bit 21 - x2APIC support - not yet. */
485 // | X86_CPUID_FEATURE_ECX_X2APIC
486 /* ECX Bit 23 - POPCNT instruction. */
487 //| X86_CPUID_FEATURE_ECX_POPCNT
488 | 0;
489 if (pCPUM->u8PortableCpuIdLevel > 0)
490 {
491 PORTABLE_CLEAR_BITS_WHEN(1, Std[1].eax, ProcessorType, (UINT32_C(3) << 12), (UINT32_C(2) << 12));
492 PORTABLE_DISABLE_FEATURE_BIT(1, Std[1].ecx, SSSE3, X86_CPUID_FEATURE_ECX_SSSE3);
493 PORTABLE_DISABLE_FEATURE_BIT(1, Std[1].ecx, SSE3, X86_CPUID_FEATURE_ECX_SSE3);
494 PORTABLE_DISABLE_FEATURE_BIT(2, Std[1].edx, SSE2, X86_CPUID_FEATURE_EDX_SSE2);
495 PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, SSE, X86_CPUID_FEATURE_EDX_SSE);
496 PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, CLFSH, X86_CPUID_FEATURE_EDX_CLFSH);
497 PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, CMOV, X86_CPUID_FEATURE_EDX_CMOV);
498
499 Assert(!(pCPUM->aGuestCpuIdStd[1].edx & ( X86_CPUID_FEATURE_EDX_SEP
500 | X86_CPUID_FEATURE_EDX_PSN
501 | X86_CPUID_FEATURE_EDX_DS
502 | X86_CPUID_FEATURE_EDX_ACPI
503 | X86_CPUID_FEATURE_EDX_SS
504 | X86_CPUID_FEATURE_EDX_TM
505 | X86_CPUID_FEATURE_EDX_PBE
506 )));
507 Assert(!(pCPUM->aGuestCpuIdStd[1].ecx & ( X86_CPUID_FEATURE_ECX_PCLMUL
508 | X86_CPUID_FEATURE_ECX_DTES64
509 | X86_CPUID_FEATURE_ECX_CPLDS
510 | X86_CPUID_FEATURE_ECX_VMX
511 | X86_CPUID_FEATURE_ECX_SMX
512 | X86_CPUID_FEATURE_ECX_EST
513 | X86_CPUID_FEATURE_ECX_TM2
514 | X86_CPUID_FEATURE_ECX_CNTXID
515 | X86_CPUID_FEATURE_ECX_FMA
516 | X86_CPUID_FEATURE_ECX_CX16
517 | X86_CPUID_FEATURE_ECX_TPRUPDATE
518 | X86_CPUID_FEATURE_ECX_PDCM
519 | X86_CPUID_FEATURE_ECX_DCA
520 | X86_CPUID_FEATURE_ECX_MOVBE
521 | X86_CPUID_FEATURE_ECX_AES
522 | X86_CPUID_FEATURE_ECX_POPCNT
523 | X86_CPUID_FEATURE_ECX_XSAVE
524 | X86_CPUID_FEATURE_ECX_OSXSAVE
525 | X86_CPUID_FEATURE_ECX_AVX
526 )));
527 }
528
529 /* Cpuid 0x80000001:
530 * Only report features we can support.
531 *
532 * Note! When enabling new features the Synthetic CPU and Portable CPUID
533 * options may require adjusting (i.e. stripping what was enabled).
534 *
535 * ASSUMES that this is ALWAYS the AMD defined feature set if present.
536 */
537 pCPUM->aGuestCpuIdExt[1].edx &= X86_CPUID_AMD_FEATURE_EDX_FPU
538 | X86_CPUID_AMD_FEATURE_EDX_VME
539 | X86_CPUID_AMD_FEATURE_EDX_DE
540 | X86_CPUID_AMD_FEATURE_EDX_PSE
541 | X86_CPUID_AMD_FEATURE_EDX_TSC
542 | X86_CPUID_AMD_FEATURE_EDX_MSR //?? this means AMD MSRs..
543 //| X86_CPUID_AMD_FEATURE_EDX_PAE - not implemented yet.
544 //| X86_CPUID_AMD_FEATURE_EDX_MCE - not virtualized yet.
545 | X86_CPUID_AMD_FEATURE_EDX_CX8
546 //| X86_CPUID_AMD_FEATURE_EDX_APIC - set by the APIC device if present.
547 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
548 //| X86_CPUID_AMD_FEATURE_EDX_SEP
549 | X86_CPUID_AMD_FEATURE_EDX_MTRR
550 | X86_CPUID_AMD_FEATURE_EDX_PGE
551 | X86_CPUID_AMD_FEATURE_EDX_MCA
552 | X86_CPUID_AMD_FEATURE_EDX_CMOV
553 | X86_CPUID_AMD_FEATURE_EDX_PAT
554 | X86_CPUID_AMD_FEATURE_EDX_PSE36
555 //| X86_CPUID_AMD_FEATURE_EDX_NX - not virtualized, requires PAE.
556 //| X86_CPUID_AMD_FEATURE_EDX_AXMMX
557 | X86_CPUID_AMD_FEATURE_EDX_MMX
558 | X86_CPUID_AMD_FEATURE_EDX_FXSR
559 | X86_CPUID_AMD_FEATURE_EDX_FFXSR
560 //| X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
561 //| X86_CPUID_AMD_FEATURE_EDX_RDTSCP - AMD only; turned on when necessary
562 //| X86_CPUID_AMD_FEATURE_EDX_LONG_MODE - turned on when necessary
563 | X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX
564 | X86_CPUID_AMD_FEATURE_EDX_3DNOW
565 | 0;
566 pCPUM->aGuestCpuIdExt[1].ecx &= 0
567 //| X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF
568 //| X86_CPUID_AMD_FEATURE_ECX_CMPL
569 //| X86_CPUID_AMD_FEATURE_ECX_SVM - not virtualized.
570 //| X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
571 /* Note: This could prevent teleporting from AMD to Intel CPUs! */
572 | X86_CPUID_AMD_FEATURE_ECX_CR8L /* expose lock mov cr0 = mov cr8 hack for guests that can use this feature to access the TPR. */
573 //| X86_CPUID_AMD_FEATURE_ECX_ABM
574 //| X86_CPUID_AMD_FEATURE_ECX_SSE4A
575 //| X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
576 //| X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
577 //| X86_CPUID_AMD_FEATURE_ECX_OSVW
578 //| X86_CPUID_AMD_FEATURE_ECX_IBS
579 //| X86_CPUID_AMD_FEATURE_ECX_SSE5
580 //| X86_CPUID_AMD_FEATURE_ECX_SKINIT
581 //| X86_CPUID_AMD_FEATURE_ECX_WDT
582 | 0;
583 if (pCPUM->u8PortableCpuIdLevel > 0)
584 {
585 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].ecx, CR8L, X86_CPUID_AMD_FEATURE_ECX_CR8L);
586 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, 3DNOW, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
587 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, 3DNOW_EX, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
588 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, FFXSR, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
589 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, RDTSCP, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
590 PORTABLE_DISABLE_FEATURE_BIT(2, Ext[1].ecx, LAHF_SAHF, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF);
591 PORTABLE_DISABLE_FEATURE_BIT(3, Ext[1].ecx, CMOV, X86_CPUID_AMD_FEATURE_EDX_CMOV);
592
593 Assert(!(pCPUM->aGuestCpuIdExt[1].ecx & ( X86_CPUID_AMD_FEATURE_ECX_CMPL
594 | X86_CPUID_AMD_FEATURE_ECX_SVM
595 | X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
596 | X86_CPUID_AMD_FEATURE_ECX_CR8L
597 | X86_CPUID_AMD_FEATURE_ECX_ABM
598 | X86_CPUID_AMD_FEATURE_ECX_SSE4A
599 | X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
600 | X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
601 | X86_CPUID_AMD_FEATURE_ECX_OSVW
602 | X86_CPUID_AMD_FEATURE_ECX_IBS
603 | X86_CPUID_AMD_FEATURE_ECX_SSE5
604 | X86_CPUID_AMD_FEATURE_ECX_SKINIT
605 | X86_CPUID_AMD_FEATURE_ECX_WDT
606 | UINT32_C(0xffffc000)
607 )));
608 Assert(!(pCPUM->aGuestCpuIdExt[1].edx & ( RT_BIT(10)
609 | X86_CPUID_AMD_FEATURE_EDX_SEP
610 | RT_BIT(18)
611 | RT_BIT(19)
612 | RT_BIT(21)
613 | X86_CPUID_AMD_FEATURE_EDX_AXMMX
614 | X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
615 | RT_BIT(28)
616 )));
617 }
618
619 /*
620 * Apply the Synthetic CPU modifications. (TODO: move this up)
621 */
622 if (pCPUM->fSyntheticCpu)
623 {
624 static const char s_szVendor[13] = "VirtualBox ";
625 static const char s_szProcessor[48] = "VirtualBox SPARCx86 Processor v1000 "; /* includes null terminator */
626
627 pCPUM->enmGuestCpuVendor = CPUMCPUVENDOR_SYNTHETIC;
628
629 /* Limit the nr of standard leaves; 5 for monitor/mwait */
630 pCPUM->aGuestCpuIdStd[0].eax = RT_MIN(pCPUM->aGuestCpuIdStd[0].eax, 5);
631
632 /* 0: Vendor */
633 pCPUM->aGuestCpuIdStd[0].ebx = pCPUM->aGuestCpuIdExt[0].ebx = ((uint32_t *)s_szVendor)[0];
634 pCPUM->aGuestCpuIdStd[0].ecx = pCPUM->aGuestCpuIdExt[0].ecx = ((uint32_t *)s_szVendor)[2];
635 pCPUM->aGuestCpuIdStd[0].edx = pCPUM->aGuestCpuIdExt[0].edx = ((uint32_t *)s_szVendor)[1];
636
637 /* 1.eax: Version information. family : model : stepping */
638 pCPUM->aGuestCpuIdStd[1].eax = (0xf << 8) + (0x1 << 4) + 1;
639
640 /* Leaves 2 - 4 are Intel only - zero them out */
641 memset(&pCPUM->aGuestCpuIdStd[2], 0, sizeof(pCPUM->aGuestCpuIdStd[2]));
642 memset(&pCPUM->aGuestCpuIdStd[3], 0, sizeof(pCPUM->aGuestCpuIdStd[3]));
643 memset(&pCPUM->aGuestCpuIdStd[4], 0, sizeof(pCPUM->aGuestCpuIdStd[4]));
644
645 /* Leaf 5 = monitor/mwait */
646
647 /* Limit the nr of extended leaves: 0x80000008 to include the max virtual and physical address size (64 bits guests). */
648 pCPUM->aGuestCpuIdExt[0].eax = RT_MIN(pCPUM->aGuestCpuIdExt[0].eax, 0x80000008);
649 /* AMD only - set to zero. */
650 pCPUM->aGuestCpuIdExt[0].ebx = pCPUM->aGuestCpuIdExt[0].ecx = pCPUM->aGuestCpuIdExt[0].edx = 0;
651
652 /* 0x800000001: AMD only; shared feature bits are set dynamically. */
653 memset(&pCPUM->aGuestCpuIdExt[1], 0, sizeof(pCPUM->aGuestCpuIdExt[1]));
654
655 /* 0x800000002-4: Processor Name String Identifier. */
656 pCPUM->aGuestCpuIdExt[2].eax = ((uint32_t *)s_szProcessor)[0];
657 pCPUM->aGuestCpuIdExt[2].ebx = ((uint32_t *)s_szProcessor)[1];
658 pCPUM->aGuestCpuIdExt[2].ecx = ((uint32_t *)s_szProcessor)[2];
659 pCPUM->aGuestCpuIdExt[2].edx = ((uint32_t *)s_szProcessor)[3];
660 pCPUM->aGuestCpuIdExt[3].eax = ((uint32_t *)s_szProcessor)[4];
661 pCPUM->aGuestCpuIdExt[3].ebx = ((uint32_t *)s_szProcessor)[5];
662 pCPUM->aGuestCpuIdExt[3].ecx = ((uint32_t *)s_szProcessor)[6];
663 pCPUM->aGuestCpuIdExt[3].edx = ((uint32_t *)s_szProcessor)[7];
664 pCPUM->aGuestCpuIdExt[4].eax = ((uint32_t *)s_szProcessor)[8];
665 pCPUM->aGuestCpuIdExt[4].ebx = ((uint32_t *)s_szProcessor)[9];
666 pCPUM->aGuestCpuIdExt[4].ecx = ((uint32_t *)s_szProcessor)[10];
667 pCPUM->aGuestCpuIdExt[4].edx = ((uint32_t *)s_szProcessor)[11];
668
669 /* 0x800000005-7 - reserved -> zero */
670 memset(&pCPUM->aGuestCpuIdExt[5], 0, sizeof(pCPUM->aGuestCpuIdExt[5]));
671 memset(&pCPUM->aGuestCpuIdExt[6], 0, sizeof(pCPUM->aGuestCpuIdExt[6]));
672 memset(&pCPUM->aGuestCpuIdExt[7], 0, sizeof(pCPUM->aGuestCpuIdExt[7]));
673
674 /* 0x800000008: only the max virtual and physical address size. */
675 pCPUM->aGuestCpuIdExt[8].ecx = pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
676 }
677
678 /*
679 * Hide HTT, multicode, SMP, whatever.
680 * (APIC-ID := 0 and #LogCpus := 0)
681 */
682 pCPUM->aGuestCpuIdStd[1].ebx &= 0x0000ffff;
683#ifdef VBOX_WITH_MULTI_CORE
684 if ( pCPUM->enmGuestCpuVendor != CPUMCPUVENDOR_SYNTHETIC
685 && pVM->cCpus > 1)
686 {
687 /* If CPUID Fn0000_0001_EDX[HTT] = 1 then LogicalProcessorCount is the number of threads per CPU core times the number of CPU cores per processor */
688 pCPUM->aGuestCpuIdStd[1].ebx |= (pVM->cCpus << 16);
689 pCPUM->aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_HTT; /* necessary for hyper-threading *or* multi-core CPUs */
690 }
691#endif
692
693 /* Cpuid 2:
694 * Intel: Cache and TLB information
695 * AMD: Reserved
696 * Safe to expose; restrict the number of calls to 1 for the portable case.
697 */
698 if ( pCPUM->u8PortableCpuIdLevel > 0
699 && pCPUM->aGuestCpuIdStd[0].eax >= 2
700 && (pCPUM->aGuestCpuIdStd[2].eax & 0xff) > 1)
701 {
702 LogRel(("PortableCpuId: Std[2].al: %d -> 1\n", pCPUM->aGuestCpuIdStd[2].eax & 0xff));
703 pCPUM->aGuestCpuIdStd[2].eax &= UINT32_C(0xfffffffe);
704 }
705
706 /* Cpuid 3:
707 * Intel: EAX, EBX - reserved (transmeta uses these)
708 * ECX, EDX - Processor Serial Number if available, otherwise reserved
709 * AMD: Reserved
710 * Safe to expose
711 */
712 if (!(pCPUM->aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_PSN))
713 {
714 pCPUM->aGuestCpuIdStd[3].ecx = pCPUM->aGuestCpuIdStd[3].edx = 0;
715 if (pCPUM->u8PortableCpuIdLevel > 0)
716 pCPUM->aGuestCpuIdStd[3].eax = pCPUM->aGuestCpuIdStd[3].ebx = 0;
717 }
718
719 /* Cpuid 4:
720 * Intel: Deterministic Cache Parameters Leaf
721 * Note: Depends on the ECX input! -> Feeling rather lazy now, so we just return 0
722 * AMD: Reserved
723 * Safe to expose, except for EAX:
724 * Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache (see note)**
725 * Bits 31-26: Maximum number of processor cores in this physical package**
726 * Note: These SMP values are constant regardless of ECX
727 */
728 pCPUM->aGuestCpuIdStd[4].ecx = pCPUM->aGuestCpuIdStd[4].edx = 0;
729 pCPUM->aGuestCpuIdStd[4].eax = pCPUM->aGuestCpuIdStd[4].ebx = 0;
730#ifdef VBOX_WITH_MULTI_CORE
731 if ( pVM->cCpus > 1
732 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_INTEL)
733 {
734 AssertReturn(pVM->cCpus <= 64, VERR_TOO_MANY_CPUS);
735 /* One logical processor with possibly multiple cores. */
736 /* See http://www.intel.com/Assets/PDF/appnote/241618.pdf p. 29 */
737 pCPUM->aGuestCpuIdStd[4].eax |= ((pVM->cCpus - 1) << 26); /* 6 bits only -> 64 cores! */
738 }
739#endif
740
741 /* Cpuid 5: Monitor/mwait Leaf
742 * Intel: ECX, EDX - reserved
743 * EAX, EBX - Smallest and largest monitor line size
744 * AMD: EDX - reserved
745 * EAX, EBX - Smallest and largest monitor line size
746 * ECX - extensions (ignored for now)
747 * Safe to expose
748 */
749 if (!(pCPUM->aGuestCpuIdStd[1].ecx & X86_CPUID_FEATURE_ECX_MONITOR))
750 pCPUM->aGuestCpuIdStd[5].eax = pCPUM->aGuestCpuIdStd[5].ebx = 0;
751
752 pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
753 /** @cfgm{/CPUM/MWaitExtensions, boolean, false}
754 * Expose MWAIT extended features to the guest. For now we expose
755 * just MWAIT break on interrupt feature (bit 1).
756 */
757 bool fMWaitExtensions;
758 rc = CFGMR3QueryBoolDef(pCpumCfg, "MWaitExtensions", &fMWaitExtensions, false); AssertRCReturn(rc, rc);
759 if (fMWaitExtensions)
760 {
761 pCPUM->aGuestCpuIdStd[5].ecx = X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0;
762 /* @todo: for now we just expose host's MWAIT C-states, although conceptually
763 it shall be part of our power management virtualization model */
764#if 0
765 /* MWAIT sub C-states */
766 pCPUM->aGuestCpuIdStd[5].edx =
767 (0 << 0) /* 0 in C0 */ |
768 (2 << 4) /* 2 in C1 */ |
769 (2 << 8) /* 2 in C2 */ |
770 (2 << 12) /* 2 in C3 */ |
771 (0 << 16) /* 0 in C4 */
772 ;
773#endif
774 }
775 else
776 pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
777
778 /* Cpuid 0x800000005 & 0x800000006 contain information about L1, L2 & L3 cache and TLB identifiers.
779 * Safe to pass on to the guest.
780 *
781 * Intel: 0x800000005 reserved
782 * 0x800000006 L2 cache information
783 * AMD: 0x800000005 L1 cache information
784 * 0x800000006 L2/L3 cache information
785 */
786
787 /* Cpuid 0x800000007:
788 * AMD: EAX, EBX, ECX - reserved
789 * EDX: Advanced Power Management Information
790 * Intel: Reserved
791 */
792 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000007))
793 {
794 Assert(pVM->cpum.s.enmGuestCpuVendor != CPUMCPUVENDOR_INVALID);
795
796 pCPUM->aGuestCpuIdExt[7].eax = pCPUM->aGuestCpuIdExt[7].ebx = pCPUM->aGuestCpuIdExt[7].ecx = 0;
797
798 if (pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
799 {
800 /* Only expose the TSC invariant capability bit to the guest. */
801 pCPUM->aGuestCpuIdExt[7].edx &= 0
802 //| X86_CPUID_AMD_ADVPOWER_EDX_TS
803 //| X86_CPUID_AMD_ADVPOWER_EDX_FID
804 //| X86_CPUID_AMD_ADVPOWER_EDX_VID
805 //| X86_CPUID_AMD_ADVPOWER_EDX_TTP
806 //| X86_CPUID_AMD_ADVPOWER_EDX_TM
807 //| X86_CPUID_AMD_ADVPOWER_EDX_STC
808 //| X86_CPUID_AMD_ADVPOWER_EDX_MC
809 //| X86_CPUID_AMD_ADVPOWER_EDX_HWPSTATE
810#if 0 /* We don't expose X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR, because newer
811 * Linux kernels blindly assume that the AMD performance counters work
812 * if this is set for 64 bits guests. (Can't really find a CPUID feature
813 * bit for them though.) */
814 | X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR
815#endif
816 | 0;
817 }
818 else
819 pCPUM->aGuestCpuIdExt[7].edx = 0;
820 }
821
822 /* Cpuid 0x800000008:
823 * AMD: EBX, EDX - reserved
824 * EAX: Virtual/Physical/Guest address Size
825 * ECX: Number of cores + APICIdCoreIdSize
826 * Intel: EAX: Virtual/Physical address Size
827 * EBX, ECX, EDX - reserved
828 */
829 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000008))
830 {
831 /* Only expose the virtual and physical address sizes to the guest. */
832 pCPUM->aGuestCpuIdExt[8].eax &= UINT32_C(0x0000ffff);
833 pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
834 /* Set APICIdCoreIdSize to zero (use legacy method to determine the number of cores per cpu)
835 * NC (0-7) Number of cores; 0 equals 1 core */
836 pCPUM->aGuestCpuIdExt[8].ecx = 0;
837#ifdef VBOX_WITH_MULTI_CORE
838 if ( pVM->cCpus > 1
839 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
840 {
841 /* Legacy method to determine the number of cores. */
842 pCPUM->aGuestCpuIdExt[1].ecx |= X86_CPUID_AMD_FEATURE_ECX_CMPL;
843 pCPUM->aGuestCpuIdExt[8].ecx |= (pVM->cCpus - 1); /* NC: Number of CPU cores - 1; 8 bits */
844 }
845#endif
846 }
847
848 /** @cfgm{/CPUM/NT4LeafLimit, boolean, false}
849 * Limit the number of standard CPUID leaves to 0..3 to prevent NT4 from
850 * bugchecking with MULTIPROCESSOR_CONFIGURATION_NOT_SUPPORTED (0x3e).
851 * This option corresponds somewhat to IA32_MISC_ENABLES.BOOT_NT4[bit 22].
852 */
853 bool fNt4LeafLimit;
854 rc = CFGMR3QueryBoolDef(pCpumCfg, "NT4LeafLimit", &fNt4LeafLimit, false); AssertRCReturn(rc, rc);
855 if (fNt4LeafLimit)
856 pCPUM->aGuestCpuIdStd[0].eax = 3; /** @todo r=bird: shouldn't we check if pCPUM->aGuestCpuIdStd[0].eax > 3 before setting it 3 here? */
857
858 /*
859 * Limit it the number of entries and fill the remaining with the defaults.
860 *
861 * The limits are masking off stuff about power saving and similar, this
862 * is perhaps a bit crudely done as there is probably some relatively harmless
863 * info too in these leaves (like words about having a constant TSC).
864 */
865 if (pCPUM->aGuestCpuIdStd[0].eax > 5)
866 pCPUM->aGuestCpuIdStd[0].eax = 5;
867 for (i = pCPUM->aGuestCpuIdStd[0].eax + 1; i < RT_ELEMENTS(pCPUM->aGuestCpuIdStd); i++)
868 pCPUM->aGuestCpuIdStd[i] = pCPUM->GuestCpuIdDef;
869
870 if (pCPUM->aGuestCpuIdExt[0].eax > UINT32_C(0x80000008))
871 pCPUM->aGuestCpuIdExt[0].eax = UINT32_C(0x80000008);
872 for (i = pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000000)
873 ? pCPUM->aGuestCpuIdExt[0].eax - UINT32_C(0x80000000) + 1
874 : 0;
875 i < RT_ELEMENTS(pCPUM->aGuestCpuIdExt);
876 i++)
877 pCPUM->aGuestCpuIdExt[i] = pCPUM->GuestCpuIdDef;
878
879 /*
880 * Centaur stuff (VIA).
881 *
882 * The important part here (we think) is to make sure the 0xc0000000
883 * function returns 0xc0000001. As for the features, we don't currently
884 * let on about any of those... 0xc0000002 seems to be some
885 * temperature/hz/++ stuff, include it as well (static).
886 */
887 if ( pCPUM->aGuestCpuIdCentaur[0].eax >= UINT32_C(0xc0000000)
888 && pCPUM->aGuestCpuIdCentaur[0].eax <= UINT32_C(0xc0000004))
889 {
890 pCPUM->aGuestCpuIdCentaur[0].eax = RT_MIN(pCPUM->aGuestCpuIdCentaur[0].eax, UINT32_C(0xc0000002));
891 pCPUM->aGuestCpuIdCentaur[1].edx = 0; /* all features hidden */
892 for (i = pCPUM->aGuestCpuIdCentaur[0].eax - UINT32_C(0xc0000000);
893 i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur);
894 i++)
895 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
896 }
897 else
898 for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur); i++)
899 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
900
901
902 /*
903 * Load CPUID overrides from configuration.
904 * Note: Kind of redundant now, but allows unchanged overrides
905 */
906 /** @cfgm{CPUM/CPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
907 * Overrides the CPUID leaf values. */
908 PCFGMNODE pOverrideCfg = CFGMR3GetChild(pCpumCfg, "CPUID");
909 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pOverrideCfg);
910 AssertRCReturn(rc, rc);
911 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pOverrideCfg);
912 AssertRCReturn(rc, rc);
913 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pOverrideCfg);
914 AssertRCReturn(rc, rc);
915
916 /*
917 * Check if PAE was explicitely enabled by the user.
918 */
919 bool fEnable;
920 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "EnablePAE", &fEnable, false); AssertRCReturn(rc, rc);
921 if (fEnable)
922 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
923
924 /*
925 * We don't normally enable NX for raw-mode, so give the user a chance to
926 * force it on.
927 */
928 rc = CFGMR3QueryBoolDef(pCpumCfg, "EnableNX", &fEnable, false); AssertRCReturn(rc, rc);
929 if (fEnable)
930 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NXE);
931
932 /*
933 * Log the cpuid and we're good.
934 */
935 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
936 RTCPUSET OnlineSet;
937 LogRel(("Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
938 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
939 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
940 LogRel(("************************* CPUID dump ************************\n"));
941 DBGFR3Info(pVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
942 LogRel(("\n"));
943 DBGFR3InfoLog(pVM, "cpuid", "verbose"); /* macro */
944 RTLogRelSetBuffering(fOldBuffered);
945 LogRel(("******************** End of CPUID dump **********************\n"));
946
947#undef PORTABLE_DISABLE_FEATURE_BIT
948#undef PORTABLE_CLEAR_BITS_WHEN
949
950 return VINF_SUCCESS;
951}
952
953
954/**
955 * Applies relocations to data and code managed by this
956 * component. This function will be called at init and
957 * whenever the VMM need to relocate it self inside the GC.
958 *
959 * The CPUM will update the addresses used by the switcher.
960 *
961 * @param pVM The VM.
962 */
963VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
964{
965 LogFlow(("CPUMR3Relocate\n"));
966 for (VMCPUID i = 0; i < pVM->cCpus; i++)
967 {
968 /*
969 * Switcher pointers.
970 */
971 PVMCPU pVCpu = &pVM->aCpus[i];
972 pVCpu->cpum.s.pHyperCoreRC = MMHyperCCToRC(pVM, pVCpu->cpum.s.pHyperCoreR3);
973 Assert(pVCpu->cpum.s.pHyperCoreRC != NIL_RTRCPTR);
974
975 }
976}
977
978
979/**
980 * Apply late CPUM property changes based on the fHWVirtEx setting
981 *
982 * @param pVM The VM to operate on.
983 * @param fHWVirtExEnabled HWVirtEx enabled/disabled
984 */
985VMMR3DECL(void) CPUMR3SetHWVirtEx(PVM pVM, bool fHWVirtExEnabled)
986{
987 /*
988 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestCpuIdDef:
989 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
990 * of processors from (cpuid(4).eax >> 26) + 1.
991 *
992 * Note: this code is obsolete, but let's keep it here for reference.
993 * Purpose is valid when we artificially cap the max std id to less than 4.
994 */
995 if (!fHWVirtExEnabled)
996 {
997 Assert(pVM->cpum.s.aGuestCpuIdStd[4].eax == 0);
998 pVM->cpum.s.aGuestCpuIdStd[4].eax = 0;
999 }
1000}
1001
1002/**
1003 * Terminates the CPUM.
1004 *
1005 * Termination means cleaning up and freeing all resources,
1006 * the VM it self is at this point powered off or suspended.
1007 *
1008 * @returns VBox status code.
1009 * @param pVM The VM to operate on.
1010 */
1011VMMR3DECL(int) CPUMR3Term(PVM pVM)
1012{
1013#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1014 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1015 {
1016 PVMCPU pVCpu = &pVM->aCpus[i];
1017 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1018
1019 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
1020 pVCpu->cpum.s.uMagic = 0;
1021 pCtx->dr[5] = 0;
1022 }
1023#endif
1024 return 0;
1025}
1026
1027
1028/**
1029 * Resets a virtual CPU.
1030 *
1031 * Used by CPUMR3Reset and CPU hot plugging.
1032 *
1033 * @param pVCpu The virtual CPU handle.
1034 */
1035VMMR3DECL(void) CPUMR3ResetCpu(PVMCPU pVCpu)
1036{
1037 /** @todo anything different for VCPU > 0? */
1038 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1039
1040 /*
1041 * Initialize everything to ZERO first.
1042 */
1043 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
1044 memset(pCtx, 0, sizeof(*pCtx));
1045 pVCpu->cpum.s.fUseFlags = fUseFlags;
1046
1047 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
1048 pCtx->eip = 0x0000fff0;
1049 pCtx->edx = 0x00000600; /* P6 processor */
1050 pCtx->eflags.Bits.u1Reserved0 = 1;
1051
1052 pCtx->cs = 0xf000;
1053 pCtx->csHid.u64Base = UINT64_C(0xffff0000);
1054 pCtx->csHid.u32Limit = 0x0000ffff;
1055 pCtx->csHid.Attr.n.u1DescType = 1; /* code/data segment */
1056 pCtx->csHid.Attr.n.u1Present = 1;
1057 pCtx->csHid.Attr.n.u4Type = X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
1058
1059 pCtx->dsHid.u32Limit = 0x0000ffff;
1060 pCtx->dsHid.Attr.n.u1DescType = 1; /* code/data segment */
1061 pCtx->dsHid.Attr.n.u1Present = 1;
1062 pCtx->dsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1063
1064 pCtx->esHid.u32Limit = 0x0000ffff;
1065 pCtx->esHid.Attr.n.u1DescType = 1; /* code/data segment */
1066 pCtx->esHid.Attr.n.u1Present = 1;
1067 pCtx->esHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1068
1069 pCtx->fsHid.u32Limit = 0x0000ffff;
1070 pCtx->fsHid.Attr.n.u1DescType = 1; /* code/data segment */
1071 pCtx->fsHid.Attr.n.u1Present = 1;
1072 pCtx->fsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1073
1074 pCtx->gsHid.u32Limit = 0x0000ffff;
1075 pCtx->gsHid.Attr.n.u1DescType = 1; /* code/data segment */
1076 pCtx->gsHid.Attr.n.u1Present = 1;
1077 pCtx->gsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1078
1079 pCtx->ssHid.u32Limit = 0x0000ffff;
1080 pCtx->ssHid.Attr.n.u1Present = 1;
1081 pCtx->ssHid.Attr.n.u1DescType = 1; /* code/data segment */
1082 pCtx->ssHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1083
1084 pCtx->idtr.cbIdt = 0xffff;
1085 pCtx->gdtr.cbGdt = 0xffff;
1086
1087 pCtx->ldtrHid.u32Limit = 0xffff;
1088 pCtx->ldtrHid.Attr.n.u1Present = 1;
1089 pCtx->ldtrHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
1090
1091 pCtx->trHid.u32Limit = 0xffff;
1092 pCtx->trHid.Attr.n.u1Present = 1;
1093 pCtx->trHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
1094
1095 pCtx->dr[6] = X86_DR6_INIT_VAL;
1096 pCtx->dr[7] = X86_DR7_INIT_VAL;
1097
1098 pCtx->fpu.FTW = 0xff; /* All tags are set, i.e. the regs are empty. */
1099 pCtx->fpu.FCW = 0x37f;
1100
1101 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1. IA-32 Processor States Following Power-up, Reset, or INIT */
1102 pCtx->fpu.MXCSR = 0x1F80;
1103
1104 /* Init PAT MSR */
1105 pCtx->msrPAT = UINT64_C(0x0007040600070406); /** @todo correct? */
1106
1107 /* Reset EFER; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State
1108 * The Intel docs don't mention it.
1109 */
1110 pCtx->msrEFER = 0;
1111}
1112
1113
1114/**
1115 * Resets the CPU.
1116 *
1117 * @returns VINF_SUCCESS.
1118 * @param pVM The VM handle.
1119 */
1120VMMR3DECL(void) CPUMR3Reset(PVM pVM)
1121{
1122 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1123 {
1124 CPUMR3ResetCpu(&pVM->aCpus[i]);
1125
1126#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1127 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(&pVM->aCpus[i]);
1128
1129 /* Magic marker for searching in crash dumps. */
1130 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
1131 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1132 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
1133#endif
1134 }
1135}
1136
1137
1138/**
1139 * Called both in pass 0 and the final pass.
1140 *
1141 * @param pVM The VM handle.
1142 * @param pSSM The saved state handle.
1143 */
1144static void cpumR3SaveCpuId(PVM pVM, PSSMHANDLE pSSM)
1145{
1146 /*
1147 * Save all the CPU ID leaves here so we can check them for compatibility
1148 * upon loading.
1149 */
1150 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd));
1151 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], sizeof(pVM->cpum.s.aGuestCpuIdStd));
1152
1153 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt));
1154 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
1155
1156 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur));
1157 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
1158
1159 SSMR3PutMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
1160
1161 /*
1162 * Save a good portion of the raw CPU IDs as well as they may come in
1163 * handy when validating features for raw mode.
1164 */
1165 CPUMCPUID aRawStd[16];
1166 for (unsigned i = 0; i < RT_ELEMENTS(aRawStd); i++)
1167 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1168 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawStd));
1169 SSMR3PutMem(pSSM, &aRawStd[0], sizeof(aRawStd));
1170
1171 CPUMCPUID aRawExt[32];
1172 for (unsigned i = 0; i < RT_ELEMENTS(aRawExt); i++)
1173 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1174 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawExt));
1175 SSMR3PutMem(pSSM, &aRawExt[0], sizeof(aRawExt));
1176}
1177
1178
1179/**
1180 * Loads the CPU ID leaves saved by pass 0.
1181 *
1182 * @returns VBox status code.
1183 * @param pVM The VM handle.
1184 * @param pSSM The saved state handle.
1185 * @param uVersion The format version.
1186 */
1187static int cpumR3LoadCpuId(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
1188{
1189 AssertMsgReturn(uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2, ("%u\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
1190
1191 /*
1192 * Define a bunch of macros for simplifying the code.
1193 */
1194 /* Generic expression + failure message. */
1195#define CPUID_CHECK_RET(expr, fmt) \
1196 do { \
1197 if (!(expr)) \
1198 { \
1199 char *pszMsg = RTStrAPrintf2 fmt; /* lack of variadic macros sucks */ \
1200 if (fStrictCpuIdChecks) \
1201 { \
1202 int rcCpuid = SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, "%s", pszMsg); \
1203 RTStrFree(pszMsg); \
1204 return rcCpuid; \
1205 } \
1206 LogRel(("CPUM: %s\n", pszMsg)); \
1207 RTStrFree(pszMsg); \
1208 } \
1209 } while (0)
1210#define CPUID_CHECK_WRN(expr, fmt) \
1211 do { \
1212 if (!(expr)) \
1213 LogRel(fmt); \
1214 } while (0)
1215
1216 /* For comparing two values and bitch if they differs. */
1217#define CPUID_CHECK2_RET(what, host, saved) \
1218 do { \
1219 if ((host) != (saved)) \
1220 { \
1221 if (fStrictCpuIdChecks) \
1222 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1223 N_(#what " mismatch: host=%#x saved=%#x"), (host), (saved)); \
1224 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1225 } \
1226 } while (0)
1227#define CPUID_CHECK2_WRN(what, host, saved) \
1228 do { \
1229 if ((host) != (saved)) \
1230 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1231 } while (0)
1232
1233 /* For checking raw cpu features (raw mode). */
1234#define CPUID_RAW_FEATURE_RET(set, reg, bit) \
1235 do { \
1236 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1237 { \
1238 if (fStrictCpuIdChecks) \
1239 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1240 N_(#bit " mismatch: host=%d saved=%d"), \
1241 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) ); \
1242 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1243 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
1244 } \
1245 } while (0)
1246#define CPUID_RAW_FEATURE_WRN(set, reg, bit) \
1247 do { \
1248 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1249 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1250 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
1251 } while (0)
1252#define CPUID_RAW_FEATURE_IGN(set, reg, bit) do { } while (0)
1253
1254 /* For checking guest features. */
1255#define CPUID_GST_FEATURE_RET(set, reg, bit) \
1256 do { \
1257 if ( (aGuestCpuId##set [1].reg & bit) \
1258 && !(aHostRaw##set [1].reg & bit) \
1259 && !(aHostOverride##set [1].reg & bit) \
1260 && !(aGuestOverride##set [1].reg & bit) \
1261 ) \
1262 { \
1263 if (fStrictCpuIdChecks) \
1264 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1265 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1266 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1267 } \
1268 } while (0)
1269#define CPUID_GST_FEATURE_WRN(set, reg, bit) \
1270 do { \
1271 if ( (aGuestCpuId##set [1].reg & bit) \
1272 && !(aHostRaw##set [1].reg & bit) \
1273 && !(aHostOverride##set [1].reg & bit) \
1274 && !(aGuestOverride##set [1].reg & bit) \
1275 ) \
1276 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1277 } while (0)
1278#define CPUID_GST_FEATURE_EMU(set, reg, bit) \
1279 do { \
1280 if ( (aGuestCpuId##set [1].reg & bit) \
1281 && !(aHostRaw##set [1].reg & bit) \
1282 && !(aHostOverride##set [1].reg & bit) \
1283 && !(aGuestOverride##set [1].reg & bit) \
1284 ) \
1285 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1286 } while (0)
1287#define CPUID_GST_FEATURE_IGN(set, reg, bit) do { } while (0)
1288
1289 /* For checking guest features if AMD guest CPU. */
1290#define CPUID_GST_AMD_FEATURE_RET(set, reg, bit) \
1291 do { \
1292 if ( (aGuestCpuId##set [1].reg & bit) \
1293 && fGuestAmd \
1294 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1295 && !(aHostOverride##set [1].reg & bit) \
1296 && !(aGuestOverride##set [1].reg & bit) \
1297 ) \
1298 { \
1299 if (fStrictCpuIdChecks) \
1300 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1301 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1302 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1303 } \
1304 } while (0)
1305#define CPUID_GST_AMD_FEATURE_WRN(set, reg, bit) \
1306 do { \
1307 if ( (aGuestCpuId##set [1].reg & bit) \
1308 && fGuestAmd \
1309 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1310 && !(aHostOverride##set [1].reg & bit) \
1311 && !(aGuestOverride##set [1].reg & bit) \
1312 ) \
1313 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1314 } while (0)
1315#define CPUID_GST_AMD_FEATURE_EMU(set, reg, bit) \
1316 do { \
1317 if ( (aGuestCpuId##set [1].reg & bit) \
1318 && fGuestAmd \
1319 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1320 && !(aHostOverride##set [1].reg & bit) \
1321 && !(aGuestOverride##set [1].reg & bit) \
1322 ) \
1323 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1324 } while (0)
1325#define CPUID_GST_AMD_FEATURE_IGN(set, reg, bit) do { } while (0)
1326
1327 /* For checking AMD features which have a corresponding bit in the standard
1328 range. (Intel defines very few bits in the extended feature sets.) */
1329#define CPUID_GST_FEATURE2_RET(reg, ExtBit, StdBit) \
1330 do { \
1331 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1332 && !(fHostAmd \
1333 ? aHostRawExt[1].reg & (ExtBit) \
1334 : aHostRawStd[1].reg & (StdBit)) \
1335 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1336 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1337 ) \
1338 { \
1339 if (fStrictCpuIdChecks) \
1340 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1341 N_(#ExtBit " is not supported by the host but has already exposed to the guest")); \
1342 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1343 } \
1344 } while (0)
1345#define CPUID_GST_FEATURE2_WRN(reg, ExtBit, StdBit) \
1346 do { \
1347 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1348 && !(fHostAmd \
1349 ? aHostRawExt[1].reg & (ExtBit) \
1350 : aHostRawStd[1].reg & (StdBit)) \
1351 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1352 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1353 ) \
1354 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1355 } while (0)
1356#define CPUID_GST_FEATURE2_EMU(reg, ExtBit, StdBit) \
1357 do { \
1358 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1359 && !(fHostAmd \
1360 ? aHostRawExt[1].reg & (ExtBit) \
1361 : aHostRawStd[1].reg & (StdBit)) \
1362 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1363 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1364 ) \
1365 LogRel(("CPUM: Warning - " #ExtBit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1366 } while (0)
1367#define CPUID_GST_FEATURE2_IGN(reg, ExtBit, StdBit) do { } while (0)
1368
1369 /*
1370 * Load them into stack buffers first.
1371 */
1372 CPUMCPUID aGuestCpuIdStd[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd)];
1373 uint32_t cGuestCpuIdStd;
1374 int rc = SSMR3GetU32(pSSM, &cGuestCpuIdStd); AssertRCReturn(rc, rc);
1375 if (cGuestCpuIdStd > RT_ELEMENTS(aGuestCpuIdStd))
1376 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1377 SSMR3GetMem(pSSM, &aGuestCpuIdStd[0], cGuestCpuIdStd * sizeof(aGuestCpuIdStd[0]));
1378
1379 CPUMCPUID aGuestCpuIdExt[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt)];
1380 uint32_t cGuestCpuIdExt;
1381 rc = SSMR3GetU32(pSSM, &cGuestCpuIdExt); AssertRCReturn(rc, rc);
1382 if (cGuestCpuIdExt > RT_ELEMENTS(aGuestCpuIdExt))
1383 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1384 SSMR3GetMem(pSSM, &aGuestCpuIdExt[0], cGuestCpuIdExt * sizeof(aGuestCpuIdExt[0]));
1385
1386 CPUMCPUID aGuestCpuIdCentaur[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur)];
1387 uint32_t cGuestCpuIdCentaur;
1388 rc = SSMR3GetU32(pSSM, &cGuestCpuIdCentaur); AssertRCReturn(rc, rc);
1389 if (cGuestCpuIdCentaur > RT_ELEMENTS(aGuestCpuIdCentaur))
1390 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1391 SSMR3GetMem(pSSM, &aGuestCpuIdCentaur[0], cGuestCpuIdCentaur * sizeof(aGuestCpuIdCentaur[0]));
1392
1393 CPUMCPUID GuestCpuIdDef;
1394 rc = SSMR3GetMem(pSSM, &GuestCpuIdDef, sizeof(GuestCpuIdDef));
1395 AssertRCReturn(rc, rc);
1396
1397 CPUMCPUID aRawStd[16];
1398 uint32_t cRawStd;
1399 rc = SSMR3GetU32(pSSM, &cRawStd); AssertRCReturn(rc, rc);
1400 if (cRawStd > RT_ELEMENTS(aRawStd))
1401 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1402 SSMR3GetMem(pSSM, &aRawStd[0], cRawStd * sizeof(aRawStd[0]));
1403
1404 CPUMCPUID aRawExt[32];
1405 uint32_t cRawExt;
1406 rc = SSMR3GetU32(pSSM, &cRawExt); AssertRCReturn(rc, rc);
1407 if (cRawExt > RT_ELEMENTS(aRawExt))
1408 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1409 rc = SSMR3GetMem(pSSM, &aRawExt[0], cRawExt * sizeof(aRawExt[0]));
1410 AssertRCReturn(rc, rc);
1411
1412 /*
1413 * Note that we support restoring less than the current amount of standard
1414 * leaves because we've been allowed more is newer version of VBox.
1415 *
1416 * So, pad new entries with the default.
1417 */
1418 for (uint32_t i = cGuestCpuIdStd; i < RT_ELEMENTS(aGuestCpuIdStd); i++)
1419 aGuestCpuIdStd[i] = GuestCpuIdDef;
1420
1421 for (uint32_t i = cGuestCpuIdExt; i < RT_ELEMENTS(aGuestCpuIdExt); i++)
1422 aGuestCpuIdExt[i] = GuestCpuIdDef;
1423
1424 for (uint32_t i = cGuestCpuIdCentaur; i < RT_ELEMENTS(aGuestCpuIdCentaur); i++)
1425 aGuestCpuIdCentaur[i] = GuestCpuIdDef;
1426
1427 for (uint32_t i = cRawStd; i < RT_ELEMENTS(aRawStd); i++)
1428 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1429
1430 for (uint32_t i = cRawExt; i < RT_ELEMENTS(aRawExt); i++)
1431 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1432
1433 /*
1434 * Get the raw CPU IDs for the current host.
1435 */
1436 CPUMCPUID aHostRawStd[16];
1437 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawStd); i++)
1438 ASMCpuId(i, &aHostRawStd[i].eax, &aHostRawStd[i].ebx, &aHostRawStd[i].ecx, &aHostRawStd[i].edx);
1439
1440 CPUMCPUID aHostRawExt[32];
1441 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawExt); i++)
1442 ASMCpuId(i | UINT32_C(0x80000000), &aHostRawExt[i].eax, &aHostRawExt[i].ebx, &aHostRawExt[i].ecx, &aHostRawExt[i].edx);
1443
1444 /*
1445 * Get the host and guest overrides so we don't reject the state because
1446 * some feature was enabled thru these interfaces.
1447 * Note! We currently only need the feature leaves, so skip rest.
1448 */
1449 PCFGMNODE pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/CPUID");
1450 CPUMCPUID aGuestOverrideStd[2];
1451 memcpy(&aGuestOverrideStd[0], &aHostRawStd[0], sizeof(aGuestOverrideStd));
1452 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aGuestOverrideStd[0], RT_ELEMENTS(aGuestOverrideStd), pOverrideCfg);
1453
1454 CPUMCPUID aGuestOverrideExt[2];
1455 memcpy(&aGuestOverrideExt[0], &aHostRawExt[0], sizeof(aGuestOverrideExt));
1456 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aGuestOverrideExt[0], RT_ELEMENTS(aGuestOverrideExt), pOverrideCfg);
1457
1458 pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/HostCPUID");
1459 CPUMCPUID aHostOverrideStd[2];
1460 memcpy(&aHostOverrideStd[0], &aHostRawStd[0], sizeof(aHostOverrideStd));
1461 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aHostOverrideStd[0], RT_ELEMENTS(aHostOverrideStd), pOverrideCfg);
1462
1463 CPUMCPUID aHostOverrideExt[2];
1464 memcpy(&aHostOverrideExt[0], &aHostRawExt[0], sizeof(aHostOverrideExt));
1465 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aHostOverrideExt[0], RT_ELEMENTS(aHostOverrideExt), pOverrideCfg);
1466
1467 /*
1468 * This can be skipped.
1469 */
1470 bool fStrictCpuIdChecks;
1471 CFGMR3QueryBoolDef(CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM"), "StrictCpuIdChecks", &fStrictCpuIdChecks, true);
1472
1473
1474
1475 /*
1476 * For raw-mode we'll require that the CPUs are very similar since we don't
1477 * intercept CPUID instructions for user mode applications.
1478 */
1479 if (!HWACCMIsEnabled(pVM))
1480 {
1481 /* CPUID(0) */
1482 CPUID_CHECK_RET( aHostRawStd[0].ebx == aRawStd[0].ebx
1483 && aHostRawStd[0].ecx == aRawStd[0].ecx
1484 && aHostRawStd[0].edx == aRawStd[0].edx,
1485 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1486 &aHostRawStd[0].ebx, &aHostRawStd[0].edx, &aHostRawStd[0].ecx,
1487 &aRawStd[0].ebx, &aRawStd[0].edx, &aRawStd[0].ecx));
1488 CPUID_CHECK2_WRN("Std CPUID max leaf", aHostRawStd[0].eax, aRawStd[0].eax);
1489 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3);
1490 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1491
1492 bool const fIntel = ASMIsIntelCpuEx(aRawStd[0].ebx, aRawStd[0].ecx, aRawStd[0].edx);
1493
1494 /* CPUID(1).eax */
1495 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawStd[1].eax), ASMGetCpuFamily(aRawStd[1].eax));
1496 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawStd[1].eax, fIntel), ASMGetCpuModel(aRawStd[1].eax, fIntel));
1497 CPUID_CHECK2_WRN("CPU type", (aHostRawStd[1].eax >> 12) & 3, (aRawStd[1].eax >> 12) & 3 );
1498
1499 /* CPUID(1).ebx - completely ignore CPU count and APIC ID. */
1500 CPUID_CHECK2_RET("CPU brand ID", aHostRawStd[1].ebx & 0xff, aRawStd[1].ebx & 0xff);
1501 CPUID_CHECK2_WRN("CLFLUSH chunk count", (aHostRawStd[1].ebx >> 8) & 0xff, (aRawStd[1].ebx >> 8) & 0xff);
1502
1503 /* CPUID(1).ecx */
1504 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3);
1505 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL);
1506 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64);
1507 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
1508 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS);
1509 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_VMX);
1510 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_SMX);
1511 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_EST);
1512 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TM2);
1513 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3);
1514 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID);
1515 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
1516 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA);
1517 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16);
1518 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);
1519 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM);
1520 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
1521 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
1522 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DCA);
1523 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1);
1524 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2);
1525 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
1526 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE);
1527 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT);
1528 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
1529 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES);
1530 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE);
1531 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE);
1532 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX);
1533 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
1534 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
1535 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
1536
1537 /* CPUID(1).edx */
1538 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
1539 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
1540 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE);
1541 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
1542 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC);
1543 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR);
1544 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
1545 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
1546 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8);
1547 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
1548 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
1549 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
1550 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
1551 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
1552 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
1553 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV);
1554 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
1555 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
1556 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
1557 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH);
1558 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
1559 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_DS);
1560 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_ACPI);
1561 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX);
1562 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR);
1563 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE);
1564 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2);
1565 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SS);
1566 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_HTT);
1567 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_TM);
1568 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/);
1569 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PBE);
1570
1571 /* CPUID(2) - config, mostly about caches. ignore. */
1572 /* CPUID(3) - processor serial number. ignore. */
1573 /* CPUID(4) - config, cache and topology - takes ECX as input. ignore. */
1574 /* CPUID(5) - mwait/monitor config. ignore. */
1575 /* CPUID(6) - power management. ignore. */
1576 /* CPUID(7) - ???. ignore. */
1577 /* CPUID(8) - ???. ignore. */
1578 /* CPUID(9) - DCA. ignore for now. */
1579 /* CPUID(a) - PeMo info. ignore for now. */
1580 /* CPUID(b) - topology info - takes ECX as input. ignore. */
1581
1582 /* CPUID(d) - XCR0 stuff - takes ECX as input. We only warn about the main level (ECX=0) for now. */
1583 CPUID_CHECK_WRN( aRawStd[0].eax < UINT32_C(0x0000000d)
1584 || aHostRawStd[0].eax >= UINT32_C(0x0000000d),
1585 ("CPUM: Standard leaf D was present on saved state host, not present on current.\n"));
1586 if ( aRawStd[0].eax >= UINT32_C(0x0000000d)
1587 && aHostRawStd[0].eax >= UINT32_C(0x0000000d))
1588 {
1589 CPUID_CHECK2_WRN("Valid low XCR0 bits", aHostRawStd[0xd].eax, aRawStd[0xd].eax);
1590 CPUID_CHECK2_WRN("Valid high XCR0 bits", aHostRawStd[0xd].edx, aRawStd[0xd].edx);
1591 CPUID_CHECK2_WRN("Current XSAVE/XRSTOR area size", aHostRawStd[0xd].ebx, aRawStd[0xd].ebx);
1592 CPUID_CHECK2_WRN("Max XSAVE/XRSTOR area size", aHostRawStd[0xd].ecx, aRawStd[0xd].ecx);
1593 }
1594
1595 /* CPUID(0x80000000) - same as CPUID(0) except for eax.
1596 Note! Intel have/is marking many of the fields here as reserved. We
1597 will verify them as if it's an AMD CPU. */
1598 CPUID_CHECK_RET( (aHostRawExt[0].eax >= UINT32_C(0x80000001) && aHostRawExt[0].eax <= UINT32_C(0x8000007f))
1599 || !(aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f)),
1600 (N_("Extended leaves was present on saved state host, but is missing on the current\n")));
1601 if (aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f))
1602 {
1603 CPUID_CHECK_RET( aHostRawExt[0].ebx == aRawExt[0].ebx
1604 && aHostRawExt[0].ecx == aRawExt[0].ecx
1605 && aHostRawExt[0].edx == aRawExt[0].edx,
1606 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1607 &aHostRawExt[0].ebx, &aHostRawExt[0].edx, &aHostRawExt[0].ecx,
1608 &aRawExt[0].ebx, &aRawExt[0].edx, &aRawExt[0].ecx));
1609 CPUID_CHECK2_WRN("Ext CPUID max leaf", aHostRawExt[0].eax, aRawExt[0].eax);
1610
1611 /* CPUID(0x80000001).eax - same as CPUID(0).eax. */
1612 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawExt[1].eax), ASMGetCpuFamily(aRawExt[1].eax));
1613 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawExt[1].eax, fIntel), ASMGetCpuModel(aRawExt[1].eax, fIntel));
1614 CPUID_CHECK2_WRN("CPU type", (aHostRawExt[1].eax >> 12) & 3, (aRawExt[1].eax >> 12) & 3 );
1615 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3 );
1616 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1617
1618 /* CPUID(0x80000001).ebx - Brand ID (maybe), just warn if things differs. */
1619 CPUID_CHECK2_WRN("CPU BrandID", aHostRawExt[1].ebx & 0xffff, aRawExt[1].ebx & 0xffff);
1620 CPUID_CHECK2_WRN("Reserved bits 16:27", (aHostRawExt[1].ebx >> 16) & 0xfff, (aRawExt[1].ebx >> 16) & 0xfff);
1621 CPUID_CHECK2_WRN("PkgType", (aHostRawExt[1].ebx >> 28) & 0xf, (aRawExt[1].ebx >> 28) & 0xf);
1622
1623 /* CPUID(0x80000001).ecx */
1624 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF);
1625 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL);
1626 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM);
1627 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);
1628 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L);
1629 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM);
1630 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A);
1631 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);
1632 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);
1633 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW);
1634 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS);
1635 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5);
1636 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT);
1637 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT);
1638 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
1639 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
1640 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
1641 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
1642 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
1643 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
1644 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
1645 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
1646 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
1647 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
1648 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
1649 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
1650 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
1651 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
1652 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
1653 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
1654 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
1655 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
1656
1657 /* CPUID(0x80000001).edx */
1658 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FPU);
1659 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_VME);
1660 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_DE);
1661 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE);
1662 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_TSC);
1663 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MSR);
1664 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAE);
1665 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCE);
1666 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CX8);
1667 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_APIC);
1668 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(10) /*reserved*/);
1669 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP);
1670 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MTRR);
1671 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PGE);
1672 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCA);
1673 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CMOV);
1674 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAT);
1675 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE36);
1676 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(18) /*reserved*/);
1677 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(19) /*reserved*/);
1678 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
1679 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(21) /*reserved*/);
1680 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
1681 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MMX);
1682 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FXSR);
1683 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1684 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
1685 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1686 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(28) /*reserved*/);
1687 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1688 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1689 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1690
1691 /** @todo verify the rest as well. */
1692 }
1693 }
1694
1695
1696
1697 /*
1698 * Verify that we can support the features already exposed to the guest on
1699 * this host.
1700 *
1701 * Most of the features we're emulating requires intercepting instruction
1702 * and doing it the slow way, so there is no need to warn when they aren't
1703 * present in the host CPU. Thus we use IGN instead of EMU on these.
1704 *
1705 * Trailing comments:
1706 * "EMU" - Possible to emulate, could be lots of work and very slow.
1707 * "EMU?" - Can this be emulated?
1708 */
1709 /* CPUID(1).ecx */
1710 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3); // -> EMU
1711 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL); // -> EMU?
1712 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64); // -> EMU?
1713 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
1714 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS); // -> EMU?
1715 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_VMX); // -> EMU
1716 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SMX); // -> EMU
1717 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_EST); // -> EMU
1718 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TM2); // -> EMU?
1719 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3); // -> EMU
1720 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID); // -> EMU
1721 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
1722 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA); // -> EMU? what's this?
1723 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16); // -> EMU?
1724 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);//-> EMU
1725 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM); // -> EMU
1726 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
1727 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
1728 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DCA); // -> EMU?
1729 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1); // -> EMU
1730 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2); // -> EMU
1731 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
1732 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE); // -> EMU
1733 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT); // -> EMU
1734 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
1735 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES); // -> EMU
1736 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE); // -> EMU
1737 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE); // -> EMU
1738 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX); // -> EMU?
1739 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
1740 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
1741 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
1742
1743 /* CPUID(1).edx */
1744 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
1745 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
1746 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE); // -> EMU?
1747 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
1748 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
1749 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
1750 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
1751 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
1752 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
1753 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
1754 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
1755 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
1756 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
1757 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
1758 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
1759 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
1760 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
1761 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
1762 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
1763 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH); // -> EMU
1764 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
1765 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DS); // -> EMU?
1766 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_ACPI); // -> EMU?
1767 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
1768 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
1769 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE); // -> EMU
1770 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2); // -> EMU
1771 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SS); // -> EMU?
1772 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_HTT); // -> EMU?
1773 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TM); // -> EMU?
1774 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/); // -> EMU
1775 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PBE); // -> EMU?
1776
1777 /* CPUID(0x80000000). */
1778 if ( aGuestCpuIdExt[0].eax >= UINT32_C(0x80000001)
1779 && aGuestCpuIdExt[0].eax < UINT32_C(0x8000007f))
1780 {
1781 /** @todo deal with no 0x80000001 on the host. */
1782 bool const fHostAmd = ASMIsAmdCpuEx(aHostRawStd[0].ebx, aHostRawStd[0].ecx, aHostRawStd[0].edx);
1783 bool const fGuestAmd = ASMIsAmdCpuEx(aGuestCpuIdExt[0].ebx, aGuestCpuIdExt[0].ecx, aGuestCpuIdExt[0].edx);
1784
1785 /* CPUID(0x80000001).ecx */
1786 CPUID_GST_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF); // -> EMU
1787 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL); // -> EMU
1788 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM); // -> EMU
1789 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);// ???
1790 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L); // -> EMU
1791 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM); // -> EMU
1792 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A); // -> EMU
1793 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);//-> EMU
1794 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);// -> EMU
1795 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW); // -> EMU?
1796 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS); // -> EMU
1797 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5); // -> EMU
1798 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT); // -> EMU
1799 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT); // -> EMU
1800 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
1801 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
1802 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
1803 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
1804 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
1805 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
1806 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
1807 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
1808 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
1809 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
1810 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
1811 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
1812 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
1813 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
1814 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
1815 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
1816 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
1817 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
1818
1819 /* CPUID(0x80000001).edx */
1820 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FPU, X86_CPUID_FEATURE_EDX_FPU); // -> EMU
1821 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_VME, X86_CPUID_FEATURE_EDX_VME); // -> EMU
1822 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_DE, X86_CPUID_FEATURE_EDX_DE); // -> EMU
1823 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE, X86_CPUID_FEATURE_EDX_PSE);
1824 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_TSC, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
1825 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MSR, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
1826 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_PAE, X86_CPUID_FEATURE_EDX_PAE);
1827 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCE, X86_CPUID_FEATURE_EDX_MCE);
1828 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CX8, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
1829 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_APIC, X86_CPUID_FEATURE_EDX_APIC);
1830 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(10) /*reserved*/);
1831 CPUID_GST_FEATURE_IGN( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP); // Intel: long mode only.
1832 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MTRR, X86_CPUID_FEATURE_EDX_MTRR);
1833 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PGE, X86_CPUID_FEATURE_EDX_PGE);
1834 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCA, X86_CPUID_FEATURE_EDX_MCA);
1835 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CMOV, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
1836 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PAT, X86_CPUID_FEATURE_EDX_PAT);
1837 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE36, X86_CPUID_FEATURE_EDX_PSE36);
1838 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(18) /*reserved*/);
1839 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(19) /*reserved*/);
1840 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
1841 CPUID_GST_FEATURE_WRN( Ext, edx, RT_BIT_32(21) /*reserved*/);
1842 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
1843 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MMX, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
1844 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FXSR, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
1845 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1846 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
1847 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1848 CPUID_GST_FEATURE_IGN( Ext, edx, RT_BIT_32(28) /*reserved*/);
1849 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1850 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1851 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1852 }
1853
1854 /*
1855 * We're good, commit the CPU ID leaves.
1856 */
1857 memcpy(&pVM->cpum.s.aGuestCpuIdStd[0], &aGuestCpuIdStd[0], sizeof(aGuestCpuIdStd));
1858 memcpy(&pVM->cpum.s.aGuestCpuIdExt[0], &aGuestCpuIdExt[0], sizeof(aGuestCpuIdExt));
1859 memcpy(&pVM->cpum.s.aGuestCpuIdCentaur[0], &aGuestCpuIdCentaur[0], sizeof(aGuestCpuIdCentaur));
1860 pVM->cpum.s.GuestCpuIdDef = GuestCpuIdDef;
1861
1862#undef CPUID_CHECK_RET
1863#undef CPUID_CHECK_WRN
1864#undef CPUID_CHECK2_RET
1865#undef CPUID_CHECK2_WRN
1866#undef CPUID_RAW_FEATURE_RET
1867#undef CPUID_RAW_FEATURE_WRN
1868#undef CPUID_RAW_FEATURE_IGN
1869#undef CPUID_GST_FEATURE_RET
1870#undef CPUID_GST_FEATURE_WRN
1871#undef CPUID_GST_FEATURE_EMU
1872#undef CPUID_GST_FEATURE_IGN
1873#undef CPUID_GST_FEATURE2_RET
1874#undef CPUID_GST_FEATURE2_WRN
1875#undef CPUID_GST_FEATURE2_EMU
1876#undef CPUID_GST_FEATURE2_IGN
1877#undef CPUID_GST_AMD_FEATURE_RET
1878#undef CPUID_GST_AMD_FEATURE_WRN
1879#undef CPUID_GST_AMD_FEATURE_EMU
1880#undef CPUID_GST_AMD_FEATURE_IGN
1881
1882 return VINF_SUCCESS;
1883}
1884
1885
1886/**
1887 * Pass 0 live exec callback.
1888 *
1889 * @returns VINF_SSM_DONT_CALL_AGAIN.
1890 * @param pVM The VM handle.
1891 * @param pSSM The saved state handle.
1892 * @param uPass The pass (0).
1893 */
1894static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1895{
1896 AssertReturn(uPass == 0, VERR_INTERNAL_ERROR_4);
1897 cpumR3SaveCpuId(pVM, pSSM);
1898 return VINF_SSM_DONT_CALL_AGAIN;
1899}
1900
1901
1902/**
1903 * Execute state save operation.
1904 *
1905 * @returns VBox status code.
1906 * @param pVM VM Handle.
1907 * @param pSSM SSM operation handle.
1908 */
1909static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
1910{
1911 /*
1912 * Save.
1913 */
1914 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1915 {
1916 PVMCPU pVCpu = &pVM->aCpus[i];
1917
1918 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
1919 }
1920
1921 SSMR3PutU32(pSSM, pVM->cCpus);
1922 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1923 {
1924 PVMCPU pVCpu = &pVM->aCpus[i];
1925
1926 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Guest, sizeof(pVCpu->cpum.s.Guest));
1927 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
1928 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
1929 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsr, sizeof(pVCpu->cpum.s.GuestMsr));
1930 }
1931
1932 cpumR3SaveCpuId(pVM, pSSM);
1933 return VINF_SUCCESS;
1934}
1935
1936
1937/**
1938 * Load a version 1.6 CPUMCTX structure.
1939 *
1940 * @returns VBox status code.
1941 * @param pVM VM Handle.
1942 * @param pCpumctx16 Version 1.6 CPUMCTX
1943 */
1944static void cpumR3LoadCPUM1_6(PVM pVM, CPUMCTX_VER1_6 *pCpumctx16)
1945{
1946#define CPUMCTX16_LOADREG(RegName) \
1947 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName;
1948
1949#define CPUMCTX16_LOADDRXREG(RegName) \
1950 pVM->aCpus[0].cpum.s.Guest.dr[RegName] = pCpumctx16->dr##RegName;
1951
1952#define CPUMCTX16_LOADHIDREG(RegName) \
1953 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u64Base = pCpumctx16->RegName##Hid.u32Base; \
1954 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u32Limit = pCpumctx16->RegName##Hid.u32Limit; \
1955 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.Attr = pCpumctx16->RegName##Hid.Attr;
1956
1957#define CPUMCTX16_LOADSEGREG(RegName) \
1958 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName; \
1959 CPUMCTX16_LOADHIDREG(RegName);
1960
1961 pVM->aCpus[0].cpum.s.Guest.fpu = pCpumctx16->fpu;
1962
1963 CPUMCTX16_LOADREG(rax);
1964 CPUMCTX16_LOADREG(rbx);
1965 CPUMCTX16_LOADREG(rcx);
1966 CPUMCTX16_LOADREG(rdx);
1967 CPUMCTX16_LOADREG(rdi);
1968 CPUMCTX16_LOADREG(rsi);
1969 CPUMCTX16_LOADREG(rbp);
1970 CPUMCTX16_LOADREG(esp);
1971 CPUMCTX16_LOADREG(rip);
1972 CPUMCTX16_LOADREG(rflags);
1973
1974 CPUMCTX16_LOADSEGREG(cs);
1975 CPUMCTX16_LOADSEGREG(ds);
1976 CPUMCTX16_LOADSEGREG(es);
1977 CPUMCTX16_LOADSEGREG(fs);
1978 CPUMCTX16_LOADSEGREG(gs);
1979 CPUMCTX16_LOADSEGREG(ss);
1980
1981 CPUMCTX16_LOADREG(r8);
1982 CPUMCTX16_LOADREG(r9);
1983 CPUMCTX16_LOADREG(r10);
1984 CPUMCTX16_LOADREG(r11);
1985 CPUMCTX16_LOADREG(r12);
1986 CPUMCTX16_LOADREG(r13);
1987 CPUMCTX16_LOADREG(r14);
1988 CPUMCTX16_LOADREG(r15);
1989
1990 CPUMCTX16_LOADREG(cr0);
1991 CPUMCTX16_LOADREG(cr2);
1992 CPUMCTX16_LOADREG(cr3);
1993 CPUMCTX16_LOADREG(cr4);
1994
1995 CPUMCTX16_LOADDRXREG(0);
1996 CPUMCTX16_LOADDRXREG(1);
1997 CPUMCTX16_LOADDRXREG(2);
1998 CPUMCTX16_LOADDRXREG(3);
1999 CPUMCTX16_LOADDRXREG(4);
2000 CPUMCTX16_LOADDRXREG(5);
2001 CPUMCTX16_LOADDRXREG(6);
2002 CPUMCTX16_LOADDRXREG(7);
2003
2004 pVM->aCpus[0].cpum.s.Guest.gdtr.cbGdt = pCpumctx16->gdtr.cbGdt;
2005 pVM->aCpus[0].cpum.s.Guest.gdtr.pGdt = pCpumctx16->gdtr.pGdt;
2006 pVM->aCpus[0].cpum.s.Guest.idtr.cbIdt = pCpumctx16->idtr.cbIdt;
2007 pVM->aCpus[0].cpum.s.Guest.idtr.pIdt = pCpumctx16->idtr.pIdt;
2008
2009 CPUMCTX16_LOADREG(ldtr);
2010 CPUMCTX16_LOADREG(tr);
2011
2012 pVM->aCpus[0].cpum.s.Guest.SysEnter = pCpumctx16->SysEnter;
2013
2014 CPUMCTX16_LOADREG(msrEFER);
2015 CPUMCTX16_LOADREG(msrSTAR);
2016 CPUMCTX16_LOADREG(msrPAT);
2017 CPUMCTX16_LOADREG(msrLSTAR);
2018 CPUMCTX16_LOADREG(msrCSTAR);
2019 CPUMCTX16_LOADREG(msrSFMASK);
2020 CPUMCTX16_LOADREG(msrKERNELGSBASE);
2021
2022 CPUMCTX16_LOADHIDREG(ldtr);
2023 CPUMCTX16_LOADHIDREG(tr);
2024
2025#undef CPUMCTX16_LOADSEGREG
2026#undef CPUMCTX16_LOADHIDREG
2027#undef CPUMCTX16_LOADDRXREG
2028#undef CPUMCTX16_LOADREG
2029}
2030
2031
2032/**
2033 * @copydoc FNSSMINTLOADPREP
2034 */
2035static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2036{
2037 pVM->cpum.s.fPendingRestore = true;
2038 return VINF_SUCCESS;
2039}
2040
2041
2042/**
2043 * @copydoc FNSSMINTLOADEXEC
2044 */
2045static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2046{
2047 /*
2048 * Validate version.
2049 */
2050 if ( uVersion != CPUM_SAVED_STATE_VERSION
2051 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2052 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2053 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2054 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2055 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2056 {
2057 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2058 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2059 }
2060
2061 if (uPass == SSM_PASS_FINAL)
2062 {
2063 /*
2064 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2065 * really old SSM file versions.)
2066 */
2067 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2068 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2069 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2070 SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
2071
2072 /*
2073 * Restore.
2074 */
2075 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2076 {
2077 PVMCPU pVCpu = &pVM->aCpus[i];
2078 uint32_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
2079 uint32_t uESP = pVCpu->cpum.s.Hyper.esp; /* see VMMR3Relocate(). */
2080
2081 SSMR3GetMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
2082 pVCpu->cpum.s.Hyper.cr3 = uCR3;
2083 pVCpu->cpum.s.Hyper.esp = uESP;
2084 }
2085
2086 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2087 {
2088 CPUMCTX_VER1_6 cpumctx16;
2089 memset(&pVM->aCpus[0].cpum.s.Guest, 0, sizeof(pVM->aCpus[0].cpum.s.Guest));
2090 SSMR3GetMem(pSSM, &cpumctx16, sizeof(cpumctx16));
2091
2092 /* Save the old cpumctx state into the new one. */
2093 cpumR3LoadCPUM1_6(pVM, &cpumctx16);
2094
2095 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fUseFlags);
2096 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fChanged);
2097 }
2098 else
2099 {
2100 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2101 {
2102 uint32_t cCpus;
2103 int rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2104 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2105 VERR_SSM_UNEXPECTED_DATA);
2106 }
2107 AssertLogRelMsgReturn( uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2108 || pVM->cCpus == 1,
2109 ("cCpus=%u\n", pVM->cCpus),
2110 VERR_SSM_UNEXPECTED_DATA);
2111
2112 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2113 {
2114 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.Guest, sizeof(pVM->aCpus[i].cpum.s.Guest));
2115 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fUseFlags);
2116 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fChanged);
2117 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2118 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.GuestMsr, sizeof(pVM->aCpus[i].cpum.s.GuestMsr));
2119 }
2120 }
2121
2122 /* Older states does not set CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID for
2123 raw-mode guest, so we have to do it ourselves. */
2124 if ( uVersion <= CPUM_SAVED_STATE_VERSION_VER3_2
2125 && !HWACCMIsEnabled(pVM))
2126 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2127 pVM->aCpus[iCpu].cpum.s.fChanged |= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2128 }
2129
2130 pVM->cpum.s.fPendingRestore = false;
2131
2132 /*
2133 * Guest CPUIDs.
2134 */
2135 if (uVersion > CPUM_SAVED_STATE_VERSION_VER3_0)
2136 return cpumR3LoadCpuId(pVM, pSSM, uVersion);
2137
2138 /** @todo Merge the code below into cpumR3LoadCpuId when we've found out what is
2139 * actually required. */
2140
2141 /*
2142 * Restore the CPUID leaves.
2143 *
2144 * Note that we support restoring less than the current amount of standard
2145 * leaves because we've been allowed more is newer version of VBox.
2146 */
2147 uint32_t cElements;
2148 int rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2149 if (cElements > RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd))
2150 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2151 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], cElements*sizeof(pVM->cpum.s.aGuestCpuIdStd[0]));
2152
2153 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2154 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt))
2155 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2156 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
2157
2158 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2159 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur))
2160 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2161 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
2162
2163 SSMR3GetMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
2164
2165 /*
2166 * Check that the basic cpuid id information is unchanged.
2167 */
2168 /** @todo we should check the 64 bits capabilities too! */
2169 uint32_t au32CpuId[8] = {0,0,0,0, 0,0,0,0};
2170 ASMCpuId(0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
2171 ASMCpuId(1, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
2172 uint32_t au32CpuIdSaved[8];
2173 rc = SSMR3GetMem(pSSM, &au32CpuIdSaved[0], sizeof(au32CpuIdSaved));
2174 if (RT_SUCCESS(rc))
2175 {
2176 /* Ignore CPU stepping. */
2177 au32CpuId[4] &= 0xfffffff0;
2178 au32CpuIdSaved[4] &= 0xfffffff0;
2179
2180 /* Ignore APIC ID (AMD specs). */
2181 au32CpuId[5] &= ~0xff000000;
2182 au32CpuIdSaved[5] &= ~0xff000000;
2183
2184 /* Ignore the number of Logical CPUs (AMD specs). */
2185 au32CpuId[5] &= ~0x00ff0000;
2186 au32CpuIdSaved[5] &= ~0x00ff0000;
2187
2188 /* Ignore some advanced capability bits, that we don't expose to the guest. */
2189 au32CpuId[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2190 | X86_CPUID_FEATURE_ECX_VMX
2191 | X86_CPUID_FEATURE_ECX_SMX
2192 | X86_CPUID_FEATURE_ECX_EST
2193 | X86_CPUID_FEATURE_ECX_TM2
2194 | X86_CPUID_FEATURE_ECX_CNTXID
2195 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2196 | X86_CPUID_FEATURE_ECX_PDCM
2197 | X86_CPUID_FEATURE_ECX_DCA
2198 | X86_CPUID_FEATURE_ECX_X2APIC
2199 );
2200 au32CpuIdSaved[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2201 | X86_CPUID_FEATURE_ECX_VMX
2202 | X86_CPUID_FEATURE_ECX_SMX
2203 | X86_CPUID_FEATURE_ECX_EST
2204 | X86_CPUID_FEATURE_ECX_TM2
2205 | X86_CPUID_FEATURE_ECX_CNTXID
2206 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2207 | X86_CPUID_FEATURE_ECX_PDCM
2208 | X86_CPUID_FEATURE_ECX_DCA
2209 | X86_CPUID_FEATURE_ECX_X2APIC
2210 );
2211
2212 /* Make sure we don't forget to update the masks when enabling
2213 * features in the future.
2214 */
2215 AssertRelease(!(pVM->cpum.s.aGuestCpuIdStd[1].ecx &
2216 ( X86_CPUID_FEATURE_ECX_DTES64
2217 | X86_CPUID_FEATURE_ECX_VMX
2218 | X86_CPUID_FEATURE_ECX_SMX
2219 | X86_CPUID_FEATURE_ECX_EST
2220 | X86_CPUID_FEATURE_ECX_TM2
2221 | X86_CPUID_FEATURE_ECX_CNTXID
2222 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2223 | X86_CPUID_FEATURE_ECX_PDCM
2224 | X86_CPUID_FEATURE_ECX_DCA
2225 | X86_CPUID_FEATURE_ECX_X2APIC
2226 )));
2227 /* do the compare */
2228 if (memcmp(au32CpuIdSaved, au32CpuId, sizeof(au32CpuIdSaved)))
2229 {
2230 if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
2231 LogRel(("cpumR3LoadExec: CpuId mismatch! (ignored due to SSMAFTER_DEBUG_IT)\n"
2232 "Saved=%.*Rhxs\n"
2233 "Real =%.*Rhxs\n",
2234 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2235 sizeof(au32CpuId), au32CpuId));
2236 else
2237 {
2238 LogRel(("cpumR3LoadExec: CpuId mismatch!\n"
2239 "Saved=%.*Rhxs\n"
2240 "Real =%.*Rhxs\n",
2241 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2242 sizeof(au32CpuId), au32CpuId));
2243 rc = VERR_SSM_LOAD_CPUID_MISMATCH;
2244 }
2245 }
2246 }
2247
2248 return rc;
2249}
2250
2251
2252/**
2253 * @copydoc FNSSMINTLOADPREP
2254 */
2255static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
2256{
2257 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
2258 return VINF_SUCCESS;
2259
2260 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
2261 if (pVM->cpum.s.fPendingRestore)
2262 {
2263 LogRel(("CPUM: Missing state!\n"));
2264 return VERR_INTERNAL_ERROR_2;
2265 }
2266
2267 /* Notify PGM of the NXE states in case they've changed. */
2268 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2269 PGMNotifyNxeChanged(&pVM->aCpus[iCpu], !!(pVM->aCpus[iCpu].cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
2270 return VINF_SUCCESS;
2271}
2272
2273
2274/**
2275 * Checks if the CPUM state restore is still pending.
2276 *
2277 * @returns true / false.
2278 * @param pVM The VM handle.
2279 */
2280VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
2281{
2282 return pVM->cpum.s.fPendingRestore;
2283}
2284
2285
2286/**
2287 * Formats the EFLAGS value into mnemonics.
2288 *
2289 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
2290 * @param efl The EFLAGS value.
2291 */
2292static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
2293{
2294 /*
2295 * Format the flags.
2296 */
2297 static const struct
2298 {
2299 const char *pszSet; const char *pszClear; uint32_t fFlag;
2300 } s_aFlags[] =
2301 {
2302 { "vip",NULL, X86_EFL_VIP },
2303 { "vif",NULL, X86_EFL_VIF },
2304 { "ac", NULL, X86_EFL_AC },
2305 { "vm", NULL, X86_EFL_VM },
2306 { "rf", NULL, X86_EFL_RF },
2307 { "nt", NULL, X86_EFL_NT },
2308 { "ov", "nv", X86_EFL_OF },
2309 { "dn", "up", X86_EFL_DF },
2310 { "ei", "di", X86_EFL_IF },
2311 { "tf", NULL, X86_EFL_TF },
2312 { "nt", "pl", X86_EFL_SF },
2313 { "nz", "zr", X86_EFL_ZF },
2314 { "ac", "na", X86_EFL_AF },
2315 { "po", "pe", X86_EFL_PF },
2316 { "cy", "nc", X86_EFL_CF },
2317 };
2318 char *psz = pszEFlags;
2319 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
2320 {
2321 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
2322 if (pszAdd)
2323 {
2324 strcpy(psz, pszAdd);
2325 psz += strlen(pszAdd);
2326 *psz++ = ' ';
2327 }
2328 }
2329 psz[-1] = '\0';
2330}
2331
2332
2333/**
2334 * Formats a full register dump.
2335 *
2336 * @param pVM VM Handle.
2337 * @param pCtx The context to format.
2338 * @param pCtxCore The context core to format.
2339 * @param pHlp Output functions.
2340 * @param enmType The dump type.
2341 * @param pszPrefix Register name prefix.
2342 */
2343static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType, const char *pszPrefix)
2344{
2345 /*
2346 * Format the EFLAGS.
2347 */
2348 uint32_t efl = pCtxCore->eflags.u32;
2349 char szEFlags[80];
2350 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2351
2352 /*
2353 * Format the registers.
2354 */
2355 switch (enmType)
2356 {
2357 case CPUMDUMPTYPE_TERSE:
2358 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2359 pHlp->pfnPrintf(pHlp,
2360 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2361 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2362 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2363 "%sr14=%016RX64 %sr15=%016RX64\n"
2364 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2365 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2366 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2367 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2368 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2369 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2370 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2371 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
2372 else
2373 pHlp->pfnPrintf(pHlp,
2374 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2375 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2376 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2377 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2378 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2379 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2380 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
2381 break;
2382
2383 case CPUMDUMPTYPE_DEFAULT:
2384 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2385 pHlp->pfnPrintf(pHlp,
2386 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2387 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2388 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2389 "%sr14=%016RX64 %sr15=%016RX64\n"
2390 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2391 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2392 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
2393 ,
2394 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2395 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2396 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2397 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2398 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2399 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
2400 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2401 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
2402 else
2403 pHlp->pfnPrintf(pHlp,
2404 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2405 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2406 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2407 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
2408 ,
2409 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2410 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2411 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2412 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
2413 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2414 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
2415 break;
2416
2417 case CPUMDUMPTYPE_VERBOSE:
2418 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2419 pHlp->pfnPrintf(pHlp,
2420 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2421 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2422 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2423 "%sr14=%016RX64 %sr15=%016RX64\n"
2424 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2425 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2426 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2427 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2428 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2429 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2430 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2431 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
2432 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
2433 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
2434 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2435 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2436 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2437 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
2438 ,
2439 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2440 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2441 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2442 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2443 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u,
2444 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u,
2445 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u,
2446 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u,
2447 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u,
2448 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u,
2449 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2450 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2451 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2452 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2453 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
2454 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2455 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2456 else
2457 pHlp->pfnPrintf(pHlp,
2458 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2459 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2460 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
2461 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
2462 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
2463 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
2464 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
2465 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
2466 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2467 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2468 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2469 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2470 ,
2471 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2472 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2473 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
2474 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2475 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
2476 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2477 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
2478 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2479 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2480 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
2481 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2482 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2483
2484 pHlp->pfnPrintf(pHlp,
2485 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
2486 "%sFPUIP=%08x %sCS=%04x %sRsvrd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
2487 ,
2488 pszPrefix, pCtx->fpu.FCW, pszPrefix, pCtx->fpu.FSW, pszPrefix, pCtx->fpu.FTW, pszPrefix, pCtx->fpu.FOP,
2489 pszPrefix, pCtx->fpu.MXCSR, pszPrefix, pCtx->fpu.MXCSR_MASK,
2490 pszPrefix, pCtx->fpu.FPUIP, pszPrefix, pCtx->fpu.CS, pszPrefix, pCtx->fpu.Rsvrd1,
2491 pszPrefix, pCtx->fpu.FPUDP, pszPrefix, pCtx->fpu.DS, pszPrefix, pCtx->fpu.Rsrvd2
2492 );
2493 unsigned iShift = (pCtx->fpu.FSW >> 11) & 7;
2494 for (unsigned iST = 0; iST < RT_ELEMENTS(pCtx->fpu.aRegs); iST++)
2495 {
2496 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pCtx->fpu.aRegs);
2497 unsigned uTag = pCtx->fpu.FTW & (1 << iFPR) ? 1 : 0;
2498 char chSign = pCtx->fpu.aRegs[0].au16[4] & 0x8000 ? '-' : '+';
2499 unsigned iInteger = (unsigned)(pCtx->fpu.aRegs[0].au64[0] >> 63);
2500 uint64_t u64Fraction = pCtx->fpu.aRegs[0].au64[0] & UINT64_C(0x7fffffffffffffff);
2501 unsigned uExponent = pCtx->fpu.aRegs[0].au16[4] & 0x7fff;
2502 /** @todo This isn't entirenly correct and needs more work! */
2503 pHlp->pfnPrintf(pHlp,
2504 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu ^ %u",
2505 pszPrefix, iST, pszPrefix, iFPR,
2506 pCtx->fpu.aRegs[0].au16[4], pCtx->fpu.aRegs[0].au32[1], pCtx->fpu.aRegs[0].au32[0],
2507 uTag, chSign, iInteger, u64Fraction, uExponent);
2508 if (pCtx->fpu.aRegs[0].au16[5] || pCtx->fpu.aRegs[0].au16[6] || pCtx->fpu.aRegs[0].au16[7])
2509 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
2510 pCtx->fpu.aRegs[0].au16[5], pCtx->fpu.aRegs[0].au16[6], pCtx->fpu.aRegs[0].au16[7]);
2511 else
2512 pHlp->pfnPrintf(pHlp, "\n");
2513 }
2514 for (unsigned iXMM = 0; iXMM < RT_ELEMENTS(pCtx->fpu.aXMM); iXMM++)
2515 pHlp->pfnPrintf(pHlp,
2516 iXMM & 1
2517 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
2518 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
2519 pszPrefix, iXMM, iXMM < 10 ? " " : "",
2520 pCtx->fpu.aXMM[iXMM].au32[3],
2521 pCtx->fpu.aXMM[iXMM].au32[2],
2522 pCtx->fpu.aXMM[iXMM].au32[1],
2523 pCtx->fpu.aXMM[iXMM].au32[0]);
2524 for (unsigned i = 0; i < RT_ELEMENTS(pCtx->fpu.au32RsrvdRest); i++)
2525 if (pCtx->fpu.au32RsrvdRest[i])
2526 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[i]=%RX32 (offset=%#x)\n",
2527 pszPrefix, i, pCtx->fpu.au32RsrvdRest[i], RT_OFFSETOF(X86FXSTATE, au32RsrvdRest[i]) );
2528
2529 pHlp->pfnPrintf(pHlp,
2530 "%sEFER =%016RX64\n"
2531 "%sPAT =%016RX64\n"
2532 "%sSTAR =%016RX64\n"
2533 "%sCSTAR =%016RX64\n"
2534 "%sLSTAR =%016RX64\n"
2535 "%sSFMASK =%016RX64\n"
2536 "%sKERNELGSBASE =%016RX64\n",
2537 pszPrefix, pCtx->msrEFER,
2538 pszPrefix, pCtx->msrPAT,
2539 pszPrefix, pCtx->msrSTAR,
2540 pszPrefix, pCtx->msrCSTAR,
2541 pszPrefix, pCtx->msrLSTAR,
2542 pszPrefix, pCtx->msrSFMASK,
2543 pszPrefix, pCtx->msrKERNELGSBASE);
2544 break;
2545 }
2546}
2547
2548
2549/**
2550 * Display all cpu states and any other cpum info.
2551 *
2552 * @param pVM VM Handle.
2553 * @param pHlp The info helper functions.
2554 * @param pszArgs Arguments, ignored.
2555 */
2556static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2557{
2558 cpumR3InfoGuest(pVM, pHlp, pszArgs);
2559 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
2560 cpumR3InfoHyper(pVM, pHlp, pszArgs);
2561 cpumR3InfoHost(pVM, pHlp, pszArgs);
2562}
2563
2564
2565/**
2566 * Parses the info argument.
2567 *
2568 * The argument starts with 'verbose', 'terse' or 'default' and then
2569 * continues with the comment string.
2570 *
2571 * @param pszArgs The pointer to the argument string.
2572 * @param penmType Where to store the dump type request.
2573 * @param ppszComment Where to store the pointer to the comment string.
2574 */
2575static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
2576{
2577 if (!pszArgs)
2578 {
2579 *penmType = CPUMDUMPTYPE_DEFAULT;
2580 *ppszComment = "";
2581 }
2582 else
2583 {
2584 if (!strncmp(pszArgs, "verbose", sizeof("verbose") - 1))
2585 {
2586 pszArgs += 5;
2587 *penmType = CPUMDUMPTYPE_VERBOSE;
2588 }
2589 else if (!strncmp(pszArgs, "terse", sizeof("terse") - 1))
2590 {
2591 pszArgs += 5;
2592 *penmType = CPUMDUMPTYPE_TERSE;
2593 }
2594 else if (!strncmp(pszArgs, "default", sizeof("default") - 1))
2595 {
2596 pszArgs += 7;
2597 *penmType = CPUMDUMPTYPE_DEFAULT;
2598 }
2599 else
2600 *penmType = CPUMDUMPTYPE_DEFAULT;
2601 *ppszComment = RTStrStripL(pszArgs);
2602 }
2603}
2604
2605
2606/**
2607 * Display the guest cpu state.
2608 *
2609 * @param pVM VM Handle.
2610 * @param pHlp The info helper functions.
2611 * @param pszArgs Arguments, ignored.
2612 */
2613static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2614{
2615 CPUMDUMPTYPE enmType;
2616 const char *pszComment;
2617 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2618
2619 /* @todo SMP support! */
2620 PVMCPU pVCpu = VMMGetCpu(pVM);
2621 if (!pVCpu)
2622 pVCpu = &pVM->aCpus[0];
2623
2624 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
2625
2626 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2627 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
2628}
2629
2630
2631/**
2632 * Display the current guest instruction
2633 *
2634 * @param pVM VM Handle.
2635 * @param pHlp The info helper functions.
2636 * @param pszArgs Arguments, ignored.
2637 */
2638static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2639{
2640 char szInstruction[256];
2641 /* @todo SMP support! */
2642 PVMCPU pVCpu = VMMGetCpu(pVM);
2643 if (!pVCpu)
2644 pVCpu = &pVM->aCpus[0];
2645
2646 int rc = DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
2647 if (RT_SUCCESS(rc))
2648 pHlp->pfnPrintf(pHlp, "\nCPUM: %s\n\n", szInstruction);
2649}
2650
2651
2652/**
2653 * Display the hypervisor cpu state.
2654 *
2655 * @param pVM VM Handle.
2656 * @param pHlp The info helper functions.
2657 * @param pszArgs Arguments, ignored.
2658 */
2659static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2660{
2661 CPUMDUMPTYPE enmType;
2662 const char *pszComment;
2663 /* @todo SMP */
2664 PVMCPU pVCpu = &pVM->aCpus[0];
2665
2666 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2667 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
2668 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, pVCpu->cpum.s.pHyperCoreR3, pHlp, enmType, ".");
2669 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
2670}
2671
2672
2673/**
2674 * Display the host cpu state.
2675 *
2676 * @param pVM VM Handle.
2677 * @param pHlp The info helper functions.
2678 * @param pszArgs Arguments, ignored.
2679 */
2680static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2681{
2682 CPUMDUMPTYPE enmType;
2683 const char *pszComment;
2684 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2685 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
2686
2687 /*
2688 * Format the EFLAGS.
2689 */
2690 /* @todo SMP */
2691 PCPUMHOSTCTX pCtx = &pVM->aCpus[0].cpum.s.Host;
2692#if HC_ARCH_BITS == 32
2693 uint32_t efl = pCtx->eflags.u32;
2694#else
2695 uint64_t efl = pCtx->rflags;
2696#endif
2697 char szEFlags[80];
2698 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2699
2700 /*
2701 * Format the registers.
2702 */
2703#if HC_ARCH_BITS == 32
2704# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2705 if (!(pCtx->efer & MSR_K6_EFER_LMA))
2706# endif
2707 {
2708 pHlp->pfnPrintf(pHlp,
2709 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
2710 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
2711 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
2712 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
2713 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
2714 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2715 ,
2716 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
2717 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
2718 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
2719 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
2720 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
2721 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, (RTSEL)pCtx->ldtr,
2722 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2723 }
2724# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2725 else
2726# endif
2727#endif
2728#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2729 {
2730 pHlp->pfnPrintf(pHlp,
2731 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
2732 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
2733 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
2734 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
2735 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
2736 "r14=%016RX64 r15=%016RX64\n"
2737 "iopl=%d %31s\n"
2738 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
2739 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
2740 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
2741 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
2742 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
2743 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
2744 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2745 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
2746 ,
2747 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
2748 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
2749 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
2750 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
2751 pCtx->r11, pCtx->r12, pCtx->r13,
2752 pCtx->r14, pCtx->r15,
2753 X86_EFL_GET_IOPL(efl), szEFlags,
2754 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
2755 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
2756 pCtx->cr4, pCtx->ldtr, pCtx->tr,
2757 pCtx->dr0, pCtx->dr1, pCtx->dr2,
2758 pCtx->dr3, pCtx->dr6, pCtx->dr7,
2759 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
2760 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
2761 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
2762 }
2763#endif
2764}
2765
2766
2767/**
2768 * Get L1 cache / TLS associativity.
2769 */
2770static const char *getCacheAss(unsigned u, char *pszBuf)
2771{
2772 if (u == 0)
2773 return "res0 ";
2774 if (u == 1)
2775 return "direct";
2776 if (u == 255)
2777 return "fully";
2778 if (u >= 256)
2779 return "???";
2780
2781 RTStrPrintf(pszBuf, 16, "%d way", u);
2782 return pszBuf;
2783}
2784
2785
2786/**
2787 * Get L2 cache associativity.
2788 */
2789const char *getL2CacheAss(unsigned u)
2790{
2791 switch (u)
2792 {
2793 case 0: return "off ";
2794 case 1: return "direct";
2795 case 2: return "2 way ";
2796 case 3: return "res3 ";
2797 case 4: return "4 way ";
2798 case 5: return "res5 ";
2799 case 6: return "8 way ";
2800 case 7: return "res7 ";
2801 case 8: return "16 way";
2802 case 9: return "res9 ";
2803 case 10: return "res10 ";
2804 case 11: return "res11 ";
2805 case 12: return "res12 ";
2806 case 13: return "res13 ";
2807 case 14: return "res14 ";
2808 case 15: return "fully ";
2809 default: return "????";
2810 }
2811}
2812
2813
2814/**
2815 * Display the guest CpuId leaves.
2816 *
2817 * @param pVM VM Handle.
2818 * @param pHlp The info helper functions.
2819 * @param pszArgs "terse", "default" or "verbose".
2820 */
2821static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2822{
2823 /*
2824 * Parse the argument.
2825 */
2826 unsigned iVerbosity = 1;
2827 if (pszArgs)
2828 {
2829 pszArgs = RTStrStripL(pszArgs);
2830 if (!strcmp(pszArgs, "terse"))
2831 iVerbosity--;
2832 else if (!strcmp(pszArgs, "verbose"))
2833 iVerbosity++;
2834 }
2835
2836 /*
2837 * Start cracking.
2838 */
2839 CPUMCPUID Host;
2840 CPUMCPUID Guest;
2841 unsigned cStdMax = pVM->cpum.s.aGuestCpuIdStd[0].eax;
2842
2843 pHlp->pfnPrintf(pHlp,
2844 " RAW Standard CPUIDs\n"
2845 " Function eax ebx ecx edx\n");
2846 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); i++)
2847 {
2848 Guest = pVM->cpum.s.aGuestCpuIdStd[i];
2849 ASMCpuId_Idx_ECX(i, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2850
2851 pHlp->pfnPrintf(pHlp,
2852 "Gst: %08x %08x %08x %08x %08x%s\n"
2853 "Hst: %08x %08x %08x %08x\n",
2854 i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
2855 i <= cStdMax ? "" : "*",
2856 Host.eax, Host.ebx, Host.ecx, Host.edx);
2857 }
2858
2859 /*
2860 * If verbose, decode it.
2861 */
2862 if (iVerbosity)
2863 {
2864 Guest = pVM->cpum.s.aGuestCpuIdStd[0];
2865 pHlp->pfnPrintf(pHlp,
2866 "Name: %.04s%.04s%.04s\n"
2867 "Supports: 0-%x\n",
2868 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
2869 }
2870
2871 /*
2872 * Get Features.
2873 */
2874 bool const fIntel = ASMIsIntelCpuEx(pVM->cpum.s.aGuestCpuIdStd[0].ebx,
2875 pVM->cpum.s.aGuestCpuIdStd[0].ecx,
2876 pVM->cpum.s.aGuestCpuIdStd[0].edx);
2877 if (cStdMax >= 1 && iVerbosity)
2878 {
2879 static const char * const s_apszTypes[4] = { "primary", "overdrive", "MP", "reserved" };
2880
2881 Guest = pVM->cpum.s.aGuestCpuIdStd[1];
2882 uint32_t uEAX = Guest.eax;
2883
2884 pHlp->pfnPrintf(pHlp,
2885 "Family: %d \tExtended: %d \tEffective: %d\n"
2886 "Model: %d \tExtended: %d \tEffective: %d\n"
2887 "Stepping: %d\n"
2888 "Type: %d (%s)\n"
2889 "APIC ID: %#04x\n"
2890 "Logical CPUs: %d\n"
2891 "CLFLUSH Size: %d\n"
2892 "Brand ID: %#04x\n",
2893 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
2894 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
2895 ASMGetCpuStepping(uEAX),
2896 (uEAX >> 12) & 3, s_apszTypes[(uEAX >> 12) & 3],
2897 (Guest.ebx >> 24) & 0xff,
2898 (Guest.ebx >> 16) & 0xff,
2899 (Guest.ebx >> 8) & 0xff,
2900 (Guest.ebx >> 0) & 0xff);
2901 if (iVerbosity == 1)
2902 {
2903 uint32_t uEDX = Guest.edx;
2904 pHlp->pfnPrintf(pHlp, "Features EDX: ");
2905 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
2906 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
2907 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
2908 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
2909 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
2910 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
2911 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
2912 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
2913 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
2914 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
2915 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
2916 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SEP");
2917 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
2918 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
2919 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
2920 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
2921 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
2922 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
2923 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " PSN");
2924 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " CLFSH");
2925 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " 20");
2926 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " DS");
2927 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ACPI");
2928 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
2929 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
2930 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " SSE");
2931 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " SSE2");
2932 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " SS");
2933 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " HTT");
2934 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " TM");
2935 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
2936 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " PBE");
2937 pHlp->pfnPrintf(pHlp, "\n");
2938
2939 uint32_t uECX = Guest.ecx;
2940 pHlp->pfnPrintf(pHlp, "Features ECX: ");
2941 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " SSE3");
2942 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " PCLMUL");
2943 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DTES64");
2944 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " MONITOR");
2945 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " DS-CPL");
2946 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " VMX");
2947 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SMX");
2948 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " EST");
2949 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " TM2");
2950 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " SSSE3");
2951 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " CNXT-ID");
2952 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " 11");
2953 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " FMA");
2954 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " CX16");
2955 if (uECX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " TPRUPDATE");
2956 if (uECX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " PDCM");
2957 if (uECX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " 16");
2958 if (uECX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PCID");
2959 if (uECX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " DCA");
2960 if (uECX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " SSE4.1");
2961 if (uECX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " SSE4.2");
2962 if (uECX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " X2APIC");
2963 if (uECX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " MOVBE");
2964 if (uECX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " POPCNT");
2965 if (uECX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " TSCDEADL");
2966 if (uECX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " AES");
2967 if (uECX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " XSAVE");
2968 if (uECX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " OSXSAVE");
2969 if (uECX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " AVX");
2970 if (uECX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " 29");
2971 if (uECX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
2972 if (uECX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 31");
2973 pHlp->pfnPrintf(pHlp, "\n");
2974 }
2975 else
2976 {
2977 ASMCpuId(1, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2978
2979 X86CPUIDFEATEDX EdxHost = *(PX86CPUIDFEATEDX)&Host.edx;
2980 X86CPUIDFEATECX EcxHost = *(PX86CPUIDFEATECX)&Host.ecx;
2981 X86CPUIDFEATEDX EdxGuest = *(PX86CPUIDFEATEDX)&Guest.edx;
2982 X86CPUIDFEATECX EcxGuest = *(PX86CPUIDFEATECX)&Guest.ecx;
2983
2984 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
2985 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", EdxGuest.u1FPU, EdxHost.u1FPU);
2986 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", EdxGuest.u1VME, EdxHost.u1VME);
2987 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", EdxGuest.u1DE, EdxHost.u1DE);
2988 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", EdxGuest.u1PSE, EdxHost.u1PSE);
2989 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", EdxGuest.u1TSC, EdxHost.u1TSC);
2990 pHlp->pfnPrintf(pHlp, "MSR - Model Specific Registers = %d (%d)\n", EdxGuest.u1MSR, EdxHost.u1MSR);
2991 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", EdxGuest.u1PAE, EdxHost.u1PAE);
2992 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", EdxGuest.u1MCE, EdxHost.u1MCE);
2993 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", EdxGuest.u1CX8, EdxHost.u1CX8);
2994 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", EdxGuest.u1APIC, EdxHost.u1APIC);
2995 pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", EdxGuest.u1Reserved1, EdxHost.u1Reserved1);
2996 pHlp->pfnPrintf(pHlp, "SEP - SYSENTER and SYSEXIT = %d (%d)\n", EdxGuest.u1SEP, EdxHost.u1SEP);
2997 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", EdxGuest.u1MTRR, EdxHost.u1MTRR);
2998 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", EdxGuest.u1PGE, EdxHost.u1PGE);
2999 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", EdxGuest.u1MCA, EdxHost.u1MCA);
3000 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", EdxGuest.u1CMOV, EdxHost.u1CMOV);
3001 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", EdxGuest.u1PAT, EdxHost.u1PAT);
3002 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", EdxGuest.u1PSE36, EdxHost.u1PSE36);
3003 pHlp->pfnPrintf(pHlp, "PSN - Processor Serial Number = %d (%d)\n", EdxGuest.u1PSN, EdxHost.u1PSN);
3004 pHlp->pfnPrintf(pHlp, "CLFSH - CLFLUSH Instruction. = %d (%d)\n", EdxGuest.u1CLFSH, EdxHost.u1CLFSH);
3005 pHlp->pfnPrintf(pHlp, "20 - Reserved = %d (%d)\n", EdxGuest.u1Reserved2, EdxHost.u1Reserved2);
3006 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", EdxGuest.u1DS, EdxHost.u1DS);
3007 pHlp->pfnPrintf(pHlp, "ACPI - Thermal Mon. & Soft. Clock Ctrl.= %d (%d)\n", EdxGuest.u1ACPI, EdxHost.u1ACPI);
3008 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", EdxGuest.u1MMX, EdxHost.u1MMX);
3009 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", EdxGuest.u1FXSR, EdxHost.u1FXSR);
3010 pHlp->pfnPrintf(pHlp, "SSE - SSE Support = %d (%d)\n", EdxGuest.u1SSE, EdxHost.u1SSE);
3011 pHlp->pfnPrintf(pHlp, "SSE2 - SSE2 Support = %d (%d)\n", EdxGuest.u1SSE2, EdxHost.u1SSE2);
3012 pHlp->pfnPrintf(pHlp, "SS - Self Snoop = %d (%d)\n", EdxGuest.u1SS, EdxHost.u1SS);
3013 pHlp->pfnPrintf(pHlp, "HTT - Hyper-Threading Technology = %d (%d)\n", EdxGuest.u1HTT, EdxHost.u1HTT);
3014 pHlp->pfnPrintf(pHlp, "TM - Thermal Monitor = %d (%d)\n", EdxGuest.u1TM, EdxHost.u1TM);
3015 pHlp->pfnPrintf(pHlp, "30 - Reserved = %d (%d)\n", EdxGuest.u1Reserved3, EdxHost.u1Reserved3);
3016 pHlp->pfnPrintf(pHlp, "PBE - Pending Break Enable = %d (%d)\n", EdxGuest.u1PBE, EdxHost.u1PBE);
3017
3018 pHlp->pfnPrintf(pHlp, "Supports SSE3 = %d (%d)\n", EcxGuest.u1SSE3, EcxHost.u1SSE3);
3019 pHlp->pfnPrintf(pHlp, "PCLMULQDQ = %d (%d)\n", EcxGuest.u1PCLMULQDQ, EcxHost.u1PCLMULQDQ);
3020 pHlp->pfnPrintf(pHlp, "DS Area 64-bit layout = %d (%d)\n", EcxGuest.u1DTE64, EcxHost.u1DTE64);
3021 pHlp->pfnPrintf(pHlp, "Supports MONITOR/MWAIT = %d (%d)\n", EcxGuest.u1Monitor, EcxHost.u1Monitor);
3022 pHlp->pfnPrintf(pHlp, "CPL-DS - CPL Qualified Debug Store = %d (%d)\n", EcxGuest.u1CPLDS, EcxHost.u1CPLDS);
3023 pHlp->pfnPrintf(pHlp, "VMX - Virtual Machine Technology = %d (%d)\n", EcxGuest.u1VMX, EcxHost.u1VMX);
3024 pHlp->pfnPrintf(pHlp, "SMX - Safer Mode Extensions = %d (%d)\n", EcxGuest.u1SMX, EcxHost.u1SMX);
3025 pHlp->pfnPrintf(pHlp, "Enhanced SpeedStep Technology = %d (%d)\n", EcxGuest.u1EST, EcxHost.u1EST);
3026 pHlp->pfnPrintf(pHlp, "Terminal Monitor 2 = %d (%d)\n", EcxGuest.u1TM2, EcxHost.u1TM2);
3027 pHlp->pfnPrintf(pHlp, "Supplemental SSE3 instructions = %d (%d)\n", EcxGuest.u1SSSE3, EcxHost.u1SSSE3);
3028 pHlp->pfnPrintf(pHlp, "L1 Context ID = %d (%d)\n", EcxGuest.u1CNTXID, EcxHost.u1CNTXID);
3029 pHlp->pfnPrintf(pHlp, "11 - Reserved = %d (%d)\n", EcxGuest.u1Reserved1, EcxHost.u1Reserved1);
3030 pHlp->pfnPrintf(pHlp, "FMA extensions using YMM state = %d (%d)\n", EcxGuest.u1FMA, EcxHost.u1FMA);
3031 pHlp->pfnPrintf(pHlp, "CMPXCHG16B instruction = %d (%d)\n", EcxGuest.u1CX16, EcxHost.u1CX16);
3032 pHlp->pfnPrintf(pHlp, "xTPR Update Control = %d (%d)\n", EcxGuest.u1TPRUpdate, EcxHost.u1TPRUpdate);
3033 pHlp->pfnPrintf(pHlp, "Perf/Debug Capability MSR = %d (%d)\n", EcxGuest.u1PDCM, EcxHost.u1PDCM);
3034 pHlp->pfnPrintf(pHlp, "16 - Reserved = %d (%d)\n", EcxGuest.u1Reserved2, EcxHost.u1Reserved2);
3035 pHlp->pfnPrintf(pHlp, "PCID - Process-context identifiers = %d (%d)\n", EcxGuest.u1PCID, EcxHost.u1PCID);
3036 pHlp->pfnPrintf(pHlp, "DCA - Direct Cache Access = %d (%d)\n", EcxGuest.u1DCA, EcxHost.u1DCA);
3037 pHlp->pfnPrintf(pHlp, "SSE4.1 instruction extensions = %d (%d)\n", EcxGuest.u1SSE4_1, EcxHost.u1SSE4_1);
3038 pHlp->pfnPrintf(pHlp, "SSE4.2 instruction extensions = %d (%d)\n", EcxGuest.u1SSE4_2, EcxHost.u1SSE4_2);
3039 pHlp->pfnPrintf(pHlp, "Supports the x2APIC extensions = %d (%d)\n", EcxGuest.u1x2APIC, EcxHost.u1x2APIC);
3040 pHlp->pfnPrintf(pHlp, "MOVBE instruction = %d (%d)\n", EcxGuest.u1MOVBE, EcxHost.u1MOVBE);
3041 pHlp->pfnPrintf(pHlp, "POPCNT instruction = %d (%d)\n", EcxGuest.u1POPCNT, EcxHost.u1POPCNT);
3042 pHlp->pfnPrintf(pHlp, "TSC-Deadline LAPIC timer mode = %d (%d)\n", EcxGuest.u1TSCDEADLINE,EcxHost.u1TSCDEADLINE);
3043 pHlp->pfnPrintf(pHlp, "AESNI instruction extensions = %d (%d)\n", EcxGuest.u1AES, EcxHost.u1AES);
3044 pHlp->pfnPrintf(pHlp, "XSAVE/XRSTOR extended state feature = %d (%d)\n", EcxGuest.u1XSAVE, EcxHost.u1XSAVE);
3045 pHlp->pfnPrintf(pHlp, "Supports OSXSAVE = %d (%d)\n", EcxGuest.u1OSXSAVE, EcxHost.u1OSXSAVE);
3046 pHlp->pfnPrintf(pHlp, "AVX instruction extensions = %d (%d)\n", EcxGuest.u1AVX, EcxHost.u1AVX);
3047 pHlp->pfnPrintf(pHlp, "29/30 - Reserved = %#x (%#x)\n",EcxGuest.u2Reserved3, EcxHost.u2Reserved3);
3048 pHlp->pfnPrintf(pHlp, "31 - Reserved (always 0) = %d (%d)\n", EcxGuest.u1Reserved4, EcxHost.u1Reserved4);
3049 }
3050 }
3051 if (cStdMax >= 2 && iVerbosity)
3052 {
3053 /** @todo */
3054 }
3055
3056 /*
3057 * Extended.
3058 * Implemented after AMD specs.
3059 */
3060 unsigned cExtMax = pVM->cpum.s.aGuestCpuIdExt[0].eax & 0xffff;
3061
3062 pHlp->pfnPrintf(pHlp,
3063 "\n"
3064 " RAW Extended CPUIDs\n"
3065 " Function eax ebx ecx edx\n");
3066 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt); i++)
3067 {
3068 Guest = pVM->cpum.s.aGuestCpuIdExt[i];
3069 ASMCpuId(0x80000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3070
3071 pHlp->pfnPrintf(pHlp,
3072 "Gst: %08x %08x %08x %08x %08x%s\n"
3073 "Hst: %08x %08x %08x %08x\n",
3074 0x80000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
3075 i <= cExtMax ? "" : "*",
3076 Host.eax, Host.ebx, Host.ecx, Host.edx);
3077 }
3078
3079 /*
3080 * Understandable output
3081 */
3082 if (iVerbosity)
3083 {
3084 Guest = pVM->cpum.s.aGuestCpuIdExt[0];
3085 pHlp->pfnPrintf(pHlp,
3086 "Ext Name: %.4s%.4s%.4s\n"
3087 "Ext Supports: 0x80000000-%#010x\n",
3088 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
3089 }
3090
3091 if (iVerbosity && cExtMax >= 1)
3092 {
3093 Guest = pVM->cpum.s.aGuestCpuIdExt[1];
3094 uint32_t uEAX = Guest.eax;
3095 pHlp->pfnPrintf(pHlp,
3096 "Family: %d \tExtended: %d \tEffective: %d\n"
3097 "Model: %d \tExtended: %d \tEffective: %d\n"
3098 "Stepping: %d\n"
3099 "Brand ID: %#05x\n",
3100 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
3101 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
3102 ASMGetCpuStepping(uEAX),
3103 Guest.ebx & 0xfff);
3104
3105 if (iVerbosity == 1)
3106 {
3107 uint32_t uEDX = Guest.edx;
3108 pHlp->pfnPrintf(pHlp, "Features EDX: ");
3109 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
3110 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
3111 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
3112 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
3113 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
3114 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
3115 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
3116 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
3117 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
3118 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
3119 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
3120 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SCR");
3121 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
3122 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
3123 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
3124 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
3125 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
3126 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
3127 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " 18");
3128 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " 19");
3129 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " NX");
3130 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " 21");
3131 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ExtMMX");
3132 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
3133 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
3134 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " FastFXSR");
3135 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " Page1GB");
3136 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " RDTSCP");
3137 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " 28");
3138 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " LongMode");
3139 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " Ext3DNow");
3140 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 3DNow");
3141 pHlp->pfnPrintf(pHlp, "\n");
3142
3143 uint32_t uECX = Guest.ecx;
3144 pHlp->pfnPrintf(pHlp, "Features ECX: ");
3145 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " LAHF/SAHF");
3146 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " CMPL");
3147 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " SVM");
3148 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " ExtAPIC");
3149 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " CR8L");
3150 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " ABM");
3151 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SSE4A");
3152 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MISALNSSE");
3153 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " 3DNOWPRF");
3154 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " OSVW");
3155 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " IBS");
3156 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SSE5");
3157 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " SKINIT");
3158 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " WDT");
3159 for (unsigned iBit = 5; iBit < 32; iBit++)
3160 if (uECX & RT_BIT(iBit))
3161 pHlp->pfnPrintf(pHlp, " %d", iBit);
3162 pHlp->pfnPrintf(pHlp, "\n");
3163 }
3164 else
3165 {
3166 ASMCpuId(0x80000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3167
3168 uint32_t uEdxGst = Guest.edx;
3169 uint32_t uEdxHst = Host.edx;
3170 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3171 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
3172 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
3173 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
3174 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
3175 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
3176 pHlp->pfnPrintf(pHlp, "MSR - K86 Model Specific Registers = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
3177 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
3178 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
3179 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
3180 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
3181 pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
3182 pHlp->pfnPrintf(pHlp, "SEP - SYSCALL and SYSRET = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
3183 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
3184 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
3185 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", !!(uEdxGst & RT_BIT(14)), !!(uEdxHst & RT_BIT(14)));
3186 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(15)), !!(uEdxHst & RT_BIT(15)));
3187 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", !!(uEdxGst & RT_BIT(16)), !!(uEdxHst & RT_BIT(16)));
3188 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", !!(uEdxGst & RT_BIT(17)), !!(uEdxHst & RT_BIT(17)));
3189 pHlp->pfnPrintf(pHlp, "18 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(18)), !!(uEdxHst & RT_BIT(18)));
3190 pHlp->pfnPrintf(pHlp, "19 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(19)), !!(uEdxHst & RT_BIT(19)));
3191 pHlp->pfnPrintf(pHlp, "NX - No-Execute Page Protection = %d (%d)\n", !!(uEdxGst & RT_BIT(20)), !!(uEdxHst & RT_BIT(20)));
3192 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", !!(uEdxGst & RT_BIT(21)), !!(uEdxHst & RT_BIT(21)));
3193 pHlp->pfnPrintf(pHlp, "AXMMX - AMD Extensions to MMX Instr. = %d (%d)\n", !!(uEdxGst & RT_BIT(22)), !!(uEdxHst & RT_BIT(22)));
3194 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", !!(uEdxGst & RT_BIT(23)), !!(uEdxHst & RT_BIT(23)));
3195 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(24)), !!(uEdxHst & RT_BIT(24)));
3196 pHlp->pfnPrintf(pHlp, "25 - AMD fast FXSAVE and FXRSTOR Instr.= %d (%d)\n", !!(uEdxGst & RT_BIT(25)), !!(uEdxHst & RT_BIT(25)));
3197 pHlp->pfnPrintf(pHlp, "26 - 1 GB large page support = %d (%d)\n", !!(uEdxGst & RT_BIT(26)), !!(uEdxHst & RT_BIT(26)));
3198 pHlp->pfnPrintf(pHlp, "27 - RDTSCP instruction = %d (%d)\n", !!(uEdxGst & RT_BIT(27)), !!(uEdxHst & RT_BIT(27)));
3199 pHlp->pfnPrintf(pHlp, "28 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(28)), !!(uEdxHst & RT_BIT(28)));
3200 pHlp->pfnPrintf(pHlp, "29 - AMD Long Mode = %d (%d)\n", !!(uEdxGst & RT_BIT(29)), !!(uEdxHst & RT_BIT(29)));
3201 pHlp->pfnPrintf(pHlp, "30 - AMD Extensions to 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(30)), !!(uEdxHst & RT_BIT(30)));
3202 pHlp->pfnPrintf(pHlp, "31 - AMD 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(31)), !!(uEdxHst & RT_BIT(31)));
3203
3204 uint32_t uEcxGst = Guest.ecx;
3205 uint32_t uEcxHst = Host.ecx;
3206 pHlp->pfnPrintf(pHlp, "LahfSahf - LAHF/SAHF in 64-bit mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 0)), !!(uEcxHst & RT_BIT( 0)));
3207 pHlp->pfnPrintf(pHlp, "CmpLegacy - Core MP legacy mode (depr) = %d (%d)\n", !!(uEcxGst & RT_BIT( 1)), !!(uEcxHst & RT_BIT( 1)));
3208 pHlp->pfnPrintf(pHlp, "SVM - AMD VM Extensions = %d (%d)\n", !!(uEcxGst & RT_BIT( 2)), !!(uEcxHst & RT_BIT( 2)));
3209 pHlp->pfnPrintf(pHlp, "APIC registers starting at 0x400 = %d (%d)\n", !!(uEcxGst & RT_BIT( 3)), !!(uEcxHst & RT_BIT( 3)));
3210 pHlp->pfnPrintf(pHlp, "AltMovCR8 - LOCK MOV CR0 means MOV CR8 = %d (%d)\n", !!(uEcxGst & RT_BIT( 4)), !!(uEcxHst & RT_BIT( 4)));
3211 pHlp->pfnPrintf(pHlp, "Advanced bit manipulation = %d (%d)\n", !!(uEcxGst & RT_BIT( 5)), !!(uEcxHst & RT_BIT( 5)));
3212 pHlp->pfnPrintf(pHlp, "SSE4A instruction support = %d (%d)\n", !!(uEcxGst & RT_BIT( 6)), !!(uEcxHst & RT_BIT( 6)));
3213 pHlp->pfnPrintf(pHlp, "Misaligned SSE mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 7)), !!(uEcxHst & RT_BIT( 7)));
3214 pHlp->pfnPrintf(pHlp, "PREFETCH and PREFETCHW instruction = %d (%d)\n", !!(uEcxGst & RT_BIT( 8)), !!(uEcxHst & RT_BIT( 8)));
3215 pHlp->pfnPrintf(pHlp, "OS visible workaround = %d (%d)\n", !!(uEcxGst & RT_BIT( 9)), !!(uEcxHst & RT_BIT( 9)));
3216 pHlp->pfnPrintf(pHlp, "Instruction based sampling = %d (%d)\n", !!(uEcxGst & RT_BIT(10)), !!(uEcxHst & RT_BIT(10)));
3217 pHlp->pfnPrintf(pHlp, "SSE5 support = %d (%d)\n", !!(uEcxGst & RT_BIT(11)), !!(uEcxHst & RT_BIT(11)));
3218 pHlp->pfnPrintf(pHlp, "SKINIT, STGI, and DEV support = %d (%d)\n", !!(uEcxGst & RT_BIT(12)), !!(uEcxHst & RT_BIT(12)));
3219 pHlp->pfnPrintf(pHlp, "Watchdog timer support. = %d (%d)\n", !!(uEcxGst & RT_BIT(13)), !!(uEcxHst & RT_BIT(13)));
3220 pHlp->pfnPrintf(pHlp, "31:14 - Reserved = %#x (%#x)\n", uEcxGst >> 14, uEcxHst >> 14);
3221 }
3222 }
3223
3224 if (iVerbosity && cExtMax >= 2)
3225 {
3226 char szString[4*4*3+1] = {0};
3227 uint32_t *pu32 = (uint32_t *)szString;
3228 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].eax;
3229 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ebx;
3230 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ecx;
3231 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].edx;
3232 if (cExtMax >= 3)
3233 {
3234 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].eax;
3235 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ebx;
3236 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ecx;
3237 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].edx;
3238 }
3239 if (cExtMax >= 4)
3240 {
3241 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].eax;
3242 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ebx;
3243 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ecx;
3244 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].edx;
3245 }
3246 pHlp->pfnPrintf(pHlp, "Full Name: %s\n", szString);
3247 }
3248
3249 if (iVerbosity && cExtMax >= 5)
3250 {
3251 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[5].eax;
3252 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[5].ebx;
3253 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[5].ecx;
3254 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[5].edx;
3255 char sz1[32];
3256 char sz2[32];
3257
3258 pHlp->pfnPrintf(pHlp,
3259 "TLB 2/4M Instr/Uni: %s %3d entries\n"
3260 "TLB 2/4M Data: %s %3d entries\n",
3261 getCacheAss((uEAX >> 8) & 0xff, sz1), (uEAX >> 0) & 0xff,
3262 getCacheAss((uEAX >> 24) & 0xff, sz2), (uEAX >> 16) & 0xff);
3263 pHlp->pfnPrintf(pHlp,
3264 "TLB 4K Instr/Uni: %s %3d entries\n"
3265 "TLB 4K Data: %s %3d entries\n",
3266 getCacheAss((uEBX >> 8) & 0xff, sz1), (uEBX >> 0) & 0xff,
3267 getCacheAss((uEBX >> 24) & 0xff, sz2), (uEBX >> 16) & 0xff);
3268 pHlp->pfnPrintf(pHlp, "L1 Instr Cache Line Size: %d bytes\n"
3269 "L1 Instr Cache Lines Per Tag: %d\n"
3270 "L1 Instr Cache Associativity: %s\n"
3271 "L1 Instr Cache Size: %d KB\n",
3272 (uEDX >> 0) & 0xff,
3273 (uEDX >> 8) & 0xff,
3274 getCacheAss((uEDX >> 16) & 0xff, sz1),
3275 (uEDX >> 24) & 0xff);
3276 pHlp->pfnPrintf(pHlp,
3277 "L1 Data Cache Line Size: %d bytes\n"
3278 "L1 Data Cache Lines Per Tag: %d\n"
3279 "L1 Data Cache Associativity: %s\n"
3280 "L1 Data Cache Size: %d KB\n",
3281 (uECX >> 0) & 0xff,
3282 (uECX >> 8) & 0xff,
3283 getCacheAss((uECX >> 16) & 0xff, sz1),
3284 (uECX >> 24) & 0xff);
3285 }
3286
3287 if (iVerbosity && cExtMax >= 6)
3288 {
3289 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[6].eax;
3290 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[6].ebx;
3291 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[6].edx;
3292
3293 pHlp->pfnPrintf(pHlp,
3294 "L2 TLB 2/4M Instr/Uni: %s %4d entries\n"
3295 "L2 TLB 2/4M Data: %s %4d entries\n",
3296 getL2CacheAss((uEAX >> 12) & 0xf), (uEAX >> 0) & 0xfff,
3297 getL2CacheAss((uEAX >> 28) & 0xf), (uEAX >> 16) & 0xfff);
3298 pHlp->pfnPrintf(pHlp,
3299 "L2 TLB 4K Instr/Uni: %s %4d entries\n"
3300 "L2 TLB 4K Data: %s %4d entries\n",
3301 getL2CacheAss((uEBX >> 12) & 0xf), (uEBX >> 0) & 0xfff,
3302 getL2CacheAss((uEBX >> 28) & 0xf), (uEBX >> 16) & 0xfff);
3303 pHlp->pfnPrintf(pHlp,
3304 "L2 Cache Line Size: %d bytes\n"
3305 "L2 Cache Lines Per Tag: %d\n"
3306 "L2 Cache Associativity: %s\n"
3307 "L2 Cache Size: %d KB\n",
3308 (uEDX >> 0) & 0xff,
3309 (uEDX >> 8) & 0xf,
3310 getL2CacheAss((uEDX >> 12) & 0xf),
3311 (uEDX >> 16) & 0xffff);
3312 }
3313
3314 if (iVerbosity && cExtMax >= 7)
3315 {
3316 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[7].edx;
3317
3318 pHlp->pfnPrintf(pHlp, "APM Features: ");
3319 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " TS");
3320 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " FID");
3321 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " VID");
3322 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " TTP");
3323 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TM");
3324 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " STC");
3325 for (unsigned iBit = 6; iBit < 32; iBit++)
3326 if (uEDX & RT_BIT(iBit))
3327 pHlp->pfnPrintf(pHlp, " %d", iBit);
3328 pHlp->pfnPrintf(pHlp, "\n");
3329 }
3330
3331 if (iVerbosity && cExtMax >= 8)
3332 {
3333 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[8].eax;
3334 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[8].ecx;
3335
3336 pHlp->pfnPrintf(pHlp,
3337 "Physical Address Width: %d bits\n"
3338 "Virtual Address Width: %d bits\n"
3339 "Guest Physical Address Width: %d bits\n",
3340 (uEAX >> 0) & 0xff,
3341 (uEAX >> 8) & 0xff,
3342 (uEAX >> 16) & 0xff);
3343 pHlp->pfnPrintf(pHlp,
3344 "Physical Core Count: %d\n",
3345 (uECX >> 0) & 0xff);
3346 }
3347
3348
3349 /*
3350 * Centaur.
3351 */
3352 unsigned cCentaurMax = pVM->cpum.s.aGuestCpuIdCentaur[0].eax & 0xffff;
3353
3354 pHlp->pfnPrintf(pHlp,
3355 "\n"
3356 " RAW Centaur CPUIDs\n"
3357 " Function eax ebx ecx edx\n");
3358 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur); i++)
3359 {
3360 Guest = pVM->cpum.s.aGuestCpuIdCentaur[i];
3361 ASMCpuId(0xc0000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3362
3363 pHlp->pfnPrintf(pHlp,
3364 "Gst: %08x %08x %08x %08x %08x%s\n"
3365 "Hst: %08x %08x %08x %08x\n",
3366 0xc0000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
3367 i <= cCentaurMax ? "" : "*",
3368 Host.eax, Host.ebx, Host.ecx, Host.edx);
3369 }
3370
3371 /*
3372 * Understandable output
3373 */
3374 if (iVerbosity)
3375 {
3376 Guest = pVM->cpum.s.aGuestCpuIdCentaur[0];
3377 pHlp->pfnPrintf(pHlp,
3378 "Centaur Supports: 0xc0000000-%#010x\n",
3379 Guest.eax);
3380 }
3381
3382 if (iVerbosity && cCentaurMax >= 1)
3383 {
3384 ASMCpuId(0xc0000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3385 uint32_t uEdxGst = pVM->cpum.s.aGuestCpuIdExt[1].edx;
3386 uint32_t uEdxHst = Host.edx;
3387
3388 if (iVerbosity == 1)
3389 {
3390 pHlp->pfnPrintf(pHlp, "Centaur Features EDX: ");
3391 if (uEdxGst & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " AIS");
3392 if (uEdxGst & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " AIS-E");
3393 if (uEdxGst & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " RNG");
3394 if (uEdxGst & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " RNG-E");
3395 if (uEdxGst & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " LH");
3396 if (uEdxGst & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " FEMMS");
3397 if (uEdxGst & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " ACE");
3398 if (uEdxGst & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " ACE-E");
3399 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3400 if (uEdxGst & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " ACE2");
3401 if (uEdxGst & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " ACE2-E");
3402 if (uEdxGst & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " PHE");
3403 if (uEdxGst & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " PHE-E");
3404 if (uEdxGst & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " PMM");
3405 if (uEdxGst & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PMM-E");
3406 for (unsigned iBit = 14; iBit < 32; iBit++)
3407 if (uEdxGst & RT_BIT(iBit))
3408 pHlp->pfnPrintf(pHlp, " %d", iBit);
3409 pHlp->pfnPrintf(pHlp, "\n");
3410 }
3411 else
3412 {
3413 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3414 pHlp->pfnPrintf(pHlp, "AIS - Alternate Instruction Set = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
3415 pHlp->pfnPrintf(pHlp, "AIS-E - AIS enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
3416 pHlp->pfnPrintf(pHlp, "RNG - Random Number Generator = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
3417 pHlp->pfnPrintf(pHlp, "RNG-E - RNG enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
3418 pHlp->pfnPrintf(pHlp, "LH - LongHaul MSR 0000_110Ah = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
3419 pHlp->pfnPrintf(pHlp, "FEMMS - FEMMS = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
3420 pHlp->pfnPrintf(pHlp, "ACE - Advanced Cryptography Engine = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
3421 pHlp->pfnPrintf(pHlp, "ACE-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
3422 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3423 pHlp->pfnPrintf(pHlp, "ACE2 - Advanced Cryptography Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
3424 pHlp->pfnPrintf(pHlp, "ACE2-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
3425 pHlp->pfnPrintf(pHlp, "PHE - Hash Engine = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
3426 pHlp->pfnPrintf(pHlp, "PHE-E - PHE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
3427 pHlp->pfnPrintf(pHlp, "PMM - Montgomery Multiplier = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
3428 pHlp->pfnPrintf(pHlp, "PMM-E - PMM enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
3429 for (unsigned iBit = 14; iBit < 32; iBit++)
3430 if ((uEdxGst | uEdxHst) & RT_BIT(iBit))
3431 pHlp->pfnPrintf(pHlp, "Bit %d = %d (%d)\n", !!(uEdxGst & RT_BIT(iBit)), !!(uEdxHst & RT_BIT(iBit)));
3432 pHlp->pfnPrintf(pHlp, "\n");
3433 }
3434 }
3435}
3436
3437
3438/**
3439 * Structure used when disassembling and instructions in DBGF.
3440 * This is used so the reader function can get the stuff it needs.
3441 */
3442typedef struct CPUMDISASSTATE
3443{
3444 /** Pointer to the CPU structure. */
3445 PDISCPUSTATE pCpu;
3446 /** The VM handle. */
3447 PVM pVM;
3448 /** The VMCPU handle. */
3449 PVMCPU pVCpu;
3450 /** Pointer to the first byte in the segment. */
3451 RTGCUINTPTR GCPtrSegBase;
3452 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
3453 RTGCUINTPTR GCPtrSegEnd;
3454 /** The size of the segment minus 1. */
3455 RTGCUINTPTR cbSegLimit;
3456 /** Pointer to the current page - R3 Ptr. */
3457 void const *pvPageR3;
3458 /** Pointer to the current page - GC Ptr. */
3459 RTGCPTR pvPageGC;
3460 /** The lock information that PGMPhysReleasePageMappingLock needs. */
3461 PGMPAGEMAPLOCK PageMapLock;
3462 /** Whether the PageMapLock is valid or not. */
3463 bool fLocked;
3464 /** 64 bits mode or not. */
3465 bool f64Bits;
3466} CPUMDISASSTATE, *PCPUMDISASSTATE;
3467
3468
3469/**
3470 * Instruction reader.
3471 *
3472 * @returns VBox status code.
3473 * @param PtrSrc Address to read from.
3474 * In our case this is relative to the selector pointed to by the 2nd user argument of uDisCpu.
3475 * @param pu8Dst Where to store the bytes.
3476 * @param cbRead Number of bytes to read.
3477 * @param uDisCpu Pointer to the disassembler cpu state.
3478 * In this context it's always pointer to the Core of a DBGFDISASSTATE.
3479 */
3480static DECLCALLBACK(int) cpumR3DisasInstrRead(RTUINTPTR PtrSrc, uint8_t *pu8Dst, unsigned cbRead, void *uDisCpu)
3481{
3482 PDISCPUSTATE pCpu = (PDISCPUSTATE)uDisCpu;
3483 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pCpu->apvUserData[0];
3484 Assert(cbRead > 0);
3485 for (;;)
3486 {
3487 RTGCUINTPTR GCPtr = PtrSrc + pState->GCPtrSegBase;
3488
3489 /* Need to update the page translation? */
3490 if ( !pState->pvPageR3
3491 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
3492 {
3493 int rc = VINF_SUCCESS;
3494
3495 /* translate the address */
3496 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
3497 if ( MMHyperIsInsideArea(pState->pVM, pState->pvPageGC)
3498 && !HWACCMIsEnabled(pState->pVM))
3499 {
3500 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
3501 if (!pState->pvPageR3)
3502 rc = VERR_INVALID_POINTER;
3503 }
3504 else
3505 {
3506 /* Release mapping lock previously acquired. */
3507 if (pState->fLocked)
3508 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
3509 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
3510 pState->fLocked = RT_SUCCESS_NP(rc);
3511 }
3512 if (RT_FAILURE(rc))
3513 {
3514 pState->pvPageR3 = NULL;
3515 return rc;
3516 }
3517 }
3518
3519 /* check the segment limit */
3520 if (!pState->f64Bits && PtrSrc > pState->cbSegLimit)
3521 return VERR_OUT_OF_SELECTOR_BOUNDS;
3522
3523 /* calc how much we can read */
3524 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
3525 if (!pState->f64Bits)
3526 {
3527 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
3528 if (cb > cbSeg && cbSeg)
3529 cb = cbSeg;
3530 }
3531 if (cb > cbRead)
3532 cb = cbRead;
3533
3534 /* read and advance */
3535 memcpy(pu8Dst, (char *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
3536 cbRead -= cb;
3537 if (!cbRead)
3538 return VINF_SUCCESS;
3539 pu8Dst += cb;
3540 PtrSrc += cb;
3541 }
3542}
3543
3544
3545/**
3546 * Disassemble an instruction and return the information in the provided structure.
3547 *
3548 * @returns VBox status code.
3549 * @param pVM VM Handle
3550 * @param pVCpu VMCPU Handle
3551 * @param pCtx CPU context
3552 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
3553 * @param pCpu Disassembly state
3554 * @param pszPrefix String prefix for logging (debug only)
3555 *
3556 */
3557VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu, const char *pszPrefix)
3558{
3559 CPUMDISASSTATE State;
3560 int rc;
3561
3562 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
3563 State.pCpu = pCpu;
3564 State.pvPageGC = 0;
3565 State.pvPageR3 = NULL;
3566 State.pVM = pVM;
3567 State.pVCpu = pVCpu;
3568 State.fLocked = false;
3569 State.f64Bits = false;
3570
3571 /*
3572 * Get selector information.
3573 */
3574 if ( (pCtx->cr0 & X86_CR0_PE)
3575 && pCtx->eflags.Bits.u1VM == 0)
3576 {
3577 if (CPUMAreHiddenSelRegsValid(pVCpu))
3578 {
3579 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->csHid.Attr.n.u1Long;
3580 State.GCPtrSegBase = pCtx->csHid.u64Base;
3581 State.GCPtrSegEnd = pCtx->csHid.u32Limit + 1 + (RTGCUINTPTR)pCtx->csHid.u64Base;
3582 State.cbSegLimit = pCtx->csHid.u32Limit;
3583 pCpu->mode = (State.f64Bits)
3584 ? CPUMODE_64BIT
3585 : pCtx->csHid.Attr.n.u1DefBig
3586 ? CPUMODE_32BIT
3587 : CPUMODE_16BIT;
3588 }
3589 else
3590 {
3591 DBGFSELINFO SelInfo;
3592
3593 rc = SELMR3GetShadowSelectorInfo(pVM, pCtx->cs, &SelInfo);
3594 if (RT_FAILURE(rc))
3595 {
3596 AssertMsgFailed(("SELMR3GetShadowSelectorInfo failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
3597 return rc;
3598 }
3599
3600 /*
3601 * Validate the selector.
3602 */
3603 rc = DBGFR3SelInfoValidateCS(&SelInfo, pCtx->ss);
3604 if (RT_FAILURE(rc))
3605 {
3606 AssertMsgFailed(("SELMSelInfoValidateCS failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
3607 return rc;
3608 }
3609 State.GCPtrSegBase = SelInfo.GCPtrBase;
3610 State.GCPtrSegEnd = SelInfo.cbLimit + 1 + (RTGCUINTPTR)SelInfo.GCPtrBase;
3611 State.cbSegLimit = SelInfo.cbLimit;
3612 pCpu->mode = SelInfo.u.Raw.Gen.u1DefBig ? CPUMODE_32BIT : CPUMODE_16BIT;
3613 }
3614 }
3615 else
3616 {
3617 /* real or V86 mode */
3618 pCpu->mode = CPUMODE_16BIT;
3619 State.GCPtrSegBase = pCtx->cs * 16;
3620 State.GCPtrSegEnd = 0xFFFFFFFF;
3621 State.cbSegLimit = 0xFFFFFFFF;
3622 }
3623
3624 /*
3625 * Disassemble the instruction.
3626 */
3627 pCpu->pfnReadBytes = cpumR3DisasInstrRead;
3628 pCpu->apvUserData[0] = &State;
3629
3630 uint32_t cbInstr;
3631#ifndef LOG_ENABLED
3632 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, NULL);
3633 if (RT_SUCCESS(rc))
3634 {
3635#else
3636 char szOutput[160];
3637 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, &szOutput[0]);
3638 if (RT_SUCCESS(rc))
3639 {
3640 /* log it */
3641 if (pszPrefix)
3642 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
3643 else
3644 Log(("%s", szOutput));
3645#endif
3646 rc = VINF_SUCCESS;
3647 }
3648 else
3649 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs, GCPtrPC, rc));
3650
3651 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
3652 if (State.fLocked)
3653 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
3654
3655 return rc;
3656}
3657
3658#ifdef DEBUG
3659
3660/**
3661 * Disassemble an instruction and dump it to the log
3662 *
3663 * @returns VBox status code.
3664 * @param pVM VM Handle
3665 * @param pVCpu VMCPU Handle
3666 * @param pCtx CPU context
3667 * @param pc GC instruction pointer
3668 * @param pszPrefix String prefix for logging
3669 *
3670 * @deprecated Use DBGFR3DisasInstrCurrentLog().
3671 */
3672VMMR3DECL(void) CPUMR3DisasmInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR pc, const char *pszPrefix)
3673{
3674 DISCPUSTATE Cpu;
3675 CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pc, &Cpu, pszPrefix);
3676}
3677
3678
3679/**
3680 * Debug helper - Saves guest context on raw mode entry (for fatal dump)
3681 *
3682 * @internal
3683 */
3684VMMR3DECL(void) CPUMR3SaveEntryCtx(PVM pVM)
3685{
3686 /** @todo SMP support!! */
3687 pVM->cpum.s.GuestEntry = *CPUMQueryGuestCtxPtr(VMMGetCpu(pVM));
3688}
3689
3690#endif /* DEBUG */
3691
3692/**
3693 * API for controlling a few of the CPU features found in CR4.
3694 *
3695 * Currently only X86_CR4_TSD is accepted as input.
3696 *
3697 * @returns VBox status code.
3698 *
3699 * @param pVM The VM handle.
3700 * @param fOr The CR4 OR mask.
3701 * @param fAnd The CR4 AND mask.
3702 */
3703VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
3704{
3705 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
3706 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
3707
3708 pVM->cpum.s.CR4.OrMask &= fAnd;
3709 pVM->cpum.s.CR4.OrMask |= fOr;
3710
3711 return VINF_SUCCESS;
3712}
3713
3714
3715/**
3716 * Gets a pointer to the array of standard CPUID leaves.
3717 *
3718 * CPUMR3GetGuestCpuIdStdMax() give the size of the array.
3719 *
3720 * @returns Pointer to the standard CPUID leaves (read-only).
3721 * @param pVM The VM handle.
3722 * @remark Intended for PATM.
3723 */
3724VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdStdRCPtr(PVM pVM)
3725{
3726 return RCPTRTYPE(PCCPUMCPUID)VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdStd[0]);
3727}
3728
3729
3730/**
3731 * Gets a pointer to the array of extended CPUID leaves.
3732 *
3733 * CPUMGetGuestCpuIdExtMax() give the size of the array.
3734 *
3735 * @returns Pointer to the extended CPUID leaves (read-only).
3736 * @param pVM The VM handle.
3737 * @remark Intended for PATM.
3738 */
3739VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdExtRCPtr(PVM pVM)
3740{
3741 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdExt[0]);
3742}
3743
3744
3745/**
3746 * Gets a pointer to the array of centaur CPUID leaves.
3747 *
3748 * CPUMGetGuestCpuIdCentaurMax() give the size of the array.
3749 *
3750 * @returns Pointer to the centaur CPUID leaves (read-only).
3751 * @param pVM The VM handle.
3752 * @remark Intended for PATM.
3753 */
3754VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdCentaurRCPtr(PVM pVM)
3755{
3756 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdCentaur[0]);
3757}
3758
3759
3760/**
3761 * Gets a pointer to the default CPUID leaf.
3762 *
3763 * @returns Pointer to the default CPUID leaf (read-only).
3764 * @param pVM The VM handle.
3765 * @remark Intended for PATM.
3766 */
3767VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdDefRCPtr(PVM pVM)
3768{
3769 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.GuestCpuIdDef);
3770}
3771
3772
3773/**
3774 * Transforms the guest CPU state to raw-ring mode.
3775 *
3776 * This function will change the any of the cs and ss register with DPL=0 to DPL=1.
3777 *
3778 * @returns VBox status. (recompiler failure)
3779 * @param pVCpu The VMCPU handle.
3780 * @param pCtxCore The context core (for trap usage).
3781 * @see @ref pg_raw
3782 */
3783VMMR3DECL(int) CPUMR3RawEnter(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore)
3784{
3785 PVM pVM = pVCpu->CTX_SUFF(pVM);
3786
3787 Assert(!pVCpu->cpum.s.fRawEntered);
3788 Assert(!pVCpu->cpum.s.fRemEntered);
3789 if (!pCtxCore)
3790 pCtxCore = CPUMCTX2CORE(&pVCpu->cpum.s.Guest);
3791
3792 /*
3793 * Are we in Ring-0?
3794 */
3795 if ( pCtxCore->ss && (pCtxCore->ss & X86_SEL_RPL) == 0
3796 && !pCtxCore->eflags.Bits.u1VM)
3797 {
3798 /*
3799 * Enter execution mode.
3800 */
3801 PATMRawEnter(pVM, pCtxCore);
3802
3803 /*
3804 * Set CPL to Ring-1.
3805 */
3806 pCtxCore->ss |= 1;
3807 if (pCtxCore->cs && (pCtxCore->cs & X86_SEL_RPL) == 0)
3808 pCtxCore->cs |= 1;
3809 }
3810 else
3811 {
3812 AssertMsg((pCtxCore->ss & X86_SEL_RPL) >= 2 || pCtxCore->eflags.Bits.u1VM,
3813 ("ring-1 code not supported\n"));
3814 /*
3815 * PATM takes care of IOPL and IF flags for Ring-3 and Ring-2 code as well.
3816 */
3817 PATMRawEnter(pVM, pCtxCore);
3818 }
3819
3820 /*
3821 * Invalidate the hidden registers.
3822 */
3823 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
3824
3825 /*
3826 * Assert sanity.
3827 */
3828 AssertMsg((pCtxCore->eflags.u32 & X86_EFL_IF), ("X86_EFL_IF is clear\n"));
3829 AssertReleaseMsg( pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss & X86_SEL_RPL)
3830 || pCtxCore->eflags.Bits.u1VM,
3831 ("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss & X86_SEL_RPL));
3832 Assert((pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) == (X86_CR0_PG | X86_CR0_PE | X86_CR0_WP));
3833
3834 pCtxCore->eflags.u32 |= X86_EFL_IF; /* paranoia */
3835
3836 pVCpu->cpum.s.fRawEntered = true;
3837 return VINF_SUCCESS;
3838}
3839
3840
3841/**
3842 * Transforms the guest CPU state from raw-ring mode to correct values.
3843 *
3844 * This function will change any selector registers with DPL=1 to DPL=0.
3845 *
3846 * @returns Adjusted rc.
3847 * @param pVCpu The VMCPU handle.
3848 * @param rc Raw mode return code
3849 * @param pCtxCore The context core (for trap usage).
3850 * @see @ref pg_raw
3851 */
3852VMMR3DECL(int) CPUMR3RawLeave(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, int rc)
3853{
3854 PVM pVM = pVCpu->CTX_SUFF(pVM);
3855
3856 /*
3857 * Don't leave if we've already left (in GC).
3858 */
3859 Assert(pVCpu->cpum.s.fRawEntered);
3860 Assert(!pVCpu->cpum.s.fRemEntered);
3861 if (!pVCpu->cpum.s.fRawEntered)
3862 return rc;
3863 pVCpu->cpum.s.fRawEntered = false;
3864
3865 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3866 if (!pCtxCore)
3867 pCtxCore = CPUMCTX2CORE(pCtx);
3868 Assert(pCtxCore->eflags.Bits.u1VM || (pCtxCore->ss & X86_SEL_RPL));
3869 AssertMsg(pCtxCore->eflags.Bits.u1VM || pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss & X86_SEL_RPL),
3870 ("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss & X86_SEL_RPL));
3871
3872 /*
3873 * Are we executing in raw ring-1?
3874 */
3875 if ( (pCtxCore->ss & X86_SEL_RPL) == 1
3876 && !pCtxCore->eflags.Bits.u1VM)
3877 {
3878 /*
3879 * Leave execution mode.
3880 */
3881 PATMRawLeave(pVM, pCtxCore, rc);
3882 /* Not quite sure if this is really required, but shouldn't harm (too much anyways). */
3883 /** @todo See what happens if we remove this. */
3884 if ((pCtxCore->ds & X86_SEL_RPL) == 1)
3885 pCtxCore->ds &= ~X86_SEL_RPL;
3886 if ((pCtxCore->es & X86_SEL_RPL) == 1)
3887 pCtxCore->es &= ~X86_SEL_RPL;
3888 if ((pCtxCore->fs & X86_SEL_RPL) == 1)
3889 pCtxCore->fs &= ~X86_SEL_RPL;
3890 if ((pCtxCore->gs & X86_SEL_RPL) == 1)
3891 pCtxCore->gs &= ~X86_SEL_RPL;
3892
3893 /*
3894 * Ring-1 selector => Ring-0.
3895 */
3896 pCtxCore->ss &= ~X86_SEL_RPL;
3897 if ((pCtxCore->cs & X86_SEL_RPL) == 1)
3898 pCtxCore->cs &= ~X86_SEL_RPL;
3899 }
3900 else
3901 {
3902 /*
3903 * PATM is taking care of the IOPL and IF flags for us.
3904 */
3905 PATMRawLeave(pVM, pCtxCore, rc);
3906 if (!pCtxCore->eflags.Bits.u1VM)
3907 {
3908 /** @todo See what happens if we remove this. */
3909 if ((pCtxCore->ds & X86_SEL_RPL) == 1)
3910 pCtxCore->ds &= ~X86_SEL_RPL;
3911 if ((pCtxCore->es & X86_SEL_RPL) == 1)
3912 pCtxCore->es &= ~X86_SEL_RPL;
3913 if ((pCtxCore->fs & X86_SEL_RPL) == 1)
3914 pCtxCore->fs &= ~X86_SEL_RPL;
3915 if ((pCtxCore->gs & X86_SEL_RPL) == 1)
3916 pCtxCore->gs &= ~X86_SEL_RPL;
3917 }
3918 }
3919
3920 return rc;
3921}
3922
3923
3924/**
3925 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
3926 *
3927 * Only REM should ever call this function!
3928 *
3929 * @returns The changed flags.
3930 * @param pVCpu The VMCPU handle.
3931 * @param puCpl Where to return the current privilege level (CPL).
3932 */
3933VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
3934{
3935 Assert(!pVCpu->cpum.s.fRawEntered);
3936 Assert(!pVCpu->cpum.s.fRemEntered);
3937
3938 /*
3939 * Get the CPL first.
3940 */
3941 *puCpl = CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.s.Guest));
3942
3943 /*
3944 * Get and reset the flags, leaving CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID set.
3945 */
3946 uint32_t fFlags = pVCpu->cpum.s.fChanged;
3947 pVCpu->cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID; /* leave it set */
3948
3949 /** @todo change the switcher to use the fChanged flags. */
3950 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
3951 {
3952 fFlags |= CPUM_CHANGED_FPU_REM;
3953 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
3954 }
3955
3956 pVCpu->cpum.s.fRemEntered = true;
3957 return fFlags;
3958}
3959
3960
3961/**
3962 * Leaves REM and works the CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID flag.
3963 *
3964 * @param pVCpu The virtual CPU handle.
3965 * @param fNoOutOfSyncSels This is @c false if there are out of sync
3966 * registers.
3967 */
3968VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
3969{
3970 Assert(!pVCpu->cpum.s.fRawEntered);
3971 Assert(pVCpu->cpum.s.fRemEntered);
3972
3973 if (fNoOutOfSyncSels)
3974 pVCpu->cpum.s.fChanged &= ~CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
3975 else
3976 pVCpu->cpum.s.fChanged |= ~CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
3977
3978 pVCpu->cpum.s.fRemEntered = false;
3979}
3980
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette