VirtualBox

source: vbox/trunk/src/VBox/VMM/MM.cpp@ 18672

Last change on this file since 18672 was 18665, checked in by vboxsync, 16 years ago

VMM: Clean out the VBOX_WITH_NEW_PHYS_CODE #ifdefs. (part 1)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 33.1 KB
Line 
1/* $Id: MM.cpp 18665 2009-04-02 19:44:18Z vboxsync $ */
2/** @file
3 * MM - Memory Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_mm MM - The Memory Manager
24 *
25 * The memory manager is in charge of the following memory:
26 * - Hypervisor Memory Area (HMA) - Address space management.
27 * - Hypervisor Heap - A memory heap that lives in all contexts.
28 * - Tagged ring-3 heap.
29 * - Page pools - Primarily used by PGM for shadow page tables.
30 * - Locked process memory - Guest RAM and other. (reduce/obsolete this)
31 * - Physical guest memory (RAM & ROM) - Moving to PGM. (obsolete this)
32 *
33 * The global memory manager (GMM) is the global counter part / partner of MM.
34 * MM will provide therefore ring-3 callable interfaces for some of the GMM APIs
35 * related to resource tracking (PGM is the user).
36 *
37 * @see grp_mm
38 *
39 *
40 * @section sec_mm_hma Hypervisor Memory Area
41 *
42 * The HMA is used when executing in raw-mode. We borrow, with the help of
43 * PGMMap, some unused space (one or more page directory entries to be precise)
44 * in the guest's virtual memory context. PGM will monitor the guest's virtual
45 * address space for changes and relocate the HMA when required.
46 *
47 * To give some idea what's in the HMA, study the 'info hma' output:
48 * @verbatim
49VBoxDbg> info hma
50Hypervisor Memory Area (HMA) Layout: Base 00000000a0000000, 0x00800000 bytes
5100000000a05cc000-00000000a05cd000 DYNAMIC fence
5200000000a05c4000-00000000a05cc000 DYNAMIC Dynamic mapping
5300000000a05c3000-00000000a05c4000 DYNAMIC fence
5400000000a05b8000-00000000a05c3000 DYNAMIC Paging
5500000000a05b6000-00000000a05b8000 MMIO2 0000000000000000 PCNetShMem
5600000000a0536000-00000000a05b6000 MMIO2 0000000000000000 VGA VRam
5700000000a0523000-00000000a0536000 00002aaab3d0c000 LOCKED autofree alloc once (PDM_DEVICE)
5800000000a0522000-00000000a0523000 DYNAMIC fence
5900000000a051e000-00000000a0522000 00002aaab36f5000 LOCKED autofree VBoxDD2GC.gc
6000000000a051d000-00000000a051e000 DYNAMIC fence
6100000000a04eb000-00000000a051d000 00002aaab36c3000 LOCKED autofree VBoxDDGC.gc
6200000000a04ea000-00000000a04eb000 DYNAMIC fence
6300000000a04e9000-00000000a04ea000 00002aaab36c2000 LOCKED autofree ram range (High ROM Region)
6400000000a04e8000-00000000a04e9000 DYNAMIC fence
6500000000a040e000-00000000a04e8000 00002aaab2e6d000 LOCKED autofree VMMGC.gc
6600000000a0208000-00000000a040e000 00002aaab2c67000 LOCKED autofree alloc once (PATM)
6700000000a01f7000-00000000a0208000 00002aaaab92d000 LOCKED autofree alloc once (SELM)
6800000000a01e7000-00000000a01f7000 00002aaaab5e8000 LOCKED autofree alloc once (SELM)
6900000000a01e6000-00000000a01e7000 DYNAMIC fence
7000000000a01e5000-00000000a01e6000 00002aaaab5e7000 HCPHYS 00000000c363c000 Core Code
7100000000a01e4000-00000000a01e5000 DYNAMIC fence
7200000000a01e3000-00000000a01e4000 00002aaaaab26000 HCPHYS 00000000619cf000 GIP
7300000000a01a2000-00000000a01e3000 00002aaaabf32000 LOCKED autofree alloc once (PGM_PHYS)
7400000000a016b000-00000000a01a2000 00002aaab233f000 LOCKED autofree alloc once (PGM_POOL)
7500000000a016a000-00000000a016b000 DYNAMIC fence
7600000000a0165000-00000000a016a000 DYNAMIC CR3 mapping
7700000000a0164000-00000000a0165000 DYNAMIC fence
7800000000a0024000-00000000a0164000 00002aaab215f000 LOCKED autofree Heap
7900000000a0023000-00000000a0024000 DYNAMIC fence
8000000000a0001000-00000000a0023000 00002aaab1d24000 LOCKED pages VM
8100000000a0000000-00000000a0001000 DYNAMIC fence
82 @endverbatim
83 *
84 *
85 * @section sec_mm_hyperheap Hypervisor Heap
86 *
87 * The heap is accessible from ring-3, ring-0 and the raw-mode context. That
88 * said, it's not necessarily mapped into ring-0 on if that's possible since we
89 * don't wish to waste kernel address space without a good reason.
90 *
91 * Allocations within the heap are always in the same relative position in all
92 * contexts, so, it's possible to use offset based linking. In fact, the heap is
93 * internally using offset based linked lists tracking heap blocks. We use
94 * offset linked AVL trees and lists in a lot of places where share structures
95 * between RC, R3 and R0, so this is a strict requirement of the heap. However
96 * this means that we cannot easily extend the heap since the extension won't
97 * necessarily be in the continuation of the current heap memory in all (or any)
98 * context.
99 *
100 * All allocations are tagged. Per tag allocation statistics will be maintaing
101 * and exposed thru STAM when VBOX_WITH_STATISTICS is defined.
102 *
103 *
104 * @section sec_mm_r3heap Tagged Ring-3 Heap
105 *
106 * The ring-3 heap is a wrapper around the RTMem API adding allocation
107 * statistics and automatic cleanup on VM destruction.
108 *
109 * Per tag allocation statistics will be maintaing and exposed thru STAM when
110 * VBOX_WITH_STATISTICS is defined.
111 *
112 *
113 * @section sec_mm_page Page Pool
114 *
115 * The MM manages a page pool from which other components can allocate locked,
116 * page aligned and page sized memory objects. The pool provides facilities to
117 * convert back and forth between (host) physical and virtual addresses (within
118 * the pool of course). Several specialized interfaces are provided for the most
119 * common alloctions and convertions to save the caller from bothersome casting
120 * and extra parameter passing.
121 *
122 *
123 * @section sec_mm_locked Locked Process Memory
124 *
125 * MM manages the locked process memory. This is used for a bunch of things
126 * (count the LOCKED entries in the'info hma' output found in @ref sec_mm_hma),
127 * but the main consumer of memory is currently for guest RAM. There is an
128 * ongoing rewrite that will move all the guest RAM allocation to PGM and
129 * GMM.
130 *
131 * The locking of memory is something doing in cooperation with the VirtualBox
132 * support driver, SUPDrv (aka. VBoxDrv), thru the support library API,
133 * SUPR3 (aka. SUPLib).
134 *
135 *
136 * @section sec_mm_phys Physical Guest Memory
137 *
138 * MM is currently managing the physical memory for the guest. It relies heavily
139 * on PGM for this. There is an ongoing rewrite that will move this to PGM. (The
140 * rewrite is driven by the need for more flexible guest ram allocation, but
141 * also motivated by the fact that MMPhys is just adding stupid bureaucracy and
142 * that MMR3PhysReserve is a totally weird artifact that must go away.)
143 *
144 */
145
146
147/*******************************************************************************
148* Header Files *
149*******************************************************************************/
150#define LOG_GROUP LOG_GROUP_MM
151#include <VBox/mm.h>
152#include <VBox/pgm.h>
153#include <VBox/cfgm.h>
154#include <VBox/ssm.h>
155#include <VBox/gmm.h>
156#include "MMInternal.h"
157#include <VBox/vm.h>
158#include <VBox/uvm.h>
159#include <VBox/err.h>
160#include <VBox/param.h>
161
162#include <VBox/log.h>
163#include <iprt/alloc.h>
164#include <iprt/assert.h>
165#include <iprt/string.h>
166
167
168/*******************************************************************************
169* Defined Constants And Macros *
170*******************************************************************************/
171/** The current saved state versino of MM. */
172#define MM_SAVED_STATE_VERSION 2
173
174
175/*******************************************************************************
176* Internal Functions *
177*******************************************************************************/
178static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM);
179static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
180
181
182
183
184/**
185 * Initializes the MM members of the UVM.
186 *
187 * This is currently only the ring-3 heap.
188 *
189 * @returns VBox status code.
190 * @param pUVM Pointer to the user mode VM structure.
191 */
192VMMR3DECL(int) MMR3InitUVM(PUVM pUVM)
193{
194 /*
195 * Assert sizes and order.
196 */
197 AssertCompile(sizeof(pUVM->mm.s) <= sizeof(pUVM->mm.padding));
198 AssertRelease(sizeof(pUVM->mm.s) <= sizeof(pUVM->mm.padding));
199 Assert(!pUVM->mm.s.pHeap);
200
201 /*
202 * Init the heap.
203 */
204 return mmR3HeapCreateU(pUVM, &pUVM->mm.s.pHeap);
205}
206
207
208/**
209 * Initializes the MM.
210 *
211 * MM is managing the virtual address space (among other things) and
212 * setup the hypvervisor memory area mapping in the VM structure and
213 * the hypvervisor alloc-only-heap. Assuming the current init order
214 * and components the hypvervisor memory area looks like this:
215 * -# VM Structure.
216 * -# Hypervisor alloc only heap (also call Hypervisor memory region).
217 * -# Core code.
218 *
219 * MM determins the virtual address of the hypvervisor memory area by
220 * checking for location at previous run. If that property isn't available
221 * it will choose a default starting location, currently 0xa0000000.
222 *
223 * @returns VBox status code.
224 * @param pVM The VM to operate on.
225 */
226VMMR3DECL(int) MMR3Init(PVM pVM)
227{
228 LogFlow(("MMR3Init\n"));
229
230 /*
231 * Assert alignment, sizes and order.
232 */
233 AssertRelease(!(RT_OFFSETOF(VM, mm.s) & 31));
234 AssertRelease(sizeof(pVM->mm.s) <= sizeof(pVM->mm.padding));
235 AssertMsg(pVM->mm.s.offVM == 0, ("Already initialized!\n"));
236
237 /*
238 * Init the structure.
239 */
240 pVM->mm.s.offVM = RT_OFFSETOF(VM, mm);
241 pVM->mm.s.offLookupHyper = NIL_OFFSET;
242
243 /*
244 * Init the page pool.
245 */
246 int rc = mmR3PagePoolInit(pVM);
247 if (RT_SUCCESS(rc))
248 {
249 /*
250 * Init the hypervisor related stuff.
251 */
252 rc = mmR3HyperInit(pVM);
253 if (RT_SUCCESS(rc))
254 {
255 /*
256 * Register the saved state data unit.
257 */
258 rc = SSMR3RegisterInternal(pVM, "mm", 1, MM_SAVED_STATE_VERSION, sizeof(uint32_t) * 2,
259 NULL, mmR3Save, NULL,
260 NULL, mmR3Load, NULL);
261 if (RT_SUCCESS(rc))
262 return rc;
263
264 /* .... failure .... */
265 }
266 }
267 MMR3Term(pVM);
268 return rc;
269}
270
271
272/**
273 * Initializes the MM parts which depends on PGM being initialized.
274 *
275 * @returns VBox status code.
276 * @param pVM The VM to operate on.
277 * @remark No cleanup necessary since MMR3Term() will be called on failure.
278 */
279VMMR3DECL(int) MMR3InitPaging(PVM pVM)
280{
281 LogFlow(("MMR3InitPaging:\n"));
282
283 /*
284 * Query the CFGM values.
285 */
286 int rc;
287 PCFGMNODE pMMCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "MM");
288 if (!pMMCfg)
289 {
290 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "MM", &pMMCfg);
291 AssertRCReturn(rc, rc);
292 }
293
294 /** @cfgm{RamPreAlloc, boolean, false}
295 * Indicates whether the base RAM should all be allocated before starting
296 * the VM (default), or if it should be allocated when first written to.
297 */
298 bool fPreAlloc;
299 rc = CFGMR3QueryBool(CFGMR3GetRoot(pVM), "RamPreAlloc", &fPreAlloc);
300 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
301 fPreAlloc = false;
302 else
303 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"RamPreAlloc\", rc=%Rrc.\n", rc), rc);
304
305 /** @cfgm{RamSize, uint64_t, 0, 16TB, 0}
306 * Specifies the size of the base RAM that is to be set up during
307 * VM initialization.
308 */
309 uint64_t cbRam;
310 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
311 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
312 cbRam = 0;
313 else
314 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc), rc);
315 AssertLogRelMsg(!(cbRam & ~X86_PTE_PAE_PG_MASK), ("%RGp X86_PTE_PAE_PG_MASK=%RX64\n", cbRam, X86_PTE_PAE_PG_MASK));
316 AssertLogRelMsgReturn(cbRam <= GMM_GCPHYS_LAST, ("cbRam=%RGp GMM_GCPHYS_LAST=%RX64\n", cbRam, GMM_GCPHYS_LAST), VERR_OUT_OF_RANGE);
317 cbRam &= X86_PTE_PAE_PG_MASK;
318 pVM->mm.s.cbRamBase = cbRam;
319
320 /** @cfgm{RamHoleSize, uint32_t, 0, 4032MB, 512MB}
321 * Specifies the size of the memory hole. The memory hole is used
322 * to avoid mapping RAM to the range normally used for PCI memory regions.
323 * Must be aligned on a 4MB boundrary. */
324 uint32_t cbRamHole;
325 rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
326 AssertLogRelMsgRCReturn(rc, ("Configuration error: Failed to query integer \"RamHoleSize\", rc=%Rrc.\n", rc), rc);
327 AssertLogRelMsgReturn(cbRamHole <= 4032U * _1M,
328 ("Configuration error: \"RamHoleSize\"=%#RX32 is too large.\n", cbRamHole), VERR_OUT_OF_RANGE);
329 AssertLogRelMsgReturn(cbRamHole > 16 * _1M,
330 ("Configuration error: \"RamHoleSize\"=%#RX32 is too large.\n", cbRamHole), VERR_OUT_OF_RANGE);
331 AssertLogRelMsgReturn(!(cbRamHole & (_4M - 1)),
332 ("Configuration error: \"RamHoleSize\"=%#RX32 is misaligned.\n", cbRamHole), VERR_OUT_OF_RANGE);
333 uint64_t const offRamHole = _4G - cbRamHole;
334 if (cbRam < offRamHole)
335 Log(("MM: %RU64 bytes of RAM%s\n", cbRam, fPreAlloc ? " (PreAlloc)" : ""));
336 else
337 Log(("MM: %RU64 bytes of RAM%s with a hole at %RU64 up to 4GB.\n", cbRam, fPreAlloc ? " (PreAlloc)" : "", offRamHole));
338
339 /** @cfgm{MM/Policy, string, no overcommitment}
340 * Specifies the policy to use when reserving memory for this VM. The recognized
341 * value is 'no overcommitment' (default). See GMMPOLICY.
342 */
343 GMMOCPOLICY enmOcPolicy;
344 char sz[64];
345 rc = CFGMR3QueryString(CFGMR3GetRoot(pVM), "Policy", sz, sizeof(sz));
346 if (RT_SUCCESS(rc))
347 {
348 if ( !RTStrICmp(sz, "no_oc")
349 || !RTStrICmp(sz, "no overcommitment"))
350 enmOcPolicy = GMMOCPOLICY_NO_OC;
351 else
352 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, "Unknown \"MM/Policy\" value \"%s\"", sz);
353 }
354 else if (rc == VERR_CFGM_VALUE_NOT_FOUND)
355 enmOcPolicy = GMMOCPOLICY_NO_OC;
356 else
357 AssertMsgRCReturn(rc, ("Configuration error: Failed to query string \"MM/Policy\", rc=%Rrc.\n", rc), rc);
358
359 /** @cfgm{MM/Priority, string, normal}
360 * Specifies the memory priority of this VM. The priority comes into play when the
361 * system is overcommitted and the VMs needs to be milked for memory. The recognized
362 * values are 'low', 'normal' (default) and 'high'. See GMMPRIORITY.
363 */
364 GMMPRIORITY enmPriority;
365 rc = CFGMR3QueryString(CFGMR3GetRoot(pVM), "Priority", sz, sizeof(sz));
366 if (RT_SUCCESS(rc))
367 {
368 if (!RTStrICmp(sz, "low"))
369 enmPriority = GMMPRIORITY_LOW;
370 else if (!RTStrICmp(sz, "normal"))
371 enmPriority = GMMPRIORITY_NORMAL;
372 else if (!RTStrICmp(sz, "high"))
373 enmPriority = GMMPRIORITY_HIGH;
374 else
375 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, "Unknown \"MM/Priority\" value \"%s\"", sz);
376 }
377 else if (rc == VERR_CFGM_VALUE_NOT_FOUND)
378 enmPriority = GMMPRIORITY_NORMAL;
379 else
380 AssertMsgRCReturn(rc, ("Configuration error: Failed to query string \"MM/Priority\", rc=%Rrc.\n", rc), rc);
381
382 /*
383 * Make the initial memory reservation with GMM.
384 */
385 uint64_t cBasePages = (cbRam >> PAGE_SHIFT) + pVM->mm.s.cBasePages;
386 rc = GMMR3InitialReservation(pVM,
387 RT_MAX(cBasePages + pVM->mm.s.cHandyPages, 1),
388 RT_MAX(pVM->mm.s.cShadowPages, 1),
389 RT_MAX(pVM->mm.s.cFixedPages, 1),
390 enmOcPolicy,
391 enmPriority);
392 if (RT_FAILURE(rc))
393 {
394 if (rc == VERR_GMM_MEMORY_RESERVATION_DECLINED)
395 return VMSetError(pVM, rc, RT_SRC_POS,
396 N_("Insufficient free memory to start the VM (cbRam=%#RX64 enmOcPolicy=%d enmPriority=%d)"),
397 cbRam, enmOcPolicy, enmPriority);
398 return VMSetError(pVM, rc, RT_SRC_POS, "GMMR3InitialReservation(,%#RX64,0,0,%d,%d)",
399 cbRam >> PAGE_SHIFT, enmOcPolicy, enmPriority);
400 }
401
402 /*
403 * If RamSize is 0 we're done now.
404 */
405 if (cbRam < PAGE_SIZE)
406 {
407 Log(("MM: No RAM configured\n"));
408 return VINF_SUCCESS;
409 }
410
411 /*
412 * Setup the base ram (PGM).
413 */
414 if (cbRam > offRamHole)
415 {
416 rc = PGMR3PhysRegisterRam(pVM, 0, offRamHole, "Base RAM");
417 if (RT_SUCCESS(rc))
418 rc = PGMR3PhysRegisterRam(pVM, _4G, cbRam - offRamHole, "Above 4GB Base RAM");
419 }
420 else
421 rc = PGMR3PhysRegisterRam(pVM, 0, RT_MIN(cbRam, offRamHole), "Base RAM");
422 if ( RT_SUCCESS(rc)
423 && fPreAlloc)
424 {
425 /** @todo RamPreAlloc should be handled at the very end of the VM creation. (lazy bird) */
426 return VM_SET_ERROR(pVM, VERR_NOT_IMPLEMENTED, "TODO: RamPreAlloc");
427 }
428
429 /*
430 * Enabled mmR3UpdateReservation here since we don't want the
431 * PGMR3PhysRegisterRam calls above mess things up.
432 */
433 pVM->mm.s.fDoneMMR3InitPaging = true;
434 AssertMsg(pVM->mm.s.cBasePages == cBasePages || RT_FAILURE(rc), ("%RX64 != %RX64\n", pVM->mm.s.cBasePages, cBasePages));
435
436 LogFlow(("MMR3InitPaging: returns %Rrc\n", rc));
437 return rc;
438}
439
440
441/**
442 * Terminates the MM.
443 *
444 * Termination means cleaning up and freeing all resources,
445 * the VM it self is at this point powered off or suspended.
446 *
447 * @returns VBox status code.
448 * @param pVM The VM to operate on.
449 */
450VMMR3DECL(int) MMR3Term(PVM pVM)
451{
452 /*
453 * Destroy the page pool. (first as it used the hyper heap)
454 */
455 mmR3PagePoolTerm(pVM);
456
457 /*
458 * Release locked memory.
459 * (Associated record are released by the heap.)
460 */
461 PMMLOCKEDMEM pLockedMem = pVM->mm.s.pLockedMem;
462 while (pLockedMem)
463 {
464 int rc = SUPPageUnlock(pLockedMem->pv);
465 AssertMsgRC(rc, ("SUPPageUnlock(%p) -> rc=%d\n", pLockedMem->pv, rc));
466 switch (pLockedMem->eType)
467 {
468 case MM_LOCKED_TYPE_HYPER:
469 rc = SUPPageFree(pLockedMem->pv, pLockedMem->cb >> PAGE_SHIFT);
470 AssertMsgRC(rc, ("SUPPageFree(%p) -> rc=%d\n", pLockedMem->pv, rc));
471 break;
472 case MM_LOCKED_TYPE_HYPER_NOFREE:
473 case MM_LOCKED_TYPE_HYPER_PAGES:
474 case MM_LOCKED_TYPE_PHYS:
475 /* nothing to do. */
476 break;
477 }
478 /* next */
479 pLockedMem = pLockedMem->pNext;
480 }
481
482 /*
483 * Zero stuff to detect after termination use of the MM interface
484 */
485 pVM->mm.s.offLookupHyper = NIL_OFFSET;
486 pVM->mm.s.pLockedMem = NULL;
487 pVM->mm.s.pHyperHeapR3 = NULL; /* freed above. */
488 pVM->mm.s.pHyperHeapR0 = NIL_RTR0PTR; /* freed above. */
489 pVM->mm.s.pHyperHeapRC = NIL_RTRCPTR; /* freed above. */
490 pVM->mm.s.offVM = 0; /* init assertion on this */
491
492 return VINF_SUCCESS;
493}
494
495
496/**
497 * Terminates the UVM part of MM.
498 *
499 * Termination means cleaning up and freeing all resources,
500 * the VM it self is at this point powered off or suspended.
501 *
502 * @returns VBox status code.
503 * @param pUVM Pointer to the user mode VM structure.
504 */
505VMMR3DECL(void) MMR3TermUVM(PUVM pUVM)
506{
507 /*
508 * Destroy the heap.
509 */
510 mmR3HeapDestroy(pUVM->mm.s.pHeap);
511 pUVM->mm.s.pHeap = NULL;
512}
513
514
515/**
516 * Reset notification.
517 *
518 * @param pVM The VM handle.
519 */
520VMMR3DECL(void) MMR3Reset(PVM pVM)
521{
522 /* nothing to do anylonger. */
523}
524
525
526/**
527 * Execute state save operation.
528 *
529 * @returns VBox status code.
530 * @param pVM VM Handle.
531 * @param pSSM SSM operation handle.
532 */
533static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM)
534{
535 LogFlow(("mmR3Save:\n"));
536
537 /* (PGM saves the physical memory.) */
538 SSMR3PutU64(pSSM, pVM->mm.s.cBasePages);
539 return SSMR3PutU64(pSSM, pVM->mm.s.cbRamBase);
540}
541
542
543/**
544 * Execute state load operation.
545 *
546 * @returns VBox status code.
547 * @param pVM VM Handle.
548 * @param pSSM SSM operation handle.
549 * @param u32Version Data layout version.
550 */
551static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
552{
553 LogFlow(("mmR3Load:\n"));
554
555 /*
556 * Validate version.
557 */
558 if ( SSM_VERSION_MAJOR_CHANGED(u32Version, MM_SAVED_STATE_VERSION)
559 || !u32Version)
560 {
561 AssertMsgFailed(("mmR3Load: Invalid version u32Version=%d!\n", u32Version));
562 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
563 }
564
565 /*
566 * Check the cBasePages and cbRamBase values.
567 */
568 int rc;
569 RTUINT cb1;
570
571 /* cBasePages (ignored) */
572 uint64_t cPages;
573 if (u32Version >= 2)
574 rc = SSMR3GetU64(pSSM, &cPages);
575 else
576 {
577 rc = SSMR3GetUInt(pSSM, &cb1);
578 cPages = cb1 >> PAGE_SHIFT;
579 }
580 if (RT_FAILURE(rc))
581 return rc;
582
583 /* cbRamBase */
584 uint64_t cb;
585 if (u32Version != 1)
586 rc = SSMR3GetU64(pSSM, &cb);
587 else
588 {
589 rc = SSMR3GetUInt(pSSM, &cb1);
590 cb = cb1;
591 }
592 if (RT_FAILURE(rc))
593 return rc;
594 AssertLogRelMsgReturn(cb == pVM->mm.s.cbRamBase,
595 ("Memory configuration has changed. cbRamBase=%#RX64 save=%#RX64\n", pVM->mm.s.cbRamBase, cb),
596 VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH);
597
598 /* (PGM restores the physical memory.) */
599 return rc;
600}
601
602
603/**
604 * Updates GMM with memory reservation changes.
605 *
606 * Called when MM::cbRamRegistered, MM::cShadowPages or MM::cFixedPages changes.
607 *
608 * @returns VBox status code - see GMMR0UpdateReservation.
609 * @param pVM The shared VM structure.
610 */
611int mmR3UpdateReservation(PVM pVM)
612{
613 VM_ASSERT_EMT(pVM);
614 if (pVM->mm.s.fDoneMMR3InitPaging)
615 return GMMR3UpdateReservation(pVM,
616 RT_MAX(pVM->mm.s.cBasePages + pVM->mm.s.cHandyPages, 1),
617 RT_MAX(pVM->mm.s.cShadowPages, 1),
618 RT_MAX(pVM->mm.s.cFixedPages, 1));
619 return VINF_SUCCESS;
620}
621
622
623/**
624 * Interface for PGM to increase the reservation of RAM and ROM pages.
625 *
626 * This can be called before MMR3InitPaging.
627 *
628 * @returns VBox status code. Will set VM error on failure.
629 * @param pVM The shared VM structure.
630 * @param cAddBasePages The number of pages to add.
631 */
632VMMR3DECL(int) MMR3IncreaseBaseReservation(PVM pVM, uint64_t cAddBasePages)
633{
634 uint64_t cOld = pVM->mm.s.cBasePages;
635 pVM->mm.s.cBasePages += cAddBasePages;
636 LogFlow(("MMR3IncreaseBaseReservation: +%RU64 (%RU64 -> %RU64\n", cAddBasePages, cOld, pVM->mm.s.cBasePages));
637 int rc = mmR3UpdateReservation(pVM);
638 if (RT_FAILURE(rc))
639 {
640 VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserved physical memory for the RAM (%#RX64 -> %#RX64 + %#RX32)"),
641 cOld, pVM->mm.s.cBasePages, pVM->mm.s.cHandyPages);
642 pVM->mm.s.cBasePages = cOld;
643 }
644 return rc;
645}
646
647
648/**
649 * Interface for PGM to make reservations for handy pages in addition to the
650 * base memory.
651 *
652 * This can be called before MMR3InitPaging.
653 *
654 * @returns VBox status code. Will set VM error on failure.
655 * @param pVM The shared VM structure.
656 * @param cHandyPages The number of handy pages.
657 */
658VMMR3DECL(int) MMR3ReserveHandyPages(PVM pVM, uint32_t cHandyPages)
659{
660 AssertReturn(!pVM->mm.s.cHandyPages, VERR_WRONG_ORDER);
661
662 pVM->mm.s.cHandyPages = cHandyPages;
663 LogFlow(("MMR3ReserveHandyPages: %RU32 (base %RU64)\n", pVM->mm.s.cHandyPages, pVM->mm.s.cBasePages));
664 int rc = mmR3UpdateReservation(pVM);
665 if (RT_FAILURE(rc))
666 {
667 VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserved physical memory for the RAM (%#RX64 + %#RX32)"),
668 pVM->mm.s.cBasePages, pVM->mm.s.cHandyPages);
669 pVM->mm.s.cHandyPages = 0;
670 }
671 return rc;
672}
673
674
675/**
676 * Interface for PGM to adjust the reservation of fixed pages.
677 *
678 * This can be called before MMR3InitPaging.
679 *
680 * @returns VBox status code. Will set VM error on failure.
681 * @param pVM The shared VM structure.
682 * @param cDeltaFixedPages The number of pages to add (positive) or subtract (negative).
683 * @param pszDesc Some description associated with the reservation.
684 */
685VMMR3DECL(int) MMR3AdjustFixedReservation(PVM pVM, int32_t cDeltaFixedPages, const char *pszDesc)
686{
687 const uint32_t cOld = pVM->mm.s.cFixedPages;
688 pVM->mm.s.cFixedPages += cDeltaFixedPages;
689 LogFlow(("MMR3AdjustFixedReservation: %d (%u -> %u)\n", cDeltaFixedPages, cOld, pVM->mm.s.cFixedPages));
690 int rc = mmR3UpdateReservation(pVM);
691 if (RT_FAILURE(rc))
692 {
693 VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserve physical memory (%#x -> %#x; %s)"),
694 cOld, pVM->mm.s.cFixedPages, pszDesc);
695 pVM->mm.s.cFixedPages = cOld;
696 }
697 return rc;
698}
699
700
701/**
702 * Interface for PGM to update the reservation of shadow pages.
703 *
704 * This can be called before MMR3InitPaging.
705 *
706 * @returns VBox status code. Will set VM error on failure.
707 * @param pVM The shared VM structure.
708 * @param cShadowPages The new page count.
709 */
710VMMR3DECL(int) MMR3UpdateShadowReservation(PVM pVM, uint32_t cShadowPages)
711{
712 const uint32_t cOld = pVM->mm.s.cShadowPages;
713 pVM->mm.s.cShadowPages = cShadowPages;
714 LogFlow(("MMR3UpdateShadowReservation: %u -> %u\n", cOld, pVM->mm.s.cShadowPages));
715 int rc = mmR3UpdateReservation(pVM);
716 if (RT_FAILURE(rc))
717 {
718 VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserve physical memory for shadow page tables (%#x -> %#x)"), cOld, pVM->mm.s.cShadowPages);
719 pVM->mm.s.cShadowPages = cOld;
720 }
721 return rc;
722}
723
724
725/**
726 * Locks physical memory which backs a virtual memory range (HC) adding
727 * the required records to the pLockedMem list.
728 *
729 * @returns VBox status code.
730 * @param pVM The VM handle.
731 * @param pv Pointer to memory range which shall be locked down.
732 * This pointer is page aligned.
733 * @param cb Size of memory range (in bytes). This size is page aligned.
734 * @param eType Memory type.
735 * @param ppLockedMem Where to store the pointer to the created locked memory record.
736 * This is optional, pass NULL if not used.
737 * @param fSilentFailure Don't raise an error when unsuccessful. Upper layer with deal with it.
738 */
739int mmR3LockMem(PVM pVM, void *pv, size_t cb, MMLOCKEDTYPE eType, PMMLOCKEDMEM *ppLockedMem, bool fSilentFailure)
740{
741 Assert(RT_ALIGN_P(pv, PAGE_SIZE) == pv);
742 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
743
744 if (ppLockedMem)
745 *ppLockedMem = NULL;
746
747 /*
748 * Allocate locked mem structure.
749 */
750 unsigned cPages = (unsigned)(cb >> PAGE_SHIFT);
751 AssertReturn(cPages == (cb >> PAGE_SHIFT), VERR_OUT_OF_RANGE);
752 PMMLOCKEDMEM pLockedMem = (PMMLOCKEDMEM)MMR3HeapAlloc(pVM, MM_TAG_MM, RT_OFFSETOF(MMLOCKEDMEM, aPhysPages[cPages]));
753 if (!pLockedMem)
754 return VERR_NO_MEMORY;
755 pLockedMem->pv = pv;
756 pLockedMem->cb = cb;
757 pLockedMem->eType = eType;
758 memset(&pLockedMem->u, 0, sizeof(pLockedMem->u));
759
760 /*
761 * Lock the memory.
762 */
763 int rc = SUPPageLock(pv, cPages, &pLockedMem->aPhysPages[0]);
764 if (RT_SUCCESS(rc))
765 {
766 /*
767 * Setup the reserved field.
768 */
769 PSUPPAGE pPhysPage = &pLockedMem->aPhysPages[0];
770 for (unsigned c = cPages; c > 0; c--, pPhysPage++)
771 pPhysPage->uReserved = (RTHCUINTPTR)pLockedMem;
772
773 /*
774 * Insert into the list.
775 *
776 * ASSUME no protected needed here as only one thread in the system can possibly
777 * be doing this. No other threads will walk this list either we assume.
778 */
779 pLockedMem->pNext = pVM->mm.s.pLockedMem;
780 pVM->mm.s.pLockedMem = pLockedMem;
781 /* Set return value. */
782 if (ppLockedMem)
783 *ppLockedMem = pLockedMem;
784 }
785 else
786 {
787 AssertMsgFailed(("SUPPageLock failed with rc=%d\n", rc));
788 MMR3HeapFree(pLockedMem);
789 if (!fSilentFailure)
790 rc = VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to lock %d bytes of host memory (out of memory)"), cb);
791 }
792
793 return rc;
794}
795
796
797/**
798 * Maps a part of or an entire locked memory region into the guest context.
799 *
800 * @returns VBox status.
801 * God knows what happens if we fail...
802 * @param pVM VM handle.
803 * @param pLockedMem Locked memory structure.
804 * @param Addr GC Address where to start the mapping.
805 * @param iPage Page number in the locked memory region.
806 * @param cPages Number of pages to map.
807 * @param fFlags See the fFlags argument of PGR3Map().
808 */
809int mmR3MapLocked(PVM pVM, PMMLOCKEDMEM pLockedMem, RTGCPTR Addr, unsigned iPage, size_t cPages, unsigned fFlags)
810{
811 /*
812 * Adjust ~0 argument
813 */
814 if (cPages == ~(size_t)0)
815 cPages = (pLockedMem->cb >> PAGE_SHIFT) - iPage;
816 Assert(cPages != ~0U);
817 /* no incorrect arguments are accepted */
818 Assert(RT_ALIGN_GCPT(Addr, PAGE_SIZE, RTGCPTR) == Addr);
819 AssertMsg(iPage < (pLockedMem->cb >> PAGE_SHIFT), ("never even think about giving me a bad iPage(=%d)\n", iPage));
820 AssertMsg(iPage + cPages <= (pLockedMem->cb >> PAGE_SHIFT), ("never even think about giving me a bad cPages(=%d)\n", cPages));
821
822 /*
823 * Map the pages.
824 */
825 PSUPPAGE pPhysPage = &pLockedMem->aPhysPages[iPage];
826 while (cPages)
827 {
828 RTHCPHYS HCPhys = pPhysPage->Phys;
829 int rc = PGMMap(pVM, Addr, HCPhys, PAGE_SIZE, fFlags);
830 if (RT_FAILURE(rc))
831 {
832 /** @todo how the hell can we do a proper bailout here. */
833 return rc;
834 }
835
836 /* next */
837 cPages--;
838 iPage++;
839 pPhysPage++;
840 Addr += PAGE_SIZE;
841 }
842
843 return VINF_SUCCESS;
844}
845
846
847/**
848 * Convert HC Physical address to HC Virtual address.
849 *
850 * @returns VBox status.
851 * @param pVM VM handle.
852 * @param HCPhys The host context virtual address.
853 * @param ppv Where to store the resulting address.
854 * @thread The Emulation Thread.
855 *
856 * @remarks Avoid whenever possible.
857 * Intended for the debugger facility only.
858 * @todo Rename to indicate the special usage.
859 */
860VMMR3DECL(int) MMR3HCPhys2HCVirt(PVM pVM, RTHCPHYS HCPhys, void **ppv)
861{
862 /*
863 * Try page tables.
864 */
865 int rc = MMPagePhys2PageTry(pVM, HCPhys, ppv);
866 if (RT_SUCCESS(rc))
867 return rc;
868
869 /*
870 * Iterate the locked memory - very slow.
871 */
872 uint32_t off = HCPhys & PAGE_OFFSET_MASK;
873 HCPhys &= X86_PTE_PAE_PG_MASK;
874 for (PMMLOCKEDMEM pCur = pVM->mm.s.pLockedMem; pCur; pCur = pCur->pNext)
875 {
876 size_t iPage = pCur->cb >> PAGE_SHIFT;
877 while (iPage-- > 0)
878 if ((pCur->aPhysPages[iPage].Phys & X86_PTE_PAE_PG_MASK) == HCPhys)
879 {
880 *ppv = (char *)pCur->pv + (iPage << PAGE_SHIFT) + off;
881 return VINF_SUCCESS;
882 }
883 }
884 /* give up */
885 return VERR_INVALID_POINTER;
886}
887
888
889/**
890 * Read memory from GC virtual address using the current guest CR3.
891 *
892 * @returns VBox status.
893 * @param pVM VM handle.
894 * @param pvDst Destination address (HC of course).
895 * @param GCPtr GC virtual address.
896 * @param cb Number of bytes to read.
897 *
898 * @remarks Intended for the debugger facility only.
899 * @todo Move to DBGF, it's only selecting which functions to use!
900 */
901VMMR3DECL(int) MMR3ReadGCVirt(PVM pVM, void *pvDst, RTGCPTR GCPtr, size_t cb)
902{
903 if (GCPtr - pVM->mm.s.pvHyperAreaGC < pVM->mm.s.cbHyperArea)
904 return MMR3HyperReadGCVirt(pVM, pvDst, GCPtr, cb);
905 return PGMPhysSimpleReadGCPtr(pVM, pvDst, GCPtr, cb);
906}
907
908
909/**
910 * Write to memory at GC virtual address translated using the current guest CR3.
911 *
912 * @returns VBox status.
913 * @param pVM VM handle.
914 * @param GCPtrDst GC virtual address.
915 * @param pvSrc The source address (HC of course).
916 * @param cb Number of bytes to read.
917 *
918 * @remarks Intended for the debugger facility only.
919 * @todo Move to DBGF, it's only selecting which functions to use!
920 */
921VMMR3DECL(int) MMR3WriteGCVirt(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
922{
923 if (GCPtrDst - pVM->mm.s.pvHyperAreaGC < pVM->mm.s.cbHyperArea)
924 return VERR_ACCESS_DENIED;
925 return PGMPhysSimpleWriteGCPtr(pVM, GCPtrDst, pvSrc, cb);
926}
927
928
929/**
930 * Get the size of the base RAM.
931 * This usually means the size of the first contigous block of physical memory.
932 *
933 * @returns The guest base RAM size.
934 * @param pVM The VM handle.
935 * @thread Any.
936 *
937 * @deprecated
938 */
939VMMR3DECL(uint64_t) MMR3PhysGetRamSize(PVM pVM)
940{
941 return pVM->mm.s.cbRamBase;
942}
943
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette