VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 13232

Last change on this file since 13232 was 13188, checked in by vboxsync, 16 years ago

PGM: polish.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 208.6 KB
Line 
1/* $Id: PGM.cpp 13188 2008-10-11 01:58:30Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location.
81 *
82 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
83 * simplifies switching guest CPU mode and consistency at the cost of more
84 * code to do the work. All memory use for those page tables is located below
85 * 4GB (this includes page tables for guest context mappings).
86 *
87 *
88 * @subsection subsec_pgm_int_gc Guest Context Mappings
89 *
90 * During assignment and relocation of a guest context mapping the intermediate
91 * memory context is used to verify the new location.
92 *
93 * Guest context mappings are currently restricted to below 4GB, for reasons
94 * of simplicity. This may change when we implement AMD64 support.
95 *
96 *
97 *
98 *
99 * @section sec_pgm_misc Misc
100 *
101 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
102 *
103 * The differences between legacy PAE and long mode PAE are:
104 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
105 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
106 * usual meanings while 6 is ignored (AMD). This means that upon switching to
107 * legacy PAE mode we'll have to clear these bits and when going to long mode
108 * they must be set. This applies to both intermediate and shadow contexts,
109 * however we don't need to do it for the intermediate one since we're
110 * executing with CR0.WP at that time.
111 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
112 * a page aligned one is required.
113 *
114 *
115 * @section sec_pgm_handlers Access Handlers
116 *
117 * Placeholder.
118 *
119 *
120 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
121 *
122 * Placeholder.
123 *
124 *
125 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
126 *
127 * We currently implement three types of virtual access handlers: ALL, WRITE
128 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
129 *
130 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
131 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
132 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
133 * rest of this section is going to be about these handlers.
134 *
135 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
136 * how successfull this is gonna be...
137 *
138 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
139 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
140 * and create a new node that is inserted into the AVL tree (range key). Then
141 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
142 *
143 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
144 *
145 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
146 * via the current guest CR3 and update the physical page -> virtual handler
147 * translation. Needless to say, this doesn't exactly scale very well. If any changes
148 * are detected, it will flag a virtual bit update just like we did on registration.
149 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
150 *
151 * 2b. The virtual bit update process will iterate all the pages covered by all the
152 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
153 * virtual handlers on that page.
154 *
155 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
156 * we don't miss any alias mappings of the monitored pages.
157 *
158 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
159 *
160 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
161 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
162 * will call the handlers like in the next step. If the physical mapping has
163 * changed we will - some time in the future - perform a handler callback
164 * (optional) and update the physical -> virtual handler cache.
165 *
166 * 4. \#PF(,write) on a page in the range. This will cause the handler to
167 * be invoked.
168 *
169 * 5. The guest invalidates the page and changes the physical backing or
170 * unmaps it. This should cause the invalidation callback to be invoked
171 * (it might not yet be 100% perfect). Exactly what happens next... is
172 * this where we mess up and end up out of sync for a while?
173 *
174 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
175 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
176 * this handler to NONE and trigger a full PGM resync (basically the same
177 * as int step 1). Which means 2 is executed again.
178 *
179 *
180 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
181 *
182 * There is a bunch of things that needs to be done to make the virtual handlers
183 * work 100% correctly and work more efficiently.
184 *
185 * The first bit hasn't been implemented yet because it's going to slow the
186 * whole mess down even more, and besides it seems to be working reliably for
187 * our current uses. OTOH, some of the optimizations might end up more or less
188 * implementing the missing bits, so we'll see.
189 *
190 * On the optimization side, the first thing to do is to try avoid unnecessary
191 * cache flushing. Then try team up with the shadowing code to track changes
192 * in mappings by means of access to them (shadow in), updates to shadows pages,
193 * invlpg, and shadow PT discarding (perhaps).
194 *
195 * Some idea that have popped up for optimization for current and new features:
196 * - bitmap indicating where there are virtual handlers installed.
197 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
198 * - Further optimize this by min/max (needs min/max avl getters).
199 * - Shadow page table entry bit (if any left)?
200 *
201 */
202
203
204/** @page pg_pgm_phys PGM Physical Guest Memory Management
205 *
206 *
207 * Objectives:
208 * - Guest RAM over-commitment using memory ballooning,
209 * zero pages and general page sharing.
210 * - Moving or mirroring a VM onto a different physical machine.
211 *
212 *
213 * @subsection subsec_pgmPhys_Definitions Definitions
214 *
215 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
216 * machinery assoicated with it.
217 *
218 *
219 *
220 *
221 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
222 *
223 * Initially we map *all* guest memory to the (per VM) zero page, which
224 * means that none of the read functions will cause pages to be allocated.
225 *
226 * Exception, access bit in page tables that have been shared. This must
227 * be handled, but we must also make sure PGMGst*Modify doesn't make
228 * unnecessary modifications.
229 *
230 * Allocation points:
231 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
232 * - Replacing a zero page mapping at \#PF.
233 * - Replacing a shared page mapping at \#PF.
234 * - ROM registration (currently MMR3RomRegister).
235 * - VM restore (pgmR3Load).
236 *
237 * For the first three it would make sense to keep a few pages handy
238 * until we've reached the max memory commitment for the VM.
239 *
240 * For the ROM registration, we know exactly how many pages we need
241 * and will request these from ring-0. For restore, we will save
242 * the number of non-zero pages in the saved state and allocate
243 * them up front. This would allow the ring-0 component to refuse
244 * the request if the isn't sufficient memory available for VM use.
245 *
246 * Btw. for both ROM and restore allocations we won't be requiring
247 * zeroed pages as they are going to be filled instantly.
248 *
249 *
250 * @subsection subsec_pgmPhys_FreePage Freeing a page
251 *
252 * There are a few points where a page can be freed:
253 * - After being replaced by the zero page.
254 * - After being replaced by a shared page.
255 * - After being ballooned by the guest additions.
256 * - At reset.
257 * - At restore.
258 *
259 * When freeing one or more pages they will be returned to the ring-0
260 * component and replaced by the zero page.
261 *
262 * The reasoning for clearing out all the pages on reset is that it will
263 * return us to the exact same state as on power on, and may thereby help
264 * us reduce the memory load on the system. Further it might have a
265 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
266 *
267 * On restore, as mention under the allocation topic, pages should be
268 * freed / allocated depending on how many is actually required by the
269 * new VM state. The simplest approach is to do like on reset, and free
270 * all non-ROM pages and then allocate what we need.
271 *
272 * A measure to prevent some fragmentation, would be to let each allocation
273 * chunk have some affinity towards the VM having allocated the most pages
274 * from it. Also, try make sure to allocate from allocation chunks that
275 * are almost full. Admittedly, both these measures might work counter to
276 * our intentions and its probably not worth putting a lot of effort,
277 * cpu time or memory into this.
278 *
279 *
280 * @subsection subsec_pgmPhys_SharePage Sharing a page
281 *
282 * The basic idea is that there there will be a idle priority kernel
283 * thread walking the non-shared VM pages hashing them and looking for
284 * pages with the same checksum. If such pages are found, it will compare
285 * them byte-by-byte to see if they actually are identical. If found to be
286 * identical it will allocate a shared page, copy the content, check that
287 * the page didn't change while doing this, and finally request both the
288 * VMs to use the shared page instead. If the page is all zeros (special
289 * checksum and byte-by-byte check) it will request the VM that owns it
290 * to replace it with the zero page.
291 *
292 * To make this efficient, we will have to make sure not to try share a page
293 * that will change its contents soon. This part requires the most work.
294 * A simple idea would be to request the VM to write monitor the page for
295 * a while to make sure it isn't modified any time soon. Also, it may
296 * make sense to skip pages that are being write monitored since this
297 * information is readily available to the thread if it works on the
298 * per-VM guest memory structures (presently called PGMRAMRANGE).
299 *
300 *
301 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
302 *
303 * The pages are organized in allocation chunks in ring-0, this is a necessity
304 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
305 * could easily work on a page-by-page basis if we liked. Whether this is possible
306 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
307 * become a problem as part of the idea here is that we wish to return memory to
308 * the host system.
309 *
310 * For instance, starting two VMs at the same time, they will both allocate the
311 * guest memory on-demand and if permitted their page allocations will be
312 * intermixed. Shut down one of the two VMs and it will be difficult to return
313 * any memory to the host system because the page allocation for the two VMs are
314 * mixed up in the same allocation chunks.
315 *
316 * To further complicate matters, when pages are freed because they have been
317 * ballooned or become shared/zero the whole idea is that the page is supposed
318 * to be reused by another VM or returned to the host system. This will cause
319 * allocation chunks to contain pages belonging to different VMs and prevent
320 * returning memory to the host when one of those VM shuts down.
321 *
322 * The only way to really deal with this problem is to move pages. This can
323 * either be done at VM shutdown and or by the idle priority worker thread
324 * that will be responsible for finding sharable/zero pages. The mechanisms
325 * involved for coercing a VM to move a page (or to do it for it) will be
326 * the same as when telling it to share/zero a page.
327 *
328 *
329 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
330 *
331 * There's a difficult balance between keeping the per-page tracking structures
332 * (global and guest page) easy to use and keeping them from eating too much
333 * memory. We have limited virtual memory resources available when operating in
334 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
335 * tracking structures will be attemted designed such that we can deal with up
336 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
337 *
338 *
339 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
340 *
341 * @see pg_GMM
342 *
343 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
344 *
345 * Fixed info is the physical address of the page (HCPhys) and the page id
346 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
347 * Today we've restricting ourselves to 40(-12) bits because this is the current
348 * restrictions of all AMD64 implementations (I think Barcelona will up this
349 * to 48(-12) bits, not that it really matters) and I needed the bits for
350 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
351 * decent range for the page id: 2^(28+12) = 1024TB.
352 *
353 * In additions to these, we'll have to keep maintaining the page flags as we
354 * currently do. Although it wouldn't harm to optimize these quite a bit, like
355 * for instance the ROM shouldn't depend on having a write handler installed
356 * in order for it to become read-only. A RO/RW bit should be considered so
357 * that the page syncing code doesn't have to mess about checking multiple
358 * flag combinations (ROM || RW handler || write monitored) in order to
359 * figure out how to setup a shadow PTE. But this of course, is second
360 * priority at present. Current this requires 12 bits, but could probably
361 * be optimized to ~8.
362 *
363 * Then there's the 24 bits used to track which shadow page tables are
364 * currently mapping a page for the purpose of speeding up physical
365 * access handlers, and thereby the page pool cache. More bit for this
366 * purpose wouldn't hurt IIRC.
367 *
368 * Then there is a new bit in which we need to record what kind of page
369 * this is, shared, zero, normal or write-monitored-normal. This'll
370 * require 2 bits. One bit might be needed for indicating whether a
371 * write monitored page has been written to. And yet another one or
372 * two for tracking migration status. 3-4 bits total then.
373 *
374 * Whatever is left will can be used to record the sharabilitiy of a
375 * page. The page checksum will not be stored in the per-VM table as
376 * the idle thread will not be permitted to do modifications to it.
377 * It will instead have to keep its own working set of potentially
378 * shareable pages and their check sums and stuff.
379 *
380 * For the present we'll keep the current packing of the
381 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
382 * we'll have to change it to a struct with a total of 128-bits at
383 * our disposal.
384 *
385 * The initial layout will be like this:
386 * @verbatim
387 RTHCPHYS HCPhys; The current stuff.
388 63:40 Current shadow PT tracking stuff.
389 39:12 The physical page frame number.
390 11:0 The current flags.
391 uint32_t u28PageId : 28; The page id.
392 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
393 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
394 uint32_t u1Reserved : 1; Reserved for later.
395 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
396 @endverbatim
397 *
398 * The final layout will be something like this:
399 * @verbatim
400 RTHCPHYS HCPhys; The current stuff.
401 63:48 High page id (12+).
402 47:12 The physical page frame number.
403 11:0 Low page id.
404 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
405 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
406 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
407 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
408 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
409 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
410 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
411 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
412 @endverbatim
413 *
414 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
415 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
416 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
417 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
418 *
419 * A couple of cost examples for the total cost per-VM + kernel.
420 * 32-bit Windows and 32-bit linux:
421 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
422 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
423 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
424 * 64-bit Windows and 64-bit linux:
425 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
426 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
427 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
428 *
429 * UPDATE - 2007-09-27:
430 * Will need a ballooned flag/state too because we cannot
431 * trust the guest 100% and reporting the same page as ballooned more
432 * than once will put the GMM off balance.
433 *
434 *
435 * @subsection subsec_pgmPhys_Serializing Serializing Access
436 *
437 * Initially, we'll try a simple scheme:
438 *
439 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
440 * by the EMT thread of that VM while in the pgm critsect.
441 * - Other threads in the VM process that needs to make reliable use of
442 * the per-VM RAM tracking structures will enter the critsect.
443 * - No process external thread or kernel thread will ever try enter
444 * the pgm critical section, as that just won't work.
445 * - The idle thread (and similar threads) doesn't not need 100% reliable
446 * data when performing it tasks as the EMT thread will be the one to
447 * do the actual changes later anyway. So, as long as it only accesses
448 * the main ram range, it can do so by somehow preventing the VM from
449 * being destroyed while it works on it...
450 *
451 * - The over-commitment management, including the allocating/freeing
452 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
453 * more mundane mutex implementation is broken on Linux).
454 * - A separeate mutex is protecting the set of allocation chunks so
455 * that pages can be shared or/and freed up while some other VM is
456 * allocating more chunks. This mutex can be take from under the other
457 * one, but not the otherway around.
458 *
459 *
460 * @subsection subsec_pgmPhys_Request VM Request interface
461 *
462 * When in ring-0 it will become necessary to send requests to a VM so it can
463 * for instance move a page while defragmenting during VM destroy. The idle
464 * thread will make use of this interface to request VMs to setup shared
465 * pages and to perform write monitoring of pages.
466 *
467 * I would propose an interface similar to the current VMReq interface, similar
468 * in that it doesn't require locking and that the one sending the request may
469 * wait for completion if it wishes to. This shouldn't be very difficult to
470 * realize.
471 *
472 * The requests themselves are also pretty simple. They are basically:
473 * -# Check that some precondition is still true.
474 * -# Do the update.
475 * -# Update all shadow page tables involved with the page.
476 *
477 * The 3rd step is identical to what we're already doing when updating a
478 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
479 *
480 *
481 *
482 * @section sec_pgmPhys_MappingCaches Mapping Caches
483 *
484 * In order to be able to map in and out memory and to be able to support
485 * guest with more RAM than we've got virtual address space, we'll employing
486 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
487 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
488 * memory context for the HWACCM execution.
489 *
490 *
491 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
492 *
493 * We've considered implementing the ring-3 mapping cache page based but found
494 * that this was bother some when one had to take into account TLBs+SMP and
495 * portability (missing the necessary APIs on several platforms). There were
496 * also some performance concerns with this approach which hadn't quite been
497 * worked out.
498 *
499 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
500 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
501 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
502 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
503 * costly than a single page, although how much more costly is uncertain. We'll
504 * try address this by using a very big cache, preferably bigger than the actual
505 * VM RAM size if possible. The current VM RAM sizes should give some idea for
506 * 32-bit boxes, while on 64-bit we can probably get away with employing an
507 * unlimited cache.
508 *
509 * The cache have to parts, as already indicated, the ring-3 side and the
510 * ring-0 side.
511 *
512 * The ring-0 will be tied to the page allocator since it will operate on the
513 * memory objects it contains. It will therefore require the first ring-0 mutex
514 * discussed in @ref subsec_pgmPhys_Serializing. We
515 * some double house keeping wrt to who has mapped what I think, since both
516 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
517 *
518 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
519 * require anyone that desires to do changes to the mapping cache to do that
520 * from within this critsect. Alternatively, we could employ a separate critsect
521 * for serializing changes to the mapping cache as this would reduce potential
522 * contention with other threads accessing mappings unrelated to the changes
523 * that are in process. We can see about this later, contention will show
524 * up in the statistics anyway, so it'll be simple to tell.
525 *
526 * The organization of the ring-3 part will be very much like how the allocation
527 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
528 * having to walk the tree all the time, we'll have a couple of lookaside entries
529 * like in we do for I/O ports and MMIO in IOM.
530 *
531 * The simplified flow of a PGMPhysRead/Write function:
532 * -# Enter the PGM critsect.
533 * -# Lookup GCPhys in the ram ranges and get the Page ID.
534 * -# Calc the Allocation Chunk ID from the Page ID.
535 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
536 * If not found in cache:
537 * -# Call ring-0 and request it to be mapped and supply
538 * a chunk to be unmapped if the cache is maxed out already.
539 * -# Insert the new mapping into the AVL tree (id + R3 address).
540 * -# Update the relevant lookaside entry and return the mapping address.
541 * -# Do the read/write according to monitoring flags and everything.
542 * -# Leave the critsect.
543 *
544 *
545 * @section sec_pgmPhys_Fallback Fallback
546 *
547 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
548 * API and thus require a fallback.
549 *
550 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
551 * will return to the ring-3 caller (and later ring-0) and asking it to seed
552 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
553 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
554 * "SeededAllocPages" call to ring-0.
555 *
556 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
557 * all page sharing (zero page detection will continue). It will also force
558 * all allocations to come from the VM which seeded the page. Both these
559 * measures are taken to make sure that there will never be any need for
560 * mapping anything into ring-3 - everything will be mapped already.
561 *
562 * Whether we'll continue to use the current MM locked memory management
563 * for this I don't quite know (I'd prefer not to and just ditch that all
564 * togther), we'll see what's simplest to do.
565 *
566 *
567 *
568 * @section sec_pgmPhys_Changes Changes
569 *
570 * Breakdown of the changes involved?
571 */
572
573
574/** Saved state data unit version. */
575#define PGM_SAVED_STATE_VERSION 6
576
577/*******************************************************************************
578* Header Files *
579*******************************************************************************/
580#define LOG_GROUP LOG_GROUP_PGM
581#include <VBox/dbgf.h>
582#include <VBox/pgm.h>
583#include <VBox/cpum.h>
584#include <VBox/iom.h>
585#include <VBox/sup.h>
586#include <VBox/mm.h>
587#include <VBox/em.h>
588#include <VBox/stam.h>
589#include <VBox/rem.h>
590#include <VBox/dbgf.h>
591#include <VBox/rem.h>
592#include <VBox/selm.h>
593#include <VBox/ssm.h>
594#include "PGMInternal.h"
595#include <VBox/vm.h>
596#include <VBox/dbg.h>
597#include <VBox/hwaccm.h>
598
599#include <iprt/assert.h>
600#include <iprt/alloc.h>
601#include <iprt/asm.h>
602#include <iprt/thread.h>
603#include <iprt/string.h>
604#ifdef DEBUG_bird
605# include <iprt/env.h>
606#endif
607#include <VBox/param.h>
608#include <VBox/err.h>
609
610
611
612/*******************************************************************************
613* Internal Functions *
614*******************************************************************************/
615static int pgmR3InitPaging(PVM pVM);
616static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
617static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
618static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
619static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
620static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
621static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
622#ifdef VBOX_STRICT
623static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
624#endif
625static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
626static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
627static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
628static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
629static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
630
631#ifdef VBOX_WITH_STATISTICS
632static void pgmR3InitStats(PVM pVM);
633#endif
634
635#ifdef VBOX_WITH_DEBUGGER
636/** @todo all but the two last commands must be converted to 'info'. */
637static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
638static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
639static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
640static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
641# ifdef VBOX_STRICT
642static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
643# endif
644#endif
645
646
647/*******************************************************************************
648* Global Variables *
649*******************************************************************************/
650#ifdef VBOX_WITH_DEBUGGER
651/** Command descriptors. */
652static const DBGCCMD g_aCmds[] =
653{
654 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
655 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
656 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
657 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
658#ifdef VBOX_STRICT
659 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
660#endif
661 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
662};
663#endif
664
665
666
667
668/*
669 * Shadow - 32-bit mode
670 */
671#define PGM_SHW_TYPE PGM_TYPE_32BIT
672#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
673#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
674#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
675#include "PGMShw.h"
676
677/* Guest - real mode */
678#define PGM_GST_TYPE PGM_TYPE_REAL
679#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
680#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
681#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
682#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
683#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
684#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
685#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
686#include "PGMGst.h"
687#include "PGMBth.h"
688#undef BTH_PGMPOOLKIND_PT_FOR_PT
689#undef PGM_BTH_NAME
690#undef PGM_BTH_NAME_RC_STR
691#undef PGM_BTH_NAME_R0_STR
692#undef PGM_GST_TYPE
693#undef PGM_GST_NAME
694#undef PGM_GST_NAME_RC_STR
695#undef PGM_GST_NAME_R0_STR
696
697/* Guest - protected mode */
698#define PGM_GST_TYPE PGM_TYPE_PROT
699#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
700#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
701#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
702#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
703#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
704#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
705#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
706#include "PGMGst.h"
707#include "PGMBth.h"
708#undef BTH_PGMPOOLKIND_PT_FOR_PT
709#undef PGM_BTH_NAME
710#undef PGM_BTH_NAME_RC_STR
711#undef PGM_BTH_NAME_R0_STR
712#undef PGM_GST_TYPE
713#undef PGM_GST_NAME
714#undef PGM_GST_NAME_RC_STR
715#undef PGM_GST_NAME_R0_STR
716
717/* Guest - 32-bit mode */
718#define PGM_GST_TYPE PGM_TYPE_32BIT
719#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
720#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
721#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
722#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
723#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
724#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
725#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
726#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
727#include "PGMGst.h"
728#include "PGMBth.h"
729#undef BTH_PGMPOOLKIND_PT_FOR_BIG
730#undef BTH_PGMPOOLKIND_PT_FOR_PT
731#undef PGM_BTH_NAME
732#undef PGM_BTH_NAME_RC_STR
733#undef PGM_BTH_NAME_R0_STR
734#undef PGM_GST_TYPE
735#undef PGM_GST_NAME
736#undef PGM_GST_NAME_RC_STR
737#undef PGM_GST_NAME_R0_STR
738
739#undef PGM_SHW_TYPE
740#undef PGM_SHW_NAME
741#undef PGM_SHW_NAME_RC_STR
742#undef PGM_SHW_NAME_R0_STR
743
744
745/*
746 * Shadow - PAE mode
747 */
748#define PGM_SHW_TYPE PGM_TYPE_PAE
749#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
750#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
751#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
752#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
753#include "PGMShw.h"
754
755/* Guest - real mode */
756#define PGM_GST_TYPE PGM_TYPE_REAL
757#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
758#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
759#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
760#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
761#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
762#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
763#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
764#include "PGMBth.h"
765#undef BTH_PGMPOOLKIND_PT_FOR_PT
766#undef PGM_BTH_NAME
767#undef PGM_BTH_NAME_RC_STR
768#undef PGM_BTH_NAME_R0_STR
769#undef PGM_GST_TYPE
770#undef PGM_GST_NAME
771#undef PGM_GST_NAME_RC_STR
772#undef PGM_GST_NAME_R0_STR
773
774/* Guest - protected mode */
775#define PGM_GST_TYPE PGM_TYPE_PROT
776#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
777#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
778#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
779#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
780#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
781#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
782#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
783#include "PGMBth.h"
784#undef BTH_PGMPOOLKIND_PT_FOR_PT
785#undef PGM_BTH_NAME
786#undef PGM_BTH_NAME_RC_STR
787#undef PGM_BTH_NAME_R0_STR
788#undef PGM_GST_TYPE
789#undef PGM_GST_NAME
790#undef PGM_GST_NAME_RC_STR
791#undef PGM_GST_NAME_R0_STR
792
793/* Guest - 32-bit mode */
794#define PGM_GST_TYPE PGM_TYPE_32BIT
795#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
796#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
797#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
798#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
799#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
800#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
801#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
802#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
803#include "PGMBth.h"
804#undef BTH_PGMPOOLKIND_PT_FOR_BIG
805#undef BTH_PGMPOOLKIND_PT_FOR_PT
806#undef PGM_BTH_NAME
807#undef PGM_BTH_NAME_RC_STR
808#undef PGM_BTH_NAME_R0_STR
809#undef PGM_GST_TYPE
810#undef PGM_GST_NAME
811#undef PGM_GST_NAME_RC_STR
812#undef PGM_GST_NAME_R0_STR
813
814/* Guest - PAE mode */
815#define PGM_GST_TYPE PGM_TYPE_PAE
816#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
817#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
818#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
819#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
820#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
821#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
822#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
823#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
824#include "PGMGst.h"
825#include "PGMBth.h"
826#undef BTH_PGMPOOLKIND_PT_FOR_BIG
827#undef BTH_PGMPOOLKIND_PT_FOR_PT
828#undef PGM_BTH_NAME
829#undef PGM_BTH_NAME_RC_STR
830#undef PGM_BTH_NAME_R0_STR
831#undef PGM_GST_TYPE
832#undef PGM_GST_NAME
833#undef PGM_GST_NAME_RC_STR
834#undef PGM_GST_NAME_R0_STR
835
836#undef PGM_SHW_TYPE
837#undef PGM_SHW_NAME
838#undef PGM_SHW_NAME_RC_STR
839#undef PGM_SHW_NAME_R0_STR
840
841
842/*
843 * Shadow - AMD64 mode
844 */
845#define PGM_SHW_TYPE PGM_TYPE_AMD64
846#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
847#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
848#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
849#include "PGMShw.h"
850
851#ifdef VBOX_WITH_64_BITS_GUESTS
852/* Guest - AMD64 mode */
853# define PGM_GST_TYPE PGM_TYPE_AMD64
854# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
855# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
856# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
857# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
858# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
859# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
860# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
861# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
862# include "PGMGst.h"
863# include "PGMBth.h"
864# undef BTH_PGMPOOLKIND_PT_FOR_BIG
865# undef BTH_PGMPOOLKIND_PT_FOR_PT
866# undef PGM_BTH_NAME
867# undef PGM_BTH_NAME_RC_STR
868# undef PGM_BTH_NAME_R0_STR
869# undef PGM_GST_TYPE
870# undef PGM_GST_NAME
871# undef PGM_GST_NAME_RC_STR
872# undef PGM_GST_NAME_R0_STR
873#endif /* VBOX_WITH_64_BITS_GUESTS */
874
875#undef PGM_SHW_TYPE
876#undef PGM_SHW_NAME
877#undef PGM_SHW_NAME_RC_STR
878#undef PGM_SHW_NAME_R0_STR
879
880
881/*
882 * Shadow - Nested paging mode
883 */
884#define PGM_SHW_TYPE PGM_TYPE_NESTED
885#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
886#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
887#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
888#include "PGMShw.h"
889
890/* Guest - real mode */
891#define PGM_GST_TYPE PGM_TYPE_REAL
892#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
893#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
894#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
895#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
896#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
897#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
898#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
899#include "PGMBth.h"
900#undef BTH_PGMPOOLKIND_PT_FOR_PT
901#undef PGM_BTH_NAME
902#undef PGM_BTH_NAME_RC_STR
903#undef PGM_BTH_NAME_R0_STR
904#undef PGM_GST_TYPE
905#undef PGM_GST_NAME
906#undef PGM_GST_NAME_RC_STR
907#undef PGM_GST_NAME_R0_STR
908
909/* Guest - protected mode */
910#define PGM_GST_TYPE PGM_TYPE_PROT
911#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
912#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
913#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
914#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
915#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
916#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
917#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
918#include "PGMBth.h"
919#undef BTH_PGMPOOLKIND_PT_FOR_PT
920#undef PGM_BTH_NAME
921#undef PGM_BTH_NAME_RC_STR
922#undef PGM_BTH_NAME_R0_STR
923#undef PGM_GST_TYPE
924#undef PGM_GST_NAME
925#undef PGM_GST_NAME_RC_STR
926#undef PGM_GST_NAME_R0_STR
927
928/* Guest - 32-bit mode */
929#define PGM_GST_TYPE PGM_TYPE_32BIT
930#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
931#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
932#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
933#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
934#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
935#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
936#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
937#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
938#include "PGMBth.h"
939#undef BTH_PGMPOOLKIND_PT_FOR_BIG
940#undef BTH_PGMPOOLKIND_PT_FOR_PT
941#undef PGM_BTH_NAME
942#undef PGM_BTH_NAME_RC_STR
943#undef PGM_BTH_NAME_R0_STR
944#undef PGM_GST_TYPE
945#undef PGM_GST_NAME
946#undef PGM_GST_NAME_RC_STR
947#undef PGM_GST_NAME_R0_STR
948
949/* Guest - PAE mode */
950#define PGM_GST_TYPE PGM_TYPE_PAE
951#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
952#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
953#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
954#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
955#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
956#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
957#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
958#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
959#include "PGMBth.h"
960#undef BTH_PGMPOOLKIND_PT_FOR_BIG
961#undef BTH_PGMPOOLKIND_PT_FOR_PT
962#undef PGM_BTH_NAME
963#undef PGM_BTH_NAME_RC_STR
964#undef PGM_BTH_NAME_R0_STR
965#undef PGM_GST_TYPE
966#undef PGM_GST_NAME
967#undef PGM_GST_NAME_RC_STR
968#undef PGM_GST_NAME_R0_STR
969
970#ifdef VBOX_WITH_64_BITS_GUESTS
971/* Guest - AMD64 mode */
972# define PGM_GST_TYPE PGM_TYPE_AMD64
973# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
974# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
975# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
976# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
977# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
978# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
979# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
980# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
981# include "PGMBth.h"
982# undef BTH_PGMPOOLKIND_PT_FOR_BIG
983# undef BTH_PGMPOOLKIND_PT_FOR_PT
984# undef PGM_BTH_NAME
985# undef PGM_BTH_NAME_RC_STR
986# undef PGM_BTH_NAME_R0_STR
987# undef PGM_GST_TYPE
988# undef PGM_GST_NAME
989# undef PGM_GST_NAME_RC_STR
990# undef PGM_GST_NAME_R0_STR
991#endif /* VBOX_WITH_64_BITS_GUESTS */
992
993#undef PGM_SHW_TYPE
994#undef PGM_SHW_NAME
995#undef PGM_SHW_NAME_RC_STR
996#undef PGM_SHW_NAME_R0_STR
997
998
999/*
1000 * Shadow - EPT
1001 */
1002#define PGM_SHW_TYPE PGM_TYPE_EPT
1003#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1004#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1005#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1006#include "PGMShw.h"
1007
1008/* Guest - real mode */
1009#define PGM_GST_TYPE PGM_TYPE_REAL
1010#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1011#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1012#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1013#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1014#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1015#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1016#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1017#include "PGMBth.h"
1018#undef BTH_PGMPOOLKIND_PT_FOR_PT
1019#undef PGM_BTH_NAME
1020#undef PGM_BTH_NAME_RC_STR
1021#undef PGM_BTH_NAME_R0_STR
1022#undef PGM_GST_TYPE
1023#undef PGM_GST_NAME
1024#undef PGM_GST_NAME_RC_STR
1025#undef PGM_GST_NAME_R0_STR
1026
1027/* Guest - protected mode */
1028#define PGM_GST_TYPE PGM_TYPE_PROT
1029#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1030#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1031#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1032#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1033#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1034#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1035#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1036#include "PGMBth.h"
1037#undef BTH_PGMPOOLKIND_PT_FOR_PT
1038#undef PGM_BTH_NAME
1039#undef PGM_BTH_NAME_RC_STR
1040#undef PGM_BTH_NAME_R0_STR
1041#undef PGM_GST_TYPE
1042#undef PGM_GST_NAME
1043#undef PGM_GST_NAME_RC_STR
1044#undef PGM_GST_NAME_R0_STR
1045
1046/* Guest - 32-bit mode */
1047#define PGM_GST_TYPE PGM_TYPE_32BIT
1048#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1049#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1050#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1051#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1052#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1053#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1054#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1055#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1056#include "PGMBth.h"
1057#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1058#undef BTH_PGMPOOLKIND_PT_FOR_PT
1059#undef PGM_BTH_NAME
1060#undef PGM_BTH_NAME_RC_STR
1061#undef PGM_BTH_NAME_R0_STR
1062#undef PGM_GST_TYPE
1063#undef PGM_GST_NAME
1064#undef PGM_GST_NAME_RC_STR
1065#undef PGM_GST_NAME_R0_STR
1066
1067/* Guest - PAE mode */
1068#define PGM_GST_TYPE PGM_TYPE_PAE
1069#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1070#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1071#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1072#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1073#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1074#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1075#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1076#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1077#include "PGMBth.h"
1078#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1079#undef BTH_PGMPOOLKIND_PT_FOR_PT
1080#undef PGM_BTH_NAME
1081#undef PGM_BTH_NAME_RC_STR
1082#undef PGM_BTH_NAME_R0_STR
1083#undef PGM_GST_TYPE
1084#undef PGM_GST_NAME
1085#undef PGM_GST_NAME_RC_STR
1086#undef PGM_GST_NAME_R0_STR
1087
1088#ifdef VBOX_WITH_64_BITS_GUESTS
1089/* Guest - AMD64 mode */
1090# define PGM_GST_TYPE PGM_TYPE_AMD64
1091# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1092# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1093# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1094# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1095# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1096# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1097# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1098# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1099# include "PGMBth.h"
1100# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1101# undef BTH_PGMPOOLKIND_PT_FOR_PT
1102# undef PGM_BTH_NAME
1103# undef PGM_BTH_NAME_RC_STR
1104# undef PGM_BTH_NAME_R0_STR
1105# undef PGM_GST_TYPE
1106# undef PGM_GST_NAME
1107# undef PGM_GST_NAME_RC_STR
1108# undef PGM_GST_NAME_R0_STR
1109#endif /* VBOX_WITH_64_BITS_GUESTS */
1110
1111#undef PGM_SHW_TYPE
1112#undef PGM_SHW_NAME
1113#undef PGM_SHW_NAME_RC_STR
1114#undef PGM_SHW_NAME_R0_STR
1115
1116
1117
1118/**
1119 * Initiates the paging of VM.
1120 *
1121 * @returns VBox status code.
1122 * @param pVM Pointer to VM structure.
1123 */
1124VMMR3DECL(int) PGMR3Init(PVM pVM)
1125{
1126 LogFlow(("PGMR3Init:\n"));
1127
1128 /*
1129 * Assert alignment and sizes.
1130 */
1131 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1132
1133 /*
1134 * Init the structure.
1135 */
1136 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1137 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1138 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1139 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1140 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1141 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1142 pVM->pgm.s.fA20Enabled = true;
1143 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1144 pVM->pgm.s.pGstPaePDPTHC = NULL;
1145 pVM->pgm.s.pGstPaePDPTGC = 0;
1146 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsHC); i++)
1147 {
1148 pVM->pgm.s.apGstPaePDsHC[i] = NULL;
1149 pVM->pgm.s.apGstPaePDsGC[i] = 0;
1150 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1151 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1152 }
1153
1154#ifdef VBOX_STRICT
1155 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1156#endif
1157
1158 /*
1159 * Get the configured RAM size - to estimate saved state size.
1160 */
1161 uint64_t cbRam;
1162 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1163 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1164 cbRam = pVM->pgm.s.cbRamSize = 0;
1165 else if (VBOX_SUCCESS(rc))
1166 {
1167 if (cbRam < PAGE_SIZE)
1168 cbRam = 0;
1169 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1170 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1171 }
1172 else
1173 {
1174 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Vrc.\n", rc));
1175 return rc;
1176 }
1177
1178 /*
1179 * Register saved state data unit.
1180 */
1181 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1182 NULL, pgmR3Save, NULL,
1183 NULL, pgmR3Load, NULL);
1184 if (VBOX_FAILURE(rc))
1185 return rc;
1186
1187 /*
1188 * Initialize the PGM critical section and flush the phys TLBs
1189 */
1190 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1191 AssertRCReturn(rc, rc);
1192
1193 PGMR3PhysChunkInvalidateTLB(pVM);
1194 PGMPhysInvalidatePageR3MapTLB(pVM);
1195 PGMPhysInvalidatePageR0MapTLB(pVM);
1196 PGMPhysInvalidatePageGCMapTLB(pVM);
1197
1198 /*
1199 * Trees
1200 */
1201 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1202 if (VBOX_SUCCESS(rc))
1203 {
1204 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1205 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1206
1207 /*
1208 * Alocate the zero page.
1209 */
1210 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1211 }
1212 if (VBOX_SUCCESS(rc))
1213 {
1214 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1215 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1216 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1217 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1218 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1219
1220 /*
1221 * Init the paging.
1222 */
1223 rc = pgmR3InitPaging(pVM);
1224 }
1225 if (VBOX_SUCCESS(rc))
1226 {
1227 /*
1228 * Init the page pool.
1229 */
1230 rc = pgmR3PoolInit(pVM);
1231 }
1232 if (VBOX_SUCCESS(rc))
1233 {
1234 /*
1235 * Info & statistics
1236 */
1237 DBGFR3InfoRegisterInternal(pVM, "mode",
1238 "Shows the current paging mode. "
1239 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1240 pgmR3InfoMode);
1241 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1242 "Dumps all the entries in the top level paging table. No arguments.",
1243 pgmR3InfoCr3);
1244 DBGFR3InfoRegisterInternal(pVM, "phys",
1245 "Dumps all the physical address ranges. No arguments.",
1246 pgmR3PhysInfo);
1247 DBGFR3InfoRegisterInternal(pVM, "handlers",
1248 "Dumps physical, virtual and hyper virtual handlers. "
1249 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1250 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1251 pgmR3InfoHandlers);
1252 DBGFR3InfoRegisterInternal(pVM, "mappings",
1253 "Dumps guest mappings.",
1254 pgmR3MapInfo);
1255
1256 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1257#ifdef VBOX_WITH_STATISTICS
1258 pgmR3InitStats(pVM);
1259#endif
1260#ifdef VBOX_WITH_DEBUGGER
1261 /*
1262 * Debugger commands.
1263 */
1264 static bool fRegisteredCmds = false;
1265 if (!fRegisteredCmds)
1266 {
1267 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1268 if (VBOX_SUCCESS(rc))
1269 fRegisteredCmds = true;
1270 }
1271#endif
1272 return VINF_SUCCESS;
1273 }
1274
1275 /* Almost no cleanup necessary, MM frees all memory. */
1276 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1277
1278 return rc;
1279}
1280
1281
1282/**
1283 * Init paging.
1284 *
1285 * Since we need to check what mode the host is operating in before we can choose
1286 * the right paging functions for the host we have to delay this until R0 has
1287 * been initialized.
1288 *
1289 * @returns VBox status code.
1290 * @param pVM VM handle.
1291 */
1292static int pgmR3InitPaging(PVM pVM)
1293{
1294 /*
1295 * Force a recalculation of modes and switcher so everyone gets notified.
1296 */
1297 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1298 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1299 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1300
1301 /*
1302 * Allocate static mapping space for whatever the cr3 register
1303 * points to and in the case of PAE mode to the 4 PDs.
1304 */
1305 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1306 if (VBOX_FAILURE(rc))
1307 {
1308 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Vrc\n", rc));
1309 return rc;
1310 }
1311 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1312
1313 /*
1314 * Allocate pages for the three possible intermediate contexts
1315 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1316 * for the sake of simplicity. The AMD64 uses the PAE for the
1317 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1318 *
1319 * We assume that two page tables will be enought for the core code
1320 * mappings (HC virtual and identity).
1321 */
1322 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1323 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1324 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1325 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1326 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1327 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1328 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1329 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1330 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1331 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1332 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1333 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1334 if ( !pVM->pgm.s.pInterPD
1335 || !pVM->pgm.s.apInterPTs[0]
1336 || !pVM->pgm.s.apInterPTs[1]
1337 || !pVM->pgm.s.apInterPaePTs[0]
1338 || !pVM->pgm.s.apInterPaePTs[1]
1339 || !pVM->pgm.s.apInterPaePDs[0]
1340 || !pVM->pgm.s.apInterPaePDs[1]
1341 || !pVM->pgm.s.apInterPaePDs[2]
1342 || !pVM->pgm.s.apInterPaePDs[3]
1343 || !pVM->pgm.s.pInterPaePDPT
1344 || !pVM->pgm.s.pInterPaePDPT64
1345 || !pVM->pgm.s.pInterPaePML4)
1346 {
1347 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1348 return VERR_NO_PAGE_MEMORY;
1349 }
1350
1351 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1352 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1353 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1354 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1355 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1356 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK));
1357
1358 /*
1359 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1360 */
1361 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1362 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1363 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1364
1365 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1366 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1367
1368 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1369 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1370 {
1371 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1372 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1373 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1374 }
1375
1376 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1377 {
1378 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1379 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1380 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1381 }
1382
1383 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1384 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1385 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1386 | HCPhysInterPaePDPT64;
1387
1388 /*
1389 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1390 * We allocate pages for all three posibilities in order to simplify mappings and
1391 * avoid resource failure during mode switches. So, we need to cover all levels of the
1392 * of the first 4GB down to PD level.
1393 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1394 */
1395 pVM->pgm.s.pHC32BitPD = (PX86PD)MMR3PageAllocLow(pVM);
1396 pVM->pgm.s.apHCPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1397 pVM->pgm.s.apHCPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1398 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[1]);
1399 pVM->pgm.s.apHCPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1400 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[2]);
1401 pVM->pgm.s.apHCPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1402 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[3]);
1403 pVM->pgm.s.pHCPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1404 pVM->pgm.s.pHCNestedRoot = MMR3PageAllocLow(pVM);
1405
1406 if ( !pVM->pgm.s.pHC32BitPD
1407 || !pVM->pgm.s.apHCPaePDs[0]
1408 || !pVM->pgm.s.apHCPaePDs[1]
1409 || !pVM->pgm.s.apHCPaePDs[2]
1410 || !pVM->pgm.s.apHCPaePDs[3]
1411 || !pVM->pgm.s.pHCPaePDPT
1412 || !pVM->pgm.s.pHCNestedRoot)
1413 {
1414 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1415 return VERR_NO_PAGE_MEMORY;
1416 }
1417
1418 /* get physical addresses. */
1419 pVM->pgm.s.HCPhys32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pHC32BitPD);
1420 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhys32BitPD) == pVM->pgm.s.pHC32BitPD);
1421 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[0]);
1422 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[1]);
1423 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[2]);
1424 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[3]);
1425 pVM->pgm.s.HCPhysPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pHCPaePDPT);
1426 pVM->pgm.s.HCPhysNestedRoot = MMPage2Phys(pVM, pVM->pgm.s.pHCNestedRoot);
1427
1428 /*
1429 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1430 */
1431 ASMMemZero32(pVM->pgm.s.pHC32BitPD, PAGE_SIZE);
1432 ASMMemZero32(pVM->pgm.s.pHCPaePDPT, PAGE_SIZE);
1433 ASMMemZero32(pVM->pgm.s.pHCNestedRoot, PAGE_SIZE);
1434 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1435 {
1436 ASMMemZero32(pVM->pgm.s.apHCPaePDs[i], PAGE_SIZE);
1437 pVM->pgm.s.pHCPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1438 /* The flags will be corrected when entering and leaving long mode. */
1439 }
1440
1441 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhys32BitPD);
1442
1443 /*
1444 * Initialize paging workers and mode from current host mode
1445 * and the guest running in real mode.
1446 */
1447 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1448 switch (pVM->pgm.s.enmHostMode)
1449 {
1450 case SUPPAGINGMODE_32_BIT:
1451 case SUPPAGINGMODE_32_BIT_GLOBAL:
1452 case SUPPAGINGMODE_PAE:
1453 case SUPPAGINGMODE_PAE_GLOBAL:
1454 case SUPPAGINGMODE_PAE_NX:
1455 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1456 break;
1457
1458 case SUPPAGINGMODE_AMD64:
1459 case SUPPAGINGMODE_AMD64_GLOBAL:
1460 case SUPPAGINGMODE_AMD64_NX:
1461 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1462#ifndef VBOX_WITH_HYBIRD_32BIT_KERNEL
1463 if (ARCH_BITS != 64)
1464 {
1465 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1466 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1467 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1468 }
1469#endif
1470 break;
1471 default:
1472 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1473 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1474 }
1475 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1476 if (VBOX_SUCCESS(rc))
1477 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1478 if (VBOX_SUCCESS(rc))
1479 {
1480 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1481#if HC_ARCH_BITS == 64
1482 LogRel(("Debug: HCPhys32BitPD=%VHp aHCPhysPaePDs={%RHp,%RHp,%RHp,%RHp} HCPhysPaePDPT=%RHp HCPhysPaePML4=%RHp\n",
1483 pVM->pgm.s.HCPhys32BitPD,
1484 pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1485 pVM->pgm.s.HCPhysPaePDPT,
1486 pVM->pgm.s.HCPhysPaePML4));
1487 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1488 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1489 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1490 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1491 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1492 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1493 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1494#endif
1495
1496 return VINF_SUCCESS;
1497 }
1498
1499 LogFlow(("pgmR3InitPaging: returns %Vrc\n", rc));
1500 return rc;
1501}
1502
1503
1504#ifdef VBOX_WITH_STATISTICS
1505/**
1506 * Init statistics
1507 */
1508static void pgmR3InitStats(PVM pVM)
1509{
1510 PPGM pPGM = &pVM->pgm.s;
1511 unsigned i;
1512
1513 /*
1514 * Note! The layout of this function matches the member layout exactly!
1515 */
1516
1517 /* Common - misc variables */
1518 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1519 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1520 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1521 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1522 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1523 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1524
1525 /* Common - stats */
1526#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1527 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1528 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1529 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1530 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1531 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1532 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1533#endif
1534 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPtPD); i++)
1535 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1536 "The number of SyncPT per PD n.", "/PGM/PDSyncPT/%04X", i);
1537 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPagePD); i++)
1538 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1539 "The number of SyncPage per PD n.", "/PGM/PDSyncPage/%04X", i);
1540
1541 /* R3 only: */
1542 STAM_REG(pVM, &pPGM->StatR3DetectedConflicts, STAMTYPE_COUNTER, "/PGM/R3/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1543 STAM_REG(pVM, &pPGM->StatR3ResolveConflict, STAMTYPE_PROFILE, "/PGM/R3/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1544 STAM_REG(pVM, &pPGM->StatR3GuestPDWrite, STAMTYPE_COUNTER, "/PGM/R3/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1545 STAM_REG(pVM, &pPGM->StatR3GuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/R3/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1546 STAM_REG(pVM, &pPGM->StatR3DynRamTotal, STAMTYPE_COUNTER, "/PGM/DynAlloc/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated MBs of guest ram.");
1547 STAM_REG(pVM, &pPGM->StatR3DynRamGrow, STAMTYPE_COUNTER, "/PGM/DynAlloc/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1548
1549 /* GC only: */
1550 STAM_REG(pVM, &pPGM->StatRCInvalidatePage, STAMTYPE_PROFILE, "/PGM/RC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMGCInvalidatePage() profiling.");
1551 STAM_REG(pVM, &pPGM->StatRCDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1552 STAM_REG(pVM, &pPGM->StatRCDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1553
1554 /* RZ only: */
1555 STAM_REG(pVM, &pPGM->StatRZTrap0e, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrap0eHandler() body.");
1556 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeCheckPageFault, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1557 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1558 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeMapping, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1559 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeOutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1560 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeHandlers, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1561 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2CSAM, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1562 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2DirtyAndAccessed, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1563 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2GuestTrap, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1564 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1565 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerVirtual", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1566 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndUnhandled, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1567 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2Misc, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1568 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1569 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1570 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1571 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndObs, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1572 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2SyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1573 STAM_REG(pVM, &pPGM->StatRZTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1574 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1575 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1576 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersPhysical, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1577 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtual, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1578 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1579 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualUnmarked,STAMTYPE_COUNTER,"/PGM/RZ/Trap0e/Handlers/VirtualUnmarked",STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1580 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1581 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersInvalid, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1582 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1583 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1584 STAM_REG(pVM, &pPGM->StatRZTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1585 STAM_REG(pVM, &pPGM->StatRZTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1586 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1587 STAM_REG(pVM, &pPGM->StatRZTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1588 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1589 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1590 STAM_REG(pVM, &pPGM->StatRZTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1591 STAM_REG(pVM, &pPGM->StatRZTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1592 STAM_REG(pVM, &pPGM->StatRZTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1593 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPF, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF", STAMUNIT_OCCURENCES, "Number of real guest page faults.");
1594 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFUnh, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of real guest page faults from the 'unhandled' case.");
1595 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/InMapping", STAMUNIT_OCCURENCES, "Number of real guest page faults in a mapping.");
1596 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulInRZ, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/InRZ", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1597 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulToR3, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1598 for (i = 0; i < RT_ELEMENTS(pPGM->StatRZTrap0ePD); i++)
1599 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1600 "The number of traps in page directory n.", "/PGM/RZ/Trap0e/PD/%04X", i);
1601 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1602 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1603 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1604 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1605 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1606
1607 /* HC only: */
1608
1609 /* RZ & R3: */
1610 STAM_REG(pVM, &pPGM->StatRZSyncCR3, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1611 STAM_REG(pVM, &pPGM->StatRZSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1612 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1613 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1614 STAM_REG(pVM, &pPGM->StatRZSyncCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1615 STAM_REG(pVM, &pPGM->StatRZSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1616 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1617 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1618 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1619 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1620 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1621 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1622 STAM_REG(pVM, &pPGM->StatRZSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1623 STAM_REG(pVM, &pPGM->StatRZSyncPTFailed, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1624 STAM_REG(pVM, &pPGM->StatRZSyncPT4K, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1625 STAM_REG(pVM, &pPGM->StatRZSyncPT4M, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1626 STAM_REG(pVM, &pPGM->StatRZSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1627 STAM_REG(pVM, &pPGM->StatRZSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1628 STAM_REG(pVM, &pPGM->StatRZAccessedPage, STAMTYPE_COUNTER, "/PGM/RZ/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1629 STAM_REG(pVM, &pPGM->StatRZDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/RZ/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1630 STAM_REG(pVM, &pPGM->StatRZDirtyPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1631 STAM_REG(pVM, &pPGM->StatRZDirtyPageBig, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1632 STAM_REG(pVM, &pPGM->StatRZDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1633 STAM_REG(pVM, &pPGM->StatRZDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1634 STAM_REG(pVM, &pPGM->StatRZDirtiedPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1635 STAM_REG(pVM, &pPGM->StatRZDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1636 STAM_REG(pVM, &pPGM->StatRZPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1637 STAM_REG(pVM, &pPGM->StatRZInvalidatePage, STAMTYPE_PROFILE, "/PGM/RZ/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1638 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1639 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1640 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1641 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1642 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1643 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1644 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1645 STAM_REG(pVM, &pPGM->StatRZInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1646 STAM_REG(pVM, &pPGM->StatRZVirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/RZ/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1647 STAM_REG(pVM, &pPGM->StatRZPhysHandlerReset, STAMTYPE_COUNTER, "/PGM/RZ/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1648 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1649 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1650 STAM_REG(pVM, &pPGM->StatRZPrefetch, STAMTYPE_PROFILE, "/PGM/RZ/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1651 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsRZ", STAMUNIT_OCCURENCES, "TLB hits.");
1652 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesRZ", STAMUNIT_OCCURENCES, "TLB misses.");
1653 STAM_REG(pVM, &pPGM->StatRZPageMapTlbHits, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1654 STAM_REG(pVM, &pPGM->StatRZPageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1655 STAM_REG(pVM, &pPGM->StatRZPageReplaceShared, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1656 STAM_REG(pVM, &pPGM->StatRZPageReplaceZero, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1657/// @todo STAM_REG(pVM, &pPGM->StatRZPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/RZ/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1658 STAM_REG(pVM, &pPGM->StatRZFlushTLB, STAMTYPE_PROFILE, "/PGM/RZ/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1659 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1660 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1661 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1662 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1663 STAM_REG(pVM, &pPGM->StatRZGstModifyPage, STAMTYPE_PROFILE, "/PGM/RZ/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1664
1665 STAM_REG(pVM, &pPGM->StatR3SyncCR3, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1666 STAM_REG(pVM, &pPGM->StatR3SyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1667 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1668 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1669 STAM_REG(pVM, &pPGM->StatR3SyncCR3Global, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1670 STAM_REG(pVM, &pPGM->StatR3SyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1671 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1672 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1673 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1674 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1675 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1676 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1677 STAM_REG(pVM, &pPGM->StatR3SyncPT, STAMTYPE_PROFILE, "/PGM/R3/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1678 STAM_REG(pVM, &pPGM->StatR3SyncPTFailed, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1679 STAM_REG(pVM, &pPGM->StatR3SyncPT4K, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1680 STAM_REG(pVM, &pPGM->StatR3SyncPT4M, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1681 STAM_REG(pVM, &pPGM->StatR3SyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1682 STAM_REG(pVM, &pPGM->StatR3SyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1683 STAM_REG(pVM, &pPGM->StatR3AccessedPage, STAMTYPE_COUNTER, "/PGM/R3/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1684 STAM_REG(pVM, &pPGM->StatR3DirtyBitTracking, STAMTYPE_PROFILE, "/PGM/R3/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1685 STAM_REG(pVM, &pPGM->StatR3DirtyPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1686 STAM_REG(pVM, &pPGM->StatR3DirtyPageBig, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1687 STAM_REG(pVM, &pPGM->StatR3DirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1688 STAM_REG(pVM, &pPGM->StatR3DirtyPageTrap, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1689 STAM_REG(pVM, &pPGM->StatR3DirtiedPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1690 STAM_REG(pVM, &pPGM->StatR3DirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1691 STAM_REG(pVM, &pPGM->StatR3PageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1692 STAM_REG(pVM, &pPGM->StatR3InvalidatePage, STAMTYPE_PROFILE, "/PGM/R3/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1693 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1694 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1695 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1696 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1697 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1698 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1699 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1700 STAM_REG(pVM, &pPGM->StatR3InvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1701 STAM_REG(pVM, &pPGM->StatR3VirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/R3/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1702 STAM_REG(pVM, &pPGM->StatR3PhysHandlerReset, STAMTYPE_COUNTER, "/PGM/R3/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1703 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1704 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1705 STAM_REG(pVM, &pPGM->StatR3Prefetch, STAMTYPE_PROFILE, "/PGM/R3/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1706 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsR3", STAMUNIT_OCCURENCES, "TLB hits.");
1707 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesR3", STAMUNIT_OCCURENCES, "TLB misses.");
1708 STAM_REG(pVM, &pPGM->StatR3PageMapTlbHits, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1709 STAM_REG(pVM, &pPGM->StatR3PageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1710 STAM_REG(pVM, &pPGM->StatR3PageReplaceShared, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1711 STAM_REG(pVM, &pPGM->StatR3PageReplaceZero, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1712/// @todo STAM_REG(pVM, &pPGM->StatR3PageHandyAllocs, STAMTYPE_COUNTER, "/PGM/R3/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1713 STAM_REG(pVM, &pPGM->StatR3FlushTLB, STAMTYPE_PROFILE, "/PGM/R3/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1714 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1715 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1716 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1717 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1718 STAM_REG(pVM, &pPGM->StatR3GstModifyPage, STAMTYPE_PROFILE, "/PGM/R3/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1719
1720}
1721#endif /* VBOX_WITH_STATISTICS */
1722
1723
1724/**
1725 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1726 *
1727 * The dynamic mapping area will also be allocated and initialized at this
1728 * time. We could allocate it during PGMR3Init of course, but the mapping
1729 * wouldn't be allocated at that time preventing us from setting up the
1730 * page table entries with the dummy page.
1731 *
1732 * @returns VBox status code.
1733 * @param pVM VM handle.
1734 */
1735VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1736{
1737 RTGCPTR GCPtr;
1738 /*
1739 * Reserve space for mapping the paging pages into guest context.
1740 */
1741 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + RT_ELEMENTS(pVM->pgm.s.apHCPaePDs) + 1 + 2 + 2), "Paging", &GCPtr);
1742 AssertRCReturn(rc, rc);
1743 pVM->pgm.s.pGC32BitPD = GCPtr;
1744 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1745
1746 /*
1747 * Reserve space for the dynamic mappings.
1748 */
1749 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1750 if (VBOX_SUCCESS(rc))
1751 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1752
1753 if ( VBOX_SUCCESS(rc)
1754 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1755 {
1756 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1757 if (VBOX_SUCCESS(rc))
1758 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1759 }
1760 if (VBOX_SUCCESS(rc))
1761 {
1762 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1763 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1764 }
1765 return rc;
1766}
1767
1768
1769/**
1770 * Ring-3 init finalizing.
1771 *
1772 * @returns VBox status code.
1773 * @param pVM The VM handle.
1774 */
1775VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1776{
1777 /*
1778 * Map the paging pages into the guest context.
1779 */
1780 RTGCPTR GCPtr = pVM->pgm.s.pGC32BitPD;
1781 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1782
1783 int rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhys32BitPD, PAGE_SIZE, 0);
1784 AssertRCReturn(rc, rc);
1785 pVM->pgm.s.pGC32BitPD = GCPtr;
1786 GCPtr += PAGE_SIZE;
1787 GCPtr += PAGE_SIZE; /* reserved page */
1788
1789 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1790 {
1791 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1792 AssertRCReturn(rc, rc);
1793 pVM->pgm.s.apGCPaePDs[i] = GCPtr;
1794 GCPtr += PAGE_SIZE;
1795 }
1796 /* A bit of paranoia is justified. */
1797 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[0] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1]);
1798 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2]);
1799 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[3]);
1800 GCPtr += PAGE_SIZE; /* reserved page */
1801
1802 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysPaePDPT, PAGE_SIZE, 0);
1803 AssertRCReturn(rc, rc);
1804 pVM->pgm.s.pGCPaePDPT = GCPtr;
1805 GCPtr += PAGE_SIZE;
1806 GCPtr += PAGE_SIZE; /* reserved page */
1807
1808
1809 /*
1810 * Reserve space for the dynamic mappings.
1811 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1812 */
1813 /* get the pointer to the page table entries. */
1814 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1815 AssertRelease(pMapping);
1816 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1817 const unsigned iPT = off >> X86_PD_SHIFT;
1818 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1819 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1820 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1821
1822 /* init cache */
1823 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1824 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1825 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1826
1827 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1828 {
1829 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1830 AssertRCReturn(rc, rc);
1831 }
1832
1833 /*
1834 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1835 * Intel only goes up to 36 bits, so we stick to 36 as well.
1836 */
1837 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1838 uint32_t u32Dummy, u32Features;
1839 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1840
1841 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1842 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1843 else
1844 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1845
1846 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1847
1848 return rc;
1849}
1850
1851
1852/**
1853 * Applies relocations to data and code managed by this component.
1854 *
1855 * This function will be called at init and whenever the VMM need to relocate it
1856 * self inside the GC.
1857 *
1858 * @param pVM The VM.
1859 * @param offDelta Relocation delta relative to old location.
1860 */
1861VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1862{
1863 LogFlow(("PGMR3Relocate\n"));
1864
1865 /*
1866 * Paging stuff.
1867 */
1868 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1869 /** @todo move this into shadow and guest specific relocation functions. */
1870 AssertMsg(pVM->pgm.s.pGC32BitPD, ("Init order, no relocation before paging is initialized!\n"));
1871 pVM->pgm.s.pGC32BitPD += offDelta;
1872 pVM->pgm.s.pGuestPDGC += offDelta;
1873 AssertCompile(RT_ELEMENTS(pVM->pgm.s.apGCPaePDs) == RT_ELEMENTS(pVM->pgm.s.apGstPaePDsGC));
1874 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGCPaePDs); i++)
1875 {
1876 pVM->pgm.s.apGCPaePDs[i] += offDelta;
1877 pVM->pgm.s.apGstPaePDsGC[i] += offDelta;
1878 }
1879 pVM->pgm.s.pGstPaePDPTGC += offDelta;
1880 pVM->pgm.s.pGCPaePDPT += offDelta;
1881
1882 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1883 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1884
1885 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1886 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1887 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1888
1889 /*
1890 * Trees.
1891 */
1892 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1893
1894 /*
1895 * Ram ranges.
1896 */
1897 if (pVM->pgm.s.pRamRangesR3)
1898 {
1899 pVM->pgm.s.pRamRangesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pRamRangesR3);
1900 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
1901 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1902 }
1903
1904 /*
1905 * Update the two page directories with all page table mappings.
1906 * (One or more of them have changed, that's why we're here.)
1907 */
1908 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
1909 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1910 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1911
1912 /* Relocate GC addresses of Page Tables. */
1913 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1914 {
1915 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1916 {
1917 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
1918 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
1919 }
1920 }
1921
1922 /*
1923 * Dynamic page mapping area.
1924 */
1925 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1926 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1927 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1928
1929 /*
1930 * The Zero page.
1931 */
1932 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1933 AssertRelease(pVM->pgm.s.pvZeroPgR0);
1934
1935 /*
1936 * Physical and virtual handlers.
1937 */
1938 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1939 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1940 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1941
1942 /*
1943 * The page pool.
1944 */
1945 pgmR3PoolRelocate(pVM);
1946}
1947
1948
1949/**
1950 * Callback function for relocating a physical access handler.
1951 *
1952 * @returns 0 (continue enum)
1953 * @param pNode Pointer to a PGMPHYSHANDLER node.
1954 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1955 * not certain the delta will fit in a void pointer for all possible configs.
1956 */
1957static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1958{
1959 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
1960 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1961 if (pHandler->pfnHandlerRC)
1962 pHandler->pfnHandlerRC += offDelta;
1963 if (pHandler->pvUserRC >= 0x10000)
1964 pHandler->pvUserRC += offDelta;
1965 return 0;
1966}
1967
1968
1969/**
1970 * Callback function for relocating a virtual access handler.
1971 *
1972 * @returns 0 (continue enum)
1973 * @param pNode Pointer to a PGMVIRTHANDLER node.
1974 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1975 * not certain the delta will fit in a void pointer for all possible configs.
1976 */
1977static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1978{
1979 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1980 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1981 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
1982 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
1983 Assert(pHandler->pfnHandlerRC);
1984 pHandler->pfnHandlerRC += offDelta;
1985 return 0;
1986}
1987
1988
1989/**
1990 * Callback function for relocating a virtual access handler for the hypervisor mapping.
1991 *
1992 * @returns 0 (continue enum)
1993 * @param pNode Pointer to a PGMVIRTHANDLER node.
1994 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1995 * not certain the delta will fit in a void pointer for all possible configs.
1996 */
1997static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1998{
1999 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2000 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2001 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2002 Assert(pHandler->pfnHandlerRC);
2003 pHandler->pfnHandlerRC += offDelta;
2004 return 0;
2005}
2006
2007
2008/**
2009 * The VM is being reset.
2010 *
2011 * For the PGM component this means that any PD write monitors
2012 * needs to be removed.
2013 *
2014 * @param pVM VM handle.
2015 */
2016VMMR3DECL(void) PGMR3Reset(PVM pVM)
2017{
2018 LogFlow(("PGMR3Reset:\n"));
2019 VM_ASSERT_EMT(pVM);
2020
2021 pgmLock(pVM);
2022
2023 /*
2024 * Unfix any fixed mappings and disable CR3 monitoring.
2025 */
2026 pVM->pgm.s.fMappingsFixed = false;
2027 pVM->pgm.s.GCPtrMappingFixed = 0;
2028 pVM->pgm.s.cbMappingFixed = 0;
2029
2030 /* Exit the guest paging mode before the pgm pool gets reset.
2031 * Important to clean up the amd64 case.
2032 */
2033 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2034 AssertRC(rc);
2035#ifdef DEBUG
2036 DBGFR3InfoLog(pVM, "mappings", NULL);
2037 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2038#endif
2039
2040 /*
2041 * Reset the shadow page pool.
2042 */
2043 pgmR3PoolReset(pVM);
2044
2045 /*
2046 * Re-init other members.
2047 */
2048 pVM->pgm.s.fA20Enabled = true;
2049
2050 /*
2051 * Clear the FFs PGM owns.
2052 */
2053 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2054 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2055
2056 /*
2057 * Reset (zero) RAM pages.
2058 */
2059 rc = pgmR3PhysRamReset(pVM);
2060 if (RT_SUCCESS(rc))
2061 {
2062#ifdef VBOX_WITH_NEW_PHYS_CODE
2063 /*
2064 * Reset (zero) shadow ROM pages.
2065 */
2066 rc = pgmR3PhysRomReset(pVM);
2067#endif
2068 if (RT_SUCCESS(rc))
2069 {
2070 /*
2071 * Switch mode back to real mode.
2072 */
2073 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2074 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2075 }
2076 }
2077
2078 pgmUnlock(pVM);
2079 //return rc;
2080 AssertReleaseRC(rc);
2081}
2082
2083
2084#ifdef VBOX_STRICT
2085/**
2086 * VM state change callback for clearing fNoMorePhysWrites after
2087 * a snapshot has been created.
2088 */
2089static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2090{
2091 if (enmState == VMSTATE_RUNNING)
2092 pVM->pgm.s.fNoMorePhysWrites = false;
2093}
2094#endif
2095
2096
2097/**
2098 * Terminates the PGM.
2099 *
2100 * @returns VBox status code.
2101 * @param pVM Pointer to VM structure.
2102 */
2103VMMR3DECL(int) PGMR3Term(PVM pVM)
2104{
2105 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2106}
2107
2108
2109/**
2110 * Execute state save operation.
2111 *
2112 * @returns VBox status code.
2113 * @param pVM VM Handle.
2114 * @param pSSM SSM operation handle.
2115 */
2116static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2117{
2118 PPGM pPGM = &pVM->pgm.s;
2119
2120 /* No more writes to physical memory after this point! */
2121 pVM->pgm.s.fNoMorePhysWrites = true;
2122
2123 /*
2124 * Save basic data (required / unaffected by relocation).
2125 */
2126#if 1
2127 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
2128#else
2129 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
2130#endif
2131 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
2132 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
2133 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
2134 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2135 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
2136 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
2137 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
2138 SSMR3PutU32(pSSM, ~0); /* Separator. */
2139
2140 /*
2141 * The guest mappings.
2142 */
2143 uint32_t i = 0;
2144 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2145 {
2146 SSMR3PutU32(pSSM, i);
2147 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2148 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
2149 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2150 /* flags are done by the mapping owners! */
2151 }
2152 SSMR3PutU32(pSSM, ~0); /* terminator. */
2153
2154 /*
2155 * Ram range flags and bits.
2156 */
2157 i = 0;
2158 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2159 {
2160 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2161
2162 SSMR3PutU32(pSSM, i);
2163 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2164 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2165 SSMR3PutGCPhys(pSSM, pRam->cb);
2166 SSMR3PutU8(pSSM, !!pRam->pvR3); /* boolean indicating memory or not. */
2167
2168 /* Flags. */
2169 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2170 for (unsigned iPage = 0; iPage < cPages; iPage++)
2171 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2172
2173 /* any memory associated with the range. */
2174 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2175 {
2176 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2177 {
2178 if (pRam->paChunkR3Ptrs[iChunk])
2179 {
2180 SSMR3PutU8(pSSM, 1); /* chunk present */
2181 SSMR3PutMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2182 }
2183 else
2184 SSMR3PutU8(pSSM, 0); /* no chunk present */
2185 }
2186 }
2187 else if (pRam->pvR3)
2188 {
2189 int rc = SSMR3PutMem(pSSM, pRam->pvR3, pRam->cb);
2190 if (VBOX_FAILURE(rc))
2191 {
2192 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Vrc\n", pRam->pvR3, pRam->cb, rc));
2193 return rc;
2194 }
2195 }
2196 }
2197 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2198}
2199
2200
2201/**
2202 * Execute state load operation.
2203 *
2204 * @returns VBox status code.
2205 * @param pVM VM Handle.
2206 * @param pSSM SSM operation handle.
2207 * @param u32Version Data layout version.
2208 */
2209static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2210{
2211 /*
2212 * Validate version.
2213 */
2214 if (u32Version != PGM_SAVED_STATE_VERSION)
2215 {
2216 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2217 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2218 }
2219
2220 /*
2221 * Call the reset function to make sure all the memory is cleared.
2222 */
2223 PGMR3Reset(pVM);
2224
2225 /*
2226 * Load basic data (required / unaffected by relocation).
2227 */
2228 PPGM pPGM = &pVM->pgm.s;
2229#if 1
2230 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2231#else
2232 uint32_t u;
2233 SSMR3GetU32(pSSM, &u);
2234 pPGM->fMappingsFixed = u;
2235#endif
2236 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2237 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2238
2239 RTUINT cbRamSize;
2240 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2241 if (VBOX_FAILURE(rc))
2242 return rc;
2243 if (cbRamSize != pPGM->cbRamSize)
2244 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2245 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2246 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2247 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2248 RTUINT uGuestMode;
2249 SSMR3GetUInt(pSSM, &uGuestMode);
2250 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2251
2252 /* check separator. */
2253 uint32_t u32Sep;
2254 SSMR3GetU32(pSSM, &u32Sep);
2255 if (VBOX_FAILURE(rc))
2256 return rc;
2257 if (u32Sep != (uint32_t)~0)
2258 {
2259 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2260 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2261 }
2262
2263 /*
2264 * The guest mappings.
2265 */
2266 uint32_t i = 0;
2267 for (;; i++)
2268 {
2269 /* Check the seqence number / separator. */
2270 rc = SSMR3GetU32(pSSM, &u32Sep);
2271 if (VBOX_FAILURE(rc))
2272 return rc;
2273 if (u32Sep == ~0U)
2274 break;
2275 if (u32Sep != i)
2276 {
2277 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2278 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2279 }
2280
2281 /* get the mapping details. */
2282 char szDesc[256];
2283 szDesc[0] = '\0';
2284 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2285 if (VBOX_FAILURE(rc))
2286 return rc;
2287 RTGCPTR GCPtr;
2288 SSMR3GetGCPtr(pSSM, &GCPtr);
2289 RTGCUINTPTR cPTs;
2290 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2291 if (VBOX_FAILURE(rc))
2292 return rc;
2293
2294 /* find matching range. */
2295 PPGMMAPPING pMapping;
2296 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2297 if ( pMapping->cPTs == cPTs
2298 && !strcmp(pMapping->pszDesc, szDesc))
2299 break;
2300 if (!pMapping)
2301 {
2302 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%VGv)\n",
2303 cPTs, szDesc, GCPtr));
2304 AssertFailed();
2305 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2306 }
2307
2308 /* relocate it. */
2309 if (pMapping->GCPtr != GCPtr)
2310 {
2311 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%VGv\n", GCPtr));
2312 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2313 }
2314 else
2315 Log(("pgmR3Load: '%s' needed no relocation (%VGv)\n", szDesc, GCPtr));
2316 }
2317
2318 /*
2319 * Ram range flags and bits.
2320 */
2321 i = 0;
2322 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2323 {
2324 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2325 /* Check the seqence number / separator. */
2326 rc = SSMR3GetU32(pSSM, &u32Sep);
2327 if (VBOX_FAILURE(rc))
2328 return rc;
2329 if (u32Sep == ~0U)
2330 break;
2331 if (u32Sep != i)
2332 {
2333 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2334 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2335 }
2336
2337 /* Get the range details. */
2338 RTGCPHYS GCPhys;
2339 SSMR3GetGCPhys(pSSM, &GCPhys);
2340 RTGCPHYS GCPhysLast;
2341 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2342 RTGCPHYS cb;
2343 SSMR3GetGCPhys(pSSM, &cb);
2344 uint8_t fHaveBits;
2345 rc = SSMR3GetU8(pSSM, &fHaveBits);
2346 if (VBOX_FAILURE(rc))
2347 return rc;
2348 if (fHaveBits & ~1)
2349 {
2350 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2351 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2352 }
2353
2354 /* Match it up with the current range. */
2355 if ( GCPhys != pRam->GCPhys
2356 || GCPhysLast != pRam->GCPhysLast
2357 || cb != pRam->cb
2358 || fHaveBits != !!pRam->pvR3)
2359 {
2360 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s\n"
2361 "State : %RGp-%RGp %RGp bytes %s\n",
2362 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits",
2363 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2364 /*
2365 * If we're loading a state for debugging purpose, don't make a fuss if
2366 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2367 */
2368 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2369 || GCPhys < 8 * _1M)
2370 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2371
2372 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2373 while (cPages-- > 0)
2374 {
2375 uint16_t u16Ignore;
2376 SSMR3GetU16(pSSM, &u16Ignore);
2377 }
2378 continue;
2379 }
2380
2381 /* Flags. */
2382 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2383 for (unsigned iPage = 0; iPage < cPages; iPage++)
2384 {
2385 uint16_t u16 = 0;
2386 SSMR3GetU16(pSSM, &u16);
2387 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2388 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2389 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2390 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2391 }
2392
2393 /* any memory associated with the range. */
2394 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2395 {
2396 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2397 {
2398 uint8_t fValidChunk;
2399
2400 rc = SSMR3GetU8(pSSM, &fValidChunk);
2401 if (VBOX_FAILURE(rc))
2402 return rc;
2403 if (fValidChunk > 1)
2404 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2405
2406 if (fValidChunk)
2407 {
2408 if (!pRam->paChunkR3Ptrs[iChunk])
2409 {
2410 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2411 if (VBOX_FAILURE(rc))
2412 return rc;
2413 }
2414 Assert(pRam->paChunkR3Ptrs[iChunk]);
2415
2416 SSMR3GetMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2417 }
2418 /* else nothing to do */
2419 }
2420 }
2421 else if (pRam->pvR3)
2422 {
2423 int rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2424 if (VBOX_FAILURE(rc))
2425 {
2426 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Vrc\n", pRam->pvR3, pRam->cb, rc));
2427 return rc;
2428 }
2429 }
2430 }
2431
2432 /*
2433 * We require a full resync now.
2434 */
2435 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2436 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2437 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2438 pPGM->fPhysCacheFlushPending = true;
2439 pgmR3HandlerPhysicalUpdateAll(pVM);
2440
2441 /*
2442 * Change the paging mode.
2443 */
2444 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2445
2446 /* Restore pVM->pgm.s.GCPhysCR3. */
2447 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2448 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2449 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2450 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2451 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2452 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2453 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2454 else
2455 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2456 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2457
2458 return rc;
2459}
2460
2461
2462/**
2463 * Show paging mode.
2464 *
2465 * @param pVM VM Handle.
2466 * @param pHlp The info helpers.
2467 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2468 */
2469static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2470{
2471 /* digest argument. */
2472 bool fGuest, fShadow, fHost;
2473 if (pszArgs)
2474 pszArgs = RTStrStripL(pszArgs);
2475 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2476 fShadow = fHost = fGuest = true;
2477 else
2478 {
2479 fShadow = fHost = fGuest = false;
2480 if (strstr(pszArgs, "guest"))
2481 fGuest = true;
2482 if (strstr(pszArgs, "shadow"))
2483 fShadow = true;
2484 if (strstr(pszArgs, "host"))
2485 fHost = true;
2486 }
2487
2488 /* print info. */
2489 if (fGuest)
2490 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2491 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2492 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2493 if (fShadow)
2494 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2495 if (fHost)
2496 {
2497 const char *psz;
2498 switch (pVM->pgm.s.enmHostMode)
2499 {
2500 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2501 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2502 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2503 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2504 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2505 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2506 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2507 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2508 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2509 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2510 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2511 default: psz = "unknown"; break;
2512 }
2513 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2514 }
2515}
2516
2517
2518/**
2519 * Dump registered MMIO ranges to the log.
2520 *
2521 * @param pVM VM Handle.
2522 * @param pHlp The info helpers.
2523 * @param pszArgs Arguments, ignored.
2524 */
2525static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2526{
2527 NOREF(pszArgs);
2528 pHlp->pfnPrintf(pHlp,
2529 "RAM ranges (pVM=%p)\n"
2530 "%.*s %.*s\n",
2531 pVM,
2532 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2533 sizeof(RTHCPTR) * 2, "pvHC ");
2534
2535 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2536 pHlp->pfnPrintf(pHlp,
2537 "%RGp-%RGp %RHv %s\n",
2538 pCur->GCPhys,
2539 pCur->GCPhysLast,
2540 pCur->pvR3,
2541 pCur->pszDesc);
2542}
2543
2544/**
2545 * Dump the page directory to the log.
2546 *
2547 * @param pVM VM Handle.
2548 * @param pHlp The info helpers.
2549 * @param pszArgs Arguments, ignored.
2550 */
2551static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2552{
2553/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2554 /* Big pages supported? */
2555 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2556
2557 /* Global pages supported? */
2558 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2559
2560 NOREF(pszArgs);
2561
2562 /*
2563 * Get page directory addresses.
2564 */
2565 PX86PD pPDSrc = pVM->pgm.s.pGuestPDHC;
2566 Assert(pPDSrc);
2567 Assert(PGMPhysGCPhys2HCPtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2568
2569 /*
2570 * Iterate the page directory.
2571 */
2572 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2573 {
2574 X86PDE PdeSrc = pPDSrc->a[iPD];
2575 if (PdeSrc.n.u1Present)
2576 {
2577 if (PdeSrc.b.u1Size && fPSE)
2578 pHlp->pfnPrintf(pHlp,
2579 "%04X - %VGp P=%d U=%d RW=%d G=%d - BIG\n",
2580 iPD,
2581 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2582 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2583 else
2584 pHlp->pfnPrintf(pHlp,
2585 "%04X - %VGp P=%d U=%d RW=%d [G=%d]\n",
2586 iPD,
2587 PdeSrc.u & X86_PDE_PG_MASK,
2588 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2589 }
2590 }
2591}
2592
2593
2594/**
2595 * Serivce a VMMCALLHOST_PGM_LOCK call.
2596 *
2597 * @returns VBox status code.
2598 * @param pVM The VM handle.
2599 */
2600VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2601{
2602 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2603 AssertRC(rc);
2604 return rc;
2605}
2606
2607
2608/**
2609 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2610 *
2611 * @returns PGM_TYPE_*.
2612 * @param pgmMode The mode value to convert.
2613 */
2614DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2615{
2616 switch (pgmMode)
2617 {
2618 case PGMMODE_REAL: return PGM_TYPE_REAL;
2619 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2620 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2621 case PGMMODE_PAE:
2622 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2623 case PGMMODE_AMD64:
2624 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2625 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2626 case PGMMODE_EPT: return PGM_TYPE_EPT;
2627 default:
2628 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2629 }
2630}
2631
2632
2633/**
2634 * Gets the index into the paging mode data array of a SHW+GST mode.
2635 *
2636 * @returns PGM::paPagingData index.
2637 * @param uShwType The shadow paging mode type.
2638 * @param uGstType The guest paging mode type.
2639 */
2640DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2641{
2642 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2643 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2644 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2645 + (uGstType - PGM_TYPE_REAL);
2646}
2647
2648
2649/**
2650 * Gets the index into the paging mode data array of a SHW+GST mode.
2651 *
2652 * @returns PGM::paPagingData index.
2653 * @param enmShw The shadow paging mode.
2654 * @param enmGst The guest paging mode.
2655 */
2656DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2657{
2658 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2659 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2660 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2661}
2662
2663
2664/**
2665 * Calculates the max data index.
2666 * @returns The number of entries in the paging data array.
2667 */
2668DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2669{
2670 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2671}
2672
2673
2674/**
2675 * Initializes the paging mode data kept in PGM::paModeData.
2676 *
2677 * @param pVM The VM handle.
2678 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2679 * This is used early in the init process to avoid trouble with PDM
2680 * not being initialized yet.
2681 */
2682static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2683{
2684 PPGMMODEDATA pModeData;
2685 int rc;
2686
2687 /*
2688 * Allocate the array on the first call.
2689 */
2690 if (!pVM->pgm.s.paModeData)
2691 {
2692 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2693 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2694 }
2695
2696 /*
2697 * Initialize the array entries.
2698 */
2699 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2700 pModeData->uShwType = PGM_TYPE_32BIT;
2701 pModeData->uGstType = PGM_TYPE_REAL;
2702 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2703 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2704 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2705
2706 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2707 pModeData->uShwType = PGM_TYPE_32BIT;
2708 pModeData->uGstType = PGM_TYPE_PROT;
2709 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2710 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2711 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2712
2713 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2714 pModeData->uShwType = PGM_TYPE_32BIT;
2715 pModeData->uGstType = PGM_TYPE_32BIT;
2716 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2717 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2718 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2719
2720 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2721 pModeData->uShwType = PGM_TYPE_PAE;
2722 pModeData->uGstType = PGM_TYPE_REAL;
2723 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2724 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2725 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2726
2727 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2728 pModeData->uShwType = PGM_TYPE_PAE;
2729 pModeData->uGstType = PGM_TYPE_PROT;
2730 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2731 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2732 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2733
2734 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2735 pModeData->uShwType = PGM_TYPE_PAE;
2736 pModeData->uGstType = PGM_TYPE_32BIT;
2737 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2738 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2739 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2740
2741 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2742 pModeData->uShwType = PGM_TYPE_PAE;
2743 pModeData->uGstType = PGM_TYPE_PAE;
2744 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2745 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2746 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2747
2748#ifdef VBOX_WITH_64_BITS_GUESTS
2749 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2750 pModeData->uShwType = PGM_TYPE_AMD64;
2751 pModeData->uGstType = PGM_TYPE_AMD64;
2752 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2753 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2754 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2755#endif
2756
2757 /* The nested paging mode. */
2758 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2759 pModeData->uShwType = PGM_TYPE_NESTED;
2760 pModeData->uGstType = PGM_TYPE_REAL;
2761 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2762 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2763
2764 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2765 pModeData->uShwType = PGM_TYPE_NESTED;
2766 pModeData->uGstType = PGM_TYPE_PROT;
2767 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2768 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2769
2770 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2771 pModeData->uShwType = PGM_TYPE_NESTED;
2772 pModeData->uGstType = PGM_TYPE_32BIT;
2773 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2774 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2775
2776 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2777 pModeData->uShwType = PGM_TYPE_NESTED;
2778 pModeData->uGstType = PGM_TYPE_PAE;
2779 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2780 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2781
2782#ifdef VBOX_WITH_64_BITS_GUESTS
2783 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2784 pModeData->uShwType = PGM_TYPE_NESTED;
2785 pModeData->uGstType = PGM_TYPE_AMD64;
2786 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2787 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2788#endif
2789
2790 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2791 switch(pVM->pgm.s.enmHostMode)
2792 {
2793 case SUPPAGINGMODE_32_BIT:
2794 case SUPPAGINGMODE_32_BIT_GLOBAL:
2795#ifdef VBOX_WITH_64_BITS_GUESTS
2796 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2797#else
2798 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_PAE;i++)
2799#endif
2800 {
2801 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2802 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2803 }
2804 break;
2805
2806 case SUPPAGINGMODE_PAE:
2807 case SUPPAGINGMODE_PAE_NX:
2808 case SUPPAGINGMODE_PAE_GLOBAL:
2809 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2810#ifdef VBOX_WITH_64_BITS_GUESTS
2811 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2812#else
2813 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_PAE;i++)
2814#endif
2815 {
2816 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2817 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2818 }
2819 break;
2820
2821 case SUPPAGINGMODE_AMD64:
2822 case SUPPAGINGMODE_AMD64_GLOBAL:
2823 case SUPPAGINGMODE_AMD64_NX:
2824 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2825#ifdef VBOX_WITH_64_BITS_GUESTS
2826 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2827#else
2828 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_PAE;i++)
2829#endif
2830 {
2831 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2832 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2833 }
2834 break;
2835 default:
2836 AssertFailed();
2837 break;
2838 }
2839
2840 /* Extended paging (EPT) / Intel VT-x */
2841 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2842 pModeData->uShwType = PGM_TYPE_EPT;
2843 pModeData->uGstType = PGM_TYPE_REAL;
2844 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2845 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2846 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2847
2848 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2849 pModeData->uShwType = PGM_TYPE_EPT;
2850 pModeData->uGstType = PGM_TYPE_PROT;
2851 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2852 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2853 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2854
2855 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2856 pModeData->uShwType = PGM_TYPE_EPT;
2857 pModeData->uGstType = PGM_TYPE_32BIT;
2858 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2859 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2860 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2861
2862 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2863 pModeData->uShwType = PGM_TYPE_EPT;
2864 pModeData->uGstType = PGM_TYPE_PAE;
2865 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2866 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2867 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2868
2869#ifdef VBOX_WITH_64_BITS_GUESTS
2870 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2871 pModeData->uShwType = PGM_TYPE_EPT;
2872 pModeData->uGstType = PGM_TYPE_AMD64;
2873 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2874 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2875 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2876#endif
2877 return VINF_SUCCESS;
2878}
2879
2880
2881/**
2882 * Switch to different (or relocated in the relocate case) mode data.
2883 *
2884 * @param pVM The VM handle.
2885 * @param enmShw The the shadow paging mode.
2886 * @param enmGst The the guest paging mode.
2887 */
2888static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
2889{
2890 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2891
2892 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2893 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2894
2895 /* shadow */
2896 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2897 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2898 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2899 Assert(pVM->pgm.s.pfnR3ShwGetPage);
2900 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2901
2902 pVM->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
2903 pVM->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
2904
2905 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2906 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2907
2908
2909 /* guest */
2910 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2911 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2912 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2913 Assert(pVM->pgm.s.pfnR3GstGetPage);
2914 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2915 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2916 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
2917 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
2918 pVM->pgm.s.pfnR3GstMapCR3 = pModeData->pfnR3GstMapCR3;
2919 pVM->pgm.s.pfnR3GstUnmapCR3 = pModeData->pfnR3GstUnmapCR3;
2920 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
2921 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
2922 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
2923 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
2924
2925 pVM->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
2926 pVM->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
2927 pVM->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
2928 pVM->pgm.s.pfnRCGstMonitorCR3 = pModeData->pfnRCGstMonitorCR3;
2929 pVM->pgm.s.pfnRCGstUnmonitorCR3 = pModeData->pfnRCGstUnmonitorCR3;
2930 pVM->pgm.s.pfnRCGstMapCR3 = pModeData->pfnRCGstMapCR3;
2931 pVM->pgm.s.pfnRCGstUnmapCR3 = pModeData->pfnRCGstUnmapCR3;
2932 pVM->pgm.s.pfnRCGstWriteHandlerCR3 = pModeData->pfnRCGstWriteHandlerCR3;
2933 pVM->pgm.s.pfnRCGstPAEWriteHandlerCR3 = pModeData->pfnRCGstPAEWriteHandlerCR3;
2934
2935 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2936 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2937 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2938 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
2939 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
2940 pVM->pgm.s.pfnR0GstMapCR3 = pModeData->pfnR0GstMapCR3;
2941 pVM->pgm.s.pfnR0GstUnmapCR3 = pModeData->pfnR0GstUnmapCR3;
2942 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
2943 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
2944
2945
2946 /* both */
2947 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2948 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2949 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2950 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
2951 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2952 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2953 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2954#ifdef VBOX_STRICT
2955 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2956#endif
2957
2958 pVM->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
2959 pVM->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
2960 pVM->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
2961 pVM->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
2962 pVM->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
2963 pVM->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
2964#ifdef VBOX_STRICT
2965 pVM->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
2966#endif
2967
2968 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2969 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2970 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2971 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
2972 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2973 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2974#ifdef VBOX_STRICT
2975 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2976#endif
2977}
2978
2979
2980/**
2981 * Calculates the shadow paging mode.
2982 *
2983 * @returns The shadow paging mode.
2984 * @param pVM VM handle.
2985 * @param enmGuestMode The guest mode.
2986 * @param enmHostMode The host mode.
2987 * @param enmShadowMode The current shadow mode.
2988 * @param penmSwitcher Where to store the switcher to use.
2989 * VMMSWITCHER_INVALID means no change.
2990 */
2991static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
2992{
2993 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
2994 switch (enmGuestMode)
2995 {
2996 /*
2997 * When switching to real or protected mode we don't change
2998 * anything since it's likely that we'll switch back pretty soon.
2999 *
3000 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3001 * and is supposed to determine which shadow paging and switcher to
3002 * use during init.
3003 */
3004 case PGMMODE_REAL:
3005 case PGMMODE_PROTECTED:
3006 if ( enmShadowMode != PGMMODE_INVALID
3007 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3008 break; /* (no change) */
3009
3010 switch (enmHostMode)
3011 {
3012 case SUPPAGINGMODE_32_BIT:
3013 case SUPPAGINGMODE_32_BIT_GLOBAL:
3014 enmShadowMode = PGMMODE_32_BIT;
3015 enmSwitcher = VMMSWITCHER_32_TO_32;
3016 break;
3017
3018 case SUPPAGINGMODE_PAE:
3019 case SUPPAGINGMODE_PAE_NX:
3020 case SUPPAGINGMODE_PAE_GLOBAL:
3021 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3022 enmShadowMode = PGMMODE_PAE;
3023 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3024#ifdef DEBUG_bird
3025 if (RTEnvExist("VBOX_32BIT"))
3026 {
3027 enmShadowMode = PGMMODE_32_BIT;
3028 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3029 }
3030#endif
3031 break;
3032
3033 case SUPPAGINGMODE_AMD64:
3034 case SUPPAGINGMODE_AMD64_GLOBAL:
3035 case SUPPAGINGMODE_AMD64_NX:
3036 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3037 enmShadowMode = PGMMODE_PAE;
3038 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3039 break;
3040
3041 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3042 }
3043 break;
3044
3045 case PGMMODE_32_BIT:
3046 switch (enmHostMode)
3047 {
3048 case SUPPAGINGMODE_32_BIT:
3049 case SUPPAGINGMODE_32_BIT_GLOBAL:
3050 enmShadowMode = PGMMODE_32_BIT;
3051 enmSwitcher = VMMSWITCHER_32_TO_32;
3052 break;
3053
3054 case SUPPAGINGMODE_PAE:
3055 case SUPPAGINGMODE_PAE_NX:
3056 case SUPPAGINGMODE_PAE_GLOBAL:
3057 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3058 enmShadowMode = PGMMODE_PAE;
3059 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3060#ifdef DEBUG_bird
3061 if (RTEnvExist("VBOX_32BIT"))
3062 {
3063 enmShadowMode = PGMMODE_32_BIT;
3064 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3065 }
3066#endif
3067 break;
3068
3069 case SUPPAGINGMODE_AMD64:
3070 case SUPPAGINGMODE_AMD64_GLOBAL:
3071 case SUPPAGINGMODE_AMD64_NX:
3072 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3073 enmShadowMode = PGMMODE_PAE;
3074 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3075 break;
3076
3077 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3078 }
3079 break;
3080
3081 case PGMMODE_PAE:
3082 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3083 switch (enmHostMode)
3084 {
3085 case SUPPAGINGMODE_32_BIT:
3086 case SUPPAGINGMODE_32_BIT_GLOBAL:
3087 enmShadowMode = PGMMODE_PAE;
3088 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3089 break;
3090
3091 case SUPPAGINGMODE_PAE:
3092 case SUPPAGINGMODE_PAE_NX:
3093 case SUPPAGINGMODE_PAE_GLOBAL:
3094 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3095 enmShadowMode = PGMMODE_PAE;
3096 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3097 break;
3098
3099 case SUPPAGINGMODE_AMD64:
3100 case SUPPAGINGMODE_AMD64_GLOBAL:
3101 case SUPPAGINGMODE_AMD64_NX:
3102 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3103 enmShadowMode = PGMMODE_PAE;
3104 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3105 break;
3106
3107 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3108 }
3109 break;
3110
3111 case PGMMODE_AMD64:
3112 case PGMMODE_AMD64_NX:
3113 switch (enmHostMode)
3114 {
3115 case SUPPAGINGMODE_32_BIT:
3116 case SUPPAGINGMODE_32_BIT_GLOBAL:
3117 enmShadowMode = PGMMODE_PAE;
3118 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3119 break;
3120
3121 case SUPPAGINGMODE_PAE:
3122 case SUPPAGINGMODE_PAE_NX:
3123 case SUPPAGINGMODE_PAE_GLOBAL:
3124 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3125 enmShadowMode = PGMMODE_PAE;
3126 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3127 break;
3128
3129 case SUPPAGINGMODE_AMD64:
3130 case SUPPAGINGMODE_AMD64_GLOBAL:
3131 case SUPPAGINGMODE_AMD64_NX:
3132 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3133 enmShadowMode = PGMMODE_AMD64;
3134 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3135 break;
3136
3137 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3138 }
3139 break;
3140
3141
3142 default:
3143 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3144 return PGMMODE_INVALID;
3145 }
3146 /* Override the shadow mode is nested paging is active. */
3147 if (HWACCMIsNestedPagingActive(pVM))
3148 enmShadowMode = HWACCMGetPagingMode(pVM);
3149
3150 *penmSwitcher = enmSwitcher;
3151 return enmShadowMode;
3152}
3153
3154
3155/**
3156 * Performs the actual mode change.
3157 * This is called by PGMChangeMode and pgmR3InitPaging().
3158 *
3159 * @returns VBox status code.
3160 * @param pVM VM handle.
3161 * @param enmGuestMode The new guest mode. This is assumed to be different from
3162 * the current mode.
3163 */
3164VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3165{
3166 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3167 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3168
3169 /*
3170 * Calc the shadow mode and switcher.
3171 */
3172 VMMSWITCHER enmSwitcher;
3173 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3174 if (enmSwitcher != VMMSWITCHER_INVALID)
3175 {
3176 /*
3177 * Select new switcher.
3178 */
3179 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3180 if (VBOX_FAILURE(rc))
3181 {
3182 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Vrc\n", enmSwitcher, rc));
3183 return rc;
3184 }
3185 }
3186
3187 /*
3188 * Exit old mode(s).
3189 */
3190 /* shadow */
3191 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3192 {
3193 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3194 if (PGM_SHW_PFN(Exit, pVM))
3195 {
3196 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3197 if (VBOX_FAILURE(rc))
3198 {
3199 AssertMsgFailed(("Exit failed for shadow mode %d: %Vrc\n", pVM->pgm.s.enmShadowMode, rc));
3200 return rc;
3201 }
3202 }
3203
3204 }
3205 else
3206 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3207
3208 /* guest */
3209 if (PGM_GST_PFN(Exit, pVM))
3210 {
3211 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3212 if (VBOX_FAILURE(rc))
3213 {
3214 AssertMsgFailed(("Exit failed for guest mode %d: %Vrc\n", pVM->pgm.s.enmGuestMode, rc));
3215 return rc;
3216 }
3217 }
3218
3219 /*
3220 * Load new paging mode data.
3221 */
3222 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3223
3224 /*
3225 * Enter new shadow mode (if changed).
3226 */
3227 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3228 {
3229 int rc;
3230 pVM->pgm.s.enmShadowMode = enmShadowMode;
3231 switch (enmShadowMode)
3232 {
3233 case PGMMODE_32_BIT:
3234 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3235 break;
3236 case PGMMODE_PAE:
3237 case PGMMODE_PAE_NX:
3238 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3239 break;
3240 case PGMMODE_AMD64:
3241 case PGMMODE_AMD64_NX:
3242 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3243 break;
3244 case PGMMODE_NESTED:
3245 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3246 break;
3247 case PGMMODE_EPT:
3248 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3249 break;
3250 case PGMMODE_REAL:
3251 case PGMMODE_PROTECTED:
3252 default:
3253 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3254 return VERR_INTERNAL_ERROR;
3255 }
3256 if (VBOX_FAILURE(rc))
3257 {
3258 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Vrc\n", enmShadowMode, rc));
3259 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3260 return rc;
3261 }
3262 }
3263
3264 /** @todo This is a bug!
3265 *
3266 * We must flush the PGM pool cache if the guest mode changes; we don't always
3267 * switch shadow paging mode (e.g. protected->32-bit) and shouldn't reuse
3268 * the shadow page tables.
3269 *
3270 * That only applies when switching between paging and non-paging modes.
3271 */
3272 /** @todo A20 setting */
3273 if ( pVM->pgm.s.CTX_SUFF(pPool)
3274 && !HWACCMIsNestedPagingActive(pVM)
3275 && PGMMODE_WITH_PAGING(pVM->pgm.s.enmGuestMode) != PGMMODE_WITH_PAGING(enmGuestMode))
3276 {
3277 Log(("PGMR3ChangeMode: changing guest paging mode -> flush pgm pool cache!\n"));
3278 pgmPoolFlushAll(pVM);
3279 }
3280
3281 /*
3282 * Enter the new guest and shadow+guest modes.
3283 */
3284 int rc = -1;
3285 int rc2 = -1;
3286 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3287 pVM->pgm.s.enmGuestMode = enmGuestMode;
3288 switch (enmGuestMode)
3289 {
3290 case PGMMODE_REAL:
3291 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3292 switch (pVM->pgm.s.enmShadowMode)
3293 {
3294 case PGMMODE_32_BIT:
3295 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3296 break;
3297 case PGMMODE_PAE:
3298 case PGMMODE_PAE_NX:
3299 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3300 break;
3301 case PGMMODE_NESTED:
3302 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3303 break;
3304 case PGMMODE_EPT:
3305 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3306 break;
3307 case PGMMODE_AMD64:
3308 case PGMMODE_AMD64_NX:
3309 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3310 default: AssertFailed(); break;
3311 }
3312 break;
3313
3314 case PGMMODE_PROTECTED:
3315 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3316 switch (pVM->pgm.s.enmShadowMode)
3317 {
3318 case PGMMODE_32_BIT:
3319 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3320 break;
3321 case PGMMODE_PAE:
3322 case PGMMODE_PAE_NX:
3323 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3324 break;
3325 case PGMMODE_NESTED:
3326 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3327 break;
3328 case PGMMODE_EPT:
3329 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3330 break;
3331 case PGMMODE_AMD64:
3332 case PGMMODE_AMD64_NX:
3333 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3334 default: AssertFailed(); break;
3335 }
3336 break;
3337
3338 case PGMMODE_32_BIT:
3339 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3340 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3341 switch (pVM->pgm.s.enmShadowMode)
3342 {
3343 case PGMMODE_32_BIT:
3344 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3345 break;
3346 case PGMMODE_PAE:
3347 case PGMMODE_PAE_NX:
3348 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3349 break;
3350 case PGMMODE_NESTED:
3351 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3352 break;
3353 case PGMMODE_EPT:
3354 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3355 break;
3356 case PGMMODE_AMD64:
3357 case PGMMODE_AMD64_NX:
3358 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3359 default: AssertFailed(); break;
3360 }
3361 break;
3362
3363 case PGMMODE_PAE_NX:
3364 case PGMMODE_PAE:
3365 {
3366 uint32_t u32Dummy, u32Features;
3367
3368 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3369 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3370 {
3371 /* Pause first, then inform Main. */
3372 rc = VMR3SuspendNoSave(pVM);
3373 AssertRC(rc);
3374
3375 VMSetRuntimeError(pVM, true, "PAEmode",
3376 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. Experimental PAE support can be enabled using the -pae option with VBoxManage"));
3377 /* we must return VINF_SUCCESS here otherwise the recompiler will assert */
3378 return VINF_SUCCESS;
3379 }
3380 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3381 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3382 switch (pVM->pgm.s.enmShadowMode)
3383 {
3384 case PGMMODE_PAE:
3385 case PGMMODE_PAE_NX:
3386 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3387 break;
3388 case PGMMODE_NESTED:
3389 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3390 break;
3391 case PGMMODE_EPT:
3392 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3393 break;
3394 case PGMMODE_32_BIT:
3395 case PGMMODE_AMD64:
3396 case PGMMODE_AMD64_NX:
3397 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3398 default: AssertFailed(); break;
3399 }
3400 break;
3401 }
3402
3403#ifdef VBOX_WITH_64_BITS_GUESTS
3404 case PGMMODE_AMD64_NX:
3405 case PGMMODE_AMD64:
3406 GCPhysCR3 = CPUMGetGuestCR3(pVM) & 0xfffffffffffff000ULL; /** @todo define this mask! */
3407 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3408 switch (pVM->pgm.s.enmShadowMode)
3409 {
3410 case PGMMODE_AMD64:
3411 case PGMMODE_AMD64_NX:
3412 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3413 break;
3414 case PGMMODE_NESTED:
3415 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3416 break;
3417 case PGMMODE_EPT:
3418 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3419 break;
3420 case PGMMODE_32_BIT:
3421 case PGMMODE_PAE:
3422 case PGMMODE_PAE_NX:
3423 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3424 default: AssertFailed(); break;
3425 }
3426 break;
3427#endif
3428
3429 default:
3430 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3431 rc = VERR_NOT_IMPLEMENTED;
3432 break;
3433 }
3434
3435 /* status codes. */
3436 AssertRC(rc);
3437 AssertRC(rc2);
3438 if (VBOX_SUCCESS(rc))
3439 {
3440 rc = rc2;
3441 if (VBOX_SUCCESS(rc)) /* no informational status codes. */
3442 rc = VINF_SUCCESS;
3443 }
3444
3445 /*
3446 * Notify SELM so it can update the TSSes with correct CR3s.
3447 */
3448 SELMR3PagingModeChanged(pVM);
3449
3450 /* Notify HWACCM as well. */
3451 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode);
3452 return rc;
3453}
3454
3455
3456/**
3457 * Dumps a PAE shadow page table.
3458 *
3459 * @returns VBox status code (VINF_SUCCESS).
3460 * @param pVM The VM handle.
3461 * @param pPT Pointer to the page table.
3462 * @param u64Address The virtual address of the page table starts.
3463 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3464 * @param cMaxDepth The maxium depth.
3465 * @param pHlp Pointer to the output functions.
3466 */
3467static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3468{
3469 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3470 {
3471 X86PTEPAE Pte = pPT->a[i];
3472 if (Pte.n.u1Present)
3473 {
3474 pHlp->pfnPrintf(pHlp,
3475 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3476 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3477 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3478 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3479 Pte.n.u1Write ? 'W' : 'R',
3480 Pte.n.u1User ? 'U' : 'S',
3481 Pte.n.u1Accessed ? 'A' : '-',
3482 Pte.n.u1Dirty ? 'D' : '-',
3483 Pte.n.u1Global ? 'G' : '-',
3484 Pte.n.u1WriteThru ? "WT" : "--",
3485 Pte.n.u1CacheDisable? "CD" : "--",
3486 Pte.n.u1PAT ? "AT" : "--",
3487 Pte.n.u1NoExecute ? "NX" : "--",
3488 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3489 Pte.u & RT_BIT(10) ? '1' : '0',
3490 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3491 Pte.u & X86_PTE_PAE_PG_MASK);
3492 }
3493 }
3494 return VINF_SUCCESS;
3495}
3496
3497
3498/**
3499 * Dumps a PAE shadow page directory table.
3500 *
3501 * @returns VBox status code (VINF_SUCCESS).
3502 * @param pVM The VM handle.
3503 * @param HCPhys The physical address of the page directory table.
3504 * @param u64Address The virtual address of the page table starts.
3505 * @param cr4 The CR4, PSE is currently used.
3506 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3507 * @param cMaxDepth The maxium depth.
3508 * @param pHlp Pointer to the output functions.
3509 */
3510static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3511{
3512 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3513 if (!pPD)
3514 {
3515 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%#VHp was not found in the page pool!\n",
3516 fLongMode ? 16 : 8, u64Address, HCPhys);
3517 return VERR_INVALID_PARAMETER;
3518 }
3519 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3520
3521 int rc = VINF_SUCCESS;
3522 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3523 {
3524 X86PDEPAE Pde = pPD->a[i];
3525 if (Pde.n.u1Present)
3526 {
3527 if (fBigPagesSupported && Pde.b.u1Size)
3528 pHlp->pfnPrintf(pHlp,
3529 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3530 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3531 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3532 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3533 Pde.b.u1Write ? 'W' : 'R',
3534 Pde.b.u1User ? 'U' : 'S',
3535 Pde.b.u1Accessed ? 'A' : '-',
3536 Pde.b.u1Dirty ? 'D' : '-',
3537 Pde.b.u1Global ? 'G' : '-',
3538 Pde.b.u1WriteThru ? "WT" : "--",
3539 Pde.b.u1CacheDisable? "CD" : "--",
3540 Pde.b.u1PAT ? "AT" : "--",
3541 Pde.b.u1NoExecute ? "NX" : "--",
3542 Pde.u & RT_BIT_64(9) ? '1' : '0',
3543 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3544 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3545 Pde.u & X86_PDE_PAE_PG_MASK);
3546 else
3547 {
3548 pHlp->pfnPrintf(pHlp,
3549 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3550 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3551 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3552 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3553 Pde.n.u1Write ? 'W' : 'R',
3554 Pde.n.u1User ? 'U' : 'S',
3555 Pde.n.u1Accessed ? 'A' : '-',
3556 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3557 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3558 Pde.n.u1WriteThru ? "WT" : "--",
3559 Pde.n.u1CacheDisable? "CD" : "--",
3560 Pde.n.u1NoExecute ? "NX" : "--",
3561 Pde.u & RT_BIT_64(9) ? '1' : '0',
3562 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3563 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3564 Pde.u & X86_PDE_PAE_PG_MASK);
3565 if (cMaxDepth >= 1)
3566 {
3567 /** @todo what about using the page pool for mapping PTs? */
3568 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3569 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3570 PX86PTPAE pPT = NULL;
3571 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3572 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3573 else
3574 {
3575 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3576 {
3577 uint64_t off = u64AddressPT - pMap->GCPtr;
3578 if (off < pMap->cb)
3579 {
3580 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3581 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3582 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3583 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3584 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3585 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3586 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3587 }
3588 }
3589 }
3590 int rc2 = VERR_INVALID_PARAMETER;
3591 if (pPT)
3592 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3593 else
3594 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%#VHp was not found in the page pool!\n",
3595 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3596 if (rc2 < rc && VBOX_SUCCESS(rc))
3597 rc = rc2;
3598 }
3599 }
3600 }
3601 }
3602 return rc;
3603}
3604
3605
3606/**
3607 * Dumps a PAE shadow page directory pointer table.
3608 *
3609 * @returns VBox status code (VINF_SUCCESS).
3610 * @param pVM The VM handle.
3611 * @param HCPhys The physical address of the page directory pointer table.
3612 * @param u64Address The virtual address of the page table starts.
3613 * @param cr4 The CR4, PSE is currently used.
3614 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3615 * @param cMaxDepth The maxium depth.
3616 * @param pHlp Pointer to the output functions.
3617 */
3618static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3619{
3620 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3621 if (!pPDPT)
3622 {
3623 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%#VHp was not found in the page pool!\n",
3624 fLongMode ? 16 : 8, u64Address, HCPhys);
3625 return VERR_INVALID_PARAMETER;
3626 }
3627
3628 int rc = VINF_SUCCESS;
3629 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3630 for (unsigned i = 0; i < c; i++)
3631 {
3632 X86PDPE Pdpe = pPDPT->a[i];
3633 if (Pdpe.n.u1Present)
3634 {
3635 if (fLongMode)
3636 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3637 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3638 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3639 Pdpe.lm.u1Write ? 'W' : 'R',
3640 Pdpe.lm.u1User ? 'U' : 'S',
3641 Pdpe.lm.u1Accessed ? 'A' : '-',
3642 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3643 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3644 Pdpe.lm.u1WriteThru ? "WT" : "--",
3645 Pdpe.lm.u1CacheDisable? "CD" : "--",
3646 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3647 Pdpe.lm.u1NoExecute ? "NX" : "--",
3648 Pdpe.u & RT_BIT(9) ? '1' : '0',
3649 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3650 Pdpe.u & RT_BIT(11) ? '1' : '0',
3651 Pdpe.u & X86_PDPE_PG_MASK);
3652 else
3653 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3654 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3655 i << X86_PDPT_SHIFT,
3656 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3657 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3658 Pdpe.n.u1WriteThru ? "WT" : "--",
3659 Pdpe.n.u1CacheDisable? "CD" : "--",
3660 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3661 Pdpe.u & RT_BIT(9) ? '1' : '0',
3662 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3663 Pdpe.u & RT_BIT(11) ? '1' : '0',
3664 Pdpe.u & X86_PDPE_PG_MASK);
3665 if (cMaxDepth >= 1)
3666 {
3667 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3668 cr4, fLongMode, cMaxDepth - 1, pHlp);
3669 if (rc2 < rc && VBOX_SUCCESS(rc))
3670 rc = rc2;
3671 }
3672 }
3673 }
3674 return rc;
3675}
3676
3677
3678/**
3679 * Dumps a 32-bit shadow page table.
3680 *
3681 * @returns VBox status code (VINF_SUCCESS).
3682 * @param pVM The VM handle.
3683 * @param HCPhys The physical address of the table.
3684 * @param cr4 The CR4, PSE is currently used.
3685 * @param cMaxDepth The maxium depth.
3686 * @param pHlp Pointer to the output functions.
3687 */
3688static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3689{
3690 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3691 if (!pPML4)
3692 {
3693 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%#VHp was not found in the page pool!\n", HCPhys);
3694 return VERR_INVALID_PARAMETER;
3695 }
3696
3697 int rc = VINF_SUCCESS;
3698 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3699 {
3700 X86PML4E Pml4e = pPML4->a[i];
3701 if (Pml4e.n.u1Present)
3702 {
3703 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3704 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3705 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3706 u64Address,
3707 Pml4e.n.u1Write ? 'W' : 'R',
3708 Pml4e.n.u1User ? 'U' : 'S',
3709 Pml4e.n.u1Accessed ? 'A' : '-',
3710 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3711 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3712 Pml4e.n.u1WriteThru ? "WT" : "--",
3713 Pml4e.n.u1CacheDisable? "CD" : "--",
3714 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3715 Pml4e.n.u1NoExecute ? "NX" : "--",
3716 Pml4e.u & RT_BIT(9) ? '1' : '0',
3717 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3718 Pml4e.u & RT_BIT(11) ? '1' : '0',
3719 Pml4e.u & X86_PML4E_PG_MASK);
3720
3721 if (cMaxDepth >= 1)
3722 {
3723 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3724 if (rc2 < rc && VBOX_SUCCESS(rc))
3725 rc = rc2;
3726 }
3727 }
3728 }
3729 return rc;
3730}
3731
3732
3733/**
3734 * Dumps a 32-bit shadow page table.
3735 *
3736 * @returns VBox status code (VINF_SUCCESS).
3737 * @param pVM The VM handle.
3738 * @param pPT Pointer to the page table.
3739 * @param u32Address The virtual address this table starts at.
3740 * @param pHlp Pointer to the output functions.
3741 */
3742int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3743{
3744 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3745 {
3746 X86PTE Pte = pPT->a[i];
3747 if (Pte.n.u1Present)
3748 {
3749 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3750 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3751 u32Address + (i << X86_PT_SHIFT),
3752 Pte.n.u1Write ? 'W' : 'R',
3753 Pte.n.u1User ? 'U' : 'S',
3754 Pte.n.u1Accessed ? 'A' : '-',
3755 Pte.n.u1Dirty ? 'D' : '-',
3756 Pte.n.u1Global ? 'G' : '-',
3757 Pte.n.u1WriteThru ? "WT" : "--",
3758 Pte.n.u1CacheDisable? "CD" : "--",
3759 Pte.n.u1PAT ? "AT" : "--",
3760 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3761 Pte.u & RT_BIT(10) ? '1' : '0',
3762 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3763 Pte.u & X86_PDE_PG_MASK);
3764 }
3765 }
3766 return VINF_SUCCESS;
3767}
3768
3769
3770/**
3771 * Dumps a 32-bit shadow page directory and page tables.
3772 *
3773 * @returns VBox status code (VINF_SUCCESS).
3774 * @param pVM The VM handle.
3775 * @param cr3 The root of the hierarchy.
3776 * @param cr4 The CR4, PSE is currently used.
3777 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3778 * @param pHlp Pointer to the output functions.
3779 */
3780int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3781{
3782 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3783 if (!pPD)
3784 {
3785 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3786 return VERR_INVALID_PARAMETER;
3787 }
3788
3789 int rc = VINF_SUCCESS;
3790 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3791 {
3792 X86PDE Pde = pPD->a[i];
3793 if (Pde.n.u1Present)
3794 {
3795 const uint32_t u32Address = i << X86_PD_SHIFT;
3796 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3797 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3798 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3799 u32Address,
3800 Pde.b.u1Write ? 'W' : 'R',
3801 Pde.b.u1User ? 'U' : 'S',
3802 Pde.b.u1Accessed ? 'A' : '-',
3803 Pde.b.u1Dirty ? 'D' : '-',
3804 Pde.b.u1Global ? 'G' : '-',
3805 Pde.b.u1WriteThru ? "WT" : "--",
3806 Pde.b.u1CacheDisable? "CD" : "--",
3807 Pde.b.u1PAT ? "AT" : "--",
3808 Pde.u & RT_BIT_64(9) ? '1' : '0',
3809 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3810 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3811 Pde.u & X86_PDE4M_PG_MASK);
3812 else
3813 {
3814 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3815 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3816 u32Address,
3817 Pde.n.u1Write ? 'W' : 'R',
3818 Pde.n.u1User ? 'U' : 'S',
3819 Pde.n.u1Accessed ? 'A' : '-',
3820 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3821 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3822 Pde.n.u1WriteThru ? "WT" : "--",
3823 Pde.n.u1CacheDisable? "CD" : "--",
3824 Pde.u & RT_BIT_64(9) ? '1' : '0',
3825 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3826 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3827 Pde.u & X86_PDE_PG_MASK);
3828 if (cMaxDepth >= 1)
3829 {
3830 /** @todo what about using the page pool for mapping PTs? */
3831 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3832 PX86PT pPT = NULL;
3833 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3834 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3835 else
3836 {
3837 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3838 if (u32Address - pMap->GCPtr < pMap->cb)
3839 {
3840 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3841 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3842 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3843 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3844 pPT = pMap->aPTs[iPDE].pPTR3;
3845 }
3846 }
3847 int rc2 = VERR_INVALID_PARAMETER;
3848 if (pPT)
3849 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3850 else
3851 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3852 if (rc2 < rc && VBOX_SUCCESS(rc))
3853 rc = rc2;
3854 }
3855 }
3856 }
3857 }
3858
3859 return rc;
3860}
3861
3862
3863/**
3864 * Dumps a 32-bit shadow page table.
3865 *
3866 * @returns VBox status code (VINF_SUCCESS).
3867 * @param pVM The VM handle.
3868 * @param pPT Pointer to the page table.
3869 * @param u32Address The virtual address this table starts at.
3870 * @param PhysSearch Address to search for.
3871 */
3872int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3873{
3874 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3875 {
3876 X86PTE Pte = pPT->a[i];
3877 if (Pte.n.u1Present)
3878 {
3879 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3880 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3881 u32Address + (i << X86_PT_SHIFT),
3882 Pte.n.u1Write ? 'W' : 'R',
3883 Pte.n.u1User ? 'U' : 'S',
3884 Pte.n.u1Accessed ? 'A' : '-',
3885 Pte.n.u1Dirty ? 'D' : '-',
3886 Pte.n.u1Global ? 'G' : '-',
3887 Pte.n.u1WriteThru ? "WT" : "--",
3888 Pte.n.u1CacheDisable? "CD" : "--",
3889 Pte.n.u1PAT ? "AT" : "--",
3890 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3891 Pte.u & RT_BIT(10) ? '1' : '0',
3892 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3893 Pte.u & X86_PDE_PG_MASK));
3894
3895 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3896 {
3897 uint64_t fPageShw = 0;
3898 RTHCPHYS pPhysHC = 0;
3899
3900 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3901 Log(("Found %VGp at %VGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3902 }
3903 }
3904 }
3905 return VINF_SUCCESS;
3906}
3907
3908
3909/**
3910 * Dumps a 32-bit guest page directory and page tables.
3911 *
3912 * @returns VBox status code (VINF_SUCCESS).
3913 * @param pVM The VM handle.
3914 * @param cr3 The root of the hierarchy.
3915 * @param cr4 The CR4, PSE is currently used.
3916 * @param PhysSearch Address to search for.
3917 */
3918VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3919{
3920 bool fLongMode = false;
3921 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3922 PX86PD pPD = 0;
3923
3924 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
3925 if (VBOX_FAILURE(rc) || !pPD)
3926 {
3927 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3928 return VERR_INVALID_PARAMETER;
3929 }
3930
3931 Log(("cr3=%08x cr4=%08x%s\n"
3932 "%-*s P - Present\n"
3933 "%-*s | R/W - Read (0) / Write (1)\n"
3934 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3935 "%-*s | | | A - Accessed\n"
3936 "%-*s | | | | D - Dirty\n"
3937 "%-*s | | | | | G - Global\n"
3938 "%-*s | | | | | | WT - Write thru\n"
3939 "%-*s | | | | | | | CD - Cache disable\n"
3940 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3941 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3942 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3943 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3944 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3945 "%-*s Level | | | | | | | | | | | | Page\n"
3946 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3947 - W U - - - -- -- -- -- -- 010 */
3948 , cr3, cr4, fLongMode ? " Long Mode" : "",
3949 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3950 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3951
3952 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3953 {
3954 X86PDE Pde = pPD->a[i];
3955 if (Pde.n.u1Present)
3956 {
3957 const uint32_t u32Address = i << X86_PD_SHIFT;
3958
3959 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3960 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3961 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3962 u32Address,
3963 Pde.b.u1Write ? 'W' : 'R',
3964 Pde.b.u1User ? 'U' : 'S',
3965 Pde.b.u1Accessed ? 'A' : '-',
3966 Pde.b.u1Dirty ? 'D' : '-',
3967 Pde.b.u1Global ? 'G' : '-',
3968 Pde.b.u1WriteThru ? "WT" : "--",
3969 Pde.b.u1CacheDisable? "CD" : "--",
3970 Pde.b.u1PAT ? "AT" : "--",
3971 Pde.u & RT_BIT(9) ? '1' : '0',
3972 Pde.u & RT_BIT(10) ? '1' : '0',
3973 Pde.u & RT_BIT(11) ? '1' : '0',
3974 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
3975 /** @todo PhysSearch */
3976 else
3977 {
3978 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3979 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3980 u32Address,
3981 Pde.n.u1Write ? 'W' : 'R',
3982 Pde.n.u1User ? 'U' : 'S',
3983 Pde.n.u1Accessed ? 'A' : '-',
3984 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3985 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3986 Pde.n.u1WriteThru ? "WT" : "--",
3987 Pde.n.u1CacheDisable? "CD" : "--",
3988 Pde.u & RT_BIT(9) ? '1' : '0',
3989 Pde.u & RT_BIT(10) ? '1' : '0',
3990 Pde.u & RT_BIT(11) ? '1' : '0',
3991 Pde.u & X86_PDE_PG_MASK));
3992 ////if (cMaxDepth >= 1)
3993 {
3994 /** @todo what about using the page pool for mapping PTs? */
3995 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
3996 PX86PT pPT = NULL;
3997
3998 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
3999
4000 int rc2 = VERR_INVALID_PARAMETER;
4001 if (pPT)
4002 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4003 else
4004 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4005 if (rc2 < rc && VBOX_SUCCESS(rc))
4006 rc = rc2;
4007 }
4008 }
4009 }
4010 }
4011
4012 return rc;
4013}
4014
4015
4016/**
4017 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4018 *
4019 * @returns VBox status code (VINF_SUCCESS).
4020 * @param pVM The VM handle.
4021 * @param cr3 The root of the hierarchy.
4022 * @param cr4 The cr4, only PAE and PSE is currently used.
4023 * @param fLongMode Set if long mode, false if not long mode.
4024 * @param cMaxDepth Number of levels to dump.
4025 * @param pHlp Pointer to the output functions.
4026 */
4027VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4028{
4029 if (!pHlp)
4030 pHlp = DBGFR3InfoLogHlp();
4031 if (!cMaxDepth)
4032 return VINF_SUCCESS;
4033 const unsigned cch = fLongMode ? 16 : 8;
4034 pHlp->pfnPrintf(pHlp,
4035 "cr3=%08x cr4=%08x%s\n"
4036 "%-*s P - Present\n"
4037 "%-*s | R/W - Read (0) / Write (1)\n"
4038 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4039 "%-*s | | | A - Accessed\n"
4040 "%-*s | | | | D - Dirty\n"
4041 "%-*s | | | | | G - Global\n"
4042 "%-*s | | | | | | WT - Write thru\n"
4043 "%-*s | | | | | | | CD - Cache disable\n"
4044 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4045 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4046 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4047 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4048 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4049 "%-*s Level | | | | | | | | | | | | Page\n"
4050 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4051 - W U - - - -- -- -- -- -- 010 */
4052 , cr3, cr4, fLongMode ? " Long Mode" : "",
4053 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4054 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4055 if (cr4 & X86_CR4_PAE)
4056 {
4057 if (fLongMode)
4058 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4059 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4060 }
4061 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4062}
4063
4064#ifdef VBOX_WITH_DEBUGGER
4065
4066/**
4067 * The '.pgmram' command.
4068 *
4069 * @returns VBox status.
4070 * @param pCmd Pointer to the command descriptor (as registered).
4071 * @param pCmdHlp Pointer to command helper functions.
4072 * @param pVM Pointer to the current VM (if any).
4073 * @param paArgs Pointer to (readonly) array of arguments.
4074 * @param cArgs Number of arguments in the array.
4075 */
4076static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4077{
4078 /*
4079 * Validate input.
4080 */
4081 if (!pVM)
4082 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4083 if (!pVM->pgm.s.pRamRangesRC)
4084 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4085
4086 /*
4087 * Dump the ranges.
4088 */
4089 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4090 PPGMRAMRANGE pRam;
4091 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4092 {
4093 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4094 "%RGp - %RGp %p\n",
4095 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4096 if (VBOX_FAILURE(rc))
4097 return rc;
4098 }
4099
4100 return VINF_SUCCESS;
4101}
4102
4103
4104/**
4105 * The '.pgmmap' command.
4106 *
4107 * @returns VBox status.
4108 * @param pCmd Pointer to the command descriptor (as registered).
4109 * @param pCmdHlp Pointer to command helper functions.
4110 * @param pVM Pointer to the current VM (if any).
4111 * @param paArgs Pointer to (readonly) array of arguments.
4112 * @param cArgs Number of arguments in the array.
4113 */
4114static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4115{
4116 /*
4117 * Validate input.
4118 */
4119 if (!pVM)
4120 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4121 if (!pVM->pgm.s.pMappingsR3)
4122 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4123
4124 /*
4125 * Print message about the fixedness of the mappings.
4126 */
4127 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4128 if (VBOX_FAILURE(rc))
4129 return rc;
4130
4131 /*
4132 * Dump the ranges.
4133 */
4134 PPGMMAPPING pCur;
4135 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4136 {
4137 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4138 "%08x - %08x %s\n",
4139 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4140 if (VBOX_FAILURE(rc))
4141 return rc;
4142 }
4143
4144 return VINF_SUCCESS;
4145}
4146
4147
4148/**
4149 * The '.pgmsync' command.
4150 *
4151 * @returns VBox status.
4152 * @param pCmd Pointer to the command descriptor (as registered).
4153 * @param pCmdHlp Pointer to command helper functions.
4154 * @param pVM Pointer to the current VM (if any).
4155 * @param paArgs Pointer to (readonly) array of arguments.
4156 * @param cArgs Number of arguments in the array.
4157 */
4158static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4159{
4160 /*
4161 * Validate input.
4162 */
4163 if (!pVM)
4164 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4165
4166 /*
4167 * Force page directory sync.
4168 */
4169 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4170
4171 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4172 if (VBOX_FAILURE(rc))
4173 return rc;
4174
4175 return VINF_SUCCESS;
4176}
4177
4178
4179#ifdef VBOX_STRICT
4180/**
4181 * The '.pgmassertcr3' command.
4182 *
4183 * @returns VBox status.
4184 * @param pCmd Pointer to the command descriptor (as registered).
4185 * @param pCmdHlp Pointer to command helper functions.
4186 * @param pVM Pointer to the current VM (if any).
4187 * @param paArgs Pointer to (readonly) array of arguments.
4188 * @param cArgs Number of arguments in the array.
4189 */
4190static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4191{
4192 /*
4193 * Validate input.
4194 */
4195 if (!pVM)
4196 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4197
4198 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4199 if (VBOX_FAILURE(rc))
4200 return rc;
4201
4202 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4203
4204 return VINF_SUCCESS;
4205}
4206#endif /* VBOX_STRICT */
4207
4208
4209/**
4210 * The '.pgmsyncalways' command.
4211 *
4212 * @returns VBox status.
4213 * @param pCmd Pointer to the command descriptor (as registered).
4214 * @param pCmdHlp Pointer to command helper functions.
4215 * @param pVM Pointer to the current VM (if any).
4216 * @param paArgs Pointer to (readonly) array of arguments.
4217 * @param cArgs Number of arguments in the array.
4218 */
4219static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4220{
4221 /*
4222 * Validate input.
4223 */
4224 if (!pVM)
4225 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4226
4227 /*
4228 * Force page directory sync.
4229 */
4230 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4231 {
4232 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4233 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4234 }
4235 else
4236 {
4237 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4238 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4239 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4240 }
4241}
4242
4243#endif /* VBOX_WITH_DEBUGGER */
4244
4245/**
4246 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4247 */
4248typedef struct PGMCHECKINTARGS
4249{
4250 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4251 PPGMPHYSHANDLER pPrevPhys;
4252 PPGMVIRTHANDLER pPrevVirt;
4253 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4254 PVM pVM;
4255} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4256
4257/**
4258 * Validate a node in the physical handler tree.
4259 *
4260 * @returns 0 on if ok, other wise 1.
4261 * @param pNode The handler node.
4262 * @param pvUser pVM.
4263 */
4264static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4265{
4266 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4267 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4268 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4269 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4270 AssertReleaseMsg( !pArgs->pPrevPhys
4271 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4272 ("pPrevPhys=%p %VGp-%VGp %s\n"
4273 " pCur=%p %VGp-%VGp %s\n",
4274 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4275 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4276 pArgs->pPrevPhys = pCur;
4277 return 0;
4278}
4279
4280
4281/**
4282 * Validate a node in the virtual handler tree.
4283 *
4284 * @returns 0 on if ok, other wise 1.
4285 * @param pNode The handler node.
4286 * @param pvUser pVM.
4287 */
4288static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4289{
4290 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4291 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4292 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4293 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGv-%VGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4294 AssertReleaseMsg( !pArgs->pPrevVirt
4295 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4296 ("pPrevVirt=%p %VGv-%VGv %s\n"
4297 " pCur=%p %VGv-%VGv %s\n",
4298 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4299 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4300 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4301 {
4302 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4303 ("pCur=%p %VGv-%VGv %s\n"
4304 "iPage=%d offVirtHandle=%#x expected %#x\n",
4305 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4306 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4307 }
4308 pArgs->pPrevVirt = pCur;
4309 return 0;
4310}
4311
4312
4313/**
4314 * Validate a node in the virtual handler tree.
4315 *
4316 * @returns 0 on if ok, other wise 1.
4317 * @param pNode The handler node.
4318 * @param pvUser pVM.
4319 */
4320static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4321{
4322 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4323 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4324 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4325 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4326 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4327 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4328 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4329 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4330 " pCur=%p %VGp-%VGp\n",
4331 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4332 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4333 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4334 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4335 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4336 " pCur=%p %VGp-%VGp\n",
4337 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4338 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4339 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4340 ("pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4341 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4342 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4343 {
4344 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4345 for (;;)
4346 {
4347 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4348 AssertReleaseMsg(pCur2 != pCur,
4349 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4350 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4351 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4352 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4353 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4354 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4355 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4356 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4357 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4358 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4359 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4360 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4361 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4362 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4363 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4364 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4365 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4366 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4367 break;
4368 }
4369 }
4370
4371 pArgs->pPrevPhys2Virt = pCur;
4372 return 0;
4373}
4374
4375
4376/**
4377 * Perform an integrity check on the PGM component.
4378 *
4379 * @returns VINF_SUCCESS if everything is fine.
4380 * @returns VBox error status after asserting on integrity breach.
4381 * @param pVM The VM handle.
4382 */
4383VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4384{
4385 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4386
4387 /*
4388 * Check the trees.
4389 */
4390 int cErrors = 0;
4391 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4392 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4393 PGMCHECKINTARGS Args = s_LeftToRight;
4394 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4395 Args = s_RightToLeft;
4396 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4397 Args = s_LeftToRight;
4398 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4399 Args = s_RightToLeft;
4400 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4401 Args = s_LeftToRight;
4402 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4403 Args = s_RightToLeft;
4404 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4405 Args = s_LeftToRight;
4406 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4407 Args = s_RightToLeft;
4408 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4409
4410 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4411}
4412
4413
4414/**
4415 * Inform PGM if we want all mappings to be put into the shadow page table. (necessary for e.g. VMX)
4416 *
4417 * @returns VBox status code.
4418 * @param pVM VM handle.
4419 * @param fEnable Enable or disable shadow mappings
4420 */
4421VMMR3DECL(int) PGMR3ChangeShwPDMappings(PVM pVM, bool fEnable)
4422{
4423 pVM->pgm.s.fDisableMappings = !fEnable;
4424
4425 uint32_t cb;
4426 int rc = PGMR3MappingsSize(pVM, &cb);
4427 AssertRCReturn(rc, rc);
4428
4429 /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */
4430 rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb);
4431 AssertRCReturn(rc, rc);
4432
4433 return VINF_SUCCESS;
4434}
4435
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette