VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 7689

Last change on this file since 7689 was 7677, checked in by vboxsync, 17 years ago

Cleanup

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 184.9 KB
Line 
1/* $Id: PGM.cpp 7677 2008-04-01 12:20:28Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 innotek GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 *
22 *
23 * @section sec_pgm_modes Paging Modes
24 *
25 * There are three memory contexts: Host Context (HC), Guest Context (GC)
26 * and intermediate context. When talking about paging HC can also be refered to
27 * as "host paging", and GC refered to as "shadow paging".
28 *
29 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
30 * is defined by the host operating system. The mode used in the shadow paging mode
31 * depends on the host paging mode and what the mode the guest is currently in. The
32 * following relation between the two is defined:
33 *
34 * @verbatim
35 Host > 32-bit | PAE | AMD64 |
36 Guest | | | |
37 ==v================================
38 32-bit 32-bit PAE PAE
39 -------|--------|--------|--------|
40 PAE PAE PAE PAE
41 -------|--------|--------|--------|
42 AMD64 AMD64 AMD64 AMD64
43 -------|--------|--------|--------| @endverbatim
44 *
45 * All configuration except those in the diagonal (upper left) are expected to
46 * require special effort from the switcher (i.e. a bit slower).
47 *
48 *
49 *
50 *
51 * @section sec_pgm_shw The Shadow Memory Context
52 *
53 *
54 * [..]
55 *
56 * Because of guest context mappings requires PDPTR and PML4 entries to allow
57 * writing on AMD64, the two upper levels will have fixed flags whatever the
58 * guest is thinking of using there. So, when shadowing the PD level we will
59 * calculate the effective flags of PD and all the higher levels. In legacy
60 * PAE mode this only applies to the PWT and PCD bits (the rest are
61 * ignored/reserved/MBZ). We will ignore those bits for the present.
62 *
63 *
64 *
65 * @section sec_pgm_int The Intermediate Memory Context
66 *
67 * The world switch goes thru an intermediate memory context which purpose it is
68 * to provide different mappings of the switcher code. All guest mappings are also
69 * present in this context.
70 *
71 * The switcher code is mapped at the same location as on the host, at an
72 * identity mapped location (physical equals virtual address), and at the
73 * hypervisor location.
74 *
75 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
76 * simplifies switching guest CPU mode and consistency at the cost of more
77 * code to do the work. All memory use for those page tables is located below
78 * 4GB (this includes page tables for guest context mappings).
79 *
80 *
81 * @subsection subsec_pgm_int_gc Guest Context Mappings
82 *
83 * During assignment and relocation of a guest context mapping the intermediate
84 * memory context is used to verify the new location.
85 *
86 * Guest context mappings are currently restricted to below 4GB, for reasons
87 * of simplicity. This may change when we implement AMD64 support.
88 *
89 *
90 *
91 *
92 * @section sec_pgm_misc Misc
93 *
94 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
95 *
96 * The differences between legacy PAE and long mode PAE are:
97 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
98 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
99 * usual meanings while 6 is ignored (AMD). This means that upon switching to
100 * legacy PAE mode we'll have to clear these bits and when going to long mode
101 * they must be set. This applies to both intermediate and shadow contexts,
102 * however we don't need to do it for the intermediate one since we're
103 * executing with CR0.WP at that time.
104 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
105 * a page aligned one is required.
106 *
107 *
108 * @section sec_pgm_handlers Access Handlers
109 *
110 * Placeholder.
111 *
112 *
113 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
114 *
115 * Placeholder.
116 *
117 *
118 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
119 *
120 * We currently implement three types of virtual access handlers: ALL, WRITE
121 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
122 *
123 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
124 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
125 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
126 * rest of this section is going to be about these handlers.
127 *
128 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
129 * how successfull this is gonna be...
130 *
131 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
132 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
133 * and create a new node that is inserted into the AVL tree (range key). Then
134 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
135 *
136 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
137 *
138 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
139 * via the current guest CR3 and update the physical page -> virtual handler
140 * translation. Needless to say, this doesn't exactly scale very well. If any changes
141 * are detected, it will flag a virtual bit update just like we did on registration.
142 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
143 *
144 * 2b. The virtual bit update process will iterate all the pages covered by all the
145 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
146 * virtual handlers on that page.
147 *
148 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
149 * we don't miss any alias mappings of the monitored pages.
150 *
151 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
152 *
153 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
154 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
155 * will call the handlers like in the next step. If the physical mapping has
156 * changed we will - some time in the future - perform a handler callback
157 * (optional) and update the physical -> virtual handler cache.
158 *
159 * 4. \#PF(,write) on a page in the range. This will cause the handler to
160 * be invoked.
161 *
162 * 5. The guest invalidates the page and changes the physical backing or
163 * unmaps it. This should cause the invalidation callback to be invoked
164 * (it might not yet be 100% perfect). Exactly what happens next... is
165 * this where we mess up and end up out of sync for a while?
166 *
167 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
168 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
169 * this handler to NONE and trigger a full PGM resync (basically the same
170 * as int step 1). Which means 2 is executed again.
171 *
172 *
173 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
174 *
175 * There is a bunch of things that needs to be done to make the virtual handlers
176 * work 100% correctly and work more efficiently.
177 *
178 * The first bit hasn't been implemented yet because it's going to slow the
179 * whole mess down even more, and besides it seems to be working reliably for
180 * our current uses. OTOH, some of the optimizations might end up more or less
181 * implementing the missing bits, so we'll see.
182 *
183 * On the optimization side, the first thing to do is to try avoid unnecessary
184 * cache flushing. Then try team up with the shadowing code to track changes
185 * in mappings by means of access to them (shadow in), updates to shadows pages,
186 * invlpg, and shadow PT discarding (perhaps).
187 *
188 * Some idea that have popped up for optimization for current and new features:
189 * - bitmap indicating where there are virtual handlers installed.
190 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
191 * - Further optimize this by min/max (needs min/max avl getters).
192 * - Shadow page table entry bit (if any left)?
193 *
194 */
195
196
197/** @page pg_pgmPhys PGMPhys - Physical Guest Memory Management.
198 *
199 *
200 * Objectives:
201 * - Guest RAM over-commitment using memory ballooning,
202 * zero pages and general page sharing.
203 * - Moving or mirroring a VM onto a different physical machine.
204 *
205 *
206 * @subsection subsec_pgmPhys_Definitions Definitions
207 *
208 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
209 * machinery assoicated with it.
210 *
211 *
212 *
213 *
214 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
215 *
216 * Initially we map *all* guest memory to the (per VM) zero page, which
217 * means that none of the read functions will cause pages to be allocated.
218 *
219 * Exception, access bit in page tables that have been shared. This must
220 * be handled, but we must also make sure PGMGst*Modify doesn't make
221 * unnecessary modifications.
222 *
223 * Allocation points:
224 * - PGMPhysWriteGCPhys and PGMPhysWrite.
225 * - Replacing a zero page mapping at \#PF.
226 * - Replacing a shared page mapping at \#PF.
227 * - ROM registration (currently MMR3RomRegister).
228 * - VM restore (pgmR3Load).
229 *
230 * For the first three it would make sense to keep a few pages handy
231 * until we've reached the max memory commitment for the VM.
232 *
233 * For the ROM registration, we know exactly how many pages we need
234 * and will request these from ring-0. For restore, we will save
235 * the number of non-zero pages in the saved state and allocate
236 * them up front. This would allow the ring-0 component to refuse
237 * the request if the isn't sufficient memory available for VM use.
238 *
239 * Btw. for both ROM and restore allocations we won't be requiring
240 * zeroed pages as they are going to be filled instantly.
241 *
242 *
243 * @subsection subsec_pgmPhys_FreePage Freeing a page
244 *
245 * There are a few points where a page can be freed:
246 * - After being replaced by the zero page.
247 * - After being replaced by a shared page.
248 * - After being ballooned by the guest additions.
249 * - At reset.
250 * - At restore.
251 *
252 * When freeing one or more pages they will be returned to the ring-0
253 * component and replaced by the zero page.
254 *
255 * The reasoning for clearing out all the pages on reset is that it will
256 * return us to the exact same state as on power on, and may thereby help
257 * us reduce the memory load on the system. Further it might have a
258 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
259 *
260 * On restore, as mention under the allocation topic, pages should be
261 * freed / allocated depending on how many is actually required by the
262 * new VM state. The simplest approach is to do like on reset, and free
263 * all non-ROM pages and then allocate what we need.
264 *
265 * A measure to prevent some fragmentation, would be to let each allocation
266 * chunk have some affinity towards the VM having allocated the most pages
267 * from it. Also, try make sure to allocate from allocation chunks that
268 * are almost full. Admittedly, both these measures might work counter to
269 * our intentions and its probably not worth putting a lot of effort,
270 * cpu time or memory into this.
271 *
272 *
273 * @subsection subsec_pgmPhys_SharePage Sharing a page
274 *
275 * The basic idea is that there there will be a idle priority kernel
276 * thread walking the non-shared VM pages hashing them and looking for
277 * pages with the same checksum. If such pages are found, it will compare
278 * them byte-by-byte to see if they actually are identical. If found to be
279 * identical it will allocate a shared page, copy the content, check that
280 * the page didn't change while doing this, and finally request both the
281 * VMs to use the shared page instead. If the page is all zeros (special
282 * checksum and byte-by-byte check) it will request the VM that owns it
283 * to replace it with the zero page.
284 *
285 * To make this efficient, we will have to make sure not to try share a page
286 * that will change its contents soon. This part requires the most work.
287 * A simple idea would be to request the VM to write monitor the page for
288 * a while to make sure it isn't modified any time soon. Also, it may
289 * make sense to skip pages that are being write monitored since this
290 * information is readily available to the thread if it works on the
291 * per-VM guest memory structures (presently called PGMRAMRANGE).
292 *
293 *
294 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
295 *
296 * The pages are organized in allocation chunks in ring-0, this is a necessity
297 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
298 * could easily work on a page-by-page basis if we liked. Whether this is possible
299 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
300 * become a problem as part of the idea here is that we wish to return memory to
301 * the host system.
302 *
303 * For instance, starting two VMs at the same time, they will both allocate the
304 * guest memory on-demand and if permitted their page allocations will be
305 * intermixed. Shut down one of the two VMs and it will be difficult to return
306 * any memory to the host system because the page allocation for the two VMs are
307 * mixed up in the same allocation chunks.
308 *
309 * To further complicate matters, when pages are freed because they have been
310 * ballooned or become shared/zero the whole idea is that the page is supposed
311 * to be reused by another VM or returned to the host system. This will cause
312 * allocation chunks to contain pages belonging to different VMs and prevent
313 * returning memory to the host when one of those VM shuts down.
314 *
315 * The only way to really deal with this problem is to move pages. This can
316 * either be done at VM shutdown and or by the idle priority worker thread
317 * that will be responsible for finding sharable/zero pages. The mechanisms
318 * involved for coercing a VM to move a page (or to do it for it) will be
319 * the same as when telling it to share/zero a page.
320 *
321 *
322 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
323 *
324 * There's a difficult balance between keeping the per-page tracking structures
325 * (global and guest page) easy to use and keeping them from eating too much
326 * memory. We have limited virtual memory resources available when operating in
327 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
328 * tracking structures will be attemted designed such that we can deal with up
329 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
330 *
331 *
332 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
333 *
334 * @see pg_GMM
335 *
336 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
337 *
338 * Fixed info is the physical address of the page (HCPhys) and the page id
339 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
340 * Today we've restricting ourselves to 40(-12) bits because this is the current
341 * restrictions of all AMD64 implementations (I think Barcelona will up this
342 * to 48(-12) bits, not that it really matters) and I needed the bits for
343 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
344 * decent range for the page id: 2^(28+12) = 1024TB.
345 *
346 * In additions to these, we'll have to keep maintaining the page flags as we
347 * currently do. Although it wouldn't harm to optimize these quite a bit, like
348 * for instance the ROM shouldn't depend on having a write handler installed
349 * in order for it to become read-only. A RO/RW bit should be considered so
350 * that the page syncing code doesn't have to mess about checking multiple
351 * flag combinations (ROM || RW handler || write monitored) in order to
352 * figure out how to setup a shadow PTE. But this of course, is second
353 * priority at present. Current this requires 12 bits, but could probably
354 * be optimized to ~8.
355 *
356 * Then there's the 24 bits used to track which shadow page tables are
357 * currently mapping a page for the purpose of speeding up physical
358 * access handlers, and thereby the page pool cache. More bit for this
359 * purpose wouldn't hurt IIRC.
360 *
361 * Then there is a new bit in which we need to record what kind of page
362 * this is, shared, zero, normal or write-monitored-normal. This'll
363 * require 2 bits. One bit might be needed for indicating whether a
364 * write monitored page has been written to. And yet another one or
365 * two for tracking migration status. 3-4 bits total then.
366 *
367 * Whatever is left will can be used to record the sharabilitiy of a
368 * page. The page checksum will not be stored in the per-VM table as
369 * the idle thread will not be permitted to do modifications to it.
370 * It will instead have to keep its own working set of potentially
371 * shareable pages and their check sums and stuff.
372 *
373 * For the present we'll keep the current packing of the
374 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
375 * we'll have to change it to a struct with a total of 128-bits at
376 * our disposal.
377 *
378 * The initial layout will be like this:
379 * @verbatim
380 RTHCPHYS HCPhys; The current stuff.
381 63:40 Current shadow PT tracking stuff.
382 39:12 The physical page frame number.
383 11:0 The current flags.
384 uint32_t u28PageId : 28; The page id.
385 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
386 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
387 uint32_t u1Reserved : 1; Reserved for later.
388 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
389 @endverbatim
390 *
391 * The final layout will be something like this:
392 * @verbatim
393 RTHCPHYS HCPhys; The current stuff.
394 63:48 High page id (12+).
395 47:12 The physical page frame number.
396 11:0 Low page id.
397 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
398 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
399 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
400 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
401 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
402 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
403 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
404 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
405 @endverbatim
406 *
407 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
408 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
409 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
410 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
411 *
412 * A couple of cost examples for the total cost per-VM + kernel.
413 * 32-bit Windows and 32-bit linux:
414 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
415 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
416 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
417 * 64-bit Windows and 64-bit linux:
418 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
419 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
420 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
421 *
422 * UPDATE - 2007-09-27:
423 * Will need a ballooned flag/state too because we cannot
424 * trust the guest 100% and reporting the same page as ballooned more
425 * than once will put the GMM off balance.
426 *
427 *
428 * @subsection subsec_pgmPhys_Serializing Serializing Access
429 *
430 * Initially, we'll try a simple scheme:
431 *
432 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
433 * by the EMT thread of that VM while in the pgm critsect.
434 * - Other threads in the VM process that needs to make reliable use of
435 * the per-VM RAM tracking structures will enter the critsect.
436 * - No process external thread or kernel thread will ever try enter
437 * the pgm critical section, as that just won't work.
438 * - The idle thread (and similar threads) doesn't not need 100% reliable
439 * data when performing it tasks as the EMT thread will be the one to
440 * do the actual changes later anyway. So, as long as it only accesses
441 * the main ram range, it can do so by somehow preventing the VM from
442 * being destroyed while it works on it...
443 *
444 * - The over-commitment management, including the allocating/freeing
445 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
446 * more mundane mutex implementation is broken on Linux).
447 * - A separeate mutex is protecting the set of allocation chunks so
448 * that pages can be shared or/and freed up while some other VM is
449 * allocating more chunks. This mutex can be take from under the other
450 * one, but not the otherway around.
451 *
452 *
453 * @subsection subsec_pgmPhys_Request VM Request interface
454 *
455 * When in ring-0 it will become necessary to send requests to a VM so it can
456 * for instance move a page while defragmenting during VM destroy. The idle
457 * thread will make use of this interface to request VMs to setup shared
458 * pages and to perform write monitoring of pages.
459 *
460 * I would propose an interface similar to the current VMReq interface, similar
461 * in that it doesn't require locking and that the one sending the request may
462 * wait for completion if it wishes to. This shouldn't be very difficult to
463 * realize.
464 *
465 * The requests themselves are also pretty simple. They are basically:
466 * -# Check that some precondition is still true.
467 * -# Do the update.
468 * -# Update all shadow page tables involved with the page.
469 *
470 * The 3rd step is identical to what we're already doing when updating a
471 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
472 *
473 *
474 *
475 * @section sec_pgmPhys_MappingCaches Mapping Caches
476 *
477 * In order to be able to map in and out memory and to be able to support
478 * guest with more RAM than we've got virtual address space, we'll employing
479 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
480 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
481 * memory context for the HWACCM execution.
482 *
483 *
484 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
485 *
486 * We've considered implementing the ring-3 mapping cache page based but found
487 * that this was bother some when one had to take into account TLBs+SMP and
488 * portability (missing the necessary APIs on several platforms). There were
489 * also some performance concerns with this approach which hadn't quite been
490 * worked out.
491 *
492 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
493 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
494 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
495 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
496 * costly than a single page, although how much more costly is uncertain. We'll
497 * try address this by using a very big cache, preferably bigger than the actual
498 * VM RAM size if possible. The current VM RAM sizes should give some idea for
499 * 32-bit boxes, while on 64-bit we can probably get away with employing an
500 * unlimited cache.
501 *
502 * The cache have to parts, as already indicated, the ring-3 side and the
503 * ring-0 side.
504 *
505 * The ring-0 will be tied to the page allocator since it will operate on the
506 * memory objects it contains. It will therefore require the first ring-0 mutex
507 * discussed in @ref subsec_pgmPhys_Serializing. We
508 * some double house keeping wrt to who has mapped what I think, since both
509 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
510 *
511 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
512 * require anyone that desires to do changes to the mapping cache to do that
513 * from within this critsect. Alternatively, we could employ a separate critsect
514 * for serializing changes to the mapping cache as this would reduce potential
515 * contention with other threads accessing mappings unrelated to the changes
516 * that are in process. We can see about this later, contention will show
517 * up in the statistics anyway, so it'll be simple to tell.
518 *
519 * The organization of the ring-3 part will be very much like how the allocation
520 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
521 * having to walk the tree all the time, we'll have a couple of lookaside entries
522 * like in we do for I/O ports and MMIO in IOM.
523 *
524 * The simplified flow of a PGMPhysRead/Write function:
525 * -# Enter the PGM critsect.
526 * -# Lookup GCPhys in the ram ranges and get the Page ID.
527 * -# Calc the Allocation Chunk ID from the Page ID.
528 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
529 * If not found in cache:
530 * -# Call ring-0 and request it to be mapped and supply
531 * a chunk to be unmapped if the cache is maxed out already.
532 * -# Insert the new mapping into the AVL tree (id + R3 address).
533 * -# Update the relevant lookaside entry and return the mapping address.
534 * -# Do the read/write according to monitoring flags and everything.
535 * -# Leave the critsect.
536 *
537 *
538 * @section sec_pgmPhys_Fallback Fallback
539 *
540 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
541 * API and thus require a fallback.
542 *
543 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
544 * will return to the ring-3 caller (and later ring-0) and asking it to seed
545 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
546 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
547 * "SeededAllocPages" call to ring-0.
548 *
549 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
550 * all page sharing (zero page detection will continue). It will also force
551 * all allocations to come from the VM which seeded the page. Both these
552 * measures are taken to make sure that there will never be any need for
553 * mapping anything into ring-3 - everything will be mapped already.
554 *
555 * Whether we'll continue to use the current MM locked memory management
556 * for this I don't quite know (I'd prefer not to and just ditch that all
557 * togther), we'll see what's simplest to do.
558 *
559 *
560 *
561 * @section sec_pgmPhys_Changes Changes
562 *
563 * Breakdown of the changes involved?
564 */
565
566
567/** Saved state data unit version. */
568#define PGM_SAVED_STATE_VERSION 6
569
570/*******************************************************************************
571* Header Files *
572*******************************************************************************/
573#define LOG_GROUP LOG_GROUP_PGM
574#include <VBox/dbgf.h>
575#include <VBox/pgm.h>
576#include <VBox/cpum.h>
577#include <VBox/iom.h>
578#include <VBox/sup.h>
579#include <VBox/mm.h>
580#include <VBox/em.h>
581#include <VBox/stam.h>
582#include <VBox/rem.h>
583#include <VBox/dbgf.h>
584#include <VBox/rem.h>
585#include <VBox/selm.h>
586#include <VBox/ssm.h>
587#include "PGMInternal.h"
588#include <VBox/vm.h>
589#include <VBox/dbg.h>
590#include <VBox/hwaccm.h>
591
592#include <iprt/assert.h>
593#include <iprt/alloc.h>
594#include <iprt/asm.h>
595#include <iprt/thread.h>
596#include <iprt/string.h>
597#include <VBox/param.h>
598#include <VBox/err.h>
599
600
601
602/*******************************************************************************
603* Internal Functions *
604*******************************************************************************/
605static int pgmR3InitPaging(PVM pVM);
606static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
607static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
608static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
609static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
610static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
611static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
612#ifdef VBOX_STRICT
613static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
614#endif
615static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
616static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
617static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
618static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
619static PGMMODE pgmR3CalcShadowMode(PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
620
621#ifdef VBOX_WITH_STATISTICS
622static void pgmR3InitStats(PVM pVM);
623#endif
624
625#ifdef VBOX_WITH_DEBUGGER
626/** @todo all but the two last commands must be converted to 'info'. */
627static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
628static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
629static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
630static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
631#endif
632
633
634/*******************************************************************************
635* Global Variables *
636*******************************************************************************/
637#ifdef VBOX_WITH_DEBUGGER
638/** Command descriptors. */
639static const DBGCCMD g_aCmds[] =
640{
641 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
642 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
643 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
644 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
645 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
646};
647#endif
648
649
650
651
652#if 1/// @todo ndef RT_ARCH_AMD64
653/*
654 * Shadow - 32-bit mode
655 */
656#define PGM_SHW_TYPE PGM_TYPE_32BIT
657#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
658#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_32BIT_STR(name)
659#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
660#include "PGMShw.h"
661
662/* Guest - real mode */
663#define PGM_GST_TYPE PGM_TYPE_REAL
664#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
665#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
666#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
667#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
668#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_REAL_STR(name)
669#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
670#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
671#include "PGMGst.h"
672#include "PGMBth.h"
673#undef BTH_PGMPOOLKIND_PT_FOR_PT
674#undef PGM_BTH_NAME
675#undef PGM_BTH_NAME_GC_STR
676#undef PGM_BTH_NAME_R0_STR
677#undef PGM_GST_TYPE
678#undef PGM_GST_NAME
679#undef PGM_GST_NAME_GC_STR
680#undef PGM_GST_NAME_R0_STR
681
682/* Guest - protected mode */
683#define PGM_GST_TYPE PGM_TYPE_PROT
684#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
685#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
686#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
687#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
688#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_PROT_STR(name)
689#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
690#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
691#include "PGMGst.h"
692#include "PGMBth.h"
693#undef BTH_PGMPOOLKIND_PT_FOR_PT
694#undef PGM_BTH_NAME
695#undef PGM_BTH_NAME_GC_STR
696#undef PGM_BTH_NAME_R0_STR
697#undef PGM_GST_TYPE
698#undef PGM_GST_NAME
699#undef PGM_GST_NAME_GC_STR
700#undef PGM_GST_NAME_R0_STR
701
702/* Guest - 32-bit mode */
703#define PGM_GST_TYPE PGM_TYPE_32BIT
704#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
705#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
706#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
707#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
708#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_32BIT_STR(name)
709#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
710#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
711#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
712#include "PGMGst.h"
713#include "PGMBth.h"
714#undef BTH_PGMPOOLKIND_PT_FOR_BIG
715#undef BTH_PGMPOOLKIND_PT_FOR_PT
716#undef PGM_BTH_NAME
717#undef PGM_BTH_NAME_GC_STR
718#undef PGM_BTH_NAME_R0_STR
719#undef PGM_GST_TYPE
720#undef PGM_GST_NAME
721#undef PGM_GST_NAME_GC_STR
722#undef PGM_GST_NAME_R0_STR
723
724#undef PGM_SHW_TYPE
725#undef PGM_SHW_NAME
726#undef PGM_SHW_NAME_GC_STR
727#undef PGM_SHW_NAME_R0_STR
728#endif /* !RT_ARCH_AMD64 */
729
730
731/*
732 * Shadow - PAE mode
733 */
734#define PGM_SHW_TYPE PGM_TYPE_PAE
735#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
736#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_PAE_STR(name)
737#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
738#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
739#include "PGMShw.h"
740
741/* Guest - real mode */
742#define PGM_GST_TYPE PGM_TYPE_REAL
743#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
744#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
745#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
746#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
747#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_REAL_STR(name)
748#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
749#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
750#include "PGMBth.h"
751#undef BTH_PGMPOOLKIND_PT_FOR_PT
752#undef PGM_BTH_NAME
753#undef PGM_BTH_NAME_GC_STR
754#undef PGM_BTH_NAME_R0_STR
755#undef PGM_GST_TYPE
756#undef PGM_GST_NAME
757#undef PGM_GST_NAME_GC_STR
758#undef PGM_GST_NAME_R0_STR
759
760/* Guest - protected mode */
761#define PGM_GST_TYPE PGM_TYPE_PROT
762#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
763#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
764#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
765#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
766#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_PROT_STR(name)
767#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
768#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
769#include "PGMBth.h"
770#undef BTH_PGMPOOLKIND_PT_FOR_PT
771#undef PGM_BTH_NAME
772#undef PGM_BTH_NAME_GC_STR
773#undef PGM_BTH_NAME_R0_STR
774#undef PGM_GST_TYPE
775#undef PGM_GST_NAME
776#undef PGM_GST_NAME_GC_STR
777#undef PGM_GST_NAME_R0_STR
778
779/* Guest - 32-bit mode */
780#define PGM_GST_TYPE PGM_TYPE_32BIT
781#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
782#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
783#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
784#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
785#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_32BIT_STR(name)
786#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
787#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
788#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
789#include "PGMBth.h"
790#undef BTH_PGMPOOLKIND_PT_FOR_BIG
791#undef BTH_PGMPOOLKIND_PT_FOR_PT
792#undef PGM_BTH_NAME
793#undef PGM_BTH_NAME_GC_STR
794#undef PGM_BTH_NAME_R0_STR
795#undef PGM_GST_TYPE
796#undef PGM_GST_NAME
797#undef PGM_GST_NAME_GC_STR
798#undef PGM_GST_NAME_R0_STR
799
800/* Guest - PAE mode */
801#define PGM_GST_TYPE PGM_TYPE_PAE
802#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
803#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PAE_STR(name)
804#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
805#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
806#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_PAE_STR(name)
807#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
808#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
809#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
810#include "PGMGst.h"
811#include "PGMBth.h"
812#undef BTH_PGMPOOLKIND_PT_FOR_BIG
813#undef BTH_PGMPOOLKIND_PT_FOR_PT
814#undef PGM_BTH_NAME
815#undef PGM_BTH_NAME_GC_STR
816#undef PGM_BTH_NAME_R0_STR
817#undef PGM_GST_TYPE
818#undef PGM_GST_NAME
819#undef PGM_GST_NAME_GC_STR
820#undef PGM_GST_NAME_R0_STR
821
822#undef PGM_SHW_TYPE
823#undef PGM_SHW_NAME
824#undef PGM_SHW_NAME_GC_STR
825#undef PGM_SHW_NAME_R0_STR
826
827
828/*
829 * Shadow - AMD64 mode
830 */
831#define PGM_SHW_TYPE PGM_TYPE_AMD64
832#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
833#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_AMD64_STR(name)
834#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
835#include "PGMShw.h"
836
837/* Guest - AMD64 mode */
838#define PGM_GST_TYPE PGM_TYPE_AMD64
839#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
840#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_AMD64_STR(name)
841#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
842#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
843#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_AMD64_AMD64_STR(name)
844#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
845#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
846#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
847#include "PGMGst.h"
848#include "PGMBth.h"
849#undef BTH_PGMPOOLKIND_PT_FOR_BIG
850#undef BTH_PGMPOOLKIND_PT_FOR_PT
851#undef PGM_BTH_NAME
852#undef PGM_BTH_NAME_GC_STR
853#undef PGM_BTH_NAME_R0_STR
854#undef PGM_GST_TYPE
855#undef PGM_GST_NAME
856#undef PGM_GST_NAME_GC_STR
857#undef PGM_GST_NAME_R0_STR
858
859#undef PGM_SHW_TYPE
860#undef PGM_SHW_NAME
861#undef PGM_SHW_NAME_GC_STR
862#undef PGM_SHW_NAME_R0_STR
863
864
865/**
866 * Initiates the paging of VM.
867 *
868 * @returns VBox status code.
869 * @param pVM Pointer to VM structure.
870 */
871PGMR3DECL(int) PGMR3Init(PVM pVM)
872{
873 LogFlow(("PGMR3Init:\n"));
874
875 /*
876 * Assert alignment and sizes.
877 */
878 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
879
880 /*
881 * Init the structure.
882 */
883 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
884 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
885 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
886 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
887 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
888 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
889 pVM->pgm.s.fA20Enabled = true;
890 pVM->pgm.s.pGstPaePDPTRHC = NULL;
891 pVM->pgm.s.pGstPaePDPTRGC = 0;
892 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apGstPaePDsHC); i++)
893 {
894 pVM->pgm.s.apGstPaePDsHC[i] = NULL;
895 pVM->pgm.s.apGstPaePDsGC[i] = 0;
896 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
897 }
898
899#ifdef VBOX_STRICT
900 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
901#endif
902
903 /*
904 * Get the configured RAM size - to estimate saved state size.
905 */
906 uint64_t cbRam;
907 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
908 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
909 cbRam = pVM->pgm.s.cbRamSize = 0;
910 else if (VBOX_SUCCESS(rc))
911 {
912 if (cbRam < PAGE_SIZE)
913 cbRam = 0;
914 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
915 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
916 }
917 else
918 {
919 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Vrc.\n", rc));
920 return rc;
921 }
922
923 /*
924 * Register saved state data unit.
925 */
926 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
927 NULL, pgmR3Save, NULL,
928 NULL, pgmR3Load, NULL);
929 if (VBOX_FAILURE(rc))
930 return rc;
931
932 /*
933 * Initialize the PGM critical section and flush the phys TLBs
934 */
935 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
936 AssertRCReturn(rc, rc);
937
938 PGMR3PhysChunkInvalidateTLB(pVM);
939 PGMPhysInvalidatePageR3MapTLB(pVM);
940 PGMPhysInvalidatePageR0MapTLB(pVM);
941 PGMPhysInvalidatePageGCMapTLB(pVM);
942
943 /*
944 * Trees
945 */
946 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesHC);
947 if (VBOX_SUCCESS(rc))
948 {
949 pVM->pgm.s.pTreesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pTreesHC);
950
951 /*
952 * Alocate the zero page.
953 */
954 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
955 }
956 if (VBOX_SUCCESS(rc))
957 {
958 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToGC(pVM, pVM->pgm.s.pvZeroPgR3);
959 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
960 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
961 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
962 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
963
964 /*
965 * Init the paging.
966 */
967 rc = pgmR3InitPaging(pVM);
968 }
969 if (VBOX_SUCCESS(rc))
970 {
971 /*
972 * Init the page pool.
973 */
974 rc = pgmR3PoolInit(pVM);
975 }
976 if (VBOX_SUCCESS(rc))
977 {
978 /*
979 * Info & statistics
980 */
981 DBGFR3InfoRegisterInternal(pVM, "mode",
982 "Shows the current paging mode. "
983 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
984 pgmR3InfoMode);
985 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
986 "Dumps all the entries in the top level paging table. No arguments.",
987 pgmR3InfoCr3);
988 DBGFR3InfoRegisterInternal(pVM, "phys",
989 "Dumps all the physical address ranges. No arguments.",
990 pgmR3PhysInfo);
991 DBGFR3InfoRegisterInternal(pVM, "handlers",
992 "Dumps physical, virtual and hyper virtual handlers. "
993 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
994 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
995 pgmR3InfoHandlers);
996 DBGFR3InfoRegisterInternal(pVM, "mappings",
997 "Dumps guest mappings.",
998 pgmR3MapInfo);
999
1000 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1001#ifdef VBOX_WITH_STATISTICS
1002 pgmR3InitStats(pVM);
1003#endif
1004#ifdef VBOX_WITH_DEBUGGER
1005 /*
1006 * Debugger commands.
1007 */
1008 static bool fRegisteredCmds = false;
1009 if (!fRegisteredCmds)
1010 {
1011 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
1012 if (VBOX_SUCCESS(rc))
1013 fRegisteredCmds = true;
1014 }
1015#endif
1016 return VINF_SUCCESS;
1017 }
1018
1019 /* Almost no cleanup necessary, MM frees all memory. */
1020 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1021
1022 return rc;
1023}
1024
1025
1026/**
1027 * Init paging.
1028 *
1029 * Since we need to check what mode the host is operating in before we can choose
1030 * the right paging functions for the host we have to delay this until R0 has
1031 * been initialized.
1032 *
1033 * @returns VBox status code.
1034 * @param pVM VM handle.
1035 */
1036static int pgmR3InitPaging(PVM pVM)
1037{
1038 /*
1039 * Force a recalculation of modes and switcher so everyone gets notified.
1040 */
1041 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1042 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1043 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1044
1045 /*
1046 * Allocate static mapping space for whatever the cr3 register
1047 * points to and in the case of PAE mode to the 4 PDs.
1048 */
1049 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1050 if (VBOX_FAILURE(rc))
1051 {
1052 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Vrc\n", rc));
1053 return rc;
1054 }
1055 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1056
1057 /*
1058 * Allocate pages for the three possible intermediate contexts
1059 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1060 * for the sake of simplicity. The AMD64 uses the PAE for the
1061 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1062 *
1063 * We assume that two page tables will be enought for the core code
1064 * mappings (HC virtual and identity).
1065 */
1066 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1067 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1068 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1069 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1070 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1071 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1072 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1073 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1074 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1075 pVM->pgm.s.pInterPaePDPTR = (PX86PDPTR)MMR3PageAllocLow(pVM);
1076 pVM->pgm.s.pInterPaePDPTR64 = (PX86PDPTR)MMR3PageAllocLow(pVM);
1077 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1078 if ( !pVM->pgm.s.pInterPD
1079 || !pVM->pgm.s.apInterPTs[0]
1080 || !pVM->pgm.s.apInterPTs[1]
1081 || !pVM->pgm.s.apInterPaePTs[0]
1082 || !pVM->pgm.s.apInterPaePTs[1]
1083 || !pVM->pgm.s.apInterPaePDs[0]
1084 || !pVM->pgm.s.apInterPaePDs[1]
1085 || !pVM->pgm.s.apInterPaePDs[2]
1086 || !pVM->pgm.s.apInterPaePDs[3]
1087 || !pVM->pgm.s.pInterPaePDPTR
1088 || !pVM->pgm.s.pInterPaePDPTR64
1089 || !pVM->pgm.s.pInterPaePML4)
1090 {
1091 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1092 return VERR_NO_PAGE_MEMORY;
1093 }
1094
1095 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1096 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1097 pVM->pgm.s.HCPhysInterPaePDPTR = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPTR);
1098 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPTR != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPTR & PAGE_OFFSET_MASK));
1099 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1100 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK));
1101
1102 /*
1103 * Initialize the pages, setting up the PML4 and PDPTR for repetitive 4GB action.
1104 */
1105 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1106 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1107 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1108
1109 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1110 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1111
1112 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPTR);
1113 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1114 {
1115 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1116 pVM->pgm.s.pInterPaePDPTR->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1117 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1118 }
1119
1120 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.pInterPaePDPTR64->a); i++)
1121 {
1122 const unsigned iPD = i % ELEMENTS(pVM->pgm.s.apInterPaePDs);
1123 pVM->pgm.s.pInterPaePDPTR64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1124 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1125 }
1126
1127 RTHCPHYS HCPhysInterPaePDPTR64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPTR64);
1128 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1129 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1130 | HCPhysInterPaePDPTR64;
1131
1132 /*
1133 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1134 * We allocate pages for all three posibilities to in order to simplify mappings and
1135 * avoid resource failure during mode switches. So, we need to cover all levels of the
1136 * of the first 4GB down to PD level.
1137 * As with the intermediate context, AMD64 uses the PAE PDPTR and PDs.
1138 */
1139 pVM->pgm.s.pHC32BitPD = (PX86PD)MMR3PageAllocLow(pVM);
1140 pVM->pgm.s.apHCPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1141 pVM->pgm.s.apHCPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1142 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[1]);
1143 pVM->pgm.s.apHCPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1144 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[2]);
1145 pVM->pgm.s.apHCPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1146 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[3]);
1147 pVM->pgm.s.pHCPaePDPTR = (PX86PDPTR)MMR3PageAllocLow(pVM);
1148 pVM->pgm.s.pHCPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1149 if ( !pVM->pgm.s.pHC32BitPD
1150 || !pVM->pgm.s.apHCPaePDs[0]
1151 || !pVM->pgm.s.apHCPaePDs[1]
1152 || !pVM->pgm.s.apHCPaePDs[2]
1153 || !pVM->pgm.s.apHCPaePDs[3]
1154 || !pVM->pgm.s.pHCPaePDPTR
1155 || !pVM->pgm.s.pHCPaePML4)
1156 {
1157 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1158 return VERR_NO_PAGE_MEMORY;
1159 }
1160
1161 /* get physical addresses. */
1162 pVM->pgm.s.HCPhys32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pHC32BitPD);
1163 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhys32BitPD) == pVM->pgm.s.pHC32BitPD);
1164 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[0]);
1165 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[1]);
1166 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[2]);
1167 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[3]);
1168 pVM->pgm.s.HCPhysPaePDPTR = MMPage2Phys(pVM, pVM->pgm.s.pHCPaePDPTR);
1169 pVM->pgm.s.HCPhysPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pHCPaePML4);
1170
1171 /*
1172 * Initialize the pages, setting up the PML4 and PDPTR for action below 4GB.
1173 */
1174 ASMMemZero32(pVM->pgm.s.pHC32BitPD, PAGE_SIZE);
1175
1176 ASMMemZero32(pVM->pgm.s.pHCPaePDPTR, PAGE_SIZE);
1177 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1178 {
1179 ASMMemZero32(pVM->pgm.s.apHCPaePDs[i], PAGE_SIZE);
1180 pVM->pgm.s.pHCPaePDPTR->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1181 /* The flags will be corrected when entering and leaving long mode. */
1182 }
1183
1184 ASMMemZero32(pVM->pgm.s.pHCPaePML4, PAGE_SIZE);
1185 pVM->pgm.s.pHCPaePML4->a[0].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_A
1186 | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.HCPhysPaePDPTR;
1187
1188 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhys32BitPD);
1189
1190 /*
1191 * Initialize paging workers and mode from current host mode
1192 * and the guest running in real mode.
1193 */
1194 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1195 switch (pVM->pgm.s.enmHostMode)
1196 {
1197 case SUPPAGINGMODE_32_BIT:
1198 case SUPPAGINGMODE_32_BIT_GLOBAL:
1199 case SUPPAGINGMODE_PAE:
1200 case SUPPAGINGMODE_PAE_GLOBAL:
1201 case SUPPAGINGMODE_PAE_NX:
1202 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1203 break;
1204
1205 case SUPPAGINGMODE_AMD64:
1206 case SUPPAGINGMODE_AMD64_GLOBAL:
1207 case SUPPAGINGMODE_AMD64_NX:
1208 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1209#ifndef VBOX_WITH_HYBIRD_32BIT_KERNEL
1210 if (ARCH_BITS != 64)
1211 {
1212 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1213 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1214 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1215 }
1216#endif
1217 break;
1218 default:
1219 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1220 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1221 }
1222 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1223 if (VBOX_SUCCESS(rc))
1224 rc = pgmR3ChangeMode(pVM, PGMMODE_REAL);
1225 if (VBOX_SUCCESS(rc))
1226 {
1227 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1228#if HC_ARCH_BITS == 64
1229LogRel(("Debug: HCPhys32BitPD=%VHp aHCPhysPaePDs={%VHp,%VHp,%VHp,%VHp} HCPhysPaePDPTR=%VHp HCPhysPaePML4=%VHp\n",
1230 pVM->pgm.s.HCPhys32BitPD, pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1231 pVM->pgm.s.HCPhysPaePDPTR, pVM->pgm.s.HCPhysPaePML4));
1232LogRel(("Debug: HCPhysInterPD=%VHp HCPhysInterPaePDPTR=%VHp HCPhysInterPaePML4=%VHp\n",
1233 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPTR, pVM->pgm.s.HCPhysInterPaePML4));
1234LogRel(("Debug: apInterPTs={%VHp,%VHp} apInterPaePTs={%VHp,%VHp} apInterPaePDs={%VHp,%VHp,%VHp,%VHp} pInterPaePDPTR64=%VHp\n",
1235 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1236 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1237 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1238 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPTR64)));
1239#endif
1240
1241 return VINF_SUCCESS;
1242 }
1243
1244 LogFlow(("pgmR3InitPaging: returns %Vrc\n", rc));
1245 return rc;
1246}
1247
1248
1249#ifdef VBOX_WITH_STATISTICS
1250/**
1251 * Init statistics
1252 */
1253static void pgmR3InitStats(PVM pVM)
1254{
1255 PPGM pPGM = &pVM->pgm.s;
1256 STAM_REG(pVM, &pPGM->StatGCInvalidatePage, STAMTYPE_PROFILE, "/PGM/GC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMGCInvalidatePage() profiling.");
1257 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a 4KB page.");
1258 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a 4MB page.");
1259 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() skipped a 4MB page.");
1260 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a page directory containing mappings (no conflict).");
1261 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a not accessed page directory.");
1262 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a not present page directory.");
1263 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for an out of sync page directory.");
1264 STAM_REG(pVM, &pPGM->StatGCInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1265 STAM_REG(pVM, &pPGM->StatGCSyncPT, STAMTYPE_PROFILE, "/PGM/GC/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGCSyncPT() body.");
1266 STAM_REG(pVM, &pPGM->StatGCAccessedPage, STAMTYPE_COUNTER, "/PGM/GC/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1267 STAM_REG(pVM, &pPGM->StatGCDirtyPage, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1268 STAM_REG(pVM, &pPGM->StatGCDirtyPageBig, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1269 STAM_REG(pVM, &pPGM->StatGCDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1270 STAM_REG(pVM, &pPGM->StatGCDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1271 STAM_REG(pVM, &pPGM->StatGCDirtiedPage, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1272 STAM_REG(pVM, &pPGM->StatGCDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1273 STAM_REG(pVM, &pPGM->StatGCPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1274 STAM_REG(pVM, &pPGM->StatGCDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/GC/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrackDirtyBit() body.");
1275 STAM_REG(pVM, &pPGM->StatGCSyncPTAlloc, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Alloc", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() needed to allocate page tables.");
1276 STAM_REG(pVM, &pPGM->StatGCSyncPTConflict, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Conflicts", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() detected conflicts.");
1277 STAM_REG(pVM, &pPGM->StatGCSyncPTFailed, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() failed.");
1278
1279 STAM_REG(pVM, &pPGM->StatGCTrap0e, STAMTYPE_PROFILE, "/PGM/GC/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGCTrap0eHandler() body.");
1280 STAM_REG(pVM, &pPGM->StatCheckPageFault, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1281 STAM_REG(pVM, &pPGM->StatLazySyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1282 STAM_REG(pVM, &pPGM->StatMapping, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1283 STAM_REG(pVM, &pPGM->StatOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1284 STAM_REG(pVM, &pPGM->StatHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1285 STAM_REG(pVM, &pPGM->StatEIPHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/EIPHandlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking eip handlers.");
1286 STAM_REG(pVM, &pPGM->StatTrap0eCSAM, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1287 STAM_REG(pVM, &pPGM->StatTrap0eDirtyAndAccessedBits, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1288 STAM_REG(pVM, &pPGM->StatTrap0eGuestTrap, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1289 STAM_REG(pVM, &pPGM->StatTrap0eHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1290 STAM_REG(pVM, &pPGM->StatTrap0eHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerVirtual",STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1291 STAM_REG(pVM, &pPGM->StatTrap0eHndUnhandled, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1292 STAM_REG(pVM, &pPGM->StatTrap0eMisc, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1293 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1294 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1295 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1296 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncObsHnd, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1297 STAM_REG(pVM, &pPGM->StatTrap0eSyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1298
1299 STAM_REG(pVM, &pPGM->StatTrap0eMapHandler, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1300 STAM_REG(pVM, &pPGM->StatHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1301 STAM_REG(pVM, &pPGM->StatHandlersPhysical, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1302 STAM_REG(pVM, &pPGM->StatHandlersVirtual, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1303 STAM_REG(pVM, &pPGM->StatHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1304 STAM_REG(pVM, &pPGM->StatHandlersVirtualUnmarked, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualUnmarked", STAMUNIT_OCCURENCES,"Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1305 STAM_REG(pVM, &pPGM->StatHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1306
1307 STAM_REG(pVM, &pPGM->StatGCTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1308 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1309 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1310 STAM_REG(pVM, &pPGM->StatGCTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1311 STAM_REG(pVM, &pPGM->StatGCTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1312 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1313 STAM_REG(pVM, &pPGM->StatGCTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1314
1315 STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1316 STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1317 STAM_REG(pVM, &pPGM->StatGCTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1318 STAM_REG(pVM, &pPGM->StatGCTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1319 STAM_REG(pVM, &pPGM->StatGCTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1320 STAM_REG(pVM, &pPGM->StatGCTrap0eUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of guest real page faults.");
1321 STAM_REG(pVM, &pPGM->StatGCTrap0eMap, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Map", STAMUNIT_OCCURENCES, "Number of guest page faults due to map accesses.");
1322
1323
1324 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1325 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1326 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1327
1328 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1329 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1330
1331 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1332 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1333
1334 STAM_REG(pVM, &pPGM->StatDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1335 STAM_REG(pVM, &pPGM->StatDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1336
1337 STAM_REG(pVM, &pPGM->StatHCDetectedConflicts, STAMTYPE_COUNTER, "/PGM/HC/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1338 STAM_REG(pVM, &pPGM->StatHCGuestPDWrite, STAMTYPE_COUNTER, "/PGM/HC/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1339 STAM_REG(pVM, &pPGM->StatHCGuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/HC/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1340
1341 STAM_REG(pVM, &pPGM->StatHCInvalidatePage, STAMTYPE_PROFILE, "/PGM/HC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMHCInvalidatePage() profiling.");
1342 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a 4KB page.");
1343 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a 4MB page.");
1344 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() skipped a 4MB page.");
1345 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a page directory containing mappings (no conflict).");
1346 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a not accessed page directory.");
1347 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a not present page directory.");
1348 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for an out of sync page directory.");
1349 STAM_REG(pVM, &pPGM->StatHCInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1350 STAM_REG(pVM, &pPGM->StatHCResolveConflict, STAMTYPE_PROFILE, "/PGM/HC/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1351 STAM_REG(pVM, &pPGM->StatHCPrefetch, STAMTYPE_PROFILE, "/PGM/HC/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMR3PrefetchPage profiling.");
1352
1353 STAM_REG(pVM, &pPGM->StatHCSyncPT, STAMTYPE_PROFILE, "/PGM/HC/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMR3SyncPT() body.");
1354 STAM_REG(pVM, &pPGM->StatHCAccessedPage, STAMTYPE_COUNTER, "/PGM/HC/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1355 STAM_REG(pVM, &pPGM->StatHCDirtyPage, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1356 STAM_REG(pVM, &pPGM->StatHCDirtyPageBig, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1357 STAM_REG(pVM, &pPGM->StatHCDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1358 STAM_REG(pVM, &pPGM->StatHCDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1359 STAM_REG(pVM, &pPGM->StatHCDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/HC/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrackDirtyBit() body.");
1360
1361 STAM_REG(pVM, &pPGM->StatGCSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1362 STAM_REG(pVM, &pPGM->StatGCSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1363 STAM_REG(pVM, &pPGM->StatHCSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/HC/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1364 STAM_REG(pVM, &pPGM->StatHCSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/HC/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1365
1366 STAM_REG(pVM, &pPGM->StatFlushTLB, STAMTYPE_PROFILE, "/PGM/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1367 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1368 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1369 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1370 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1371
1372 STAM_REG(pVM, &pPGM->StatGCSyncCR3, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1373 STAM_REG(pVM, &pPGM->StatGCSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1374 STAM_REG(pVM, &pPGM->StatGCSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers/VirtualUpdate",STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1375 STAM_REG(pVM, &pPGM->StatGCSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1376 STAM_REG(pVM, &pPGM->StatGCSyncCR3Global, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1377 STAM_REG(pVM, &pPGM->StatGCSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1378 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1379 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1380 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1381 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1382 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1383 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1384
1385 STAM_REG(pVM, &pPGM->StatHCSyncCR3, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1386 STAM_REG(pVM, &pPGM->StatHCSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1387 STAM_REG(pVM, &pPGM->StatHCSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers/VirtualUpdate",STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1388 STAM_REG(pVM, &pPGM->StatHCSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1389 STAM_REG(pVM, &pPGM->StatHCSyncCR3Global, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1390 STAM_REG(pVM, &pPGM->StatHCSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1391 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1392 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1393 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1394 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1395 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1396 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1397
1398 STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysGC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/GC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in GC.");
1399 STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysHC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/HC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in HC.");
1400 STAM_REG(pVM, &pPGM->StatHandlePhysicalReset, STAMTYPE_COUNTER, "/PGM/HC/HandlerPhysicalReset", STAMUNIT_OCCURENCES, "The number of times PGMR3HandlerPhysicalReset is called.");
1401
1402 STAM_REG(pVM, &pPGM->StatHCGstModifyPage, STAMTYPE_PROFILE, "/PGM/HC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1403 STAM_REG(pVM, &pPGM->StatGCGstModifyPage, STAMTYPE_PROFILE, "/PGM/GC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1404
1405 STAM_REG(pVM, &pPGM->StatSynPT4kGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1406 STAM_REG(pVM, &pPGM->StatSynPT4kHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1407 STAM_REG(pVM, &pPGM->StatSynPT4MGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1408 STAM_REG(pVM, &pPGM->StatSynPT4MHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1409
1410 STAM_REG(pVM, &pPGM->StatDynRamTotal, STAMTYPE_COUNTER, "/PGM/RAM/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated mbs of guest ram.");
1411 STAM_REG(pVM, &pPGM->StatDynRamGrow, STAMTYPE_COUNTER, "/PGM/RAM/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1412
1413 STAM_REG(pVM, &pPGM->StatPageHCMapTlbHits, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1414 STAM_REG(pVM, &pPGM->StatPageHCMapTlbMisses, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1415 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1416 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1417 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1418 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1419 STAM_REG(pVM, &pPGM->StatPageReplaceShared, STAMTYPE_COUNTER, "/PGM/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1420 STAM_REG(pVM, &pPGM->StatPageReplaceZero, STAMTYPE_COUNTER, "/PGM/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1421 STAM_REG(pVM, &pPGM->StatPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1422 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1423 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1424 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1425 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1426
1427#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1428 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1429 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1430 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1431 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1432 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1433 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1434#endif
1435
1436 for (unsigned i = 0; i < X86_PG_ENTRIES; i++)
1437 {
1438 /** @todo r=bird: We need a STAMR3RegisterF()! */
1439 char szName[32];
1440
1441 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/Trap0e/%04X", i);
1442 int rc = STAMR3Register(pVM, &pPGM->StatGCTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of traps in page directory n.");
1443 AssertRC(rc);
1444
1445 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPt/%04X", i);
1446 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of syncs per PD n.");
1447 AssertRC(rc);
1448
1449 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPage/%04X", i);
1450 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of out of sync pages per page directory n.");
1451 AssertRC(rc);
1452 }
1453}
1454#endif /* VBOX_WITH_STATISTICS */
1455
1456/**
1457 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1458 *
1459 * The dynamic mapping area will also be allocated and initialized at this
1460 * time. We could allocate it during PGMR3Init of course, but the mapping
1461 * wouldn't be allocated at that time preventing us from setting up the
1462 * page table entries with the dummy page.
1463 *
1464 * @returns VBox status code.
1465 * @param pVM VM handle.
1466 */
1467PGMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1468{
1469 /*
1470 * Reserve space for mapping the paging pages into guest context.
1471 */
1472 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + ELEMENTS(pVM->pgm.s.apHCPaePDs) + 1 + 2 + 2), "Paging", &pVM->pgm.s.pGC32BitPD);
1473 AssertRCReturn(rc, rc);
1474 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1475
1476 /*
1477 * Reserve space for the dynamic mappings.
1478 */
1479 /** @todo r=bird: Need to verify that the checks for crossing PTs are correct here. They seems to be assuming 4MB PTs.. */
1480 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &pVM->pgm.s.pbDynPageMapBaseGC);
1481 if ( VBOX_SUCCESS(rc)
1482 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT))
1483 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &pVM->pgm.s.pbDynPageMapBaseGC);
1484 if (VBOX_SUCCESS(rc))
1485 {
1486 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT));
1487 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1488 }
1489 return rc;
1490}
1491
1492
1493/**
1494 * Ring-3 init finalizing.
1495 *
1496 * @returns VBox status code.
1497 * @param pVM The VM handle.
1498 */
1499PGMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1500{
1501 /*
1502 * Map the paging pages into the guest context.
1503 */
1504 RTGCPTR GCPtr = pVM->pgm.s.pGC32BitPD;
1505 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1506
1507 int rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhys32BitPD, PAGE_SIZE, 0);
1508 AssertRCReturn(rc, rc);
1509 pVM->pgm.s.pGC32BitPD = GCPtr;
1510 GCPtr += PAGE_SIZE;
1511 GCPtr += PAGE_SIZE; /* reserved page */
1512
1513 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1514 {
1515 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1516 AssertRCReturn(rc, rc);
1517 pVM->pgm.s.apGCPaePDs[i] = GCPtr;
1518 GCPtr += PAGE_SIZE;
1519 }
1520 /* A bit of paranoia is justified. */
1521 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[0] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1]);
1522 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2]);
1523 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[3]);
1524 GCPtr += PAGE_SIZE; /* reserved page */
1525
1526 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysPaePDPTR, PAGE_SIZE, 0);
1527 AssertRCReturn(rc, rc);
1528 pVM->pgm.s.pGCPaePDPTR = GCPtr;
1529 GCPtr += PAGE_SIZE;
1530 GCPtr += PAGE_SIZE; /* reserved page */
1531
1532 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysPaePML4, PAGE_SIZE, 0);
1533 AssertRCReturn(rc, rc);
1534 pVM->pgm.s.pGCPaePML4 = GCPtr;
1535 GCPtr += PAGE_SIZE;
1536 GCPtr += PAGE_SIZE; /* reserved page */
1537
1538
1539 /*
1540 * Reserve space for the dynamic mappings.
1541 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1542 */
1543 /* get the pointer to the page table entries. */
1544 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1545 AssertRelease(pMapping);
1546 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1547 const unsigned iPT = off >> X86_PD_SHIFT;
1548 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1549 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTGC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1550 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsGC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1551
1552 /* init cache */
1553 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1554 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1555 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1556
1557 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1558 {
1559 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1560 AssertRCReturn(rc, rc);
1561 }
1562
1563 return rc;
1564}
1565
1566
1567/**
1568 * Applies relocations to data and code managed by this
1569 * component. This function will be called at init and
1570 * whenever the VMM need to relocate it self inside the GC.
1571 *
1572 * @param pVM The VM.
1573 * @param offDelta Relocation delta relative to old location.
1574 */
1575PGMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1576{
1577 LogFlow(("PGMR3Relocate\n"));
1578
1579 /*
1580 * Paging stuff.
1581 */
1582 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1583 /** @todo move this into shadow and guest specific relocation functions. */
1584 AssertMsg(pVM->pgm.s.pGC32BitPD, ("Init order, no relocation before paging is initialized!\n"));
1585 pVM->pgm.s.pGC32BitPD += offDelta;
1586 pVM->pgm.s.pGuestPDGC += offDelta;
1587 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apGCPaePDs); i++)
1588 pVM->pgm.s.apGCPaePDs[i] += offDelta;
1589 pVM->pgm.s.pGCPaePDPTR += offDelta;
1590 pVM->pgm.s.pGCPaePML4 += offDelta;
1591
1592 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1593 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1594
1595 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1596 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1597 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1598
1599 /*
1600 * Trees.
1601 */
1602 pVM->pgm.s.pTreesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pTreesHC);
1603
1604 /*
1605 * Ram ranges.
1606 */
1607 if (pVM->pgm.s.pRamRangesR3)
1608 {
1609 pVM->pgm.s.pRamRangesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pRamRangesR3);
1610 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
1611#ifdef VBOX_WITH_NEW_PHYS_CODE
1612 pCur->pNextGC = MMHyperR3ToGC(pVM, pCur->pNextR3);
1613#else
1614 {
1615 pCur->pNextGC = MMHyperR3ToGC(pVM, pCur->pNextR3);
1616 if (pCur->pavHCChunkGC)
1617 pCur->pavHCChunkGC = MMHyperHC2GC(pVM, pCur->pavHCChunkHC);
1618 }
1619#endif
1620 }
1621
1622 /*
1623 * Update the two page directories with all page table mappings.
1624 * (One or more of them have changed, that's why we're here.)
1625 */
1626 pVM->pgm.s.pMappingsGC = MMHyperHC2GC(pVM, pVM->pgm.s.pMappingsR3);
1627 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1628 pCur->pNextGC = MMHyperHC2GC(pVM, pCur->pNextR3);
1629
1630 /* Relocate GC addresses of Page Tables. */
1631 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1632 {
1633 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1634 {
1635 pCur->aPTs[i].pPTGC = MMHyperR3ToGC(pVM, pCur->aPTs[i].pPTR3);
1636 pCur->aPTs[i].paPaePTsGC = MMHyperR3ToGC(pVM, pCur->aPTs[i].paPaePTsR3);
1637 }
1638 }
1639
1640 /*
1641 * Dynamic page mapping area.
1642 */
1643 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1644 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1645 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1646
1647 /*
1648 * The Zero page.
1649 */
1650 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1651 AssertRelease(pVM->pgm.s.pvZeroPgR0);
1652
1653 /*
1654 * Physical and virtual handlers.
1655 */
1656 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1657 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesHC->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1658 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesHC->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1659
1660 /*
1661 * The page pool.
1662 */
1663 pgmR3PoolRelocate(pVM);
1664}
1665
1666
1667/**
1668 * Callback function for relocating a physical access handler.
1669 *
1670 * @returns 0 (continue enum)
1671 * @param pNode Pointer to a PGMPHYSHANDLER node.
1672 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1673 * not certain the delta will fit in a void pointer for all possible configs.
1674 */
1675static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1676{
1677 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
1678 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1679 if (pHandler->pfnHandlerGC)
1680 pHandler->pfnHandlerGC += offDelta;
1681 if ((RTGCUINTPTR)pHandler->pvUserGC >= 0x10000)
1682 pHandler->pvUserGC += offDelta;
1683 return 0;
1684}
1685
1686
1687/**
1688 * Callback function for relocating a virtual access handler.
1689 *
1690 * @returns 0 (continue enum)
1691 * @param pNode Pointer to a PGMVIRTHANDLER node.
1692 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1693 * not certain the delta will fit in a void pointer for all possible configs.
1694 */
1695static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1696{
1697 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1698 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1699 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
1700 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
1701 Assert(pHandler->pfnHandlerGC);
1702 pHandler->pfnHandlerGC += offDelta;
1703 return 0;
1704}
1705
1706
1707/**
1708 * Callback function for relocating a virtual access handler for the hypervisor mapping.
1709 *
1710 * @returns 0 (continue enum)
1711 * @param pNode Pointer to a PGMVIRTHANDLER node.
1712 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1713 * not certain the delta will fit in a void pointer for all possible configs.
1714 */
1715static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1716{
1717 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1718 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1719 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
1720 Assert(pHandler->pfnHandlerGC);
1721 pHandler->pfnHandlerGC += offDelta;
1722 return 0;
1723}
1724
1725
1726/**
1727 * The VM is being reset.
1728 *
1729 * For the PGM component this means that any PD write monitors
1730 * needs to be removed.
1731 *
1732 * @param pVM VM handle.
1733 */
1734PGMR3DECL(void) PGMR3Reset(PVM pVM)
1735{
1736 LogFlow(("PGMR3Reset:\n"));
1737 VM_ASSERT_EMT(pVM);
1738
1739 /*
1740 * Unfix any fixed mappings and disable CR3 monitoring.
1741 */
1742 pVM->pgm.s.fMappingsFixed = false;
1743 pVM->pgm.s.GCPtrMappingFixed = 0;
1744 pVM->pgm.s.cbMappingFixed = 0;
1745
1746 int rc = PGM_GST_PFN(UnmonitorCR3, pVM)(pVM);
1747 AssertRC(rc);
1748#ifdef DEBUG
1749 DBGFR3InfoLog(pVM, "mappings", NULL);
1750 DBGFR3InfoLog(pVM, "handlers", "all nostat");
1751#endif
1752
1753 /*
1754 * Reset the shadow page pool.
1755 */
1756 pgmR3PoolReset(pVM);
1757
1758 /*
1759 * Re-init other members.
1760 */
1761 pVM->pgm.s.fA20Enabled = true;
1762
1763 /*
1764 * Clear the FFs PGM owns.
1765 */
1766 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
1767 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
1768
1769 /*
1770 * Zero memory.
1771 */
1772 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1773 {
1774 unsigned iPage = pRam->cb >> PAGE_SHIFT;
1775 while (iPage-- > 0)
1776 {
1777 if (pRam->aPages[iPage].HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)) /** @todo PAGE FLAGS */
1778 {
1779 /* shadow ram is reloaded elsewhere. */
1780 Log4(("PGMR3Reset: not clearing phys page %RGp due to flags %RHp\n", pRam->GCPhys + (iPage << PAGE_SHIFT), pRam->aPages[iPage].HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO))); /** @todo PAGE FLAGS */
1781 continue;
1782 }
1783 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
1784 {
1785 unsigned iChunk = iPage >> (PGM_DYNAMIC_CHUNK_SHIFT - PAGE_SHIFT);
1786 if (pRam->pavHCChunkHC[iChunk])
1787 ASMMemZero32((char *)pRam->pavHCChunkHC[iChunk] + ((iPage << PAGE_SHIFT) & PGM_DYNAMIC_CHUNK_OFFSET_MASK), PAGE_SIZE);
1788 }
1789 else
1790 ASMMemZero32((char *)pRam->pvHC + (iPage << PAGE_SHIFT), PAGE_SIZE);
1791 }
1792 }
1793
1794#ifdef VBOX_WITH_NEW_PHYS_CODE
1795 /*
1796 * Zero shadow ROM pages.
1797 */
1798 rc = pgmR3PhysRomReset(pVM);
1799#endif
1800
1801 /*
1802 * Switch mode back to real mode.
1803 */
1804 rc = pgmR3ChangeMode(pVM, PGMMODE_REAL);
1805 AssertReleaseRC(rc);
1806 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
1807}
1808
1809
1810/**
1811 * Terminates the PGM.
1812 *
1813 * @returns VBox status code.
1814 * @param pVM Pointer to VM structure.
1815 */
1816PGMR3DECL(int) PGMR3Term(PVM pVM)
1817{
1818 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1819}
1820
1821
1822#ifdef VBOX_STRICT
1823/**
1824 * VM state change callback for clearing fNoMorePhysWrites after
1825 * a snapshot has been created.
1826 */
1827static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
1828{
1829 if (enmState == VMSTATE_RUNNING)
1830 pVM->pgm.s.fNoMorePhysWrites = false;
1831}
1832#endif
1833
1834
1835/**
1836 * Execute state save operation.
1837 *
1838 * @returns VBox status code.
1839 * @param pVM VM Handle.
1840 * @param pSSM SSM operation handle.
1841 */
1842static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
1843{
1844 PPGM pPGM = &pVM->pgm.s;
1845
1846 /* No more writes to physical memory after this point! */
1847 pVM->pgm.s.fNoMorePhysWrites = true;
1848
1849 /*
1850 * Save basic data (required / unaffected by relocation).
1851 */
1852#if 1
1853 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
1854#else
1855 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
1856#endif
1857 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
1858 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
1859 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
1860 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
1861 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
1862 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
1863 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
1864 SSMR3PutU32(pSSM, ~0); /* Separator. */
1865
1866 /*
1867 * The guest mappings.
1868 */
1869 uint32_t i = 0;
1870 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
1871 {
1872 SSMR3PutU32(pSSM, i);
1873 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
1874 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
1875 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
1876 /* flags are done by the mapping owners! */
1877 }
1878 SSMR3PutU32(pSSM, ~0); /* terminator. */
1879
1880 /*
1881 * Ram range flags and bits.
1882 */
1883 i = 0;
1884 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
1885 {
1886 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
1887
1888 SSMR3PutU32(pSSM, i);
1889 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
1890 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
1891 SSMR3PutGCPhys(pSSM, pRam->cb);
1892 SSMR3PutU8(pSSM, !!pRam->pvHC); /* boolean indicating memory or not. */
1893
1894 /* Flags. */
1895 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
1896 for (unsigned iPage = 0; iPage < cPages; iPage++)
1897 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
1898
1899 /* any memory associated with the range. */
1900 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
1901 {
1902 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
1903 {
1904 if (pRam->pavHCChunkHC[iChunk])
1905 {
1906 SSMR3PutU8(pSSM, 1); /* chunk present */
1907 SSMR3PutMem(pSSM, pRam->pavHCChunkHC[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
1908 }
1909 else
1910 SSMR3PutU8(pSSM, 0); /* no chunk present */
1911 }
1912 }
1913 else if (pRam->pvHC)
1914 {
1915 int rc = SSMR3PutMem(pSSM, pRam->pvHC, pRam->cb);
1916 if (VBOX_FAILURE(rc))
1917 {
1918 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Vrc\n", pRam->pvHC, pRam->cb, rc));
1919 return rc;
1920 }
1921 }
1922 }
1923 return SSMR3PutU32(pSSM, ~0); /* terminator. */
1924}
1925
1926
1927/**
1928 * Execute state load operation.
1929 *
1930 * @returns VBox status code.
1931 * @param pVM VM Handle.
1932 * @param pSSM SSM operation handle.
1933 * @param u32Version Data layout version.
1934 */
1935static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
1936{
1937 /*
1938 * Validate version.
1939 */
1940 if (u32Version != PGM_SAVED_STATE_VERSION)
1941 {
1942 Log(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
1943 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1944 }
1945
1946 /*
1947 * Call the reset function to make sure all the memory is cleared.
1948 */
1949 PGMR3Reset(pVM);
1950
1951 /*
1952 * Load basic data (required / unaffected by relocation).
1953 */
1954 PPGM pPGM = &pVM->pgm.s;
1955#if 1
1956 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
1957#else
1958 uint32_t u;
1959 SSMR3GetU32(pSSM, &u);
1960 pPGM->fMappingsFixed = u;
1961#endif
1962 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
1963 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
1964
1965 RTUINT cbRamSize;
1966 int rc = SSMR3GetU32(pSSM, &cbRamSize);
1967 if (VBOX_FAILURE(rc))
1968 return rc;
1969 if (cbRamSize != pPGM->cbRamSize)
1970 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
1971 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
1972 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
1973 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
1974 RTUINT uGuestMode;
1975 SSMR3GetUInt(pSSM, &uGuestMode);
1976 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
1977
1978 /* check separator. */
1979 uint32_t u32Sep;
1980 SSMR3GetU32(pSSM, &u32Sep);
1981 if (VBOX_FAILURE(rc))
1982 return rc;
1983 if (u32Sep != (uint32_t)~0)
1984 {
1985 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
1986 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1987 }
1988
1989 /*
1990 * The guest mappings.
1991 */
1992 uint32_t i = 0;
1993 for (;; i++)
1994 {
1995 /* Check the seqence number / separator. */
1996 rc = SSMR3GetU32(pSSM, &u32Sep);
1997 if (VBOX_FAILURE(rc))
1998 return rc;
1999 if (u32Sep == ~0U)
2000 break;
2001 if (u32Sep != i)
2002 {
2003 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2004 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2005 }
2006
2007 /* get the mapping details. */
2008 char szDesc[256];
2009 szDesc[0] = '\0';
2010 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2011 if (VBOX_FAILURE(rc))
2012 return rc;
2013 RTGCPTR GCPtr;
2014 SSMR3GetGCPtr(pSSM, &GCPtr);
2015 RTGCUINTPTR cPTs;
2016 rc = SSMR3GetU32(pSSM, &cPTs);
2017 if (VBOX_FAILURE(rc))
2018 return rc;
2019
2020 /* find matching range. */
2021 PPGMMAPPING pMapping;
2022 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2023 if ( pMapping->cPTs == cPTs
2024 && !strcmp(pMapping->pszDesc, szDesc))
2025 break;
2026 if (!pMapping)
2027 {
2028 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%VGv)\n",
2029 cPTs, szDesc, GCPtr));
2030 AssertFailed();
2031 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2032 }
2033
2034 /* relocate it. */
2035 if (pMapping->GCPtr != GCPtr)
2036 {
2037 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%VGv\n", GCPtr));
2038#if HC_ARCH_BITS == 64
2039LogRel(("Mapping: %VGv -> %VGv %s\n", pMapping->GCPtr, GCPtr, pMapping->pszDesc));
2040#endif
2041 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr >> X86_PD_SHIFT, GCPtr >> X86_PD_SHIFT);
2042 }
2043 else
2044 Log(("pgmR3Load: '%s' needed no relocation (%VGv)\n", szDesc, GCPtr));
2045 }
2046
2047 /*
2048 * Ram range flags and bits.
2049 */
2050 i = 0;
2051 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2052 {
2053 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2054 /* Check the seqence number / separator. */
2055 rc = SSMR3GetU32(pSSM, &u32Sep);
2056 if (VBOX_FAILURE(rc))
2057 return rc;
2058 if (u32Sep == ~0U)
2059 break;
2060 if (u32Sep != i)
2061 {
2062 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2063 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2064 }
2065
2066 /* Get the range details. */
2067 RTGCPHYS GCPhys;
2068 SSMR3GetGCPhys(pSSM, &GCPhys);
2069 RTGCPHYS GCPhysLast;
2070 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2071 RTGCPHYS cb;
2072 SSMR3GetGCPhys(pSSM, &cb);
2073 uint8_t fHaveBits;
2074 rc = SSMR3GetU8(pSSM, &fHaveBits);
2075 if (VBOX_FAILURE(rc))
2076 return rc;
2077 if (fHaveBits & ~1)
2078 {
2079 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2080 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2081 }
2082
2083 /* Match it up with the current range. */
2084 if ( GCPhys != pRam->GCPhys
2085 || GCPhysLast != pRam->GCPhysLast
2086 || cb != pRam->cb
2087 || fHaveBits != !!pRam->pvHC)
2088 {
2089 LogRel(("Ram range: %VGp-%VGp %VGp bytes %s\n"
2090 "State : %VGp-%VGp %VGp bytes %s\n",
2091 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvHC ? "bits" : "nobits",
2092 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2093 /*
2094 * If we're loading a state for debugging purpose, don't make a fuss if
2095 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2096 */
2097 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2098 || GCPhys < 8 * _1M)
2099 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2100
2101 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2102 while (cPages-- > 0)
2103 {
2104 uint16_t u16Ignore;
2105 SSMR3GetU16(pSSM, &u16Ignore);
2106 }
2107 continue;
2108 }
2109
2110 /* Flags. */
2111 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2112 for (unsigned iPage = 0; iPage < cPages; iPage++)
2113 {
2114 uint16_t u16 = 0;
2115 SSMR3GetU16(pSSM, &u16);
2116 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2117 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2118 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2119 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2120 }
2121
2122 /* any memory associated with the range. */
2123 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2124 {
2125 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2126 {
2127 uint8_t fValidChunk;
2128
2129 rc = SSMR3GetU8(pSSM, &fValidChunk);
2130 if (VBOX_FAILURE(rc))
2131 return rc;
2132 if (fValidChunk > 1)
2133 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2134
2135 if (fValidChunk)
2136 {
2137 if (!pRam->pavHCChunkHC[iChunk])
2138 {
2139 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2140 if (VBOX_FAILURE(rc))
2141 return rc;
2142 }
2143 Assert(pRam->pavHCChunkHC[iChunk]);
2144
2145 SSMR3GetMem(pSSM, pRam->pavHCChunkHC[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2146 }
2147 /* else nothing to do */
2148 }
2149 }
2150 else if (pRam->pvHC)
2151 {
2152 int rc = SSMR3GetMem(pSSM, pRam->pvHC, pRam->cb);
2153 if (VBOX_FAILURE(rc))
2154 {
2155 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Vrc\n", pRam->pvHC, pRam->cb, rc));
2156 return rc;
2157 }
2158 }
2159 }
2160
2161 /*
2162 * We require a full resync now.
2163 */
2164 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2165 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2166 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2167 pPGM->fPhysCacheFlushPending = true;
2168 pgmR3HandlerPhysicalUpdateAll(pVM);
2169
2170 /*
2171 * Change the paging mode.
2172 */
2173 return pgmR3ChangeMode(pVM, pPGM->enmGuestMode);
2174}
2175
2176
2177/**
2178 * Show paging mode.
2179 *
2180 * @param pVM VM Handle.
2181 * @param pHlp The info helpers.
2182 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2183 */
2184static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2185{
2186 /* digest argument. */
2187 bool fGuest, fShadow, fHost;
2188 if (pszArgs)
2189 pszArgs = RTStrStripL(pszArgs);
2190 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2191 fShadow = fHost = fGuest = true;
2192 else
2193 {
2194 fShadow = fHost = fGuest = false;
2195 if (strstr(pszArgs, "guest"))
2196 fGuest = true;
2197 if (strstr(pszArgs, "shadow"))
2198 fShadow = true;
2199 if (strstr(pszArgs, "host"))
2200 fHost = true;
2201 }
2202
2203 /* print info. */
2204 if (fGuest)
2205 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2206 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2207 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2208 if (fShadow)
2209 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2210 if (fHost)
2211 {
2212 const char *psz;
2213 switch (pVM->pgm.s.enmHostMode)
2214 {
2215 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2216 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2217 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2218 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2219 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2220 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2221 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2222 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2223 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2224 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2225 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2226 default: psz = "unknown"; break;
2227 }
2228 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2229 }
2230}
2231
2232
2233/**
2234 * Dump registered MMIO ranges to the log.
2235 *
2236 * @param pVM VM Handle.
2237 * @param pHlp The info helpers.
2238 * @param pszArgs Arguments, ignored.
2239 */
2240static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2241{
2242 NOREF(pszArgs);
2243 pHlp->pfnPrintf(pHlp,
2244 "RAM ranges (pVM=%p)\n"
2245 "%.*s %.*s\n",
2246 pVM,
2247 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2248 sizeof(RTHCPTR) * 2, "pvHC ");
2249
2250 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2251 pHlp->pfnPrintf(pHlp,
2252 "%RGp-%RGp %RHv %s\n",
2253 pCur->GCPhys,
2254 pCur->GCPhysLast,
2255 pCur->pvHC,
2256 pCur->pszDesc);
2257}
2258
2259/**
2260 * Dump the page directory to the log.
2261 *
2262 * @param pVM VM Handle.
2263 * @param pHlp The info helpers.
2264 * @param pszArgs Arguments, ignored.
2265 */
2266static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2267{
2268/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2269 /* Big pages supported? */
2270 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2271 /* Global pages supported? */
2272 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2273
2274 NOREF(pszArgs);
2275
2276 /*
2277 * Get page directory addresses.
2278 */
2279 PX86PD pPDSrc = pVM->pgm.s.pGuestPDHC;
2280 Assert(pPDSrc);
2281 Assert(MMPhysGCPhys2HCVirt(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2282
2283 /*
2284 * Iterate the page directory.
2285 */
2286 for (unsigned iPD = 0; iPD < ELEMENTS(pPDSrc->a); iPD++)
2287 {
2288 X86PDE PdeSrc = pPDSrc->a[iPD];
2289 if (PdeSrc.n.u1Present)
2290 {
2291 if (PdeSrc.b.u1Size && fPSE)
2292 {
2293 pHlp->pfnPrintf(pHlp,
2294 "%04X - %VGp P=%d U=%d RW=%d G=%d - BIG\n",
2295 iPD,
2296 PdeSrc.u & X86_PDE_PG_MASK,
2297 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2298 }
2299 else
2300 {
2301 pHlp->pfnPrintf(pHlp,
2302 "%04X - %VGp P=%d U=%d RW=%d [G=%d]\n",
2303 iPD,
2304 PdeSrc.u & X86_PDE4M_PG_MASK,
2305 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2306 }
2307 }
2308 }
2309}
2310
2311
2312/**
2313 * Serivce a VMMCALLHOST_PGM_LOCK call.
2314 *
2315 * @returns VBox status code.
2316 * @param pVM The VM handle.
2317 */
2318PDMR3DECL(int) PGMR3LockCall(PVM pVM)
2319{
2320 return pgmLock(pVM);
2321}
2322
2323
2324/**
2325 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2326 *
2327 * @returns PGM_TYPE_*.
2328 * @param pgmMode The mode value to convert.
2329 */
2330DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2331{
2332 switch (pgmMode)
2333 {
2334 case PGMMODE_REAL: return PGM_TYPE_REAL;
2335 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2336 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2337 case PGMMODE_PAE:
2338 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2339 case PGMMODE_AMD64:
2340 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2341 default:
2342 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2343 }
2344}
2345
2346
2347/**
2348 * Gets the index into the paging mode data array of a SHW+GST mode.
2349 *
2350 * @returns PGM::paPagingData index.
2351 * @param uShwType The shadow paging mode type.
2352 * @param uGstType The guest paging mode type.
2353 */
2354DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2355{
2356 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_AMD64);
2357 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2358 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_32BIT + 1)
2359 + (uGstType - PGM_TYPE_REAL);
2360}
2361
2362
2363/**
2364 * Gets the index into the paging mode data array of a SHW+GST mode.
2365 *
2366 * @returns PGM::paPagingData index.
2367 * @param enmShw The shadow paging mode.
2368 * @param enmGst The guest paging mode.
2369 */
2370DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2371{
2372 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2373 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2374 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2375}
2376
2377
2378/**
2379 * Calculates the max data index.
2380 * @returns The number of entries in the pagaing data array.
2381 */
2382DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2383{
2384 return pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64) + 1;
2385}
2386
2387
2388/**
2389 * Initializes the paging mode data kept in PGM::paModeData.
2390 *
2391 * @param pVM The VM handle.
2392 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2393 * This is used early in the init process to avoid trouble with PDM
2394 * not being initialized yet.
2395 */
2396static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2397{
2398 PPGMMODEDATA pModeData;
2399 int rc;
2400
2401 /*
2402 * Allocate the array on the first call.
2403 */
2404 if (!pVM->pgm.s.paModeData)
2405 {
2406 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2407 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2408 }
2409
2410 /*
2411 * Initialize the array entries.
2412 */
2413 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2414 pModeData->uShwType = PGM_TYPE_32BIT;
2415 pModeData->uGstType = PGM_TYPE_REAL;
2416 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2417 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2418 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2419
2420 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2421 pModeData->uShwType = PGM_TYPE_32BIT;
2422 pModeData->uGstType = PGM_TYPE_PROT;
2423 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2424 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2425 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2426
2427 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2428 pModeData->uShwType = PGM_TYPE_32BIT;
2429 pModeData->uGstType = PGM_TYPE_32BIT;
2430 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2431 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2432 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2433
2434 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2435 pModeData->uShwType = PGM_TYPE_PAE;
2436 pModeData->uGstType = PGM_TYPE_REAL;
2437 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2438 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2439 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2440
2441 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2442 pModeData->uShwType = PGM_TYPE_PAE;
2443 pModeData->uGstType = PGM_TYPE_PROT;
2444 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2445 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2446 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2447
2448 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2449 pModeData->uShwType = PGM_TYPE_PAE;
2450 pModeData->uGstType = PGM_TYPE_32BIT;
2451 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2452 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2453 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2454
2455 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2456 pModeData->uShwType = PGM_TYPE_PAE;
2457 pModeData->uGstType = PGM_TYPE_PAE;
2458 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2459 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2460 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2461
2462 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_REAL)];
2463 pModeData->uShwType = PGM_TYPE_AMD64;
2464 pModeData->uGstType = PGM_TYPE_REAL;
2465 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2466 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2467
2468 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_PROT)];
2469 pModeData->uShwType = PGM_TYPE_AMD64;
2470 pModeData->uGstType = PGM_TYPE_PROT;
2471 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2472 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2473
2474 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2475 pModeData->uShwType = PGM_TYPE_AMD64;
2476 pModeData->uGstType = PGM_TYPE_AMD64;
2477 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2478 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2479
2480 return VINF_SUCCESS;
2481}
2482
2483
2484/**
2485 * Swtich to different (or relocated in the relocate case) mode data.
2486 *
2487 * @param pVM The VM handle.
2488 * @param enmShw The the shadow paging mode.
2489 * @param enmGst The the guest paging mode.
2490 */
2491static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
2492{
2493 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(enmShw, enmGst)];
2494
2495 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2496 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2497
2498 /* shadow */
2499 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2500 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2501 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2502 Assert(pVM->pgm.s.pfnR3ShwGetPage);
2503 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2504 pVM->pgm.s.pfnR3ShwGetPDEByIndex = pModeData->pfnR3ShwGetPDEByIndex;
2505 pVM->pgm.s.pfnR3ShwSetPDEByIndex = pModeData->pfnR3ShwSetPDEByIndex;
2506 pVM->pgm.s.pfnR3ShwModifyPDEByIndex = pModeData->pfnR3ShwModifyPDEByIndex;
2507
2508 pVM->pgm.s.pfnGCShwGetPage = pModeData->pfnGCShwGetPage;
2509 pVM->pgm.s.pfnGCShwModifyPage = pModeData->pfnGCShwModifyPage;
2510 pVM->pgm.s.pfnGCShwGetPDEByIndex = pModeData->pfnGCShwGetPDEByIndex;
2511 pVM->pgm.s.pfnGCShwSetPDEByIndex = pModeData->pfnGCShwSetPDEByIndex;
2512 pVM->pgm.s.pfnGCShwModifyPDEByIndex = pModeData->pfnGCShwModifyPDEByIndex;
2513
2514 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2515 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2516 pVM->pgm.s.pfnR0ShwGetPDEByIndex = pModeData->pfnR0ShwGetPDEByIndex;
2517 pVM->pgm.s.pfnR0ShwSetPDEByIndex = pModeData->pfnR0ShwSetPDEByIndex;
2518 pVM->pgm.s.pfnR0ShwModifyPDEByIndex = pModeData->pfnR0ShwModifyPDEByIndex;
2519
2520
2521 /* guest */
2522 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2523 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2524 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2525 Assert(pVM->pgm.s.pfnR3GstGetPage);
2526 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2527 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2528 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
2529 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
2530 pVM->pgm.s.pfnR3GstMapCR3 = pModeData->pfnR3GstMapCR3;
2531 pVM->pgm.s.pfnR3GstUnmapCR3 = pModeData->pfnR3GstUnmapCR3;
2532 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
2533 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
2534 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
2535 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
2536
2537 pVM->pgm.s.pfnGCGstGetPage = pModeData->pfnGCGstGetPage;
2538 pVM->pgm.s.pfnGCGstModifyPage = pModeData->pfnGCGstModifyPage;
2539 pVM->pgm.s.pfnGCGstGetPDE = pModeData->pfnGCGstGetPDE;
2540 pVM->pgm.s.pfnGCGstMonitorCR3 = pModeData->pfnGCGstMonitorCR3;
2541 pVM->pgm.s.pfnGCGstUnmonitorCR3 = pModeData->pfnGCGstUnmonitorCR3;
2542 pVM->pgm.s.pfnGCGstMapCR3 = pModeData->pfnGCGstMapCR3;
2543 pVM->pgm.s.pfnGCGstUnmapCR3 = pModeData->pfnGCGstUnmapCR3;
2544 pVM->pgm.s.pfnGCGstWriteHandlerCR3 = pModeData->pfnGCGstWriteHandlerCR3;
2545 pVM->pgm.s.pfnGCGstPAEWriteHandlerCR3 = pModeData->pfnGCGstPAEWriteHandlerCR3;
2546
2547 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2548 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2549 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2550 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
2551 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
2552 pVM->pgm.s.pfnR0GstMapCR3 = pModeData->pfnR0GstMapCR3;
2553 pVM->pgm.s.pfnR0GstUnmapCR3 = pModeData->pfnR0GstUnmapCR3;
2554 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
2555 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
2556
2557
2558 /* both */
2559 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2560 pVM->pgm.s.pfnR3BthTrap0eHandler = pModeData->pfnR3BthTrap0eHandler;
2561 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2562 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2563 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
2564 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2565 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2566 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2567#ifdef VBOX_STRICT
2568 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2569#endif
2570
2571 pVM->pgm.s.pfnGCBthTrap0eHandler = pModeData->pfnGCBthTrap0eHandler;
2572 pVM->pgm.s.pfnGCBthInvalidatePage = pModeData->pfnGCBthInvalidatePage;
2573 pVM->pgm.s.pfnGCBthSyncCR3 = pModeData->pfnGCBthSyncCR3;
2574 pVM->pgm.s.pfnGCBthSyncPage = pModeData->pfnGCBthSyncPage;
2575 pVM->pgm.s.pfnGCBthPrefetchPage = pModeData->pfnGCBthPrefetchPage;
2576 pVM->pgm.s.pfnGCBthVerifyAccessSyncPage = pModeData->pfnGCBthVerifyAccessSyncPage;
2577#ifdef VBOX_STRICT
2578 pVM->pgm.s.pfnGCBthAssertCR3 = pModeData->pfnGCBthAssertCR3;
2579#endif
2580
2581 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2582 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2583 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2584 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
2585 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2586 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2587#ifdef VBOX_STRICT
2588 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2589#endif
2590}
2591
2592
2593#ifdef DEBUG_bird
2594#include <stdlib.h> /* getenv() remove me! */
2595#endif
2596
2597/**
2598 * Calculates the shadow paging mode.
2599 *
2600 * @returns The shadow paging mode.
2601 * @param enmGuestMode The guest mode.
2602 * @param enmHostMode The host mode.
2603 * @param enmShadowMode The current shadow mode.
2604 * @param penmSwitcher Where to store the switcher to use.
2605 * VMMSWITCHER_INVALID means no change.
2606 */
2607static PGMMODE pgmR3CalcShadowMode(PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
2608{
2609 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
2610 switch (enmGuestMode)
2611 {
2612 /*
2613 * When switching to real or protected mode we don't change
2614 * anything since it's likely that we'll switch back pretty soon.
2615 *
2616 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
2617 * and is supposed to determin which shadow paging and switcher to
2618 * use during init.
2619 */
2620 case PGMMODE_REAL:
2621 case PGMMODE_PROTECTED:
2622 if (enmShadowMode != PGMMODE_INVALID)
2623 break; /* (no change) */
2624 switch (enmHostMode)
2625 {
2626 case SUPPAGINGMODE_32_BIT:
2627 case SUPPAGINGMODE_32_BIT_GLOBAL:
2628 enmShadowMode = PGMMODE_32_BIT;
2629 enmSwitcher = VMMSWITCHER_32_TO_32;
2630 break;
2631
2632 case SUPPAGINGMODE_PAE:
2633 case SUPPAGINGMODE_PAE_NX:
2634 case SUPPAGINGMODE_PAE_GLOBAL:
2635 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2636 enmShadowMode = PGMMODE_PAE;
2637 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2638#ifdef DEBUG_bird
2639if (getenv("VBOX_32BIT"))
2640{
2641 enmShadowMode = PGMMODE_32_BIT;
2642 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2643}
2644#endif
2645 break;
2646
2647 case SUPPAGINGMODE_AMD64:
2648 case SUPPAGINGMODE_AMD64_GLOBAL:
2649 case SUPPAGINGMODE_AMD64_NX:
2650 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2651 enmShadowMode = PGMMODE_PAE;
2652 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2653 break;
2654
2655 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2656 }
2657 break;
2658
2659 case PGMMODE_32_BIT:
2660 switch (enmHostMode)
2661 {
2662 case SUPPAGINGMODE_32_BIT:
2663 case SUPPAGINGMODE_32_BIT_GLOBAL:
2664 enmShadowMode = PGMMODE_32_BIT;
2665 enmSwitcher = VMMSWITCHER_32_TO_32;
2666 break;
2667
2668 case SUPPAGINGMODE_PAE:
2669 case SUPPAGINGMODE_PAE_NX:
2670 case SUPPAGINGMODE_PAE_GLOBAL:
2671 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2672 enmShadowMode = PGMMODE_PAE;
2673 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2674#ifdef DEBUG_bird
2675if (getenv("VBOX_32BIT"))
2676{
2677 enmShadowMode = PGMMODE_32_BIT;
2678 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2679}
2680#endif
2681 break;
2682
2683 case SUPPAGINGMODE_AMD64:
2684 case SUPPAGINGMODE_AMD64_GLOBAL:
2685 case SUPPAGINGMODE_AMD64_NX:
2686 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2687 enmShadowMode = PGMMODE_PAE;
2688 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2689 break;
2690
2691 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2692 }
2693 break;
2694
2695 case PGMMODE_PAE:
2696 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
2697 switch (enmHostMode)
2698 {
2699 case SUPPAGINGMODE_32_BIT:
2700 case SUPPAGINGMODE_32_BIT_GLOBAL:
2701 enmShadowMode = PGMMODE_PAE;
2702 enmSwitcher = VMMSWITCHER_32_TO_PAE;
2703 break;
2704
2705 case SUPPAGINGMODE_PAE:
2706 case SUPPAGINGMODE_PAE_NX:
2707 case SUPPAGINGMODE_PAE_GLOBAL:
2708 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2709 enmShadowMode = PGMMODE_PAE;
2710 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2711 break;
2712
2713 case SUPPAGINGMODE_AMD64:
2714 case SUPPAGINGMODE_AMD64_GLOBAL:
2715 case SUPPAGINGMODE_AMD64_NX:
2716 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2717 enmShadowMode = PGMMODE_PAE;
2718 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2719 break;
2720
2721 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2722 }
2723 break;
2724
2725 case PGMMODE_AMD64:
2726 case PGMMODE_AMD64_NX:
2727 switch (enmHostMode)
2728 {
2729 case SUPPAGINGMODE_32_BIT:
2730 case SUPPAGINGMODE_32_BIT_GLOBAL:
2731 enmShadowMode = PGMMODE_PAE;
2732 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
2733 break;
2734
2735 case SUPPAGINGMODE_PAE:
2736 case SUPPAGINGMODE_PAE_NX:
2737 case SUPPAGINGMODE_PAE_GLOBAL:
2738 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2739 enmShadowMode = PGMMODE_PAE;
2740 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
2741 break;
2742
2743 case SUPPAGINGMODE_AMD64:
2744 case SUPPAGINGMODE_AMD64_GLOBAL:
2745 case SUPPAGINGMODE_AMD64_NX:
2746 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2747 enmShadowMode = PGMMODE_PAE;
2748 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
2749 break;
2750
2751 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2752 }
2753 break;
2754
2755
2756 default:
2757 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
2758 return PGMMODE_INVALID;
2759 }
2760
2761 *penmSwitcher = enmSwitcher;
2762 return enmShadowMode;
2763}
2764
2765
2766/**
2767 * Performs the actual mode change.
2768 * This is called by PGMChangeMode and pgmR3InitPaging().
2769 *
2770 * @returns VBox status code.
2771 * @param pVM VM handle.
2772 * @param enmGuestMode The new guest mode. This is assumed to be different from
2773 * the current mode.
2774 */
2775int pgmR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
2776{
2777 LogFlow(("pgmR3ChangeMode: Guest mode: %d -> %d\n", pVM->pgm.s.enmGuestMode, enmGuestMode));
2778 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
2779
2780 /*
2781 * Calc the shadow mode and switcher.
2782 */
2783 VMMSWITCHER enmSwitcher;
2784 PGMMODE enmShadowMode = pgmR3CalcShadowMode(enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
2785 if (enmSwitcher != VMMSWITCHER_INVALID)
2786 {
2787 /*
2788 * Select new switcher.
2789 */
2790 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
2791 if (VBOX_FAILURE(rc))
2792 {
2793 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Vrc\n", enmSwitcher, rc));
2794 return rc;
2795 }
2796 }
2797
2798 /*
2799 * Exit old mode(s).
2800 */
2801 /* shadow */
2802 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
2803 {
2804 LogFlow(("pgmR3ChangeMode: Shadow mode: %d -> %d\n", pVM->pgm.s.enmShadowMode, enmShadowMode));
2805 if (PGM_SHW_PFN(Exit, pVM))
2806 {
2807 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
2808 if (VBOX_FAILURE(rc))
2809 {
2810 AssertMsgFailed(("Exit failed for shadow mode %d: %Vrc\n", pVM->pgm.s.enmShadowMode, rc));
2811 return rc;
2812 }
2813 }
2814
2815 }
2816
2817 /* guest */
2818 if (PGM_GST_PFN(Exit, pVM))
2819 {
2820 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2821 if (VBOX_FAILURE(rc))
2822 {
2823 AssertMsgFailed(("Exit failed for guest mode %d: %Vrc\n", pVM->pgm.s.enmGuestMode, rc));
2824 return rc;
2825 }
2826 }
2827
2828 /*
2829 * Load new paging mode data.
2830 */
2831 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
2832
2833 /*
2834 * Enter new shadow mode (if changed).
2835 */
2836 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
2837 {
2838 int rc;
2839 pVM->pgm.s.enmShadowMode = enmShadowMode;
2840 switch (enmShadowMode)
2841 {
2842 case PGMMODE_32_BIT:
2843 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
2844 break;
2845 case PGMMODE_PAE:
2846 case PGMMODE_PAE_NX:
2847 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
2848 break;
2849 case PGMMODE_AMD64:
2850 case PGMMODE_AMD64_NX:
2851 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
2852 break;
2853 case PGMMODE_REAL:
2854 case PGMMODE_PROTECTED:
2855 default:
2856 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
2857 return VERR_INTERNAL_ERROR;
2858 }
2859 if (VBOX_FAILURE(rc))
2860 {
2861 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Vrc\n", enmShadowMode, rc));
2862 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
2863 return rc;
2864 }
2865 }
2866
2867 /*
2868 * Enter the new guest and shadow+guest modes.
2869 */
2870 int rc = -1;
2871 int rc2 = -1;
2872 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
2873 pVM->pgm.s.enmGuestMode = enmGuestMode;
2874 switch (enmGuestMode)
2875 {
2876 case PGMMODE_REAL:
2877 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
2878 switch (pVM->pgm.s.enmShadowMode)
2879 {
2880 case PGMMODE_32_BIT:
2881 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
2882 break;
2883 case PGMMODE_PAE:
2884 case PGMMODE_PAE_NX:
2885 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
2886 break;
2887 case PGMMODE_AMD64:
2888 case PGMMODE_AMD64_NX:
2889 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
2890 break;
2891 default: AssertFailed(); break;
2892 }
2893 break;
2894
2895 case PGMMODE_PROTECTED:
2896 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
2897 switch (pVM->pgm.s.enmShadowMode)
2898 {
2899 case PGMMODE_32_BIT:
2900 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
2901 break;
2902 case PGMMODE_PAE:
2903 case PGMMODE_PAE_NX:
2904 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
2905 break;
2906 case PGMMODE_AMD64:
2907 case PGMMODE_AMD64_NX:
2908 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
2909 break;
2910 default: AssertFailed(); break;
2911 }
2912 break;
2913
2914 case PGMMODE_32_BIT:
2915 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
2916 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
2917 switch (pVM->pgm.s.enmShadowMode)
2918 {
2919 case PGMMODE_32_BIT:
2920 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
2921 break;
2922 case PGMMODE_PAE:
2923 case PGMMODE_PAE_NX:
2924 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
2925 break;
2926 case PGMMODE_AMD64:
2927 case PGMMODE_AMD64_NX:
2928 AssertMsgFailed(("Should use PAE shadow mode!\n"));
2929 default: AssertFailed(); break;
2930 }
2931 break;
2932
2933 //case PGMMODE_PAE_NX:
2934 case PGMMODE_PAE:
2935 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
2936 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
2937 switch (pVM->pgm.s.enmShadowMode)
2938 {
2939 case PGMMODE_PAE:
2940 case PGMMODE_PAE_NX:
2941 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
2942 break;
2943 case PGMMODE_32_BIT:
2944 case PGMMODE_AMD64:
2945 case PGMMODE_AMD64_NX:
2946 AssertMsgFailed(("Should use PAE shadow mode!\n"));
2947 default: AssertFailed(); break;
2948 }
2949 break;
2950
2951 //case PGMMODE_AMD64_NX:
2952 case PGMMODE_AMD64:
2953 GCPhysCR3 = CPUMGetGuestCR3(pVM) & 0xfffffffffffff000ULL; /** @todo define this mask and make CR3 64-bit in this case! */
2954 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
2955 switch (pVM->pgm.s.enmShadowMode)
2956 {
2957 case PGMMODE_AMD64:
2958 case PGMMODE_AMD64_NX:
2959 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
2960 break;
2961 case PGMMODE_32_BIT:
2962 case PGMMODE_PAE:
2963 case PGMMODE_PAE_NX:
2964 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
2965 default: AssertFailed(); break;
2966 }
2967 break;
2968
2969 default:
2970 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
2971 rc = VERR_NOT_IMPLEMENTED;
2972 break;
2973 }
2974
2975 /* status codes. */
2976 AssertRC(rc);
2977 AssertRC(rc2);
2978 if (VBOX_SUCCESS(rc))
2979 {
2980 rc = rc2;
2981 if (VBOX_SUCCESS(rc)) /* no informational status codes. */
2982 rc = VINF_SUCCESS;
2983 }
2984
2985 /*
2986 * Notify SELM so it can update the TSSes with correct CR3s.
2987 */
2988 SELMR3PagingModeChanged(pVM);
2989
2990 /* Notify HWACCM as well. */
2991 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode);
2992 return rc;
2993}
2994
2995
2996/**
2997 * Dumps a PAE shadow page table.
2998 *
2999 * @returns VBox status code (VINF_SUCCESS).
3000 * @param pVM The VM handle.
3001 * @param pPT Pointer to the page table.
3002 * @param u64Address The virtual address of the page table starts.
3003 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3004 * @param cMaxDepth The maxium depth.
3005 * @param pHlp Pointer to the output functions.
3006 */
3007static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3008{
3009 for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
3010 {
3011 X86PTEPAE Pte = pPT->a[i];
3012 if (Pte.n.u1Present)
3013 {
3014 pHlp->pfnPrintf(pHlp,
3015 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3016 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3017 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3018 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3019 Pte.n.u1Write ? 'W' : 'R',
3020 Pte.n.u1User ? 'U' : 'S',
3021 Pte.n.u1Accessed ? 'A' : '-',
3022 Pte.n.u1Dirty ? 'D' : '-',
3023 Pte.n.u1Global ? 'G' : '-',
3024 Pte.n.u1WriteThru ? "WT" : "--",
3025 Pte.n.u1CacheDisable? "CD" : "--",
3026 Pte.n.u1PAT ? "AT" : "--",
3027 Pte.n.u1NoExecute ? "NX" : "--",
3028 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3029 Pte.u & RT_BIT(10) ? '1' : '0',
3030 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3031 Pte.u & X86_PTE_PAE_PG_MASK);
3032 }
3033 }
3034 return VINF_SUCCESS;
3035}
3036
3037
3038/**
3039 * Dumps a PAE shadow page directory table.
3040 *
3041 * @returns VBox status code (VINF_SUCCESS).
3042 * @param pVM The VM handle.
3043 * @param HCPhys The physical address of the page directory table.
3044 * @param u64Address The virtual address of the page table starts.
3045 * @param cr4 The CR4, PSE is currently used.
3046 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3047 * @param cMaxDepth The maxium depth.
3048 * @param pHlp Pointer to the output functions.
3049 */
3050static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3051{
3052 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3053 if (!pPD)
3054 {
3055 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%#VHp was not found in the page pool!\n",
3056 fLongMode ? 16 : 8, u64Address, HCPhys);
3057 return VERR_INVALID_PARAMETER;
3058 }
3059 int rc = VINF_SUCCESS;
3060 for (unsigned i = 0; i < ELEMENTS(pPD->a); i++)
3061 {
3062 X86PDEPAE Pde = pPD->a[i];
3063 if (Pde.n.u1Present)
3064 {
3065 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3066 pHlp->pfnPrintf(pHlp,
3067 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3068 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3069 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3070 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3071 Pde.b.u1Write ? 'W' : 'R',
3072 Pde.b.u1User ? 'U' : 'S',
3073 Pde.b.u1Accessed ? 'A' : '-',
3074 Pde.b.u1Dirty ? 'D' : '-',
3075 Pde.b.u1Global ? 'G' : '-',
3076 Pde.b.u1WriteThru ? "WT" : "--",
3077 Pde.b.u1CacheDisable? "CD" : "--",
3078 Pde.b.u1PAT ? "AT" : "--",
3079 Pde.b.u1NoExecute ? "NX" : "--",
3080 Pde.u & RT_BIT_64(9) ? '1' : '0',
3081 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3082 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3083 Pde.u & X86_PDE_PAE_PG_MASK);
3084 else
3085 {
3086 pHlp->pfnPrintf(pHlp,
3087 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3088 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3089 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3090 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3091 Pde.n.u1Write ? 'W' : 'R',
3092 Pde.n.u1User ? 'U' : 'S',
3093 Pde.n.u1Accessed ? 'A' : '-',
3094 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3095 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3096 Pde.n.u1WriteThru ? "WT" : "--",
3097 Pde.n.u1CacheDisable? "CD" : "--",
3098 Pde.n.u1NoExecute ? "NX" : "--",
3099 Pde.u & RT_BIT_64(9) ? '1' : '0',
3100 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3101 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3102 Pde.u & X86_PDE_PAE_PG_MASK);
3103 if (cMaxDepth >= 1)
3104 {
3105 /** @todo what about using the page pool for mapping PTs? */
3106 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3107 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3108 PX86PTPAE pPT = NULL;
3109 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3110 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3111 else
3112 {
3113 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3114 {
3115 uint64_t off = u64AddressPT - pMap->GCPtr;
3116 if (off < pMap->cb)
3117 {
3118 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3119 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3120 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3121 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3122 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3123 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3124 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3125 }
3126 }
3127 }
3128 int rc2 = VERR_INVALID_PARAMETER;
3129 if (pPT)
3130 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3131 else
3132 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%#VHp was not found in the page pool!\n",
3133 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3134 if (rc2 < rc && VBOX_SUCCESS(rc))
3135 rc = rc2;
3136 }
3137 }
3138 }
3139 }
3140 return rc;
3141}
3142
3143
3144/**
3145 * Dumps a PAE shadow page directory pointer table.
3146 *
3147 * @returns VBox status code (VINF_SUCCESS).
3148 * @param pVM The VM handle.
3149 * @param HCPhys The physical address of the page directory pointer table.
3150 * @param u64Address The virtual address of the page table starts.
3151 * @param cr4 The CR4, PSE is currently used.
3152 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3153 * @param cMaxDepth The maxium depth.
3154 * @param pHlp Pointer to the output functions.
3155 */
3156static int pgmR3DumpHierarchyHCPaePDPTR(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3157{
3158 PX86PDPTR pPDPTR = (PX86PDPTR)MMPagePhys2Page(pVM, HCPhys);
3159 if (!pPDPTR)
3160 {
3161 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%#VHp was not found in the page pool!\n",
3162 fLongMode ? 16 : 8, u64Address, HCPhys);
3163 return VERR_INVALID_PARAMETER;
3164 }
3165
3166 int rc = VINF_SUCCESS;
3167 const unsigned c = fLongMode ? ELEMENTS(pPDPTR->a) : X86_PG_PAE_PDPE_ENTRIES;
3168 for (unsigned i = 0; i < c; i++)
3169 {
3170 X86PDPE Pdpe = pPDPTR->a[i];
3171 if (Pdpe.n.u1Present)
3172 {
3173 if (fLongMode)
3174 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3175 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3176 u64Address + ((uint64_t)i << X86_PDPTR_SHIFT),
3177 Pdpe.n.u1Write ? 'W' : 'R',
3178 Pdpe.n.u1User ? 'U' : 'S',
3179 Pdpe.n.u1Accessed ? 'A' : '-',
3180 Pdpe.n.u3Reserved & 1? '?' : '.', /* ignored */
3181 Pdpe.n.u3Reserved & 4? '!' : '.', /* mbz */
3182 Pdpe.n.u1WriteThru ? "WT" : "--",
3183 Pdpe.n.u1CacheDisable? "CD" : "--",
3184 Pdpe.n.u3Reserved & 2? "!" : "..",/* mbz */
3185 Pdpe.n.u1NoExecute ? "NX" : "--",
3186 Pdpe.u & RT_BIT(9) ? '1' : '0',
3187 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3188 Pdpe.u & RT_BIT(11) ? '1' : '0',
3189 Pdpe.u & X86_PDPE_PG_MASK);
3190 else
3191 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3192 "%08x 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3193 i << X86_PDPTR_SHIFT,
3194 Pdpe.n.u1Write ? '!' : '.', /* mbz */
3195 Pdpe.n.u1User ? '!' : '.', /* mbz */
3196 Pdpe.n.u1Accessed ? '!' : '.', /* mbz */
3197 Pdpe.n.u3Reserved & 1? '!' : '.', /* mbz */
3198 Pdpe.n.u3Reserved & 4? '!' : '.', /* mbz */
3199 Pdpe.n.u1WriteThru ? "WT" : "--",
3200 Pdpe.n.u1CacheDisable? "CD" : "--",
3201 Pdpe.n.u3Reserved & 2? "!" : "..",/* mbz */
3202 Pdpe.n.u1NoExecute ? "NX" : "--",
3203 Pdpe.u & RT_BIT(9) ? '1' : '0',
3204 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3205 Pdpe.u & RT_BIT(11) ? '1' : '0',
3206 Pdpe.u & X86_PDPE_PG_MASK);
3207 if (cMaxDepth >= 1)
3208 {
3209 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPTR_SHIFT),
3210 cr4, fLongMode, cMaxDepth - 1, pHlp);
3211 if (rc2 < rc && VBOX_SUCCESS(rc))
3212 rc = rc2;
3213 }
3214 }
3215 }
3216 return rc;
3217}
3218
3219
3220/**
3221 * Dumps a 32-bit shadow page table.
3222 *
3223 * @returns VBox status code (VINF_SUCCESS).
3224 * @param pVM The VM handle.
3225 * @param HCPhys The physical address of the table.
3226 * @param cr4 The CR4, PSE is currently used.
3227 * @param cMaxDepth The maxium depth.
3228 * @param pHlp Pointer to the output functions.
3229 */
3230static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3231{
3232 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3233 if (!pPML4)
3234 {
3235 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%#VHp was not found in the page pool!\n", HCPhys);
3236 return VERR_INVALID_PARAMETER;
3237 }
3238
3239 int rc = VINF_SUCCESS;
3240 for (unsigned i = 0; i < ELEMENTS(pPML4->a); i++)
3241 {
3242 X86PML4E Pml4e = pPML4->a[i];
3243 if (Pml4e.n.u1Present)
3244 {
3245 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPTR_SHIFT - 1)) * 0xffff000000000000ULL);
3246 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3247 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3248 u64Address,
3249 Pml4e.n.u1Write ? 'W' : 'R',
3250 Pml4e.n.u1User ? 'U' : 'S',
3251 Pml4e.n.u1Accessed ? 'A' : '-',
3252 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3253 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3254 Pml4e.n.u1WriteThru ? "WT" : "--",
3255 Pml4e.n.u1CacheDisable? "CD" : "--",
3256 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3257 Pml4e.n.u1NoExecute ? "NX" : "--",
3258 Pml4e.u & RT_BIT(9) ? '1' : '0',
3259 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3260 Pml4e.u & RT_BIT(11) ? '1' : '0',
3261 Pml4e.u & X86_PML4E_PG_MASK);
3262
3263 if (cMaxDepth >= 1)
3264 {
3265 int rc2 = pgmR3DumpHierarchyHCPaePDPTR(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3266 if (rc2 < rc && VBOX_SUCCESS(rc))
3267 rc = rc2;
3268 }
3269 }
3270 }
3271 return rc;
3272}
3273
3274
3275/**
3276 * Dumps a 32-bit shadow page table.
3277 *
3278 * @returns VBox status code (VINF_SUCCESS).
3279 * @param pVM The VM handle.
3280 * @param pPT Pointer to the page table.
3281 * @param u32Address The virtual address this table starts at.
3282 * @param pHlp Pointer to the output functions.
3283 */
3284int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3285{
3286 for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
3287 {
3288 X86PTE Pte = pPT->a[i];
3289 if (Pte.n.u1Present)
3290 {
3291 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3292 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3293 u32Address + (i << X86_PT_SHIFT),
3294 Pte.n.u1Write ? 'W' : 'R',
3295 Pte.n.u1User ? 'U' : 'S',
3296 Pte.n.u1Accessed ? 'A' : '-',
3297 Pte.n.u1Dirty ? 'D' : '-',
3298 Pte.n.u1Global ? 'G' : '-',
3299 Pte.n.u1WriteThru ? "WT" : "--",
3300 Pte.n.u1CacheDisable? "CD" : "--",
3301 Pte.n.u1PAT ? "AT" : "--",
3302 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3303 Pte.u & RT_BIT(10) ? '1' : '0',
3304 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3305 Pte.u & X86_PDE_PG_MASK);
3306 }
3307 }
3308 return VINF_SUCCESS;
3309}
3310
3311
3312/**
3313 * Dumps a 32-bit shadow page directory and page tables.
3314 *
3315 * @returns VBox status code (VINF_SUCCESS).
3316 * @param pVM The VM handle.
3317 * @param cr3 The root of the hierarchy.
3318 * @param cr4 The CR4, PSE is currently used.
3319 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3320 * @param pHlp Pointer to the output functions.
3321 */
3322int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3323{
3324 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3325 if (!pPD)
3326 {
3327 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3328 return VERR_INVALID_PARAMETER;
3329 }
3330
3331 int rc = VINF_SUCCESS;
3332 for (unsigned i = 0; i < ELEMENTS(pPD->a); i++)
3333 {
3334 X86PDE Pde = pPD->a[i];
3335 if (Pde.n.u1Present)
3336 {
3337 const uint32_t u32Address = i << X86_PD_SHIFT;
3338 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3339 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3340 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3341 u32Address,
3342 Pde.b.u1Write ? 'W' : 'R',
3343 Pde.b.u1User ? 'U' : 'S',
3344 Pde.b.u1Accessed ? 'A' : '-',
3345 Pde.b.u1Dirty ? 'D' : '-',
3346 Pde.b.u1Global ? 'G' : '-',
3347 Pde.b.u1WriteThru ? "WT" : "--",
3348 Pde.b.u1CacheDisable? "CD" : "--",
3349 Pde.b.u1PAT ? "AT" : "--",
3350 Pde.u & RT_BIT_64(9) ? '1' : '0',
3351 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3352 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3353 Pde.u & X86_PDE4M_PG_MASK);
3354 else
3355 {
3356 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3357 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3358 u32Address,
3359 Pde.n.u1Write ? 'W' : 'R',
3360 Pde.n.u1User ? 'U' : 'S',
3361 Pde.n.u1Accessed ? 'A' : '-',
3362 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3363 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3364 Pde.n.u1WriteThru ? "WT" : "--",
3365 Pde.n.u1CacheDisable? "CD" : "--",
3366 Pde.u & RT_BIT_64(9) ? '1' : '0',
3367 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3368 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3369 Pde.u & X86_PDE_PG_MASK);
3370 if (cMaxDepth >= 1)
3371 {
3372 /** @todo what about using the page pool for mapping PTs? */
3373 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3374 PX86PT pPT = NULL;
3375 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3376 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3377 else
3378 {
3379 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3380 if (u32Address - pMap->GCPtr < pMap->cb)
3381 {
3382 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3383 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3384 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3385 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3386 pPT = pMap->aPTs[iPDE].pPTR3;
3387 }
3388 }
3389 int rc2 = VERR_INVALID_PARAMETER;
3390 if (pPT)
3391 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3392 else
3393 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3394 if (rc2 < rc && VBOX_SUCCESS(rc))
3395 rc = rc2;
3396 }
3397 }
3398 }
3399 }
3400
3401 return rc;
3402}
3403
3404
3405/**
3406 * Dumps a 32-bit shadow page table.
3407 *
3408 * @returns VBox status code (VINF_SUCCESS).
3409 * @param pVM The VM handle.
3410 * @param pPT Pointer to the page table.
3411 * @param u32Address The virtual address this table starts at.
3412 * @param PhysSearch Address to search for.
3413 */
3414int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3415{
3416 for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
3417 {
3418 X86PTE Pte = pPT->a[i];
3419 if (Pte.n.u1Present)
3420 {
3421 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3422 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3423 u32Address + (i << X86_PT_SHIFT),
3424 Pte.n.u1Write ? 'W' : 'R',
3425 Pte.n.u1User ? 'U' : 'S',
3426 Pte.n.u1Accessed ? 'A' : '-',
3427 Pte.n.u1Dirty ? 'D' : '-',
3428 Pte.n.u1Global ? 'G' : '-',
3429 Pte.n.u1WriteThru ? "WT" : "--",
3430 Pte.n.u1CacheDisable? "CD" : "--",
3431 Pte.n.u1PAT ? "AT" : "--",
3432 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3433 Pte.u & RT_BIT(10) ? '1' : '0',
3434 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3435 Pte.u & X86_PDE_PG_MASK));
3436
3437 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3438 {
3439 uint64_t fPageShw = 0;
3440 RTHCPHYS pPhysHC = 0;
3441
3442 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3443 Log(("Found %VGp at %VGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3444 }
3445 }
3446 }
3447 return VINF_SUCCESS;
3448}
3449
3450
3451/**
3452 * Dumps a 32-bit guest page directory and page tables.
3453 *
3454 * @returns VBox status code (VINF_SUCCESS).
3455 * @param pVM The VM handle.
3456 * @param cr3 The root of the hierarchy.
3457 * @param cr4 The CR4, PSE is currently used.
3458 * @param PhysSearch Address to search for.
3459 */
3460PGMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint32_t cr3, uint32_t cr4, RTGCPHYS PhysSearch)
3461{
3462 bool fLongMode = false;
3463 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3464 PX86PD pPD = 0;
3465
3466 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
3467 if (VBOX_FAILURE(rc) || !pPD)
3468 {
3469 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3470 return VERR_INVALID_PARAMETER;
3471 }
3472
3473 Log(("cr3=%08x cr4=%08x%s\n"
3474 "%-*s P - Present\n"
3475 "%-*s | R/W - Read (0) / Write (1)\n"
3476 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3477 "%-*s | | | A - Accessed\n"
3478 "%-*s | | | | D - Dirty\n"
3479 "%-*s | | | | | G - Global\n"
3480 "%-*s | | | | | | WT - Write thru\n"
3481 "%-*s | | | | | | | CD - Cache disable\n"
3482 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3483 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3484 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3485 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3486 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3487 "%-*s Level | | | | | | | | | | | | Page\n"
3488 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3489 - W U - - - -- -- -- -- -- 010 */
3490 , cr3, cr4, fLongMode ? " Long Mode" : "",
3491 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3492 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3493
3494 for (unsigned i = 0; i < ELEMENTS(pPD->a); i++)
3495 {
3496 X86PDE Pde = pPD->a[i];
3497 if (Pde.n.u1Present)
3498 {
3499 const uint32_t u32Address = i << X86_PD_SHIFT;
3500
3501 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3502 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3503 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3504 u32Address,
3505 Pde.b.u1Write ? 'W' : 'R',
3506 Pde.b.u1User ? 'U' : 'S',
3507 Pde.b.u1Accessed ? 'A' : '-',
3508 Pde.b.u1Dirty ? 'D' : '-',
3509 Pde.b.u1Global ? 'G' : '-',
3510 Pde.b.u1WriteThru ? "WT" : "--",
3511 Pde.b.u1CacheDisable? "CD" : "--",
3512 Pde.b.u1PAT ? "AT" : "--",
3513 Pde.u & RT_BIT(9) ? '1' : '0',
3514 Pde.u & RT_BIT(10) ? '1' : '0',
3515 Pde.u & RT_BIT(11) ? '1' : '0',
3516 Pde.u & X86_PDE4M_PG_MASK));
3517 /** @todo PhysSearch */
3518 else
3519 {
3520 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3521 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3522 u32Address,
3523 Pde.n.u1Write ? 'W' : 'R',
3524 Pde.n.u1User ? 'U' : 'S',
3525 Pde.n.u1Accessed ? 'A' : '-',
3526 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3527 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3528 Pde.n.u1WriteThru ? "WT" : "--",
3529 Pde.n.u1CacheDisable? "CD" : "--",
3530 Pde.u & RT_BIT(9) ? '1' : '0',
3531 Pde.u & RT_BIT(10) ? '1' : '0',
3532 Pde.u & RT_BIT(11) ? '1' : '0',
3533 Pde.u & X86_PDE_PG_MASK));
3534 ////if (cMaxDepth >= 1)
3535 {
3536 /** @todo what about using the page pool for mapping PTs? */
3537 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
3538 PX86PT pPT = NULL;
3539
3540 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
3541
3542 int rc2 = VERR_INVALID_PARAMETER;
3543 if (pPT)
3544 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
3545 else
3546 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
3547 if (rc2 < rc && VBOX_SUCCESS(rc))
3548 rc = rc2;
3549 }
3550 }
3551 }
3552 }
3553
3554 return rc;
3555}
3556
3557
3558/**
3559 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3560 *
3561 * @returns VBox status code (VINF_SUCCESS).
3562 * @param pVM The VM handle.
3563 * @param cr3 The root of the hierarchy.
3564 * @param cr4 The cr4, only PAE and PSE is currently used.
3565 * @param fLongMode Set if long mode, false if not long mode.
3566 * @param cMaxDepth Number of levels to dump.
3567 * @param pHlp Pointer to the output functions.
3568 */
3569PGMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3570{
3571 if (!pHlp)
3572 pHlp = DBGFR3InfoLogHlp();
3573 if (!cMaxDepth)
3574 return VINF_SUCCESS;
3575 const unsigned cch = fLongMode ? 16 : 8;
3576 pHlp->pfnPrintf(pHlp,
3577 "cr3=%08x cr4=%08x%s\n"
3578 "%-*s P - Present\n"
3579 "%-*s | R/W - Read (0) / Write (1)\n"
3580 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3581 "%-*s | | | A - Accessed\n"
3582 "%-*s | | | | D - Dirty\n"
3583 "%-*s | | | | | G - Global\n"
3584 "%-*s | | | | | | WT - Write thru\n"
3585 "%-*s | | | | | | | CD - Cache disable\n"
3586 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3587 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3588 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3589 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3590 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3591 "%-*s Level | | | | | | | | | | | | Page\n"
3592 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3593 - W U - - - -- -- -- -- -- 010 */
3594 , cr3, cr4, fLongMode ? " Long Mode" : "",
3595 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3596 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
3597 if (cr4 & X86_CR4_PAE)
3598 {
3599 if (fLongMode)
3600 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
3601 return pgmR3DumpHierarchyHCPaePDPTR(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
3602 }
3603 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
3604}
3605
3606
3607
3608#ifdef VBOX_WITH_DEBUGGER
3609/**
3610 * The '.pgmram' command.
3611 *
3612 * @returns VBox status.
3613 * @param pCmd Pointer to the command descriptor (as registered).
3614 * @param pCmdHlp Pointer to command helper functions.
3615 * @param pVM Pointer to the current VM (if any).
3616 * @param paArgs Pointer to (readonly) array of arguments.
3617 * @param cArgs Number of arguments in the array.
3618 */
3619static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3620{
3621 /*
3622 * Validate input.
3623 */
3624 if (!pVM)
3625 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires VM to be selected.\n");
3626 if (!pVM->pgm.s.pRamRangesGC)
3627 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
3628
3629 /*
3630 * Dump the ranges.
3631 */
3632 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
3633 PPGMRAMRANGE pRam;
3634 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
3635 {
3636 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
3637 "%VGp - %VGp %p\n",
3638 pRam->GCPhys, pRam->GCPhysLast, pRam->pvHC);
3639 if (VBOX_FAILURE(rc))
3640 return rc;
3641 }
3642
3643 return VINF_SUCCESS;
3644}
3645
3646
3647/**
3648 * The '.pgmmap' command.
3649 *
3650 * @returns VBox status.
3651 * @param pCmd Pointer to the command descriptor (as registered).
3652 * @param pCmdHlp Pointer to command helper functions.
3653 * @param pVM Pointer to the current VM (if any).
3654 * @param paArgs Pointer to (readonly) array of arguments.
3655 * @param cArgs Number of arguments in the array.
3656 */
3657static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3658{
3659 /*
3660 * Validate input.
3661 */
3662 if (!pVM)
3663 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires VM to be selected.\n");
3664 if (!pVM->pgm.s.pMappingsR3)
3665 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
3666
3667 /*
3668 * Print message about the fixedness of the mappings.
3669 */
3670 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
3671 if (VBOX_FAILURE(rc))
3672 return rc;
3673
3674 /*
3675 * Dump the ranges.
3676 */
3677 PPGMMAPPING pCur;
3678 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
3679 {
3680 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
3681 "%08x - %08x %s\n",
3682 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
3683 if (VBOX_FAILURE(rc))
3684 return rc;
3685 }
3686
3687 return VINF_SUCCESS;
3688}
3689
3690
3691/**
3692 * The '.pgmsync' command.
3693 *
3694 * @returns VBox status.
3695 * @param pCmd Pointer to the command descriptor (as registered).
3696 * @param pCmdHlp Pointer to command helper functions.
3697 * @param pVM Pointer to the current VM (if any).
3698 * @param paArgs Pointer to (readonly) array of arguments.
3699 * @param cArgs Number of arguments in the array.
3700 */
3701static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3702{
3703 /*
3704 * Validate input.
3705 */
3706 if (!pVM)
3707 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires VM to be selected.\n");
3708
3709 /*
3710 * Force page directory sync.
3711 */
3712 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
3713
3714 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
3715 if (VBOX_FAILURE(rc))
3716 return rc;
3717
3718 return VINF_SUCCESS;
3719}
3720
3721
3722/**
3723 * The '.pgmsyncalways' command.
3724 *
3725 * @returns VBox status.
3726 * @param pCmd Pointer to the command descriptor (as registered).
3727 * @param pCmdHlp Pointer to command helper functions.
3728 * @param pVM Pointer to the current VM (if any).
3729 * @param paArgs Pointer to (readonly) array of arguments.
3730 * @param cArgs Number of arguments in the array.
3731 */
3732static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3733{
3734 /*
3735 * Validate input.
3736 */
3737 if (!pVM)
3738 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires VM to be selected.\n");
3739
3740 /*
3741 * Force page directory sync.
3742 */
3743 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
3744 {
3745 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
3746 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
3747 }
3748 else
3749 {
3750 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
3751 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
3752 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
3753 }
3754}
3755
3756#endif
3757
3758/**
3759 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
3760 */
3761typedef struct PGMCHECKINTARGS
3762{
3763 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
3764 PPGMPHYSHANDLER pPrevPhys;
3765 PPGMVIRTHANDLER pPrevVirt;
3766 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
3767 PVM pVM;
3768} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
3769
3770/**
3771 * Validate a node in the physical handler tree.
3772 *
3773 * @returns 0 on if ok, other wise 1.
3774 * @param pNode The handler node.
3775 * @param pvUser pVM.
3776 */
3777static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
3778{
3779 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
3780 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
3781 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
3782 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3783 AssertReleaseMsg( !pArgs->pPrevPhys
3784 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
3785 ("pPrevPhys=%p %VGp-%VGp %s\n"
3786 " pCur=%p %VGp-%VGp %s\n",
3787 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
3788 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3789 pArgs->pPrevPhys = pCur;
3790 return 0;
3791}
3792
3793
3794/**
3795 * Validate a node in the virtual handler tree.
3796 *
3797 * @returns 0 on if ok, other wise 1.
3798 * @param pNode The handler node.
3799 * @param pvUser pVM.
3800 */
3801static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
3802{
3803 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
3804 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
3805 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
3806 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGv-%VGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3807 AssertReleaseMsg( !pArgs->pPrevVirt
3808 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
3809 ("pPrevVirt=%p %VGv-%VGv %s\n"
3810 " pCur=%p %VGv-%VGv %s\n",
3811 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
3812 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3813 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
3814 {
3815 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
3816 ("pCur=%p %VGv-%VGv %s\n"
3817 "iPage=%d offVirtHandle=%#x expected %#x\n",
3818 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
3819 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
3820 }
3821 pArgs->pPrevVirt = pCur;
3822 return 0;
3823}
3824
3825
3826/**
3827 * Validate a node in the virtual handler tree.
3828 *
3829 * @returns 0 on if ok, other wise 1.
3830 * @param pNode The handler node.
3831 * @param pvUser pVM.
3832 */
3833static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
3834{
3835 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
3836 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
3837 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
3838 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
3839 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
3840 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
3841 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
3842 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
3843 " pCur=%p %VGp-%VGp\n",
3844 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
3845 pCur, pCur->Core.Key, pCur->Core.KeyLast));
3846 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
3847 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
3848 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
3849 " pCur=%p %VGp-%VGp\n",
3850 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
3851 pCur, pCur->Core.Key, pCur->Core.KeyLast));
3852 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
3853 ("pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3854 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
3855 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
3856 {
3857 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
3858 for (;;)
3859 {
3860 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
3861 AssertReleaseMsg(pCur2 != pCur,
3862 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3863 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
3864 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
3865 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
3866 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3867 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
3868 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
3869 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
3870 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
3871 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3872 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
3873 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
3874 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
3875 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
3876 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3877 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
3878 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
3879 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
3880 break;
3881 }
3882 }
3883
3884 pArgs->pPrevPhys2Virt = pCur;
3885 return 0;
3886}
3887
3888
3889/**
3890 * Perform an integrity check on the PGM component.
3891 *
3892 * @returns VINF_SUCCESS if everything is fine.
3893 * @returns VBox error status after asserting on integrity breach.
3894 * @param pVM The VM handle.
3895 */
3896PDMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
3897{
3898 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
3899
3900 /*
3901 * Check the trees.
3902 */
3903 int cErrors = 0;
3904 PGMCHECKINTARGS Args = { true, NULL, NULL, NULL, pVM };
3905 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
3906 Args.fLeftToRight = false;
3907 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
3908 Args.fLeftToRight = true;
3909 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
3910 Args.fLeftToRight = false;
3911 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
3912 Args.fLeftToRight = true;
3913 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
3914 Args.fLeftToRight = false;
3915 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
3916 Args.fLeftToRight = true;
3917 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
3918 Args.fLeftToRight = false;
3919 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
3920
3921 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
3922}
3923
3924
3925/**
3926 * Inform PGM if we want all mappings to be put into the shadow page table. (necessary for e.g. VMX)
3927 *
3928 * @returns VBox status code.
3929 * @param pVM VM handle.
3930 * @param fEnable Enable or disable shadow mappings
3931 */
3932PGMR3DECL(int) PGMR3ChangeShwPDMappings(PVM pVM, bool fEnable)
3933{
3934 pVM->pgm.s.fDisableMappings = !fEnable;
3935
3936 uint32_t cb;
3937 int rc = PGMR3MappingsSize(pVM, &cb);
3938 AssertRCReturn(rc, rc);
3939
3940 /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */
3941 rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb);
3942 AssertRCReturn(rc, rc);
3943
3944 return VINF_SUCCESS;
3945}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette