VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 14607

Last change on this file since 14607 was 14301, checked in by vboxsync, 16 years ago

Synced some (inactive) new paging code.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 211.7 KB
Line 
1/* $Id: PGM.cpp 14301 2008-11-18 13:31:42Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574
575/** Saved state data unit version. */
576#define PGM_SAVED_STATE_VERSION 6
577
578/*******************************************************************************
579* Header Files *
580*******************************************************************************/
581#define LOG_GROUP LOG_GROUP_PGM
582#include <VBox/dbgf.h>
583#include <VBox/pgm.h>
584#include <VBox/cpum.h>
585#include <VBox/iom.h>
586#include <VBox/sup.h>
587#include <VBox/mm.h>
588#include <VBox/em.h>
589#include <VBox/stam.h>
590#include <VBox/rem.h>
591#include <VBox/dbgf.h>
592#include <VBox/rem.h>
593#include <VBox/selm.h>
594#include <VBox/ssm.h>
595#include "PGMInternal.h"
596#include <VBox/vm.h>
597#include <VBox/dbg.h>
598#include <VBox/hwaccm.h>
599
600#include <iprt/assert.h>
601#include <iprt/alloc.h>
602#include <iprt/asm.h>
603#include <iprt/thread.h>
604#include <iprt/string.h>
605#ifdef DEBUG_bird
606# include <iprt/env.h>
607#endif
608#include <VBox/param.h>
609#include <VBox/err.h>
610
611
612
613/*******************************************************************************
614* Internal Functions *
615*******************************************************************************/
616static int pgmR3InitPaging(PVM pVM);
617static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
618static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
619static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
620static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
621static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
622static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
623#ifdef VBOX_STRICT
624static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
625#endif
626static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
627static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
628static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
629static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
630static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
631
632#ifdef VBOX_WITH_STATISTICS
633static void pgmR3InitStats(PVM pVM);
634#endif
635
636#ifdef VBOX_WITH_DEBUGGER
637/** @todo all but the two last commands must be converted to 'info'. */
638static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
639static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
640static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
641static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
642# ifdef VBOX_STRICT
643static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
644# endif
645#endif
646
647
648/*******************************************************************************
649* Global Variables *
650*******************************************************************************/
651#ifdef VBOX_WITH_DEBUGGER
652/** Command descriptors. */
653static const DBGCCMD g_aCmds[] =
654{
655 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
656 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
657 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
658 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
659#ifdef VBOX_STRICT
660 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
661#endif
662 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
663};
664#endif
665
666
667
668
669/*
670 * Shadow - 32-bit mode
671 */
672#define PGM_SHW_TYPE PGM_TYPE_32BIT
673#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
674#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
675#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
676#include "PGMShw.h"
677
678/* Guest - real mode */
679#define PGM_GST_TYPE PGM_TYPE_REAL
680#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
681#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
682#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
683#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
684#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
685#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
686#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
687#include "PGMGst.h"
688#include "PGMBth.h"
689#undef BTH_PGMPOOLKIND_PT_FOR_PT
690#undef PGM_BTH_NAME
691#undef PGM_BTH_NAME_RC_STR
692#undef PGM_BTH_NAME_R0_STR
693#undef PGM_GST_TYPE
694#undef PGM_GST_NAME
695#undef PGM_GST_NAME_RC_STR
696#undef PGM_GST_NAME_R0_STR
697
698/* Guest - protected mode */
699#define PGM_GST_TYPE PGM_TYPE_PROT
700#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
701#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
702#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
703#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
704#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
705#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
706#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
707#include "PGMGst.h"
708#include "PGMBth.h"
709#undef BTH_PGMPOOLKIND_PT_FOR_PT
710#undef PGM_BTH_NAME
711#undef PGM_BTH_NAME_RC_STR
712#undef PGM_BTH_NAME_R0_STR
713#undef PGM_GST_TYPE
714#undef PGM_GST_NAME
715#undef PGM_GST_NAME_RC_STR
716#undef PGM_GST_NAME_R0_STR
717
718/* Guest - 32-bit mode */
719#define PGM_GST_TYPE PGM_TYPE_32BIT
720#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
721#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
722#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
723#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
724#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
725#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
726#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
727#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
728#include "PGMGst.h"
729#include "PGMBth.h"
730#undef BTH_PGMPOOLKIND_PT_FOR_BIG
731#undef BTH_PGMPOOLKIND_PT_FOR_PT
732#undef PGM_BTH_NAME
733#undef PGM_BTH_NAME_RC_STR
734#undef PGM_BTH_NAME_R0_STR
735#undef PGM_GST_TYPE
736#undef PGM_GST_NAME
737#undef PGM_GST_NAME_RC_STR
738#undef PGM_GST_NAME_R0_STR
739
740#undef PGM_SHW_TYPE
741#undef PGM_SHW_NAME
742#undef PGM_SHW_NAME_RC_STR
743#undef PGM_SHW_NAME_R0_STR
744
745
746/*
747 * Shadow - PAE mode
748 */
749#define PGM_SHW_TYPE PGM_TYPE_PAE
750#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
751#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
752#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
753#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
754#include "PGMShw.h"
755
756/* Guest - real mode */
757#define PGM_GST_TYPE PGM_TYPE_REAL
758#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
759#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
760#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
761#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
762#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
763#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
764#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
765#include "PGMBth.h"
766#undef BTH_PGMPOOLKIND_PT_FOR_PT
767#undef PGM_BTH_NAME
768#undef PGM_BTH_NAME_RC_STR
769#undef PGM_BTH_NAME_R0_STR
770#undef PGM_GST_TYPE
771#undef PGM_GST_NAME
772#undef PGM_GST_NAME_RC_STR
773#undef PGM_GST_NAME_R0_STR
774
775/* Guest - protected mode */
776#define PGM_GST_TYPE PGM_TYPE_PROT
777#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
778#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
779#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
780#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
781#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
782#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
783#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
784#include "PGMBth.h"
785#undef BTH_PGMPOOLKIND_PT_FOR_PT
786#undef PGM_BTH_NAME
787#undef PGM_BTH_NAME_RC_STR
788#undef PGM_BTH_NAME_R0_STR
789#undef PGM_GST_TYPE
790#undef PGM_GST_NAME
791#undef PGM_GST_NAME_RC_STR
792#undef PGM_GST_NAME_R0_STR
793
794/* Guest - 32-bit mode */
795#define PGM_GST_TYPE PGM_TYPE_32BIT
796#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
797#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
798#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
799#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
800#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
801#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
802#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
803#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
804#include "PGMBth.h"
805#undef BTH_PGMPOOLKIND_PT_FOR_BIG
806#undef BTH_PGMPOOLKIND_PT_FOR_PT
807#undef PGM_BTH_NAME
808#undef PGM_BTH_NAME_RC_STR
809#undef PGM_BTH_NAME_R0_STR
810#undef PGM_GST_TYPE
811#undef PGM_GST_NAME
812#undef PGM_GST_NAME_RC_STR
813#undef PGM_GST_NAME_R0_STR
814
815/* Guest - PAE mode */
816#define PGM_GST_TYPE PGM_TYPE_PAE
817#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
818#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
819#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
820#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
821#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
822#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
823#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
824#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
825#include "PGMGst.h"
826#include "PGMBth.h"
827#undef BTH_PGMPOOLKIND_PT_FOR_BIG
828#undef BTH_PGMPOOLKIND_PT_FOR_PT
829#undef PGM_BTH_NAME
830#undef PGM_BTH_NAME_RC_STR
831#undef PGM_BTH_NAME_R0_STR
832#undef PGM_GST_TYPE
833#undef PGM_GST_NAME
834#undef PGM_GST_NAME_RC_STR
835#undef PGM_GST_NAME_R0_STR
836
837#undef PGM_SHW_TYPE
838#undef PGM_SHW_NAME
839#undef PGM_SHW_NAME_RC_STR
840#undef PGM_SHW_NAME_R0_STR
841
842
843/*
844 * Shadow - AMD64 mode
845 */
846#define PGM_SHW_TYPE PGM_TYPE_AMD64
847#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
848#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
849#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
850#include "PGMShw.h"
851
852#ifdef VBOX_WITH_64_BITS_GUESTS
853/* Guest - AMD64 mode */
854# define PGM_GST_TYPE PGM_TYPE_AMD64
855# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
856# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
857# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
858# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
859# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
860# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
861# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
862# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
863# include "PGMGst.h"
864# include "PGMBth.h"
865# undef BTH_PGMPOOLKIND_PT_FOR_BIG
866# undef BTH_PGMPOOLKIND_PT_FOR_PT
867# undef PGM_BTH_NAME
868# undef PGM_BTH_NAME_RC_STR
869# undef PGM_BTH_NAME_R0_STR
870# undef PGM_GST_TYPE
871# undef PGM_GST_NAME
872# undef PGM_GST_NAME_RC_STR
873# undef PGM_GST_NAME_R0_STR
874#endif /* VBOX_WITH_64_BITS_GUESTS */
875
876#undef PGM_SHW_TYPE
877#undef PGM_SHW_NAME
878#undef PGM_SHW_NAME_RC_STR
879#undef PGM_SHW_NAME_R0_STR
880
881
882/*
883 * Shadow - Nested paging mode
884 */
885#define PGM_SHW_TYPE PGM_TYPE_NESTED
886#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
887#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
888#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
889#include "PGMShw.h"
890
891/* Guest - real mode */
892#define PGM_GST_TYPE PGM_TYPE_REAL
893#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
894#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
895#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
896#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
897#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
898#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
899#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
900#include "PGMBth.h"
901#undef BTH_PGMPOOLKIND_PT_FOR_PT
902#undef PGM_BTH_NAME
903#undef PGM_BTH_NAME_RC_STR
904#undef PGM_BTH_NAME_R0_STR
905#undef PGM_GST_TYPE
906#undef PGM_GST_NAME
907#undef PGM_GST_NAME_RC_STR
908#undef PGM_GST_NAME_R0_STR
909
910/* Guest - protected mode */
911#define PGM_GST_TYPE PGM_TYPE_PROT
912#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
913#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
914#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
915#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
916#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
917#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
918#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
919#include "PGMBth.h"
920#undef BTH_PGMPOOLKIND_PT_FOR_PT
921#undef PGM_BTH_NAME
922#undef PGM_BTH_NAME_RC_STR
923#undef PGM_BTH_NAME_R0_STR
924#undef PGM_GST_TYPE
925#undef PGM_GST_NAME
926#undef PGM_GST_NAME_RC_STR
927#undef PGM_GST_NAME_R0_STR
928
929/* Guest - 32-bit mode */
930#define PGM_GST_TYPE PGM_TYPE_32BIT
931#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
932#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
933#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
934#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
935#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
936#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
937#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
938#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
939#include "PGMBth.h"
940#undef BTH_PGMPOOLKIND_PT_FOR_BIG
941#undef BTH_PGMPOOLKIND_PT_FOR_PT
942#undef PGM_BTH_NAME
943#undef PGM_BTH_NAME_RC_STR
944#undef PGM_BTH_NAME_R0_STR
945#undef PGM_GST_TYPE
946#undef PGM_GST_NAME
947#undef PGM_GST_NAME_RC_STR
948#undef PGM_GST_NAME_R0_STR
949
950/* Guest - PAE mode */
951#define PGM_GST_TYPE PGM_TYPE_PAE
952#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
953#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
954#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
955#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
956#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
957#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
958#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
959#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
960#include "PGMBth.h"
961#undef BTH_PGMPOOLKIND_PT_FOR_BIG
962#undef BTH_PGMPOOLKIND_PT_FOR_PT
963#undef PGM_BTH_NAME
964#undef PGM_BTH_NAME_RC_STR
965#undef PGM_BTH_NAME_R0_STR
966#undef PGM_GST_TYPE
967#undef PGM_GST_NAME
968#undef PGM_GST_NAME_RC_STR
969#undef PGM_GST_NAME_R0_STR
970
971#ifdef VBOX_WITH_64_BITS_GUESTS
972/* Guest - AMD64 mode */
973# define PGM_GST_TYPE PGM_TYPE_AMD64
974# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
975# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
976# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
977# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
978# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
979# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
980# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
981# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
982# include "PGMBth.h"
983# undef BTH_PGMPOOLKIND_PT_FOR_BIG
984# undef BTH_PGMPOOLKIND_PT_FOR_PT
985# undef PGM_BTH_NAME
986# undef PGM_BTH_NAME_RC_STR
987# undef PGM_BTH_NAME_R0_STR
988# undef PGM_GST_TYPE
989# undef PGM_GST_NAME
990# undef PGM_GST_NAME_RC_STR
991# undef PGM_GST_NAME_R0_STR
992#endif /* VBOX_WITH_64_BITS_GUESTS */
993
994#undef PGM_SHW_TYPE
995#undef PGM_SHW_NAME
996#undef PGM_SHW_NAME_RC_STR
997#undef PGM_SHW_NAME_R0_STR
998
999
1000/*
1001 * Shadow - EPT
1002 */
1003#define PGM_SHW_TYPE PGM_TYPE_EPT
1004#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1005#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1006#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1007#include "PGMShw.h"
1008
1009/* Guest - real mode */
1010#define PGM_GST_TYPE PGM_TYPE_REAL
1011#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1012#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1013#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1014#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1015#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1016#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1017#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1018#include "PGMBth.h"
1019#undef BTH_PGMPOOLKIND_PT_FOR_PT
1020#undef PGM_BTH_NAME
1021#undef PGM_BTH_NAME_RC_STR
1022#undef PGM_BTH_NAME_R0_STR
1023#undef PGM_GST_TYPE
1024#undef PGM_GST_NAME
1025#undef PGM_GST_NAME_RC_STR
1026#undef PGM_GST_NAME_R0_STR
1027
1028/* Guest - protected mode */
1029#define PGM_GST_TYPE PGM_TYPE_PROT
1030#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1031#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1032#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1033#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1034#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1035#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1036#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1037#include "PGMBth.h"
1038#undef BTH_PGMPOOLKIND_PT_FOR_PT
1039#undef PGM_BTH_NAME
1040#undef PGM_BTH_NAME_RC_STR
1041#undef PGM_BTH_NAME_R0_STR
1042#undef PGM_GST_TYPE
1043#undef PGM_GST_NAME
1044#undef PGM_GST_NAME_RC_STR
1045#undef PGM_GST_NAME_R0_STR
1046
1047/* Guest - 32-bit mode */
1048#define PGM_GST_TYPE PGM_TYPE_32BIT
1049#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1050#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1051#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1052#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1053#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1054#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1055#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1056#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1057#include "PGMBth.h"
1058#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1059#undef BTH_PGMPOOLKIND_PT_FOR_PT
1060#undef PGM_BTH_NAME
1061#undef PGM_BTH_NAME_RC_STR
1062#undef PGM_BTH_NAME_R0_STR
1063#undef PGM_GST_TYPE
1064#undef PGM_GST_NAME
1065#undef PGM_GST_NAME_RC_STR
1066#undef PGM_GST_NAME_R0_STR
1067
1068/* Guest - PAE mode */
1069#define PGM_GST_TYPE PGM_TYPE_PAE
1070#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1071#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1072#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1073#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1074#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1075#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1076#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1077#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1078#include "PGMBth.h"
1079#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1080#undef BTH_PGMPOOLKIND_PT_FOR_PT
1081#undef PGM_BTH_NAME
1082#undef PGM_BTH_NAME_RC_STR
1083#undef PGM_BTH_NAME_R0_STR
1084#undef PGM_GST_TYPE
1085#undef PGM_GST_NAME
1086#undef PGM_GST_NAME_RC_STR
1087#undef PGM_GST_NAME_R0_STR
1088
1089#ifdef VBOX_WITH_64_BITS_GUESTS
1090/* Guest - AMD64 mode */
1091# define PGM_GST_TYPE PGM_TYPE_AMD64
1092# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1093# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1094# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1095# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1096# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1097# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1098# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1099# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1100# include "PGMBth.h"
1101# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1102# undef BTH_PGMPOOLKIND_PT_FOR_PT
1103# undef PGM_BTH_NAME
1104# undef PGM_BTH_NAME_RC_STR
1105# undef PGM_BTH_NAME_R0_STR
1106# undef PGM_GST_TYPE
1107# undef PGM_GST_NAME
1108# undef PGM_GST_NAME_RC_STR
1109# undef PGM_GST_NAME_R0_STR
1110#endif /* VBOX_WITH_64_BITS_GUESTS */
1111
1112#undef PGM_SHW_TYPE
1113#undef PGM_SHW_NAME
1114#undef PGM_SHW_NAME_RC_STR
1115#undef PGM_SHW_NAME_R0_STR
1116
1117
1118
1119/**
1120 * Initiates the paging of VM.
1121 *
1122 * @returns VBox status code.
1123 * @param pVM Pointer to VM structure.
1124 */
1125VMMR3DECL(int) PGMR3Init(PVM pVM)
1126{
1127 LogFlow(("PGMR3Init:\n"));
1128
1129 /*
1130 * Assert alignment and sizes.
1131 */
1132 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1133
1134 /*
1135 * Init the structure.
1136 */
1137 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1138 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1139 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1140 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1141 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1142 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1143 pVM->pgm.s.fA20Enabled = true;
1144 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1145 pVM->pgm.s.pGstPaePdptR3 = NULL;
1146#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1147 pVM->pgm.s.pGstPaePdptR0 = NIL_RTR0PTR;
1148#endif
1149 pVM->pgm.s.pGstPaePdptRC = NIL_RTRCPTR;
1150 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsR3); i++)
1151 {
1152 pVM->pgm.s.apGstPaePDsR3[i] = NULL;
1153#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1154 pVM->pgm.s.apGstPaePDsR0[i] = NIL_RTR0PTR;
1155#endif
1156 pVM->pgm.s.apGstPaePDsRC[i] = NIL_RTRCPTR;
1157 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1158 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1159 }
1160
1161#ifdef VBOX_STRICT
1162 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1163#endif
1164
1165 /*
1166 * Get the configured RAM size - to estimate saved state size.
1167 */
1168 uint64_t cbRam;
1169 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1170 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1171 cbRam = pVM->pgm.s.cbRamSize = 0;
1172 else if (RT_SUCCESS(rc))
1173 {
1174 if (cbRam < PAGE_SIZE)
1175 cbRam = 0;
1176 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1177 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1178 }
1179 else
1180 {
1181 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1182 return rc;
1183 }
1184
1185 /*
1186 * Register saved state data unit.
1187 */
1188 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1189 NULL, pgmR3Save, NULL,
1190 NULL, pgmR3Load, NULL);
1191 if (RT_FAILURE(rc))
1192 return rc;
1193
1194 /*
1195 * Initialize the PGM critical section and flush the phys TLBs
1196 */
1197 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1198 AssertRCReturn(rc, rc);
1199
1200 PGMR3PhysChunkInvalidateTLB(pVM);
1201 PGMPhysInvalidatePageR3MapTLB(pVM);
1202 PGMPhysInvalidatePageR0MapTLB(pVM);
1203 PGMPhysInvalidatePageGCMapTLB(pVM);
1204
1205 /*
1206 * Trees
1207 */
1208 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1209 if (RT_SUCCESS(rc))
1210 {
1211 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1212 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1213
1214 /*
1215 * Alocate the zero page.
1216 */
1217 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1218 }
1219 if (RT_SUCCESS(rc))
1220 {
1221 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1222 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1223 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1224 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1225 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1226
1227 /*
1228 * Init the paging.
1229 */
1230 rc = pgmR3InitPaging(pVM);
1231 }
1232 if (RT_SUCCESS(rc))
1233 {
1234 /*
1235 * Init the page pool.
1236 */
1237 rc = pgmR3PoolInit(pVM);
1238 }
1239 if (RT_SUCCESS(rc))
1240 {
1241 /*
1242 * Info & statistics
1243 */
1244 DBGFR3InfoRegisterInternal(pVM, "mode",
1245 "Shows the current paging mode. "
1246 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1247 pgmR3InfoMode);
1248 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1249 "Dumps all the entries in the top level paging table. No arguments.",
1250 pgmR3InfoCr3);
1251 DBGFR3InfoRegisterInternal(pVM, "phys",
1252 "Dumps all the physical address ranges. No arguments.",
1253 pgmR3PhysInfo);
1254 DBGFR3InfoRegisterInternal(pVM, "handlers",
1255 "Dumps physical, virtual and hyper virtual handlers. "
1256 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1257 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1258 pgmR3InfoHandlers);
1259 DBGFR3InfoRegisterInternal(pVM, "mappings",
1260 "Dumps guest mappings.",
1261 pgmR3MapInfo);
1262
1263 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1264#ifdef VBOX_WITH_STATISTICS
1265 pgmR3InitStats(pVM);
1266#endif
1267#ifdef VBOX_WITH_DEBUGGER
1268 /*
1269 * Debugger commands.
1270 */
1271 static bool fRegisteredCmds = false;
1272 if (!fRegisteredCmds)
1273 {
1274 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1275 if (RT_SUCCESS(rc))
1276 fRegisteredCmds = true;
1277 }
1278#endif
1279 return VINF_SUCCESS;
1280 }
1281
1282 /* Almost no cleanup necessary, MM frees all memory. */
1283 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1284
1285 return rc;
1286}
1287
1288
1289/**
1290 * Initializes the per-VCPU PGM.
1291 *
1292 * @returns VBox status code.
1293 * @param pVM The VM to operate on.
1294 */
1295VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1296{
1297 LogFlow(("PGMR3InitCPU\n"));
1298 return VINF_SUCCESS;
1299}
1300
1301
1302/**
1303 * Init paging.
1304 *
1305 * Since we need to check what mode the host is operating in before we can choose
1306 * the right paging functions for the host we have to delay this until R0 has
1307 * been initialized.
1308 *
1309 * @returns VBox status code.
1310 * @param pVM VM handle.
1311 */
1312static int pgmR3InitPaging(PVM pVM)
1313{
1314 /*
1315 * Force a recalculation of modes and switcher so everyone gets notified.
1316 */
1317 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1318 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1319 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1320
1321 /*
1322 * Allocate static mapping space for whatever the cr3 register
1323 * points to and in the case of PAE mode to the 4 PDs.
1324 */
1325 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1326 if (RT_FAILURE(rc))
1327 {
1328 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1329 return rc;
1330 }
1331 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1332
1333 /*
1334 * Allocate pages for the three possible intermediate contexts
1335 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1336 * for the sake of simplicity. The AMD64 uses the PAE for the
1337 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1338 *
1339 * We assume that two page tables will be enought for the core code
1340 * mappings (HC virtual and identity).
1341 */
1342 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1343 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1344 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1345 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1346 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1347 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1348 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1349 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1350 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1351 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1352 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1353 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1354 if ( !pVM->pgm.s.pInterPD
1355 || !pVM->pgm.s.apInterPTs[0]
1356 || !pVM->pgm.s.apInterPTs[1]
1357 || !pVM->pgm.s.apInterPaePTs[0]
1358 || !pVM->pgm.s.apInterPaePTs[1]
1359 || !pVM->pgm.s.apInterPaePDs[0]
1360 || !pVM->pgm.s.apInterPaePDs[1]
1361 || !pVM->pgm.s.apInterPaePDs[2]
1362 || !pVM->pgm.s.apInterPaePDs[3]
1363 || !pVM->pgm.s.pInterPaePDPT
1364 || !pVM->pgm.s.pInterPaePDPT64
1365 || !pVM->pgm.s.pInterPaePML4)
1366 {
1367 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1368 return VERR_NO_PAGE_MEMORY;
1369 }
1370
1371 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1372 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1373 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1374 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1375 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1376 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK));
1377
1378 /*
1379 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1380 */
1381 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1382 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1383 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1384
1385 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1386 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1387
1388 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1389 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1390 {
1391 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1392 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1393 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1394 }
1395
1396 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1397 {
1398 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1399 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1400 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1401 }
1402
1403 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1404 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1405 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1406 | HCPhysInterPaePDPT64;
1407
1408 /*
1409 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1410 * We allocate pages for all three posibilities in order to simplify mappings and
1411 * avoid resource failure during mode switches. So, we need to cover all levels of the
1412 * of the first 4GB down to PD level.
1413 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1414 */
1415#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1416 pVM->pgm.s.pShw32BitPdR3 = (PX86PD)MMR3PageAllocLow(pVM);
1417# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1418 pVM->pgm.s.pShw32BitPdR0 = (uintptr_t)pVM->pgm.s.pShw32BitPdR3;
1419# endif
1420 pVM->pgm.s.apShwPaePDsR3[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1421 pVM->pgm.s.apShwPaePDsR3[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1422 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[1]);
1423 pVM->pgm.s.apShwPaePDsR3[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1424 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[2]);
1425 pVM->pgm.s.apShwPaePDsR3[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1426 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[3]);
1427# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1428 pVM->pgm.s.apShwPaePDsR0[0] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[0];
1429 pVM->pgm.s.apShwPaePDsR0[1] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[1];
1430 pVM->pgm.s.apShwPaePDsR0[2] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[2];
1431 pVM->pgm.s.apShwPaePDsR0[3] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[3];
1432# endif
1433 pVM->pgm.s.pShwPaePdptR3 = (PX86PDPT)MMR3PageAllocLow(pVM);
1434# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1435 pVM->pgm.s.pShwPaePdptR0 = (uintptr_t)pVM->pgm.s.pShwPaePdptR3;
1436# endif
1437#endif /* VBOX_WITH_PGMPOOL_PAGING_ONLY */
1438 pVM->pgm.s.pShwNestedRootR3 = MMR3PageAllocLow(pVM);
1439#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1440 pVM->pgm.s.pShwNestedRootR0 = (uintptr_t)pVM->pgm.s.pShwNestedRootR3;
1441#endif
1442
1443#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
1444 if (!pVM->pgm.s.pShwNestedRootR3)
1445#else
1446 if ( !pVM->pgm.s.pShw32BitPdR3
1447 || !pVM->pgm.s.apShwPaePDsR3[0]
1448 || !pVM->pgm.s.apShwPaePDsR3[1]
1449 || !pVM->pgm.s.apShwPaePDsR3[2]
1450 || !pVM->pgm.s.apShwPaePDsR3[3]
1451 || !pVM->pgm.s.pShwPaePdptR3
1452 || !pVM->pgm.s.pShwNestedRootR3)
1453#endif
1454 {
1455 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1456 return VERR_NO_PAGE_MEMORY;
1457 }
1458
1459 /* get physical addresses. */
1460#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1461 pVM->pgm.s.HCPhysShw32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pShw32BitPdR3);
1462 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhysShw32BitPD) == pVM->pgm.s.pShw32BitPdR3);
1463 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[0]);
1464 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[1]);
1465 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[2]);
1466 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[3]);
1467 pVM->pgm.s.HCPhysShwPaePdpt = MMPage2Phys(pVM, pVM->pgm.s.pShwPaePdptR3);
1468#endif
1469 pVM->pgm.s.HCPhysShwNestedRoot = MMPage2Phys(pVM, pVM->pgm.s.pShwNestedRootR3);
1470
1471 /*
1472 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1473 */
1474#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1475 ASMMemZero32(pVM->pgm.s.pShw32BitPdR3, PAGE_SIZE);
1476 ASMMemZero32(pVM->pgm.s.pShwPaePdptR3, PAGE_SIZE);
1477#endif
1478 ASMMemZero32(pVM->pgm.s.pShwNestedRootR3, PAGE_SIZE);
1479#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1480 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3); i++)
1481 {
1482 ASMMemZero32(pVM->pgm.s.apShwPaePDsR3[i], PAGE_SIZE);
1483 pVM->pgm.s.pShwPaePdptR3->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1484 /* The flags will be corrected when entering and leaving long mode. */
1485 }
1486
1487 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhysShw32BitPD);
1488#endif
1489
1490 /*
1491 * Initialize paging workers and mode from current host mode
1492 * and the guest running in real mode.
1493 */
1494 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1495 switch (pVM->pgm.s.enmHostMode)
1496 {
1497 case SUPPAGINGMODE_32_BIT:
1498 case SUPPAGINGMODE_32_BIT_GLOBAL:
1499 case SUPPAGINGMODE_PAE:
1500 case SUPPAGINGMODE_PAE_GLOBAL:
1501 case SUPPAGINGMODE_PAE_NX:
1502 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1503 break;
1504
1505 case SUPPAGINGMODE_AMD64:
1506 case SUPPAGINGMODE_AMD64_GLOBAL:
1507 case SUPPAGINGMODE_AMD64_NX:
1508 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1509#ifndef VBOX_WITH_HYBIRD_32BIT_KERNEL
1510 if (ARCH_BITS != 64)
1511 {
1512 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1513 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1514 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1515 }
1516#endif
1517 break;
1518 default:
1519 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1520 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1521 }
1522 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1523 if (RT_SUCCESS(rc))
1524 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1525 if (RT_SUCCESS(rc))
1526 {
1527 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1528#if HC_ARCH_BITS == 64
1529# ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1530 LogRel(("Debug: HCPhysShw32BitPD=%RHp aHCPhysPaePDs={%RHp,%RHp,%RHp,%RHp} HCPhysShwPaePdpt=%RHp HCPhysShwPaePml4=%RHp\n",
1531 pVM->pgm.s.HCPhysShw32BitPD,
1532 pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1533 pVM->pgm.s.HCPhysShwPaePdpt,
1534 pVM->pgm.s.HCPhysShwPaePml4));
1535# endif
1536 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1537 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1538 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1539 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1540 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1541 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1542 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1543#endif
1544
1545 return VINF_SUCCESS;
1546 }
1547
1548 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1549 return rc;
1550}
1551
1552
1553#ifdef VBOX_WITH_STATISTICS
1554/**
1555 * Init statistics
1556 */
1557static void pgmR3InitStats(PVM pVM)
1558{
1559 PPGM pPGM = &pVM->pgm.s;
1560 unsigned i;
1561
1562 /*
1563 * Note! The layout of this function matches the member layout exactly!
1564 */
1565
1566 /* Common - misc variables */
1567 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1568 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1569 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1570 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1571 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1572 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1573
1574 /* Common - stats */
1575#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1576 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1577 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1578 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1579 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1580 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1581 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1582#endif
1583 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPtPD); i++)
1584 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1585 "The number of SyncPT per PD n.", "/PGM/PDSyncPT/%04X", i);
1586 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPagePD); i++)
1587 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1588 "The number of SyncPage per PD n.", "/PGM/PDSyncPage/%04X", i);
1589
1590 /* R3 only: */
1591 STAM_REG(pVM, &pPGM->StatR3DetectedConflicts, STAMTYPE_COUNTER, "/PGM/R3/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1592 STAM_REG(pVM, &pPGM->StatR3ResolveConflict, STAMTYPE_PROFILE, "/PGM/R3/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1593 STAM_REG(pVM, &pPGM->StatR3GuestPDWrite, STAMTYPE_COUNTER, "/PGM/R3/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1594 STAM_REG(pVM, &pPGM->StatR3GuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/R3/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1595 STAM_REG(pVM, &pPGM->StatR3DynRamTotal, STAMTYPE_COUNTER, "/PGM/DynAlloc/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated MBs of guest ram.");
1596 STAM_REG(pVM, &pPGM->StatR3DynRamGrow, STAMTYPE_COUNTER, "/PGM/DynAlloc/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1597
1598 /* GC only: */
1599 STAM_REG(pVM, &pPGM->StatRCDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1600 STAM_REG(pVM, &pPGM->StatRCDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1601 STAM_REG(pVM, &pPGM->StatRCInvlPgConflict, STAMTYPE_COUNTER, "/PGM/RC/InvlPgConflict", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() detected a mapping conflict.");
1602 STAM_REG(pVM, &pPGM->StatRCInvlPgSyncMonCR3, STAMTYPE_COUNTER, "/PGM/RC/InvlPgSyncMonitorCR3", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1603
1604 /* RZ only: */
1605 STAM_REG(pVM, &pPGM->StatRZTrap0e, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrap0eHandler() body.");
1606 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeCheckPageFault, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1607 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1608 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeMapping, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1609 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeOutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1610 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeHandlers, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1611 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2CSAM, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1612 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2DirtyAndAccessed, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1613 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2GuestTrap, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1614 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1615 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerVirtual", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1616 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndUnhandled, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1617 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2Misc, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1618 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1619 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1620 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1621 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndObs, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1622 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2SyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1623 STAM_REG(pVM, &pPGM->StatRZTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1624 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1625 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1626 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersPhysical, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1627 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtual, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1628 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1629 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualUnmarked,STAMTYPE_COUNTER,"/PGM/RZ/Trap0e/Handlers/VirtualUnmarked",STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1630 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1631 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersInvalid, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1632 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1633 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1634 STAM_REG(pVM, &pPGM->StatRZTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1635 STAM_REG(pVM, &pPGM->StatRZTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1636 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1637 STAM_REG(pVM, &pPGM->StatRZTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1638 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1639 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1640 STAM_REG(pVM, &pPGM->StatRZTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1641 STAM_REG(pVM, &pPGM->StatRZTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1642 STAM_REG(pVM, &pPGM->StatRZTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1643 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPF, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF", STAMUNIT_OCCURENCES, "Number of real guest page faults.");
1644 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFUnh, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of real guest page faults from the 'unhandled' case.");
1645 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/InMapping", STAMUNIT_OCCURENCES, "Number of real guest page faults in a mapping.");
1646 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulInRZ, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/InRZ", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1647 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulToR3, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1648 for (i = 0; i < RT_ELEMENTS(pPGM->StatRZTrap0ePD); i++)
1649 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1650 "The number of traps in page directory n.", "/PGM/RZ/Trap0e/PD/%04X", i);
1651 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1652 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1653 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1654 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1655 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1656
1657 /* HC only: */
1658
1659 /* RZ & R3: */
1660 STAM_REG(pVM, &pPGM->StatRZSyncCR3, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1661 STAM_REG(pVM, &pPGM->StatRZSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1662 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1663 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1664 STAM_REG(pVM, &pPGM->StatRZSyncCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1665 STAM_REG(pVM, &pPGM->StatRZSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1666 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1667 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1668 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1669 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1670 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1671 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1672 STAM_REG(pVM, &pPGM->StatRZSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1673 STAM_REG(pVM, &pPGM->StatRZSyncPTFailed, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1674 STAM_REG(pVM, &pPGM->StatRZSyncPT4K, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1675 STAM_REG(pVM, &pPGM->StatRZSyncPT4M, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1676 STAM_REG(pVM, &pPGM->StatRZSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1677 STAM_REG(pVM, &pPGM->StatRZSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1678 STAM_REG(pVM, &pPGM->StatRZAccessedPage, STAMTYPE_COUNTER, "/PGM/RZ/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1679 STAM_REG(pVM, &pPGM->StatRZDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/RZ/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1680 STAM_REG(pVM, &pPGM->StatRZDirtyPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1681 STAM_REG(pVM, &pPGM->StatRZDirtyPageBig, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1682 STAM_REG(pVM, &pPGM->StatRZDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1683 STAM_REG(pVM, &pPGM->StatRZDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1684 STAM_REG(pVM, &pPGM->StatRZDirtiedPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1685 STAM_REG(pVM, &pPGM->StatRZDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1686 STAM_REG(pVM, &pPGM->StatRZPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1687 STAM_REG(pVM, &pPGM->StatRZInvalidatePage, STAMTYPE_PROFILE, "/PGM/RZ/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1688 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1689 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1690 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1691 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1692 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1693 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1694 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1695 STAM_REG(pVM, &pPGM->StatRZInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1696 STAM_REG(pVM, &pPGM->StatRZVirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/RZ/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1697 STAM_REG(pVM, &pPGM->StatRZPhysHandlerReset, STAMTYPE_COUNTER, "/PGM/RZ/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1698 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1699 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1700 STAM_REG(pVM, &pPGM->StatRZPrefetch, STAMTYPE_PROFILE, "/PGM/RZ/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1701 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsRZ", STAMUNIT_OCCURENCES, "TLB hits.");
1702 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesRZ", STAMUNIT_OCCURENCES, "TLB misses.");
1703 STAM_REG(pVM, &pPGM->StatRZPageMapTlbHits, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1704 STAM_REG(pVM, &pPGM->StatRZPageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1705 STAM_REG(pVM, &pPGM->StatRZPageReplaceShared, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1706 STAM_REG(pVM, &pPGM->StatRZPageReplaceZero, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1707/// @todo STAM_REG(pVM, &pPGM->StatRZPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/RZ/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1708 STAM_REG(pVM, &pPGM->StatRZFlushTLB, STAMTYPE_PROFILE, "/PGM/RZ/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1709 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1710 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1711 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1712 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1713 STAM_REG(pVM, &pPGM->StatRZGstModifyPage, STAMTYPE_PROFILE, "/PGM/RZ/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1714
1715 STAM_REG(pVM, &pPGM->StatR3SyncCR3, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1716 STAM_REG(pVM, &pPGM->StatR3SyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1717 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1718 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1719 STAM_REG(pVM, &pPGM->StatR3SyncCR3Global, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1720 STAM_REG(pVM, &pPGM->StatR3SyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1721 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1722 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1723 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1724 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1725 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1726 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1727 STAM_REG(pVM, &pPGM->StatR3SyncPT, STAMTYPE_PROFILE, "/PGM/R3/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1728 STAM_REG(pVM, &pPGM->StatR3SyncPTFailed, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1729 STAM_REG(pVM, &pPGM->StatR3SyncPT4K, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1730 STAM_REG(pVM, &pPGM->StatR3SyncPT4M, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1731 STAM_REG(pVM, &pPGM->StatR3SyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1732 STAM_REG(pVM, &pPGM->StatR3SyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1733 STAM_REG(pVM, &pPGM->StatR3AccessedPage, STAMTYPE_COUNTER, "/PGM/R3/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1734 STAM_REG(pVM, &pPGM->StatR3DirtyBitTracking, STAMTYPE_PROFILE, "/PGM/R3/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1735 STAM_REG(pVM, &pPGM->StatR3DirtyPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1736 STAM_REG(pVM, &pPGM->StatR3DirtyPageBig, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1737 STAM_REG(pVM, &pPGM->StatR3DirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1738 STAM_REG(pVM, &pPGM->StatR3DirtyPageTrap, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1739 STAM_REG(pVM, &pPGM->StatR3DirtiedPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1740 STAM_REG(pVM, &pPGM->StatR3DirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1741 STAM_REG(pVM, &pPGM->StatR3PageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1742 STAM_REG(pVM, &pPGM->StatR3InvalidatePage, STAMTYPE_PROFILE, "/PGM/R3/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1743 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1744 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1745 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1746 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1747 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1748 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1749 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1750 STAM_REG(pVM, &pPGM->StatR3InvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1751 STAM_REG(pVM, &pPGM->StatR3VirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/R3/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1752 STAM_REG(pVM, &pPGM->StatR3PhysHandlerReset, STAMTYPE_COUNTER, "/PGM/R3/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1753 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1754 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1755 STAM_REG(pVM, &pPGM->StatR3Prefetch, STAMTYPE_PROFILE, "/PGM/R3/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1756 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsR3", STAMUNIT_OCCURENCES, "TLB hits.");
1757 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesR3", STAMUNIT_OCCURENCES, "TLB misses.");
1758 STAM_REG(pVM, &pPGM->StatR3PageMapTlbHits, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1759 STAM_REG(pVM, &pPGM->StatR3PageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1760 STAM_REG(pVM, &pPGM->StatR3PageReplaceShared, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1761 STAM_REG(pVM, &pPGM->StatR3PageReplaceZero, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1762/// @todo STAM_REG(pVM, &pPGM->StatR3PageHandyAllocs, STAMTYPE_COUNTER, "/PGM/R3/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1763 STAM_REG(pVM, &pPGM->StatR3FlushTLB, STAMTYPE_PROFILE, "/PGM/R3/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1764 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1765 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1766 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1767 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1768 STAM_REG(pVM, &pPGM->StatR3GstModifyPage, STAMTYPE_PROFILE, "/PGM/R3/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1769
1770}
1771#endif /* VBOX_WITH_STATISTICS */
1772
1773
1774/**
1775 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1776 *
1777 * The dynamic mapping area will also be allocated and initialized at this
1778 * time. We could allocate it during PGMR3Init of course, but the mapping
1779 * wouldn't be allocated at that time preventing us from setting up the
1780 * page table entries with the dummy page.
1781 *
1782 * @returns VBox status code.
1783 * @param pVM VM handle.
1784 */
1785VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1786{
1787 RTGCPTR GCPtr;
1788 int rc;
1789
1790#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1791 /*
1792 * Reserve space for mapping the paging pages into guest context.
1793 */
1794 rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3) + 1 + 2 + 2), "Paging", &GCPtr);
1795 AssertRCReturn(rc, rc);
1796 pVM->pgm.s.pShw32BitPdRC = GCPtr;
1797 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1798#endif
1799
1800 /*
1801 * Reserve space for the dynamic mappings.
1802 */
1803 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1804 if (RT_SUCCESS(rc))
1805 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1806
1807 if ( RT_SUCCESS(rc)
1808 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1809 {
1810 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1811 if (RT_SUCCESS(rc))
1812 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1813 }
1814 if (RT_SUCCESS(rc))
1815 {
1816 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1817 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1818 }
1819 return rc;
1820}
1821
1822
1823/**
1824 * Ring-3 init finalizing.
1825 *
1826 * @returns VBox status code.
1827 * @param pVM The VM handle.
1828 */
1829VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1830{
1831 int rc;
1832
1833#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1834 /*
1835 * Map the paging pages into the guest context.
1836 */
1837 RTGCPTR GCPtr = pVM->pgm.s.pShw32BitPdRC;
1838 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1839
1840 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysShw32BitPD, PAGE_SIZE, 0);
1841 AssertRCReturn(rc, rc);
1842 pVM->pgm.s.pShw32BitPdRC = GCPtr;
1843 GCPtr += PAGE_SIZE;
1844 GCPtr += PAGE_SIZE; /* reserved page */
1845
1846 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3); i++)
1847 {
1848 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1849 AssertRCReturn(rc, rc);
1850 pVM->pgm.s.apShwPaePDsRC[i] = GCPtr;
1851 GCPtr += PAGE_SIZE;
1852 }
1853 /* A bit of paranoia is justified. */
1854 AssertRelease(pVM->pgm.s.apShwPaePDsRC[0] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[1]);
1855 AssertRelease(pVM->pgm.s.apShwPaePDsRC[1] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[2]);
1856 AssertRelease(pVM->pgm.s.apShwPaePDsRC[2] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[3]);
1857 GCPtr += PAGE_SIZE; /* reserved page */
1858
1859 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysShwPaePdpt, PAGE_SIZE, 0);
1860 AssertRCReturn(rc, rc);
1861 pVM->pgm.s.pShwPaePdptRC = GCPtr;
1862 GCPtr += PAGE_SIZE;
1863 GCPtr += PAGE_SIZE; /* reserved page */
1864#endif
1865
1866 /*
1867 * Reserve space for the dynamic mappings.
1868 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1869 */
1870 /* get the pointer to the page table entries. */
1871 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1872 AssertRelease(pMapping);
1873 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1874 const unsigned iPT = off >> X86_PD_SHIFT;
1875 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1876 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1877 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1878
1879 /* init cache */
1880 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1881 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1882 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1883
1884 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1885 {
1886 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1887 AssertRCReturn(rc, rc);
1888 }
1889
1890 /*
1891 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1892 * Intel only goes up to 36 bits, so we stick to 36 as well.
1893 */
1894 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1895 uint32_t u32Dummy, u32Features;
1896 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1897
1898 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1899 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1900 else
1901 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1902
1903 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1904
1905 return rc;
1906}
1907
1908
1909/**
1910 * Applies relocations to data and code managed by this component.
1911 *
1912 * This function will be called at init and whenever the VMM need to relocate it
1913 * self inside the GC.
1914 *
1915 * @param pVM The VM.
1916 * @param offDelta Relocation delta relative to old location.
1917 */
1918VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1919{
1920 LogFlow(("PGMR3Relocate\n"));
1921
1922 /*
1923 * Paging stuff.
1924 */
1925 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1926 /** @todo move this into shadow and guest specific relocation functions. */
1927 AssertMsg(pVM->pgm.s.pShw32BitPdR3, ("Init order, no relocation before paging is initialized!\n"));
1928#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1929 pVM->pgm.s.pShw32BitPdRC += offDelta;
1930#endif
1931 pVM->pgm.s.pGst32BitPdRC += offDelta;
1932 AssertCompile(RT_ELEMENTS(pVM->pgm.s.apShwPaePDsRC) == RT_ELEMENTS(pVM->pgm.s.apGstPaePDsRC));
1933 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsRC); i++)
1934 {
1935#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1936 pVM->pgm.s.apShwPaePDsRC[i] += offDelta;
1937#endif
1938 pVM->pgm.s.apGstPaePDsRC[i] += offDelta;
1939 }
1940 pVM->pgm.s.pGstPaePdptRC += offDelta;
1941#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1942 pVM->pgm.s.pShwPaePdptRC += offDelta;
1943#endif
1944
1945 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1946 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1947
1948 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1949 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1950 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1951
1952 /*
1953 * Trees.
1954 */
1955 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1956
1957 /*
1958 * Ram ranges.
1959 */
1960 if (pVM->pgm.s.pRamRangesR3)
1961 {
1962 pVM->pgm.s.pRamRangesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pRamRangesR3);
1963 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
1964 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1965 }
1966
1967 /*
1968 * Update the two page directories with all page table mappings.
1969 * (One or more of them have changed, that's why we're here.)
1970 */
1971 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
1972 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1973 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1974
1975 /* Relocate GC addresses of Page Tables. */
1976 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1977 {
1978 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1979 {
1980 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
1981 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
1982 }
1983 }
1984
1985 /*
1986 * Dynamic page mapping area.
1987 */
1988 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1989 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1990 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1991
1992 /*
1993 * The Zero page.
1994 */
1995 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1996 AssertRelease(pVM->pgm.s.pvZeroPgR0);
1997
1998 /*
1999 * Physical and virtual handlers.
2000 */
2001 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2002 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2003 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2004
2005 /*
2006 * The page pool.
2007 */
2008 pgmR3PoolRelocate(pVM);
2009}
2010
2011
2012/**
2013 * Callback function for relocating a physical access handler.
2014 *
2015 * @returns 0 (continue enum)
2016 * @param pNode Pointer to a PGMPHYSHANDLER node.
2017 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2018 * not certain the delta will fit in a void pointer for all possible configs.
2019 */
2020static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2021{
2022 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2023 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2024 if (pHandler->pfnHandlerRC)
2025 pHandler->pfnHandlerRC += offDelta;
2026 if (pHandler->pvUserRC >= 0x10000)
2027 pHandler->pvUserRC += offDelta;
2028 return 0;
2029}
2030
2031
2032/**
2033 * Callback function for relocating a virtual access handler.
2034 *
2035 * @returns 0 (continue enum)
2036 * @param pNode Pointer to a PGMVIRTHANDLER node.
2037 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2038 * not certain the delta will fit in a void pointer for all possible configs.
2039 */
2040static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2041{
2042 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2043 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2044 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2045 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2046 Assert(pHandler->pfnHandlerRC);
2047 pHandler->pfnHandlerRC += offDelta;
2048 return 0;
2049}
2050
2051
2052/**
2053 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2054 *
2055 * @returns 0 (continue enum)
2056 * @param pNode Pointer to a PGMVIRTHANDLER node.
2057 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2058 * not certain the delta will fit in a void pointer for all possible configs.
2059 */
2060static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2061{
2062 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2063 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2064 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2065 Assert(pHandler->pfnHandlerRC);
2066 pHandler->pfnHandlerRC += offDelta;
2067 return 0;
2068}
2069
2070
2071/**
2072 * The VM is being reset.
2073 *
2074 * For the PGM component this means that any PD write monitors
2075 * needs to be removed.
2076 *
2077 * @param pVM VM handle.
2078 */
2079VMMR3DECL(void) PGMR3Reset(PVM pVM)
2080{
2081 LogFlow(("PGMR3Reset:\n"));
2082 VM_ASSERT_EMT(pVM);
2083
2084 pgmLock(pVM);
2085
2086 /*
2087 * Unfix any fixed mappings and disable CR3 monitoring.
2088 */
2089 pVM->pgm.s.fMappingsFixed = false;
2090 pVM->pgm.s.GCPtrMappingFixed = 0;
2091 pVM->pgm.s.cbMappingFixed = 0;
2092
2093 /* Exit the guest paging mode before the pgm pool gets reset.
2094 * Important to clean up the amd64 case.
2095 */
2096 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2097 AssertRC(rc);
2098#ifdef DEBUG
2099 DBGFR3InfoLog(pVM, "mappings", NULL);
2100 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2101#endif
2102
2103 /*
2104 * Reset the shadow page pool.
2105 */
2106 pgmR3PoolReset(pVM);
2107
2108 /*
2109 * Re-init other members.
2110 */
2111 pVM->pgm.s.fA20Enabled = true;
2112
2113 /*
2114 * Clear the FFs PGM owns.
2115 */
2116 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2117 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2118
2119 /*
2120 * Reset (zero) RAM pages.
2121 */
2122 rc = pgmR3PhysRamReset(pVM);
2123 if (RT_SUCCESS(rc))
2124 {
2125#ifdef VBOX_WITH_NEW_PHYS_CODE
2126 /*
2127 * Reset (zero) shadow ROM pages.
2128 */
2129 rc = pgmR3PhysRomReset(pVM);
2130#endif
2131 if (RT_SUCCESS(rc))
2132 {
2133 /*
2134 * Switch mode back to real mode.
2135 */
2136 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2137 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2138 }
2139 }
2140
2141 pgmUnlock(pVM);
2142 //return rc;
2143 AssertReleaseRC(rc);
2144}
2145
2146
2147#ifdef VBOX_STRICT
2148/**
2149 * VM state change callback for clearing fNoMorePhysWrites after
2150 * a snapshot has been created.
2151 */
2152static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2153{
2154 if (enmState == VMSTATE_RUNNING)
2155 pVM->pgm.s.fNoMorePhysWrites = false;
2156}
2157#endif
2158
2159
2160/**
2161 * Terminates the PGM.
2162 *
2163 * @returns VBox status code.
2164 * @param pVM Pointer to VM structure.
2165 */
2166VMMR3DECL(int) PGMR3Term(PVM pVM)
2167{
2168 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2169}
2170
2171
2172/**
2173 * Terminates the per-VCPU PGM.
2174 *
2175 * Termination means cleaning up and freeing all resources,
2176 * the VM it self is at this point powered off or suspended.
2177 *
2178 * @returns VBox status code.
2179 * @param pVM The VM to operate on.
2180 */
2181VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2182{
2183 return 0;
2184}
2185
2186
2187/**
2188 * Execute state save operation.
2189 *
2190 * @returns VBox status code.
2191 * @param pVM VM Handle.
2192 * @param pSSM SSM operation handle.
2193 */
2194static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2195{
2196 PPGM pPGM = &pVM->pgm.s;
2197
2198 /* No more writes to physical memory after this point! */
2199 pVM->pgm.s.fNoMorePhysWrites = true;
2200
2201 /*
2202 * Save basic data (required / unaffected by relocation).
2203 */
2204#if 1
2205 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
2206#else
2207 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
2208#endif
2209 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
2210 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
2211 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
2212 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2213 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
2214 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
2215 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
2216 SSMR3PutU32(pSSM, ~0); /* Separator. */
2217
2218 /*
2219 * The guest mappings.
2220 */
2221 uint32_t i = 0;
2222 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2223 {
2224 SSMR3PutU32(pSSM, i);
2225 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2226 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
2227 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2228 /* flags are done by the mapping owners! */
2229 }
2230 SSMR3PutU32(pSSM, ~0); /* terminator. */
2231
2232 /*
2233 * Ram range flags and bits.
2234 */
2235 i = 0;
2236 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2237 {
2238 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2239
2240 SSMR3PutU32(pSSM, i);
2241 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2242 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2243 SSMR3PutGCPhys(pSSM, pRam->cb);
2244 SSMR3PutU8(pSSM, !!pRam->pvR3); /* boolean indicating memory or not. */
2245
2246 /* Flags. */
2247 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2248 for (unsigned iPage = 0; iPage < cPages; iPage++)
2249 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2250
2251 /* any memory associated with the range. */
2252 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2253 {
2254 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2255 {
2256 if (pRam->paChunkR3Ptrs[iChunk])
2257 {
2258 SSMR3PutU8(pSSM, 1); /* chunk present */
2259 SSMR3PutMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2260 }
2261 else
2262 SSMR3PutU8(pSSM, 0); /* no chunk present */
2263 }
2264 }
2265 else if (pRam->pvR3)
2266 {
2267 int rc = SSMR3PutMem(pSSM, pRam->pvR3, pRam->cb);
2268 if (RT_FAILURE(rc))
2269 {
2270 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2271 return rc;
2272 }
2273 }
2274 }
2275 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2276}
2277
2278
2279/**
2280 * Execute state load operation.
2281 *
2282 * @returns VBox status code.
2283 * @param pVM VM Handle.
2284 * @param pSSM SSM operation handle.
2285 * @param u32Version Data layout version.
2286 */
2287static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2288{
2289 /*
2290 * Validate version.
2291 */
2292 if (u32Version != PGM_SAVED_STATE_VERSION)
2293 {
2294 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2295 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2296 }
2297
2298 /*
2299 * Call the reset function to make sure all the memory is cleared.
2300 */
2301 PGMR3Reset(pVM);
2302
2303 /*
2304 * Load basic data (required / unaffected by relocation).
2305 */
2306 PPGM pPGM = &pVM->pgm.s;
2307#if 1
2308 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2309#else
2310 uint32_t u;
2311 SSMR3GetU32(pSSM, &u);
2312 pPGM->fMappingsFixed = u;
2313#endif
2314 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2315 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2316
2317 RTUINT cbRamSize;
2318 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2319 if (RT_FAILURE(rc))
2320 return rc;
2321 if (cbRamSize != pPGM->cbRamSize)
2322 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2323 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2324 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2325 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2326 RTUINT uGuestMode;
2327 SSMR3GetUInt(pSSM, &uGuestMode);
2328 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2329
2330 /* check separator. */
2331 uint32_t u32Sep;
2332 SSMR3GetU32(pSSM, &u32Sep);
2333 if (RT_FAILURE(rc))
2334 return rc;
2335 if (u32Sep != (uint32_t)~0)
2336 {
2337 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2338 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2339 }
2340
2341 /*
2342 * The guest mappings.
2343 */
2344 uint32_t i = 0;
2345 for (;; i++)
2346 {
2347 /* Check the seqence number / separator. */
2348 rc = SSMR3GetU32(pSSM, &u32Sep);
2349 if (RT_FAILURE(rc))
2350 return rc;
2351 if (u32Sep == ~0U)
2352 break;
2353 if (u32Sep != i)
2354 {
2355 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2356 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2357 }
2358
2359 /* get the mapping details. */
2360 char szDesc[256];
2361 szDesc[0] = '\0';
2362 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2363 if (RT_FAILURE(rc))
2364 return rc;
2365 RTGCPTR GCPtr;
2366 SSMR3GetGCPtr(pSSM, &GCPtr);
2367 RTGCPTR cPTs;
2368 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2369 if (RT_FAILURE(rc))
2370 return rc;
2371
2372 /* find matching range. */
2373 PPGMMAPPING pMapping;
2374 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2375 if ( pMapping->cPTs == cPTs
2376 && !strcmp(pMapping->pszDesc, szDesc))
2377 break;
2378 if (!pMapping)
2379 {
2380 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
2381 cPTs, szDesc, GCPtr));
2382 AssertFailed();
2383 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2384 }
2385
2386 /* relocate it. */
2387 if (pMapping->GCPtr != GCPtr)
2388 {
2389 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
2390 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2391 }
2392 else
2393 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
2394 }
2395
2396 /*
2397 * Ram range flags and bits.
2398 */
2399 i = 0;
2400 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2401 {
2402 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2403 /* Check the seqence number / separator. */
2404 rc = SSMR3GetU32(pSSM, &u32Sep);
2405 if (RT_FAILURE(rc))
2406 return rc;
2407 if (u32Sep == ~0U)
2408 break;
2409 if (u32Sep != i)
2410 {
2411 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2412 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2413 }
2414
2415 /* Get the range details. */
2416 RTGCPHYS GCPhys;
2417 SSMR3GetGCPhys(pSSM, &GCPhys);
2418 RTGCPHYS GCPhysLast;
2419 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2420 RTGCPHYS cb;
2421 SSMR3GetGCPhys(pSSM, &cb);
2422 uint8_t fHaveBits;
2423 rc = SSMR3GetU8(pSSM, &fHaveBits);
2424 if (RT_FAILURE(rc))
2425 return rc;
2426 if (fHaveBits & ~1)
2427 {
2428 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2429 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2430 }
2431
2432 /* Match it up with the current range. */
2433 if ( GCPhys != pRam->GCPhys
2434 || GCPhysLast != pRam->GCPhysLast
2435 || cb != pRam->cb
2436 || fHaveBits != !!pRam->pvR3)
2437 {
2438 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s\n"
2439 "State : %RGp-%RGp %RGp bytes %s\n",
2440 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits",
2441 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2442 /*
2443 * If we're loading a state for debugging purpose, don't make a fuss if
2444 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2445 */
2446 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2447 || GCPhys < 8 * _1M)
2448 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2449
2450 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2451 while (cPages-- > 0)
2452 {
2453 uint16_t u16Ignore;
2454 SSMR3GetU16(pSSM, &u16Ignore);
2455 }
2456 continue;
2457 }
2458
2459 /* Flags. */
2460 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2461 for (unsigned iPage = 0; iPage < cPages; iPage++)
2462 {
2463 uint16_t u16 = 0;
2464 SSMR3GetU16(pSSM, &u16);
2465 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2466 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2467 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2468 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2469 }
2470
2471 /* any memory associated with the range. */
2472 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2473 {
2474 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2475 {
2476 uint8_t fValidChunk;
2477
2478 rc = SSMR3GetU8(pSSM, &fValidChunk);
2479 if (RT_FAILURE(rc))
2480 return rc;
2481 if (fValidChunk > 1)
2482 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2483
2484 if (fValidChunk)
2485 {
2486 if (!pRam->paChunkR3Ptrs[iChunk])
2487 {
2488 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2489 if (RT_FAILURE(rc))
2490 return rc;
2491 }
2492 Assert(pRam->paChunkR3Ptrs[iChunk]);
2493
2494 SSMR3GetMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2495 }
2496 /* else nothing to do */
2497 }
2498 }
2499 else if (pRam->pvR3)
2500 {
2501 int rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2502 if (RT_FAILURE(rc))
2503 {
2504 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2505 return rc;
2506 }
2507 }
2508 }
2509
2510 /*
2511 * We require a full resync now.
2512 */
2513 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2514 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2515 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2516 pPGM->fPhysCacheFlushPending = true;
2517 pgmR3HandlerPhysicalUpdateAll(pVM);
2518
2519 /*
2520 * Change the paging mode.
2521 */
2522 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2523
2524 /* Restore pVM->pgm.s.GCPhysCR3. */
2525 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2526 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2527 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2528 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2529 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2530 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2531 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2532 else
2533 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2534 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2535
2536 return rc;
2537}
2538
2539
2540/**
2541 * Show paging mode.
2542 *
2543 * @param pVM VM Handle.
2544 * @param pHlp The info helpers.
2545 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2546 */
2547static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2548{
2549 /* digest argument. */
2550 bool fGuest, fShadow, fHost;
2551 if (pszArgs)
2552 pszArgs = RTStrStripL(pszArgs);
2553 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2554 fShadow = fHost = fGuest = true;
2555 else
2556 {
2557 fShadow = fHost = fGuest = false;
2558 if (strstr(pszArgs, "guest"))
2559 fGuest = true;
2560 if (strstr(pszArgs, "shadow"))
2561 fShadow = true;
2562 if (strstr(pszArgs, "host"))
2563 fHost = true;
2564 }
2565
2566 /* print info. */
2567 if (fGuest)
2568 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2569 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2570 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2571 if (fShadow)
2572 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2573 if (fHost)
2574 {
2575 const char *psz;
2576 switch (pVM->pgm.s.enmHostMode)
2577 {
2578 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2579 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2580 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2581 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2582 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2583 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2584 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2585 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2586 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2587 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2588 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2589 default: psz = "unknown"; break;
2590 }
2591 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2592 }
2593}
2594
2595
2596/**
2597 * Dump registered MMIO ranges to the log.
2598 *
2599 * @param pVM VM Handle.
2600 * @param pHlp The info helpers.
2601 * @param pszArgs Arguments, ignored.
2602 */
2603static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2604{
2605 NOREF(pszArgs);
2606 pHlp->pfnPrintf(pHlp,
2607 "RAM ranges (pVM=%p)\n"
2608 "%.*s %.*s\n",
2609 pVM,
2610 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2611 sizeof(RTHCPTR) * 2, "pvHC ");
2612
2613 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2614 pHlp->pfnPrintf(pHlp,
2615 "%RGp-%RGp %RHv %s\n",
2616 pCur->GCPhys,
2617 pCur->GCPhysLast,
2618 pCur->pvR3,
2619 pCur->pszDesc);
2620}
2621
2622/**
2623 * Dump the page directory to the log.
2624 *
2625 * @param pVM VM Handle.
2626 * @param pHlp The info helpers.
2627 * @param pszArgs Arguments, ignored.
2628 */
2629static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2630{
2631/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2632 /* Big pages supported? */
2633 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2634
2635 /* Global pages supported? */
2636 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2637
2638 NOREF(pszArgs);
2639
2640 /*
2641 * Get page directory addresses.
2642 */
2643 PX86PD pPDSrc = pVM->pgm.s.pGst32BitPdR3;
2644 Assert(pPDSrc);
2645 Assert(PGMPhysGCPhys2HCPtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2646
2647 /*
2648 * Iterate the page directory.
2649 */
2650 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2651 {
2652 X86PDE PdeSrc = pPDSrc->a[iPD];
2653 if (PdeSrc.n.u1Present)
2654 {
2655 if (PdeSrc.b.u1Size && fPSE)
2656 pHlp->pfnPrintf(pHlp,
2657 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2658 iPD,
2659 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2660 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2661 else
2662 pHlp->pfnPrintf(pHlp,
2663 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2664 iPD,
2665 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2666 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2667 }
2668 }
2669}
2670
2671
2672/**
2673 * Serivce a VMMCALLHOST_PGM_LOCK call.
2674 *
2675 * @returns VBox status code.
2676 * @param pVM The VM handle.
2677 */
2678VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2679{
2680 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2681 AssertRC(rc);
2682 return rc;
2683}
2684
2685
2686/**
2687 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2688 *
2689 * @returns PGM_TYPE_*.
2690 * @param pgmMode The mode value to convert.
2691 */
2692DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2693{
2694 switch (pgmMode)
2695 {
2696 case PGMMODE_REAL: return PGM_TYPE_REAL;
2697 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2698 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2699 case PGMMODE_PAE:
2700 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2701 case PGMMODE_AMD64:
2702 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2703 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2704 case PGMMODE_EPT: return PGM_TYPE_EPT;
2705 default:
2706 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2707 }
2708}
2709
2710
2711/**
2712 * Gets the index into the paging mode data array of a SHW+GST mode.
2713 *
2714 * @returns PGM::paPagingData index.
2715 * @param uShwType The shadow paging mode type.
2716 * @param uGstType The guest paging mode type.
2717 */
2718DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2719{
2720 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2721 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2722 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2723 + (uGstType - PGM_TYPE_REAL);
2724}
2725
2726
2727/**
2728 * Gets the index into the paging mode data array of a SHW+GST mode.
2729 *
2730 * @returns PGM::paPagingData index.
2731 * @param enmShw The shadow paging mode.
2732 * @param enmGst The guest paging mode.
2733 */
2734DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2735{
2736 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2737 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2738 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2739}
2740
2741
2742/**
2743 * Calculates the max data index.
2744 * @returns The number of entries in the paging data array.
2745 */
2746DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2747{
2748 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2749}
2750
2751
2752/**
2753 * Initializes the paging mode data kept in PGM::paModeData.
2754 *
2755 * @param pVM The VM handle.
2756 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2757 * This is used early in the init process to avoid trouble with PDM
2758 * not being initialized yet.
2759 */
2760static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2761{
2762 PPGMMODEDATA pModeData;
2763 int rc;
2764
2765 /*
2766 * Allocate the array on the first call.
2767 */
2768 if (!pVM->pgm.s.paModeData)
2769 {
2770 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2771 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2772 }
2773
2774 /*
2775 * Initialize the array entries.
2776 */
2777 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2778 pModeData->uShwType = PGM_TYPE_32BIT;
2779 pModeData->uGstType = PGM_TYPE_REAL;
2780 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2781 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2782 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2783
2784 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2785 pModeData->uShwType = PGM_TYPE_32BIT;
2786 pModeData->uGstType = PGM_TYPE_PROT;
2787 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2788 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2789 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2790
2791 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2792 pModeData->uShwType = PGM_TYPE_32BIT;
2793 pModeData->uGstType = PGM_TYPE_32BIT;
2794 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2795 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2796 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2797
2798 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2799 pModeData->uShwType = PGM_TYPE_PAE;
2800 pModeData->uGstType = PGM_TYPE_REAL;
2801 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2802 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2803 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2804
2805 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2806 pModeData->uShwType = PGM_TYPE_PAE;
2807 pModeData->uGstType = PGM_TYPE_PROT;
2808 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2809 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2810 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2811
2812 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2813 pModeData->uShwType = PGM_TYPE_PAE;
2814 pModeData->uGstType = PGM_TYPE_32BIT;
2815 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2816 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2817 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2818
2819 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2820 pModeData->uShwType = PGM_TYPE_PAE;
2821 pModeData->uGstType = PGM_TYPE_PAE;
2822 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2823 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2824 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2825
2826#ifdef VBOX_WITH_64_BITS_GUESTS
2827 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2828 pModeData->uShwType = PGM_TYPE_AMD64;
2829 pModeData->uGstType = PGM_TYPE_AMD64;
2830 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2831 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2832 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2833#endif
2834
2835 /* The nested paging mode. */
2836 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2837 pModeData->uShwType = PGM_TYPE_NESTED;
2838 pModeData->uGstType = PGM_TYPE_REAL;
2839 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2840 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2841
2842 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2843 pModeData->uShwType = PGM_TYPE_NESTED;
2844 pModeData->uGstType = PGM_TYPE_PROT;
2845 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2846 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2847
2848 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2849 pModeData->uShwType = PGM_TYPE_NESTED;
2850 pModeData->uGstType = PGM_TYPE_32BIT;
2851 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2852 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2853
2854 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2855 pModeData->uShwType = PGM_TYPE_NESTED;
2856 pModeData->uGstType = PGM_TYPE_PAE;
2857 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2858 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2859
2860#ifdef VBOX_WITH_64_BITS_GUESTS
2861 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2862 pModeData->uShwType = PGM_TYPE_NESTED;
2863 pModeData->uGstType = PGM_TYPE_AMD64;
2864 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2865 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2866#endif
2867
2868 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2869 switch(pVM->pgm.s.enmHostMode)
2870 {
2871 case SUPPAGINGMODE_32_BIT:
2872 case SUPPAGINGMODE_32_BIT_GLOBAL:
2873#ifdef VBOX_WITH_64_BITS_GUESTS
2874 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2875#else
2876 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_PAE;i++)
2877#endif
2878 {
2879 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2880 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2881 }
2882 break;
2883
2884 case SUPPAGINGMODE_PAE:
2885 case SUPPAGINGMODE_PAE_NX:
2886 case SUPPAGINGMODE_PAE_GLOBAL:
2887 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2888#ifdef VBOX_WITH_64_BITS_GUESTS
2889 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2890#else
2891 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_PAE;i++)
2892#endif
2893 {
2894 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2895 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2896 }
2897 break;
2898
2899 case SUPPAGINGMODE_AMD64:
2900 case SUPPAGINGMODE_AMD64_GLOBAL:
2901 case SUPPAGINGMODE_AMD64_NX:
2902 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2903#ifdef VBOX_WITH_64_BITS_GUESTS
2904 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2905#else
2906 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_PAE;i++)
2907#endif
2908 {
2909 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2910 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2911 }
2912 break;
2913 default:
2914 AssertFailed();
2915 break;
2916 }
2917
2918 /* Extended paging (EPT) / Intel VT-x */
2919 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2920 pModeData->uShwType = PGM_TYPE_EPT;
2921 pModeData->uGstType = PGM_TYPE_REAL;
2922 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2923 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2924 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2925
2926 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2927 pModeData->uShwType = PGM_TYPE_EPT;
2928 pModeData->uGstType = PGM_TYPE_PROT;
2929 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2930 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2931 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2932
2933 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2934 pModeData->uShwType = PGM_TYPE_EPT;
2935 pModeData->uGstType = PGM_TYPE_32BIT;
2936 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2937 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2938 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2939
2940 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2941 pModeData->uShwType = PGM_TYPE_EPT;
2942 pModeData->uGstType = PGM_TYPE_PAE;
2943 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2944 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2945 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2946
2947#ifdef VBOX_WITH_64_BITS_GUESTS
2948 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2949 pModeData->uShwType = PGM_TYPE_EPT;
2950 pModeData->uGstType = PGM_TYPE_AMD64;
2951 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2952 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2953 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2954#endif
2955 return VINF_SUCCESS;
2956}
2957
2958
2959/**
2960 * Switch to different (or relocated in the relocate case) mode data.
2961 *
2962 * @param pVM The VM handle.
2963 * @param enmShw The the shadow paging mode.
2964 * @param enmGst The the guest paging mode.
2965 */
2966static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
2967{
2968 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2969
2970 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2971 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2972
2973 /* shadow */
2974 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2975 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2976 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2977 Assert(pVM->pgm.s.pfnR3ShwGetPage);
2978 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2979
2980 pVM->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
2981 pVM->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
2982
2983 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2984 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2985
2986
2987 /* guest */
2988 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2989 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2990 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2991 Assert(pVM->pgm.s.pfnR3GstGetPage);
2992 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2993 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2994#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2995 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
2996 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
2997#endif
2998 pVM->pgm.s.pfnR3GstMapCR3 = pModeData->pfnR3GstMapCR3;
2999 pVM->pgm.s.pfnR3GstUnmapCR3 = pModeData->pfnR3GstUnmapCR3;
3000#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3001 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
3002 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
3003 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
3004 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
3005#endif
3006 pVM->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3007 pVM->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3008 pVM->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3009#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3010 pVM->pgm.s.pfnRCGstMonitorCR3 = pModeData->pfnRCGstMonitorCR3;
3011 pVM->pgm.s.pfnRCGstUnmonitorCR3 = pModeData->pfnRCGstUnmonitorCR3;
3012#endif
3013 pVM->pgm.s.pfnRCGstMapCR3 = pModeData->pfnRCGstMapCR3;
3014 pVM->pgm.s.pfnRCGstUnmapCR3 = pModeData->pfnRCGstUnmapCR3;
3015#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3016 pVM->pgm.s.pfnRCGstWriteHandlerCR3 = pModeData->pfnRCGstWriteHandlerCR3;
3017 pVM->pgm.s.pfnRCGstPAEWriteHandlerCR3 = pModeData->pfnRCGstPAEWriteHandlerCR3;
3018#endif
3019 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3020 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3021 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3022#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3023 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
3024 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
3025#endif
3026 pVM->pgm.s.pfnR0GstMapCR3 = pModeData->pfnR0GstMapCR3;
3027 pVM->pgm.s.pfnR0GstUnmapCR3 = pModeData->pfnR0GstUnmapCR3;
3028#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3029 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
3030 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
3031#endif
3032
3033 /* both */
3034 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3035 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3036 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3037 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
3038 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
3039 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3040 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3041#ifdef VBOX_STRICT
3042 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3043#endif
3044
3045 pVM->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3046 pVM->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3047 pVM->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3048 pVM->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
3049 pVM->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3050 pVM->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3051#ifdef VBOX_STRICT
3052 pVM->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3053#endif
3054
3055 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3056 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3057 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3058 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3059 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3060 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3061#ifdef VBOX_STRICT
3062 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3063#endif
3064}
3065
3066
3067/**
3068 * Calculates the shadow paging mode.
3069 *
3070 * @returns The shadow paging mode.
3071 * @param pVM VM handle.
3072 * @param enmGuestMode The guest mode.
3073 * @param enmHostMode The host mode.
3074 * @param enmShadowMode The current shadow mode.
3075 * @param penmSwitcher Where to store the switcher to use.
3076 * VMMSWITCHER_INVALID means no change.
3077 */
3078static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3079{
3080 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3081 switch (enmGuestMode)
3082 {
3083 /*
3084 * When switching to real or protected mode we don't change
3085 * anything since it's likely that we'll switch back pretty soon.
3086 *
3087 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3088 * and is supposed to determine which shadow paging and switcher to
3089 * use during init.
3090 */
3091 case PGMMODE_REAL:
3092 case PGMMODE_PROTECTED:
3093 if ( enmShadowMode != PGMMODE_INVALID
3094 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3095 break; /* (no change) */
3096
3097 switch (enmHostMode)
3098 {
3099 case SUPPAGINGMODE_32_BIT:
3100 case SUPPAGINGMODE_32_BIT_GLOBAL:
3101 enmShadowMode = PGMMODE_32_BIT;
3102 enmSwitcher = VMMSWITCHER_32_TO_32;
3103 break;
3104
3105 case SUPPAGINGMODE_PAE:
3106 case SUPPAGINGMODE_PAE_NX:
3107 case SUPPAGINGMODE_PAE_GLOBAL:
3108 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3109 enmShadowMode = PGMMODE_PAE;
3110 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3111#ifdef DEBUG_bird
3112 if (RTEnvExist("VBOX_32BIT"))
3113 {
3114 enmShadowMode = PGMMODE_32_BIT;
3115 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3116 }
3117#endif
3118 break;
3119
3120 case SUPPAGINGMODE_AMD64:
3121 case SUPPAGINGMODE_AMD64_GLOBAL:
3122 case SUPPAGINGMODE_AMD64_NX:
3123 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3124 enmShadowMode = PGMMODE_PAE;
3125 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3126#ifdef DEBUG_bird
3127 if (RTEnvExist("VBOX_32BIT"))
3128 {
3129 enmShadowMode = PGMMODE_32_BIT;
3130 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3131 }
3132#endif
3133 break;
3134
3135 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3136 }
3137 break;
3138
3139 case PGMMODE_32_BIT:
3140 switch (enmHostMode)
3141 {
3142 case SUPPAGINGMODE_32_BIT:
3143 case SUPPAGINGMODE_32_BIT_GLOBAL:
3144 enmShadowMode = PGMMODE_32_BIT;
3145 enmSwitcher = VMMSWITCHER_32_TO_32;
3146 break;
3147
3148 case SUPPAGINGMODE_PAE:
3149 case SUPPAGINGMODE_PAE_NX:
3150 case SUPPAGINGMODE_PAE_GLOBAL:
3151 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3152 enmShadowMode = PGMMODE_PAE;
3153 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3154#ifdef DEBUG_bird
3155 if (RTEnvExist("VBOX_32BIT"))
3156 {
3157 enmShadowMode = PGMMODE_32_BIT;
3158 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3159 }
3160#endif
3161 break;
3162
3163 case SUPPAGINGMODE_AMD64:
3164 case SUPPAGINGMODE_AMD64_GLOBAL:
3165 case SUPPAGINGMODE_AMD64_NX:
3166 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3167 enmShadowMode = PGMMODE_PAE;
3168 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3169#ifdef DEBUG_bird
3170 if (RTEnvExist("VBOX_32BIT"))
3171 {
3172 enmShadowMode = PGMMODE_32_BIT;
3173 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3174 }
3175#endif
3176 break;
3177
3178 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3179 }
3180 break;
3181
3182 case PGMMODE_PAE:
3183 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3184 switch (enmHostMode)
3185 {
3186 case SUPPAGINGMODE_32_BIT:
3187 case SUPPAGINGMODE_32_BIT_GLOBAL:
3188 enmShadowMode = PGMMODE_PAE;
3189 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3190 break;
3191
3192 case SUPPAGINGMODE_PAE:
3193 case SUPPAGINGMODE_PAE_NX:
3194 case SUPPAGINGMODE_PAE_GLOBAL:
3195 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3196 enmShadowMode = PGMMODE_PAE;
3197 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3198 break;
3199
3200 case SUPPAGINGMODE_AMD64:
3201 case SUPPAGINGMODE_AMD64_GLOBAL:
3202 case SUPPAGINGMODE_AMD64_NX:
3203 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3204 enmShadowMode = PGMMODE_PAE;
3205 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3206 break;
3207
3208 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3209 }
3210 break;
3211
3212 case PGMMODE_AMD64:
3213 case PGMMODE_AMD64_NX:
3214 switch (enmHostMode)
3215 {
3216 case SUPPAGINGMODE_32_BIT:
3217 case SUPPAGINGMODE_32_BIT_GLOBAL:
3218 enmShadowMode = PGMMODE_PAE;
3219 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3220 break;
3221
3222 case SUPPAGINGMODE_PAE:
3223 case SUPPAGINGMODE_PAE_NX:
3224 case SUPPAGINGMODE_PAE_GLOBAL:
3225 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3226 enmShadowMode = PGMMODE_PAE;
3227 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3228 break;
3229
3230 case SUPPAGINGMODE_AMD64:
3231 case SUPPAGINGMODE_AMD64_GLOBAL:
3232 case SUPPAGINGMODE_AMD64_NX:
3233 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3234 enmShadowMode = PGMMODE_AMD64;
3235 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3236 break;
3237
3238 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3239 }
3240 break;
3241
3242
3243 default:
3244 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3245 return PGMMODE_INVALID;
3246 }
3247 /* Override the shadow mode is nested paging is active. */
3248 if (HWACCMIsNestedPagingActive(pVM))
3249 enmShadowMode = HWACCMGetPagingMode(pVM);
3250
3251 *penmSwitcher = enmSwitcher;
3252 return enmShadowMode;
3253}
3254
3255
3256/**
3257 * Performs the actual mode change.
3258 * This is called by PGMChangeMode and pgmR3InitPaging().
3259 *
3260 * @returns VBox status code.
3261 * @param pVM VM handle.
3262 * @param enmGuestMode The new guest mode. This is assumed to be different from
3263 * the current mode.
3264 */
3265VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3266{
3267 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3268 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3269
3270 /*
3271 * Calc the shadow mode and switcher.
3272 */
3273 VMMSWITCHER enmSwitcher;
3274 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3275 if (enmSwitcher != VMMSWITCHER_INVALID)
3276 {
3277 /*
3278 * Select new switcher.
3279 */
3280 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3281 if (RT_FAILURE(rc))
3282 {
3283 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3284 return rc;
3285 }
3286 }
3287
3288 /*
3289 * Exit old mode(s).
3290 */
3291 /* shadow */
3292 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3293 {
3294 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3295 if (PGM_SHW_PFN(Exit, pVM))
3296 {
3297 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3298 if (RT_FAILURE(rc))
3299 {
3300 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVM->pgm.s.enmShadowMode, rc));
3301 return rc;
3302 }
3303 }
3304
3305 }
3306 else
3307 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3308
3309 /* guest */
3310 if (PGM_GST_PFN(Exit, pVM))
3311 {
3312 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3313 if (RT_FAILURE(rc))
3314 {
3315 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVM->pgm.s.enmGuestMode, rc));
3316 return rc;
3317 }
3318 }
3319
3320 /*
3321 * Load new paging mode data.
3322 */
3323 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3324
3325 /*
3326 * Enter new shadow mode (if changed).
3327 */
3328 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3329 {
3330 int rc;
3331 pVM->pgm.s.enmShadowMode = enmShadowMode;
3332 switch (enmShadowMode)
3333 {
3334 case PGMMODE_32_BIT:
3335 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3336 break;
3337 case PGMMODE_PAE:
3338 case PGMMODE_PAE_NX:
3339 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3340 break;
3341 case PGMMODE_AMD64:
3342 case PGMMODE_AMD64_NX:
3343 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3344 break;
3345 case PGMMODE_NESTED:
3346 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3347 break;
3348 case PGMMODE_EPT:
3349 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3350 break;
3351 case PGMMODE_REAL:
3352 case PGMMODE_PROTECTED:
3353 default:
3354 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3355 return VERR_INTERNAL_ERROR;
3356 }
3357 if (RT_FAILURE(rc))
3358 {
3359 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3360 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3361 return rc;
3362 }
3363 }
3364
3365 /** @todo This is a bug!
3366 *
3367 * We must flush the PGM pool cache if the guest mode changes; we don't always
3368 * switch shadow paging mode (e.g. protected->32-bit) and shouldn't reuse
3369 * the shadow page tables.
3370 *
3371 * That only applies when switching between paging and non-paging modes.
3372 */
3373 /** @todo A20 setting */
3374 if ( pVM->pgm.s.CTX_SUFF(pPool)
3375 && !HWACCMIsNestedPagingActive(pVM)
3376 && PGMMODE_WITH_PAGING(pVM->pgm.s.enmGuestMode) != PGMMODE_WITH_PAGING(enmGuestMode))
3377 {
3378 Log(("PGMR3ChangeMode: changing guest paging mode -> flush pgm pool cache!\n"));
3379 pgmPoolFlushAll(pVM);
3380 }
3381
3382 /*
3383 * Enter the new guest and shadow+guest modes.
3384 */
3385 int rc = -1;
3386 int rc2 = -1;
3387 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3388 pVM->pgm.s.enmGuestMode = enmGuestMode;
3389 switch (enmGuestMode)
3390 {
3391 case PGMMODE_REAL:
3392 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3393 switch (pVM->pgm.s.enmShadowMode)
3394 {
3395 case PGMMODE_32_BIT:
3396 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3397 break;
3398 case PGMMODE_PAE:
3399 case PGMMODE_PAE_NX:
3400 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3401 break;
3402 case PGMMODE_NESTED:
3403 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3404 break;
3405 case PGMMODE_EPT:
3406 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3407 break;
3408 case PGMMODE_AMD64:
3409 case PGMMODE_AMD64_NX:
3410 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3411 default: AssertFailed(); break;
3412 }
3413 break;
3414
3415 case PGMMODE_PROTECTED:
3416 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3417 switch (pVM->pgm.s.enmShadowMode)
3418 {
3419 case PGMMODE_32_BIT:
3420 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3421 break;
3422 case PGMMODE_PAE:
3423 case PGMMODE_PAE_NX:
3424 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3425 break;
3426 case PGMMODE_NESTED:
3427 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3428 break;
3429 case PGMMODE_EPT:
3430 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3431 break;
3432 case PGMMODE_AMD64:
3433 case PGMMODE_AMD64_NX:
3434 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3435 default: AssertFailed(); break;
3436 }
3437 break;
3438
3439 case PGMMODE_32_BIT:
3440 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3441 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3442 switch (pVM->pgm.s.enmShadowMode)
3443 {
3444 case PGMMODE_32_BIT:
3445 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3446 break;
3447 case PGMMODE_PAE:
3448 case PGMMODE_PAE_NX:
3449 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3450 break;
3451 case PGMMODE_NESTED:
3452 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3453 break;
3454 case PGMMODE_EPT:
3455 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3456 break;
3457 case PGMMODE_AMD64:
3458 case PGMMODE_AMD64_NX:
3459 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3460 default: AssertFailed(); break;
3461 }
3462 break;
3463
3464 case PGMMODE_PAE_NX:
3465 case PGMMODE_PAE:
3466 {
3467 uint32_t u32Dummy, u32Features;
3468
3469 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3470 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3471 {
3472 /* Pause first, then inform Main. */
3473 rc = VMR3SuspendNoSave(pVM);
3474 AssertRC(rc);
3475
3476 VMSetRuntimeError(pVM, true, "PAEmode",
3477 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3478 /* we must return VINF_SUCCESS here otherwise the recompiler will assert */
3479 return VINF_SUCCESS;
3480 }
3481 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3482 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3483 switch (pVM->pgm.s.enmShadowMode)
3484 {
3485 case PGMMODE_PAE:
3486 case PGMMODE_PAE_NX:
3487 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3488 break;
3489 case PGMMODE_NESTED:
3490 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3491 break;
3492 case PGMMODE_EPT:
3493 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3494 break;
3495 case PGMMODE_32_BIT:
3496 case PGMMODE_AMD64:
3497 case PGMMODE_AMD64_NX:
3498 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3499 default: AssertFailed(); break;
3500 }
3501 break;
3502 }
3503
3504#ifdef VBOX_WITH_64_BITS_GUESTS
3505 case PGMMODE_AMD64_NX:
3506 case PGMMODE_AMD64:
3507 GCPhysCR3 = CPUMGetGuestCR3(pVM) & 0xfffffffffffff000ULL; /** @todo define this mask! */
3508 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3509 switch (pVM->pgm.s.enmShadowMode)
3510 {
3511 case PGMMODE_AMD64:
3512 case PGMMODE_AMD64_NX:
3513 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3514 break;
3515 case PGMMODE_NESTED:
3516 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3517 break;
3518 case PGMMODE_EPT:
3519 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3520 break;
3521 case PGMMODE_32_BIT:
3522 case PGMMODE_PAE:
3523 case PGMMODE_PAE_NX:
3524 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3525 default: AssertFailed(); break;
3526 }
3527 break;
3528#endif
3529
3530 default:
3531 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3532 rc = VERR_NOT_IMPLEMENTED;
3533 break;
3534 }
3535
3536 /* status codes. */
3537 AssertRC(rc);
3538 AssertRC(rc2);
3539 if (RT_SUCCESS(rc))
3540 {
3541 rc = rc2;
3542 if (RT_SUCCESS(rc)) /* no informational status codes. */
3543 rc = VINF_SUCCESS;
3544 }
3545
3546 /*
3547 * Notify SELM so it can update the TSSes with correct CR3s.
3548 */
3549 SELMR3PagingModeChanged(pVM);
3550
3551 /* Notify HWACCM as well. */
3552 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
3553 return rc;
3554}
3555
3556
3557/**
3558 * Dumps a PAE shadow page table.
3559 *
3560 * @returns VBox status code (VINF_SUCCESS).
3561 * @param pVM The VM handle.
3562 * @param pPT Pointer to the page table.
3563 * @param u64Address The virtual address of the page table starts.
3564 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3565 * @param cMaxDepth The maxium depth.
3566 * @param pHlp Pointer to the output functions.
3567 */
3568static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3569{
3570 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3571 {
3572 X86PTEPAE Pte = pPT->a[i];
3573 if (Pte.n.u1Present)
3574 {
3575 pHlp->pfnPrintf(pHlp,
3576 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3577 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3578 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3579 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3580 Pte.n.u1Write ? 'W' : 'R',
3581 Pte.n.u1User ? 'U' : 'S',
3582 Pte.n.u1Accessed ? 'A' : '-',
3583 Pte.n.u1Dirty ? 'D' : '-',
3584 Pte.n.u1Global ? 'G' : '-',
3585 Pte.n.u1WriteThru ? "WT" : "--",
3586 Pte.n.u1CacheDisable? "CD" : "--",
3587 Pte.n.u1PAT ? "AT" : "--",
3588 Pte.n.u1NoExecute ? "NX" : "--",
3589 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3590 Pte.u & RT_BIT(10) ? '1' : '0',
3591 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3592 Pte.u & X86_PTE_PAE_PG_MASK);
3593 }
3594 }
3595 return VINF_SUCCESS;
3596}
3597
3598
3599/**
3600 * Dumps a PAE shadow page directory table.
3601 *
3602 * @returns VBox status code (VINF_SUCCESS).
3603 * @param pVM The VM handle.
3604 * @param HCPhys The physical address of the page directory table.
3605 * @param u64Address The virtual address of the page table starts.
3606 * @param cr4 The CR4, PSE is currently used.
3607 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3608 * @param cMaxDepth The maxium depth.
3609 * @param pHlp Pointer to the output functions.
3610 */
3611static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3612{
3613 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3614 if (!pPD)
3615 {
3616 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3617 fLongMode ? 16 : 8, u64Address, HCPhys);
3618 return VERR_INVALID_PARAMETER;
3619 }
3620 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3621
3622 int rc = VINF_SUCCESS;
3623 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3624 {
3625 X86PDEPAE Pde = pPD->a[i];
3626 if (Pde.n.u1Present)
3627 {
3628 if (fBigPagesSupported && Pde.b.u1Size)
3629 pHlp->pfnPrintf(pHlp,
3630 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3631 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3632 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3633 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3634 Pde.b.u1Write ? 'W' : 'R',
3635 Pde.b.u1User ? 'U' : 'S',
3636 Pde.b.u1Accessed ? 'A' : '-',
3637 Pde.b.u1Dirty ? 'D' : '-',
3638 Pde.b.u1Global ? 'G' : '-',
3639 Pde.b.u1WriteThru ? "WT" : "--",
3640 Pde.b.u1CacheDisable? "CD" : "--",
3641 Pde.b.u1PAT ? "AT" : "--",
3642 Pde.b.u1NoExecute ? "NX" : "--",
3643 Pde.u & RT_BIT_64(9) ? '1' : '0',
3644 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3645 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3646 Pde.u & X86_PDE_PAE_PG_MASK);
3647 else
3648 {
3649 pHlp->pfnPrintf(pHlp,
3650 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3651 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3652 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3653 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3654 Pde.n.u1Write ? 'W' : 'R',
3655 Pde.n.u1User ? 'U' : 'S',
3656 Pde.n.u1Accessed ? 'A' : '-',
3657 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3658 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3659 Pde.n.u1WriteThru ? "WT" : "--",
3660 Pde.n.u1CacheDisable? "CD" : "--",
3661 Pde.n.u1NoExecute ? "NX" : "--",
3662 Pde.u & RT_BIT_64(9) ? '1' : '0',
3663 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3664 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3665 Pde.u & X86_PDE_PAE_PG_MASK);
3666 if (cMaxDepth >= 1)
3667 {
3668 /** @todo what about using the page pool for mapping PTs? */
3669 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3670 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3671 PX86PTPAE pPT = NULL;
3672 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3673 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3674 else
3675 {
3676 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3677 {
3678 uint64_t off = u64AddressPT - pMap->GCPtr;
3679 if (off < pMap->cb)
3680 {
3681 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3682 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3683 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3684 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3685 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3686 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3687 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3688 }
3689 }
3690 }
3691 int rc2 = VERR_INVALID_PARAMETER;
3692 if (pPT)
3693 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3694 else
3695 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
3696 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3697 if (rc2 < rc && RT_SUCCESS(rc))
3698 rc = rc2;
3699 }
3700 }
3701 }
3702 }
3703 return rc;
3704}
3705
3706
3707/**
3708 * Dumps a PAE shadow page directory pointer table.
3709 *
3710 * @returns VBox status code (VINF_SUCCESS).
3711 * @param pVM The VM handle.
3712 * @param HCPhys The physical address of the page directory pointer table.
3713 * @param u64Address The virtual address of the page table starts.
3714 * @param cr4 The CR4, PSE is currently used.
3715 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3716 * @param cMaxDepth The maxium depth.
3717 * @param pHlp Pointer to the output functions.
3718 */
3719static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3720{
3721 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3722 if (!pPDPT)
3723 {
3724 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
3725 fLongMode ? 16 : 8, u64Address, HCPhys);
3726 return VERR_INVALID_PARAMETER;
3727 }
3728
3729 int rc = VINF_SUCCESS;
3730 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3731 for (unsigned i = 0; i < c; i++)
3732 {
3733 X86PDPE Pdpe = pPDPT->a[i];
3734 if (Pdpe.n.u1Present)
3735 {
3736 if (fLongMode)
3737 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3738 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3739 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3740 Pdpe.lm.u1Write ? 'W' : 'R',
3741 Pdpe.lm.u1User ? 'U' : 'S',
3742 Pdpe.lm.u1Accessed ? 'A' : '-',
3743 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3744 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3745 Pdpe.lm.u1WriteThru ? "WT" : "--",
3746 Pdpe.lm.u1CacheDisable? "CD" : "--",
3747 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3748 Pdpe.lm.u1NoExecute ? "NX" : "--",
3749 Pdpe.u & RT_BIT(9) ? '1' : '0',
3750 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3751 Pdpe.u & RT_BIT(11) ? '1' : '0',
3752 Pdpe.u & X86_PDPE_PG_MASK);
3753 else
3754 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3755 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3756 i << X86_PDPT_SHIFT,
3757 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3758 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3759 Pdpe.n.u1WriteThru ? "WT" : "--",
3760 Pdpe.n.u1CacheDisable? "CD" : "--",
3761 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3762 Pdpe.u & RT_BIT(9) ? '1' : '0',
3763 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3764 Pdpe.u & RT_BIT(11) ? '1' : '0',
3765 Pdpe.u & X86_PDPE_PG_MASK);
3766 if (cMaxDepth >= 1)
3767 {
3768 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3769 cr4, fLongMode, cMaxDepth - 1, pHlp);
3770 if (rc2 < rc && RT_SUCCESS(rc))
3771 rc = rc2;
3772 }
3773 }
3774 }
3775 return rc;
3776}
3777
3778
3779/**
3780 * Dumps a 32-bit shadow page table.
3781 *
3782 * @returns VBox status code (VINF_SUCCESS).
3783 * @param pVM The VM handle.
3784 * @param HCPhys The physical address of the table.
3785 * @param cr4 The CR4, PSE is currently used.
3786 * @param cMaxDepth The maxium depth.
3787 * @param pHlp Pointer to the output functions.
3788 */
3789static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3790{
3791 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3792 if (!pPML4)
3793 {
3794 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
3795 return VERR_INVALID_PARAMETER;
3796 }
3797
3798 int rc = VINF_SUCCESS;
3799 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3800 {
3801 X86PML4E Pml4e = pPML4->a[i];
3802 if (Pml4e.n.u1Present)
3803 {
3804 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3805 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3806 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3807 u64Address,
3808 Pml4e.n.u1Write ? 'W' : 'R',
3809 Pml4e.n.u1User ? 'U' : 'S',
3810 Pml4e.n.u1Accessed ? 'A' : '-',
3811 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3812 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3813 Pml4e.n.u1WriteThru ? "WT" : "--",
3814 Pml4e.n.u1CacheDisable? "CD" : "--",
3815 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3816 Pml4e.n.u1NoExecute ? "NX" : "--",
3817 Pml4e.u & RT_BIT(9) ? '1' : '0',
3818 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3819 Pml4e.u & RT_BIT(11) ? '1' : '0',
3820 Pml4e.u & X86_PML4E_PG_MASK);
3821
3822 if (cMaxDepth >= 1)
3823 {
3824 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3825 if (rc2 < rc && RT_SUCCESS(rc))
3826 rc = rc2;
3827 }
3828 }
3829 }
3830 return rc;
3831}
3832
3833
3834/**
3835 * Dumps a 32-bit shadow page table.
3836 *
3837 * @returns VBox status code (VINF_SUCCESS).
3838 * @param pVM The VM handle.
3839 * @param pPT Pointer to the page table.
3840 * @param u32Address The virtual address this table starts at.
3841 * @param pHlp Pointer to the output functions.
3842 */
3843int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3844{
3845 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3846 {
3847 X86PTE Pte = pPT->a[i];
3848 if (Pte.n.u1Present)
3849 {
3850 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3851 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3852 u32Address + (i << X86_PT_SHIFT),
3853 Pte.n.u1Write ? 'W' : 'R',
3854 Pte.n.u1User ? 'U' : 'S',
3855 Pte.n.u1Accessed ? 'A' : '-',
3856 Pte.n.u1Dirty ? 'D' : '-',
3857 Pte.n.u1Global ? 'G' : '-',
3858 Pte.n.u1WriteThru ? "WT" : "--",
3859 Pte.n.u1CacheDisable? "CD" : "--",
3860 Pte.n.u1PAT ? "AT" : "--",
3861 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3862 Pte.u & RT_BIT(10) ? '1' : '0',
3863 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3864 Pte.u & X86_PDE_PG_MASK);
3865 }
3866 }
3867 return VINF_SUCCESS;
3868}
3869
3870
3871/**
3872 * Dumps a 32-bit shadow page directory and page tables.
3873 *
3874 * @returns VBox status code (VINF_SUCCESS).
3875 * @param pVM The VM handle.
3876 * @param cr3 The root of the hierarchy.
3877 * @param cr4 The CR4, PSE is currently used.
3878 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3879 * @param pHlp Pointer to the output functions.
3880 */
3881int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3882{
3883 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3884 if (!pPD)
3885 {
3886 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3887 return VERR_INVALID_PARAMETER;
3888 }
3889
3890 int rc = VINF_SUCCESS;
3891 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3892 {
3893 X86PDE Pde = pPD->a[i];
3894 if (Pde.n.u1Present)
3895 {
3896 const uint32_t u32Address = i << X86_PD_SHIFT;
3897 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3898 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3899 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3900 u32Address,
3901 Pde.b.u1Write ? 'W' : 'R',
3902 Pde.b.u1User ? 'U' : 'S',
3903 Pde.b.u1Accessed ? 'A' : '-',
3904 Pde.b.u1Dirty ? 'D' : '-',
3905 Pde.b.u1Global ? 'G' : '-',
3906 Pde.b.u1WriteThru ? "WT" : "--",
3907 Pde.b.u1CacheDisable? "CD" : "--",
3908 Pde.b.u1PAT ? "AT" : "--",
3909 Pde.u & RT_BIT_64(9) ? '1' : '0',
3910 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3911 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3912 Pde.u & X86_PDE4M_PG_MASK);
3913 else
3914 {
3915 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3916 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3917 u32Address,
3918 Pde.n.u1Write ? 'W' : 'R',
3919 Pde.n.u1User ? 'U' : 'S',
3920 Pde.n.u1Accessed ? 'A' : '-',
3921 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3922 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3923 Pde.n.u1WriteThru ? "WT" : "--",
3924 Pde.n.u1CacheDisable? "CD" : "--",
3925 Pde.u & RT_BIT_64(9) ? '1' : '0',
3926 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3927 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3928 Pde.u & X86_PDE_PG_MASK);
3929 if (cMaxDepth >= 1)
3930 {
3931 /** @todo what about using the page pool for mapping PTs? */
3932 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3933 PX86PT pPT = NULL;
3934 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3935 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3936 else
3937 {
3938 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3939 if (u32Address - pMap->GCPtr < pMap->cb)
3940 {
3941 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3942 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3943 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3944 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3945 pPT = pMap->aPTs[iPDE].pPTR3;
3946 }
3947 }
3948 int rc2 = VERR_INVALID_PARAMETER;
3949 if (pPT)
3950 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3951 else
3952 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3953 if (rc2 < rc && RT_SUCCESS(rc))
3954 rc = rc2;
3955 }
3956 }
3957 }
3958 }
3959
3960 return rc;
3961}
3962
3963
3964/**
3965 * Dumps a 32-bit shadow page table.
3966 *
3967 * @returns VBox status code (VINF_SUCCESS).
3968 * @param pVM The VM handle.
3969 * @param pPT Pointer to the page table.
3970 * @param u32Address The virtual address this table starts at.
3971 * @param PhysSearch Address to search for.
3972 */
3973int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3974{
3975 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3976 {
3977 X86PTE Pte = pPT->a[i];
3978 if (Pte.n.u1Present)
3979 {
3980 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3981 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3982 u32Address + (i << X86_PT_SHIFT),
3983 Pte.n.u1Write ? 'W' : 'R',
3984 Pte.n.u1User ? 'U' : 'S',
3985 Pte.n.u1Accessed ? 'A' : '-',
3986 Pte.n.u1Dirty ? 'D' : '-',
3987 Pte.n.u1Global ? 'G' : '-',
3988 Pte.n.u1WriteThru ? "WT" : "--",
3989 Pte.n.u1CacheDisable? "CD" : "--",
3990 Pte.n.u1PAT ? "AT" : "--",
3991 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3992 Pte.u & RT_BIT(10) ? '1' : '0',
3993 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3994 Pte.u & X86_PDE_PG_MASK));
3995
3996 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3997 {
3998 uint64_t fPageShw = 0;
3999 RTHCPHYS pPhysHC = 0;
4000
4001 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
4002 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
4003 }
4004 }
4005 }
4006 return VINF_SUCCESS;
4007}
4008
4009
4010/**
4011 * Dumps a 32-bit guest page directory and page tables.
4012 *
4013 * @returns VBox status code (VINF_SUCCESS).
4014 * @param pVM The VM handle.
4015 * @param cr3 The root of the hierarchy.
4016 * @param cr4 The CR4, PSE is currently used.
4017 * @param PhysSearch Address to search for.
4018 */
4019VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
4020{
4021 bool fLongMode = false;
4022 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
4023 PX86PD pPD = 0;
4024
4025 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
4026 if (RT_FAILURE(rc) || !pPD)
4027 {
4028 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
4029 return VERR_INVALID_PARAMETER;
4030 }
4031
4032 Log(("cr3=%08x cr4=%08x%s\n"
4033 "%-*s P - Present\n"
4034 "%-*s | R/W - Read (0) / Write (1)\n"
4035 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4036 "%-*s | | | A - Accessed\n"
4037 "%-*s | | | | D - Dirty\n"
4038 "%-*s | | | | | G - Global\n"
4039 "%-*s | | | | | | WT - Write thru\n"
4040 "%-*s | | | | | | | CD - Cache disable\n"
4041 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4042 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4043 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4044 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4045 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4046 "%-*s Level | | | | | | | | | | | | Page\n"
4047 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4048 - W U - - - -- -- -- -- -- 010 */
4049 , cr3, cr4, fLongMode ? " Long Mode" : "",
4050 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4051 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4052
4053 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4054 {
4055 X86PDE Pde = pPD->a[i];
4056 if (Pde.n.u1Present)
4057 {
4058 const uint32_t u32Address = i << X86_PD_SHIFT;
4059
4060 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4061 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4062 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4063 u32Address,
4064 Pde.b.u1Write ? 'W' : 'R',
4065 Pde.b.u1User ? 'U' : 'S',
4066 Pde.b.u1Accessed ? 'A' : '-',
4067 Pde.b.u1Dirty ? 'D' : '-',
4068 Pde.b.u1Global ? 'G' : '-',
4069 Pde.b.u1WriteThru ? "WT" : "--",
4070 Pde.b.u1CacheDisable? "CD" : "--",
4071 Pde.b.u1PAT ? "AT" : "--",
4072 Pde.u & RT_BIT(9) ? '1' : '0',
4073 Pde.u & RT_BIT(10) ? '1' : '0',
4074 Pde.u & RT_BIT(11) ? '1' : '0',
4075 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4076 /** @todo PhysSearch */
4077 else
4078 {
4079 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4080 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4081 u32Address,
4082 Pde.n.u1Write ? 'W' : 'R',
4083 Pde.n.u1User ? 'U' : 'S',
4084 Pde.n.u1Accessed ? 'A' : '-',
4085 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4086 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4087 Pde.n.u1WriteThru ? "WT" : "--",
4088 Pde.n.u1CacheDisable? "CD" : "--",
4089 Pde.u & RT_BIT(9) ? '1' : '0',
4090 Pde.u & RT_BIT(10) ? '1' : '0',
4091 Pde.u & RT_BIT(11) ? '1' : '0',
4092 Pde.u & X86_PDE_PG_MASK));
4093 ////if (cMaxDepth >= 1)
4094 {
4095 /** @todo what about using the page pool for mapping PTs? */
4096 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4097 PX86PT pPT = NULL;
4098
4099 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4100
4101 int rc2 = VERR_INVALID_PARAMETER;
4102 if (pPT)
4103 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4104 else
4105 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4106 if (rc2 < rc && RT_SUCCESS(rc))
4107 rc = rc2;
4108 }
4109 }
4110 }
4111 }
4112
4113 return rc;
4114}
4115
4116
4117/**
4118 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4119 *
4120 * @returns VBox status code (VINF_SUCCESS).
4121 * @param pVM The VM handle.
4122 * @param cr3 The root of the hierarchy.
4123 * @param cr4 The cr4, only PAE and PSE is currently used.
4124 * @param fLongMode Set if long mode, false if not long mode.
4125 * @param cMaxDepth Number of levels to dump.
4126 * @param pHlp Pointer to the output functions.
4127 */
4128VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4129{
4130 if (!pHlp)
4131 pHlp = DBGFR3InfoLogHlp();
4132 if (!cMaxDepth)
4133 return VINF_SUCCESS;
4134 const unsigned cch = fLongMode ? 16 : 8;
4135 pHlp->pfnPrintf(pHlp,
4136 "cr3=%08x cr4=%08x%s\n"
4137 "%-*s P - Present\n"
4138 "%-*s | R/W - Read (0) / Write (1)\n"
4139 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4140 "%-*s | | | A - Accessed\n"
4141 "%-*s | | | | D - Dirty\n"
4142 "%-*s | | | | | G - Global\n"
4143 "%-*s | | | | | | WT - Write thru\n"
4144 "%-*s | | | | | | | CD - Cache disable\n"
4145 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4146 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4147 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4148 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4149 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4150 "%-*s Level | | | | | | | | | | | | Page\n"
4151 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4152 - W U - - - -- -- -- -- -- 010 */
4153 , cr3, cr4, fLongMode ? " Long Mode" : "",
4154 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4155 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4156 if (cr4 & X86_CR4_PAE)
4157 {
4158 if (fLongMode)
4159 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4160 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4161 }
4162 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4163}
4164
4165#ifdef VBOX_WITH_DEBUGGER
4166
4167/**
4168 * The '.pgmram' command.
4169 *
4170 * @returns VBox status.
4171 * @param pCmd Pointer to the command descriptor (as registered).
4172 * @param pCmdHlp Pointer to command helper functions.
4173 * @param pVM Pointer to the current VM (if any).
4174 * @param paArgs Pointer to (readonly) array of arguments.
4175 * @param cArgs Number of arguments in the array.
4176 */
4177static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4178{
4179 /*
4180 * Validate input.
4181 */
4182 if (!pVM)
4183 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4184 if (!pVM->pgm.s.pRamRangesRC)
4185 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4186
4187 /*
4188 * Dump the ranges.
4189 */
4190 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4191 PPGMRAMRANGE pRam;
4192 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4193 {
4194 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4195 "%RGp - %RGp %p\n",
4196 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4197 if (RT_FAILURE(rc))
4198 return rc;
4199 }
4200
4201 return VINF_SUCCESS;
4202}
4203
4204
4205/**
4206 * The '.pgmmap' command.
4207 *
4208 * @returns VBox status.
4209 * @param pCmd Pointer to the command descriptor (as registered).
4210 * @param pCmdHlp Pointer to command helper functions.
4211 * @param pVM Pointer to the current VM (if any).
4212 * @param paArgs Pointer to (readonly) array of arguments.
4213 * @param cArgs Number of arguments in the array.
4214 */
4215static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4216{
4217 /*
4218 * Validate input.
4219 */
4220 if (!pVM)
4221 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4222 if (!pVM->pgm.s.pMappingsR3)
4223 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4224
4225 /*
4226 * Print message about the fixedness of the mappings.
4227 */
4228 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4229 if (RT_FAILURE(rc))
4230 return rc;
4231
4232 /*
4233 * Dump the ranges.
4234 */
4235 PPGMMAPPING pCur;
4236 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4237 {
4238 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4239 "%08x - %08x %s\n",
4240 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4241 if (RT_FAILURE(rc))
4242 return rc;
4243 }
4244
4245 return VINF_SUCCESS;
4246}
4247
4248
4249/**
4250 * The '.pgmsync' command.
4251 *
4252 * @returns VBox status.
4253 * @param pCmd Pointer to the command descriptor (as registered).
4254 * @param pCmdHlp Pointer to command helper functions.
4255 * @param pVM Pointer to the current VM (if any).
4256 * @param paArgs Pointer to (readonly) array of arguments.
4257 * @param cArgs Number of arguments in the array.
4258 */
4259static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4260{
4261 /*
4262 * Validate input.
4263 */
4264 if (!pVM)
4265 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4266
4267 /*
4268 * Force page directory sync.
4269 */
4270 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4271
4272 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4273 if (RT_FAILURE(rc))
4274 return rc;
4275
4276 return VINF_SUCCESS;
4277}
4278
4279
4280#ifdef VBOX_STRICT
4281/**
4282 * The '.pgmassertcr3' command.
4283 *
4284 * @returns VBox status.
4285 * @param pCmd Pointer to the command descriptor (as registered).
4286 * @param pCmdHlp Pointer to command helper functions.
4287 * @param pVM Pointer to the current VM (if any).
4288 * @param paArgs Pointer to (readonly) array of arguments.
4289 * @param cArgs Number of arguments in the array.
4290 */
4291static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4292{
4293 /*
4294 * Validate input.
4295 */
4296 if (!pVM)
4297 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4298
4299 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4300 if (RT_FAILURE(rc))
4301 return rc;
4302
4303 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4304
4305 return VINF_SUCCESS;
4306}
4307#endif /* VBOX_STRICT */
4308
4309
4310/**
4311 * The '.pgmsyncalways' command.
4312 *
4313 * @returns VBox status.
4314 * @param pCmd Pointer to the command descriptor (as registered).
4315 * @param pCmdHlp Pointer to command helper functions.
4316 * @param pVM Pointer to the current VM (if any).
4317 * @param paArgs Pointer to (readonly) array of arguments.
4318 * @param cArgs Number of arguments in the array.
4319 */
4320static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4321{
4322 /*
4323 * Validate input.
4324 */
4325 if (!pVM)
4326 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4327
4328 /*
4329 * Force page directory sync.
4330 */
4331 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4332 {
4333 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4334 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4335 }
4336 else
4337 {
4338 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4339 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4340 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4341 }
4342}
4343
4344#endif /* VBOX_WITH_DEBUGGER */
4345
4346/**
4347 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4348 */
4349typedef struct PGMCHECKINTARGS
4350{
4351 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4352 PPGMPHYSHANDLER pPrevPhys;
4353 PPGMVIRTHANDLER pPrevVirt;
4354 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4355 PVM pVM;
4356} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4357
4358/**
4359 * Validate a node in the physical handler tree.
4360 *
4361 * @returns 0 on if ok, other wise 1.
4362 * @param pNode The handler node.
4363 * @param pvUser pVM.
4364 */
4365static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4366{
4367 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4368 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4369 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4370 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4371 AssertReleaseMsg( !pArgs->pPrevPhys
4372 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4373 ("pPrevPhys=%p %RGp-%RGp %s\n"
4374 " pCur=%p %RGp-%RGp %s\n",
4375 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4376 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4377 pArgs->pPrevPhys = pCur;
4378 return 0;
4379}
4380
4381
4382/**
4383 * Validate a node in the virtual handler tree.
4384 *
4385 * @returns 0 on if ok, other wise 1.
4386 * @param pNode The handler node.
4387 * @param pvUser pVM.
4388 */
4389static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4390{
4391 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4392 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4393 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4394 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4395 AssertReleaseMsg( !pArgs->pPrevVirt
4396 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4397 ("pPrevVirt=%p %RGv-%RGv %s\n"
4398 " pCur=%p %RGv-%RGv %s\n",
4399 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4400 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4401 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4402 {
4403 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4404 ("pCur=%p %RGv-%RGv %s\n"
4405 "iPage=%d offVirtHandle=%#x expected %#x\n",
4406 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4407 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4408 }
4409 pArgs->pPrevVirt = pCur;
4410 return 0;
4411}
4412
4413
4414/**
4415 * Validate a node in the virtual handler tree.
4416 *
4417 * @returns 0 on if ok, other wise 1.
4418 * @param pNode The handler node.
4419 * @param pvUser pVM.
4420 */
4421static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4422{
4423 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4424 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4425 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4426 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4427 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4428 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4429 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4430 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4431 " pCur=%p %RGp-%RGp\n",
4432 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4433 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4434 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4435 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4436 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4437 " pCur=%p %RGp-%RGp\n",
4438 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4439 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4440 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4441 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4442 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4443 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4444 {
4445 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4446 for (;;)
4447 {
4448 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4449 AssertReleaseMsg(pCur2 != pCur,
4450 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4451 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4452 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4453 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4454 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4455 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4456 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4457 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4458 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4459 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4460 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4461 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4462 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4463 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4464 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4465 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4466 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4467 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4468 break;
4469 }
4470 }
4471
4472 pArgs->pPrevPhys2Virt = pCur;
4473 return 0;
4474}
4475
4476
4477/**
4478 * Perform an integrity check on the PGM component.
4479 *
4480 * @returns VINF_SUCCESS if everything is fine.
4481 * @returns VBox error status after asserting on integrity breach.
4482 * @param pVM The VM handle.
4483 */
4484VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4485{
4486 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4487
4488 /*
4489 * Check the trees.
4490 */
4491 int cErrors = 0;
4492 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4493 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4494 PGMCHECKINTARGS Args = s_LeftToRight;
4495 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4496 Args = s_RightToLeft;
4497 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4498 Args = s_LeftToRight;
4499 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4500 Args = s_RightToLeft;
4501 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4502 Args = s_LeftToRight;
4503 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4504 Args = s_RightToLeft;
4505 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4506 Args = s_LeftToRight;
4507 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4508 Args = s_RightToLeft;
4509 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4510
4511 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4512}
4513
4514
4515/**
4516 * Inform PGM if we want all mappings to be put into the shadow page table. (necessary for e.g. VMX)
4517 *
4518 * @returns VBox status code.
4519 * @param pVM VM handle.
4520 * @param fEnable Enable or disable shadow mappings
4521 */
4522VMMR3DECL(int) PGMR3ChangeShwPDMappings(PVM pVM, bool fEnable)
4523{
4524 pVM->pgm.s.fDisableMappings = !fEnable;
4525
4526 uint32_t cb;
4527 int rc = PGMR3MappingsSize(pVM, &cb);
4528 AssertRCReturn(rc, rc);
4529
4530 /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */
4531 rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb);
4532 AssertRCReturn(rc, rc);
4533
4534 return VINF_SUCCESS;
4535}
4536
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette