VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPhys.cpp@ 22698

Last change on this file since 22698 was 22698, checked in by vboxsync, 15 years ago

PGMPoolFlushPage must be called in an EMT.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 117.5 KB
Line 
1/* $Id: PGMPhys.cpp 22698 2009-09-02 09:17:59Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_PHYS
27#include <VBox/pgm.h>
28#include <VBox/iom.h>
29#include <VBox/mm.h>
30#include <VBox/stam.h>
31#include <VBox/rem.h>
32#include <VBox/pdmdev.h>
33#include "PGMInternal.h"
34#include <VBox/vm.h>
35#include <VBox/sup.h>
36#include <VBox/param.h>
37#include <VBox/err.h>
38#include <VBox/log.h>
39#include <iprt/assert.h>
40#include <iprt/alloc.h>
41#include <iprt/asm.h>
42#include <iprt/thread.h>
43#include <iprt/string.h>
44
45
46/*******************************************************************************
47* Defined Constants And Macros *
48*******************************************************************************/
49/** The number of pages to free in one batch. */
50#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
51
52
53/*******************************************************************************
54* Internal Functions *
55*******************************************************************************/
56static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
57static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys);
58
59
60/*
61 * PGMR3PhysReadU8-64
62 * PGMR3PhysWriteU8-64
63 */
64#define PGMPHYSFN_READNAME PGMR3PhysReadU8
65#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
66#define PGMPHYS_DATASIZE 1
67#define PGMPHYS_DATATYPE uint8_t
68#include "PGMPhysRWTmpl.h"
69
70#define PGMPHYSFN_READNAME PGMR3PhysReadU16
71#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
72#define PGMPHYS_DATASIZE 2
73#define PGMPHYS_DATATYPE uint16_t
74#include "PGMPhysRWTmpl.h"
75
76#define PGMPHYSFN_READNAME PGMR3PhysReadU32
77#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
78#define PGMPHYS_DATASIZE 4
79#define PGMPHYS_DATATYPE uint32_t
80#include "PGMPhysRWTmpl.h"
81
82#define PGMPHYSFN_READNAME PGMR3PhysReadU64
83#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
84#define PGMPHYS_DATASIZE 8
85#define PGMPHYS_DATATYPE uint64_t
86#include "PGMPhysRWTmpl.h"
87
88
89/**
90 * EMT worker for PGMR3PhysReadExternal.
91 */
92static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead)
93{
94 PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead);
95 return VINF_SUCCESS;
96}
97
98
99/**
100 * Write to physical memory, external users.
101 *
102 * @returns VBox status code.
103 * @retval VINF_SUCCESS.
104 *
105 * @param pVM VM Handle.
106 * @param GCPhys Physical address to write to.
107 * @param pvBuf What to write.
108 * @param cbWrite How many bytes to write.
109 *
110 * @thread Any but EMTs.
111 */
112VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
113{
114 VM_ASSERT_OTHER_THREAD(pVM);
115
116 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
117 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
118
119 pgmLock(pVM);
120
121 /*
122 * Copy loop on ram ranges.
123 */
124 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
125 for (;;)
126 {
127 /* Find range. */
128 while (pRam && GCPhys > pRam->GCPhysLast)
129 pRam = pRam->CTX_SUFF(pNext);
130 /* Inside range or not? */
131 if (pRam && GCPhys >= pRam->GCPhys)
132 {
133 /*
134 * Must work our way thru this page by page.
135 */
136 RTGCPHYS off = GCPhys - pRam->GCPhys;
137 while (off < pRam->cb)
138 {
139 unsigned iPage = off >> PAGE_SHIFT;
140 PPGMPAGE pPage = &pRam->aPages[iPage];
141
142 /*
143 * If the page has an ALL access handler, we'll have to
144 * delegate the job to EMT.
145 */
146 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
147 {
148 pgmUnlock(pVM);
149
150 PVMREQ pReq = NULL;
151 int rc = VMR3ReqCall(pVM, VMCPUID_ANY, &pReq, RT_INDEFINITE_WAIT,
152 (PFNRT)pgmR3PhysReadExternalEMT, 4, pVM, &GCPhys, pvBuf, cbRead);
153 if (RT_SUCCESS(rc))
154 {
155 rc = pReq->iStatus;
156 VMR3ReqFree(pReq);
157 }
158 return rc;
159 }
160 Assert(!PGM_PAGE_IS_MMIO(pPage));
161
162 /*
163 * Simple stuff, go ahead.
164 */
165 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
166 if (cb > cbRead)
167 cb = cbRead;
168 const void *pvSrc;
169 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc);
170 if (RT_SUCCESS(rc))
171 memcpy(pvBuf, pvSrc, cb);
172 else
173 {
174 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
175 pRam->GCPhys + off, pPage, rc));
176 memset(pvBuf, 0xff, cb);
177 }
178
179 /* next page */
180 if (cb >= cbRead)
181 {
182 pgmUnlock(pVM);
183 return VINF_SUCCESS;
184 }
185 cbRead -= cb;
186 off += cb;
187 GCPhys += cb;
188 pvBuf = (char *)pvBuf + cb;
189 } /* walk pages in ram range. */
190 }
191 else
192 {
193 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
194
195 /*
196 * Unassigned address space.
197 */
198 if (!pRam)
199 break;
200 size_t cb = pRam->GCPhys - GCPhys;
201 if (cb >= cbRead)
202 {
203 memset(pvBuf, 0xff, cbRead);
204 break;
205 }
206 memset(pvBuf, 0xff, cb);
207
208 cbRead -= cb;
209 pvBuf = (char *)pvBuf + cb;
210 GCPhys += cb;
211 }
212 } /* Ram range walk */
213
214 pgmUnlock(pVM);
215
216 return VINF_SUCCESS;
217}
218
219
220/**
221 * EMT worker for PGMR3PhysWriteExternal.
222 */
223static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite)
224{
225 /** @todo VERR_EM_NO_MEMORY */
226 PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite);
227 return VINF_SUCCESS;
228}
229
230
231/**
232 * Write to physical memory, external users.
233 *
234 * @returns VBox status code.
235 * @retval VINF_SUCCESS.
236 * @retval VERR_EM_NO_MEMORY.
237 *
238 * @param pVM VM Handle.
239 * @param GCPhys Physical address to write to.
240 * @param pvBuf What to write.
241 * @param cbWrite How many bytes to write.
242 *
243 * @thread Any but EMTs.
244 */
245VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite)
246{
247 VM_ASSERT_OTHER_THREAD(pVM);
248
249 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites, ("Calling PGMR3PhysWriteExternal after pgmR3Save()!\n"));
250 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
251 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
252
253 pgmLock(pVM);
254
255 /*
256 * Copy loop on ram ranges, stop when we hit something difficult.
257 */
258 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
259 for (;;)
260 {
261 /* Find range. */
262 while (pRam && GCPhys > pRam->GCPhysLast)
263 pRam = pRam->CTX_SUFF(pNext);
264 /* Inside range or not? */
265 if (pRam && GCPhys >= pRam->GCPhys)
266 {
267 /*
268 * Must work our way thru this page by page.
269 */
270 RTGCPTR off = GCPhys - pRam->GCPhys;
271 while (off < pRam->cb)
272 {
273 RTGCPTR iPage = off >> PAGE_SHIFT;
274 PPGMPAGE pPage = &pRam->aPages[iPage];
275
276 /*
277 * It the page is in any way problematic, we have to
278 * do the work on the EMT. Anything that needs to be made
279 * writable or involves access handlers is problematic.
280 */
281 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
282 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
283 {
284 pgmUnlock(pVM);
285
286 PVMREQ pReq = NULL;
287 int rc = VMR3ReqCall(pVM, VMCPUID_ANY, &pReq, RT_INDEFINITE_WAIT,
288 (PFNRT)pgmR3PhysWriteExternalEMT, 4, pVM, &GCPhys, pvBuf, cbWrite);
289 if (RT_SUCCESS(rc))
290 {
291 rc = pReq->iStatus;
292 VMR3ReqFree(pReq);
293 }
294 return rc;
295 }
296 Assert(!PGM_PAGE_IS_MMIO(pPage));
297
298 /*
299 * Simple stuff, go ahead.
300 */
301 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
302 if (cb > cbWrite)
303 cb = cbWrite;
304 void *pvDst;
305 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst);
306 if (RT_SUCCESS(rc))
307 memcpy(pvDst, pvBuf, cb);
308 else
309 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
310 pRam->GCPhys + off, pPage, rc));
311
312 /* next page */
313 if (cb >= cbWrite)
314 {
315 pgmUnlock(pVM);
316 return VINF_SUCCESS;
317 }
318
319 cbWrite -= cb;
320 off += cb;
321 GCPhys += cb;
322 pvBuf = (const char *)pvBuf + cb;
323 } /* walk pages in ram range */
324 }
325 else
326 {
327 /*
328 * Unassigned address space, skip it.
329 */
330 if (!pRam)
331 break;
332 size_t cb = pRam->GCPhys - GCPhys;
333 if (cb >= cbWrite)
334 break;
335 cbWrite -= cb;
336 pvBuf = (const char *)pvBuf + cb;
337 GCPhys += cb;
338 }
339 } /* Ram range walk */
340
341 pgmUnlock(pVM);
342 return VINF_SUCCESS;
343}
344
345
346/**
347 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
348 *
349 * @returns see PGMR3PhysGCPhys2CCPtrExternal
350 * @param pVM The VM handle.
351 * @param pGCPhys Pointer to the guest physical address.
352 * @param ppv Where to store the mapping address.
353 * @param pLock Where to store the lock.
354 */
355static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
356{
357 /*
358 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
359 * an access handler after it succeeds.
360 */
361 int rc = pgmLock(pVM);
362 AssertRCReturn(rc, rc);
363
364 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
365 if (RT_SUCCESS(rc))
366 {
367 PPGMPAGEMAPTLBE pTlbe;
368 int rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, *pGCPhys, &pTlbe);
369 AssertFatalRC(rc2);
370 PPGMPAGE pPage = pTlbe->pPage;
371 if (PGM_PAGE_IS_MMIO(pPage))
372 {
373 PGMPhysReleasePageMappingLock(pVM, pLock);
374 rc = VERR_PGM_PHYS_PAGE_RESERVED;
375 }
376 else
377 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
378 {
379 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
380 * not be informed about writes and keep bogus gst->shw mappings around.
381 */
382 PGMPoolFlushPage(pVM, *pGCPhys);
383 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
384 }
385 }
386
387 pgmUnlock(pVM);
388 return rc;
389}
390
391
392/**
393 * Requests the mapping of a guest page into ring-3, external threads.
394 *
395 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
396 * release it.
397 *
398 * This API will assume your intention is to write to the page, and will
399 * therefore replace shared and zero pages. If you do not intend to modify the
400 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
401 *
402 * @returns VBox status code.
403 * @retval VINF_SUCCESS on success.
404 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
405 * backing or if the page has any active access handlers. The caller
406 * must fall back on using PGMR3PhysWriteExternal.
407 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
408 *
409 * @param pVM The VM handle.
410 * @param GCPhys The guest physical address of the page that should be mapped.
411 * @param ppv Where to store the address corresponding to GCPhys.
412 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
413 *
414 * @remark Avoid calling this API from within critical sections (other than the
415 * PGM one) because of the deadlock risk when we have to delegating the
416 * task to an EMT.
417 * @thread Any.
418 */
419VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
420{
421 AssertPtr(ppv);
422 AssertPtr(pLock);
423
424 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
425
426 int rc = pgmLock(pVM);
427 AssertRCReturn(rc, rc);
428
429 /*
430 * Query the Physical TLB entry for the page (may fail).
431 */
432 PPGMPAGEMAPTLBE pTlbe;
433 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
434 if (RT_SUCCESS(rc))
435 {
436 PPGMPAGE pPage = pTlbe->pPage;
437 if (PGM_PAGE_IS_MMIO(pPage))
438 rc = VERR_PGM_PHYS_PAGE_RESERVED;
439 else
440 {
441 /*
442 * If the page is shared, the zero page, or being write monitored
443 * it must be converted to an page that's writable if possible.
444 * This has to be done on an EMT.
445 */
446 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
447 || RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
448 {
449 pgmUnlock(pVM);
450
451 PVMREQ pReq = NULL;
452 rc = VMR3ReqCall(pVM, VMCPUID_ANY, &pReq, RT_INDEFINITE_WAIT,
453 (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4, pVM, &GCPhys, ppv, pLock);
454 if (RT_SUCCESS(rc))
455 {
456 rc = pReq->iStatus;
457 VMR3ReqFree(pReq);
458 }
459 return rc;
460 }
461
462 /*
463 * Now, just perform the locking and calculate the return address.
464 */
465 PPGMPAGEMAP pMap = pTlbe->pMap;
466 pMap->cRefs++;
467#if 0 /** @todo implement locking properly */
468 if (RT_LIKELY(pPage->cLocks != PGM_PAGE_MAX_LOCKS))
469 if (RT_UNLIKELY(++pPage->cLocks == PGM_PAGE_MAX_LOCKS))
470 {
471 AssertMsgFailed(("%RGp is entering permanent locked state!\n", GCPhys));
472 pMap->cRefs++; /* Extra ref to prevent it from going away. */
473 }
474#endif
475 *ppv = (void *)((uintptr_t)pTlbe->pv | (GCPhys & PAGE_OFFSET_MASK));
476 pLock->pvPage = pPage;
477 pLock->pvMap = pMap;
478 }
479 }
480
481 pgmUnlock(pVM);
482 return rc;
483}
484
485
486/**
487 * Requests the mapping of a guest page into ring-3, external threads.
488 *
489 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
490 * release it.
491 *
492 * @returns VBox status code.
493 * @retval VINF_SUCCESS on success.
494 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
495 * backing or if the page as an active ALL access handler. The caller
496 * must fall back on using PGMPhysRead.
497 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
498 *
499 * @param pVM The VM handle.
500 * @param GCPhys The guest physical address of the page that should be mapped.
501 * @param ppv Where to store the address corresponding to GCPhys.
502 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
503 *
504 * @remark Avoid calling this API from within critical sections (other than
505 * the PGM one) because of the deadlock risk.
506 * @thread Any.
507 */
508VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
509{
510 int rc = pgmLock(pVM);
511 AssertRCReturn(rc, rc);
512
513 /*
514 * Query the Physical TLB entry for the page (may fail).
515 */
516 PPGMPAGEMAPTLBE pTlbe;
517 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
518 if (RT_SUCCESS(rc))
519 {
520 PPGMPAGE pPage = pTlbe->pPage;
521#if 1
522 /* MMIO pages doesn't have any readable backing. */
523 if (PGM_PAGE_IS_MMIO(pPage))
524 rc = VERR_PGM_PHYS_PAGE_RESERVED;
525#else
526 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
527 rc = VERR_PGM_PHYS_PAGE_RESERVED;
528#endif
529 else
530 {
531 /*
532 * Now, just perform the locking and calculate the return address.
533 */
534 PPGMPAGEMAP pMap = pTlbe->pMap;
535 pMap->cRefs++;
536#if 0 /** @todo implement locking properly */
537 if (RT_LIKELY(pPage->cLocks != PGM_PAGE_MAX_LOCKS))
538 if (RT_UNLIKELY(++pPage->cLocks == PGM_PAGE_MAX_LOCKS))
539 {
540 AssertMsgFailed(("%RGp is entering permanent locked state!\n", GCPhys));
541 pMap->cRefs++; /* Extra ref to prevent it from going away. */
542 }
543#endif
544 *ppv = (void *)((uintptr_t)pTlbe->pv | (GCPhys & PAGE_OFFSET_MASK));
545 pLock->pvPage = pPage;
546 pLock->pvMap = pMap;
547 }
548 }
549
550 pgmUnlock(pVM);
551 return rc;
552}
553
554
555/**
556 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
557 *
558 * Called when anything was relocated.
559 *
560 * @param pVM Pointer to the shared VM structure.
561 */
562void pgmR3PhysRelinkRamRanges(PVM pVM)
563{
564 PPGMRAMRANGE pCur;
565
566#ifdef VBOX_STRICT
567 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
568 {
569 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
570 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
571 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
572 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
573 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
574 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
575 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesR3; pCur2; pCur2 = pCur2->pNextR3)
576 Assert( pCur2 == pCur
577 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
578 }
579#endif
580
581 pCur = pVM->pgm.s.pRamRangesR3;
582 if (pCur)
583 {
584 pVM->pgm.s.pRamRangesR0 = pCur->pSelfR0;
585 pVM->pgm.s.pRamRangesRC = pCur->pSelfRC;
586
587 for (; pCur->pNextR3; pCur = pCur->pNextR3)
588 {
589 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
590 pCur->pNextRC = pCur->pNextR3->pSelfRC;
591 }
592
593 Assert(pCur->pNextR0 == NIL_RTR0PTR);
594 Assert(pCur->pNextRC == NIL_RTRCPTR);
595 }
596 else
597 {
598 Assert(pVM->pgm.s.pRamRangesR0 == NIL_RTR0PTR);
599 Assert(pVM->pgm.s.pRamRangesRC == NIL_RTRCPTR);
600 }
601}
602
603
604/**
605 * Links a new RAM range into the list.
606 *
607 * @param pVM Pointer to the shared VM structure.
608 * @param pNew Pointer to the new list entry.
609 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
610 */
611static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
612{
613 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
614 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
615 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));
616
617 pgmLock(pVM);
618
619 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesR3;
620 pNew->pNextR3 = pRam;
621 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
622 pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;
623
624 if (pPrev)
625 {
626 pPrev->pNextR3 = pNew;
627 pPrev->pNextR0 = pNew->pSelfR0;
628 pPrev->pNextRC = pNew->pSelfRC;
629 }
630 else
631 {
632 pVM->pgm.s.pRamRangesR3 = pNew;
633 pVM->pgm.s.pRamRangesR0 = pNew->pSelfR0;
634 pVM->pgm.s.pRamRangesRC = pNew->pSelfRC;
635 }
636
637 pgmUnlock(pVM);
638}
639
640
641/**
642 * Unlink an existing RAM range from the list.
643 *
644 * @param pVM Pointer to the shared VM structure.
645 * @param pRam Pointer to the new list entry.
646 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
647 */
648static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
649{
650 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesR3 == pRam);
651 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
652 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));
653
654 pgmLock(pVM);
655
656 PPGMRAMRANGE pNext = pRam->pNextR3;
657 if (pPrev)
658 {
659 pPrev->pNextR3 = pNext;
660 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
661 pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
662 }
663 else
664 {
665 Assert(pVM->pgm.s.pRamRangesR3 == pRam);
666 pVM->pgm.s.pRamRangesR3 = pNext;
667 pVM->pgm.s.pRamRangesR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
668 pVM->pgm.s.pRamRangesRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
669 }
670
671 pgmUnlock(pVM);
672}
673
674
675/**
676 * Unlink an existing RAM range from the list.
677 *
678 * @param pVM Pointer to the shared VM structure.
679 * @param pRam Pointer to the new list entry.
680 */
681static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
682{
683 pgmLock(pVM);
684
685 /* find prev. */
686 PPGMRAMRANGE pPrev = NULL;
687 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3;
688 while (pCur != pRam)
689 {
690 pPrev = pCur;
691 pCur = pCur->pNextR3;
692 }
693 AssertFatal(pCur);
694
695 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
696
697 pgmUnlock(pVM);
698}
699
700
701/**
702 * Frees a range of pages, replacing them with ZERO pages of the specified type.
703 *
704 * @returns VBox status code.
705 * @param pVM The VM handle.
706 * @param pRam The RAM range in which the pages resides.
707 * @param GCPhys The address of the first page.
708 * @param GCPhysLast The address of the last page.
709 * @param uType The page type to replace then with.
710 */
711static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, uint8_t uType)
712{
713 uint32_t cPendingPages = 0;
714 PGMMFREEPAGESREQ pReq;
715 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
716 AssertLogRelRCReturn(rc, rc);
717
718 /* Itegerate the pages. */
719 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
720 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
721 while (cPagesLeft-- > 0)
722 {
723 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
724 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
725
726 PGM_PAGE_SET_TYPE(pPageDst, uType);
727
728 GCPhys += PAGE_SIZE;
729 pPageDst++;
730 }
731
732 if (cPendingPages)
733 {
734 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
735 AssertLogRelRCReturn(rc, rc);
736 }
737 GMMR3FreePagesCleanup(pReq);
738
739 return rc;
740}
741
742
743/**
744 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
745 *
746 * @param pVM The VM handle.
747 * @param pNew The new RAM range.
748 * @param GCPhys The address of the RAM range.
749 * @param GCPhysLast The last address of the RAM range.
750 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
751 * if in HMA.
752 * @param R0PtrNew Ditto for R0.
753 * @param pszDesc The description.
754 * @param pPrev The previous RAM range (for linking).
755 */
756static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
757 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
758{
759 /*
760 * Initialize the range.
761 */
762 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
763 pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
764 pNew->GCPhys = GCPhys;
765 pNew->GCPhysLast = GCPhysLast;
766 pNew->cb = GCPhysLast - GCPhys + 1;
767 pNew->pszDesc = pszDesc;
768 pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
769 pNew->pvR3 = NULL;
770
771 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
772 RTGCPHYS iPage = cPages;
773 while (iPage-- > 0)
774 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
775
776 /* Update the page count stats. */
777 pVM->pgm.s.cZeroPages += cPages;
778 pVM->pgm.s.cAllPages += cPages;
779
780 /*
781 * Link it.
782 */
783 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
784}
785
786
787/**
788 * Relocate a floating RAM range.
789 *
790 * @copydoc FNPGMRELOCATE.
791 */
792static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser)
793{
794 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
795 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
796 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE);
797
798 switch (enmMode)
799 {
800 case PGMRELOCATECALL_SUGGEST:
801 return true;
802 case PGMRELOCATECALL_RELOCATE:
803 {
804 /* Update myself and then relink all the ranges. */
805 pgmLock(pVM);
806 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
807 pgmR3PhysRelinkRamRanges(pVM);
808 pgmUnlock(pVM);
809 return true;
810 }
811
812 default:
813 AssertFailedReturn(false);
814 }
815}
816
817
818/**
819 * PGMR3PhysRegisterRam worker that registers a high chunk.
820 *
821 * @returns VBox status code.
822 * @param pVM The VM handle.
823 * @param GCPhys The address of the RAM.
824 * @param cRamPages The number of RAM pages to register.
825 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
826 * @param iChunk The chunk number.
827 * @param pszDesc The RAM range description.
828 * @param ppPrev Previous RAM range pointer. In/Out.
829 */
830static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
831 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
832 PPGMRAMRANGE *ppPrev)
833{
834 const char *pszDescChunk = iChunk == 0
835 ? pszDesc
836 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
837 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
838
839 /*
840 * Allocate memory for the new chunk.
841 */
842 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
843 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
844 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
845 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
846 void *pvChunk = NULL;
847 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
848#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
849 VMMIsHwVirtExtForced(pVM) ? &R0PtrChunk : NULL,
850#else
851 NULL,
852#endif
853 paChunkPages);
854 if (RT_SUCCESS(rc))
855 {
856#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
857 if (!VMMIsHwVirtExtForced(pVM))
858 R0PtrChunk = NIL_RTR0PTR;
859#else
860 R0PtrChunk = (uintptr_t)pvChunk;
861#endif
862 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
863
864 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
865
866 /*
867 * Create a mapping and map the pages into it.
868 * We push these in below the HMA.
869 */
870 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
871 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
872 if (RT_SUCCESS(rc))
873 {
874 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
875
876 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
877 RTGCPTR GCPtrPage = GCPtrChunk;
878 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
879 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
880 if (RT_SUCCESS(rc))
881 {
882 /*
883 * Ok, init and link the range.
884 */
885 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
886 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
887 *ppPrev = pNew;
888 }
889 }
890
891 if (RT_FAILURE(rc))
892 SUPR3PageFreeEx(pvChunk, cChunkPages);
893 }
894
895 RTMemTmpFree(paChunkPages);
896 return rc;
897}
898
899
900/**
901 * Sets up a range RAM.
902 *
903 * This will check for conflicting registrations, make a resource
904 * reservation for the memory (with GMM), and setup the per-page
905 * tracking structures (PGMPAGE).
906 *
907 * @returns VBox stutus code.
908 * @param pVM Pointer to the shared VM structure.
909 * @param GCPhys The physical address of the RAM.
910 * @param cb The size of the RAM.
911 * @param pszDesc The description - not copied, so, don't free or change it.
912 */
913VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
914{
915 /*
916 * Validate input.
917 */
918 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
919 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
920 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
921 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
922 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
923 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
924 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
925 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
926
927 pgmLock(pVM);
928
929 /*
930 * Find range location and check for conflicts.
931 * (We don't lock here because the locking by EMT is only required on update.)
932 */
933 PPGMRAMRANGE pPrev = NULL;
934 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
935 while (pRam && GCPhysLast >= pRam->GCPhys)
936 {
937 if ( GCPhysLast >= pRam->GCPhys
938 && GCPhys <= pRam->GCPhysLast)
939 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
940 GCPhys, GCPhysLast, pszDesc,
941 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
942 VERR_PGM_RAM_CONFLICT);
943
944 /* next */
945 pPrev = pRam;
946 pRam = pRam->pNextR3;
947 }
948
949 /*
950 * Register it with GMM (the API bitches).
951 */
952 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
953 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
954 if (RT_FAILURE(rc))
955 {
956 pgmUnlock(pVM);
957 return rc;
958 }
959
960 if ( GCPhys >= _4G
961 && cPages > 256)
962 {
963 /*
964 * The PGMRAMRANGE structures for the high memory can get very big.
965 * In order to avoid SUPR3PageAllocEx allocation failures due to the
966 * allocation size limit there and also to avoid being unable to find
967 * guest mapping space for them, we split this memory up into 4MB in
968 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
969 * mode.
970 *
971 * The first and last page of each mapping are guard pages and marked
972 * not-present. So, we've got 4186112 and 16769024 bytes available for
973 * the PGMRAMRANGE structure.
974 *
975 * Note! The sizes used here will influence the saved state.
976 */
977 uint32_t cbChunk;
978 uint32_t cPagesPerChunk;
979 if (VMMIsHwVirtExtForced(pVM))
980 {
981 cbChunk = 16U*_1M;
982 cPagesPerChunk = 1048048; /* max ~1048059 */
983 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
984 }
985 else
986 {
987 cbChunk = 4U*_1M;
988 cPagesPerChunk = 261616; /* max ~261627 */
989 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
990 }
991 AssertRelease(RT_UOFFSETOF(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
992
993 RTGCPHYS cPagesLeft = cPages;
994 RTGCPHYS GCPhysChunk = GCPhys;
995 uint32_t iChunk = 0;
996 while (cPagesLeft > 0)
997 {
998 uint32_t cPagesInChunk = cPagesLeft;
999 if (cPagesInChunk > cPagesPerChunk)
1000 cPagesInChunk = cPagesPerChunk;
1001
1002 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
1003 AssertRCReturn(rc, rc);
1004
1005 /* advance */
1006 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1007 cPagesLeft -= cPagesInChunk;
1008 iChunk++;
1009 }
1010 }
1011 else
1012 {
1013 /*
1014 * Allocate, initialize and link the new RAM range.
1015 */
1016 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1017 PPGMRAMRANGE pNew;
1018 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1019 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1020
1021 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
1022 }
1023 pgmUnlock(pVM);
1024
1025 /*
1026 * Notify REM.
1027 */
1028 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
1029
1030 return VINF_SUCCESS;
1031}
1032
1033
1034/**
1035 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1036 *
1037 * We do this late in the init process so that all the ROM and MMIO ranges have
1038 * been registered already and we don't go wasting memory on them.
1039 *
1040 * @returns VBox status code.
1041 *
1042 * @param pVM Pointer to the shared VM structure.
1043 */
1044int pgmR3PhysRamPreAllocate(PVM pVM)
1045{
1046 Assert(pVM->pgm.s.fRamPreAlloc);
1047 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1048
1049 /*
1050 * Walk the RAM ranges and allocate all RAM pages, halt at
1051 * the first allocation error.
1052 */
1053 uint64_t cPages = 0;
1054 uint64_t NanoTS = RTTimeNanoTS();
1055 pgmLock(pVM);
1056 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1057 {
1058 PPGMPAGE pPage = &pRam->aPages[0];
1059 RTGCPHYS GCPhys = pRam->GCPhys;
1060 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1061 while (cLeft-- > 0)
1062 {
1063 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1064 {
1065 switch (PGM_PAGE_GET_STATE(pPage))
1066 {
1067 case PGM_PAGE_STATE_ZERO:
1068 {
1069 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1070 if (RT_FAILURE(rc))
1071 {
1072 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1073 pgmUnlock(pVM);
1074 return rc;
1075 }
1076 cPages++;
1077 break;
1078 }
1079
1080 case PGM_PAGE_STATE_ALLOCATED:
1081 case PGM_PAGE_STATE_WRITE_MONITORED:
1082 case PGM_PAGE_STATE_SHARED:
1083 /* nothing to do here. */
1084 break;
1085 }
1086 }
1087
1088 /* next */
1089 pPage++;
1090 GCPhys += PAGE_SIZE;
1091 }
1092 }
1093 pgmUnlock(pVM);
1094 NanoTS = RTTimeNanoTS() - NanoTS;
1095
1096 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1097 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1098 return VINF_SUCCESS;
1099}
1100
1101
1102/**
1103 * Resets (zeros) the RAM.
1104 *
1105 * ASSUMES that the caller owns the PGM lock.
1106 *
1107 * @returns VBox status code.
1108 * @param pVM Pointer to the shared VM structure.
1109 */
1110int pgmR3PhysRamReset(PVM pVM)
1111{
1112 Assert(PGMIsLockOwner(pVM));
1113 /*
1114 * We batch up pages before freeing them.
1115 */
1116 uint32_t cPendingPages = 0;
1117 PGMMFREEPAGESREQ pReq;
1118 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1119 AssertLogRelRCReturn(rc, rc);
1120
1121 /*
1122 * Walk the ram ranges.
1123 */
1124 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1125 {
1126 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1127 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1128
1129 if (!pVM->pgm.s.fRamPreAlloc)
1130 {
1131 /* Replace all RAM pages by ZERO pages. */
1132 while (iPage-- > 0)
1133 {
1134 PPGMPAGE pPage = &pRam->aPages[iPage];
1135 switch (PGM_PAGE_GET_TYPE(pPage))
1136 {
1137 case PGMPAGETYPE_RAM:
1138 if (!PGM_PAGE_IS_ZERO(pPage))
1139 {
1140 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1141 AssertLogRelRCReturn(rc, rc);
1142 }
1143 break;
1144
1145 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1146 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1147 break;
1148
1149 case PGMPAGETYPE_MMIO2:
1150 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
1151 case PGMPAGETYPE_ROM:
1152 case PGMPAGETYPE_MMIO:
1153 break;
1154 default:
1155 AssertFailed();
1156 }
1157 } /* for each page */
1158 }
1159 else
1160 {
1161 /* Zero the memory. */
1162 while (iPage-- > 0)
1163 {
1164 PPGMPAGE pPage = &pRam->aPages[iPage];
1165 switch (PGM_PAGE_GET_TYPE(pPage))
1166 {
1167 case PGMPAGETYPE_RAM:
1168 switch (PGM_PAGE_GET_STATE(pPage))
1169 {
1170 case PGM_PAGE_STATE_ZERO:
1171 break;
1172 case PGM_PAGE_STATE_SHARED:
1173 case PGM_PAGE_STATE_WRITE_MONITORED:
1174 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1175 AssertLogRelRCReturn(rc, rc);
1176 case PGM_PAGE_STATE_ALLOCATED:
1177 {
1178 void *pvPage;
1179 PPGMPAGEMAP pMapIgnored;
1180 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pMapIgnored, &pvPage);
1181 AssertLogRelRCReturn(rc, rc);
1182 ASMMemZeroPage(pvPage);
1183 break;
1184 }
1185 }
1186 break;
1187
1188 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1189 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1190 break;
1191
1192 case PGMPAGETYPE_MMIO2:
1193 case PGMPAGETYPE_ROM_SHADOW:
1194 case PGMPAGETYPE_ROM:
1195 case PGMPAGETYPE_MMIO:
1196 break;
1197 default:
1198 AssertFailed();
1199
1200 }
1201 } /* for each page */
1202 }
1203
1204 }
1205
1206 /*
1207 * Finish off any pages pending freeing.
1208 */
1209 if (cPendingPages)
1210 {
1211 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1212 AssertLogRelRCReturn(rc, rc);
1213 }
1214 GMMR3FreePagesCleanup(pReq);
1215
1216 return VINF_SUCCESS;
1217}
1218
1219
1220/**
1221 * This is the interface IOM is using to register an MMIO region.
1222 *
1223 * It will check for conflicts and ensure that a RAM range structure
1224 * is present before calling the PGMR3HandlerPhysicalRegister API to
1225 * register the callbacks.
1226 *
1227 * @returns VBox status code.
1228 *
1229 * @param pVM Pointer to the shared VM structure.
1230 * @param GCPhys The start of the MMIO region.
1231 * @param cb The size of the MMIO region.
1232 * @param pfnHandlerR3 The address of the ring-3 handler. (IOMR3MMIOHandler)
1233 * @param pvUserR3 The user argument for R3.
1234 * @param pfnHandlerR0 The address of the ring-0 handler. (IOMMMIOHandler)
1235 * @param pvUserR0 The user argument for R0.
1236 * @param pfnHandlerRC The address of the RC handler. (IOMMMIOHandler)
1237 * @param pvUserRC The user argument for RC.
1238 * @param pszDesc The description of the MMIO region.
1239 */
1240VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb,
1241 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
1242 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
1243 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
1244 R3PTRTYPE(const char *) pszDesc)
1245{
1246 /*
1247 * Assert on some assumption.
1248 */
1249 VM_ASSERT_EMT(pVM);
1250 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1251 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1252 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1253 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1254
1255 /*
1256 * Make sure there's a RAM range structure for the region.
1257 */
1258 int rc;
1259 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1260 bool fRamExists = false;
1261 PPGMRAMRANGE pRamPrev = NULL;
1262 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1263 while (pRam && GCPhysLast >= pRam->GCPhys)
1264 {
1265 if ( GCPhysLast >= pRam->GCPhys
1266 && GCPhys <= pRam->GCPhysLast)
1267 {
1268 /* Simplification: all within the same range. */
1269 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
1270 && GCPhysLast <= pRam->GCPhysLast,
1271 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
1272 GCPhys, GCPhysLast, pszDesc,
1273 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1274 VERR_PGM_RAM_CONFLICT);
1275
1276 /* Check that it's all RAM or MMIO pages. */
1277 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1278 uint32_t cLeft = cb >> PAGE_SHIFT;
1279 while (cLeft-- > 0)
1280 {
1281 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1282 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
1283 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
1284 GCPhys, GCPhysLast, pszDesc, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
1285 VERR_PGM_RAM_CONFLICT);
1286 pPage++;
1287 }
1288
1289 /* Looks good. */
1290 fRamExists = true;
1291 break;
1292 }
1293
1294 /* next */
1295 pRamPrev = pRam;
1296 pRam = pRam->pNextR3;
1297 }
1298 PPGMRAMRANGE pNew;
1299 if (fRamExists)
1300 {
1301 pNew = NULL;
1302
1303 /*
1304 * Make all the pages in the range MMIO/ZERO pages, freeing any
1305 * RAM pages currently mapped here. This might not be 100% correct
1306 * for PCI memory, but we're doing the same thing for MMIO2 pages.
1307 */
1308 rc = pgmLock(pVM);
1309 if (RT_SUCCESS(rc))
1310 {
1311 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
1312 pgmUnlock(pVM);
1313 }
1314 AssertRCReturn(rc, rc);
1315 }
1316 else
1317 {
1318 pgmLock(pVM);
1319
1320 /*
1321 * No RAM range, insert an ad-hoc one.
1322 *
1323 * Note that we don't have to tell REM about this range because
1324 * PGMHandlerPhysicalRegisterEx will do that for us.
1325 */
1326 Log(("PGMR3PhysMMIORegister: Adding ad-hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
1327
1328 const uint32_t cPages = cb >> PAGE_SHIFT;
1329 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1330 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
1331 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1332
1333 /* Initialize the range. */
1334 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
1335 pNew->pSelfRC = MMHyperCCToRC(pVM, pNew);
1336 pNew->GCPhys = GCPhys;
1337 pNew->GCPhysLast = GCPhysLast;
1338 pNew->cb = cb;
1339 pNew->pszDesc = pszDesc;
1340 pNew->fFlags = 0; /** @todo add some kind of ad-hoc flag? */
1341
1342 pNew->pvR3 = NULL;
1343
1344 uint32_t iPage = cPages;
1345 while (iPage-- > 0)
1346 PGM_PAGE_INIT_ZERO_REAL(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
1347 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
1348
1349 /* update the page count stats. */
1350 pVM->pgm.s.cZeroPages += cPages;
1351 pVM->pgm.s.cAllPages += cPages;
1352
1353 /* link it */
1354 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
1355
1356 pgmUnlock(pVM);
1357 }
1358
1359 /*
1360 * Register the access handler.
1361 */
1362 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_MMIO, GCPhys, GCPhysLast,
1363 pfnHandlerR3, pvUserR3,
1364 pfnHandlerR0, pvUserR0,
1365 pfnHandlerRC, pvUserRC, pszDesc);
1366 if ( RT_FAILURE(rc)
1367 && !fRamExists)
1368 {
1369 pVM->pgm.s.cZeroPages -= cb >> PAGE_SHIFT;
1370 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
1371
1372 /* remove the ad-hoc range. */
1373 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
1374 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
1375 MMHyperFree(pVM, pRam);
1376 }
1377
1378 return rc;
1379}
1380
1381
1382/**
1383 * This is the interface IOM is using to register an MMIO region.
1384 *
1385 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
1386 * any ad-hoc PGMRAMRANGE left behind.
1387 *
1388 * @returns VBox status code.
1389 * @param pVM Pointer to the shared VM structure.
1390 * @param GCPhys The start of the MMIO region.
1391 * @param cb The size of the MMIO region.
1392 */
1393VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
1394{
1395 VM_ASSERT_EMT(pVM);
1396
1397 /*
1398 * First deregister the handler, then check if we should remove the ram range.
1399 */
1400 int rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
1401 if (RT_SUCCESS(rc))
1402 {
1403 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1404 PPGMRAMRANGE pRamPrev = NULL;
1405 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1406 while (pRam && GCPhysLast >= pRam->GCPhys)
1407 {
1408 /** @todo We're being a bit too careful here. rewrite. */
1409 if ( GCPhysLast == pRam->GCPhysLast
1410 && GCPhys == pRam->GCPhys)
1411 {
1412 Assert(pRam->cb == cb);
1413
1414 /*
1415 * See if all the pages are dead MMIO pages.
1416 */
1417 uint32_t const cPages = cb >> PAGE_SHIFT;
1418 bool fAllMMIO = true;
1419 uint32_t iPage = 0;
1420 uint32_t cLeft = cPages;
1421 while (cLeft-- > 0)
1422 {
1423 PPGMPAGE pPage = &pRam->aPages[iPage];
1424 if ( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO
1425 /*|| not-out-of-action later */)
1426 {
1427 fAllMMIO = false;
1428 Assert(PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO2_ALIAS_MMIO);
1429 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1430 break;
1431 }
1432 Assert(PGM_PAGE_IS_ZERO(pPage));
1433 pPage++;
1434 }
1435 if (fAllMMIO)
1436 {
1437 /*
1438 * Ad-hoc range, unlink and free it.
1439 */
1440 Log(("PGMR3PhysMMIODeregister: Freeing ad-hoc MMIO range for %RGp-%RGp %s\n",
1441 GCPhys, GCPhysLast, pRam->pszDesc));
1442
1443 pVM->pgm.s.cAllPages -= cPages;
1444 pVM->pgm.s.cZeroPages -= cPages;
1445
1446 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
1447 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
1448 MMHyperFree(pVM, pRam);
1449 break;
1450 }
1451 }
1452
1453 /*
1454 * Range match? It will all be within one range (see PGMAllHandler.cpp).
1455 */
1456 if ( GCPhysLast >= pRam->GCPhys
1457 && GCPhys <= pRam->GCPhysLast)
1458 {
1459 Assert(GCPhys >= pRam->GCPhys);
1460 Assert(GCPhysLast <= pRam->GCPhysLast);
1461
1462 /*
1463 * Turn the pages back into RAM pages.
1464 */
1465 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
1466 uint32_t cLeft = cb >> PAGE_SHIFT;
1467 while (cLeft--)
1468 {
1469 PPGMPAGE pPage = &pRam->aPages[iPage];
1470 AssertMsg(PGM_PAGE_IS_MMIO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1471 AssertMsg(PGM_PAGE_IS_ZERO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1472 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
1473 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_RAM);
1474 }
1475 break;
1476 }
1477
1478 /* next */
1479 pRamPrev = pRam;
1480 pRam = pRam->pNextR3;
1481 }
1482 }
1483
1484 return rc;
1485}
1486
1487
1488/**
1489 * Locate a MMIO2 range.
1490 *
1491 * @returns Pointer to the MMIO2 range.
1492 * @param pVM Pointer to the shared VM structure.
1493 * @param pDevIns The device instance owning the region.
1494 * @param iRegion The region.
1495 */
1496DECLINLINE(PPGMMMIO2RANGE) pgmR3PhysMMIO2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1497{
1498 /*
1499 * Search the list.
1500 */
1501 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
1502 if ( pCur->pDevInsR3 == pDevIns
1503 && pCur->iRegion == iRegion)
1504 return pCur;
1505 return NULL;
1506}
1507
1508
1509/**
1510 * Allocate and register an MMIO2 region.
1511 *
1512 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's
1513 * RAM associated with a device. It is also non-shared memory with a
1514 * permanent ring-3 mapping and page backing (presently).
1515 *
1516 * A MMIO2 range may overlap with base memory if a lot of RAM
1517 * is configured for the VM, in which case we'll drop the base
1518 * memory pages. Presently we will make no attempt to preserve
1519 * anything that happens to be present in the base memory that
1520 * is replaced, this is of course incorrectly but it's too much
1521 * effort.
1522 *
1523 * @returns VBox status code.
1524 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the memory.
1525 * @retval VERR_ALREADY_EXISTS if the region already exists.
1526 *
1527 * @param pVM Pointer to the shared VM structure.
1528 * @param pDevIns The device instance owning the region.
1529 * @param iRegion The region number. If the MMIO2 memory is a PCI I/O region
1530 * this number has to be the number of that region. Otherwise
1531 * it can be any number safe UINT8_MAX.
1532 * @param cb The size of the region. Must be page aligned.
1533 * @param fFlags Reserved for future use, must be zero.
1534 * @param ppv Where to store the pointer to the ring-3 mapping of the memory.
1535 * @param pszDesc The description.
1536 */
1537VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags, void **ppv, const char *pszDesc)
1538{
1539 /*
1540 * Validate input.
1541 */
1542 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1543 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1544 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1545 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
1546 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1547 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1548 AssertReturn(pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion) == NULL, VERR_ALREADY_EXISTS);
1549 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1550 AssertReturn(cb, VERR_INVALID_PARAMETER);
1551 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
1552
1553 const uint32_t cPages = cb >> PAGE_SHIFT;
1554 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
1555 AssertLogRelReturn(cPages <= INT32_MAX / 2, VERR_NO_MEMORY);
1556
1557 /*
1558 * For the 2nd+ instance, mangle the description string so it's unique.
1559 */
1560 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
1561 {
1562 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
1563 if (!pszDesc)
1564 return VERR_NO_MEMORY;
1565 }
1566
1567 /*
1568 * Try reserve and allocate the backing memory first as this is what is
1569 * most likely to fail.
1570 */
1571 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
1572 if (RT_SUCCESS(rc))
1573 {
1574 void *pvPages;
1575 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
1576 if (RT_SUCCESS(rc))
1577 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
1578 if (RT_SUCCESS(rc))
1579 {
1580 memset(pvPages, 0, cPages * PAGE_SIZE);
1581
1582 /*
1583 * Create the MMIO2 range record for it.
1584 */
1585 const size_t cbRange = RT_OFFSETOF(PGMMMIO2RANGE, RamRange.aPages[cPages]);
1586 PPGMMMIO2RANGE pNew;
1587 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1588 AssertLogRelMsgRC(rc, ("cbRamRange=%zu\n", cbRange));
1589 if (RT_SUCCESS(rc))
1590 {
1591 pNew->pDevInsR3 = pDevIns;
1592 pNew->pvR3 = pvPages;
1593 //pNew->pNext = NULL;
1594 //pNew->fMapped = false;
1595 //pNew->fOverlapping = false;
1596 pNew->iRegion = iRegion;
1597 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
1598 pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange);
1599 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
1600 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
1601 pNew->RamRange.pszDesc = pszDesc;
1602 pNew->RamRange.cb = cb;
1603 //pNew->RamRange.fFlags = 0; /// @todo MMIO2 flag?
1604
1605 pNew->RamRange.pvR3 = pvPages;
1606
1607 uint32_t iPage = cPages;
1608 while (iPage-- > 0)
1609 {
1610 PGM_PAGE_INIT(&pNew->RamRange.aPages[iPage],
1611 paPages[iPage].Phys & X86_PTE_PAE_PG_MASK, NIL_GMM_PAGEID,
1612 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
1613 }
1614
1615 /* update page count stats */
1616 pVM->pgm.s.cAllPages += cPages;
1617 pVM->pgm.s.cPrivatePages += cPages;
1618
1619 /*
1620 * Link it into the list.
1621 * Since there is no particular order, just push it.
1622 */
1623 pgmLock(pVM);
1624 pNew->pNextR3 = pVM->pgm.s.pMmio2RangesR3;
1625 pVM->pgm.s.pMmio2RangesR3 = pNew;
1626 pgmUnlock(pVM);
1627
1628 *ppv = pvPages;
1629 RTMemTmpFree(paPages);
1630 return VINF_SUCCESS;
1631 }
1632
1633 SUPR3PageFreeEx(pvPages, cPages);
1634 }
1635 RTMemTmpFree(paPages);
1636 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
1637 }
1638 if (pDevIns->iInstance > 0)
1639 MMR3HeapFree((void *)pszDesc);
1640 return rc;
1641}
1642
1643
1644/**
1645 * Deregisters and frees an MMIO2 region.
1646 *
1647 * Any physical (and virtual) access handlers registered for the region must
1648 * be deregistered before calling this function.
1649 *
1650 * @returns VBox status code.
1651 * @param pVM Pointer to the shared VM structure.
1652 * @param pDevIns The device instance owning the region.
1653 * @param iRegion The region. If it's UINT32_MAX it'll be a wildcard match.
1654 */
1655VMMR3DECL(int) PGMR3PhysMMIO2Deregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1656{
1657 /*
1658 * Validate input.
1659 */
1660 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1661 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1662 AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
1663
1664 pgmLock(pVM);
1665 int rc = VINF_SUCCESS;
1666 unsigned cFound = 0;
1667 PPGMMMIO2RANGE pPrev = NULL;
1668 PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3;
1669 while (pCur)
1670 {
1671 if ( pCur->pDevInsR3 == pDevIns
1672 && ( iRegion == UINT32_MAX
1673 || pCur->iRegion == iRegion))
1674 {
1675 cFound++;
1676
1677 /*
1678 * Unmap it if it's mapped.
1679 */
1680 if (pCur->fMapped)
1681 {
1682 int rc2 = PGMR3PhysMMIO2Unmap(pVM, pCur->pDevInsR3, pCur->iRegion, pCur->RamRange.GCPhys);
1683 AssertRC(rc2);
1684 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1685 rc = rc2;
1686 }
1687
1688 /*
1689 * Unlink it
1690 */
1691 PPGMMMIO2RANGE pNext = pCur->pNextR3;
1692 if (pPrev)
1693 pPrev->pNextR3 = pNext;
1694 else
1695 pVM->pgm.s.pMmio2RangesR3 = pNext;
1696 pCur->pNextR3 = NULL;
1697
1698 /*
1699 * Free the memory.
1700 */
1701 int rc2 = SUPR3PageFreeEx(pCur->pvR3, pCur->RamRange.cb >> PAGE_SHIFT);
1702 AssertRC(rc2);
1703 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1704 rc = rc2;
1705
1706 uint32_t const cPages = pCur->RamRange.cb >> PAGE_SHIFT;
1707 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
1708 AssertRC(rc2);
1709 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1710 rc = rc2;
1711
1712 /* we're leaking hyper memory here if done at runtime. */
1713 Assert( VMR3GetState(pVM) == VMSTATE_OFF
1714 || VMR3GetState(pVM) == VMSTATE_DESTROYING
1715 || VMR3GetState(pVM) == VMSTATE_TERMINATED
1716 || VMR3GetState(pVM) == VMSTATE_CREATING);
1717 /*rc = MMHyperFree(pVM, pCur);
1718 AssertRCReturn(rc, rc); - not safe, see the alloc call. */
1719
1720
1721 /* update page count stats */
1722 pVM->pgm.s.cAllPages -= cPages;
1723 pVM->pgm.s.cPrivatePages -= cPages;
1724
1725 /* next */
1726 pCur = pNext;
1727 }
1728 else
1729 {
1730 pPrev = pCur;
1731 pCur = pCur->pNextR3;
1732 }
1733 }
1734 pgmUnlock(pVM);
1735 return !cFound && iRegion != UINT32_MAX ? VERR_NOT_FOUND : rc;
1736}
1737
1738
1739/**
1740 * Maps a MMIO2 region.
1741 *
1742 * This is done when a guest / the bios / state loading changes the
1743 * PCI config. The replacing of base memory has the same restrictions
1744 * as during registration, of course.
1745 *
1746 * @returns VBox status code.
1747 *
1748 * @param pVM Pointer to the shared VM structure.
1749 * @param pDevIns The
1750 */
1751VMMR3DECL(int) PGMR3PhysMMIO2Map(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
1752{
1753 /*
1754 * Validate input
1755 */
1756 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1757 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1758 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1759 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
1760 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
1761 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1762
1763 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
1764 AssertReturn(pCur, VERR_NOT_FOUND);
1765 AssertReturn(!pCur->fMapped, VERR_WRONG_ORDER);
1766 Assert(pCur->RamRange.GCPhys == NIL_RTGCPHYS);
1767 Assert(pCur->RamRange.GCPhysLast == NIL_RTGCPHYS);
1768
1769 const RTGCPHYS GCPhysLast = GCPhys + pCur->RamRange.cb - 1;
1770 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
1771
1772 /*
1773 * Find our location in the ram range list, checking for
1774 * restriction we don't bother implementing yet (partially overlapping).
1775 */
1776 bool fRamExists = false;
1777 PPGMRAMRANGE pRamPrev = NULL;
1778 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1779 while (pRam && GCPhysLast >= pRam->GCPhys)
1780 {
1781 if ( GCPhys <= pRam->GCPhysLast
1782 && GCPhysLast >= pRam->GCPhys)
1783 {
1784 /* completely within? */
1785 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
1786 && GCPhysLast <= pRam->GCPhysLast,
1787 ("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
1788 GCPhys, GCPhysLast, pCur->RamRange.pszDesc,
1789 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1790 VERR_PGM_RAM_CONFLICT);
1791 fRamExists = true;
1792 break;
1793 }
1794
1795 /* next */
1796 pRamPrev = pRam;
1797 pRam = pRam->pNextR3;
1798 }
1799 if (fRamExists)
1800 {
1801 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1802 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
1803 while (cPagesLeft-- > 0)
1804 {
1805 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
1806 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
1807 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pCur->RamRange.pszDesc),
1808 VERR_PGM_RAM_CONFLICT);
1809 pPage++;
1810 }
1811 }
1812 Log(("PGMR3PhysMMIO2Map: %RGp-%RGp fRamExists=%RTbool %s\n",
1813 GCPhys, GCPhysLast, fRamExists, pCur->RamRange.pszDesc));
1814
1815 /*
1816 * Make the changes.
1817 */
1818 pgmLock(pVM);
1819
1820 pCur->RamRange.GCPhys = GCPhys;
1821 pCur->RamRange.GCPhysLast = GCPhysLast;
1822 pCur->fMapped = true;
1823 pCur->fOverlapping = fRamExists;
1824
1825 if (fRamExists)
1826 {
1827/** @todo use pgmR3PhysFreePageRange here. */
1828 uint32_t cPendingPages = 0;
1829 PGMMFREEPAGESREQ pReq;
1830 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1831 AssertLogRelRCReturn(rc, rc);
1832
1833 /* replace the pages, freeing all present RAM pages. */
1834 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
1835 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1836 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
1837 while (cPagesLeft-- > 0)
1838 {
1839 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
1840 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
1841
1842 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
1843 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhys);
1844 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_MMIO2);
1845 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ALLOCATED);
1846
1847 pVM->pgm.s.cZeroPages--;
1848 GCPhys += PAGE_SIZE;
1849 pPageSrc++;
1850 pPageDst++;
1851 }
1852
1853 if (cPendingPages)
1854 {
1855 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1856 AssertLogRelRCReturn(rc, rc);
1857 }
1858 GMMR3FreePagesCleanup(pReq);
1859 pgmUnlock(pVM);
1860 }
1861 else
1862 {
1863 RTGCPHYS cb = pCur->RamRange.cb;
1864
1865 /* link in the ram range */
1866 pgmR3PhysLinkRamRange(pVM, &pCur->RamRange, pRamPrev);
1867 pgmUnlock(pVM);
1868
1869 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
1870 }
1871
1872 return VINF_SUCCESS;
1873}
1874
1875
1876/**
1877 * Unmaps a MMIO2 region.
1878 *
1879 * This is done when a guest / the bios / state loading changes the
1880 * PCI config. The replacing of base memory has the same restrictions
1881 * as during registration, of course.
1882 */
1883VMMR3DECL(int) PGMR3PhysMMIO2Unmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
1884{
1885 bool fInformREM = false;
1886 RTGCPHYS GCPhysRangeREM;
1887 RTGCPHYS cbRangeREM;
1888
1889 /*
1890 * Validate input
1891 */
1892 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1893 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1894 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1895 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
1896 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
1897 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1898
1899 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
1900 AssertReturn(pCur, VERR_NOT_FOUND);
1901 AssertReturn(pCur->fMapped, VERR_WRONG_ORDER);
1902 AssertReturn(pCur->RamRange.GCPhys == GCPhys, VERR_INVALID_PARAMETER);
1903 Assert(pCur->RamRange.GCPhysLast != NIL_RTGCPHYS);
1904
1905 Log(("PGMR3PhysMMIO2Unmap: %RGp-%RGp %s\n",
1906 pCur->RamRange.GCPhys, pCur->RamRange.GCPhysLast, pCur->RamRange.pszDesc));
1907
1908 /*
1909 * Unmap it.
1910 */
1911 pgmLock(pVM);
1912
1913 if (pCur->fOverlapping)
1914 {
1915 /* Restore the RAM pages we've replaced. */
1916 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1917 while (pRam->GCPhys > pCur->RamRange.GCPhysLast)
1918 pRam = pRam->pNextR3;
1919
1920 RTHCPHYS const HCPhysZeroPg = pVM->pgm.s.HCPhysZeroPg;
1921 Assert(HCPhysZeroPg != 0 && HCPhysZeroPg != NIL_RTHCPHYS);
1922 PPGMPAGE pPageDst = &pRam->aPages[(pCur->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1923 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
1924 while (cPagesLeft-- > 0)
1925 {
1926 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhysZeroPg);
1927 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_RAM);
1928 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ZERO);
1929 PGM_PAGE_SET_PAGEID(pPageDst, NIL_GMM_PAGEID);
1930
1931 pVM->pgm.s.cZeroPages++;
1932 pPageDst++;
1933 }
1934 }
1935 else
1936 {
1937 GCPhysRangeREM = pCur->RamRange.GCPhys;
1938 cbRangeREM = pCur->RamRange.cb;
1939 fInformREM = true;
1940
1941 pgmR3PhysUnlinkRamRange(pVM, &pCur->RamRange);
1942 }
1943
1944 pCur->RamRange.GCPhys = NIL_RTGCPHYS;
1945 pCur->RamRange.GCPhysLast = NIL_RTGCPHYS;
1946 pCur->fOverlapping = false;
1947 pCur->fMapped = false;
1948
1949 pgmUnlock(pVM);
1950
1951 if (fInformREM)
1952 REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeREM, cbRangeREM);
1953
1954 return VINF_SUCCESS;
1955}
1956
1957
1958/**
1959 * Checks if the given address is an MMIO2 base address or not.
1960 *
1961 * @returns true/false accordingly.
1962 * @param pVM Pointer to the shared VM structure.
1963 * @param pDevIns The owner of the memory, optional.
1964 * @param GCPhys The address to check.
1965 */
1966VMMR3DECL(bool) PGMR3PhysMMIO2IsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
1967{
1968 /*
1969 * Validate input
1970 */
1971 VM_ASSERT_EMT_RETURN(pVM, false);
1972 AssertPtrReturn(pDevIns, false);
1973 AssertReturn(GCPhys != NIL_RTGCPHYS, false);
1974 AssertReturn(GCPhys != 0, false);
1975 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
1976
1977 /*
1978 * Search the list.
1979 */
1980 pgmLock(pVM);
1981 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
1982 if (pCur->RamRange.GCPhys == GCPhys)
1983 {
1984 Assert(pCur->fMapped);
1985 pgmUnlock(pVM);
1986 return true;
1987 }
1988 pgmUnlock(pVM);
1989 return false;
1990}
1991
1992
1993/**
1994 * Gets the HC physical address of a page in the MMIO2 region.
1995 *
1996 * This is API is intended for MMHyper and shouldn't be called
1997 * by anyone else...
1998 *
1999 * @returns VBox status code.
2000 * @param pVM Pointer to the shared VM structure.
2001 * @param pDevIns The owner of the memory, optional.
2002 * @param iRegion The region.
2003 * @param off The page expressed an offset into the MMIO2 region.
2004 * @param pHCPhys Where to store the result.
2005 */
2006VMMR3DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, PRTHCPHYS pHCPhys)
2007{
2008 /*
2009 * Validate input
2010 */
2011 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2012 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2013 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2014
2015 pgmLock(pVM);
2016 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2017 AssertReturn(pCur, VERR_NOT_FOUND);
2018 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2019
2020 PCPGMPAGE pPage = &pCur->RamRange.aPages[off >> PAGE_SHIFT];
2021 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2022 pgmUnlock(pVM);
2023 return VINF_SUCCESS;
2024}
2025
2026
2027/**
2028 * Maps a portion of an MMIO2 region into kernel space (host).
2029 *
2030 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
2031 * or the VM is terminated.
2032 *
2033 * @return VBox status code.
2034 *
2035 * @param pVM Pointer to the shared VM structure.
2036 * @param pDevIns The device owning the MMIO2 memory.
2037 * @param iRegion The region.
2038 * @param off The offset into the region. Must be page aligned.
2039 * @param cb The number of bytes to map. Must be page aligned.
2040 * @param pszDesc Mapping description.
2041 * @param pR0Ptr Where to store the R0 address.
2042 */
2043VMMR3DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb,
2044 const char *pszDesc, PRTR0PTR pR0Ptr)
2045{
2046 /*
2047 * Validate input.
2048 */
2049 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2050 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2051 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2052
2053 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2054 AssertReturn(pCur, VERR_NOT_FOUND);
2055 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2056 AssertReturn(cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2057 AssertReturn(off + cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2058
2059 /*
2060 * Pass the request on to the support library/driver.
2061 */
2062 int rc = SUPR3PageMapKernel(pCur->pvR3, off, cb, 0, pR0Ptr);
2063
2064 return rc;
2065}
2066
2067
2068/**
2069 * Registers a ROM image.
2070 *
2071 * Shadowed ROM images requires double the amount of backing memory, so,
2072 * don't use that unless you have to. Shadowing of ROM images is process
2073 * where we can select where the reads go and where the writes go. On real
2074 * hardware the chipset provides means to configure this. We provide
2075 * PGMR3PhysProtectROM() for this purpose.
2076 *
2077 * A read-only copy of the ROM image will always be kept around while we
2078 * will allocate RAM pages for the changes on demand (unless all memory
2079 * is configured to be preallocated).
2080 *
2081 * @returns VBox status.
2082 * @param pVM VM Handle.
2083 * @param pDevIns The device instance owning the ROM.
2084 * @param GCPhys First physical address in the range.
2085 * Must be page aligned!
2086 * @param cbRange The size of the range (in bytes).
2087 * Must be page aligned!
2088 * @param pvBinary Pointer to the binary data backing the ROM image.
2089 * This must be exactly \a cbRange in size.
2090 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
2091 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
2092 * @param pszDesc Pointer to description string. This must not be freed.
2093 *
2094 * @remark There is no way to remove the rom, automatically on device cleanup or
2095 * manually from the device yet. This isn't difficult in any way, it's
2096 * just not something we expect to be necessary for a while.
2097 */
2098VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
2099 const void *pvBinary, uint32_t fFlags, const char *pszDesc)
2100{
2101 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p fFlags=%#x pszDesc=%s\n",
2102 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, fFlags, pszDesc));
2103
2104 /*
2105 * Validate input.
2106 */
2107 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2108 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
2109 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
2110 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2111 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2112 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
2113 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2114 AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
2115 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
2116
2117 const uint32_t cPages = cb >> PAGE_SHIFT;
2118
2119 /*
2120 * Find the ROM location in the ROM list first.
2121 */
2122 PPGMROMRANGE pRomPrev = NULL;
2123 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
2124 while (pRom && GCPhysLast >= pRom->GCPhys)
2125 {
2126 if ( GCPhys <= pRom->GCPhysLast
2127 && GCPhysLast >= pRom->GCPhys)
2128 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
2129 GCPhys, GCPhysLast, pszDesc,
2130 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
2131 VERR_PGM_RAM_CONFLICT);
2132 /* next */
2133 pRomPrev = pRom;
2134 pRom = pRom->pNextR3;
2135 }
2136
2137 /*
2138 * Find the RAM location and check for conflicts.
2139 *
2140 * Conflict detection is a bit different than for RAM
2141 * registration since a ROM can be located within a RAM
2142 * range. So, what we have to check for is other memory
2143 * types (other than RAM that is) and that we don't span
2144 * more than one RAM range (layz).
2145 */
2146 bool fRamExists = false;
2147 PPGMRAMRANGE pRamPrev = NULL;
2148 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2149 while (pRam && GCPhysLast >= pRam->GCPhys)
2150 {
2151 if ( GCPhys <= pRam->GCPhysLast
2152 && GCPhysLast >= pRam->GCPhys)
2153 {
2154 /* completely within? */
2155 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2156 && GCPhysLast <= pRam->GCPhysLast,
2157 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
2158 GCPhys, GCPhysLast, pszDesc,
2159 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2160 VERR_PGM_RAM_CONFLICT);
2161 fRamExists = true;
2162 break;
2163 }
2164
2165 /* next */
2166 pRamPrev = pRam;
2167 pRam = pRam->pNextR3;
2168 }
2169 if (fRamExists)
2170 {
2171 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2172 uint32_t cPagesLeft = cPages;
2173 while (cPagesLeft-- > 0)
2174 {
2175 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2176 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
2177 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
2178 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
2179 Assert(PGM_PAGE_IS_ZERO(pPage));
2180 pPage++;
2181 }
2182 }
2183
2184 /*
2185 * Update the base memory reservation if necessary.
2186 */
2187 uint32_t cExtraBaseCost = fRamExists ? cPages : 0;
2188 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2189 cExtraBaseCost += cPages;
2190 if (cExtraBaseCost)
2191 {
2192 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
2193 if (RT_FAILURE(rc))
2194 return rc;
2195 }
2196
2197 /*
2198 * Allocate memory for the virgin copy of the RAM.
2199 */
2200 PGMMALLOCATEPAGESREQ pReq;
2201 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
2202 AssertRCReturn(rc, rc);
2203
2204 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2205 {
2206 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
2207 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
2208 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
2209 }
2210
2211 pgmLock(pVM);
2212 rc = GMMR3AllocatePagesPerform(pVM, pReq);
2213 pgmUnlock(pVM);
2214 if (RT_FAILURE(rc))
2215 {
2216 GMMR3AllocatePagesCleanup(pReq);
2217 return rc;
2218 }
2219
2220 /*
2221 * Allocate the new ROM range and RAM range (if necessary).
2222 */
2223 PPGMROMRANGE pRomNew;
2224 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
2225 if (RT_SUCCESS(rc))
2226 {
2227 PPGMRAMRANGE pRamNew = NULL;
2228 if (!fRamExists)
2229 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
2230 if (RT_SUCCESS(rc))
2231 {
2232 pgmLock(pVM);
2233
2234 /*
2235 * Initialize and insert the RAM range (if required).
2236 */
2237 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
2238 if (!fRamExists)
2239 {
2240 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
2241 pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew);
2242 pRamNew->GCPhys = GCPhys;
2243 pRamNew->GCPhysLast = GCPhysLast;
2244 pRamNew->cb = cb;
2245 pRamNew->pszDesc = pszDesc;
2246 pRamNew->fFlags = 0;
2247 pRamNew->pvR3 = NULL;
2248
2249 PPGMPAGE pPage = &pRamNew->aPages[0];
2250 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2251 {
2252 PGM_PAGE_INIT(pPage,
2253 pReq->aPages[iPage].HCPhysGCPhys,
2254 pReq->aPages[iPage].idPage,
2255 PGMPAGETYPE_ROM,
2256 PGM_PAGE_STATE_ALLOCATED);
2257
2258 pRomPage->Virgin = *pPage;
2259 }
2260
2261 pVM->pgm.s.cAllPages += cPages;
2262 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
2263 }
2264 else
2265 {
2266 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2267 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2268 {
2269 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_ROM);
2270 PGM_PAGE_SET_HCPHYS(pPage, pReq->aPages[iPage].HCPhysGCPhys);
2271 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
2272 PGM_PAGE_SET_PAGEID(pPage, pReq->aPages[iPage].idPage);
2273
2274 pRomPage->Virgin = *pPage;
2275 }
2276
2277 pRamNew = pRam;
2278
2279 pVM->pgm.s.cZeroPages -= cPages;
2280 }
2281 pVM->pgm.s.cPrivatePages += cPages;
2282
2283 pgmUnlock(pVM);
2284
2285
2286 /*
2287 * !HACK ALERT! REM + (Shadowed) ROM ==> mess.
2288 *
2289 * If it's shadowed we'll register the handler after the ROM notification
2290 * so we get the access handler callbacks that we should. If it isn't
2291 * shadowed we'll do it the other way around to make REM use the built-in
2292 * ROM behavior and not the handler behavior (which is to route all access
2293 * to PGM atm).
2294 */
2295 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2296 {
2297 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
2298 rc = PGMR3HandlerPhysicalRegister(pVM,
2299 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2300 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2301 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2302 GCPhys, GCPhysLast,
2303 pgmR3PhysRomWriteHandler, pRomNew,
2304 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2305 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2306 }
2307 else
2308 {
2309 rc = PGMR3HandlerPhysicalRegister(pVM,
2310 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2311 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2312 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2313 GCPhys, GCPhysLast,
2314 pgmR3PhysRomWriteHandler, pRomNew,
2315 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2316 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2317 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
2318 }
2319 if (RT_SUCCESS(rc))
2320 {
2321 pgmLock(pVM);
2322
2323 /*
2324 * Copy the image over to the virgin pages.
2325 * This must be done after linking in the RAM range.
2326 */
2327 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
2328 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
2329 {
2330 void *pvDstPage;
2331 PPGMPAGEMAP pMapIgnored;
2332 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pMapIgnored, &pvDstPage);
2333 if (RT_FAILURE(rc))
2334 {
2335 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
2336 break;
2337 }
2338 memcpy(pvDstPage, (const uint8_t *)pvBinary + (iPage << PAGE_SHIFT), PAGE_SIZE);
2339 }
2340 if (RT_SUCCESS(rc))
2341 {
2342 /*
2343 * Initialize the ROM range.
2344 * Note that the Virgin member of the pages has already been initialized above.
2345 */
2346 pRomNew->GCPhys = GCPhys;
2347 pRomNew->GCPhysLast = GCPhysLast;
2348 pRomNew->cb = cb;
2349 pRomNew->fFlags = fFlags;
2350 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY ? pvBinary : NULL;
2351 pRomNew->pszDesc = pszDesc;
2352
2353 for (unsigned iPage = 0; iPage < cPages; iPage++)
2354 {
2355 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
2356 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
2357 PGM_PAGE_INIT_ZERO_REAL(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
2358 }
2359
2360 /* update the page count stats */
2361 pVM->pgm.s.cZeroPages += cPages;
2362 pVM->pgm.s.cAllPages += cPages;
2363
2364 /*
2365 * Insert the ROM range, tell REM and return successfully.
2366 */
2367 pRomNew->pNextR3 = pRom;
2368 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
2369 pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;
2370
2371 if (pRomPrev)
2372 {
2373 pRomPrev->pNextR3 = pRomNew;
2374 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
2375 pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
2376 }
2377 else
2378 {
2379 pVM->pgm.s.pRomRangesR3 = pRomNew;
2380 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
2381 pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
2382 }
2383
2384 GMMR3AllocatePagesCleanup(pReq);
2385 pgmUnlock(pVM);
2386 return VINF_SUCCESS;
2387 }
2388
2389 /* bail out */
2390
2391 pgmUnlock(pVM);
2392 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2393 AssertRC(rc2);
2394 pgmLock(pVM);
2395 }
2396
2397 if (!fRamExists)
2398 {
2399 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
2400 MMHyperFree(pVM, pRamNew);
2401 }
2402 }
2403 MMHyperFree(pVM, pRomNew);
2404 }
2405
2406 /** @todo Purge the mapping cache or something... */
2407 GMMR3FreeAllocatedPages(pVM, pReq);
2408 GMMR3AllocatePagesCleanup(pReq);
2409 pgmUnlock(pVM);
2410 return rc;
2411}
2412
2413
2414/**
2415 * \#PF Handler callback for ROM write accesses.
2416 *
2417 * @returns VINF_SUCCESS if the handler have carried out the operation.
2418 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
2419 * @param pVM VM Handle.
2420 * @param GCPhys The physical address the guest is writing to.
2421 * @param pvPhys The HC mapping of that address.
2422 * @param pvBuf What the guest is reading/writing.
2423 * @param cbBuf How much it's reading/writing.
2424 * @param enmAccessType The access type.
2425 * @param pvUser User argument.
2426 */
2427static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
2428{
2429 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
2430 const uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2431 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
2432 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2433 Log5(("pgmR3PhysRomWriteHandler: %d %c %#08RGp %#04zx\n", pRomPage->enmProt, enmAccessType == PGMACCESSTYPE_READ ? 'R' : 'W', GCPhys, cbBuf));
2434
2435 if (enmAccessType == PGMACCESSTYPE_READ)
2436 {
2437 switch (pRomPage->enmProt)
2438 {
2439 /*
2440 * Take the default action.
2441 */
2442 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2443 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2444 case PGMROMPROT_READ_ROM_WRITE_RAM:
2445 case PGMROMPROT_READ_RAM_WRITE_RAM:
2446 return VINF_PGM_HANDLER_DO_DEFAULT;
2447
2448 default:
2449 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2450 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2451 VERR_INTERNAL_ERROR);
2452 }
2453 }
2454 else
2455 {
2456 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
2457 switch (pRomPage->enmProt)
2458 {
2459 /*
2460 * Ignore writes.
2461 */
2462 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2463 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2464 return VINF_SUCCESS;
2465
2466 /*
2467 * Write to the ram page.
2468 */
2469 case PGMROMPROT_READ_ROM_WRITE_RAM:
2470 case PGMROMPROT_READ_RAM_WRITE_RAM: /* yes this will get here too, it's *way* simpler that way. */
2471 {
2472 /* This should be impossible now, pvPhys doesn't work cross page anylonger. */
2473 Assert(((GCPhys - pRom->GCPhys + cbBuf - 1) >> PAGE_SHIFT) == iPage);
2474
2475 /*
2476 * Take the lock, do lazy allocation, map the page and copy the data.
2477 *
2478 * Note that we have to bypass the mapping TLB since it works on
2479 * guest physical addresses and entering the shadow page would
2480 * kind of screw things up...
2481 */
2482 int rc = pgmLock(pVM);
2483 AssertRC(rc);
2484 PPGMPAGE pShadowPage = &pRomPage->Shadow;
2485 if (!PGMROMPROT_IS_ROM(pRomPage->enmProt))
2486 {
2487 pShadowPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
2488 AssertLogRelReturn(pShadowPage, VERR_INTERNAL_ERROR);
2489 }
2490
2491 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pShadowPage) != PGM_PAGE_STATE_ALLOCATED))
2492 {
2493 rc = pgmPhysPageMakeWritable(pVM, pShadowPage, GCPhys);
2494 if (RT_FAILURE(rc))
2495 {
2496 pgmUnlock(pVM);
2497 return rc;
2498 }
2499 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* returned */, ("%Rrc\n", rc));
2500 }
2501
2502 void *pvDstPage;
2503 PPGMPAGEMAP pMapIgnored;
2504 int rc2 = pgmPhysPageMap(pVM, pShadowPage, GCPhys & X86_PTE_PG_MASK, &pMapIgnored, &pvDstPage);
2505 if (RT_SUCCESS(rc2))
2506 memcpy((uint8_t *)pvDstPage + (GCPhys & PAGE_OFFSET_MASK), pvBuf, cbBuf);
2507 else
2508 rc = rc2;
2509
2510 pgmUnlock(pVM);
2511 return rc;
2512 }
2513
2514 default:
2515 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2516 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2517 VERR_INTERNAL_ERROR);
2518 }
2519 }
2520}
2521
2522
2523/**
2524 * Called by PGMR3Reset to reset the shadow, switch to the virgin,
2525 * and verify that the virgin part is untouched.
2526 *
2527 * This is done after the normal memory has been cleared.
2528 *
2529 * ASSUMES that the caller owns the PGM lock.
2530 *
2531 * @param pVM The VM handle.
2532 */
2533int pgmR3PhysRomReset(PVM pVM)
2534{
2535 Assert(PGMIsLockOwner(pVM));
2536 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2537 {
2538 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
2539
2540 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2541 {
2542 /*
2543 * Reset the physical handler.
2544 */
2545 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
2546 AssertRCReturn(rc, rc);
2547
2548 /*
2549 * What we do with the shadow pages depends on the memory
2550 * preallocation option. If not enabled, we'll just throw
2551 * out all the dirty pages and replace them by the zero page.
2552 */
2553 if (!pVM->pgm.s.fRamPreAlloc)
2554 {
2555 /* Free the dirty pages. */
2556 uint32_t cPendingPages = 0;
2557 PGMMFREEPAGESREQ pReq;
2558 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2559 AssertRCReturn(rc, rc);
2560
2561 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2562 if (PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) != PGM_PAGE_STATE_ZERO)
2563 {
2564 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
2565 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow, pRom->GCPhys + (iPage << PAGE_SHIFT));
2566 AssertLogRelRCReturn(rc, rc);
2567 }
2568
2569 if (cPendingPages)
2570 {
2571 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2572 AssertLogRelRCReturn(rc, rc);
2573 }
2574 GMMR3FreePagesCleanup(pReq);
2575 }
2576 else
2577 {
2578 /* clear all the shadow pages. */
2579 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2580 {
2581 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) != PGM_PAGE_STATE_ZERO);
2582
2583 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2584 rc = pgmPhysPageMakeWritable(pVM, &pRom->aPages[iPage].Shadow, GCPhys);
2585 if (RT_FAILURE(rc))
2586 break;
2587
2588 void *pvDstPage;
2589 PPGMPAGEMAP pMapIgnored;
2590 rc = pgmPhysPageMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pMapIgnored, &pvDstPage);
2591 if (RT_FAILURE(rc))
2592 break;
2593 ASMMemZeroPage(pvDstPage);
2594 }
2595 AssertRCReturn(rc, rc);
2596 }
2597 }
2598
2599#ifdef VBOX_STRICT
2600 /*
2601 * Verify that the virgin page is unchanged if possible.
2602 */
2603 if (pRom->pvOriginal)
2604 {
2605 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
2606 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbSrcPage += PAGE_SIZE)
2607 {
2608 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2609 PPGMPAGEMAP pMapIgnored;
2610 void *pvDstPage;
2611 int rc = pgmPhysPageMap(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pMapIgnored, &pvDstPage);
2612 if (RT_FAILURE(rc))
2613 break;
2614 if (memcmp(pvDstPage, pbSrcPage, PAGE_SIZE))
2615 LogRel(("pgmR3PhysRomReset: %RGp rom page changed (%s) - loaded saved state?\n",
2616 GCPhys, pRom->pszDesc));
2617 }
2618 }
2619#endif
2620 }
2621
2622 return VINF_SUCCESS;
2623}
2624
2625
2626/**
2627 * Change the shadowing of a range of ROM pages.
2628 *
2629 * This is intended for implementing chipset specific memory registers
2630 * and will not be very strict about the input. It will silently ignore
2631 * any pages that are not the part of a shadowed ROM.
2632 *
2633 * @returns VBox status code.
2634 * @retval VINF_PGM_SYNC_CR3
2635 *
2636 * @param pVM Pointer to the shared VM structure.
2637 * @param GCPhys Where to start. Page aligned.
2638 * @param cb How much to change. Page aligned.
2639 * @param enmProt The new ROM protection.
2640 */
2641VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
2642{
2643 /*
2644 * Check input
2645 */
2646 if (!cb)
2647 return VINF_SUCCESS;
2648 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2649 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2650 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2651 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2652 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
2653
2654 /*
2655 * Process the request.
2656 */
2657 pgmLock(pVM);
2658 int rc = VINF_SUCCESS;
2659 bool fFlushTLB = false;
2660 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2661 {
2662 if ( GCPhys <= pRom->GCPhysLast
2663 && GCPhysLast >= pRom->GCPhys
2664 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
2665 {
2666 /*
2667 * Iterate the relevant pages and make necessary the changes.
2668 */
2669 bool fChanges = false;
2670 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
2671 ? pRom->cb >> PAGE_SHIFT
2672 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
2673 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2674 iPage < cPages;
2675 iPage++)
2676 {
2677 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2678 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
2679 {
2680 fChanges = true;
2681
2682 /* flush references to the page. */
2683 PPGMPAGE pRamPage = pgmPhysGetPage(&pVM->pgm.s, pRom->GCPhys + (iPage << PAGE_SHIFT));
2684 int rc2 = pgmPoolTrackFlushGCPhys(pVM, pRamPage, &fFlushTLB);
2685 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
2686 rc = rc2;
2687
2688 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2689 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2690
2691 *pOld = *pRamPage;
2692 *pRamPage = *pNew;
2693 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
2694 }
2695 pRomPage->enmProt = enmProt;
2696 }
2697
2698 /*
2699 * Reset the access handler if we made changes, no need
2700 * to optimize this.
2701 */
2702 if (fChanges)
2703 {
2704 int rc = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
2705 if (RT_FAILURE(rc))
2706 {
2707 pgmUnlock(pVM);
2708 AssertRC(rc);
2709 return rc;
2710 }
2711 }
2712
2713 /* Advance - cb isn't updated. */
2714 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
2715 }
2716 }
2717 pgmUnlock(pVM);
2718 if (fFlushTLB)
2719 PGM_INVL_ALL_VCPU_TLBS(pVM);
2720
2721 return rc;
2722}
2723
2724
2725/**
2726 * Sets the Address Gate 20 state.
2727 *
2728 * @param pVCpu The VCPU to operate on.
2729 * @param fEnable True if the gate should be enabled.
2730 * False if the gate should be disabled.
2731 */
2732VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
2733{
2734 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
2735 if (pVCpu->pgm.s.fA20Enabled != fEnable)
2736 {
2737 pVCpu->pgm.s.fA20Enabled = fEnable;
2738 pVCpu->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
2739 REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
2740 /** @todo we're not handling this correctly for VT-x / AMD-V. See #2911 */
2741 }
2742}
2743
2744
2745/**
2746 * Tree enumeration callback for dealing with age rollover.
2747 * It will perform a simple compression of the current age.
2748 */
2749static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
2750{
2751 Assert(PGMIsLockOwner((PVM)pvUser));
2752 /* Age compression - ASSUMES iNow == 4. */
2753 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
2754 if (pChunk->iAge >= UINT32_C(0xffffff00))
2755 pChunk->iAge = 3;
2756 else if (pChunk->iAge >= UINT32_C(0xfffff000))
2757 pChunk->iAge = 2;
2758 else if (pChunk->iAge)
2759 pChunk->iAge = 1;
2760 else /* iAge = 0 */
2761 pChunk->iAge = 4;
2762
2763 /* reinsert */
2764 PVM pVM = (PVM)pvUser;
2765 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
2766 pChunk->AgeCore.Key = pChunk->iAge;
2767 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
2768 return 0;
2769}
2770
2771
2772/**
2773 * Tree enumeration callback that updates the chunks that have
2774 * been used since the last
2775 */
2776static DECLCALLBACK(int) pgmR3PhysChunkAgeingCallback(PAVLU32NODECORE pNode, void *pvUser)
2777{
2778 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
2779 if (!pChunk->iAge)
2780 {
2781 PVM pVM = (PVM)pvUser;
2782 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
2783 pChunk->AgeCore.Key = pChunk->iAge = pVM->pgm.s.ChunkR3Map.iNow;
2784 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
2785 }
2786
2787 return 0;
2788}
2789
2790
2791/**
2792 * Performs ageing of the ring-3 chunk mappings.
2793 *
2794 * @param pVM The VM handle.
2795 */
2796VMMR3DECL(void) PGMR3PhysChunkAgeing(PVM pVM)
2797{
2798 pgmLock(pVM);
2799 pVM->pgm.s.ChunkR3Map.AgeingCountdown = RT_MIN(pVM->pgm.s.ChunkR3Map.cMax / 4, 1024);
2800 pVM->pgm.s.ChunkR3Map.iNow++;
2801 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
2802 {
2803 pVM->pgm.s.ChunkR3Map.iNow = 4;
2804 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, pVM);
2805 }
2806 else
2807 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingCallback, pVM);
2808 pgmUnlock(pVM);
2809}
2810
2811
2812/**
2813 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
2814 */
2815typedef struct PGMR3PHYSCHUNKUNMAPCB
2816{
2817 PVM pVM; /**< The VM handle. */
2818 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
2819} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
2820
2821
2822/**
2823 * Callback used to find the mapping that's been unused for
2824 * the longest time.
2825 */
2826static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLLU32NODECORE pNode, void *pvUser)
2827{
2828 do
2829 {
2830 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)((uint8_t *)pNode - RT_OFFSETOF(PGMCHUNKR3MAP, AgeCore));
2831 if ( pChunk->iAge
2832 && !pChunk->cRefs)
2833 {
2834 /*
2835 * Check that it's not in any of the TLBs.
2836 */
2837 PVM pVM = ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pVM;
2838 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
2839 if (pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk == pChunk)
2840 {
2841 pChunk = NULL;
2842 break;
2843 }
2844 if (pChunk)
2845 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
2846 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
2847 {
2848 pChunk = NULL;
2849 break;
2850 }
2851 if (pChunk)
2852 {
2853 ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pChunk = pChunk;
2854 return 1; /* done */
2855 }
2856 }
2857
2858 /* next with the same age - this version of the AVL API doesn't enumerate the list, so we have to do it. */
2859 pNode = pNode->pList;
2860 } while (pNode);
2861 return 0;
2862}
2863
2864
2865/**
2866 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
2867 *
2868 * The candidate will not be part of any TLBs, so no need to flush
2869 * anything afterwards.
2870 *
2871 * @returns Chunk id.
2872 * @param pVM The VM handle.
2873 */
2874static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
2875{
2876 Assert(PGMIsLockOwner(pVM));
2877
2878 /*
2879 * Do tree ageing first?
2880 */
2881 if (pVM->pgm.s.ChunkR3Map.AgeingCountdown-- == 0)
2882 PGMR3PhysChunkAgeing(pVM);
2883
2884 /*
2885 * Enumerate the age tree starting with the left most node.
2886 */
2887 PGMR3PHYSCHUNKUNMAPCB Args;
2888 Args.pVM = pVM;
2889 Args.pChunk = NULL;
2890 if (RTAvllU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pAgeTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, pVM))
2891 return Args.pChunk->Core.Key;
2892 return INT32_MAX;
2893}
2894
2895
2896/**
2897 * Maps the given chunk into the ring-3 mapping cache.
2898 *
2899 * This will call ring-0.
2900 *
2901 * @returns VBox status code.
2902 * @param pVM The VM handle.
2903 * @param idChunk The chunk in question.
2904 * @param ppChunk Where to store the chunk tracking structure.
2905 *
2906 * @remarks Called from within the PGM critical section.
2907 */
2908int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
2909{
2910 int rc;
2911
2912 Assert(PGMIsLockOwner(pVM));
2913 /*
2914 * Allocate a new tracking structure first.
2915 */
2916#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2917 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
2918#else
2919 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
2920#endif
2921 AssertReturn(pChunk, VERR_NO_MEMORY);
2922 pChunk->Core.Key = idChunk;
2923 pChunk->AgeCore.Key = pVM->pgm.s.ChunkR3Map.iNow;
2924 pChunk->iAge = 0;
2925 pChunk->cRefs = 0;
2926 pChunk->cPermRefs = 0;
2927 pChunk->pv = NULL;
2928
2929 /*
2930 * Request the ring-0 part to map the chunk in question and if
2931 * necessary unmap another one to make space in the mapping cache.
2932 */
2933 GMMMAPUNMAPCHUNKREQ Req;
2934 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
2935 Req.Hdr.cbReq = sizeof(Req);
2936 Req.pvR3 = NULL;
2937 Req.idChunkMap = idChunk;
2938 Req.idChunkUnmap = NIL_GMM_CHUNKID;
2939 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
2940 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
2941/** @todo This is wrong. Any thread in the VM process should be able to do this,
2942 * there are depenenecies on this. What currently saves the day is that
2943 * we don't unmap anything and that all non-zero memory will therefore
2944 * be present when non-EMTs tries to access it. */
2945 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
2946 if (RT_SUCCESS(rc))
2947 {
2948 /*
2949 * Update the tree.
2950 */
2951 /* insert the new one. */
2952 AssertPtr(Req.pvR3);
2953 pChunk->pv = Req.pvR3;
2954 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
2955 AssertRelease(fRc);
2956 pVM->pgm.s.ChunkR3Map.c++;
2957
2958 fRc = RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
2959 AssertRelease(fRc);
2960
2961 /* remove the unmapped one. */
2962 if (Req.idChunkUnmap != NIL_GMM_CHUNKID)
2963 {
2964 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
2965 AssertRelease(pUnmappedChunk);
2966 pUnmappedChunk->pv = NULL;
2967 pUnmappedChunk->Core.Key = UINT32_MAX;
2968#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2969 MMR3HeapFree(pUnmappedChunk);
2970#else
2971 MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
2972#endif
2973 pVM->pgm.s.ChunkR3Map.c--;
2974 }
2975 }
2976 else
2977 {
2978 AssertRC(rc);
2979#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2980 MMR3HeapFree(pChunk);
2981#else
2982 MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
2983#endif
2984 pChunk = NULL;
2985 }
2986
2987 *ppChunk = pChunk;
2988 return rc;
2989}
2990
2991
2992/**
2993 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
2994 *
2995 * @returns see pgmR3PhysChunkMap.
2996 * @param pVM The VM handle.
2997 * @param idChunk The chunk to map.
2998 */
2999VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
3000{
3001 PPGMCHUNKR3MAP pChunk;
3002 int rc;
3003
3004 pgmLock(pVM);
3005 rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
3006 pgmUnlock(pVM);
3007 return rc;
3008}
3009
3010
3011/**
3012 * Invalidates the TLB for the ring-3 mapping cache.
3013 *
3014 * @param pVM The VM handle.
3015 */
3016VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
3017{
3018 pgmLock(pVM);
3019 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3020 {
3021 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
3022 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
3023 }
3024 pgmUnlock(pVM);
3025}
3026
3027
3028/**
3029 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
3030 *
3031 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
3032 * signal and clear the out of memory condition. When contracted, this API is
3033 * used to try clear the condition when the user wants to resume.
3034 *
3035 * @returns The following VBox status codes.
3036 * @retval VINF_SUCCESS on success. FFs cleared.
3037 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
3038 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
3039 *
3040 * @param pVM The VM handle.
3041 *
3042 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
3043 * in EM.cpp and shouldn't be propagated outside TRPM, HWACCM, EM and
3044 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
3045 * handler.
3046 */
3047VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
3048{
3049 pgmLock(pVM);
3050
3051 /*
3052 * Allocate more pages, noting down the index of the first new page.
3053 */
3054 uint32_t iClear = pVM->pgm.s.cHandyPages;
3055 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_INTERNAL_ERROR);
3056 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
3057 int rcAlloc = VINF_SUCCESS;
3058 int rcSeed = VINF_SUCCESS;
3059 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3060 while (rc == VERR_GMM_SEED_ME)
3061 {
3062 void *pvChunk;
3063 rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
3064 if (RT_SUCCESS(rc))
3065 {
3066 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
3067 if (RT_FAILURE(rc))
3068 SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
3069 }
3070 if (RT_SUCCESS(rc))
3071 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3072 }
3073
3074 if (RT_SUCCESS(rc))
3075 {
3076 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
3077 Assert(pVM->pgm.s.cHandyPages > 0);
3078 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3079 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
3080
3081 /*
3082 * Clear the pages.
3083 */
3084 while (iClear < pVM->pgm.s.cHandyPages)
3085 {
3086 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
3087 void *pv;
3088 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
3089 AssertLogRelMsgBreak(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", pPage->idPage, pPage->HCPhysGCPhys, rc));
3090 ASMMemZeroPage(pv);
3091 iClear++;
3092 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
3093 }
3094 }
3095 else
3096 {
3097 /*
3098 * We should never get here unless there is a genuine shortage of
3099 * memory (or some internal error). Flag the error so the VM can be
3100 * suspended ASAP and the user informed. If we're totally out of
3101 * handy pages we will return failure.
3102 */
3103 /* Report the failure. */
3104 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
3105 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
3106 rc, rcSeed, rcAlloc,
3107 pVM->pgm.s.cHandyPages,
3108 pVM->pgm.s.cAllPages,
3109 pVM->pgm.s.cPrivatePages,
3110 pVM->pgm.s.cSharedPages,
3111 pVM->pgm.s.cZeroPages));
3112 if ( rc != VERR_NO_MEMORY
3113 && rc != VERR_LOCK_FAILED)
3114 {
3115 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3116 {
3117 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
3118 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
3119 pVM->pgm.s.aHandyPages[i].idSharedPage));
3120 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
3121 if (idPage != NIL_GMM_PAGEID)
3122 {
3123 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
3124 pRam;
3125 pRam = pRam->pNextR3)
3126 {
3127 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
3128 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3129 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
3130 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
3131 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
3132 }
3133 }
3134 }
3135 }
3136
3137 /* Set the FFs and adjust rc. */
3138 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3139 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
3140 if ( rc == VERR_NO_MEMORY
3141 || rc == VERR_LOCK_FAILED)
3142 rc = VINF_EM_NO_MEMORY;
3143 }
3144
3145 pgmUnlock(pVM);
3146 return rc;
3147}
3148
3149
3150/**
3151 * Frees the specified RAM page and replaces it with the ZERO page.
3152 *
3153 * This is used by ballooning, remapping MMIO2 and RAM reset.
3154 *
3155 * @param pVM Pointer to the shared VM structure.
3156 * @param pReq Pointer to the request.
3157 * @param pPage Pointer to the page structure.
3158 * @param GCPhys The guest physical address of the page, if applicable.
3159 *
3160 * @remarks The caller must own the PGM lock.
3161 */
3162static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys)
3163{
3164 /*
3165 * Assert sanity.
3166 */
3167 Assert(PGMIsLockOwner(pVM));
3168 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
3169 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
3170 {
3171 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3172 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
3173 }
3174
3175 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ZERO)
3176 return VINF_SUCCESS;
3177
3178 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
3179 Log3(("pgmPhysFreePage: idPage=%#x HCPhys=%RGp pPage=%R[pgmpage]\n", idPage, pPage));
3180 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
3181 || idPage > GMM_PAGEID_LAST
3182 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
3183 {
3184 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3185 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
3186 }
3187
3188 /* update page count stats. */
3189 if (PGM_PAGE_IS_SHARED(pPage))
3190 pVM->pgm.s.cSharedPages--;
3191 else
3192 pVM->pgm.s.cPrivatePages--;
3193 pVM->pgm.s.cZeroPages++;
3194
3195 /*
3196 * pPage = ZERO page.
3197 */
3198 PGM_PAGE_SET_HCPHYS(pPage, pVM->pgm.s.HCPhysZeroPg);
3199 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
3200 PGM_PAGE_SET_PAGEID(pPage, NIL_GMM_PAGEID);
3201
3202 /*
3203 * Make sure it's not in the handy page array.
3204 */
3205 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3206 {
3207 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
3208 {
3209 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
3210 break;
3211 }
3212 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
3213 {
3214 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
3215 break;
3216 }
3217 }
3218
3219 /*
3220 * Push it onto the page array.
3221 */
3222 uint32_t iPage = *pcPendingPages;
3223 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
3224 *pcPendingPages += 1;
3225
3226 pReq->aPages[iPage].idPage = idPage;
3227
3228 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
3229 return VINF_SUCCESS;
3230
3231 /*
3232 * Flush the pages.
3233 */
3234 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
3235 if (RT_SUCCESS(rc))
3236 {
3237 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
3238 *pcPendingPages = 0;
3239 }
3240 return rc;
3241}
3242
3243
3244/**
3245 * Converts a GC physical address to a HC ring-3 pointer, with some
3246 * additional checks.
3247 *
3248 * @returns VBox status code.
3249 * @retval VINF_SUCCESS on success.
3250 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
3251 * access handler of some kind.
3252 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
3253 * accesses or is odd in any way.
3254 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
3255 *
3256 * @param pVM The VM handle.
3257 * @param GCPhys The GC physical address to convert.
3258 * @param fWritable Whether write access is required.
3259 * @param ppv Where to store the pointer corresponding to GCPhys on
3260 * success.
3261 */
3262VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
3263{
3264 pgmLock(pVM);
3265
3266 PPGMRAMRANGE pRam;
3267 PPGMPAGE pPage;
3268 int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
3269 if (RT_SUCCESS(rc))
3270 {
3271 if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
3272 rc = VINF_SUCCESS;
3273 else
3274 {
3275 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
3276 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3277 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
3278 {
3279 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
3280 * in -norawr0 mode. */
3281 if (fWritable)
3282 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3283 }
3284 else
3285 {
3286 /* Temporarily disabled physical handler(s), since the recompiler
3287 doesn't get notified when it's reset we'll have to pretend it's
3288 operating normally. */
3289 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
3290 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3291 else
3292 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3293 }
3294 }
3295 if (RT_SUCCESS(rc))
3296 {
3297 int rc2;
3298
3299 /* Make sure what we return is writable. */
3300 if (fWritable && rc != VINF_PGM_PHYS_TLB_CATCH_WRITE)
3301 switch (PGM_PAGE_GET_STATE(pPage))
3302 {
3303 case PGM_PAGE_STATE_ALLOCATED:
3304 break;
3305 case PGM_PAGE_STATE_ZERO:
3306 case PGM_PAGE_STATE_SHARED:
3307 case PGM_PAGE_STATE_WRITE_MONITORED:
3308 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
3309 AssertLogRelRCReturn(rc2, rc2);
3310 break;
3311 }
3312
3313 /* Get a ring-3 mapping of the address. */
3314 PPGMPAGER3MAPTLBE pTlbe;
3315 rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
3316 AssertLogRelRCReturn(rc2, rc2);
3317 *ppv = (void *)((uintptr_t)pTlbe->pv | (GCPhys & PAGE_OFFSET_MASK));
3318 /** @todo mapping/locking hell; this isn't horribly efficient since
3319 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
3320
3321 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
3322 }
3323 else
3324 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
3325
3326 /* else: handler catching all access, no pointer returned. */
3327 }
3328 else
3329 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
3330
3331 pgmUnlock(pVM);
3332 return rc;
3333}
3334
3335
3336
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette