VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMInternal.h@ 12681

Last change on this file since 12681 was 12681, checked in by vboxsync, 16 years ago

Updates for real and protected mode without paging shadow mode.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 156.4 KB
Line 
1/* $Id: PGMInternal.h 12681 2008-09-24 11:51:10Z vboxsync $ */
2/** @file
3 * PGM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22#ifndef ___PGMInternal_h
23#define ___PGMInternal_h
24
25#include <VBox/cdefs.h>
26#include <VBox/types.h>
27#include <VBox/err.h>
28#include <VBox/stam.h>
29#include <VBox/param.h>
30#include <VBox/vmm.h>
31#include <VBox/mm.h>
32#include <VBox/pdmcritsect.h>
33#include <VBox/pdmapi.h>
34#include <VBox/dis.h>
35#include <VBox/dbgf.h>
36#include <VBox/log.h>
37#include <VBox/gmm.h>
38#include <VBox/hwaccm.h>
39#include <iprt/avl.h>
40#include <iprt/assert.h>
41#include <iprt/critsect.h>
42
43#if !defined(IN_PGM_R3) && !defined(IN_PGM_R0) && !defined(IN_PGM_GC)
44# error "Not in PGM! This is an internal header!"
45#endif
46
47
48/** @defgroup grp_pgm_int Internals
49 * @ingroup grp_pgm
50 * @internal
51 * @{
52 */
53
54
55/** @name PGM Compile Time Config
56 * @{
57 */
58
59/**
60 * Solve page is out of sync issues inside Guest Context (in PGMGC.cpp).
61 * Comment it if it will break something.
62 */
63#define PGM_OUT_OF_SYNC_IN_GC
64
65/**
66 * Check and skip global PDEs for non-global flushes
67 */
68#define PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
69
70/**
71 * Sync N pages instead of a whole page table
72 */
73#define PGM_SYNC_N_PAGES
74
75/**
76 * Number of pages to sync during a page fault
77 *
78 * When PGMPOOL_WITH_GCPHYS_TRACKING is enabled using high values here
79 * causes a lot of unnecessary extents and also is slower than taking more \#PFs.
80 */
81#define PGM_SYNC_NR_PAGES 8
82
83/**
84 * Number of PGMPhysRead/Write cache entries (must be <= sizeof(uint64_t))
85 */
86#define PGM_MAX_PHYSCACHE_ENTRIES 64
87#define PGM_MAX_PHYSCACHE_ENTRIES_MASK (PGM_MAX_PHYSCACHE_ENTRIES-1)
88
89/**
90 * Enable caching of PGMR3PhysRead/WriteByte/Word/Dword
91 */
92#define PGM_PHYSMEMACCESS_CACHING
93
94/** @def PGMPOOL_WITH_CACHE
95 * Enable agressive caching using the page pool.
96 *
97 * This requires PGMPOOL_WITH_USER_TRACKING and PGMPOOL_WITH_MONITORING.
98 */
99#define PGMPOOL_WITH_CACHE
100
101/** @def PGMPOOL_WITH_MIXED_PT_CR3
102 * When defined, we'll deal with 'uncachable' pages.
103 */
104#ifdef PGMPOOL_WITH_CACHE
105# define PGMPOOL_WITH_MIXED_PT_CR3
106#endif
107
108/** @def PGMPOOL_WITH_MONITORING
109 * Monitor the guest pages which are shadowed.
110 * When this is enabled, PGMPOOL_WITH_CACHE or PGMPOOL_WITH_GCPHYS_TRACKING must
111 * be enabled as well.
112 * @remark doesn't really work without caching now. (Mixed PT/CR3 change.)
113 */
114#ifdef PGMPOOL_WITH_CACHE
115# define PGMPOOL_WITH_MONITORING
116#endif
117
118/** @def PGMPOOL_WITH_GCPHYS_TRACKING
119 * Tracking the of shadow pages mapping guest physical pages.
120 *
121 * This is very expensive, the current cache prototype is trying to figure out
122 * whether it will be acceptable with an agressive caching policy.
123 */
124#if defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
125# define PGMPOOL_WITH_GCPHYS_TRACKING
126#endif
127
128/** @def PGMPOOL_WITH_USER_TRACKING
129 * Tracking users of shadow pages. This is required for the linking of shadow page
130 * tables and physical guest addresses.
131 */
132#if defined(PGMPOOL_WITH_GCPHYS_TRACKING) || defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
133# define PGMPOOL_WITH_USER_TRACKING
134#endif
135
136/** @def PGMPOOL_CFG_MAX_GROW
137 * The maximum number of pages to add to the pool in one go.
138 */
139#define PGMPOOL_CFG_MAX_GROW (_256K >> PAGE_SHIFT)
140
141/** @def VBOX_STRICT_PGM_HANDLER_VIRTUAL
142 * Enables some extra assertions for virtual handlers (mainly phys2virt related).
143 */
144#ifdef VBOX_STRICT
145# define VBOX_STRICT_PGM_HANDLER_VIRTUAL
146#endif
147/** @} */
148
149
150/** @name PDPT and PML4 flags.
151 * These are placed in the three bits available for system programs in
152 * the PDPT and PML4 entries.
153 * @{ */
154/** The entry is a permanent one and it's must always be present.
155 * Never free such an entry. */
156#define PGM_PLXFLAGS_PERMANENT RT_BIT_64(10)
157/** Mapping (hypervisor allocated pagetable). */
158#define PGM_PLXFLAGS_MAPPING RT_BIT_64(11)
159/** @} */
160
161/** @name Page directory flags.
162 * These are placed in the three bits available for system programs in
163 * the page directory entries.
164 * @{ */
165/** Mapping (hypervisor allocated pagetable). */
166#define PGM_PDFLAGS_MAPPING RT_BIT_64(10)
167/** Made read-only to facilitate dirty bit tracking. */
168#define PGM_PDFLAGS_TRACK_DIRTY RT_BIT_64(11)
169/** @} */
170
171/** @name Page flags.
172 * These are placed in the three bits available for system programs in
173 * the page entries.
174 * @{ */
175/** Made read-only to facilitate dirty bit tracking. */
176#define PGM_PTFLAGS_TRACK_DIRTY RT_BIT_64(9)
177
178#ifndef PGM_PTFLAGS_CSAM_VALIDATED
179/** Scanned and approved by CSAM (tm).
180 * NOTE: Must be identical to the one defined in CSAMInternal.h!!
181 * @todo Move PGM_PTFLAGS_* and PGM_PDFLAGS_* to VBox/pgm.h. */
182#define PGM_PTFLAGS_CSAM_VALIDATED RT_BIT_64(11)
183#endif
184/** @} */
185
186/** @name Defines used to indicate the shadow and guest paging in the templates.
187 * @{ */
188#define PGM_TYPE_REAL 1
189#define PGM_TYPE_PROT 2
190#define PGM_TYPE_32BIT 3
191#define PGM_TYPE_PAE 4
192#define PGM_TYPE_AMD64 5
193#define PGM_TYPE_NESTED 6
194#define PGM_TYPE_EPT 7
195/** @} */
196
197/** Macro for checking if the guest is using paging.
198 * @param uType PGM_TYPE_*
199 * @remark ASSUMES certain order of the PGM_TYPE_* values.
200 */
201#define PGM_WITH_PAGING(uType) ((uType) >= PGM_TYPE_32BIT && (uType) != PGM_TYPE_NESTED && (uType) != PGM_TYPE_EPT)
202
203/** Macro for checking if the guest supports the NX bit.
204 * @param uType PGM_TYPE_*
205 * @remark ASSUMES certain order of the PGM_TYPE_* values.
206 */
207#define PGM_WITH_NX(uType) ((uType) >= PGM_TYPE_PAE && (uType) != PGM_TYPE_NESTED && (uType) != PGM_TYPE_EPT)
208
209
210/** @def PGM_HCPHYS_2_PTR
211 * Maps a HC physical page pool address to a virtual address.
212 *
213 * @returns VBox status code.
214 * @param pVM The VM handle.
215 * @param HCPhys The HC physical address to map to a virtual one.
216 * @param ppv Where to store the virtual address. No need to cast this.
217 *
218 * @remark In GC this uses PGMGCDynMapHCPage(), so it will consume of the
219 * small page window employeed by that function. Be careful.
220 * @remark There is no need to assert on the result.
221 */
222#ifdef IN_GC
223# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) PGMGCDynMapHCPage(pVM, HCPhys, (void **)(ppv))
224#else
225# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) MMPagePhys2PageEx(pVM, HCPhys, (void **)(ppv))
226#endif
227
228/** @def PGM_GCPHYS_2_PTR
229 * Maps a GC physical page address to a virtual address.
230 *
231 * @returns VBox status code.
232 * @param pVM The VM handle.
233 * @param GCPhys The GC physical address to map to a virtual one.
234 * @param ppv Where to store the virtual address. No need to cast this.
235 *
236 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
237 * small page window employeed by that function. Be careful.
238 * @remark There is no need to assert on the result.
239 */
240#ifdef IN_GC
241# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) PGMGCDynMapGCPage(pVM, GCPhys, (void **)(ppv))
242#else
243# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) PGMPhysGCPhys2HCPtr(pVM, GCPhys, 1 /* one page only */, (void **)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
244#endif
245
246/** @def PGM_GCPHYS_2_PTR_EX
247 * Maps a unaligned GC physical page address to a virtual address.
248 *
249 * @returns VBox status code.
250 * @param pVM The VM handle.
251 * @param GCPhys The GC physical address to map to a virtual one.
252 * @param ppv Where to store the virtual address. No need to cast this.
253 *
254 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
255 * small page window employeed by that function. Be careful.
256 * @remark There is no need to assert on the result.
257 */
258#ifdef IN_GC
259# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) PGMGCDynMapGCPageEx(pVM, GCPhys, (void **)(ppv))
260#else
261# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) PGMPhysGCPhys2HCPtr(pVM, GCPhys, 1 /* one page only */, (void **)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
262#endif
263
264/** @def PGM_INVL_PG
265 * Invalidates a page when in GC does nothing in HC.
266 *
267 * @param GCVirt The virtual address of the page to invalidate.
268 */
269#ifdef IN_GC
270# define PGM_INVL_PG(GCVirt) ASMInvalidatePage((void *)(GCVirt))
271#elif defined(IN_RING0)
272# define PGM_INVL_PG(GCVirt) HWACCMInvalidatePage(pVM, (RTGCPTR)(GCVirt))
273#else
274# define PGM_INVL_PG(GCVirt) HWACCMInvalidatePage(pVM, (RTGCPTR)(GCVirt))
275#endif
276
277/** @def PGM_INVL_BIG_PG
278 * Invalidates a 4MB page directory entry when in GC does nothing in HC.
279 *
280 * @param GCVirt The virtual address within the page directory to invalidate.
281 */
282#ifdef IN_GC
283# define PGM_INVL_BIG_PG(GCVirt) ASMReloadCR3()
284#elif defined(IN_RING0)
285# define PGM_INVL_BIG_PG(GCVirt) HWACCMFlushTLB(pVM)
286#else
287# define PGM_INVL_BIG_PG(GCVirt) HWACCMFlushTLB(pVM)
288#endif
289
290/** @def PGM_INVL_GUEST_TLBS()
291 * Invalidates all guest TLBs.
292 */
293#ifdef IN_GC
294# define PGM_INVL_GUEST_TLBS() ASMReloadCR3()
295#elif defined(IN_RING0)
296# define PGM_INVL_GUEST_TLBS() HWACCMFlushTLB(pVM)
297#else
298# define PGM_INVL_GUEST_TLBS() HWACCMFlushTLB(pVM)
299#endif
300
301
302/**
303 * Structure for tracking GC Mappings.
304 *
305 * This structure is used by linked list in both GC and HC.
306 */
307typedef struct PGMMAPPING
308{
309 /** Pointer to next entry. */
310 R3PTRTYPE(struct PGMMAPPING *) pNextR3;
311 /** Pointer to next entry. */
312 R0PTRTYPE(struct PGMMAPPING *) pNextR0;
313 /** Pointer to next entry. */
314 RCPTRTYPE(struct PGMMAPPING *) pNextGC;
315#if GC_ARCH_BITS == 64
316 RTRCPTR padding0;
317#endif
318 /** Start Virtual address. */
319 RTGCUINTPTR GCPtr;
320 /** Last Virtual address (inclusive). */
321 RTGCUINTPTR GCPtrLast;
322 /** Range size (bytes). */
323 RTGCUINTPTR cb;
324 /** Pointer to relocation callback function. */
325 R3PTRTYPE(PFNPGMRELOCATE) pfnRelocate;
326 /** User argument to the callback. */
327 R3PTRTYPE(void *) pvUser;
328 /** Mapping description / name. For easing debugging. */
329 R3PTRTYPE(const char *) pszDesc;
330 /** Number of page tables. */
331 RTUINT cPTs;
332#if HC_ARCH_BITS != GC_ARCH_BITS || GC_ARCH_BITS == 64
333 RTUINT uPadding1; /**< Alignment padding. */
334#endif
335 /** Array of page table mapping data. Each entry
336 * describes one page table. The array can be longer
337 * than the declared length.
338 */
339 struct
340 {
341 /** The HC physical address of the page table. */
342 RTHCPHYS HCPhysPT;
343 /** The HC physical address of the first PAE page table. */
344 RTHCPHYS HCPhysPaePT0;
345 /** The HC physical address of the second PAE page table. */
346 RTHCPHYS HCPhysPaePT1;
347 /** The HC virtual address of the 32-bit page table. */
348 R3PTRTYPE(PX86PT) pPTR3;
349 /** The HC virtual address of the two PAE page table. (i.e 1024 entries instead of 512) */
350 R3PTRTYPE(PX86PTPAE) paPaePTsR3;
351 /** The GC virtual address of the 32-bit page table. */
352 RCPTRTYPE(PX86PT) pPTGC;
353 /** The GC virtual address of the two PAE page table. */
354 RCPTRTYPE(PX86PTPAE) paPaePTsGC;
355 /** The GC virtual address of the 32-bit page table. */
356 R0PTRTYPE(PX86PT) pPTR0;
357 /** The GC virtual address of the two PAE page table. */
358 R0PTRTYPE(PX86PTPAE) paPaePTsR0;
359 } aPTs[1];
360} PGMMAPPING;
361/** Pointer to structure for tracking GC Mappings. */
362typedef struct PGMMAPPING *PPGMMAPPING;
363
364
365/**
366 * Physical page access handler structure.
367 *
368 * This is used to keep track of physical address ranges
369 * which are being monitored in some kind of way.
370 */
371typedef struct PGMPHYSHANDLER
372{
373 AVLROGCPHYSNODECORE Core;
374 /** Access type. */
375 PGMPHYSHANDLERTYPE enmType;
376 /** Number of pages to update. */
377 uint32_t cPages;
378 /** Pointer to R3 callback function. */
379 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3;
380 /** User argument for R3 handlers. */
381 R3PTRTYPE(void *) pvUserR3;
382 /** Pointer to R0 callback function. */
383 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0;
384 /** User argument for R0 handlers. */
385 R0PTRTYPE(void *) pvUserR0;
386 /** Pointer to GC callback function. */
387 RCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnHandlerGC;
388 /** User argument for GC handlers. */
389 RCPTRTYPE(void *) pvUserGC;
390 /** Description / Name. For easing debugging. */
391 R3PTRTYPE(const char *) pszDesc;
392#ifdef VBOX_WITH_STATISTICS
393 /** Profiling of this handler. */
394 STAMPROFILE Stat;
395#endif
396} PGMPHYSHANDLER;
397/** Pointer to a physical page access handler structure. */
398typedef PGMPHYSHANDLER *PPGMPHYSHANDLER;
399
400
401/**
402 * Cache node for the physical addresses covered by a virtual handler.
403 */
404typedef struct PGMPHYS2VIRTHANDLER
405{
406 /** Core node for the tree based on physical ranges. */
407 AVLROGCPHYSNODECORE Core;
408 /** Offset from this struct to the PGMVIRTHANDLER structure. */
409 int32_t offVirtHandler;
410 /** Offset of the next alias relative to this one.
411 * Bit 0 is used for indicating whether we're in the tree.
412 * Bit 1 is used for indicating that we're the head node.
413 */
414 int32_t offNextAlias;
415} PGMPHYS2VIRTHANDLER;
416/** Pointer to a phys to virtual handler structure. */
417typedef PGMPHYS2VIRTHANDLER *PPGMPHYS2VIRTHANDLER;
418
419/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
420 * node is in the tree. */
421#define PGMPHYS2VIRTHANDLER_IN_TREE RT_BIT(0)
422/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
423 * node is in the head of an alias chain.
424 * The PGMPHYS2VIRTHANDLER_IN_TREE is always set if this bit is set. */
425#define PGMPHYS2VIRTHANDLER_IS_HEAD RT_BIT(1)
426/** The mask to apply to PGMPHYS2VIRTHANDLER::offNextAlias to get the offset. */
427#define PGMPHYS2VIRTHANDLER_OFF_MASK (~(int32_t)3)
428
429
430/**
431 * Virtual page access handler structure.
432 *
433 * This is used to keep track of virtual address ranges
434 * which are being monitored in some kind of way.
435 */
436typedef struct PGMVIRTHANDLER
437{
438 /** Core node for the tree based on virtual ranges. */
439 AVLROGCPTRNODECORE Core;
440 /** Number of cache pages. */
441 uint32_t u32Padding;
442 /** Access type. */
443 PGMVIRTHANDLERTYPE enmType;
444 /** Number of cache pages. */
445 uint32_t cPages;
446#if GC_ARCH_BITS == 64
447 uint32_t padding0;
448#endif
449/** @todo The next two members are redundant. It adds some readability though. */
450 /** Start of the range. */
451 RTGCPTR GCPtr;
452 /** End of the range (exclusive). */
453 RTGCPTR GCPtrLast;
454 /** Size of the range (in bytes). */
455 RTGCUINTPTR cb;
456 /** Pointer to the GC callback function. */
457 RCPTRTYPE(PFNPGMGCVIRTHANDLER) pfnHandlerGC;
458#if GC_ARCH_BITS == 64
459 RTRCPTR padding1;
460#endif
461 /** Pointer to the HC callback function for invalidation. */
462 R3PTRTYPE(PFNPGMHCVIRTINVALIDATE) pfnInvalidateHC;
463 /** Pointer to the HC callback function. */
464 R3PTRTYPE(PFNPGMHCVIRTHANDLER) pfnHandlerHC;
465 /** Description / Name. For easing debugging. */
466 R3PTRTYPE(const char *) pszDesc;
467#ifdef VBOX_WITH_STATISTICS
468 /** Profiling of this handler. */
469 STAMPROFILE Stat;
470#endif
471 /** Array of cached physical addresses for the monitored ranged. */
472 PGMPHYS2VIRTHANDLER aPhysToVirt[HC_ARCH_BITS == 32 ? 1 : 2];
473} PGMVIRTHANDLER;
474/** Pointer to a virtual page access handler structure. */
475typedef PGMVIRTHANDLER *PPGMVIRTHANDLER;
476
477
478/**
479 * Page type.
480 * @remarks This enum has to fit in a 3-bit field (see PGMPAGE::u3Type).
481 * @todo convert to \#defines.
482 */
483typedef enum PGMPAGETYPE
484{
485 /** The usual invalid zero entry. */
486 PGMPAGETYPE_INVALID = 0,
487 /** RAM page. (RWX) */
488 PGMPAGETYPE_RAM,
489 /** MMIO2 page. (RWX) */
490 PGMPAGETYPE_MMIO2,
491 /** Shadowed ROM. (RWX) */
492 PGMPAGETYPE_ROM_SHADOW,
493 /** ROM page. (R-X) */
494 PGMPAGETYPE_ROM,
495 /** MMIO page. (---) */
496 PGMPAGETYPE_MMIO,
497 /** End of valid entries. */
498 PGMPAGETYPE_END
499} PGMPAGETYPE;
500AssertCompile(PGMPAGETYPE_END < 7);
501
502/** @name Page type predicates.
503 * @{ */
504#define PGMPAGETYPE_IS_READABLE(type) ( (type) <= PGMPAGETYPE_ROM )
505#define PGMPAGETYPE_IS_WRITEABLE(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
506#define PGMPAGETYPE_IS_RWX(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
507#define PGMPAGETYPE_IS_ROX(type) ( (type) == PGMPAGETYPE_ROM )
508#define PGMPAGETYPE_IS_NP(type) ( (type) == PGMPAGETYPE_MMIO )
509/** @} */
510
511
512/**
513 * A Physical Guest Page tracking structure.
514 *
515 * The format of this structure is complicated because we have to fit a lot
516 * of information into as few bits as possible. The format is also subject
517 * to change (there is one comming up soon). Which means that for we'll be
518 * using PGM_PAGE_GET_*, PGM_PAGE_IS_ and PGM_PAGE_SET_* macros for *all*
519 * accessess to the structure.
520 */
521typedef struct PGMPAGE
522{
523 /** The physical address and a whole lot of other stuff. All bits are used! */
524 RTHCPHYS HCPhys;
525 /** The page state. */
526 uint32_t u2StateX : 2;
527 /** Flag indicating that a write monitored page was written to when set. */
528 uint32_t fWrittenToX : 1;
529 /** For later. */
530 uint32_t fSomethingElse : 1;
531 /** The Page ID.
532 * @todo Merge with HCPhys once we've liberated HCPhys of its stuff.
533 * The HCPhys will be 100% static. */
534 uint32_t idPageX : 28;
535 /** The page type (PGMPAGETYPE). */
536 uint32_t u3Type : 3;
537 /** The physical handler state (PGM_PAGE_HNDL_PHYS_STATE*) */
538 uint32_t u2HandlerPhysStateX : 2;
539 /** The virtual handler state (PGM_PAGE_HNDL_VIRT_STATE*) */
540 uint32_t u2HandlerVirtStateX : 2;
541 uint32_t u29B : 25;
542} PGMPAGE;
543AssertCompileSize(PGMPAGE, 16);
544/** Pointer to a physical guest page. */
545typedef PGMPAGE *PPGMPAGE;
546/** Pointer to a const physical guest page. */
547typedef const PGMPAGE *PCPGMPAGE;
548/** Pointer to a physical guest page pointer. */
549typedef PPGMPAGE *PPPGMPAGE;
550
551
552/**
553 * Clears the page structure.
554 * @param pPage Pointer to the physical guest page tracking structure.
555 */
556#define PGM_PAGE_CLEAR(pPage) \
557 do { \
558 (pPage)->HCPhys = 0; \
559 (pPage)->u2StateX = 0; \
560 (pPage)->fWrittenToX = 0; \
561 (pPage)->fSomethingElse = 0; \
562 (pPage)->idPageX = 0; \
563 (pPage)->u3Type = 0; \
564 (pPage)->u29B = 0; \
565 } while (0)
566
567/**
568 * Initializes the page structure.
569 * @param pPage Pointer to the physical guest page tracking structure.
570 */
571#define PGM_PAGE_INIT(pPage, _HCPhys, _idPage, _uType, _uState) \
572 do { \
573 (pPage)->HCPhys = (_HCPhys); \
574 (pPage)->u2StateX = (_uState); \
575 (pPage)->fWrittenToX = 0; \
576 (pPage)->fSomethingElse = 0; \
577 (pPage)->idPageX = (_idPage); \
578 /*(pPage)->u3Type = (_uType); - later */ \
579 PGM_PAGE_SET_TYPE(pPage, _uType); \
580 (pPage)->u29B = 0; \
581 } while (0)
582
583/**
584 * Initializes the page structure of a ZERO page.
585 * @param pPage Pointer to the physical guest page tracking structure.
586 */
587#ifdef VBOX_WITH_NEW_PHYS_CODE
588# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
589 PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
590#else
591# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
592 PGM_PAGE_INIT(pPage, 0, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
593#endif
594/** Temporary hack. Replaced by PGM_PAGE_INIT_ZERO once the old code is kicked out. */
595# define PGM_PAGE_INIT_ZERO_REAL(pPage, pVM, _uType) \
596 PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
597
598
599/** @name The Page state, PGMPAGE::u2StateX.
600 * @{ */
601/** The zero page.
602 * This is a per-VM page that's never ever mapped writable. */
603#define PGM_PAGE_STATE_ZERO 0
604/** A allocated page.
605 * This is a per-VM page allocated from the page pool (or wherever
606 * we get MMIO2 pages from if the type is MMIO2).
607 */
608#define PGM_PAGE_STATE_ALLOCATED 1
609/** A allocated page that's being monitored for writes.
610 * The shadow page table mappings are read-only. When a write occurs, the
611 * fWrittenTo member is set, the page remapped as read-write and the state
612 * moved back to allocated. */
613#define PGM_PAGE_STATE_WRITE_MONITORED 2
614/** The page is shared, aka. copy-on-write.
615 * This is a page that's shared with other VMs. */
616#define PGM_PAGE_STATE_SHARED 3
617/** @} */
618
619
620/**
621 * Gets the page state.
622 * @returns page state (PGM_PAGE_STATE_*).
623 * @param pPage Pointer to the physical guest page tracking structure.
624 */
625#define PGM_PAGE_GET_STATE(pPage) ( (pPage)->u2StateX )
626
627/**
628 * Sets the page state.
629 * @param pPage Pointer to the physical guest page tracking structure.
630 * @param _uState The new page state.
631 */
632#define PGM_PAGE_SET_STATE(pPage, _uState) \
633 do { (pPage)->u2StateX = (_uState); } while (0)
634
635
636/**
637 * Gets the host physical address of the guest page.
638 * @returns host physical address (RTHCPHYS).
639 * @param pPage Pointer to the physical guest page tracking structure.
640 */
641#define PGM_PAGE_GET_HCPHYS(pPage) ( (pPage)->HCPhys & UINT64_C(0x0000fffffffff000) )
642
643/**
644 * Sets the host physical address of the guest page.
645 * @param pPage Pointer to the physical guest page tracking structure.
646 * @param _HCPhys The new host physical address.
647 */
648#define PGM_PAGE_SET_HCPHYS(pPage, _HCPhys) \
649 do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0xffff000000000fff)) \
650 | ((_HCPhys) & UINT64_C(0x0000fffffffff000)); } while (0)
651
652/**
653 * Get the Page ID.
654 * @returns The Page ID; NIL_GMM_PAGEID if it's a ZERO page.
655 * @param pPage Pointer to the physical guest page tracking structure.
656 */
657#define PGM_PAGE_GET_PAGEID(pPage) ( (pPage)->idPageX )
658/* later:
659#define PGM_PAGE_GET_PAGEID(pPage) ( ((uint32_t)(pPage)->HCPhys >> (48 - 12))
660 | ((uint32_t)(pPage)->HCPhys & 0xfff) )
661*/
662/**
663 * Sets the Page ID.
664 * @param pPage Pointer to the physical guest page tracking structure.
665 */
666#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->idPageX = (_idPage); } while (0)
667/* later:
668#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0x0000fffffffff000)) \
669 | ((_idPage) & 0xfff) \
670 | (((_idPage) & 0x0ffff000) << (48-12)); } while (0)
671*/
672
673/**
674 * Get the Chunk ID.
675 * @returns The Chunk ID; NIL_GMM_CHUNKID if it's a ZERO page.
676 * @param pPage Pointer to the physical guest page tracking structure.
677 */
678#define PGM_PAGE_GET_CHUNKID(pPage) ( (pPage)->idPageX >> GMM_CHUNKID_SHIFT )
679/* later:
680#if GMM_CHUNKID_SHIFT == 12
681# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> 48) )
682#elif GMM_CHUNKID_SHIFT > 12
683# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> (48 + (GMM_CHUNKID_SHIFT - 12)) )
684#elif GMM_CHUNKID_SHIFT < 12
685# define PGM_PAGE_GET_CHUNKID(pPage) ( ( (uint32_t)((pPage)->HCPhys >> 48) << (12 - GMM_CHUNKID_SHIFT) ) \
686 | ( (uint32_t)((pPage)->HCPhys & 0xfff) >> GMM_CHUNKID_SHIFT ) )
687#else
688# error "GMM_CHUNKID_SHIFT isn't defined or something."
689#endif
690*/
691
692/**
693 * Get the index of the page within the allocaiton chunk.
694 * @returns The page index.
695 * @param pPage Pointer to the physical guest page tracking structure.
696 */
697#define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (pPage)->idPageX & GMM_PAGEID_IDX_MASK )
698/* later:
699#if GMM_CHUNKID_SHIFT <= 12
700# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & GMM_PAGEID_IDX_MASK) )
701#else
702# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & 0xfff) \
703 | ( (uint32_t)((pPage)->HCPhys >> 48) & (RT_BIT_32(GMM_CHUNKID_SHIFT - 12) - 1) ) )
704#endif
705*/
706
707
708/**
709 * Gets the page type.
710 * @returns The page type.
711 * @param pPage Pointer to the physical guest page tracking structure.
712 */
713#define PGM_PAGE_GET_TYPE(pPage) (pPage)->u3Type
714
715/**
716 * Sets the page type.
717 * @param pPage Pointer to the physical guest page tracking structure.
718 * @param _enmType The new page type (PGMPAGETYPE).
719 */
720#ifdef VBOX_WITH_NEW_PHYS_CODE
721#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
722 do { (pPage)->u3Type = (_enmType); } while (0)
723#else
724#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
725 do { \
726 (pPage)->u3Type = (_enmType); \
727 if ((_enmType) == PGMPAGETYPE_ROM) \
728 (pPage)->HCPhys |= MM_RAM_FLAGS_ROM; \
729 else if ((_enmType) == PGMPAGETYPE_ROM_SHADOW) \
730 (pPage)->HCPhys |= MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2; \
731 else if ((_enmType) == PGMPAGETYPE_MMIO2) \
732 (pPage)->HCPhys |= MM_RAM_FLAGS_MMIO2; \
733 } while (0)
734#endif
735
736
737/**
738 * Checks if the page is 'reserved'.
739 * @returns true/false.
740 * @param pPage Pointer to the physical guest page tracking structure.
741 */
742#define PGM_PAGE_IS_RESERVED(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_RESERVED) )
743
744/**
745 * Checks if the page is marked for MMIO.
746 * @returns true/false.
747 * @param pPage Pointer to the physical guest page tracking structure.
748 */
749#define PGM_PAGE_IS_MMIO(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_MMIO) )
750
751/**
752 * Checks if the page is backed by the ZERO page.
753 * @returns true/false.
754 * @param pPage Pointer to the physical guest page tracking structure.
755 */
756#define PGM_PAGE_IS_ZERO(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_ZERO )
757
758/**
759 * Checks if the page is backed by a SHARED page.
760 * @returns true/false.
761 * @param pPage Pointer to the physical guest page tracking structure.
762 */
763#define PGM_PAGE_IS_SHARED(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_SHARED )
764
765
766/**
767 * Marks the paget as written to (for GMM change monitoring).
768 * @param pPage Pointer to the physical guest page tracking structure.
769 */
770#define PGM_PAGE_SET_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 1; } while (0)
771
772/**
773 * Clears the written-to indicator.
774 * @param pPage Pointer to the physical guest page tracking structure.
775 */
776#define PGM_PAGE_CLEAR_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 0; } while (0)
777
778/**
779 * Checks if the page was marked as written-to.
780 * @returns true/false.
781 * @param pPage Pointer to the physical guest page tracking structure.
782 */
783#define PGM_PAGE_IS_WRITTEN_TO(pPage) ( (pPage)->fWrittenToX )
784
785
786/** @name Physical Access Handler State values (PGMPAGE::u2HandlerPhysStateX).
787 *
788 * @remarks The values are assigned in order of priority, so we can calculate
789 * the correct state for a page with different handlers installed.
790 * @{ */
791/** No handler installed. */
792#define PGM_PAGE_HNDL_PHYS_STATE_NONE 0
793/** Monitoring is temporarily disabled. */
794#define PGM_PAGE_HNDL_PHYS_STATE_DISABLED 1
795/** Write access is monitored. */
796#define PGM_PAGE_HNDL_PHYS_STATE_WRITE 2
797/** All access is monitored. */
798#define PGM_PAGE_HNDL_PHYS_STATE_ALL 3
799/** @} */
800
801/**
802 * Gets the physical access handler state of a page.
803 * @returns PGM_PAGE_HNDL_PHYS_STATE_* value.
804 * @param pPage Pointer to the physical guest page tracking structure.
805 */
806#define PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) ( (pPage)->u2HandlerPhysStateX )
807
808/**
809 * Sets the physical access handler state of a page.
810 * @param pPage Pointer to the physical guest page tracking structure.
811 * @param _uState The new state value.
812 */
813#define PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, _uState) \
814 do { (pPage)->u2HandlerPhysStateX = (_uState); } while (0)
815
816/**
817 * Checks if the page has any physical access handlers, including temporariliy disabled ones.
818 * @returns true/false
819 * @param pPage Pointer to the physical guest page tracking structure.
820 */
821#define PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE )
822
823/**
824 * Checks if the page has any active physical access handlers.
825 * @returns true/false
826 * @param pPage Pointer to the physical guest page tracking structure.
827 */
828#define PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE )
829
830
831/** @name Virtual Access Handler State values (PGMPAGE::u2HandlerVirtStateX).
832 *
833 * @remarks The values are assigned in order of priority, so we can calculate
834 * the correct state for a page with different handlers installed.
835 * @{ */
836/** No handler installed. */
837#define PGM_PAGE_HNDL_VIRT_STATE_NONE 0
838/* 1 is reserved so the lineup is identical with the physical ones. */
839/** Write access is monitored. */
840#define PGM_PAGE_HNDL_VIRT_STATE_WRITE 2
841/** All access is monitored. */
842#define PGM_PAGE_HNDL_VIRT_STATE_ALL 3
843/** @} */
844
845/**
846 * Gets the virtual access handler state of a page.
847 * @returns PGM_PAGE_HNDL_VIRT_STATE_* value.
848 * @param pPage Pointer to the physical guest page tracking structure.
849 */
850#define PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) ( (pPage)->u2HandlerVirtStateX )
851
852/**
853 * Sets the virtual access handler state of a page.
854 * @param pPage Pointer to the physical guest page tracking structure.
855 * @param _uState The new state value.
856 */
857#define PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, _uState) \
858 do { (pPage)->u2HandlerVirtStateX = (_uState); } while (0)
859
860/**
861 * Checks if the page has any virtual access handlers.
862 * @returns true/false
863 * @param pPage Pointer to the physical guest page tracking structure.
864 */
865#define PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage) ( (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
866
867/**
868 * Same as PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS - can't disable pages in
869 * virtual handlers.
870 * @returns true/false
871 * @param pPage Pointer to the physical guest page tracking structure.
872 */
873#define PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage) PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage)
874
875
876
877/**
878 * Checks if the page has any access handlers, including temporarily disabled ones.
879 * @returns true/false
880 * @param pPage Pointer to the physical guest page tracking structure.
881 */
882#define PGM_PAGE_HAS_ANY_HANDLERS(pPage) \
883 ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE \
884 || (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
885
886/**
887 * Checks if the page has any active access handlers.
888 * @returns true/false
889 * @param pPage Pointer to the physical guest page tracking structure.
890 */
891#define PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) \
892 ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE \
893 || (pPage)->u2HandlerVirtStateX >= PGM_PAGE_HNDL_VIRT_STATE_WRITE )
894
895/**
896 * Checks if the page has any active access handlers catching all accesses.
897 * @returns true/false
898 * @param pPage Pointer to the physical guest page tracking structure.
899 */
900#define PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) \
901 ( (pPage)->u2HandlerPhysStateX == PGM_PAGE_HNDL_PHYS_STATE_ALL \
902 || (pPage)->u2HandlerVirtStateX == PGM_PAGE_HNDL_VIRT_STATE_ALL )
903
904
905/**
906 * Ram range for GC Phys to HC Phys conversion.
907 *
908 * Can be used for HC Virt to GC Phys and HC Virt to HC Phys
909 * conversions too, but we'll let MM handle that for now.
910 *
911 * This structure is used by linked lists in both GC and HC.
912 */
913typedef struct PGMRAMRANGE
914{
915 /** Pointer to the next RAM range - for R3. */
916 R3PTRTYPE(struct PGMRAMRANGE *) pNextR3;
917 /** Pointer to the next RAM range - for R0. */
918 R0PTRTYPE(struct PGMRAMRANGE *) pNextR0;
919 /** Pointer to the next RAM range - for GC. */
920 RCPTRTYPE(struct PGMRAMRANGE *) pNextGC;
921 /** Pointer alignment. */
922 RTRCPTR GCPtrAlignment;
923 /** Start of the range. Page aligned. */
924 RTGCPHYS GCPhys;
925 /** Last address in the range (inclusive). Page aligned (-1). */
926 RTGCPHYS GCPhysLast;
927 /** Size of the range. (Page aligned of course). */
928 RTGCPHYS cb;
929 /** MM_RAM_* flags */
930 uint32_t fFlags;
931#ifdef VBOX_WITH_NEW_PHYS_CODE
932 uint32_t u32Alignment; /**< alignment. */
933#else
934 /** HC virtual lookup ranges for chunks. Currently only used with MM_RAM_FLAGS_DYNAMIC_ALLOC ranges. */
935 RCPTRTYPE(PRTHCPTR) pavHCChunkGC;
936 /** HC virtual lookup ranges for chunks. Currently only used with MM_RAM_FLAGS_DYNAMIC_ALLOC ranges. */
937 R3R0PTRTYPE(PRTHCPTR) pavHCChunkHC;
938#endif
939 /** Start of the HC mapping of the range. This is only used for MMIO2. */
940 R3PTRTYPE(void *) pvHC;
941 /** The range description. */
942 R3PTRTYPE(const char *) pszDesc;
943
944 /** Padding to make aPage aligned on sizeof(PGMPAGE). */
945#ifdef VBOX_WITH_NEW_PHYS_CODE
946 uint32_t au32Reserved[2];
947#elif HC_ARCH_BITS == 32
948 uint32_t au32Reserved[1];
949#endif
950
951 /** Array of physical guest page tracking structures. */
952 PGMPAGE aPages[1];
953} PGMRAMRANGE;
954/** Pointer to Ram range for GC Phys to HC Phys conversion. */
955typedef PGMRAMRANGE *PPGMRAMRANGE;
956
957/** Return hc ptr corresponding to the ram range and physical offset */
958#define PGMRAMRANGE_GETHCPTR(pRam, off) \
959 (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) ? (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[(off >> PGM_DYNAMIC_CHUNK_SHIFT)] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK)) \
960 : (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off);
961
962/**
963 * Per page tracking structure for ROM image.
964 *
965 * A ROM image may have a shadow page, in which case we may have
966 * two pages backing it. This structure contains the PGMPAGE for
967 * both while PGMRAMRANGE have a copy of the active one. It is
968 * important that these aren't out of sync in any regard other
969 * than page pool tracking data.
970 */
971typedef struct PGMROMPAGE
972{
973 /** The page structure for the virgin ROM page. */
974 PGMPAGE Virgin;
975 /** The page structure for the shadow RAM page. */
976 PGMPAGE Shadow;
977 /** The current protection setting. */
978 PGMROMPROT enmProt;
979 /** Pad the structure size to a multiple of 8. */
980 uint32_t u32Padding;
981} PGMROMPAGE;
982/** Pointer to a ROM page tracking structure. */
983typedef PGMROMPAGE *PPGMROMPAGE;
984
985
986/**
987 * A registered ROM image.
988 *
989 * This is needed to keep track of ROM image since they generally
990 * intrude into a PGMRAMRANGE. It also keeps track of additional
991 * info like the two page sets (read-only virgin and read-write shadow),
992 * the current state of each page.
993 *
994 * Because access handlers cannot easily be executed in a different
995 * context, the ROM ranges needs to be accessible and in all contexts.
996 */
997typedef struct PGMROMRANGE
998{
999 /** Pointer to the next range - R3. */
1000 R3PTRTYPE(struct PGMROMRANGE *) pNextR3;
1001 /** Pointer to the next range - R0. */
1002 R0PTRTYPE(struct PGMROMRANGE *) pNextR0;
1003 /** Pointer to the next range - GC. */
1004 RCPTRTYPE(struct PGMROMRANGE *) pNextGC;
1005 /** Pointer alignment */
1006 RTRCPTR GCPtrAlignment;
1007 /** Address of the range. */
1008 RTGCPHYS GCPhys;
1009 /** Address of the last byte in the range. */
1010 RTGCPHYS GCPhysLast;
1011 /** Size of the range. */
1012 RTGCPHYS cb;
1013 /** The flags (PGMPHYS_ROM_FLAG_*). */
1014 uint32_t fFlags;
1015 /**< Alignment padding ensuring that aPages is sizeof(PGMROMPAGE) aligned. */
1016 uint32_t au32Alignemnt[HC_ARCH_BITS == 32 ? 7 : 3];
1017 /** Pointer to the original bits when PGMPHYS_ROM_FLAG_PERMANENT_BINARY was specified.
1018 * This is used for strictness checks. */
1019 R3PTRTYPE(const void *) pvOriginal;
1020 /** The ROM description. */
1021 R3PTRTYPE(const char *) pszDesc;
1022 /** The per page tracking structures. */
1023 PGMROMPAGE aPages[1];
1024} PGMROMRANGE;
1025/** Pointer to a ROM range. */
1026typedef PGMROMRANGE *PPGMROMRANGE;
1027
1028
1029/**
1030 * A registered MMIO2 (= Device RAM) range.
1031 *
1032 * There are a few reason why we need to keep track of these
1033 * registrations. One of them is the deregistration & cleanup
1034 * stuff, while another is that the PGMRAMRANGE associated with
1035 * such a region may have to be removed from the ram range list.
1036 *
1037 * Overlapping with a RAM range has to be 100% or none at all. The
1038 * pages in the existing RAM range must not be ROM nor MMIO. A guru
1039 * meditation will be raised if a partial overlap or an overlap of
1040 * ROM pages is encountered. On an overlap we will free all the
1041 * existing RAM pages and put in the ram range pages instead.
1042 */
1043typedef struct PGMMMIO2RANGE
1044{
1045 /** The owner of the range. (a device) */
1046 PPDMDEVINSR3 pDevInsR3;
1047 /** Pointer to the ring-3 mapping of the allocation. */
1048 RTR3PTR pvR3;
1049 /** Pointer to the next range - R3. */
1050 R3PTRTYPE(struct PGMMMIO2RANGE *) pNextR3;
1051 /** Whether it's mapped or not. */
1052 bool fMapped;
1053 /** Whether it's overlapping or not. */
1054 bool fOverlapping;
1055 /** The PCI region number.
1056 * @remarks This ASSUMES that nobody will ever really need to have multiple
1057 * PCI devices with matching MMIO region numbers on a single device. */
1058 uint8_t iRegion;
1059 /**< Alignment padding for putting the ram range on a PGMPAGE alignment boundrary. */
1060 uint8_t abAlignemnt[HC_ARCH_BITS == 32 ? 1 : 5];
1061 /** The associated RAM range. */
1062 PGMRAMRANGE RamRange;
1063} PGMMMIO2RANGE;
1064/** Pointer to a MMIO2 range. */
1065typedef PGMMMIO2RANGE *PPGMMMIO2RANGE;
1066
1067
1068
1069
1070/** @todo r=bird: fix typename. */
1071/**
1072 * PGMPhysRead/Write cache entry
1073 */
1074typedef struct PGMPHYSCACHE_ENTRY
1075{
1076 /** HC pointer to physical page */
1077 R3PTRTYPE(uint8_t *) pbHC;
1078 /** GC Physical address for cache entry */
1079 RTGCPHYS GCPhys;
1080#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
1081 RTGCPHYS u32Padding0; /**< alignment padding. */
1082#endif
1083} PGMPHYSCACHE_ENTRY;
1084
1085/**
1086 * PGMPhysRead/Write cache to reduce REM memory access overhead
1087 */
1088typedef struct PGMPHYSCACHE
1089{
1090 /** Bitmap of valid cache entries */
1091 uint64_t aEntries;
1092 /** Cache entries */
1093 PGMPHYSCACHE_ENTRY Entry[PGM_MAX_PHYSCACHE_ENTRIES];
1094} PGMPHYSCACHE;
1095
1096
1097/** Pointer to an allocation chunk ring-3 mapping. */
1098typedef struct PGMCHUNKR3MAP *PPGMCHUNKR3MAP;
1099/** Pointer to an allocation chunk ring-3 mapping pointer. */
1100typedef PPGMCHUNKR3MAP *PPPGMCHUNKR3MAP;
1101
1102/**
1103 * Ring-3 tracking structore for an allocation chunk ring-3 mapping.
1104 *
1105 * The primary tree (Core) uses the chunk id as key.
1106 * The secondary tree (AgeCore) is used for ageing and uses ageing sequence number as key.
1107 */
1108typedef struct PGMCHUNKR3MAP
1109{
1110 /** The key is the chunk id. */
1111 AVLU32NODECORE Core;
1112 /** The key is the ageing sequence number. */
1113 AVLLU32NODECORE AgeCore;
1114 /** The current age thingy. */
1115 uint32_t iAge;
1116 /** The current reference count. */
1117 uint32_t volatile cRefs;
1118 /** The current permanent reference count. */
1119 uint32_t volatile cPermRefs;
1120 /** The mapping address. */
1121 void *pv;
1122} PGMCHUNKR3MAP;
1123
1124/**
1125 * Allocation chunk ring-3 mapping TLB entry.
1126 */
1127typedef struct PGMCHUNKR3MAPTLBE
1128{
1129 /** The chunk id. */
1130 uint32_t volatile idChunk;
1131#if HC_ARCH_BITS == 64
1132 uint32_t u32Padding; /**< alignment padding. */
1133#endif
1134 /** The chunk map. */
1135 R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk;
1136} PGMCHUNKR3MAPTLBE;
1137/** Pointer to the an allocation chunk ring-3 mapping TLB entry. */
1138typedef PGMCHUNKR3MAPTLBE *PPGMCHUNKR3MAPTLBE;
1139
1140/** The number of TLB entries in PGMCHUNKR3MAPTLB.
1141 * @remark Must be a power of two value. */
1142#define PGM_CHUNKR3MAPTLB_ENTRIES 32
1143
1144/**
1145 * Allocation chunk ring-3 mapping TLB.
1146 *
1147 * @remarks We use a TLB to speed up lookups by avoiding walking the AVL.
1148 * At first glance this might look kinda odd since AVL trees are
1149 * supposed to give the most optimial lookup times of all trees
1150 * due to their balancing. However, take a tree with 1023 nodes
1151 * in it, that's 10 levels, meaning that most searches has to go
1152 * down 9 levels before they find what they want. This isn't fast
1153 * compared to a TLB hit. There is the factor of cache misses,
1154 * and of course the problem with trees and branch prediction.
1155 * This is why we use TLBs in front of most of the trees.
1156 *
1157 * @todo Generalize this TLB + AVL stuff, shouldn't be all that
1158 * difficult when we switch to inlined AVL trees (from kStuff).
1159 */
1160typedef struct PGMCHUNKR3MAPTLB
1161{
1162 /** The TLB entries. */
1163 PGMCHUNKR3MAPTLBE aEntries[PGM_CHUNKR3MAPTLB_ENTRIES];
1164} PGMCHUNKR3MAPTLB;
1165
1166/**
1167 * Calculates the index of a guest page in the Ring-3 Chunk TLB.
1168 * @returns Chunk TLB index.
1169 * @param idChunk The Chunk ID.
1170 */
1171#define PGM_CHUNKR3MAPTLB_IDX(idChunk) ( (idChunk) & (PGM_CHUNKR3MAPTLB_ENTRIES - 1) )
1172
1173
1174/**
1175 * Ring-3 guest page mapping TLB entry.
1176 * @remarks used in ring-0 as well at the moment.
1177 */
1178typedef struct PGMPAGER3MAPTLBE
1179{
1180 /** Address of the page. */
1181 RTGCPHYS volatile GCPhys;
1182 /** The guest page. */
1183 R3R0PTRTYPE(PPGMPAGE) volatile pPage;
1184 /** Pointer to the page mapping tracking structure, PGMCHUNKR3MAP. */
1185 R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pMap;
1186 /** The address */
1187 R3R0PTRTYPE(void *) volatile pv;
1188#if HC_ARCH_BITS == 32
1189 uint32_t u32Padding; /**< alignment padding. */
1190#endif
1191} PGMPAGER3MAPTLBE;
1192/** Pointer to an entry in the HC physical TLB. */
1193typedef PGMPAGER3MAPTLBE *PPGMPAGER3MAPTLBE;
1194
1195
1196/** The number of entries in the ring-3 guest page mapping TLB.
1197 * @remarks The value must be a power of two. */
1198#define PGM_PAGER3MAPTLB_ENTRIES 64
1199
1200/**
1201 * Ring-3 guest page mapping TLB.
1202 * @remarks used in ring-0 as well at the moment.
1203 */
1204typedef struct PGMPAGER3MAPTLB
1205{
1206 /** The TLB entries. */
1207 PGMPAGER3MAPTLBE aEntries[PGM_PAGER3MAPTLB_ENTRIES];
1208} PGMPAGER3MAPTLB;
1209/** Pointer to the ring-3 guest page mapping TLB. */
1210typedef PGMPAGER3MAPTLB *PPGMPAGER3MAPTLB;
1211
1212/**
1213 * Calculates the index of the TLB entry for the specified guest page.
1214 * @returns Physical TLB index.
1215 * @param GCPhys The guest physical address.
1216 */
1217#define PGM_PAGER3MAPTLB_IDX(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGM_PAGER3MAPTLB_ENTRIES - 1) )
1218
1219
1220/** @name Context neutrual page mapper TLB.
1221 *
1222 * Hoping to avoid some code and bug duplication parts of the GCxxx->CCPtr
1223 * code is writting in a kind of context neutrual way. Time will show whether
1224 * this actually makes sense or not...
1225 *
1226 * @{ */
1227/** @typedef PPGMPAGEMAPTLB
1228 * The page mapper TLB pointer type for the current context. */
1229/** @typedef PPGMPAGEMAPTLB
1230 * The page mapper TLB entry pointer type for the current context. */
1231/** @typedef PPGMPAGEMAPTLB
1232 * The page mapper TLB entry pointer pointer type for the current context. */
1233/** @def PGM_PAGEMAPTLB_ENTRIES
1234 * The number of TLB entries in the page mapper TLB for the current context. */
1235/** @def PGM_PAGEMAPTLB_IDX
1236 * Calculate the TLB index for a guest physical address.
1237 * @returns The TLB index.
1238 * @param GCPhys The guest physical address. */
1239/** @typedef PPGMPAGEMAP
1240 * Pointer to a page mapper unit for current context. */
1241/** @typedef PPPGMPAGEMAP
1242 * Pointer to a page mapper unit pointer for current context. */
1243#ifdef IN_GC
1244// typedef PPGMPAGEGCMAPTLB PPGMPAGEMAPTLB;
1245// typedef PPGMPAGEGCMAPTLBE PPGMPAGEMAPTLBE;
1246// typedef PPGMPAGEGCMAPTLBE *PPPGMPAGEMAPTLBE;
1247# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGEGCMAPTLB_ENTRIES
1248# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGEGCMAPTLB_IDX(GCPhys)
1249 typedef void * PPGMPAGEMAP;
1250 typedef void ** PPPGMPAGEMAP;
1251//#elif IN_RING0
1252// typedef PPGMPAGER0MAPTLB PPGMPAGEMAPTLB;
1253// typedef PPGMPAGER0MAPTLBE PPGMPAGEMAPTLBE;
1254// typedef PPGMPAGER0MAPTLBE *PPPGMPAGEMAPTLBE;
1255//# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER0MAPTLB_ENTRIES
1256//# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER0MAPTLB_IDX(GCPhys)
1257// typedef PPGMCHUNKR0MAP PPGMPAGEMAP;
1258// typedef PPPGMCHUNKR0MAP PPPGMPAGEMAP;
1259#else
1260 typedef PPGMPAGER3MAPTLB PPGMPAGEMAPTLB;
1261 typedef PPGMPAGER3MAPTLBE PPGMPAGEMAPTLBE;
1262 typedef PPGMPAGER3MAPTLBE *PPPGMPAGEMAPTLBE;
1263# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER3MAPTLB_ENTRIES
1264# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER3MAPTLB_IDX(GCPhys)
1265 typedef PPGMCHUNKR3MAP PPGMPAGEMAP;
1266 typedef PPPGMCHUNKR3MAP PPPGMPAGEMAP;
1267#endif
1268/** @} */
1269
1270
1271/** @name PGM Pool Indexes.
1272 * Aka. the unique shadow page identifier.
1273 * @{ */
1274/** NIL page pool IDX. */
1275#define NIL_PGMPOOL_IDX 0
1276/** The first normal index. */
1277#define PGMPOOL_IDX_FIRST_SPECIAL 1
1278/** Page directory (32-bit root). */
1279#define PGMPOOL_IDX_PD 1
1280/** The extended PAE page directory (2048 entries, works as root currently). */
1281#define PGMPOOL_IDX_PAE_PD 2
1282/** PAE Page Directory Table 0. */
1283#define PGMPOOL_IDX_PAE_PD_0 3
1284/** PAE Page Directory Table 1. */
1285#define PGMPOOL_IDX_PAE_PD_1 4
1286/** PAE Page Directory Table 2. */
1287#define PGMPOOL_IDX_PAE_PD_2 5
1288/** PAE Page Directory Table 3. */
1289#define PGMPOOL_IDX_PAE_PD_3 6
1290/** Page Directory Pointer Table (PAE root, not currently used). */
1291#define PGMPOOL_IDX_PDPT 7
1292/** AMD64 CR3 level index.*/
1293#define PGMPOOL_IDX_AMD64_CR3 8
1294/** Nested paging root.*/
1295#define PGMPOOL_IDX_NESTED_ROOT 9
1296/** The first normal index. */
1297#define PGMPOOL_IDX_FIRST 10
1298/** The last valid index. (inclusive, 14 bits) */
1299#define PGMPOOL_IDX_LAST 0x3fff
1300/** @} */
1301
1302/** The NIL index for the parent chain. */
1303#define NIL_PGMPOOL_USER_INDEX ((uint16_t)0xffff)
1304
1305/**
1306 * Node in the chain linking a shadowed page to it's parent (user).
1307 */
1308#pragma pack(1)
1309typedef struct PGMPOOLUSER
1310{
1311 /** The index to the next item in the chain. NIL_PGMPOOL_USER_INDEX is no next. */
1312 uint16_t iNext;
1313 /** The user page index. */
1314 uint16_t iUser;
1315 /** Index into the user table. */
1316 uint32_t iUserTable;
1317} PGMPOOLUSER, *PPGMPOOLUSER;
1318typedef const PGMPOOLUSER *PCPGMPOOLUSER;
1319#pragma pack()
1320
1321
1322/** The NIL index for the phys ext chain. */
1323#define NIL_PGMPOOL_PHYSEXT_INDEX ((uint16_t)0xffff)
1324
1325/**
1326 * Node in the chain of physical cross reference extents.
1327 */
1328#pragma pack(1)
1329typedef struct PGMPOOLPHYSEXT
1330{
1331 /** The index to the next item in the chain. NIL_PGMPOOL_PHYSEXT_INDEX is no next. */
1332 uint16_t iNext;
1333 /** The user page index. */
1334 uint16_t aidx[3];
1335} PGMPOOLPHYSEXT, *PPGMPOOLPHYSEXT;
1336typedef const PGMPOOLPHYSEXT *PCPGMPOOLPHYSEXT;
1337#pragma pack()
1338
1339
1340/**
1341 * The kind of page that's being shadowed.
1342 */
1343typedef enum PGMPOOLKIND
1344{
1345 /** The virtual invalid 0 entry. */
1346 PGMPOOLKIND_INVALID = 0,
1347 /** The entry is free (=unused). */
1348 PGMPOOLKIND_FREE,
1349
1350 /** Shw: 32-bit page table; Gst: no paging */
1351 PGMPOOLKIND_32BIT_PT_FOR_PHYS,
1352 /** Shw: 32-bit page table; Gst: 32-bit page table. */
1353 PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT,
1354 /** Shw: 32-bit page table; Gst: 4MB page. */
1355 PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB,
1356 /** Shw: PAE page table; Gst: no paging */
1357 PGMPOOLKIND_PAE_PT_FOR_PHYS,
1358 /** Shw: PAE page table; Gst: 32-bit page table. */
1359 PGMPOOLKIND_PAE_PT_FOR_32BIT_PT,
1360 /** Shw: PAE page table; Gst: Half of a 4MB page. */
1361 PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB,
1362 /** Shw: PAE page table; Gst: PAE page table. */
1363 PGMPOOLKIND_PAE_PT_FOR_PAE_PT,
1364 /** Shw: PAE page table; Gst: 2MB page. */
1365 PGMPOOLKIND_PAE_PT_FOR_PAE_2MB,
1366
1367 /** Shw: PAE page directory; Gst: 32-bit page directory. */
1368 PGMPOOLKIND_PAE_PD_FOR_32BIT_PD,
1369 /** Shw: PAE page directory; Gst: PAE page directory. */
1370 PGMPOOLKIND_PAE_PD_FOR_PAE_PD,
1371
1372 /** Shw: 64-bit page directory pointer table; Gst: 64-bit page directory pointer table. */
1373 PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT,
1374 /** Shw: 64-bit page directory pointer table; Gst: no paging */
1375 PGMPOOLKIND_64BIT_PDPT_FOR_PHYS,
1376 /** Shw: 64-bit page directory table; Gst: 64-bit page directory table. */
1377 PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD,
1378 /** Shw: 64-bit page directory table; Gst: no paging */
1379 PGMPOOLKIND_64BIT_PD_FOR_PHYS,
1380
1381 /** Shw: 64-bit PML4; Gst: 64-bit PML4. */
1382 PGMPOOLKIND_64BIT_PML4_FOR_64BIT_PML4,
1383
1384 /** Shw: Root 32-bit page directory. */
1385 PGMPOOLKIND_ROOT_32BIT_PD,
1386 /** Shw: Root PAE page directory */
1387 PGMPOOLKIND_ROOT_PAE_PD,
1388 /** Shw: Root PAE page directory pointer table (legacy, 4 entries). */
1389 PGMPOOLKIND_ROOT_PDPT,
1390 /** Shw: Root Nested paging table. */
1391 PGMPOOLKIND_ROOT_NESTED,
1392
1393 /** The last valid entry. */
1394 PGMPOOLKIND_LAST = PGMPOOLKIND_ROOT_NESTED
1395} PGMPOOLKIND;
1396
1397
1398/**
1399 * The tracking data for a page in the pool.
1400 */
1401typedef struct PGMPOOLPAGE
1402{
1403 /** AVL node code with the (HC) physical address of this page. */
1404 AVLOHCPHYSNODECORE Core;
1405 /** Pointer to the HC mapping of the page. */
1406 R3R0PTRTYPE(void *) pvPageHC;
1407 /** The guest physical address. */
1408#if HC_ARCH_BITS == 32 && GC_ARCH_BITS == 64
1409 uint32_t Alignment0;
1410#endif
1411 RTGCPHYS GCPhys;
1412 /** The kind of page we're shadowing. (This is really a PGMPOOLKIND enum.) */
1413 uint8_t enmKind;
1414 uint8_t bPadding;
1415 /** The index of this page. */
1416 uint16_t idx;
1417 /** The next entry in the list this page currently resides in.
1418 * It's either in the free list or in the GCPhys hash. */
1419 uint16_t iNext;
1420#ifdef PGMPOOL_WITH_USER_TRACKING
1421 /** Head of the user chain. NIL_PGMPOOL_USER_INDEX if not currently in use. */
1422 uint16_t iUserHead;
1423 /** The number of present entries. */
1424 uint16_t cPresent;
1425 /** The first entry in the table which is present. */
1426 uint16_t iFirstPresent;
1427#endif
1428#ifdef PGMPOOL_WITH_MONITORING
1429 /** The number of modifications to the monitored page. */
1430 uint16_t cModifications;
1431 /** The next modified page. NIL_PGMPOOL_IDX if tail. */
1432 uint16_t iModifiedNext;
1433 /** The previous modified page. NIL_PGMPOOL_IDX if head. */
1434 uint16_t iModifiedPrev;
1435 /** The next page sharing access handler. NIL_PGMPOOL_IDX if tail. */
1436 uint16_t iMonitoredNext;
1437 /** The previous page sharing access handler. NIL_PGMPOOL_IDX if head. */
1438 uint16_t iMonitoredPrev;
1439#endif
1440#ifdef PGMPOOL_WITH_CACHE
1441 /** The next page in the age list. */
1442 uint16_t iAgeNext;
1443 /** The previous page in the age list. */
1444 uint16_t iAgePrev;
1445#endif /* PGMPOOL_WITH_CACHE */
1446 /** Used to indicate that the page is zeroed. */
1447 bool fZeroed;
1448 /** Used to indicate that a PT has non-global entries. */
1449 bool fSeenNonGlobal;
1450 /** Used to indicate that we're monitoring writes to the guest page. */
1451 bool fMonitored;
1452 /** Used to indicate that the page is in the cache (e.g. in the GCPhys hash).
1453 * (All pages are in the age list.) */
1454 bool fCached;
1455 /** This is used by the R3 access handlers when invoked by an async thread.
1456 * It's a hack required because of REMR3NotifyHandlerPhysicalDeregister. */
1457 bool volatile fReusedFlushPending;
1458 /** Used to indicate that the guest is mapping the page is also used as a CR3.
1459 * In these cases the access handler acts differently and will check
1460 * for mapping conflicts like the normal CR3 handler.
1461 * @todo When we change the CR3 shadowing to use pool pages, this flag can be
1462 * replaced by a list of pages which share access handler.
1463 */
1464 bool fCR3Mix;
1465} PGMPOOLPAGE, *PPGMPOOLPAGE, **PPPGMPOOLPAGE;
1466
1467
1468#ifdef PGMPOOL_WITH_CACHE
1469/** The hash table size. */
1470# define PGMPOOL_HASH_SIZE 0x40
1471/** The hash function. */
1472# define PGMPOOL_HASH(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGMPOOL_HASH_SIZE - 1) )
1473#endif
1474
1475
1476/**
1477 * The shadow page pool instance data.
1478 *
1479 * It's all one big allocation made at init time, except for the
1480 * pages that is. The user nodes follows immediatly after the
1481 * page structures.
1482 */
1483typedef struct PGMPOOL
1484{
1485 /** The VM handle - HC Ptr. */
1486 R3R0PTRTYPE(PVM) pVMHC;
1487 /** The VM handle - GC Ptr. */
1488 RCPTRTYPE(PVM) pVMGC;
1489 /** The max pool size. This includes the special IDs. */
1490 uint16_t cMaxPages;
1491 /** The current pool size. */
1492 uint16_t cCurPages;
1493 /** The head of the free page list. */
1494 uint16_t iFreeHead;
1495 /* Padding. */
1496 uint16_t u16Padding;
1497#ifdef PGMPOOL_WITH_USER_TRACKING
1498 /** Head of the chain of free user nodes. */
1499 uint16_t iUserFreeHead;
1500 /** The number of user nodes we've allocated. */
1501 uint16_t cMaxUsers;
1502 /** The number of present page table entries in the entire pool. */
1503 uint32_t cPresent;
1504 /** Pointer to the array of user nodes - GC pointer. */
1505 RCPTRTYPE(PPGMPOOLUSER) paUsersGC;
1506 /** Pointer to the array of user nodes - HC pointer. */
1507 R3R0PTRTYPE(PPGMPOOLUSER) paUsersHC;
1508#endif /* PGMPOOL_WITH_USER_TRACKING */
1509#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1510 /** Head of the chain of free phys ext nodes. */
1511 uint16_t iPhysExtFreeHead;
1512 /** The number of user nodes we've allocated. */
1513 uint16_t cMaxPhysExts;
1514 /** Pointer to the array of physical xref extent - GC pointer. */
1515 RCPTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsGC;
1516 /** Pointer to the array of physical xref extent nodes - HC pointer. */
1517 R3R0PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsHC;
1518#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1519#ifdef PGMPOOL_WITH_CACHE
1520 /** Hash table for GCPhys addresses. */
1521 uint16_t aiHash[PGMPOOL_HASH_SIZE];
1522 /** The head of the age list. */
1523 uint16_t iAgeHead;
1524 /** The tail of the age list. */
1525 uint16_t iAgeTail;
1526 /** Set if the cache is enabled. */
1527 bool fCacheEnabled;
1528#endif /* PGMPOOL_WITH_CACHE */
1529#ifdef PGMPOOL_WITH_MONITORING
1530 /** Head of the list of modified pages. */
1531 uint16_t iModifiedHead;
1532 /** The current number of modified pages. */
1533 uint16_t cModifiedPages;
1534 /** Access handler, GC. */
1535 RCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnAccessHandlerGC;
1536 /** Access handler, R0. */
1537 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnAccessHandlerR0;
1538 /** Access handler, R3. */
1539 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnAccessHandlerR3;
1540 /** The access handler description (HC ptr). */
1541 R3PTRTYPE(const char *) pszAccessHandler;
1542#endif /* PGMPOOL_WITH_MONITORING */
1543 /** The number of pages currently in use. */
1544 uint16_t cUsedPages;
1545#ifdef VBOX_WITH_STATISTICS
1546 /** The high wather mark for cUsedPages. */
1547 uint16_t cUsedPagesHigh;
1548 uint32_t Alignment1; /**< Align the next member on a 64-bit boundrary. */
1549 /** Profiling pgmPoolAlloc(). */
1550 STAMPROFILEADV StatAlloc;
1551 /** Profiling pgmPoolClearAll(). */
1552 STAMPROFILE StatClearAll;
1553 /** Profiling pgmPoolFlushAllInt(). */
1554 STAMPROFILE StatFlushAllInt;
1555 /** Profiling pgmPoolFlushPage(). */
1556 STAMPROFILE StatFlushPage;
1557 /** Profiling pgmPoolFree(). */
1558 STAMPROFILE StatFree;
1559 /** Profiling time spent zeroing pages. */
1560 STAMPROFILE StatZeroPage;
1561# ifdef PGMPOOL_WITH_USER_TRACKING
1562 /** Profiling of pgmPoolTrackDeref. */
1563 STAMPROFILE StatTrackDeref;
1564 /** Profiling pgmTrackFlushGCPhysPT. */
1565 STAMPROFILE StatTrackFlushGCPhysPT;
1566 /** Profiling pgmTrackFlushGCPhysPTs. */
1567 STAMPROFILE StatTrackFlushGCPhysPTs;
1568 /** Profiling pgmTrackFlushGCPhysPTsSlow. */
1569 STAMPROFILE StatTrackFlushGCPhysPTsSlow;
1570 /** Number of times we've been out of user records. */
1571 STAMCOUNTER StatTrackFreeUpOneUser;
1572# endif
1573# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1574 /** Profiling deref activity related tracking GC physical pages. */
1575 STAMPROFILE StatTrackDerefGCPhys;
1576 /** Number of linear searches for a HCPhys in the ram ranges. */
1577 STAMCOUNTER StatTrackLinearRamSearches;
1578 /** The number of failing pgmPoolTrackPhysExtAlloc calls. */
1579 STAMCOUNTER StamTrackPhysExtAllocFailures;
1580# endif
1581# ifdef PGMPOOL_WITH_MONITORING
1582 /** Profiling the GC PT access handler. */
1583 STAMPROFILE StatMonitorGC;
1584 /** Times we've failed interpreting the instruction. */
1585 STAMCOUNTER StatMonitorGCEmulateInstr;
1586 /** Profiling the pgmPoolFlushPage calls made from the GC PT access handler. */
1587 STAMPROFILE StatMonitorGCFlushPage;
1588 /** Times we've detected fork(). */
1589 STAMCOUNTER StatMonitorGCFork;
1590 /** Profiling the GC access we've handled (except REP STOSD). */
1591 STAMPROFILE StatMonitorGCHandled;
1592 /** Times we've failed interpreting a patch code instruction. */
1593 STAMCOUNTER StatMonitorGCIntrFailPatch1;
1594 /** Times we've failed interpreting a patch code instruction during flushing. */
1595 STAMCOUNTER StatMonitorGCIntrFailPatch2;
1596 /** The number of times we've seen rep prefixes we can't handle. */
1597 STAMCOUNTER StatMonitorGCRepPrefix;
1598 /** Profiling the REP STOSD cases we've handled. */
1599 STAMPROFILE StatMonitorGCRepStosd;
1600
1601 /** Profiling the HC PT access handler. */
1602 STAMPROFILE StatMonitorHC;
1603 /** Times we've failed interpreting the instruction. */
1604 STAMCOUNTER StatMonitorHCEmulateInstr;
1605 /** Profiling the pgmPoolFlushPage calls made from the HC PT access handler. */
1606 STAMPROFILE StatMonitorHCFlushPage;
1607 /** Times we've detected fork(). */
1608 STAMCOUNTER StatMonitorHCFork;
1609 /** Profiling the HC access we've handled (except REP STOSD). */
1610 STAMPROFILE StatMonitorHCHandled;
1611 /** The number of times we've seen rep prefixes we can't handle. */
1612 STAMCOUNTER StatMonitorHCRepPrefix;
1613 /** Profiling the REP STOSD cases we've handled. */
1614 STAMPROFILE StatMonitorHCRepStosd;
1615 /** The number of times we're called in an async thread an need to flush. */
1616 STAMCOUNTER StatMonitorHCAsync;
1617 /** The high wather mark for cModifiedPages. */
1618 uint16_t cModifiedPagesHigh;
1619 uint16_t Alignment2[3]; /**< Align the next member on a 64-bit boundrary. */
1620# endif
1621# ifdef PGMPOOL_WITH_CACHE
1622 /** The number of cache hits. */
1623 STAMCOUNTER StatCacheHits;
1624 /** The number of cache misses. */
1625 STAMCOUNTER StatCacheMisses;
1626 /** The number of times we've got a conflict of 'kind' in the cache. */
1627 STAMCOUNTER StatCacheKindMismatches;
1628 /** Number of times we've been out of pages. */
1629 STAMCOUNTER StatCacheFreeUpOne;
1630 /** The number of cacheable allocations. */
1631 STAMCOUNTER StatCacheCacheable;
1632 /** The number of uncacheable allocations. */
1633 STAMCOUNTER StatCacheUncacheable;
1634# endif
1635#elif HC_ARCH_BITS == 64
1636 uint32_t Alignment3; /**< Align the next member on a 64-bit boundrary. */
1637#endif
1638 /** The AVL tree for looking up a page by its HC physical address. */
1639 AVLOHCPHYSTREE HCPhysTree;
1640 uint32_t Alignment4; /**< Align the next member on a 64-bit boundrary. */
1641 /** Array of pages. (cMaxPages in length)
1642 * The Id is the index into thist array.
1643 */
1644 PGMPOOLPAGE aPages[PGMPOOL_IDX_FIRST];
1645} PGMPOOL, *PPGMPOOL, **PPPGMPOOL;
1646
1647
1648/** @def PGMPOOL_PAGE_2_PTR
1649 * Maps a pool page pool into the current context.
1650 *
1651 * @returns VBox status code.
1652 * @param pVM The VM handle.
1653 * @param pPage The pool page.
1654 *
1655 * @remark In HC this uses PGMGCDynMapHCPage(), so it will consume of the
1656 * small page window employeed by that function. Be careful.
1657 * @remark There is no need to assert on the result.
1658 */
1659#ifdef IN_GC
1660# define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmGCPoolMapPage((pVM), (pPage))
1661#else
1662# define PGMPOOL_PAGE_2_PTR(pVM, pPage) ((pPage)->pvPageHC)
1663#endif
1664
1665
1666/**
1667 * Trees are using self relative offsets as pointers.
1668 * So, all its data, including the root pointer, must be in the heap for HC and GC
1669 * to have the same layout.
1670 */
1671typedef struct PGMTREES
1672{
1673 /** Physical access handlers (AVL range+offsetptr tree). */
1674 AVLROGCPHYSTREE PhysHandlers;
1675 /** Virtual access handlers (AVL range + GC ptr tree). */
1676 AVLROGCPTRTREE VirtHandlers;
1677 /** Virtual access handlers (Phys range AVL range + offsetptr tree). */
1678 AVLROGCPHYSTREE PhysToVirtHandlers;
1679 /** Virtual access handlers for the hypervisor (AVL range + GC ptr tree). */
1680 AVLROGCPTRTREE HyperVirtHandlers;
1681} PGMTREES;
1682/** Pointer to PGM trees. */
1683typedef PGMTREES *PPGMTREES;
1684
1685
1686/** @name Paging mode macros
1687 * @{ */
1688#ifdef IN_GC
1689# define PGM_CTX(a,b) a##GC##b
1690# define PGM_CTX_STR(a,b) a "GC" b
1691# define PGM_CTX_DECL(type) PGMGCDECL(type)
1692#else
1693# ifdef IN_RING3
1694# define PGM_CTX(a,b) a##R3##b
1695# define PGM_CTX_STR(a,b) a "R3" b
1696# define PGM_CTX_DECL(type) DECLCALLBACK(type)
1697# else
1698# define PGM_CTX(a,b) a##R0##b
1699# define PGM_CTX_STR(a,b) a "R0" b
1700# define PGM_CTX_DECL(type) PGMDECL(type)
1701# endif
1702#endif
1703
1704#define PGM_GST_NAME_REAL(name) PGM_CTX(pgm,GstReal##name)
1705#define PGM_GST_NAME_GC_REAL_STR(name) "pgmGCGstReal" #name
1706#define PGM_GST_NAME_R0_REAL_STR(name) "pgmR0GstReal" #name
1707#define PGM_GST_NAME_PROT(name) PGM_CTX(pgm,GstProt##name)
1708#define PGM_GST_NAME_GC_PROT_STR(name) "pgmGCGstProt" #name
1709#define PGM_GST_NAME_R0_PROT_STR(name) "pgmR0GstProt" #name
1710#define PGM_GST_NAME_32BIT(name) PGM_CTX(pgm,Gst32Bit##name)
1711#define PGM_GST_NAME_GC_32BIT_STR(name) "pgmGCGst32Bit" #name
1712#define PGM_GST_NAME_R0_32BIT_STR(name) "pgmR0Gst32Bit" #name
1713#define PGM_GST_NAME_PAE(name) PGM_CTX(pgm,GstPAE##name)
1714#define PGM_GST_NAME_GC_PAE_STR(name) "pgmGCGstPAE" #name
1715#define PGM_GST_NAME_R0_PAE_STR(name) "pgmR0GstPAE" #name
1716#define PGM_GST_NAME_AMD64(name) PGM_CTX(pgm,GstAMD64##name)
1717#define PGM_GST_NAME_GC_AMD64_STR(name) "pgmGCGstAMD64" #name
1718#define PGM_GST_NAME_R0_AMD64_STR(name) "pgmR0GstAMD64" #name
1719#define PGM_GST_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Gst##name))
1720#define PGM_GST_DECL(type, name) PGM_CTX_DECL(type) PGM_GST_NAME(name)
1721
1722#define PGM_SHW_NAME_32BIT(name) PGM_CTX(pgm,Shw32Bit##name)
1723#define PGM_SHW_NAME_GC_32BIT_STR(name) "pgmGCShw32Bit" #name
1724#define PGM_SHW_NAME_R0_32BIT_STR(name) "pgmR0Shw32Bit" #name
1725#define PGM_SHW_NAME_PAE(name) PGM_CTX(pgm,ShwPAE##name)
1726#define PGM_SHW_NAME_GC_PAE_STR(name) "pgmGCShwPAE" #name
1727#define PGM_SHW_NAME_R0_PAE_STR(name) "pgmR0ShwPAE" #name
1728#define PGM_SHW_NAME_AMD64(name) PGM_CTX(pgm,ShwAMD64##name)
1729#define PGM_SHW_NAME_GC_AMD64_STR(name) "pgmGCShwAMD64" #name
1730#define PGM_SHW_NAME_R0_AMD64_STR(name) "pgmR0ShwAMD64" #name
1731#define PGM_SHW_NAME_NESTED(name) PGM_CTX(pgm,ShwNested##name)
1732#define PGM_SHW_NAME_GC_NESTED_STR(name) "pgmGCShwNested" #name
1733#define PGM_SHW_NAME_R0_NESTED_STR(name) "pgmR0ShwNested" #name
1734#define PGM_SHW_NAME_EPT(name) PGM_CTX(pgm,ShwEPT##name)
1735#define PGM_SHW_NAME_GC_EPT_STR(name) "pgmGCShwEPT" #name
1736#define PGM_SHW_NAME_R0_EPT_STR(name) "pgmR0ShwEPT" #name
1737#define PGM_SHW_DECL(type, name) PGM_CTX_DECL(type) PGM_SHW_NAME(name)
1738#define PGM_SHW_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Shw##name))
1739
1740/* Shw_Gst */
1741#define PGM_BTH_NAME_32BIT_REAL(name) PGM_CTX(pgm,Bth32BitReal##name)
1742#define PGM_BTH_NAME_32BIT_PROT(name) PGM_CTX(pgm,Bth32BitProt##name)
1743#define PGM_BTH_NAME_32BIT_32BIT(name) PGM_CTX(pgm,Bth32Bit32Bit##name)
1744#define PGM_BTH_NAME_PAE_REAL(name) PGM_CTX(pgm,BthPAEReal##name)
1745#define PGM_BTH_NAME_PAE_PROT(name) PGM_CTX(pgm,BthPAEProt##name)
1746#define PGM_BTH_NAME_PAE_32BIT(name) PGM_CTX(pgm,BthPAE32Bit##name)
1747#define PGM_BTH_NAME_PAE_PAE(name) PGM_CTX(pgm,BthPAEPAE##name)
1748#define PGM_BTH_NAME_AMD64_PROT(name) PGM_CTX(pgm,BthAMD64Prot##name)
1749#define PGM_BTH_NAME_AMD64_AMD64(name) PGM_CTX(pgm,BthAMD64AMD64##name)
1750#define PGM_BTH_NAME_NESTED_REAL(name) PGM_CTX(pgm,BthNestedReal##name)
1751#define PGM_BTH_NAME_NESTED_PROT(name) PGM_CTX(pgm,BthNestedProt##name)
1752#define PGM_BTH_NAME_NESTED_32BIT(name) PGM_CTX(pgm,BthNested32Bit##name)
1753#define PGM_BTH_NAME_NESTED_PAE(name) PGM_CTX(pgm,BthNestedPAE##name)
1754#define PGM_BTH_NAME_NESTED_AMD64(name) PGM_CTX(pgm,BthNestedAMD64##name)
1755#define PGM_BTH_NAME_EPT_REAL(name) PGM_CTX(pgm,BthEPTReal##name)
1756#define PGM_BTH_NAME_EPT_PROT(name) PGM_CTX(pgm,BthEPTProt##name)
1757#define PGM_BTH_NAME_EPT_32BIT(name) PGM_CTX(pgm,BthEPT32Bit##name)
1758#define PGM_BTH_NAME_EPT_PAE(name) PGM_CTX(pgm,BthEPTPAE##name)
1759#define PGM_BTH_NAME_EPT_AMD64(name) PGM_CTX(pgm,BthEPTAMD64##name)
1760
1761#define PGM_BTH_NAME_GC_32BIT_REAL_STR(name) "pgmGCBth32BitReal" #name
1762#define PGM_BTH_NAME_GC_32BIT_PROT_STR(name) "pgmGCBth32BitProt" #name
1763#define PGM_BTH_NAME_GC_32BIT_32BIT_STR(name) "pgmGCBth32Bit32Bit" #name
1764#define PGM_BTH_NAME_GC_PAE_REAL_STR(name) "pgmGCBthPAEReal" #name
1765#define PGM_BTH_NAME_GC_PAE_PROT_STR(name) "pgmGCBthPAEProt" #name
1766#define PGM_BTH_NAME_GC_PAE_32BIT_STR(name) "pgmGCBthPAE32Bit" #name
1767#define PGM_BTH_NAME_GC_PAE_PAE_STR(name) "pgmGCBthPAEPAE" #name
1768#define PGM_BTH_NAME_GC_AMD64_AMD64_STR(name) "pgmGCBthAMD64AMD64" #name
1769#define PGM_BTH_NAME_GC_NESTED_REAL_STR(name) "pgmGCBthNestedReal" #name
1770#define PGM_BTH_NAME_GC_NESTED_PROT_STR(name) "pgmGCBthNestedProt" #name
1771#define PGM_BTH_NAME_GC_NESTED_32BIT_STR(name) "pgmGCBthNested32Bit" #name
1772#define PGM_BTH_NAME_GC_NESTED_PAE_STR(name) "pgmGCBthNestedPAE" #name
1773#define PGM_BTH_NAME_GC_NESTED_AMD64_STR(name) "pgmGCBthNestedAMD64" #name
1774#define PGM_BTH_NAME_GC_EPT_REAL_STR(name) "pgmGCBthEPTReal" #name
1775#define PGM_BTH_NAME_GC_EPT_PROT_STR(name) "pgmGCBthEPTProt" #name
1776#define PGM_BTH_NAME_GC_EPT_32BIT_STR(name) "pgmGCBthEPT32Bit" #name
1777#define PGM_BTH_NAME_GC_EPT_PAE_STR(name) "pgmGCBthEPTPAE" #name
1778#define PGM_BTH_NAME_GC_EPT_AMD64_STR(name) "pgmGCBthEPTAMD64" #name
1779#define PGM_BTH_NAME_R0_32BIT_REAL_STR(name) "pgmR0Bth32BitReal" #name
1780#define PGM_BTH_NAME_R0_32BIT_PROT_STR(name) "pgmR0Bth32BitProt" #name
1781#define PGM_BTH_NAME_R0_32BIT_32BIT_STR(name) "pgmR0Bth32Bit32Bit" #name
1782#define PGM_BTH_NAME_R0_PAE_REAL_STR(name) "pgmR0BthPAEReal" #name
1783#define PGM_BTH_NAME_R0_PAE_PROT_STR(name) "pgmR0BthPAEProt" #name
1784#define PGM_BTH_NAME_R0_PAE_32BIT_STR(name) "pgmR0BthPAE32Bit" #name
1785#define PGM_BTH_NAME_R0_PAE_PAE_STR(name) "pgmR0BthPAEPAE" #name
1786#define PGM_BTH_NAME_R0_AMD64_PROT_STR(name) "pgmR0BthAMD64Prot" #name
1787#define PGM_BTH_NAME_R0_AMD64_AMD64_STR(name) "pgmR0BthAMD64AMD64" #name
1788#define PGM_BTH_NAME_R0_NESTED_REAL_STR(name) "pgmR0BthNestedReal" #name
1789#define PGM_BTH_NAME_R0_NESTED_PROT_STR(name) "pgmR0BthNestedProt" #name
1790#define PGM_BTH_NAME_R0_NESTED_32BIT_STR(name) "pgmR0BthNested32Bit" #name
1791#define PGM_BTH_NAME_R0_NESTED_PAE_STR(name) "pgmR0BthNestedPAE" #name
1792#define PGM_BTH_NAME_R0_NESTED_AMD64_STR(name) "pgmR0BthNestedAMD64" #name
1793#define PGM_BTH_NAME_R0_EPT_REAL_STR(name) "pgmR0BthEPTReal" #name
1794#define PGM_BTH_NAME_R0_EPT_PROT_STR(name) "pgmR0BthEPTProt" #name
1795#define PGM_BTH_NAME_R0_EPT_32BIT_STR(name) "pgmR0BthEPT32Bit" #name
1796#define PGM_BTH_NAME_R0_EPT_PAE_STR(name) "pgmR0BthEPTPAE" #name
1797#define PGM_BTH_NAME_R0_EPT_AMD64_STR(name) "pgmR0BthEPTAMD64" #name
1798
1799#define PGM_BTH_DECL(type, name) PGM_CTX_DECL(type) PGM_BTH_NAME(name)
1800#define PGM_BTH_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Bth##name))
1801/** @} */
1802
1803/**
1804 * Data for each paging mode.
1805 */
1806typedef struct PGMMODEDATA
1807{
1808 /** The guest mode type. */
1809 uint32_t uGstType;
1810 /** The shadow mode type. */
1811 uint32_t uShwType;
1812
1813 /** @name Function pointers for Shadow paging.
1814 * @{
1815 */
1816 DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCUINTPTR offDelta));
1817 DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
1818 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
1819 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1820
1821 DECLRCCALLBACKMEMBER(int, pfnGCShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
1822 DECLRCCALLBACKMEMBER(int, pfnGCShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1823
1824 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
1825 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1826 /** @} */
1827
1828 /** @name Function pointers for Guest paging.
1829 * @{
1830 */
1831 DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCUINTPTR offDelta));
1832 DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
1833 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
1834 DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1835 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
1836 DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1837 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
1838 DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1839 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM));
1840 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
1841 R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
1842 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
1843 R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
1844
1845 DECLRCCALLBACKMEMBER(int, pfnGCGstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
1846 DECLRCCALLBACKMEMBER(int, pfnGCGstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1847 DECLRCCALLBACKMEMBER(int, pfnGCGstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
1848 DECLRCCALLBACKMEMBER(int, pfnGCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1849 DECLRCCALLBACKMEMBER(int, pfnGCGstUnmonitorCR3,(PVM pVM));
1850 DECLRCCALLBACKMEMBER(int, pfnGCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1851 DECLRCCALLBACKMEMBER(int, pfnGCGstUnmapCR3,(PVM pVM));
1852 RCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnGCGstWriteHandlerCR3;
1853 RCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnGCGstPAEWriteHandlerCR3;
1854
1855 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
1856 DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1857 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
1858 DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1859 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
1860 DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1861 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM));
1862 R0PTRTYPE(PFNPGMGCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
1863 R0PTRTYPE(PFNPGMGCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
1864 /** @} */
1865
1866 /** @name Function pointers for Both Shadow and Guest paging.
1867 * @{
1868 */
1869 DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCUINTPTR offDelta));
1870 DECLR3CALLBACKMEMBER(int, pfnR3BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
1871 DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
1872 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
1873 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
1874 DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
1875 DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
1876#ifdef VBOX_STRICT
1877 DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
1878#endif
1879
1880 DECLRCCALLBACKMEMBER(int, pfnGCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
1881 DECLRCCALLBACKMEMBER(int, pfnGCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
1882 DECLRCCALLBACKMEMBER(int, pfnGCBthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
1883 DECLRCCALLBACKMEMBER(int, pfnGCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
1884 DECLRCCALLBACKMEMBER(int, pfnGCBthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
1885 DECLRCCALLBACKMEMBER(int, pfnGCBthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
1886#ifdef VBOX_STRICT
1887 DECLRCCALLBACKMEMBER(unsigned, pfnGCBthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
1888#endif
1889
1890 DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
1891 DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
1892 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
1893 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
1894 DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
1895 DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
1896#ifdef VBOX_STRICT
1897 DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
1898#endif
1899 /** @} */
1900} PGMMODEDATA, *PPGMMODEDATA;
1901
1902
1903
1904/**
1905 * Converts a PGM pointer into a VM pointer.
1906 * @returns Pointer to the VM structure the PGM is part of.
1907 * @param pPGM Pointer to PGM instance data.
1908 */
1909#define PGM2VM(pPGM) ( (PVM)((char*)pPGM - pPGM->offVM) )
1910
1911/**
1912 * PGM Data (part of VM)
1913 */
1914typedef struct PGM
1915{
1916 /** Offset to the VM structure. */
1917 RTINT offVM;
1918
1919 /*
1920 * This will be redefined at least two more times before we're done, I'm sure.
1921 * The current code is only to get on with the coding.
1922 * - 2004-06-10: initial version, bird.
1923 * - 2004-07-02: 1st time, bird.
1924 * - 2004-10-18: 2nd time, bird.
1925 * - 2005-07-xx: 3rd time, bird.
1926 */
1927
1928 /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
1929 RCPTRTYPE(PX86PTE) paDynPageMap32BitPTEsGC;
1930 /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
1931 RCPTRTYPE(PX86PTEPAE) paDynPageMapPaePTEsGC;
1932
1933 /** The host paging mode. (This is what SUPLib reports.) */
1934 SUPPAGINGMODE enmHostMode;
1935 /** The shadow paging mode. */
1936 PGMMODE enmShadowMode;
1937 /** The guest paging mode. */
1938 PGMMODE enmGuestMode;
1939
1940 /** The current physical address representing in the guest CR3 register. */
1941 RTGCPHYS GCPhysCR3;
1942 /** Pointer to the 5 page CR3 content mapping.
1943 * The first page is always the CR3 (in some form) while the 4 other pages
1944 * are used of the PDs in PAE mode. */
1945 RTGCPTR GCPtrCR3Mapping;
1946#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
1947 uint32_t u32Alignment;
1948#endif
1949 /** The physical address of the currently monitored guest CR3 page.
1950 * When this value is NIL_RTGCPHYS no page is being monitored. */
1951 RTGCPHYS GCPhysGstCR3Monitored;
1952
1953 /** @name 32-bit Guest Paging.
1954 * @{ */
1955 /** The guest's page directory, HC pointer. */
1956 R3R0PTRTYPE(PX86PD) pGuestPDHC;
1957 /** The guest's page directory, static GC mapping. */
1958 RCPTRTYPE(PX86PD) pGuestPDGC;
1959 /** @} */
1960
1961 /** @name PAE Guest Paging.
1962 * @{ */
1963 /** The guest's page directory pointer table, static GC mapping. */
1964 RCPTRTYPE(PX86PDPT) pGstPaePDPTGC;
1965 /** The guest's page directory pointer table, HC pointer. */
1966 R3R0PTRTYPE(PX86PDPT) pGstPaePDPTHC;
1967 /** The guest's page directories, HC pointers.
1968 * These are individual pointers and don't have to be adjecent.
1969 * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
1970 R3R0PTRTYPE(PX86PDPAE) apGstPaePDsHC[4];
1971 /** The guest's page directories, static GC mapping.
1972 * Unlike the HC array the first entry can be accessed as a 2048 entry PD.
1973 * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
1974 RCPTRTYPE(PX86PDPAE) apGstPaePDsGC[4];
1975 /** The physical addresses of the guest page directories (PAE) pointed to by apGstPagePDsHC/GC. */
1976 RTGCPHYS aGCPhysGstPaePDs[4];
1977 /** The physical addresses of the monitored guest page directories (PAE). */
1978 RTGCPHYS aGCPhysGstPaePDsMonitored[4];
1979 /** @} */
1980
1981 /** @name AMD64 Guest Paging.
1982 * @{ */
1983 /** The guest's page directory pointer table, HC pointer. */
1984 R3R0PTRTYPE(PX86PML4) pGstPaePML4HC;
1985 /** @} */
1986
1987 /** @name 32-bit Shadow Paging
1988 * @{ */
1989 /** The 32-Bit PD - HC Ptr. */
1990 R3R0PTRTYPE(PX86PD) pHC32BitPD;
1991 /** The 32-Bit PD - GC Ptr. */
1992 RCPTRTYPE(PX86PD) pGC32BitPD;
1993#if HC_ARCH_BITS == 64
1994 uint32_t u32Padding1; /**< alignment padding. */
1995#endif
1996 /** The Physical Address (HC) of the 32-Bit PD. */
1997 RTHCPHYS HCPhys32BitPD;
1998 /** @} */
1999
2000 /** @name 32-bit Shadow Paging with guest real or protected mode without paging.
2001 * @{ */
2002 /** The 32-Bit PD - HC Ptr. */
2003 R3R0PTRTYPE(PX86PD) pHCNoPaging32BitPD;
2004 /** The Physical Address (HC) of the 32-Bit PD. */
2005 RTHCPHYS HCPhysNoPaging32BitPD;
2006 /** @} */
2007
2008 /** @name PAE Shadow Paging
2009 * @{ */
2010 /** The four PDs for the low 4GB - HC Ptr.
2011 * Even though these are 4 pointers, what they point at is a single table.
2012 * Thus, it's possible to walk the 2048 entries starting where apHCPaePDs[0] points. */
2013 R3R0PTRTYPE(PX86PDPAE) apHCPaePDs[4];
2014 /** The four PDs for the low 4GB - GC Ptr.
2015 * Same kind of mapping as apHCPaePDs. */
2016 RCPTRTYPE(PX86PDPAE) apGCPaePDs[4];
2017 /** The Physical Address (HC) of the four PDs for the low 4GB.
2018 * These are *NOT* 4 contiguous pages. */
2019 RTHCPHYS aHCPhysPaePDs[4];
2020 /** The PAE PDP - HC Ptr. */
2021 R3R0PTRTYPE(PX86PDPT) pHCPaePDPT;
2022 /** The Physical Address (HC) of the PAE PDPT. */
2023 RTHCPHYS HCPhysPaePDPT;
2024 /** The PAE PDPT - GC Ptr. */
2025 RCPTRTYPE(PX86PDPT) pGCPaePDPT;
2026 /** @} */
2027
2028 /** @name AMD64 Shadow Paging
2029 * Extends PAE Paging.
2030 * @{ */
2031#if HC_ARCH_BITS == 64
2032 RTRCPTR alignment5; /**< structure size alignment. */
2033#endif
2034 /** The Page Map Level 4 table - HC Ptr. */
2035 R3R0PTRTYPE(PX86PML4) pHCPaePML4;
2036 /** The Physical Address (HC) of the Page Map Level 4 table. */
2037 RTHCPHYS HCPhysPaePML4;
2038 /** The pgm pool page descriptor for the current active CR3. */
2039 R3R0PTRTYPE(PPGMPOOLPAGE) pHCShwAmd64CR3;
2040
2041 /** @}*/
2042
2043 /** @name Nested Shadow Paging
2044 * @{ */
2045 /** Root table; format depends on the host paging mode (AMD-V) or EPT */
2046 R3R0PTRTYPE(void *) pHCNestedRoot;
2047 /** The Physical Address (HC) of the nested paging root. */
2048 RTHCPHYS HCPhysNestedRoot;
2049
2050 /** @name Function pointers for Shadow paging.
2051 * @{
2052 */
2053 DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCUINTPTR offDelta));
2054 DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
2055 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2056 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2057
2058 DECLRCCALLBACKMEMBER(int, pfnGCShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2059 DECLRCCALLBACKMEMBER(int, pfnGCShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2060
2061 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2062 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2063
2064 /** @} */
2065
2066 /** @name Function pointers for Guest paging.
2067 * @{
2068 */
2069 DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCUINTPTR offDelta));
2070 DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
2071 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2072 DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2073 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
2074 DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2075 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
2076 DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2077 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM));
2078 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
2079 R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
2080 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
2081 R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
2082
2083 DECLRCCALLBACKMEMBER(int, pfnGCGstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2084 DECLRCCALLBACKMEMBER(int, pfnGCGstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2085 DECLRCCALLBACKMEMBER(int, pfnGCGstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
2086 DECLRCCALLBACKMEMBER(int, pfnGCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2087 DECLRCCALLBACKMEMBER(int, pfnGCGstUnmonitorCR3,(PVM pVM));
2088 DECLRCCALLBACKMEMBER(int, pfnGCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2089 DECLRCCALLBACKMEMBER(int, pfnGCGstUnmapCR3,(PVM pVM));
2090 RCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnGCGstWriteHandlerCR3;
2091 RCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnGCGstPAEWriteHandlerCR3;
2092#if HC_ARCH_BITS == 64
2093 RTRCPTR alignment3; /**< structure size alignment. */
2094#endif
2095
2096 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2097 DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2098 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
2099 DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2100 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
2101 DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2102 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM));
2103 R0PTRTYPE(PFNPGMGCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
2104 R0PTRTYPE(PFNPGMGCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
2105 /** @} */
2106
2107 /** @name Function pointers for Both Shadow and Guest paging.
2108 * @{
2109 */
2110 DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCUINTPTR offDelta));
2111 DECLR3CALLBACKMEMBER(int, pfnR3BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2112 DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2113 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2114 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
2115 DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
2116 DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
2117 DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
2118
2119 DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2120 DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2121 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2122 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
2123 DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
2124 DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
2125 DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
2126
2127 DECLRCCALLBACKMEMBER(int, pfnGCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2128 DECLRCCALLBACKMEMBER(int, pfnGCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2129 DECLRCCALLBACKMEMBER(int, pfnGCBthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2130 DECLRCCALLBACKMEMBER(int, pfnGCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
2131 DECLRCCALLBACKMEMBER(int, pfnGCBthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
2132 DECLRCCALLBACKMEMBER(int, pfnGCBthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
2133 DECLRCCALLBACKMEMBER(unsigned, pfnGCBthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
2134#if HC_ARCH_BITS == 64
2135 RTRCPTR alignment2; /**< structure size alignment. */
2136#endif
2137 /** @} */
2138
2139 /** Pointer to SHW+GST mode data (function pointers).
2140 * The index into this table is made up from */
2141 R3PTRTYPE(PPGMMODEDATA) paModeData;
2142
2143 /** Pointer to the list of RAM ranges (Phys GC -> Phys HC conversion) - for R3.
2144 * This is sorted by physical address and contains no overlapping ranges. */
2145 R3PTRTYPE(PPGMRAMRANGE) pRamRangesR3;
2146 /** R0 pointer corresponding to PGM::pRamRangesR3. */
2147 R0PTRTYPE(PPGMRAMRANGE) pRamRangesR0;
2148 /** GC pointer corresponding to PGM::pRamRangesR3. */
2149 RCPTRTYPE(PPGMRAMRANGE) pRamRangesGC;
2150 /** The configured RAM size. */
2151 RTUINT cbRamSize;
2152
2153 /** Pointer to the list of ROM ranges - for R3.
2154 * This is sorted by physical address and contains no overlapping ranges. */
2155 R3PTRTYPE(PPGMROMRANGE) pRomRangesR3;
2156 /** R0 pointer corresponding to PGM::pRomRangesR3. */
2157 R0PTRTYPE(PPGMRAMRANGE) pRomRangesR0;
2158 /** GC pointer corresponding to PGM::pRomRangesR3. */
2159 RCPTRTYPE(PPGMRAMRANGE) pRomRangesGC;
2160 /** Alignment padding. */
2161 RTRCPTR GCPtrPadding2;
2162
2163 /** Pointer to the list of MMIO2 ranges - for R3.
2164 * Registration order. */
2165 R3PTRTYPE(PPGMMMIO2RANGE) pMmio2RangesR3;
2166
2167 /** PGM offset based trees - HC Ptr. */
2168 R3R0PTRTYPE(PPGMTREES) pTreesHC;
2169 /** PGM offset based trees - GC Ptr. */
2170 RCPTRTYPE(PPGMTREES) pTreesGC;
2171
2172 /** Linked list of GC mappings - for GC.
2173 * The list is sorted ascending on address.
2174 */
2175 RCPTRTYPE(PPGMMAPPING) pMappingsGC;
2176 /** Linked list of GC mappings - for HC.
2177 * The list is sorted ascending on address.
2178 */
2179 R3PTRTYPE(PPGMMAPPING) pMappingsR3;
2180 /** Linked list of GC mappings - for R0.
2181 * The list is sorted ascending on address.
2182 */
2183 R0PTRTYPE(PPGMMAPPING) pMappingsR0;
2184
2185 /** If set no conflict checks are required. (boolean) */
2186 bool fMappingsFixed;
2187 /** If set, then no mappings are put into the shadow page table. (boolean) */
2188 bool fDisableMappings;
2189 /** Size of fixed mapping */
2190 uint32_t cbMappingFixed;
2191 /** Base address (GC) of fixed mapping */
2192 RTGCPTR GCPtrMappingFixed;
2193#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
2194 uint32_t u32Padding0; /**< alignment padding. */
2195#endif
2196
2197
2198 /** @name Intermediate Context
2199 * @{ */
2200 /** Pointer to the intermediate page directory - Normal. */
2201 R3PTRTYPE(PX86PD) pInterPD;
2202 /** Pointer to the intermedate page tables - Normal.
2203 * There are two page tables, one for the identity mapping and one for
2204 * the host context mapping (of the core code). */
2205 R3PTRTYPE(PX86PT) apInterPTs[2];
2206 /** Pointer to the intermedate page tables - PAE. */
2207 R3PTRTYPE(PX86PTPAE) apInterPaePTs[2];
2208 /** Pointer to the intermedate page directory - PAE. */
2209 R3PTRTYPE(PX86PDPAE) apInterPaePDs[4];
2210 /** Pointer to the intermedate page directory - PAE. */
2211 R3PTRTYPE(PX86PDPT) pInterPaePDPT;
2212 /** Pointer to the intermedate page-map level 4 - AMD64. */
2213 R3PTRTYPE(PX86PML4) pInterPaePML4;
2214 /** Pointer to the intermedate page directory - AMD64. */
2215 R3PTRTYPE(PX86PDPT) pInterPaePDPT64;
2216 /** The Physical Address (HC) of the intermediate Page Directory - Normal. */
2217 RTHCPHYS HCPhysInterPD;
2218 /** The Physical Address (HC) of the intermediate Page Directory Pointer Table - PAE. */
2219 RTHCPHYS HCPhysInterPaePDPT;
2220 /** The Physical Address (HC) of the intermediate Page Map Level 4 table - AMD64. */
2221 RTHCPHYS HCPhysInterPaePML4;
2222 /** @} */
2223
2224 /** Base address of the dynamic page mapping area.
2225 * The array is MM_HYPER_DYNAMIC_SIZE bytes big.
2226 */
2227 RCPTRTYPE(uint8_t *) pbDynPageMapBaseGC;
2228 /** The index of the last entry used in the dynamic page mapping area. */
2229 RTUINT iDynPageMapLast;
2230 /** Cache containing the last entries in the dynamic page mapping area.
2231 * The cache size is covering half of the mapping area. */
2232 RTHCPHYS aHCPhysDynPageMapCache[MM_HYPER_DYNAMIC_SIZE >> (PAGE_SHIFT + 1)];
2233
2234 /** 4 MB page mask; 32 or 36 bits depending on PSE-36 */
2235 RTGCPHYS GCPhys4MBPSEMask;
2236
2237 /** A20 gate mask.
2238 * Our current approach to A20 emulation is to let REM do it and don't bother
2239 * anywhere else. The interesting Guests will be operating with it enabled anyway.
2240 * But whould need arrise, we'll subject physical addresses to this mask. */
2241 RTGCPHYS GCPhysA20Mask;
2242 /** A20 gate state - boolean! */
2243 RTUINT fA20Enabled;
2244
2245 /** What needs syncing (PGM_SYNC_*).
2246 * This is used to queue operations for PGMSyncCR3, PGMInvalidatePage,
2247 * PGMFlushTLB, and PGMR3Load. */
2248 RTUINT fSyncFlags;
2249
2250 /** PGM critical section.
2251 * This protects the physical & virtual access handlers, ram ranges,
2252 * and the page flag updating (some of it anyway).
2253 */
2254 PDMCRITSECT CritSect;
2255
2256 /** Shadow Page Pool - HC Ptr. */
2257 R3R0PTRTYPE(PPGMPOOL) pPoolHC;
2258 /** Shadow Page Pool - GC Ptr. */
2259 RCPTRTYPE(PPGMPOOL) pPoolGC;
2260
2261 /** We're not in a state which permits writes to guest memory.
2262 * (Only used in strict builds.) */
2263 bool fNoMorePhysWrites;
2264
2265 /** Flush the cache on the next access. */
2266 bool fPhysCacheFlushPending;
2267/** @todo r=bird: Fix member names!*/
2268 /** PGMPhysRead cache */
2269 PGMPHYSCACHE pgmphysreadcache;
2270 /** PGMPhysWrite cache */
2271 PGMPHYSCACHE pgmphyswritecache;
2272
2273 /**
2274 * Data associated with managing the ring-3 mappings of the allocation chunks.
2275 */
2276 struct
2277 {
2278 /** The chunk tree, ordered by chunk id. */
2279 R3R0PTRTYPE(PAVLU32NODECORE) pTree;
2280 /** The chunk mapping TLB. */
2281 PGMCHUNKR3MAPTLB Tlb;
2282 /** The number of mapped chunks. */
2283 uint32_t c;
2284 /** The maximum number of mapped chunks.
2285 * @cfgm PGM/MaxRing3Chunks */
2286 uint32_t cMax;
2287 /** The chunk age tree, ordered by ageing sequence number. */
2288 R3PTRTYPE(PAVLLU32NODECORE) pAgeTree;
2289 /** The current time. */
2290 uint32_t iNow;
2291 /** Number of pgmR3PhysChunkFindUnmapCandidate calls left to the next ageing. */
2292 uint32_t AgeingCountdown;
2293 } ChunkR3Map;
2294
2295 /**
2296 * The page mapping TLB for ring-3 and (for the time being) ring-0.
2297 */
2298 PGMPAGER3MAPTLB PhysTlbHC;
2299
2300 /** @name The zero page.
2301 * @{ */
2302 /** The host physical address of the zero page. */
2303 RTHCPHYS HCPhysZeroPg;
2304 /** The ring-3 mapping of the zero page. */
2305 RTR3PTR pvZeroPgR3;
2306 /** The ring-0 mapping of the zero page. */
2307 RTR0PTR pvZeroPgR0;
2308 /** The GC mapping of the zero page. */
2309 RTGCPTR pvZeroPgGC;
2310#if GC_ARCH_BITS != 32
2311 uint32_t u32ZeroAlignment; /**< Alignment padding. */
2312#endif
2313 /** @}*/
2314
2315 /** The number of handy pages. */
2316 uint32_t cHandyPages;
2317 /**
2318 * Array of handy pages.
2319 *
2320 * This array is used in a two way communication between pgmPhysAllocPage
2321 * and GMMR0AllocateHandyPages, with PGMR3PhysAllocateHandyPages serving as
2322 * an intermediary.
2323 *
2324 * The size of this array is important, see pgmPhysEnsureHandyPage for details.
2325 * (The current size of 32 pages, means 128 KB of handy memory.)
2326 */
2327 GMMPAGEDESC aHandyPages[32];
2328
2329 /** @name Release Statistics
2330 * @{ */
2331 uint32_t cAllPages; /**< The total number of pages. (Should be Private + Shared + Zero.) */
2332 uint32_t cPrivatePages; /**< The number of private pages. */
2333 uint32_t cSharedPages; /**< The number of shared pages. */
2334 uint32_t cZeroPages; /**< The number of zero backed pages. */
2335 /** The number of times the guest has switched mode since last reset or statistics reset. */
2336 STAMCOUNTER cGuestModeChanges;
2337 /** @} */
2338
2339#ifdef VBOX_WITH_STATISTICS
2340 /** GC: Which statistic this \#PF should be attributed to. */
2341 RCPTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionGC;
2342 RTRCPTR padding0;
2343 /** HC: Which statistic this \#PF should be attributed to. */
2344 R3R0PTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionHC;
2345 RTHCPTR padding1;
2346 STAMPROFILE StatGCTrap0e; /**< GC: PGMGCTrap0eHandler() profiling. */
2347 STAMPROFILE StatTrap0eCSAM; /**< Profiling of the Trap0eHandler body when the cause is CSAM. */
2348 STAMPROFILE StatTrap0eDirtyAndAccessedBits; /**< Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation. */
2349 STAMPROFILE StatTrap0eGuestTrap; /**< Profiling of the Trap0eHandler body when the cause is a guest trap. */
2350 STAMPROFILE StatTrap0eHndPhys; /**< Profiling of the Trap0eHandler body when the cause is a physical handler. */
2351 STAMPROFILE StatTrap0eHndVirt; /**< Profiling of the Trap0eHandler body when the cause is a virtual handler. */
2352 STAMPROFILE StatTrap0eHndUnhandled; /**< Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page. */
2353 STAMPROFILE StatTrap0eMisc; /**< Profiling of the Trap0eHandler body when the cause is not known. */
2354 STAMPROFILE StatTrap0eOutOfSync; /**< Profiling of the Trap0eHandler body when the cause is an out-of-sync page. */
2355 STAMPROFILE StatTrap0eOutOfSyncHndPhys; /**< Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page. */
2356 STAMPROFILE StatTrap0eOutOfSyncHndVirt; /**< Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page. */
2357 STAMPROFILE StatTrap0eOutOfSyncObsHnd; /**< Profiling of the Trap0eHandler body when the cause is an obsolete handler page. */
2358 STAMPROFILE StatTrap0eSyncPT; /**< Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT. */
2359
2360 STAMCOUNTER StatTrap0eMapHandler; /**< Number of traps due to access handlers in mappings. */
2361 STAMCOUNTER StatGCTrap0eConflicts; /**< GC: The number of times \#PF was caused by an undetected conflict. */
2362
2363 STAMCOUNTER StatGCTrap0eUSNotPresentRead;
2364 STAMCOUNTER StatGCTrap0eUSNotPresentWrite;
2365 STAMCOUNTER StatGCTrap0eUSWrite;
2366 STAMCOUNTER StatGCTrap0eUSReserved;
2367 STAMCOUNTER StatGCTrap0eUSNXE;
2368 STAMCOUNTER StatGCTrap0eUSRead;
2369
2370 STAMCOUNTER StatGCTrap0eSVNotPresentRead;
2371 STAMCOUNTER StatGCTrap0eSVNotPresentWrite;
2372 STAMCOUNTER StatGCTrap0eSVWrite;
2373 STAMCOUNTER StatGCTrap0eSVReserved;
2374 STAMCOUNTER StatGCTrap0eSNXE;
2375
2376 STAMCOUNTER StatTrap0eWPEmulGC;
2377 STAMCOUNTER StatTrap0eWPEmulR3;
2378
2379 STAMCOUNTER StatGCTrap0eUnhandled;
2380 STAMCOUNTER StatGCTrap0eMap;
2381
2382 /** GC: PGMSyncPT() profiling. */
2383 STAMPROFILE StatGCSyncPT;
2384 /** GC: The number of times PGMSyncPT() needed to allocate page tables. */
2385 STAMCOUNTER StatGCSyncPTAlloc;
2386 /** GC: The number of times PGMSyncPT() detected conflicts. */
2387 STAMCOUNTER StatGCSyncPTConflict;
2388 /** GC: The number of times PGMSyncPT() failed. */
2389 STAMCOUNTER StatGCSyncPTFailed;
2390 /** GC: PGMGCInvalidatePage() profiling. */
2391 STAMPROFILE StatGCInvalidatePage;
2392 /** GC: The number of times PGMGCInvalidatePage() was called for a 4KB page. */
2393 STAMCOUNTER StatGCInvalidatePage4KBPages;
2394 /** GC: The number of times PGMGCInvalidatePage() was called for a 4MB page. */
2395 STAMCOUNTER StatGCInvalidatePage4MBPages;
2396 /** GC: The number of times PGMGCInvalidatePage() skipped a 4MB page. */
2397 STAMCOUNTER StatGCInvalidatePage4MBPagesSkip;
2398 /** GC: The number of times PGMGCInvalidatePage() was called for a not accessed page directory. */
2399 STAMCOUNTER StatGCInvalidatePagePDNAs;
2400 /** GC: The number of times PGMGCInvalidatePage() was called for a not present page directory. */
2401 STAMCOUNTER StatGCInvalidatePagePDNPs;
2402 /** GC: The number of times PGMGCInvalidatePage() was called for a page directory containing mappings (no conflict). */
2403 STAMCOUNTER StatGCInvalidatePagePDMappings;
2404 /** GC: The number of times PGMGCInvalidatePage() was called for an out of sync page directory. */
2405 STAMCOUNTER StatGCInvalidatePagePDOutOfSync;
2406 /** HC: The number of times PGMGCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
2407 STAMCOUNTER StatGCInvalidatePageSkipped;
2408 /** GC: The number of times user page is out of sync was detected in GC. */
2409 STAMCOUNTER StatGCPageOutOfSyncUser;
2410 /** GC: The number of times supervisor page is out of sync was detected in GC. */
2411 STAMCOUNTER StatGCPageOutOfSyncSupervisor;
2412 /** GC: The number of dynamic page mapping cache hits */
2413 STAMCOUNTER StatDynMapCacheMisses;
2414 /** GC: The number of dynamic page mapping cache misses */
2415 STAMCOUNTER StatDynMapCacheHits;
2416 /** GC: The number of times pgmGCGuestPDWriteHandler() was successfully called. */
2417 STAMCOUNTER StatGCGuestCR3WriteHandled;
2418 /** GC: The number of times pgmGCGuestPDWriteHandler() was called and we had to fall back to the recompiler. */
2419 STAMCOUNTER StatGCGuestCR3WriteUnhandled;
2420 /** GC: The number of times pgmGCGuestPDWriteHandler() was called and a conflict was detected. */
2421 STAMCOUNTER StatGCGuestCR3WriteConflict;
2422 /** GC: Number of out-of-sync handled pages. */
2423 STAMCOUNTER StatHandlersOutOfSync;
2424 /** GC: Number of traps due to physical access handlers. */
2425 STAMCOUNTER StatHandlersPhysical;
2426 /** GC: Number of traps due to virtual access handlers. */
2427 STAMCOUNTER StatHandlersVirtual;
2428 /** GC: Number of traps due to virtual access handlers found by physical address. */
2429 STAMCOUNTER StatHandlersVirtualByPhys;
2430 /** GC: Number of traps due to virtual access handlers found by virtual address (without proper physical flags). */
2431 STAMCOUNTER StatHandlersVirtualUnmarked;
2432 /** GC: Number of traps due to access outside range of monitored page(s). */
2433 STAMCOUNTER StatHandlersUnhandled;
2434 /** GC: Number of traps due to access to invalid physical memory. */
2435 STAMCOUNTER StatHandlersInvalid;
2436
2437 /** GC: The number of times pgmGCGuestROMWriteHandler() was successfully called. */
2438 STAMCOUNTER StatGCGuestROMWriteHandled;
2439 /** GC: The number of times pgmGCGuestROMWriteHandler() was called and we had to fall back to the recompiler */
2440 STAMCOUNTER StatGCGuestROMWriteUnhandled;
2441
2442 /** HC: PGMR3InvalidatePage() profiling. */
2443 STAMPROFILE StatHCInvalidatePage;
2444 /** HC: The number of times PGMR3InvalidatePage() was called for a 4KB page. */
2445 STAMCOUNTER StatHCInvalidatePage4KBPages;
2446 /** HC: The number of times PGMR3InvalidatePage() was called for a 4MB page. */
2447 STAMCOUNTER StatHCInvalidatePage4MBPages;
2448 /** HC: The number of times PGMR3InvalidatePage() skipped a 4MB page. */
2449 STAMCOUNTER StatHCInvalidatePage4MBPagesSkip;
2450 /** HC: The number of times PGMR3InvalidatePage() was called for a not accessed page directory. */
2451 STAMCOUNTER StatHCInvalidatePagePDNAs;
2452 /** HC: The number of times PGMR3InvalidatePage() was called for a not present page directory. */
2453 STAMCOUNTER StatHCInvalidatePagePDNPs;
2454 /** HC: The number of times PGMR3InvalidatePage() was called for a page directory containing mappings (no conflict). */
2455 STAMCOUNTER StatHCInvalidatePagePDMappings;
2456 /** HC: The number of times PGMGCInvalidatePage() was called for an out of sync page directory. */
2457 STAMCOUNTER StatHCInvalidatePagePDOutOfSync;
2458 /** HC: The number of times PGMR3InvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
2459 STAMCOUNTER StatHCInvalidatePageSkipped;
2460 /** HC: PGMR3SyncPT() profiling. */
2461 STAMPROFILE StatHCSyncPT;
2462 /** HC: pgmr3SyncPTResolveConflict() profiling (includes the entire relocation). */
2463 STAMPROFILE StatHCResolveConflict;
2464 /** HC: Number of times PGMR3CheckMappingConflicts() detected a conflict. */
2465 STAMCOUNTER StatHCDetectedConflicts;
2466 /** HC: The total number of times pgmHCGuestPDWriteHandler() was called. */
2467 STAMCOUNTER StatHCGuestPDWrite;
2468 /** HC: The number of times pgmHCGuestPDWriteHandler() detected a conflict */
2469 STAMCOUNTER StatHCGuestPDWriteConflict;
2470
2471 /** HC: The number of pages marked not present for accessed bit emulation. */
2472 STAMCOUNTER StatHCAccessedPage;
2473 /** HC: The number of pages marked read-only for dirty bit tracking. */
2474 STAMCOUNTER StatHCDirtyPage;
2475 /** HC: The number of pages marked read-only for dirty bit tracking. */
2476 STAMCOUNTER StatHCDirtyPageBig;
2477 /** HC: The number of traps generated for dirty bit tracking. */
2478 STAMCOUNTER StatHCDirtyPageTrap;
2479 /** HC: The number of pages already dirty or readonly. */
2480 STAMCOUNTER StatHCDirtyPageSkipped;
2481
2482 /** GC: The number of pages marked not present for accessed bit emulation. */
2483 STAMCOUNTER StatGCAccessedPage;
2484 /** GC: The number of pages marked read-only for dirty bit tracking. */
2485 STAMCOUNTER StatGCDirtyPage;
2486 /** GC: The number of pages marked read-only for dirty bit tracking. */
2487 STAMCOUNTER StatGCDirtyPageBig;
2488 /** GC: The number of traps generated for dirty bit tracking. */
2489 STAMCOUNTER StatGCDirtyPageTrap;
2490 /** GC: The number of pages already dirty or readonly. */
2491 STAMCOUNTER StatGCDirtyPageSkipped;
2492 /** GC: The number of pages marked dirty because of write accesses. */
2493 STAMCOUNTER StatGCDirtiedPage;
2494 /** GC: The number of pages already marked dirty because of write accesses. */
2495 STAMCOUNTER StatGCPageAlreadyDirty;
2496 /** GC: The number of real pages faults during dirty bit tracking. */
2497 STAMCOUNTER StatGCDirtyTrackRealPF;
2498
2499 /** GC: Profiling of the PGMTrackDirtyBit() body */
2500 STAMPROFILE StatGCDirtyBitTracking;
2501 /** HC: Profiling of the PGMTrackDirtyBit() body */
2502 STAMPROFILE StatHCDirtyBitTracking;
2503
2504 /** GC: Profiling of the PGMGstModifyPage() body */
2505 STAMPROFILE StatGCGstModifyPage;
2506 /** HC: Profiling of the PGMGstModifyPage() body */
2507 STAMPROFILE StatHCGstModifyPage;
2508
2509 /** GC: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
2510 STAMCOUNTER StatGCSyncPagePDNAs;
2511 /** GC: The number of time we've encountered an out-of-sync PD in SyncPage. */
2512 STAMCOUNTER StatGCSyncPagePDOutOfSync;
2513 /** HC: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
2514 STAMCOUNTER StatHCSyncPagePDNAs;
2515 /** HC: The number of time we've encountered an out-of-sync PD in SyncPage. */
2516 STAMCOUNTER StatHCSyncPagePDOutOfSync;
2517
2518 STAMCOUNTER StatSynPT4kGC;
2519 STAMCOUNTER StatSynPT4kHC;
2520 STAMCOUNTER StatSynPT4MGC;
2521 STAMCOUNTER StatSynPT4MHC;
2522
2523 /** Profiling of the PGMFlushTLB() body. */
2524 STAMPROFILE StatFlushTLB;
2525 /** The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */
2526 STAMCOUNTER StatFlushTLBNewCR3;
2527 /** The number of times PGMFlushTLB was called with a new CR3, global. (switch) */
2528 STAMCOUNTER StatFlushTLBNewCR3Global;
2529 /** The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */
2530 STAMCOUNTER StatFlushTLBSameCR3;
2531 /** The number of times PGMFlushTLB was called with the same CR3, global. (flush) */
2532 STAMCOUNTER StatFlushTLBSameCR3Global;
2533
2534 STAMPROFILE StatGCSyncCR3; /**< GC: PGMSyncCR3() profiling. */
2535 STAMPROFILE StatGCSyncCR3Handlers; /**< GC: Profiling of the PGMSyncCR3() update handler section. */
2536 STAMPROFILE StatGCSyncCR3HandlerVirtualReset; /**< GC: Profiling of the virtual handler resets. */
2537 STAMPROFILE StatGCSyncCR3HandlerVirtualUpdate; /**< GC: Profiling of the virtual handler updates. */
2538 STAMCOUNTER StatGCSyncCR3Global; /**< GC: The number of global CR3 syncs. */
2539 STAMCOUNTER StatGCSyncCR3NotGlobal; /**< GC: The number of non-global CR3 syncs. */
2540 STAMCOUNTER StatGCSyncCR3DstFreed; /**< GC: The number of times we've had to free a shadow entry. */
2541 STAMCOUNTER StatGCSyncCR3DstFreedSrcNP; /**< GC: The number of times we've had to free a shadow entry for which the source entry was not present. */
2542 STAMCOUNTER StatGCSyncCR3DstNotPresent; /**< GC: The number of times we've encountered a not present shadow entry for a present guest entry. */
2543 STAMCOUNTER StatGCSyncCR3DstSkippedGlobalPD; /**< GC: The number of times a global page directory wasn't flushed. */
2544 STAMCOUNTER StatGCSyncCR3DstSkippedGlobalPT; /**< GC: The number of times a page table with only global entries wasn't flushed. */
2545 STAMCOUNTER StatGCSyncCR3DstCacheHit; /**< GC: The number of times we got some kind of cache hit on a page table. */
2546
2547 STAMPROFILE StatHCSyncCR3; /**< HC: PGMSyncCR3() profiling. */
2548 STAMPROFILE StatHCSyncCR3Handlers; /**< HC: Profiling of the PGMSyncCR3() update handler section. */
2549 STAMPROFILE StatHCSyncCR3HandlerVirtualReset; /**< HC: Profiling of the virtual handler resets. */
2550 STAMPROFILE StatHCSyncCR3HandlerVirtualUpdate; /**< HC: Profiling of the virtual handler updates. */
2551 STAMCOUNTER StatHCSyncCR3Global; /**< HC: The number of global CR3 syncs. */
2552 STAMCOUNTER StatHCSyncCR3NotGlobal; /**< HC: The number of non-global CR3 syncs. */
2553 STAMCOUNTER StatHCSyncCR3DstFreed; /**< HC: The number of times we've had to free a shadow entry. */
2554 STAMCOUNTER StatHCSyncCR3DstFreedSrcNP; /**< HC: The number of times we've had to free a shadow entry for which the source entry was not present. */
2555 STAMCOUNTER StatHCSyncCR3DstNotPresent; /**< HC: The number of times we've encountered a not present shadow entry for a present guest entry. */
2556 STAMCOUNTER StatHCSyncCR3DstSkippedGlobalPD; /**< HC: The number of times a global page directory wasn't flushed. */
2557 STAMCOUNTER StatHCSyncCR3DstSkippedGlobalPT; /**< HC: The number of times a page table with only global entries wasn't flushed. */
2558 STAMCOUNTER StatHCSyncCR3DstCacheHit; /**< HC: The number of times we got some kind of cache hit on a page table. */
2559
2560 /** GC: Profiling of pgmHandlerVirtualFindByPhysAddr. */
2561 STAMPROFILE StatVirtHandleSearchByPhysGC;
2562 /** HC: Profiling of pgmHandlerVirtualFindByPhysAddr. */
2563 STAMPROFILE StatVirtHandleSearchByPhysHC;
2564 /** HC: The number of times PGMR3HandlerPhysicalReset is called. */
2565 STAMCOUNTER StatHandlePhysicalReset;
2566
2567 STAMPROFILE StatCheckPageFault;
2568 STAMPROFILE StatLazySyncPT;
2569 STAMPROFILE StatMapping;
2570 STAMPROFILE StatOutOfSync;
2571 STAMPROFILE StatHandlers;
2572 STAMPROFILE StatEIPHandlers;
2573 STAMPROFILE StatHCPrefetch;
2574
2575# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2576 /** The number of first time shadowings. */
2577 STAMCOUNTER StatTrackVirgin;
2578 /** The number of times switching to cRef2, i.e. the page is being shadowed by two PTs. */
2579 STAMCOUNTER StatTrackAliased;
2580 /** The number of times we're tracking using cRef2. */
2581 STAMCOUNTER StatTrackAliasedMany;
2582 /** The number of times we're hitting pages which has overflowed cRef2. */
2583 STAMCOUNTER StatTrackAliasedLots;
2584 /** The number of times the extent list grows to long. */
2585 STAMCOUNTER StatTrackOverflows;
2586 /** Profiling of SyncPageWorkerTrackDeref (expensive). */
2587 STAMPROFILE StatTrackDeref;
2588# endif
2589
2590 /** Ring-3/0 page mapper TLB hits. */
2591 STAMCOUNTER StatPageHCMapTlbHits;
2592 /** Ring-3/0 page mapper TLB misses. */
2593 STAMCOUNTER StatPageHCMapTlbMisses;
2594 /** Ring-3/0 chunk mapper TLB hits. */
2595 STAMCOUNTER StatChunkR3MapTlbHits;
2596 /** Ring-3/0 chunk mapper TLB misses. */
2597 STAMCOUNTER StatChunkR3MapTlbMisses;
2598 /** Times a shared page has been replaced by a private one. */
2599 STAMCOUNTER StatPageReplaceShared;
2600 /** Times the zero page has been replaced by a private one. */
2601 STAMCOUNTER StatPageReplaceZero;
2602 /** The number of times we've executed GMMR3AllocateHandyPages. */
2603 STAMCOUNTER StatPageHandyAllocs;
2604
2605 /** Allocated mbs of guest ram */
2606 STAMCOUNTER StatDynRamTotal;
2607 /** Nr of pgmr3PhysGrowRange calls. */
2608 STAMCOUNTER StatDynRamGrow;
2609
2610 STAMCOUNTER StatGCTrap0ePD[X86_PG_ENTRIES];
2611 STAMCOUNTER StatGCSyncPtPD[X86_PG_ENTRIES];
2612 STAMCOUNTER StatGCSyncPagePD[X86_PG_ENTRIES];
2613#endif
2614} PGM, *PPGM;
2615
2616
2617/** @name PGM::fSyncFlags Flags
2618 * @{
2619 */
2620/** Updates the virtual access handler state bit in PGMPAGE. */
2621#define PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL RT_BIT(0)
2622/** Always sync CR3. */
2623#define PGM_SYNC_ALWAYS RT_BIT(1)
2624/** Check monitoring on next CR3 (re)load and invalidate page. */
2625#define PGM_SYNC_MONITOR_CR3 RT_BIT(2)
2626/** Clear the page pool (a light weight flush). */
2627#define PGM_SYNC_CLEAR_PGM_POOL RT_BIT(8)
2628/** @} */
2629
2630
2631__BEGIN_DECLS
2632
2633int pgmLock(PVM pVM);
2634void pgmUnlock(PVM pVM);
2635
2636PGMGCDECL(int) pgmGCGuestPDWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
2637PGMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
2638
2639int pgmR3SyncPTResolveConflict(PVM pVM, PPGMMAPPING pMapping, PX86PD pPDSrc, RTGCPTR GCPtrOldMapping);
2640int pgmR3SyncPTResolveConflictPAE(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping);
2641PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr);
2642void pgmR3MapRelocate(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping, RTGCPTR GCPtrNewMapping);
2643DECLCALLBACK(void) pgmR3MapInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
2644
2645void pgmR3HandlerPhysicalUpdateAll(PVM pVM);
2646int pgmHandlerVirtualFindByPhysAddr(PVM pVM, RTGCPHYS GCPhys, PPGMVIRTHANDLER *ppVirt, unsigned *piPage);
2647DECLCALLBACK(int) pgmHandlerVirtualResetOne(PAVLROGCPTRNODECORE pNode, void *pvUser);
2648#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
2649void pgmHandlerVirtualDumpPhysPages(PVM pVM);
2650#else
2651# define pgmHandlerVirtualDumpPhysPages(a) do { } while (0)
2652#endif
2653DECLCALLBACK(void) pgmR3InfoHandlers(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
2654
2655
2656void pgmPhysFreePage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
2657int pgmPhysPageLoadIntoTlb(PPGM pPGM, RTGCPHYS GCPhys);
2658int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
2659int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv);
2660#ifdef IN_RING3
2661int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk);
2662int pgmR3PhysRamReset(PVM pVM);
2663int pgmR3PhysRomReset(PVM pVM);
2664#ifndef VBOX_WITH_NEW_PHYS_CODE
2665int pgmr3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys);
2666#endif
2667
2668int pgmR3PoolInit(PVM pVM);
2669void pgmR3PoolRelocate(PVM pVM);
2670void pgmR3PoolReset(PVM pVM);
2671
2672#endif /* IN_RING3 */
2673#ifdef IN_GC
2674void *pgmGCPoolMapPage(PVM pVM, PPGMPOOLPAGE pPage);
2675#endif
2676int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage);
2677PPGMPOOLPAGE pgmPoolGetPageByHCPhys(PVM pVM, RTHCPHYS HCPhys);
2678void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable);
2679void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
2680int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2681void pgmPoolFlushAll(PVM pVM);
2682void pgmPoolClearAll(PVM pVM);
2683int pgmPoolSyncCR3(PVM pVM);
2684void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs);
2685void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt);
2686int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
2687PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
2688void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
2689void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
2690uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT);
2691void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage);
2692#ifdef PGMPOOL_WITH_MONITORING
2693# ifdef IN_RING3
2694void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTHCPTR pvAddress, PDISCPUSTATE pCpu);
2695# else
2696void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTGCPTR pvAddress, PDISCPUSTATE pCpu);
2697# endif
2698int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2699void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2700void pgmPoolMonitorModifiedClearAll(PVM pVM);
2701int pgmPoolMonitorMonitorCR3(PPGMPOOL pPool, uint16_t idxRoot, RTGCPHYS GCPhysCR3);
2702int pgmPoolMonitorUnmonitorCR3(PPGMPOOL pPool, uint16_t idxRoot);
2703#endif
2704
2705__END_DECLS
2706
2707
2708/**
2709 * Gets the PGMRAMRANGE structure for a guest page.
2710 *
2711 * @returns Pointer to the RAM range on success.
2712 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2713 *
2714 * @param pPGM PGM handle.
2715 * @param GCPhys The GC physical address.
2716 */
2717DECLINLINE(PPGMRAMRANGE) pgmPhysGetRange(PPGM pPGM, RTGCPHYS GCPhys)
2718{
2719 /*
2720 * Optimize for the first range.
2721 */
2722 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
2723 RTGCPHYS off = GCPhys - pRam->GCPhys;
2724 if (RT_UNLIKELY(off >= pRam->cb))
2725 {
2726 do
2727 {
2728 pRam = CTXALLSUFF(pRam->pNext);
2729 if (RT_UNLIKELY(!pRam))
2730 break;
2731 off = GCPhys - pRam->GCPhys;
2732 } while (off >= pRam->cb);
2733 }
2734 return pRam;
2735}
2736
2737
2738/**
2739 * Gets the PGMPAGE structure for a guest page.
2740 *
2741 * @returns Pointer to the page on success.
2742 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2743 *
2744 * @param pPGM PGM handle.
2745 * @param GCPhys The GC physical address.
2746 */
2747DECLINLINE(PPGMPAGE) pgmPhysGetPage(PPGM pPGM, RTGCPHYS GCPhys)
2748{
2749 /*
2750 * Optimize for the first range.
2751 */
2752 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
2753 RTGCPHYS off = GCPhys - pRam->GCPhys;
2754 if (RT_UNLIKELY(off >= pRam->cb))
2755 {
2756 do
2757 {
2758 pRam = CTXALLSUFF(pRam->pNext);
2759 if (RT_UNLIKELY(!pRam))
2760 return NULL;
2761 off = GCPhys - pRam->GCPhys;
2762 } while (off >= pRam->cb);
2763 }
2764 return &pRam->aPages[off >> PAGE_SHIFT];
2765}
2766
2767
2768/**
2769 * Gets the PGMPAGE structure for a guest page.
2770 *
2771 * Old Phys code: Will make sure the page is present.
2772 *
2773 * @returns VBox status code.
2774 * @retval VINF_SUCCESS and a valid *ppPage on success.
2775 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
2776 *
2777 * @param pPGM PGM handle.
2778 * @param GCPhys The GC physical address.
2779 * @param ppPage Where to store the page poitner on success.
2780 */
2781DECLINLINE(int) pgmPhysGetPageEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage)
2782{
2783 /*
2784 * Optimize for the first range.
2785 */
2786 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
2787 RTGCPHYS off = GCPhys - pRam->GCPhys;
2788 if (RT_UNLIKELY(off >= pRam->cb))
2789 {
2790 do
2791 {
2792 pRam = CTXALLSUFF(pRam->pNext);
2793 if (RT_UNLIKELY(!pRam))
2794 {
2795 *ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
2796 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2797 }
2798 off = GCPhys - pRam->GCPhys;
2799 } while (off >= pRam->cb);
2800 }
2801 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
2802#ifndef VBOX_WITH_NEW_PHYS_CODE
2803
2804 /*
2805 * Make sure it's present.
2806 */
2807 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
2808 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
2809 {
2810#ifdef IN_RING3
2811 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
2812#else
2813 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2814#endif
2815 if (VBOX_FAILURE(rc))
2816 {
2817 *ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
2818 return rc;
2819 }
2820 Assert(rc == VINF_SUCCESS);
2821 }
2822#endif
2823 return VINF_SUCCESS;
2824}
2825
2826
2827
2828
2829/**
2830 * Gets the PGMPAGE structure for a guest page.
2831 *
2832 * Old Phys code: Will make sure the page is present.
2833 *
2834 * @returns VBox status code.
2835 * @retval VINF_SUCCESS and a valid *ppPage on success.
2836 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
2837 *
2838 * @param pPGM PGM handle.
2839 * @param GCPhys The GC physical address.
2840 * @param ppPage Where to store the page poitner on success.
2841 * @param ppRamHint Where to read and store the ram list hint.
2842 * The caller initializes this to NULL before the call.
2843 */
2844DECLINLINE(int) pgmPhysGetPageWithHintEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRamHint)
2845{
2846 RTGCPHYS off;
2847 PPGMRAMRANGE pRam = *ppRamHint;
2848 if ( !pRam
2849 || RT_UNLIKELY((off = GCPhys - pRam->GCPhys) >= pRam->cb))
2850 {
2851 pRam = CTXALLSUFF(pPGM->pRamRanges);
2852 off = GCPhys - pRam->GCPhys;
2853 if (RT_UNLIKELY(off >= pRam->cb))
2854 {
2855 do
2856 {
2857 pRam = CTXALLSUFF(pRam->pNext);
2858 if (RT_UNLIKELY(!pRam))
2859 {
2860 *ppPage = NULL; /* Kill the incorrect and extremely annoying GCC warnings. */
2861 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2862 }
2863 off = GCPhys - pRam->GCPhys;
2864 } while (off >= pRam->cb);
2865 }
2866 *ppRamHint = pRam;
2867 }
2868 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
2869#ifndef VBOX_WITH_NEW_PHYS_CODE
2870
2871 /*
2872 * Make sure it's present.
2873 */
2874 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
2875 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
2876 {
2877#ifdef IN_RING3
2878 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
2879#else
2880 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2881#endif
2882 if (VBOX_FAILURE(rc))
2883 {
2884 *ppPage = NULL; /* Shut up annoying smart ass. */
2885 return rc;
2886 }
2887 Assert(rc == VINF_SUCCESS);
2888 }
2889#endif
2890 return VINF_SUCCESS;
2891}
2892
2893
2894/**
2895 * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
2896 *
2897 * @returns Pointer to the page on success.
2898 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2899 *
2900 * @param pPGM PGM handle.
2901 * @param GCPhys The GC physical address.
2902 * @param ppRam Where to store the pointer to the PGMRAMRANGE.
2903 */
2904DECLINLINE(PPGMPAGE) pgmPhysGetPageAndRange(PPGM pPGM, RTGCPHYS GCPhys, PPGMRAMRANGE *ppRam)
2905{
2906 /*
2907 * Optimize for the first range.
2908 */
2909 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
2910 RTGCPHYS off = GCPhys - pRam->GCPhys;
2911 if (RT_UNLIKELY(off >= pRam->cb))
2912 {
2913 do
2914 {
2915 pRam = CTXALLSUFF(pRam->pNext);
2916 if (RT_UNLIKELY(!pRam))
2917 return NULL;
2918 off = GCPhys - pRam->GCPhys;
2919 } while (off >= pRam->cb);
2920 }
2921 *ppRam = pRam;
2922 return &pRam->aPages[off >> PAGE_SHIFT];
2923}
2924
2925
2926
2927
2928/**
2929 * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
2930 *
2931 * @returns Pointer to the page on success.
2932 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2933 *
2934 * @param pPGM PGM handle.
2935 * @param GCPhys The GC physical address.
2936 * @param ppPage Where to store the pointer to the PGMPAGE structure.
2937 * @param ppRam Where to store the pointer to the PGMRAMRANGE structure.
2938 */
2939DECLINLINE(int) pgmPhysGetPageAndRangeEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRam)
2940{
2941 /*
2942 * Optimize for the first range.
2943 */
2944 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
2945 RTGCPHYS off = GCPhys - pRam->GCPhys;
2946 if (RT_UNLIKELY(off >= pRam->cb))
2947 {
2948 do
2949 {
2950 pRam = CTXALLSUFF(pRam->pNext);
2951 if (RT_UNLIKELY(!pRam))
2952 {
2953 *ppRam = NULL; /* Shut up silly GCC warnings. */
2954 *ppPage = NULL; /* ditto */
2955 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2956 }
2957 off = GCPhys - pRam->GCPhys;
2958 } while (off >= pRam->cb);
2959 }
2960 *ppRam = pRam;
2961 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
2962#ifndef VBOX_WITH_NEW_PHYS_CODE
2963
2964 /*
2965 * Make sure it's present.
2966 */
2967 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
2968 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
2969 {
2970#ifdef IN_RING3
2971 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
2972#else
2973 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2974#endif
2975 if (VBOX_FAILURE(rc))
2976 {
2977 *ppPage = NULL; /* Shut up silly GCC warnings. */
2978 *ppPage = NULL; /* ditto */
2979 return rc;
2980 }
2981 Assert(rc == VINF_SUCCESS);
2982
2983 }
2984#endif
2985 return VINF_SUCCESS;
2986}
2987
2988
2989/**
2990 * Convert GC Phys to HC Phys.
2991 *
2992 * @returns VBox status.
2993 * @param pPGM PGM handle.
2994 * @param GCPhys The GC physical address.
2995 * @param pHCPhys Where to store the corresponding HC physical address.
2996 *
2997 * @deprecated Doesn't deal with zero, shared or write monitored pages.
2998 * Avoid when writing new code!
2999 */
3000DECLINLINE(int) pgmRamGCPhys2HCPhys(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
3001{
3002 PPGMPAGE pPage;
3003 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3004 if (VBOX_FAILURE(rc))
3005 return rc;
3006 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
3007 return VINF_SUCCESS;
3008}
3009
3010
3011#ifndef IN_GC
3012/**
3013 * Queries the Physical TLB entry for a physical guest page,
3014 * attemting to load the TLB entry if necessary.
3015 *
3016 * @returns VBox status code.
3017 * @retval VINF_SUCCESS on success
3018 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
3019 * @param pPGM The PGM instance handle.
3020 * @param GCPhys The address of the guest page.
3021 * @param ppTlbe Where to store the pointer to the TLB entry.
3022 */
3023
3024DECLINLINE(int) pgmPhysPageQueryTlbe(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGEMAPTLBE ppTlbe)
3025{
3026 int rc;
3027 PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
3028 if (pTlbe->GCPhys == (GCPhys & X86_PTE_PAE_PG_MASK))
3029 {
3030 STAM_COUNTER_INC(&pPGM->CTXMID(StatPage,MapTlbHits));
3031 rc = VINF_SUCCESS;
3032 }
3033 else
3034 rc = pgmPhysPageLoadIntoTlb(pPGM, GCPhys);
3035 *ppTlbe = pTlbe;
3036 return rc;
3037}
3038#endif /* !IN_GC */
3039
3040
3041#ifndef VBOX_WITH_NEW_PHYS_CODE
3042/**
3043 * Convert GC Phys to HC Virt.
3044 *
3045 * @returns VBox status.
3046 * @param pPGM PGM handle.
3047 * @param GCPhys The GC physical address.
3048 * @param pHCPtr Where to store the corresponding HC virtual address.
3049 *
3050 * @deprecated This will be eliminated by PGMPhysGCPhys2CCPtr.
3051 */
3052DECLINLINE(int) pgmRamGCPhys2HCPtr(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr)
3053{
3054 PPGMRAMRANGE pRam;
3055 PPGMPAGE pPage;
3056 int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
3057 if (VBOX_FAILURE(rc))
3058 {
3059 *pHCPtr = 0; /* Shut up silly GCC warnings. */
3060 return rc;
3061 }
3062 RTGCPHYS off = GCPhys - pRam->GCPhys;
3063
3064 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3065 {
3066 unsigned iChunk = off >> PGM_DYNAMIC_CHUNK_SHIFT;
3067 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3068 return VINF_SUCCESS;
3069 }
3070 if (pRam->pvHC)
3071 {
3072 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off);
3073 return VINF_SUCCESS;
3074 }
3075 *pHCPtr = 0; /* Shut up silly GCC warnings. */
3076 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3077}
3078#endif /* !VBOX_WITH_NEW_PHYS_CODE */
3079
3080
3081/**
3082 * Convert GC Phys to HC Virt.
3083 *
3084 * @returns VBox status.
3085 * @param PVM VM handle.
3086 * @param pRam Ram range
3087 * @param GCPhys The GC physical address.
3088 * @param pHCPtr Where to store the corresponding HC virtual address.
3089 *
3090 * @deprecated This will be eliminated. Don't use it.
3091 */
3092DECLINLINE(int) pgmRamGCPhys2HCPtrWithRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, PRTHCPTR pHCPtr)
3093{
3094 RTGCPHYS off = GCPhys - pRam->GCPhys;
3095 Assert(off < pRam->cb);
3096
3097 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3098 {
3099 unsigned idx = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
3100 /* Physical chunk in dynamically allocated range not present? */
3101 if (RT_UNLIKELY(!CTXSUFF(pRam->pavHCChunk)[idx]))
3102 {
3103#ifdef IN_RING3
3104 int rc = pgmr3PhysGrowRange(pVM, GCPhys);
3105#else
3106 int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
3107#endif
3108 if (rc != VINF_SUCCESS)
3109 {
3110 *pHCPtr = 0; /* GCC crap */
3111 return rc;
3112 }
3113 }
3114 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3115 return VINF_SUCCESS;
3116 }
3117 if (pRam->pvHC)
3118 {
3119 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off);
3120 return VINF_SUCCESS;
3121 }
3122 *pHCPtr = 0; /* GCC crap */
3123 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3124}
3125
3126
3127/**
3128 * Convert GC Phys to HC Virt and HC Phys.
3129 *
3130 * @returns VBox status.
3131 * @param pPGM PGM handle.
3132 * @param GCPhys The GC physical address.
3133 * @param pHCPtr Where to store the corresponding HC virtual address.
3134 * @param pHCPhys Where to store the HC Physical address and its flags.
3135 *
3136 * @deprecated Will go away or be changed. Only user is MapCR3. MapCR3 will have to do ring-3
3137 * and ring-0 locking of the CR3 in a lazy fashion I'm fear... or perhaps not. we'll see.
3138 */
3139DECLINLINE(int) pgmRamGCPhys2HCPtrAndHCPhysWithFlags(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr, PRTHCPHYS pHCPhys)
3140{
3141 PPGMRAMRANGE pRam;
3142 PPGMPAGE pPage;
3143 int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
3144 if (VBOX_FAILURE(rc))
3145 {
3146 *pHCPtr = 0; /* Shut up crappy GCC warnings */
3147 *pHCPhys = 0; /* ditto */
3148 return rc;
3149 }
3150 RTGCPHYS off = GCPhys - pRam->GCPhys;
3151
3152 *pHCPhys = pPage->HCPhys; /** @todo PAGE FLAGS */
3153 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3154 {
3155 unsigned idx = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
3156 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3157 return VINF_SUCCESS;
3158 }
3159 if (pRam->pvHC)
3160 {
3161 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off);
3162 return VINF_SUCCESS;
3163 }
3164 *pHCPtr = 0;
3165 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3166}
3167
3168
3169/**
3170 * Clears flags associated with a RAM address.
3171 *
3172 * @returns VBox status code.
3173 * @param pPGM PGM handle.
3174 * @param GCPhys Guest context physical address.
3175 * @param fFlags fFlags to clear. (Bits 0-11.)
3176 */
3177DECLINLINE(int) pgmRamFlagsClearByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
3178{
3179 PPGMPAGE pPage;
3180 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3181 if (VBOX_FAILURE(rc))
3182 return rc;
3183
3184 fFlags &= ~X86_PTE_PAE_PG_MASK;
3185 pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
3186 return VINF_SUCCESS;
3187}
3188
3189
3190/**
3191 * Clears flags associated with a RAM address.
3192 *
3193 * @returns VBox status code.
3194 * @param pPGM PGM handle.
3195 * @param GCPhys Guest context physical address.
3196 * @param fFlags fFlags to clear. (Bits 0-11.)
3197 * @param ppRamHint Where to read and store the ram list hint.
3198 * The caller initializes this to NULL before the call.
3199 */
3200DECLINLINE(int) pgmRamFlagsClearByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
3201{
3202 PPGMPAGE pPage;
3203 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
3204 if (VBOX_FAILURE(rc))
3205 return rc;
3206
3207 fFlags &= ~X86_PTE_PAE_PG_MASK;
3208 pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
3209 return VINF_SUCCESS;
3210}
3211
3212/**
3213 * Sets (bitwise OR) flags associated with a RAM address.
3214 *
3215 * @returns VBox status code.
3216 * @param pPGM PGM handle.
3217 * @param GCPhys Guest context physical address.
3218 * @param fFlags fFlags to set clear. (Bits 0-11.)
3219 */
3220DECLINLINE(int) pgmRamFlagsSetByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
3221{
3222 PPGMPAGE pPage;
3223 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3224 if (VBOX_FAILURE(rc))
3225 return rc;
3226
3227 fFlags &= ~X86_PTE_PAE_PG_MASK;
3228 pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
3229 return VINF_SUCCESS;
3230}
3231
3232
3233/**
3234 * Sets (bitwise OR) flags associated with a RAM address.
3235 *
3236 * @returns VBox status code.
3237 * @param pPGM PGM handle.
3238 * @param GCPhys Guest context physical address.
3239 * @param fFlags fFlags to set clear. (Bits 0-11.)
3240 * @param ppRamHint Where to read and store the ram list hint.
3241 * The caller initializes this to NULL before the call.
3242 */
3243DECLINLINE(int) pgmRamFlagsSetByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
3244{
3245 PPGMPAGE pPage;
3246 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
3247 if (VBOX_FAILURE(rc))
3248 return rc;
3249
3250 fFlags &= ~X86_PTE_PAE_PG_MASK;
3251 pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
3252 return VINF_SUCCESS;
3253}
3254
3255/**
3256 * Calculated the guest physical address of the large (4 MB) page in 32 bits paging mode.
3257 * Takes PSE-36 into account.
3258 *
3259 * @returns guest physical address
3260 * @param pPGM Pointer to the PGM instance data.
3261 * @param Pde Guest Pde
3262 */
3263DECLINLINE(RTGCPHYS) pgmGstGet4MBPhysPage(PPGM pPGM, X86PDE Pde)
3264{
3265 RTGCPHYS GCPhys = Pde.u & X86_PDE4M_PG_MASK;
3266 GCPhys |= (RTGCPHYS)Pde.b.u8PageNoHigh << 32;
3267
3268 return GCPhys & pPGM->GCPhys4MBPSEMask;
3269}
3270
3271/**
3272 * Gets the page directory for the specified address.
3273 *
3274 * @returns Pointer to the page directory in question.
3275 * @returns NULL if the page directory is not present or on an invalid page.
3276 * @param pPGM Pointer to the PGM instance data.
3277 * @param GCPtr The address.
3278 */
3279DECLINLINE(PX86PDPAE) pgmGstGetPaePD(PPGM pPGM, RTGCUINTPTR GCPtr)
3280{
3281 const unsigned iPdPt = GCPtr >> X86_PDPT_SHIFT;
3282 if (CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].n.u1Present)
3283 {
3284 if ((CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3285 return CTXSUFF(pPGM->apGstPaePDs)[iPdPt];
3286
3287 /* cache is out-of-sync. */
3288 PX86PDPAE pPD;
3289 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3290 if (VBOX_SUCCESS(rc))
3291 return pPD;
3292 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u));
3293 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page of some kind emulated as all 0s. */
3294 }
3295 return NULL;
3296}
3297
3298
3299/**
3300 * Gets the page directory entry for the specified address.
3301 *
3302 * @returns Pointer to the page directory entry in question.
3303 * @returns NULL if the page directory is not present or on an invalid page.
3304 * @param pPGM Pointer to the PGM instance data.
3305 * @param GCPtr The address.
3306 */
3307DECLINLINE(PX86PDEPAE) pgmGstGetPaePDEPtr(PPGM pPGM, RTGCUINTPTR GCPtr)
3308{
3309 const unsigned iPdPt = GCPtr >> X86_PDPT_SHIFT;
3310 if (CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].n.u1Present)
3311 {
3312 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3313 if ((CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3314 return &CTXSUFF(pPGM->apGstPaePDs)[iPdPt]->a[iPD];
3315
3316 /* The cache is out-of-sync. */
3317 PX86PDPAE pPD;
3318 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3319 if (VBOX_SUCCESS(rc))
3320 return &pPD->a[iPD];
3321 AssertMsgFailed(("Impossible! rc=%Vrc PDPE=%RX64\n", rc, CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u));
3322 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page or something which we'll emulate as all 0s. */
3323 }
3324 return NULL;
3325}
3326
3327
3328/**
3329 * Gets the page directory entry for the specified address.
3330 *
3331 * @returns The page directory entry in question.
3332 * @returns A non-present entry if the page directory is not present or on an invalid page.
3333 * @param pPGM Pointer to the PGM instance data.
3334 * @param GCPtr The address.
3335 */
3336DECLINLINE(uint64_t) pgmGstGetPaePDE(PPGM pPGM, RTGCUINTPTR GCPtr)
3337{
3338 const unsigned iPdPt = GCPtr >> X86_PDPT_SHIFT;
3339 if (CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].n.u1Present)
3340 {
3341 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3342 if ((CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3343 return CTXSUFF(pPGM->apGstPaePDs)[iPdPt]->a[iPD].u;
3344
3345 /* cache is out-of-sync. */
3346 PX86PDPAE pPD;
3347 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3348 if (VBOX_SUCCESS(rc))
3349 return pPD->a[iPD].u;
3350 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u));
3351 }
3352 return 0ULL;
3353}
3354
3355
3356/**
3357 * Gets the page directory pointer table entry for the specified address
3358 * and returns the index into the page directory
3359 *
3360 * @returns Pointer to the page directory in question.
3361 * @returns NULL if the page directory is not present or on an invalid page.
3362 * @param pPGM Pointer to the PGM instance data.
3363 * @param GCPtr The address.
3364 * @param piPD Receives the index into the returned page directory
3365 */
3366DECLINLINE(PX86PDPAE) pgmGstGetPaePDPtr(PPGM pPGM, RTGCUINTPTR GCPtr, unsigned *piPD)
3367{
3368 const unsigned iPdPt = GCPtr >> X86_PDPT_SHIFT;
3369 if (CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].n.u1Present)
3370 {
3371 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3372 if ((CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3373 {
3374 *piPD = iPD;
3375 return CTXSUFF(pPGM->apGstPaePDs)[iPdPt];
3376 }
3377
3378 /* cache is out-of-sync. */
3379 PX86PDPAE pPD;
3380 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3381 if (VBOX_SUCCESS(rc))
3382 {
3383 *piPD = iPD;
3384 return pPD;
3385 }
3386 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u));
3387 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page of some kind emulated as all 0s. */
3388 }
3389 return NULL;
3390}
3391
3392#ifndef IN_GC
3393/**
3394 * Gets the page directory pointer entry for the specified address.
3395 *
3396 * @returns Pointer to the page directory pointer entry in question.
3397 * @returns NULL if the page directory is not present or on an invalid page.
3398 * @param pPGM Pointer to the PGM instance data.
3399 * @param GCPtr The address.
3400 * @param ppPml4e Page Map Level-4 Entry (out)
3401 */
3402DECLINLINE(PX86PDPE) pgmGstGetLongModePDPTPtr(PPGM pPGM, RTGCUINTPTR64 GCPtr, PX86PML4E *ppPml4e)
3403{
3404 const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3405
3406 Assert(pPGM->pGstPaePML4HC);
3407 *ppPml4e = &pPGM->pGstPaePML4HC->a[iPml4e];
3408 if ((*ppPml4e)->n.u1Present)
3409 {
3410 PX86PDPT pPdpt;
3411 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), (*ppPml4e)->u & X86_PML4E_PG_MASK, &pPdpt);
3412 if (VBOX_FAILURE(rc))
3413 {
3414 AssertFailed();
3415 return NULL;
3416 }
3417 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3418 return &pPdpt->a[iPdPt];
3419 }
3420 return NULL;
3421}
3422
3423/**
3424 * Gets the page directory entry for the specified address.
3425 *
3426 * @returns The page directory entry in question.
3427 * @returns A non-present entry if the page directory is not present or on an invalid page.
3428 * @param pPGM Pointer to the PGM instance data.
3429 * @param GCPtr The address.
3430 * @param ppPml4e Page Map Level-4 Entry (out)
3431 * @param pPdpe Page directory pointer table entry (out)
3432 */
3433DECLINLINE(uint64_t) pgmGstGetLongModePDE(PPGM pPGM, RTGCUINTPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe)
3434{
3435 const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3436
3437 Assert(pPGM->pGstPaePML4HC);
3438 *ppPml4e = &pPGM->pGstPaePML4HC->a[iPml4e];
3439 if ((*ppPml4e)->n.u1Present)
3440 {
3441 PX86PDPT pPdptTemp;
3442 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), (*ppPml4e)->u & X86_PML4E_PG_MASK, &pPdptTemp);
3443 if (VBOX_FAILURE(rc))
3444 {
3445 AssertFailed();
3446 return 0ULL;
3447 }
3448
3449 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3450 *pPdpe = pPdptTemp->a[iPdPt];
3451 if (pPdpe->n.u1Present)
3452 {
3453 PX86PDPAE pPD;
3454
3455 rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdpe->u & X86_PDPE_PG_MASK, &pPD);
3456 if (VBOX_FAILURE(rc))
3457 {
3458 AssertFailed();
3459 return 0ULL;
3460 }
3461 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3462 return pPD->a[iPD].u;
3463 }
3464 }
3465 return 0ULL;
3466}
3467
3468/**
3469 * Gets the page directory entry for the specified address.
3470 *
3471 * @returns The page directory entry in question.
3472 * @returns A non-present entry if the page directory is not present or on an invalid page.
3473 * @param pPGM Pointer to the PGM instance data.
3474 * @param GCPtr The address.
3475 */
3476DECLINLINE(uint64_t) pgmGstGetLongModePDE(PPGM pPGM, RTGCUINTPTR64 GCPtr)
3477{
3478 const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3479
3480 Assert(pPGM->pGstPaePML4HC);
3481 if (pPGM->pGstPaePML4HC->a[iPml4e].n.u1Present)
3482 {
3483 PX86PDPT pPdptTemp;
3484 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPGM->pGstPaePML4HC->a[iPml4e].u & X86_PML4E_PG_MASK, &pPdptTemp);
3485 if (VBOX_FAILURE(rc))
3486 {
3487 AssertFailed();
3488 return 0ULL;
3489 }
3490
3491 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3492 if (pPdptTemp->a[iPdPt].n.u1Present)
3493 {
3494 PX86PDPAE pPD;
3495
3496 rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3497 if (VBOX_FAILURE(rc))
3498 {
3499 AssertFailed();
3500 return 0ULL;
3501 }
3502 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3503 return pPD->a[iPD].u;
3504 }
3505 }
3506 return 0ULL;
3507}
3508
3509/**
3510 * Gets the page directory entry for the specified address.
3511 *
3512 * @returns Pointer to the page directory entry in question.
3513 * @returns NULL if the page directory is not present or on an invalid page.
3514 * @param pPGM Pointer to the PGM instance data.
3515 * @param GCPtr The address.
3516 */
3517DECLINLINE(PX86PDEPAE) pgmGstGetLongModePDEPtr(PPGM pPGM, RTGCUINTPTR64 GCPtr)
3518{
3519 const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3520
3521 Assert(pPGM->pGstPaePML4HC);
3522 if (pPGM->pGstPaePML4HC->a[iPml4e].n.u1Present)
3523 {
3524 PX86PDPT pPdptTemp;
3525 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPGM->pGstPaePML4HC->a[iPml4e].u & X86_PML4E_PG_MASK, &pPdptTemp);
3526 if (VBOX_FAILURE(rc))
3527 {
3528 AssertFailed();
3529 return NULL;
3530 }
3531
3532 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3533 if (pPdptTemp->a[iPdPt].n.u1Present)
3534 {
3535 PX86PDPAE pPD;
3536
3537 rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3538 if (VBOX_FAILURE(rc))
3539 {
3540 AssertFailed();
3541 return NULL;
3542 }
3543 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3544 return &pPD->a[iPD];
3545 }
3546 }
3547 return NULL;
3548}
3549
3550
3551/**
3552 * Gets the GUEST page directory pointer for the specified address.
3553 *
3554 * @returns The page directory in question.
3555 * @returns NULL if the page directory is not present or on an invalid page.
3556 * @param pPGM Pointer to the PGM instance data.
3557 * @param GCPtr The address.
3558 * @param ppPml4e Page Map Level-4 Entry (out)
3559 * @param pPdpe Page directory pointer table entry (out)
3560 * @param piPD Receives the index into the returned page directory
3561 */
3562DECLINLINE(PX86PDPAE) pgmGstGetLongModePDPtr(PPGM pPGM, RTGCUINTPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe, unsigned *piPD)
3563{
3564 const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3565
3566 Assert(pPGM->pGstPaePML4HC);
3567 *ppPml4e = &pPGM->pGstPaePML4HC->a[iPml4e];
3568 if ((*ppPml4e)->n.u1Present)
3569 {
3570 PX86PDPT pPdptTemp;
3571 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), (*ppPml4e)->u & X86_PML4E_PG_MASK, &pPdptTemp);
3572 if (VBOX_FAILURE(rc))
3573 {
3574 AssertFailed();
3575 return 0ULL;
3576 }
3577
3578 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3579 *pPdpe = pPdptTemp->a[iPdPt];
3580 if (pPdpe->n.u1Present)
3581 {
3582 PX86PDPAE pPD;
3583
3584 rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdpe->u & X86_PDPE_PG_MASK, &pPD);
3585 if (VBOX_FAILURE(rc))
3586 {
3587 AssertFailed();
3588 return 0ULL;
3589 }
3590 *piPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3591 return pPD;
3592 }
3593 }
3594 return 0ULL;
3595}
3596
3597/**
3598 * Gets the GUEST page directory pointer for the specified address.
3599 *
3600 * @returns The page directory in question.
3601 * @returns NULL if the page directory is not present or on an invalid page.
3602 * @param pPGM Pointer to the PGM instance data.
3603 * @param GCPtr The address.
3604 * @param piPD Receives the index into the returned page directory
3605 */
3606DECLINLINE(PX86PDPAE) pgmGstGetLongModePDPtr(PPGM pPGM, RTGCUINTPTR64 GCPtr, unsigned *piPD)
3607{
3608 PX86PML4E pPml4e;
3609 PX86PDPE pPdpe;
3610 const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3611
3612 Assert(pPGM->pGstPaePML4HC);
3613 pPml4e = &pPGM->pGstPaePML4HC->a[iPml4e];
3614 if (pPml4e->n.u1Present)
3615 {
3616 PX86PDPT pPdptTemp;
3617 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPml4e->u & X86_PML4E_PG_MASK, &pPdptTemp);
3618 if (VBOX_FAILURE(rc))
3619 {
3620 AssertFailed();
3621 return 0ULL;
3622 }
3623
3624 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3625 pPdpe = &pPdptTemp->a[iPdPt];
3626 if (pPdpe->n.u1Present)
3627 {
3628 PX86PDPAE pPD;
3629
3630 rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdpe->u & X86_PDPE_PG_MASK, &pPD);
3631 if (VBOX_FAILURE(rc))
3632 {
3633 AssertFailed();
3634 return 0ULL;
3635 }
3636 *piPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3637 return pPD;
3638 }
3639 }
3640 return 0ULL;
3641}
3642
3643#endif /* !IN_GC */
3644
3645/**
3646 * Checks if any of the specified page flags are set for the given page.
3647 *
3648 * @returns true if any of the flags are set.
3649 * @returns false if all the flags are clear.
3650 * @param pPGM PGM handle.
3651 * @param GCPhys The GC physical address.
3652 * @param fFlags The flags to check for.
3653 */
3654DECLINLINE(bool) pgmRamTestFlags(PPGM pPGM, RTGCPHYS GCPhys, uint64_t fFlags)
3655{
3656 PPGMPAGE pPage = pgmPhysGetPage(pPGM, GCPhys);
3657 return pPage
3658 && (pPage->HCPhys & fFlags) != 0; /** @todo PAGE FLAGS */
3659}
3660
3661
3662/**
3663 * Gets the page state for a physical handler.
3664 *
3665 * @returns The physical handler page state.
3666 * @param pCur The physical handler in question.
3667 */
3668DECLINLINE(unsigned) pgmHandlerPhysicalCalcState(PPGMPHYSHANDLER pCur)
3669{
3670 switch (pCur->enmType)
3671 {
3672 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
3673 return PGM_PAGE_HNDL_PHYS_STATE_WRITE;
3674
3675 case PGMPHYSHANDLERTYPE_MMIO:
3676 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
3677 return PGM_PAGE_HNDL_PHYS_STATE_ALL;
3678
3679 default:
3680 AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
3681 }
3682}
3683
3684
3685/**
3686 * Gets the page state for a virtual handler.
3687 *
3688 * @returns The virtual handler page state.
3689 * @param pCur The virtual handler in question.
3690 * @remarks This should never be used on a hypervisor access handler.
3691 */
3692DECLINLINE(unsigned) pgmHandlerVirtualCalcState(PPGMVIRTHANDLER pCur)
3693{
3694 switch (pCur->enmType)
3695 {
3696 case PGMVIRTHANDLERTYPE_WRITE:
3697 return PGM_PAGE_HNDL_VIRT_STATE_WRITE;
3698 case PGMVIRTHANDLERTYPE_ALL:
3699 return PGM_PAGE_HNDL_VIRT_STATE_ALL;
3700 default:
3701 AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
3702 }
3703}
3704
3705
3706/**
3707 * Clears one physical page of a virtual handler
3708 *
3709 * @param pPGM Pointer to the PGM instance.
3710 * @param pCur Virtual handler structure
3711 * @param iPage Physical page index
3712 *
3713 * @remark Only used when PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL is being set, so no
3714 * need to care about other handlers in the same page.
3715 */
3716DECLINLINE(void) pgmHandlerVirtualClearPage(PPGM pPGM, PPGMVIRTHANDLER pCur, unsigned iPage)
3717{
3718 const PPGMPHYS2VIRTHANDLER pPhys2Virt = &pCur->aPhysToVirt[iPage];
3719
3720 /*
3721 * Remove the node from the tree (it's supposed to be in the tree if we get here!).
3722 */
3723#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
3724 AssertReleaseMsg(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
3725 ("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3726 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
3727#endif
3728 if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IS_HEAD)
3729 {
3730 /* We're the head of the alias chain. */
3731 PPGMPHYS2VIRTHANDLER pRemove = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysRemove(&pPGM->CTXSUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key); NOREF(pRemove);
3732#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
3733 AssertReleaseMsg(pRemove != NULL,
3734 ("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3735 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
3736 AssertReleaseMsg(pRemove == pPhys2Virt,
3737 ("wanted: pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
3738 " got: pRemove=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3739 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias,
3740 pRemove, pRemove->Core.Key, pRemove->Core.KeyLast, pRemove->offVirtHandler, pRemove->offNextAlias));
3741#endif
3742 if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
3743 {
3744 /* Insert the next list in the alias chain into the tree. */
3745 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
3746#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
3747 AssertReleaseMsg(pNext->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
3748 ("pNext=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3749 pNext, pNext->Core.Key, pNext->Core.KeyLast, pNext->offVirtHandler, pNext->offNextAlias));
3750#endif
3751 pNext->offNextAlias |= PGMPHYS2VIRTHANDLER_IS_HEAD;
3752 bool fRc = RTAvlroGCPhysInsert(&pPGM->CTXSUFF(pTrees)->PhysToVirtHandlers, &pNext->Core);
3753 AssertRelease(fRc);
3754 }
3755 }
3756 else
3757 {
3758 /* Locate the previous node in the alias chain. */
3759 PPGMPHYS2VIRTHANDLER pPrev = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGet(&pPGM->CTXSUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key);
3760#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
3761 AssertReleaseMsg(pPrev != pPhys2Virt,
3762 ("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
3763 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
3764#endif
3765 for (;;)
3766 {
3767 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPrev + (pPrev->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
3768 if (pNext == pPhys2Virt)
3769 {
3770 /* unlink. */
3771 LogFlow(("pgmHandlerVirtualClearPage: removed %p:{.offNextAlias=%#RX32} from alias chain. prev %p:{.offNextAlias=%#RX32} [%VGp-%VGp]\n",
3772 pPhys2Virt, pPhys2Virt->offNextAlias, pPrev, pPrev->offNextAlias, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast));
3773 if (!(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
3774 pPrev->offNextAlias &= ~PGMPHYS2VIRTHANDLER_OFF_MASK;
3775 else
3776 {
3777 PPGMPHYS2VIRTHANDLER pNewNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
3778 pPrev->offNextAlias = ((intptr_t)pNewNext - (intptr_t)pPrev)
3779 | (pPrev->offNextAlias & ~PGMPHYS2VIRTHANDLER_OFF_MASK);
3780 }
3781 break;
3782 }
3783
3784 /* next */
3785 if (pNext == pPrev)
3786 {
3787#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
3788 AssertReleaseMsg(pNext != pPrev,
3789 ("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
3790 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
3791#endif
3792 break;
3793 }
3794 pPrev = pNext;
3795 }
3796 }
3797 Log2(("PHYS2VIRT: Removing %VGp-%VGp %#RX32 %s\n",
3798 pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias, R3STRING(pCur->pszDesc)));
3799 pPhys2Virt->offNextAlias = 0;
3800 pPhys2Virt->Core.KeyLast = NIL_RTGCPHYS; /* require reinsert */
3801
3802 /*
3803 * Clear the ram flags for this page.
3804 */
3805 PPGMPAGE pPage = pgmPhysGetPage(pPGM, pPhys2Virt->Core.Key);
3806 AssertReturnVoid(pPage);
3807 PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, PGM_PAGE_HNDL_VIRT_STATE_NONE);
3808}
3809
3810
3811/**
3812 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
3813 *
3814 * @returns Pointer to the shadow page structure.
3815 * @param pPool The pool.
3816 * @param HCPhys The HC physical address of the shadow page.
3817 */
3818DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
3819{
3820 /*
3821 * Look up the page.
3822 */
3823 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
3824 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%VHp pPage=%p type=%d\n", HCPhys, pPage, (pPage) ? pPage->enmKind : 0));
3825 return pPage;
3826}
3827
3828
3829/**
3830 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
3831 *
3832 * @returns Pointer to the shadow page structure.
3833 * @param pPool The pool.
3834 * @param idx The pool page index.
3835 */
3836DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPageByIdx(PPGMPOOL pPool, unsigned idx)
3837{
3838 AssertFatalMsg(idx >= PGMPOOL_IDX_FIRST && idx < pPool->cCurPages, ("idx=%d\n", idx));
3839 return &pPool->aPages[idx];
3840}
3841
3842
3843#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3844/**
3845 * Clear references to guest physical memory.
3846 *
3847 * @param pPool The pool.
3848 * @param pPoolPage The pool page.
3849 * @param pPhysPage The physical guest page tracking structure.
3850 */
3851DECLINLINE(void) pgmTrackDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage)
3852{
3853 /*
3854 * Just deal with the simple case here.
3855 */
3856#ifdef LOG_ENABLED
3857 const RTHCPHYS HCPhysOrg = pPhysPage->HCPhys; /** @todo PAGE FLAGS */
3858#endif
3859 const unsigned cRefs = pPhysPage->HCPhys >> MM_RAM_FLAGS_CREFS_SHIFT; /** @todo PAGE FLAGS */
3860 if (cRefs == 1)
3861 {
3862 Assert(pPoolPage->idx == ((pPhysPage->HCPhys >> MM_RAM_FLAGS_IDX_SHIFT) & MM_RAM_FLAGS_IDX_MASK));
3863 pPhysPage->HCPhys = pPhysPage->HCPhys & MM_RAM_FLAGS_NO_REFS_MASK;
3864 }
3865 else
3866 pgmPoolTrackPhysExtDerefGCPhys(pPool, pPoolPage, pPhysPage);
3867 LogFlow(("pgmTrackDerefGCPhys: HCPhys=%RHp -> %RHp\n", HCPhysOrg, pPhysPage->HCPhys));
3868}
3869#endif
3870
3871
3872#ifdef PGMPOOL_WITH_CACHE
3873/**
3874 * Moves the page to the head of the age list.
3875 *
3876 * This is done when the cached page is used in one way or another.
3877 *
3878 * @param pPool The pool.
3879 * @param pPage The cached page.
3880 * @todo inline in PGMInternal.h!
3881 */
3882DECLINLINE(void) pgmPoolCacheUsed(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3883{
3884 /*
3885 * Move to the head of the age list.
3886 */
3887 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
3888 {
3889 /* unlink */
3890 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
3891 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
3892 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
3893 else
3894 pPool->iAgeTail = pPage->iAgePrev;
3895
3896 /* insert at head */
3897 pPage->iAgePrev = NIL_PGMPOOL_IDX;
3898 pPage->iAgeNext = pPool->iAgeHead;
3899 Assert(pPage->iAgeNext != NIL_PGMPOOL_IDX); /* we would've already been head then */
3900 pPool->iAgeHead = pPage->idx;
3901 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->idx;
3902 }
3903}
3904#endif /* PGMPOOL_WITH_CACHE */
3905
3906/**
3907 * Tells if mappings are to be put into the shadow page table or not
3908 *
3909 * @returns boolean result
3910 * @param pVM VM handle.
3911 */
3912
3913DECLINLINE(bool) pgmMapAreMappingsEnabled(PPGM pPGM)
3914{
3915#ifdef IN_RING0
3916 /* There are no mappings in VT-x and AMD-V mode. */
3917 Assert(pPGM->fDisableMappings);
3918 return false;
3919#else
3920 return !pPGM->fDisableMappings;
3921#endif
3922}
3923
3924/** @} */
3925
3926#endif
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette