VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/EMAll.cpp@ 17693

Last change on this file since 17693 was 17531, checked in by vboxsync, 16 years ago

emInterpretStosWD: don't use PGMPhysWriteGCPtr but emRamWrite (new phys code only). I'd missed this case and it hit when booting windows with additions.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 107.7 KB
Line 
1/* $Id: EMAll.cpp 17531 2009-03-08 02:58:03Z vboxsync $ */
2/** @file
3 * EM - Execution Monitor(/Manager) - All contexts
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/*******************************************************************************
23* Header Files *
24*******************************************************************************/
25#define LOG_GROUP LOG_GROUP_EM
26#include <VBox/em.h>
27#include <VBox/mm.h>
28#include <VBox/selm.h>
29#include <VBox/patm.h>
30#include <VBox/csam.h>
31#include <VBox/pgm.h>
32#include <VBox/iom.h>
33#include <VBox/stam.h>
34#include "EMInternal.h"
35#include <VBox/vm.h>
36#include <VBox/vmm.h>
37#include <VBox/hwaccm.h>
38#include <VBox/tm.h>
39#include <VBox/pdmapi.h>
40
41#include <VBox/param.h>
42#include <VBox/err.h>
43#include <VBox/dis.h>
44#include <VBox/disopcode.h>
45#include <VBox/log.h>
46#include <iprt/assert.h>
47#include <iprt/asm.h>
48#include <iprt/string.h>
49
50
51/*******************************************************************************
52* Defined Constants And Macros *
53*******************************************************************************/
54/** @def EM_ASSERT_FAULT_RETURN
55 * Safety check.
56 *
57 * Could in theory misfire on a cross page boundary access...
58 *
59 * Currently disabled because the CSAM (+ PATM) patch monitoring occasionally
60 * turns up an alias page instead of the original faulting one and annoying the
61 * heck out of anyone running a debug build. See @bugref{2609} and @bugref{1931}.
62 */
63#if 0
64# define EM_ASSERT_FAULT_RETURN(expr, rc) AssertReturn(expr, rc)
65#else
66# define EM_ASSERT_FAULT_RETURN(expr, rc) do { } while (0)
67#endif
68
69
70/*******************************************************************************
71* Internal Functions *
72*******************************************************************************/
73DECLINLINE(int) emInterpretInstructionCPU(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize);
74
75
76
77/**
78 * Get the current execution manager status.
79 *
80 * @returns Current status.
81 */
82VMMDECL(EMSTATE) EMGetState(PVM pVM)
83{
84 return pVM->em.s.enmState;
85}
86
87#ifndef IN_RC
88
89/**
90 * Read callback for disassembly function; supports reading bytes that cross a page boundary
91 *
92 * @returns VBox status code.
93 * @param pSrc GC source pointer
94 * @param pDest HC destination pointer
95 * @param cb Number of bytes to read
96 * @param dwUserdata Callback specific user data (pCpu)
97 *
98 */
99DECLCALLBACK(int) EMReadBytes(RTUINTPTR pSrc, uint8_t *pDest, unsigned cb, void *pvUserdata)
100{
101 DISCPUSTATE *pCpu = (DISCPUSTATE *)pvUserdata;
102 PVM pVM = (PVM)pCpu->apvUserData[0];
103# ifdef IN_RING0
104 int rc = PGMPhysSimpleReadGCPtr(pVM, pDest, pSrc, cb);
105 AssertMsgRC(rc, ("PGMPhysSimpleReadGCPtr failed for pSrc=%RGv cb=%x\n", pSrc, cb));
106# else /* IN_RING3 */
107 if (!PATMIsPatchGCAddr(pVM, pSrc))
108 {
109 int rc = PGMPhysSimpleReadGCPtr(pVM, pDest, pSrc, cb);
110 AssertRC(rc);
111 }
112 else
113 {
114 for (uint32_t i = 0; i < cb; i++)
115 {
116 uint8_t opcode;
117 if (RT_SUCCESS(PATMR3QueryOpcode(pVM, (RTGCPTR)pSrc + i, &opcode)))
118 {
119 *(pDest+i) = opcode;
120 }
121 }
122 }
123# endif /* IN_RING3 */
124 return VINF_SUCCESS;
125}
126
127DECLINLINE(int) emDisCoreOne(PVM pVM, DISCPUSTATE *pCpu, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
128{
129 return DISCoreOneEx(InstrGC, pCpu->mode, EMReadBytes, pVM, pCpu, pOpsize);
130}
131
132#else /* IN_RC */
133
134DECLINLINE(int) emDisCoreOne(PVM pVM, DISCPUSTATE *pCpu, RTGCUINTPTR InstrGC, uint32_t *pOpsize)
135{
136 return DISCoreOne(pCpu, InstrGC, pOpsize);
137}
138
139#endif /* IN_RC */
140
141
142/**
143 * Disassembles one instruction.
144 *
145 * @param pVM The VM handle.
146 * @param pCtxCore The context core (used for both the mode and instruction).
147 * @param pCpu Where to return the parsed instruction info.
148 * @param pcbInstr Where to return the instruction size. (optional)
149 */
150VMMDECL(int) EMInterpretDisasOne(PVM pVM, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pCpu, unsigned *pcbInstr)
151{
152 RTGCPTR GCPtrInstr;
153 int rc = SELMToFlatEx(pVM, DIS_SELREG_CS, pCtxCore, pCtxCore->rip, 0, &GCPtrInstr);
154 if (RT_FAILURE(rc))
155 {
156 Log(("EMInterpretDisasOne: Failed to convert %RTsel:%RGv (cpl=%d) - rc=%Rrc !!\n",
157 pCtxCore->cs, (RTGCPTR)pCtxCore->rip, pCtxCore->ss & X86_SEL_RPL, rc));
158 return rc;
159 }
160 return EMInterpretDisasOneEx(pVM, (RTGCUINTPTR)GCPtrInstr, pCtxCore, pCpu, pcbInstr);
161}
162
163
164/**
165 * Disassembles one instruction.
166 *
167 * This is used by internally by the interpreter and by trap/access handlers.
168 *
169 * @param pVM The VM handle.
170 * @param GCPtrInstr The flat address of the instruction.
171 * @param pCtxCore The context core (used to determine the cpu mode).
172 * @param pCpu Where to return the parsed instruction info.
173 * @param pcbInstr Where to return the instruction size. (optional)
174 */
175VMMDECL(int) EMInterpretDisasOneEx(PVM pVM, RTGCUINTPTR GCPtrInstr, PCCPUMCTXCORE pCtxCore, PDISCPUSTATE pCpu, unsigned *pcbInstr)
176{
177 int rc = DISCoreOneEx(GCPtrInstr, SELMGetCpuModeFromSelector(pVM, pCtxCore->eflags, pCtxCore->cs, (PCPUMSELREGHID)&pCtxCore->csHid),
178#ifdef IN_RC
179 NULL, NULL,
180#else
181 EMReadBytes, pVM,
182#endif
183 pCpu, pcbInstr);
184 if (RT_SUCCESS(rc))
185 return VINF_SUCCESS;
186 AssertMsgFailed(("DISCoreOne failed to GCPtrInstr=%RGv rc=%Rrc\n", GCPtrInstr, rc));
187 return VERR_INTERNAL_ERROR;
188}
189
190
191/**
192 * Interprets the current instruction.
193 *
194 * @returns VBox status code.
195 * @retval VINF_* Scheduling instructions.
196 * @retval VERR_EM_INTERPRETER Something we can't cope with.
197 * @retval VERR_* Fatal errors.
198 *
199 * @param pVM The VM handle.
200 * @param pRegFrame The register frame.
201 * Updates the EIP if an instruction was executed successfully.
202 * @param pvFault The fault address (CR2).
203 * @param pcbSize Size of the write (if applicable).
204 *
205 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
206 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
207 * to worry about e.g. invalid modrm combinations (!)
208 */
209VMMDECL(int) EMInterpretInstruction(PVM pVM, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
210{
211 RTGCPTR pbCode;
212
213 LogFlow(("EMInterpretInstruction %RGv fault %RGv\n", (RTGCPTR)pRegFrame->rip, pvFault));
214 int rc = SELMToFlatEx(pVM, DIS_SELREG_CS, pRegFrame, pRegFrame->rip, 0, &pbCode);
215 if (RT_SUCCESS(rc))
216 {
217 uint32_t cbOp;
218 DISCPUSTATE Cpu;
219 Cpu.mode = SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid);
220 rc = emDisCoreOne(pVM, &Cpu, (RTGCUINTPTR)pbCode, &cbOp);
221 if (RT_SUCCESS(rc))
222 {
223 Assert(cbOp == Cpu.opsize);
224 rc = EMInterpretInstructionCPU(pVM, &Cpu, pRegFrame, pvFault, pcbSize);
225 if (RT_SUCCESS(rc))
226 {
227 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
228 }
229 return rc;
230 }
231 }
232 return VERR_EM_INTERPRETER;
233}
234
235
236/**
237 * Interprets the current instruction using the supplied DISCPUSTATE structure.
238 *
239 * EIP is *NOT* updated!
240 *
241 * @returns VBox status code.
242 * @retval VINF_* Scheduling instructions. When these are returned, it
243 * starts to get a bit tricky to know whether code was
244 * executed or not... We'll address this when it becomes a problem.
245 * @retval VERR_EM_INTERPRETER Something we can't cope with.
246 * @retval VERR_* Fatal errors.
247 *
248 * @param pVM The VM handle.
249 * @param pCpu The disassembler cpu state for the instruction to be interpreted.
250 * @param pRegFrame The register frame. EIP is *NOT* changed!
251 * @param pvFault The fault address (CR2).
252 * @param pcbSize Size of the write (if applicable).
253 *
254 * @remark Invalid opcode exceptions have a higher priority than GP (see Intel
255 * Architecture System Developers Manual, Vol 3, 5.5) so we don't need
256 * to worry about e.g. invalid modrm combinations (!)
257 *
258 * @todo At this time we do NOT check if the instruction overwrites vital information.
259 * Make sure this can't happen!! (will add some assertions/checks later)
260 */
261VMMDECL(int) EMInterpretInstructionCPU(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
262{
263 STAM_PROFILE_START(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
264 int rc = emInterpretInstructionCPU(pVM, pCpu, pRegFrame, pvFault, pcbSize);
265 STAM_PROFILE_STOP(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Emulate), a);
266 if (RT_SUCCESS(rc))
267 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretSucceeded));
268 else
269 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InterpretFailed));
270 return rc;
271}
272
273
274/**
275 * Interpret a port I/O instruction.
276 *
277 * @returns VBox status code suitable for scheduling.
278 * @param pVM The VM handle.
279 * @param pCtxCore The context core. This will be updated on successful return.
280 * @param pCpu The instruction to interpret.
281 * @param cbOp The size of the instruction.
282 * @remark This may raise exceptions.
283 */
284VMMDECL(int) EMInterpretPortIO(PVM pVM, PCPUMCTXCORE pCtxCore, PDISCPUSTATE pCpu, uint32_t cbOp)
285{
286 /*
287 * Hand it on to IOM.
288 */
289#ifdef IN_RC
290 int rc = IOMGCIOPortHandler(pVM, pCtxCore, pCpu);
291 if (IOM_SUCCESS(rc))
292 pCtxCore->rip += cbOp;
293 return rc;
294#else
295 AssertReleaseMsgFailed(("not implemented\n"));
296 return VERR_NOT_IMPLEMENTED;
297#endif
298}
299
300
301DECLINLINE(int) emRamRead(PVM pVM, PCPUMCTXCORE pCtxCore, void *pvDst, RTGCPTR GCPtrSrc, uint32_t cb)
302{
303#ifdef IN_RC
304 int rc = MMGCRamRead(pVM, pvDst, (void *)GCPtrSrc, cb);
305 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
306 return rc;
307 /*
308 * The page pool cache may end up here in some cases because it
309 * flushed one of the shadow mappings used by the trapping
310 * instruction and it either flushed the TLB or the CPU reused it.
311 */
312#endif
313#ifdef VBOX_WITH_NEW_PHYS_CODE
314 return PGMPhysInterpretedReadNoHandlers(pVM, pCtxCore, pvDst, GCPtrSrc, cb, /*fMayTrap*/ false);
315#else
316 NOREF(pCtxCore);
317# ifdef IN_RC
318 RTGCPHYS GCPhys;
319 rc = PGMPhysGCPtr2GCPhys(pVM, GCPtrSrc, &GCPhys);
320 AssertRCReturn(rc, rc);
321 PGMPhysRead(pVM, GCPhys, pvDst, cb);
322 return VINF_SUCCESS;
323# else
324 return PGMPhysReadGCPtr(pVM, pvDst, GCPtrSrc, cb);
325# endif
326#endif
327}
328
329
330DECLINLINE(int) emRamWrite(PVM pVM, PCPUMCTXCORE pCtxCore, RTGCPTR GCPtrDst, const void *pvSrc, uint32_t cb)
331{
332#ifdef IN_RC
333 int rc = MMGCRamWrite(pVM, (void *)(uintptr_t)GCPtrDst, (void *)pvSrc, cb);
334 if (RT_LIKELY(rc != VERR_ACCESS_DENIED))
335 return rc;
336 /*
337 * The page pool cache may end up here in some cases because it
338 * flushed one of the shadow mappings used by the trapping
339 * instruction and it either flushed the TLB or the CPU reused it.
340 * We want to play safe here, verifying that we've got write
341 * access doesn't cost us much (see PGMPhysGCPtr2GCPhys()).
342 */
343#endif
344#ifdef VBOX_WITH_NEW_PHYS_CODE
345 return PGMPhysInterpretedWriteNoHandlers(pVM, pCtxCore, GCPtrDst, pvSrc, cb, /*fMayTrap*/ false);
346#else
347 NOREF(pCtxCore);
348# ifdef IN_RC
349 uint64_t fFlags;
350 RTGCPHYS GCPhys;
351 rc = PGMGstGetPage(pVM, GCPtrDst, &fFlags, &GCPhys);
352 if (RT_FAILURE(rc))
353 return rc;
354 if ( !(fFlags & X86_PTE_RW)
355 && (CPUMGetGuestCR0(pVM) & X86_CR0_WP))
356 return VERR_ACCESS_DENIED;
357
358 PGMPhysWrite(pVM, GCPhys + ((RTGCUINTPTR)GCPtrDst & PAGE_OFFSET_MASK), pvSrc, cb);
359 return VINF_SUCCESS;
360# else
361 return PGMPhysWriteGCPtr(pVM, GCPtrDst, pvSrc, cb);
362# endif
363#endif
364}
365
366
367/** Convert sel:addr to a flat GC address. */
368DECLINLINE(RTGCPTR) emConvertToFlatAddr(PVM pVM, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pCpu, POP_PARAMETER pParam, RTGCPTR pvAddr)
369{
370 DIS_SELREG enmPrefixSeg = DISDetectSegReg(pCpu, pParam);
371 return SELMToFlat(pVM, enmPrefixSeg, pRegFrame, pvAddr);
372}
373
374
375#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
376/**
377 * Get the mnemonic for the disassembled instruction.
378 *
379 * GC/R0 doesn't include the strings in the DIS tables because
380 * of limited space.
381 */
382static const char *emGetMnemonic(PDISCPUSTATE pCpu)
383{
384 switch (pCpu->pCurInstr->opcode)
385 {
386 case OP_XCHG: return "Xchg";
387 case OP_DEC: return "Dec";
388 case OP_INC: return "Inc";
389 case OP_POP: return "Pop";
390 case OP_OR: return "Or";
391 case OP_AND: return "And";
392 case OP_MOV: return "Mov";
393 case OP_INVLPG: return "InvlPg";
394 case OP_CPUID: return "CpuId";
395 case OP_MOV_CR: return "MovCRx";
396 case OP_MOV_DR: return "MovDRx";
397 case OP_LLDT: return "LLdt";
398 case OP_LGDT: return "LGdt";
399 case OP_LIDT: return "LGdt";
400 case OP_CLTS: return "Clts";
401 case OP_MONITOR: return "Monitor";
402 case OP_MWAIT: return "MWait";
403 case OP_RDMSR: return "Rdmsr";
404 case OP_WRMSR: return "Wrmsr";
405 case OP_ADD: return "Add";
406 case OP_ADC: return "Adc";
407 case OP_SUB: return "Sub";
408 case OP_SBB: return "Sbb";
409 case OP_RDTSC: return "Rdtsc";
410 case OP_STI: return "Sti";
411 case OP_XADD: return "XAdd";
412 case OP_HLT: return "Hlt";
413 case OP_IRET: return "Iret";
414 case OP_MOVNTPS: return "MovNTPS";
415 case OP_STOSWD: return "StosWD";
416 case OP_WBINVD: return "WbInvd";
417 case OP_XOR: return "Xor";
418 case OP_BTR: return "Btr";
419 case OP_BTS: return "Bts";
420 case OP_BTC: return "Btc";
421 case OP_LMSW: return "Lmsw";
422 case OP_SMSW: return "Smsw";
423 case OP_CMPXCHG: return pCpu->prefix & PREFIX_LOCK ? "Lock CmpXchg" : "CmpXchg";
424 case OP_CMPXCHG8B: return pCpu->prefix & PREFIX_LOCK ? "Lock CmpXchg8b" : "CmpXchg8b";
425
426 default:
427 Log(("Unknown opcode %d\n", pCpu->pCurInstr->opcode));
428 return "???";
429 }
430}
431#endif /* VBOX_STRICT || LOG_ENABLED */
432
433
434/**
435 * XCHG instruction emulation.
436 */
437static int emInterpretXchg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
438{
439 OP_PARAMVAL param1, param2;
440
441 /* Source to make DISQueryParamVal read the register value - ugly hack */
442 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
443 if(RT_FAILURE(rc))
444 return VERR_EM_INTERPRETER;
445
446 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
447 if(RT_FAILURE(rc))
448 return VERR_EM_INTERPRETER;
449
450#ifdef IN_RC
451 if (TRPMHasTrap(pVM))
452 {
453 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
454 {
455#endif
456 RTGCPTR pParam1 = 0, pParam2 = 0;
457 uint64_t valpar1, valpar2;
458
459 AssertReturn(pCpu->param1.size == pCpu->param2.size, VERR_EM_INTERPRETER);
460 switch(param1.type)
461 {
462 case PARMTYPE_IMMEDIATE: /* register type is translated to this one too */
463 valpar1 = param1.val.val64;
464 break;
465
466 case PARMTYPE_ADDRESS:
467 pParam1 = (RTGCPTR)param1.val.val64;
468 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
469 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
470 rc = emRamRead(pVM, pRegFrame, &valpar1, pParam1, param1.size);
471 if (RT_FAILURE(rc))
472 {
473 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
474 return VERR_EM_INTERPRETER;
475 }
476 break;
477
478 default:
479 AssertFailed();
480 return VERR_EM_INTERPRETER;
481 }
482
483 switch(param2.type)
484 {
485 case PARMTYPE_ADDRESS:
486 pParam2 = (RTGCPTR)param2.val.val64;
487 pParam2 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param2, pParam2);
488 EM_ASSERT_FAULT_RETURN(pParam2 == pvFault, VERR_EM_INTERPRETER);
489 rc = emRamRead(pVM, pRegFrame, &valpar2, pParam2, param2.size);
490 if (RT_FAILURE(rc))
491 {
492 AssertMsgFailed(("MMGCRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
493 }
494 break;
495
496 case PARMTYPE_IMMEDIATE:
497 valpar2 = param2.val.val64;
498 break;
499
500 default:
501 AssertFailed();
502 return VERR_EM_INTERPRETER;
503 }
504
505 /* Write value of parameter 2 to parameter 1 (reg or memory address) */
506 if (pParam1 == 0)
507 {
508 Assert(param1.type == PARMTYPE_IMMEDIATE); /* register actually */
509 switch(param1.size)
510 {
511 case 1: //special case for AH etc
512 rc = DISWriteReg8(pRegFrame, pCpu->param1.base.reg_gen, (uint8_t )valpar2); break;
513 case 2: rc = DISWriteReg16(pRegFrame, pCpu->param1.base.reg_gen, (uint16_t)valpar2); break;
514 case 4: rc = DISWriteReg32(pRegFrame, pCpu->param1.base.reg_gen, (uint32_t)valpar2); break;
515 case 8: rc = DISWriteReg64(pRegFrame, pCpu->param1.base.reg_gen, valpar2); break;
516 default: AssertFailedReturn(VERR_EM_INTERPRETER);
517 }
518 if (RT_FAILURE(rc))
519 return VERR_EM_INTERPRETER;
520 }
521 else
522 {
523 rc = emRamWrite(pVM, pRegFrame, pParam1, &valpar2, param1.size);
524 if (RT_FAILURE(rc))
525 {
526 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
527 return VERR_EM_INTERPRETER;
528 }
529 }
530
531 /* Write value of parameter 1 to parameter 2 (reg or memory address) */
532 if (pParam2 == 0)
533 {
534 Assert(param2.type == PARMTYPE_IMMEDIATE); /* register actually */
535 switch(param2.size)
536 {
537 case 1: //special case for AH etc
538 rc = DISWriteReg8(pRegFrame, pCpu->param2.base.reg_gen, (uint8_t )valpar1); break;
539 case 2: rc = DISWriteReg16(pRegFrame, pCpu->param2.base.reg_gen, (uint16_t)valpar1); break;
540 case 4: rc = DISWriteReg32(pRegFrame, pCpu->param2.base.reg_gen, (uint32_t)valpar1); break;
541 case 8: rc = DISWriteReg64(pRegFrame, pCpu->param2.base.reg_gen, valpar1); break;
542 default: AssertFailedReturn(VERR_EM_INTERPRETER);
543 }
544 if (RT_FAILURE(rc))
545 return VERR_EM_INTERPRETER;
546 }
547 else
548 {
549 rc = emRamWrite(pVM, pRegFrame, pParam2, &valpar1, param2.size);
550 if (RT_FAILURE(rc))
551 {
552 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
553 return VERR_EM_INTERPRETER;
554 }
555 }
556
557 *pcbSize = param2.size;
558 return VINF_SUCCESS;
559#ifdef IN_RC
560 }
561 }
562#endif
563 return VERR_EM_INTERPRETER;
564}
565
566
567/**
568 * INC and DEC emulation.
569 */
570static int emInterpretIncDec(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
571 PFNEMULATEPARAM2 pfnEmulate)
572{
573 OP_PARAMVAL param1;
574
575 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
576 if(RT_FAILURE(rc))
577 return VERR_EM_INTERPRETER;
578
579#ifdef IN_RC
580 if (TRPMHasTrap(pVM))
581 {
582 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
583 {
584#endif
585 RTGCPTR pParam1 = 0;
586 uint64_t valpar1;
587
588 if (param1.type == PARMTYPE_ADDRESS)
589 {
590 pParam1 = (RTGCPTR)param1.val.val64;
591 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
592#ifdef IN_RC
593 /* Safety check (in theory it could cross a page boundary and fault there though) */
594 AssertReturn(pParam1 == pvFault, VERR_EM_INTERPRETER);
595#endif
596 rc = emRamRead(pVM, pRegFrame, &valpar1, pParam1, param1.size);
597 if (RT_FAILURE(rc))
598 {
599 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
600 return VERR_EM_INTERPRETER;
601 }
602 }
603 else
604 {
605 AssertFailed();
606 return VERR_EM_INTERPRETER;
607 }
608
609 uint32_t eflags;
610
611 eflags = pfnEmulate(&valpar1, param1.size);
612
613 /* Write result back */
614 rc = emRamWrite(pVM, pRegFrame, pParam1, &valpar1, param1.size);
615 if (RT_FAILURE(rc))
616 {
617 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
618 return VERR_EM_INTERPRETER;
619 }
620
621 /* Update guest's eflags and finish. */
622 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
623 | (eflags & (X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
624
625 /* All done! */
626 *pcbSize = param1.size;
627 return VINF_SUCCESS;
628#ifdef IN_RC
629 }
630 }
631#endif
632 return VERR_EM_INTERPRETER;
633}
634
635
636/**
637 * POP Emulation.
638 */
639static int emInterpretPop(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
640{
641 Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
642 OP_PARAMVAL param1;
643 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
644 if(RT_FAILURE(rc))
645 return VERR_EM_INTERPRETER;
646
647#ifdef IN_RC
648 if (TRPMHasTrap(pVM))
649 {
650 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
651 {
652#endif
653 RTGCPTR pParam1 = 0;
654 uint32_t valpar1;
655 RTGCPTR pStackVal;
656
657 /* Read stack value first */
658 if (SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->ss, &pRegFrame->ssHid) == CPUMODE_16BIT)
659 return VERR_EM_INTERPRETER; /* No legacy 16 bits stuff here, please. */
660
661 /* Convert address; don't bother checking limits etc, as we only read here */
662 pStackVal = SELMToFlat(pVM, DIS_SELREG_SS, pRegFrame, (RTGCPTR)pRegFrame->esp);
663 if (pStackVal == 0)
664 return VERR_EM_INTERPRETER;
665
666 rc = emRamRead(pVM, pRegFrame, &valpar1, pStackVal, param1.size);
667 if (RT_FAILURE(rc))
668 {
669 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
670 return VERR_EM_INTERPRETER;
671 }
672
673 if (param1.type == PARMTYPE_ADDRESS)
674 {
675 pParam1 = (RTGCPTR)param1.val.val64;
676
677 /* pop [esp+xx] uses esp after the actual pop! */
678 AssertCompile(USE_REG_ESP == USE_REG_SP);
679 if ( (pCpu->param1.flags & USE_BASE)
680 && (pCpu->param1.flags & (USE_REG_GEN16|USE_REG_GEN32))
681 && pCpu->param1.base.reg_gen == USE_REG_ESP
682 )
683 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + param1.size);
684
685 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
686 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault || (RTGCPTR)pRegFrame->esp == pvFault, VERR_EM_INTERPRETER);
687 rc = emRamWrite(pVM, pRegFrame, pParam1, &valpar1, param1.size);
688 if (RT_FAILURE(rc))
689 {
690 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
691 return VERR_EM_INTERPRETER;
692 }
693
694 /* Update ESP as the last step */
695 pRegFrame->esp += param1.size;
696 }
697 else
698 {
699#ifndef DEBUG_bird // annoying assertion.
700 AssertFailed();
701#endif
702 return VERR_EM_INTERPRETER;
703 }
704
705 /* All done! */
706 *pcbSize = param1.size;
707 return VINF_SUCCESS;
708#ifdef IN_RC
709 }
710 }
711#endif
712 return VERR_EM_INTERPRETER;
713}
714
715
716/**
717 * XOR/OR/AND Emulation.
718 */
719static int emInterpretOrXorAnd(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
720 PFNEMULATEPARAM3 pfnEmulate)
721{
722 OP_PARAMVAL param1, param2;
723
724 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
725 if(RT_FAILURE(rc))
726 return VERR_EM_INTERPRETER;
727
728 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
729 if(RT_FAILURE(rc))
730 return VERR_EM_INTERPRETER;
731
732#ifdef IN_RC
733 if (TRPMHasTrap(pVM))
734 {
735 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
736 {
737#endif
738 RTGCPTR pParam1;
739 uint64_t valpar1, valpar2;
740
741 if (pCpu->param1.size != pCpu->param2.size)
742 {
743 if (pCpu->param1.size < pCpu->param2.size)
744 {
745 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pCpu), (RTGCPTR)pRegFrame->rip, pCpu->param1.size, pCpu->param2.size)); /* should never happen! */
746 return VERR_EM_INTERPRETER;
747 }
748 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
749 pCpu->param2.size = pCpu->param1.size;
750 param2.size = param1.size;
751 }
752
753 /* The destination is always a virtual address */
754 if (param1.type == PARMTYPE_ADDRESS)
755 {
756 pParam1 = (RTGCPTR)param1.val.val64;
757 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
758 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
759 rc = emRamRead(pVM, pRegFrame, &valpar1, pParam1, param1.size);
760 if (RT_FAILURE(rc))
761 {
762 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
763 return VERR_EM_INTERPRETER;
764 }
765 }
766 else
767 {
768 AssertFailed();
769 return VERR_EM_INTERPRETER;
770 }
771
772 /* Register or immediate data */
773 switch(param2.type)
774 {
775 case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
776 valpar2 = param2.val.val64;
777 break;
778
779 default:
780 AssertFailed();
781 return VERR_EM_INTERPRETER;
782 }
783
784 LogFlow(("emInterpretOrXorAnd %s %RGv %RX64 - %RX64 size %d (%d)\n", emGetMnemonic(pCpu), pParam1, valpar1, valpar2, param2.size, param1.size));
785
786 /* Data read, emulate instruction. */
787 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
788
789 LogFlow(("emInterpretOrXorAnd %s result %RX64\n", emGetMnemonic(pCpu), valpar1));
790
791 /* Update guest's eflags and finish. */
792 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
793 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
794
795 /* And write it back */
796 rc = emRamWrite(pVM, pRegFrame, pParam1, &valpar1, param1.size);
797 if (RT_SUCCESS(rc))
798 {
799 /* All done! */
800 *pcbSize = param2.size;
801 return VINF_SUCCESS;
802 }
803#ifdef IN_RC
804 }
805 }
806#endif
807 return VERR_EM_INTERPRETER;
808}
809
810
811/**
812 * LOCK XOR/OR/AND Emulation.
813 */
814static int emInterpretLockOrXorAnd(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
815 uint32_t *pcbSize, PFNEMULATELOCKPARAM3 pfnEmulate)
816{
817 void *pvParam1;
818 OP_PARAMVAL param1, param2;
819
820#if HC_ARCH_BITS == 32
821 Assert(pCpu->param1.size <= 4);
822#endif
823
824 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
825 if(RT_FAILURE(rc))
826 return VERR_EM_INTERPRETER;
827
828 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
829 if(RT_FAILURE(rc))
830 return VERR_EM_INTERPRETER;
831
832 if (pCpu->param1.size != pCpu->param2.size)
833 {
834 AssertMsgReturn(pCpu->param1.size >= pCpu->param2.size, /* should never happen! */
835 ("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pCpu), (RTGCPTR)pRegFrame->rip, pCpu->param1.size, pCpu->param2.size),
836 VERR_EM_INTERPRETER);
837
838 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
839 pCpu->param2.size = pCpu->param1.size;
840 param2.size = param1.size;
841 }
842
843#ifdef IN_RC
844 /* Safety check (in theory it could cross a page boundary and fault there though) */
845 Assert( TRPMHasTrap(pVM)
846 && (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW));
847 EM_ASSERT_FAULT_RETURN(GCPtrPar1 == pvFault, VERR_EM_INTERPRETER);
848#endif
849
850 /* Register and immediate data == PARMTYPE_IMMEDIATE */
851 AssertReturn(param2.type == PARMTYPE_IMMEDIATE, VERR_EM_INTERPRETER);
852 RTGCUINTREG ValPar2 = param2.val.val64;
853
854 /* The destination is always a virtual address */
855 AssertReturn(param1.type == PARMTYPE_ADDRESS, VERR_EM_INTERPRETER);
856
857 RTGCPTR GCPtrPar1 = param1.val.val64;
858 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, GCPtrPar1);
859#ifdef IN_RC
860 pvParam1 = (void *)GCPtrPar1;
861#else
862 PGMPAGEMAPLOCK Lock;
863 rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrPar1, &pvParam1, &Lock);
864 AssertRCReturn(rc, VERR_EM_INTERPRETER);
865#endif
866
867 /* Try emulate it with a one-shot #PF handler in place. (RC) */
868 Log2(("%s %RGv imm%d=%RX64\n", emGetMnemonic(pCpu), GCPtrPar1, pCpu->param2.size*8, ValPar2));
869
870 RTGCUINTREG32 eflags = 0;
871#ifdef IN_RC
872 MMGCRamRegisterTrapHandler(pVM);
873#endif
874 rc = pfnEmulate(pvParam1, ValPar2, pCpu->param2.size, &eflags);
875#ifdef IN_RC
876 MMGCRamDeregisterTrapHandler(pVM);
877#else
878 PGMPhysReleasePageMappingLock(pVM, &Lock);
879#endif
880 if (RT_FAILURE(rc))
881 {
882 Log(("%s %RGv imm%d=%RX64-> emulation failed due to page fault!\n", emGetMnemonic(pCpu), GCPtrPar1, pCpu->param2.size*8, ValPar2));
883 return VERR_EM_INTERPRETER;
884 }
885
886 /* Update guest's eflags and finish. */
887 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
888 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
889
890 *pcbSize = param2.size;
891 return VINF_SUCCESS;
892}
893
894
895/**
896 * ADD, ADC & SUB Emulation.
897 */
898static int emInterpretAddSub(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
899 PFNEMULATEPARAM3 pfnEmulate)
900{
901 OP_PARAMVAL param1, param2;
902 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
903 if(RT_FAILURE(rc))
904 return VERR_EM_INTERPRETER;
905
906 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
907 if(RT_FAILURE(rc))
908 return VERR_EM_INTERPRETER;
909
910#ifdef IN_RC
911 if (TRPMHasTrap(pVM))
912 {
913 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
914 {
915#endif
916 RTGCPTR pParam1;
917 uint64_t valpar1, valpar2;
918
919 if (pCpu->param1.size != pCpu->param2.size)
920 {
921 if (pCpu->param1.size < pCpu->param2.size)
922 {
923 AssertMsgFailed(("%s at %RGv parameter mismatch %d vs %d!!\n", emGetMnemonic(pCpu), (RTGCPTR)pRegFrame->rip, pCpu->param1.size, pCpu->param2.size)); /* should never happen! */
924 return VERR_EM_INTERPRETER;
925 }
926 /* Or %Ev, Ib -> just a hack to save some space; the data width of the 1st parameter determines the real width */
927 pCpu->param2.size = pCpu->param1.size;
928 param2.size = param1.size;
929 }
930
931 /* The destination is always a virtual address */
932 if (param1.type == PARMTYPE_ADDRESS)
933 {
934 pParam1 = (RTGCPTR)param1.val.val64;
935 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
936 EM_ASSERT_FAULT_RETURN(pParam1 == pvFault, VERR_EM_INTERPRETER);
937 rc = emRamRead(pVM, pRegFrame, &valpar1, pParam1, param1.size);
938 if (RT_FAILURE(rc))
939 {
940 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
941 return VERR_EM_INTERPRETER;
942 }
943 }
944 else
945 {
946#ifndef DEBUG_bird
947 AssertFailed();
948#endif
949 return VERR_EM_INTERPRETER;
950 }
951
952 /* Register or immediate data */
953 switch(param2.type)
954 {
955 case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
956 valpar2 = param2.val.val64;
957 break;
958
959 default:
960 AssertFailed();
961 return VERR_EM_INTERPRETER;
962 }
963
964 /* Data read, emulate instruction. */
965 uint32_t eflags = pfnEmulate(&valpar1, valpar2, param2.size);
966
967 /* Update guest's eflags and finish. */
968 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
969 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
970
971 /* And write it back */
972 rc = emRamWrite(pVM, pRegFrame, pParam1, &valpar1, param1.size);
973 if (RT_SUCCESS(rc))
974 {
975 /* All done! */
976 *pcbSize = param2.size;
977 return VINF_SUCCESS;
978 }
979#ifdef IN_RC
980 }
981 }
982#endif
983 return VERR_EM_INTERPRETER;
984}
985
986
987/**
988 * ADC Emulation.
989 */
990static int emInterpretAdc(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
991{
992 if (pRegFrame->eflags.Bits.u1CF)
993 return emInterpretAddSub(pVM, pCpu, pRegFrame, pvFault, pcbSize, EMEmulateAdcWithCarrySet);
994 else
995 return emInterpretAddSub(pVM, pCpu, pRegFrame, pvFault, pcbSize, EMEmulateAdd);
996}
997
998
999/**
1000 * BTR/C/S Emulation.
1001 */
1002static int emInterpretBitTest(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize,
1003 PFNEMULATEPARAM2UINT32 pfnEmulate)
1004{
1005 OP_PARAMVAL param1, param2;
1006 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
1007 if(RT_FAILURE(rc))
1008 return VERR_EM_INTERPRETER;
1009
1010 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
1011 if(RT_FAILURE(rc))
1012 return VERR_EM_INTERPRETER;
1013
1014#ifdef IN_RC
1015 if (TRPMHasTrap(pVM))
1016 {
1017 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
1018 {
1019#endif
1020 RTGCPTR pParam1;
1021 uint64_t valpar1 = 0, valpar2;
1022 uint32_t eflags;
1023
1024 /* The destination is always a virtual address */
1025 if (param1.type != PARMTYPE_ADDRESS)
1026 return VERR_EM_INTERPRETER;
1027
1028 pParam1 = (RTGCPTR)param1.val.val64;
1029 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
1030
1031 /* Register or immediate data */
1032 switch(param2.type)
1033 {
1034 case PARMTYPE_IMMEDIATE: /* both immediate data and register (ugly) */
1035 valpar2 = param2.val.val64;
1036 break;
1037
1038 default:
1039 AssertFailed();
1040 return VERR_EM_INTERPRETER;
1041 }
1042
1043 Log2(("emInterpret%s: pvFault=%RGv pParam1=%RGv val2=%x\n", emGetMnemonic(pCpu), pvFault, pParam1, valpar2));
1044 pParam1 = (RTGCPTR)((RTGCUINTPTR)pParam1 + valpar2/8);
1045 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)pParam1 & ~3) == pvFault, VERR_EM_INTERPRETER);
1046 rc = emRamRead(pVM, pRegFrame, &valpar1, pParam1, 1);
1047 if (RT_FAILURE(rc))
1048 {
1049 AssertMsgFailed(("emRamRead %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
1050 return VERR_EM_INTERPRETER;
1051 }
1052
1053 Log2(("emInterpretBtx: val=%x\n", valpar1));
1054 /* Data read, emulate bit test instruction. */
1055 eflags = pfnEmulate(&valpar1, valpar2 & 0x7);
1056
1057 Log2(("emInterpretBtx: val=%x CF=%d\n", valpar1, !!(eflags & X86_EFL_CF)));
1058
1059 /* Update guest's eflags and finish. */
1060 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1061 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1062
1063 /* And write it back */
1064 rc = emRamWrite(pVM, pRegFrame, pParam1, &valpar1, 1);
1065 if (RT_SUCCESS(rc))
1066 {
1067 /* All done! */
1068 *pcbSize = 1;
1069 return VINF_SUCCESS;
1070 }
1071#ifdef IN_RC
1072 }
1073 }
1074#endif
1075 return VERR_EM_INTERPRETER;
1076}
1077
1078
1079/**
1080 * LOCK BTR/C/S Emulation.
1081 */
1082static int emInterpretLockBitTest(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
1083 uint32_t *pcbSize, PFNEMULATELOCKPARAM2 pfnEmulate)
1084{
1085 void *pvParam1;
1086
1087 OP_PARAMVAL param1, param2;
1088 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
1089 if(RT_FAILURE(rc))
1090 return VERR_EM_INTERPRETER;
1091
1092 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
1093 if(RT_FAILURE(rc))
1094 return VERR_EM_INTERPRETER;
1095
1096 /* The destination is always a virtual address */
1097 if (param1.type != PARMTYPE_ADDRESS)
1098 return VERR_EM_INTERPRETER;
1099
1100 /* Register and immediate data == PARMTYPE_IMMEDIATE */
1101 AssertReturn(param2.type == PARMTYPE_IMMEDIATE, VERR_EM_INTERPRETER);
1102 uint64_t ValPar2 = param2.val.val64;
1103
1104 /* Adjust the parameters so what we're dealing with is a bit within the byte pointed to. */
1105 RTGCPTR GCPtrPar1 = param1.val.val64;
1106 GCPtrPar1 = (GCPtrPar1 + ValPar2 / 8);
1107 ValPar2 &= 7;
1108
1109 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, GCPtrPar1);
1110#ifdef IN_RC
1111 Assert(TRPMHasTrap(pVM));
1112 EM_ASSERT_FAULT_RETURN((RTGCPTR)((RTGCUINTPTR)GCPtrPar1 & ~(RTGCUINTPTR)3) == pvFault, VERR_EM_INTERPRETER);
1113#endif
1114
1115#ifdef IN_RC
1116 pvParam1 = (void *)GCPtrPar1;
1117#else
1118 PGMPAGEMAPLOCK Lock;
1119 rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrPar1, &pvParam1, &Lock);
1120 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1121#endif
1122
1123 Log2(("emInterpretLockBitTest %s: pvFault=%RGv GCPtrPar1=%RGv imm=%RX64\n", emGetMnemonic(pCpu), pvFault, GCPtrPar1, ValPar2));
1124
1125 /* Try emulate it with a one-shot #PF handler in place. (RC) */
1126 RTGCUINTREG32 eflags = 0;
1127#ifdef IN_RC
1128 MMGCRamRegisterTrapHandler(pVM);
1129#endif
1130 rc = pfnEmulate(pvParam1, ValPar2, &eflags);
1131#ifdef IN_RC
1132 MMGCRamDeregisterTrapHandler(pVM);
1133#else
1134 PGMPhysReleasePageMappingLock(pVM, &Lock);
1135#endif
1136 if (RT_FAILURE(rc))
1137 {
1138 Log(("emInterpretLockBitTest %s: %RGv imm%d=%RX64 -> emulation failed due to page fault!\n",
1139 emGetMnemonic(pCpu), GCPtrPar1, pCpu->param2.size*8, ValPar2));
1140 return VERR_EM_INTERPRETER;
1141 }
1142
1143 Log2(("emInterpretLockBitTest %s: GCPtrPar1=%RGv imm=%RX64 CF=%d\n", emGetMnemonic(pCpu), GCPtrPar1, ValPar2, !!(eflags & X86_EFL_CF)));
1144
1145 /* Update guest's eflags and finish. */
1146 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1147 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1148
1149 *pcbSize = 1;
1150 return VINF_SUCCESS;
1151}
1152
1153
1154/**
1155 * MOV emulation.
1156 */
1157static int emInterpretMov(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1158{
1159 OP_PARAMVAL param1, param2;
1160 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_DEST);
1161 if(RT_FAILURE(rc))
1162 return VERR_EM_INTERPRETER;
1163
1164 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
1165 if(RT_FAILURE(rc))
1166 return VERR_EM_INTERPRETER;
1167
1168#ifdef IN_RC
1169 if (TRPMHasTrap(pVM))
1170 {
1171 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
1172 {
1173#else
1174 /** @todo Make this the default and don't rely on TRPM information. */
1175 if (param1.type == PARMTYPE_ADDRESS)
1176 {
1177#endif
1178 RTGCPTR pDest;
1179 uint64_t val64;
1180
1181 switch(param1.type)
1182 {
1183 case PARMTYPE_IMMEDIATE:
1184 if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
1185 return VERR_EM_INTERPRETER;
1186 /* fallthru */
1187
1188 case PARMTYPE_ADDRESS:
1189 pDest = (RTGCPTR)param1.val.val64;
1190 pDest = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pDest);
1191 break;
1192
1193 default:
1194 AssertFailed();
1195 return VERR_EM_INTERPRETER;
1196 }
1197
1198 switch(param2.type)
1199 {
1200 case PARMTYPE_IMMEDIATE: /* register type is translated to this one too */
1201 val64 = param2.val.val64;
1202 break;
1203
1204 default:
1205 Log(("emInterpretMov: unexpected type=%d rip=%RGv\n", param2.type, (RTGCPTR)pRegFrame->rip));
1206 return VERR_EM_INTERPRETER;
1207 }
1208#ifdef LOG_ENABLED
1209 if (pCpu->mode == CPUMODE_64BIT)
1210 LogFlow(("EMInterpretInstruction at %RGv: OP_MOV %RGv <- %RX64 (%d) &val64=%RHv\n", (RTGCPTR)pRegFrame->rip, pDest, val64, param2.size, &val64));
1211 else
1212 LogFlow(("EMInterpretInstruction at %08RX64: OP_MOV %RGv <- %08X (%d) &val64=%RHv\n", pRegFrame->rip, pDest, (uint32_t)val64, param2.size, &val64));
1213#endif
1214
1215 Assert(param2.size <= 8 && param2.size > 0);
1216 EM_ASSERT_FAULT_RETURN(pDest == pvFault, VERR_EM_INTERPRETER);
1217 rc = emRamWrite(pVM, pRegFrame, pDest, &val64, param2.size);
1218 if (RT_FAILURE(rc))
1219 return VERR_EM_INTERPRETER;
1220
1221 *pcbSize = param2.size;
1222 }
1223 else
1224 { /* read fault */
1225 RTGCPTR pSrc;
1226 uint64_t val64;
1227
1228 /* Source */
1229 switch(param2.type)
1230 {
1231 case PARMTYPE_IMMEDIATE:
1232 if(!(param2.flags & (PARAM_VAL32|PARAM_VAL64)))
1233 return VERR_EM_INTERPRETER;
1234 /* fallthru */
1235
1236 case PARMTYPE_ADDRESS:
1237 pSrc = (RTGCPTR)param2.val.val64;
1238 pSrc = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param2, pSrc);
1239 break;
1240
1241 default:
1242 return VERR_EM_INTERPRETER;
1243 }
1244
1245 Assert(param1.size <= 8 && param1.size > 0);
1246 EM_ASSERT_FAULT_RETURN(pSrc == pvFault, VERR_EM_INTERPRETER);
1247 rc = emRamRead(pVM, pRegFrame, &val64, pSrc, param1.size);
1248 if (RT_FAILURE(rc))
1249 return VERR_EM_INTERPRETER;
1250
1251 /* Destination */
1252 switch(param1.type)
1253 {
1254 case PARMTYPE_REGISTER:
1255 switch(param1.size)
1256 {
1257 case 1: rc = DISWriteReg8(pRegFrame, pCpu->param1.base.reg_gen, (uint8_t) val64); break;
1258 case 2: rc = DISWriteReg16(pRegFrame, pCpu->param1.base.reg_gen, (uint16_t)val64); break;
1259 case 4: rc = DISWriteReg32(pRegFrame, pCpu->param1.base.reg_gen, (uint32_t)val64); break;
1260 case 8: rc = DISWriteReg64(pRegFrame, pCpu->param1.base.reg_gen, val64); break;
1261 default:
1262 return VERR_EM_INTERPRETER;
1263 }
1264 if (RT_FAILURE(rc))
1265 return rc;
1266 break;
1267
1268 default:
1269 return VERR_EM_INTERPRETER;
1270 }
1271#ifdef LOG_ENABLED
1272 if (pCpu->mode == CPUMODE_64BIT)
1273 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %RX64 (%d)\n", pSrc, val64, param1.size));
1274 else
1275 LogFlow(("EMInterpretInstruction: OP_MOV %RGv -> %08X (%d)\n", pSrc, (uint32_t)val64, param1.size));
1276#endif
1277 }
1278 return VINF_SUCCESS;
1279#ifdef IN_RC
1280 }
1281#endif
1282 return VERR_EM_INTERPRETER;
1283}
1284
1285
1286#ifndef IN_RC
1287/**
1288 * [REP] STOSWD emulation
1289 */
1290static int emInterpretStosWD(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1291{
1292 int rc;
1293 RTGCPTR GCDest, GCOffset;
1294 uint32_t cbSize;
1295 uint64_t cTransfers;
1296 int offIncrement;
1297
1298 /* Don't support any but these three prefix bytes. */
1299 if ((pCpu->prefix & ~(PREFIX_ADDRSIZE|PREFIX_OPSIZE|PREFIX_REP|PREFIX_REX)))
1300 return VERR_EM_INTERPRETER;
1301
1302 switch (pCpu->addrmode)
1303 {
1304 case CPUMODE_16BIT:
1305 GCOffset = pRegFrame->di;
1306 cTransfers = pRegFrame->cx;
1307 break;
1308 case CPUMODE_32BIT:
1309 GCOffset = pRegFrame->edi;
1310 cTransfers = pRegFrame->ecx;
1311 break;
1312 case CPUMODE_64BIT:
1313 GCOffset = pRegFrame->rdi;
1314 cTransfers = pRegFrame->rcx;
1315 break;
1316 default:
1317 AssertFailed();
1318 return VERR_EM_INTERPRETER;
1319 }
1320
1321 GCDest = SELMToFlat(pVM, DIS_SELREG_ES, pRegFrame, GCOffset);
1322 switch (pCpu->opmode)
1323 {
1324 case CPUMODE_16BIT:
1325 cbSize = 2;
1326 break;
1327 case CPUMODE_32BIT:
1328 cbSize = 4;
1329 break;
1330 case CPUMODE_64BIT:
1331 cbSize = 8;
1332 break;
1333 default:
1334 AssertFailed();
1335 return VERR_EM_INTERPRETER;
1336 }
1337
1338 offIncrement = pRegFrame->eflags.Bits.u1DF ? -(signed)cbSize : (signed)cbSize;
1339
1340 if (!(pCpu->prefix & PREFIX_REP))
1341 {
1342 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d\n", pRegFrame->es, GCOffset, GCDest, cbSize));
1343
1344#ifdef VBOX_WITH_NEW_PHYS_CODE
1345 rc = emRamWrite(pVM, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
1346#else
1347 rc = PGMPhysWriteGCPtr(pVM, GCDest, &pRegFrame->rax, cbSize);
1348#endif
1349 if (RT_FAILURE(rc))
1350 return VERR_EM_INTERPRETER;
1351 Assert(rc == VINF_SUCCESS);
1352
1353 /* Update (e/r)di. */
1354 switch (pCpu->addrmode)
1355 {
1356 case CPUMODE_16BIT:
1357 pRegFrame->di += offIncrement;
1358 break;
1359 case CPUMODE_32BIT:
1360 pRegFrame->edi += offIncrement;
1361 break;
1362 case CPUMODE_64BIT:
1363 pRegFrame->rdi += offIncrement;
1364 break;
1365 default:
1366 AssertFailed();
1367 return VERR_EM_INTERPRETER;
1368 }
1369
1370 }
1371 else
1372 {
1373 if (!cTransfers)
1374 return VINF_SUCCESS;
1375
1376 /*
1377 * Do *not* try emulate cross page stuff here because we don't know what might
1378 * be waiting for us on the subsequent pages. The caller has only asked us to
1379 * ignore access handlers fro the current page.
1380 * This also fends off big stores which would quickly kill PGMR0DynMap.
1381 */
1382 if ( cbSize > PAGE_SIZE
1383 || cTransfers > PAGE_SIZE
1384 || (GCDest >> PAGE_SHIFT) != ((GCDest + offIncrement * cTransfers) >> PAGE_SHIFT))
1385 {
1386 Log(("STOSWD is crosses pages, chicken out to the recompiler; GCDest=%RGv cbSize=%#x offIncrement=%d cTransfers=%#x\n",
1387 GCDest, cbSize, offIncrement, cTransfers));
1388 return VERR_EM_INTERPRETER;
1389 }
1390
1391 LogFlow(("emInterpretStosWD dest=%04X:%RGv (%RGv) cbSize=%d cTransfers=%x DF=%d\n", pRegFrame->es, GCOffset, GCDest, cbSize, cTransfers, pRegFrame->eflags.Bits.u1DF));
1392 /* Access verification first; we currently can't recover properly from traps inside this instruction */
1393 rc = PGMVerifyAccess(pVM, GCDest - ((offIncrement > 0) ? 0 : ((cTransfers-1) * cbSize)),
1394 cTransfers * cbSize,
1395 X86_PTE_RW | (CPUMGetGuestCPL(pVM, pRegFrame) == 3 ? X86_PTE_US : 0));
1396 if (rc != VINF_SUCCESS)
1397 {
1398 Log(("STOSWD will generate a trap -> recompiler, rc=%d\n", rc));
1399 return VERR_EM_INTERPRETER;
1400 }
1401
1402 /* REP case */
1403 while (cTransfers)
1404 {
1405#ifdef VBOX_WITH_NEW_PHYS_CODE
1406 rc = emRamWrite(pVM, pRegFrame, GCDest, &pRegFrame->rax, cbSize);
1407#else
1408 rc = PGMPhysWriteGCPtr(pVM, GCDest, &pRegFrame->rax, cbSize);
1409#endif
1410 if (RT_FAILURE(rc))
1411 {
1412 rc = VERR_EM_INTERPRETER;
1413 break;
1414 }
1415
1416 Assert(rc == VINF_SUCCESS);
1417 GCOffset += offIncrement;
1418 GCDest += offIncrement;
1419 cTransfers--;
1420 }
1421
1422 /* Update the registers. */
1423 switch (pCpu->addrmode)
1424 {
1425 case CPUMODE_16BIT:
1426 pRegFrame->di = GCOffset;
1427 pRegFrame->cx = cTransfers;
1428 break;
1429 case CPUMODE_32BIT:
1430 pRegFrame->edi = GCOffset;
1431 pRegFrame->ecx = cTransfers;
1432 break;
1433 case CPUMODE_64BIT:
1434 pRegFrame->rdi = GCOffset;
1435 pRegFrame->rcx = cTransfers;
1436 break;
1437 default:
1438 AssertFailed();
1439 return VERR_EM_INTERPRETER;
1440 }
1441 }
1442
1443 *pcbSize = cbSize;
1444 return rc;
1445}
1446#endif /* !IN_RC */
1447
1448#ifndef IN_RC
1449
1450/**
1451 * [LOCK] CMPXCHG emulation.
1452 */
1453static int emInterpretCmpXchg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1454{
1455 OP_PARAMVAL param1, param2;
1456
1457#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0)
1458 Assert(pCpu->param1.size <= 4);
1459#endif
1460
1461 /* Source to make DISQueryParamVal read the register value - ugly hack */
1462 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
1463 if(RT_FAILURE(rc))
1464 return VERR_EM_INTERPRETER;
1465
1466 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
1467 if(RT_FAILURE(rc))
1468 return VERR_EM_INTERPRETER;
1469
1470 uint64_t valpar;
1471 switch(param2.type)
1472 {
1473 case PARMTYPE_IMMEDIATE: /* register actually */
1474 valpar = param2.val.val64;
1475 break;
1476
1477 default:
1478 return VERR_EM_INTERPRETER;
1479 }
1480
1481 PGMPAGEMAPLOCK Lock;
1482 RTGCPTR GCPtrPar1;
1483 void *pvParam1;
1484 uint64_t eflags;
1485
1486 AssertReturn(pCpu->param1.size == pCpu->param2.size, VERR_EM_INTERPRETER);
1487 switch(param1.type)
1488 {
1489 case PARMTYPE_ADDRESS:
1490 GCPtrPar1 = param1.val.val64;
1491 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, GCPtrPar1);
1492
1493 rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrPar1, &pvParam1, &Lock);
1494 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1495 break;
1496
1497 default:
1498 return VERR_EM_INTERPRETER;
1499 }
1500
1501 LogFlow(("%s %RGv rax=%RX64 %RX64\n", emGetMnemonic(pCpu), GCPtrPar1, pRegFrame->rax, valpar));
1502
1503 if (pCpu->prefix & PREFIX_LOCK)
1504 eflags = EMEmulateLockCmpXchg(pvParam1, &pRegFrame->rax, valpar, pCpu->param2.size);
1505 else
1506 eflags = EMEmulateCmpXchg(pvParam1, &pRegFrame->rax, valpar, pCpu->param2.size);
1507
1508 LogFlow(("%s %RGv rax=%RX64 %RX64 ZF=%d\n", emGetMnemonic(pCpu), GCPtrPar1, pRegFrame->rax, valpar, !!(eflags & X86_EFL_ZF)));
1509
1510 /* Update guest's eflags and finish. */
1511 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1512 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1513
1514 *pcbSize = param2.size;
1515 PGMPhysReleasePageMappingLock(pVM, &Lock);
1516 return VINF_SUCCESS;
1517}
1518
1519
1520/**
1521 * [LOCK] CMPXCHG8B emulation.
1522 */
1523static int emInterpretCmpXchg8b(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1524{
1525 Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
1526 OP_PARAMVAL param1;
1527
1528 /* Source to make DISQueryParamVal read the register value - ugly hack */
1529 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
1530 if(RT_FAILURE(rc))
1531 return VERR_EM_INTERPRETER;
1532
1533 RTGCPTR GCPtrPar1;
1534 void *pvParam1;
1535 uint64_t eflags;
1536 PGMPAGEMAPLOCK Lock;
1537
1538 AssertReturn(pCpu->param1.size == 8, VERR_EM_INTERPRETER);
1539 switch(param1.type)
1540 {
1541 case PARMTYPE_ADDRESS:
1542 GCPtrPar1 = param1.val.val64;
1543 GCPtrPar1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, GCPtrPar1);
1544
1545 rc = PGMPhysGCPtr2CCPtr(pVM, GCPtrPar1, &pvParam1, &Lock);
1546 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1547 break;
1548
1549 default:
1550 return VERR_EM_INTERPRETER;
1551 }
1552
1553 LogFlow(("%s %RGv=%08x eax=%08x\n", emGetMnemonic(pCpu), pvParam1, pRegFrame->eax));
1554
1555 if (pCpu->prefix & PREFIX_LOCK)
1556 eflags = EMEmulateLockCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
1557 else
1558 eflags = EMEmulateCmpXchg8b(pvParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx);
1559
1560 LogFlow(("%s %RGv=%08x eax=%08x ZF=%d\n", emGetMnemonic(pCpu), pvParam1, pRegFrame->eax, !!(eflags & X86_EFL_ZF)));
1561
1562 /* Update guest's eflags and finish; note that *only* ZF is affected. */
1563 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_ZF))
1564 | (eflags & (X86_EFL_ZF));
1565
1566 *pcbSize = 8;
1567 PGMPhysReleasePageMappingLock(pVM, &Lock);
1568 return VINF_SUCCESS;
1569}
1570
1571#else /* IN_RC */
1572
1573/**
1574 * [LOCK] CMPXCHG emulation.
1575 */
1576static int emInterpretCmpXchg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1577{
1578 Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
1579 OP_PARAMVAL param1, param2;
1580
1581 /* Source to make DISQueryParamVal read the register value - ugly hack */
1582 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
1583 if(RT_FAILURE(rc))
1584 return VERR_EM_INTERPRETER;
1585
1586 rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param2, &param2, PARAM_SOURCE);
1587 if(RT_FAILURE(rc))
1588 return VERR_EM_INTERPRETER;
1589
1590 if (TRPMHasTrap(pVM))
1591 {
1592 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
1593 {
1594 RTRCPTR pParam1;
1595 uint32_t valpar, eflags;
1596
1597 AssertReturn(pCpu->param1.size == pCpu->param2.size, VERR_EM_INTERPRETER);
1598 switch(param1.type)
1599 {
1600 case PARMTYPE_ADDRESS:
1601 pParam1 = (RTRCPTR)param1.val.val64;
1602 pParam1 = (RTRCPTR)emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, (RTGCPTR)(RTRCUINTPTR)pParam1);
1603 EM_ASSERT_FAULT_RETURN(pParam1 == (RTRCPTR)pvFault, VERR_EM_INTERPRETER);
1604 break;
1605
1606 default:
1607 return VERR_EM_INTERPRETER;
1608 }
1609
1610 switch(param2.type)
1611 {
1612 case PARMTYPE_IMMEDIATE: /* register actually */
1613 valpar = param2.val.val32;
1614 break;
1615
1616 default:
1617 return VERR_EM_INTERPRETER;
1618 }
1619
1620 LogFlow(("%s %RRv eax=%08x %08x\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax, valpar));
1621
1622 MMGCRamRegisterTrapHandler(pVM);
1623 if (pCpu->prefix & PREFIX_LOCK)
1624 rc = EMGCEmulateLockCmpXchg(pParam1, &pRegFrame->eax, valpar, pCpu->param2.size, &eflags);
1625 else
1626 rc = EMGCEmulateCmpXchg(pParam1, &pRegFrame->eax, valpar, pCpu->param2.size, &eflags);
1627 MMGCRamDeregisterTrapHandler(pVM);
1628
1629 if (RT_FAILURE(rc))
1630 {
1631 Log(("%s %RGv eax=%08x %08x -> emulation failed due to page fault!\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax, valpar));
1632 return VERR_EM_INTERPRETER;
1633 }
1634
1635 LogFlow(("%s %RRv eax=%08x %08x ZF=%d\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax, valpar, !!(eflags & X86_EFL_ZF)));
1636
1637 /* Update guest's eflags and finish. */
1638 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1639 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1640
1641 *pcbSize = param2.size;
1642 return VINF_SUCCESS;
1643 }
1644 }
1645 return VERR_EM_INTERPRETER;
1646}
1647
1648
1649/**
1650 * [LOCK] CMPXCHG8B emulation.
1651 */
1652static int emInterpretCmpXchg8b(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1653{
1654 Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
1655 OP_PARAMVAL param1;
1656
1657 /* Source to make DISQueryParamVal read the register value - ugly hack */
1658 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
1659 if(RT_FAILURE(rc))
1660 return VERR_EM_INTERPRETER;
1661
1662 if (TRPMHasTrap(pVM))
1663 {
1664 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
1665 {
1666 RTRCPTR pParam1;
1667 uint32_t eflags;
1668
1669 AssertReturn(pCpu->param1.size == 8, VERR_EM_INTERPRETER);
1670 switch(param1.type)
1671 {
1672 case PARMTYPE_ADDRESS:
1673 pParam1 = (RTRCPTR)param1.val.val64;
1674 pParam1 = (RTRCPTR)emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, (RTGCPTR)(RTRCUINTPTR)pParam1);
1675 EM_ASSERT_FAULT_RETURN(pParam1 == (RTRCPTR)pvFault, VERR_EM_INTERPRETER);
1676 break;
1677
1678 default:
1679 return VERR_EM_INTERPRETER;
1680 }
1681
1682 LogFlow(("%s %RRv=%08x eax=%08x\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax));
1683
1684 MMGCRamRegisterTrapHandler(pVM);
1685 if (pCpu->prefix & PREFIX_LOCK)
1686 rc = EMGCEmulateLockCmpXchg8b(pParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx, &eflags);
1687 else
1688 rc = EMGCEmulateCmpXchg8b(pParam1, &pRegFrame->eax, &pRegFrame->edx, pRegFrame->ebx, pRegFrame->ecx, &eflags);
1689 MMGCRamDeregisterTrapHandler(pVM);
1690
1691 if (RT_FAILURE(rc))
1692 {
1693 Log(("%s %RGv=%08x eax=%08x -> emulation failed due to page fault!\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax));
1694 return VERR_EM_INTERPRETER;
1695 }
1696
1697 LogFlow(("%s %RGv=%08x eax=%08x ZF=%d\n", emGetMnemonic(pCpu), pParam1, pRegFrame->eax, !!(eflags & X86_EFL_ZF)));
1698
1699 /* Update guest's eflags and finish; note that *only* ZF is affected. */
1700 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_ZF))
1701 | (eflags & (X86_EFL_ZF));
1702
1703 *pcbSize = 8;
1704 return VINF_SUCCESS;
1705 }
1706 }
1707 return VERR_EM_INTERPRETER;
1708}
1709
1710#endif /* IN_RC */
1711
1712#ifdef IN_RC
1713/**
1714 * [LOCK] XADD emulation.
1715 */
1716static int emInterpretXAdd(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1717{
1718 Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
1719 OP_PARAMVAL param1;
1720 uint32_t *pParamReg2;
1721 size_t cbSizeParamReg2;
1722
1723 /* Source to make DISQueryParamVal read the register value - ugly hack */
1724 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
1725 if(RT_FAILURE(rc))
1726 return VERR_EM_INTERPRETER;
1727
1728 rc = DISQueryParamRegPtr(pRegFrame, pCpu, &pCpu->param2, (void **)&pParamReg2, &cbSizeParamReg2);
1729 Assert(cbSizeParamReg2 <= 4);
1730 if(RT_FAILURE(rc))
1731 return VERR_EM_INTERPRETER;
1732
1733 if (TRPMHasTrap(pVM))
1734 {
1735 if (TRPMGetErrorCode(pVM) & X86_TRAP_PF_RW)
1736 {
1737 RTRCPTR pParam1;
1738 uint32_t eflags;
1739
1740 AssertReturn(pCpu->param1.size == pCpu->param2.size, VERR_EM_INTERPRETER);
1741 switch(param1.type)
1742 {
1743 case PARMTYPE_ADDRESS:
1744 pParam1 = (RTRCPTR)param1.val.val64;
1745 pParam1 = (RTRCPTR)emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, (RTGCPTR)(RTRCUINTPTR)pParam1);
1746 EM_ASSERT_FAULT_RETURN(pParam1 == (RTRCPTR)pvFault, VERR_EM_INTERPRETER);
1747 break;
1748
1749 default:
1750 return VERR_EM_INTERPRETER;
1751 }
1752
1753 LogFlow(("XAdd %RRv=%08x reg=%08x\n", pParam1, *pParamReg2));
1754
1755 MMGCRamRegisterTrapHandler(pVM);
1756 if (pCpu->prefix & PREFIX_LOCK)
1757 rc = EMGCEmulateLockXAdd(pParam1, pParamReg2, cbSizeParamReg2, &eflags);
1758 else
1759 rc = EMGCEmulateXAdd(pParam1, pParamReg2, cbSizeParamReg2, &eflags);
1760 MMGCRamDeregisterTrapHandler(pVM);
1761
1762 if (RT_FAILURE(rc))
1763 {
1764 Log(("XAdd %RGv reg=%08x -> emulation failed due to page fault!\n", pParam1, *pParamReg2));
1765 return VERR_EM_INTERPRETER;
1766 }
1767
1768 LogFlow(("XAdd %RGv reg=%08x ZF=%d\n", pParam1, *pParamReg2, !!(eflags & X86_EFL_ZF)));
1769
1770 /* Update guest's eflags and finish. */
1771 pRegFrame->eflags.u32 = (pRegFrame->eflags.u32 & ~(X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF))
1772 | (eflags & (X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF));
1773
1774 *pcbSize = cbSizeParamReg2;
1775 return VINF_SUCCESS;
1776 }
1777 }
1778 return VERR_EM_INTERPRETER;
1779}
1780#endif /* IN_RC */
1781
1782
1783#ifdef IN_RC
1784/**
1785 * Interpret IRET (currently only to V86 code)
1786 *
1787 * @returns VBox status code.
1788 * @param pVM The VM handle.
1789 * @param pRegFrame The register frame.
1790 *
1791 */
1792VMMDECL(int) EMInterpretIret(PVM pVM, PCPUMCTXCORE pRegFrame)
1793{
1794 RTGCUINTPTR pIretStack = (RTGCUINTPTR)pRegFrame->esp;
1795 RTGCUINTPTR eip, cs, esp, ss, eflags, ds, es, fs, gs, uMask;
1796 int rc;
1797
1798 Assert(!CPUMIsGuestIn64BitCode(pVM, pRegFrame));
1799
1800 rc = emRamRead(pVM, pRegFrame, &eip, (RTGCPTR)pIretStack , 4);
1801 rc |= emRamRead(pVM, pRegFrame, &cs, (RTGCPTR)(pIretStack + 4), 4);
1802 rc |= emRamRead(pVM, pRegFrame, &eflags, (RTGCPTR)(pIretStack + 8), 4);
1803 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1804 AssertReturn(eflags & X86_EFL_VM, VERR_EM_INTERPRETER);
1805
1806 rc |= emRamRead(pVM, pRegFrame, &esp, (RTGCPTR)(pIretStack + 12), 4);
1807 rc |= emRamRead(pVM, pRegFrame, &ss, (RTGCPTR)(pIretStack + 16), 4);
1808 rc |= emRamRead(pVM, pRegFrame, &es, (RTGCPTR)(pIretStack + 20), 4);
1809 rc |= emRamRead(pVM, pRegFrame, &ds, (RTGCPTR)(pIretStack + 24), 4);
1810 rc |= emRamRead(pVM, pRegFrame, &fs, (RTGCPTR)(pIretStack + 28), 4);
1811 rc |= emRamRead(pVM, pRegFrame, &gs, (RTGCPTR)(pIretStack + 32), 4);
1812 AssertRCReturn(rc, VERR_EM_INTERPRETER);
1813
1814 pRegFrame->eip = eip & 0xffff;
1815 pRegFrame->cs = cs;
1816
1817 /* Mask away all reserved bits */
1818 uMask = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_TF | X86_EFL_IF | X86_EFL_DF | X86_EFL_OF | X86_EFL_IOPL | X86_EFL_NT | X86_EFL_RF | X86_EFL_VM | X86_EFL_AC | X86_EFL_VIF | X86_EFL_VIP | X86_EFL_ID;
1819 eflags &= uMask;
1820
1821#ifndef IN_RING0
1822 CPUMRawSetEFlags(pVM, pRegFrame, eflags);
1823#endif
1824 Assert((pRegFrame->eflags.u32 & (X86_EFL_IF|X86_EFL_IOPL)) == X86_EFL_IF);
1825
1826 pRegFrame->esp = esp;
1827 pRegFrame->ss = ss;
1828 pRegFrame->ds = ds;
1829 pRegFrame->es = es;
1830 pRegFrame->fs = fs;
1831 pRegFrame->gs = gs;
1832
1833 return VINF_SUCCESS;
1834}
1835#endif /* IN_RC */
1836
1837
1838/**
1839 * IRET Emulation.
1840 */
1841static int emInterpretIret(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1842{
1843 /* only allow direct calls to EMInterpretIret for now */
1844 return VERR_EM_INTERPRETER;
1845}
1846
1847/**
1848 * WBINVD Emulation.
1849 */
1850static int emInterpretWbInvd(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1851{
1852 /* Nothing to do. */
1853 return VINF_SUCCESS;
1854}
1855
1856
1857/**
1858 * Interpret INVLPG
1859 *
1860 * @returns VBox status code.
1861 * @param pVM The VM handle.
1862 * @param pRegFrame The register frame.
1863 * @param pAddrGC Operand address
1864 *
1865 */
1866VMMDECL(int) EMInterpretInvlpg(PVM pVM, PCPUMCTXCORE pRegFrame, RTGCPTR pAddrGC)
1867{
1868 int rc;
1869
1870 /** @todo is addr always a flat linear address or ds based
1871 * (in absence of segment override prefixes)????
1872 */
1873#ifdef IN_RC
1874 LogFlow(("RC: EMULATE: invlpg %RGv\n", pAddrGC));
1875#endif
1876 rc = PGMInvalidatePage(pVM, pAddrGC);
1877 if ( rc == VINF_SUCCESS
1878 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
1879 return VINF_SUCCESS;
1880 AssertMsgReturn( rc == VERR_REM_FLUSHED_PAGES_OVERFLOW
1881 || rc == VINF_EM_RAW_EMULATE_INSTR,
1882 ("%Rrc addr=%RGv\n", rc, pAddrGC),
1883 VERR_EM_INTERPRETER);
1884 return rc;
1885}
1886
1887
1888/**
1889 * INVLPG Emulation.
1890 */
1891static int emInterpretInvlPg(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1892{
1893 OP_PARAMVAL param1;
1894 RTGCPTR addr;
1895
1896 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
1897 if(RT_FAILURE(rc))
1898 return VERR_EM_INTERPRETER;
1899
1900 switch(param1.type)
1901 {
1902 case PARMTYPE_IMMEDIATE:
1903 case PARMTYPE_ADDRESS:
1904 if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
1905 return VERR_EM_INTERPRETER;
1906 addr = (RTGCPTR)param1.val.val64;
1907 break;
1908
1909 default:
1910 return VERR_EM_INTERPRETER;
1911 }
1912
1913 /** @todo is addr always a flat linear address or ds based
1914 * (in absence of segment override prefixes)????
1915 */
1916#ifdef IN_RC
1917 LogFlow(("RC: EMULATE: invlpg %RGv\n", addr));
1918#endif
1919 rc = PGMInvalidatePage(pVM, addr);
1920 if ( rc == VINF_SUCCESS
1921 || rc == VINF_PGM_SYNC_CR3 /* we can rely on the FF */)
1922 return VINF_SUCCESS;
1923 AssertMsgReturn( rc == VERR_REM_FLUSHED_PAGES_OVERFLOW
1924 || rc == VINF_EM_RAW_EMULATE_INSTR,
1925 ("%Rrc addr=%RGv\n", rc, addr),
1926 VERR_EM_INTERPRETER);
1927 return rc;
1928}
1929
1930
1931/**
1932 * Interpret CPUID given the parameters in the CPU context
1933 *
1934 * @returns VBox status code.
1935 * @param pVM The VM handle.
1936 * @param pRegFrame The register frame.
1937 *
1938 */
1939VMMDECL(int) EMInterpretCpuId(PVM pVM, PCPUMCTXCORE pRegFrame)
1940{
1941 uint32_t iLeaf = pRegFrame->eax;
1942
1943 /* cpuid clears the high dwords of the affected 64 bits registers. */
1944 pRegFrame->rax = 0;
1945 pRegFrame->rbx = 0;
1946 pRegFrame->rcx = 0;
1947 pRegFrame->rdx = 0;
1948
1949 /* Note: operates the same in 64 and non-64 bits mode. */
1950 CPUMGetGuestCpuId(pVM, iLeaf, &pRegFrame->eax, &pRegFrame->ebx, &pRegFrame->ecx, &pRegFrame->edx);
1951 Log(("Emulate: CPUID %x -> %08x %08x %08x %08x\n", iLeaf, pRegFrame->eax, pRegFrame->ebx, pRegFrame->ecx, pRegFrame->edx));
1952 return VINF_SUCCESS;
1953}
1954
1955
1956/**
1957 * CPUID Emulation.
1958 */
1959static int emInterpretCpuId(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
1960{
1961 int rc = EMInterpretCpuId(pVM, pRegFrame);
1962 return rc;
1963}
1964
1965
1966/**
1967 * Interpret CRx read
1968 *
1969 * @returns VBox status code.
1970 * @param pVM The VM handle.
1971 * @param pRegFrame The register frame.
1972 * @param DestRegGen General purpose register index (USE_REG_E**))
1973 * @param SrcRegCRx CRx register index (USE_REG_CR*)
1974 *
1975 */
1976VMMDECL(int) EMInterpretCRxRead(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegCrx)
1977{
1978 int rc;
1979 uint64_t val64;
1980
1981 if (SrcRegCrx == USE_REG_CR8)
1982 {
1983 val64 = 0;
1984 rc = PDMApicGetTPR(pVM, (uint8_t *)&val64, NULL);
1985 AssertMsgRCReturn(rc, ("PDMApicGetTPR failed\n"), VERR_EM_INTERPRETER);
1986 }
1987 else
1988 {
1989 rc = CPUMGetGuestCRx(pVM, SrcRegCrx, &val64);
1990 AssertMsgRCReturn(rc, ("CPUMGetGuestCRx %d failed\n", SrcRegCrx), VERR_EM_INTERPRETER);
1991 }
1992
1993 if (CPUMIsGuestIn64BitCode(pVM, pRegFrame))
1994 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
1995 else
1996 rc = DISWriteReg32(pRegFrame, DestRegGen, val64);
1997
1998 if(RT_SUCCESS(rc))
1999 {
2000 LogFlow(("MOV_CR: gen32=%d CR=%d val=%RX64\n", DestRegGen, SrcRegCrx, val64));
2001 return VINF_SUCCESS;
2002 }
2003 return VERR_EM_INTERPRETER;
2004}
2005
2006
2007
2008/**
2009 * Interpret CLTS
2010 *
2011 * @returns VBox status code.
2012 * @param pVM The VM handle.
2013 *
2014 */
2015VMMDECL(int) EMInterpretCLTS(PVM pVM)
2016{
2017 uint64_t cr0 = CPUMGetGuestCR0(pVM);
2018 if (!(cr0 & X86_CR0_TS))
2019 return VINF_SUCCESS;
2020 return CPUMSetGuestCR0(pVM, cr0 & ~X86_CR0_TS);
2021}
2022
2023/**
2024 * CLTS Emulation.
2025 */
2026static int emInterpretClts(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2027{
2028 return EMInterpretCLTS(pVM);
2029}
2030
2031
2032/**
2033 * Update CRx
2034 *
2035 * @returns VBox status code.
2036 * @param pVM The VM handle.
2037 * @param pRegFrame The register frame.
2038 * @param DestRegCRx CRx register index (USE_REG_CR*)
2039 * @param val New CRx value
2040 *
2041 */
2042static int emUpdateCRx(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint64_t val)
2043{
2044 uint64_t oldval;
2045 uint64_t msrEFER;
2046 int rc, rc2;
2047
2048 /** @todo Clean up this mess. */
2049 LogFlow(("EMInterpretCRxWrite at %RGv CR%d <- %RX64\n", (RTGCPTR)pRegFrame->rip, DestRegCrx, val));
2050 switch (DestRegCrx)
2051 {
2052 case USE_REG_CR0:
2053 oldval = CPUMGetGuestCR0(pVM);
2054#ifdef IN_RC
2055 /* CR0.WP and CR0.AM changes require a reschedule run in ring 3. */
2056 if ( (val & (X86_CR0_WP | X86_CR0_AM))
2057 != (oldval & (X86_CR0_WP | X86_CR0_AM)))
2058 return VERR_EM_INTERPRETER;
2059#endif
2060 rc = VINF_SUCCESS;
2061 CPUMSetGuestCR0(pVM, val);
2062 val = CPUMGetGuestCR0(pVM);
2063 if ( (oldval & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
2064 != (val & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
2065 {
2066 /* global flush */
2067 rc = PGMFlushTLB(pVM, CPUMGetGuestCR3(pVM), true /* global */);
2068 AssertRCReturn(rc, rc);
2069 }
2070
2071 /* Deal with long mode enabling/disabling. */
2072 msrEFER = CPUMGetGuestEFER(pVM);
2073 if (msrEFER & MSR_K6_EFER_LME)
2074 {
2075 if ( !(oldval & X86_CR0_PG)
2076 && (val & X86_CR0_PG))
2077 {
2078 /* Illegal to have an active 64 bits CS selector (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2079 if (pRegFrame->csHid.Attr.n.u1Long)
2080 {
2081 AssertMsgFailed(("Illegal enabling of paging with CS.u1Long = 1!!\n"));
2082 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
2083 }
2084
2085 /* Illegal to switch to long mode before activating PAE first (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2086 if (!(CPUMGetGuestCR4(pVM) & X86_CR4_PAE))
2087 {
2088 AssertMsgFailed(("Illegal enabling of paging with PAE disabled!!\n"));
2089 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
2090 }
2091 msrEFER |= MSR_K6_EFER_LMA;
2092 }
2093 else
2094 if ( (oldval & X86_CR0_PG)
2095 && !(val & X86_CR0_PG))
2096 {
2097 msrEFER &= ~MSR_K6_EFER_LMA;
2098 /* @todo Do we need to cut off rip here? High dword of rip is undefined, so it shouldn't really matter. */
2099 }
2100 CPUMSetGuestEFER(pVM, msrEFER);
2101 }
2102 rc2 = PGMChangeMode(pVM, CPUMGetGuestCR0(pVM), CPUMGetGuestCR4(pVM), CPUMGetGuestEFER(pVM));
2103 return rc2 == VINF_SUCCESS ? rc : rc2;
2104
2105 case USE_REG_CR2:
2106 rc = CPUMSetGuestCR2(pVM, val); AssertRC(rc);
2107 return VINF_SUCCESS;
2108
2109 case USE_REG_CR3:
2110 /* Reloading the current CR3 means the guest just wants to flush the TLBs */
2111 rc = CPUMSetGuestCR3(pVM, val); AssertRC(rc);
2112 if (CPUMGetGuestCR0(pVM) & X86_CR0_PG)
2113 {
2114 /* flush */
2115 rc = PGMFlushTLB(pVM, val, !(CPUMGetGuestCR4(pVM) & X86_CR4_PGE));
2116 AssertRCReturn(rc, rc);
2117 }
2118 return rc;
2119
2120 case USE_REG_CR4:
2121 oldval = CPUMGetGuestCR4(pVM);
2122 rc = CPUMSetGuestCR4(pVM, val); AssertRC(rc);
2123 val = CPUMGetGuestCR4(pVM);
2124
2125 /* Illegal to disable PAE when long mode is active. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2126 msrEFER = CPUMGetGuestEFER(pVM);
2127 if ( (msrEFER & MSR_K6_EFER_LMA)
2128 && (oldval & X86_CR4_PAE)
2129 && !(val & X86_CR4_PAE))
2130 {
2131 return VERR_EM_INTERPRETER; /** @todo generate #GP(0) */
2132 }
2133
2134 rc = VINF_SUCCESS;
2135 if ( (oldval & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE))
2136 != (val & (X86_CR4_PGE|X86_CR4_PAE|X86_CR4_PSE)))
2137 {
2138 /* global flush */
2139 rc = PGMFlushTLB(pVM, CPUMGetGuestCR3(pVM), true /* global */);
2140 AssertRCReturn(rc, rc);
2141 }
2142
2143 /* Feeling extremely lazy. */
2144# ifdef IN_RC
2145 if ( (oldval & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME))
2146 != (val & (X86_CR4_OSFSXR|X86_CR4_OSXMMEEXCPT|X86_CR4_PCE|X86_CR4_MCE|X86_CR4_PAE|X86_CR4_DE|X86_CR4_TSD|X86_CR4_PVI|X86_CR4_VME)))
2147 {
2148 Log(("emInterpretMovCRx: CR4: %#RX64->%#RX64 => R3\n", oldval, val));
2149 VM_FF_SET(pVM, VM_FF_TO_R3);
2150 }
2151# endif
2152 if ((val ^ oldval) & X86_CR4_VME)
2153 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2154
2155 rc2 = PGMChangeMode(pVM, CPUMGetGuestCR0(pVM), CPUMGetGuestCR4(pVM), CPUMGetGuestEFER(pVM));
2156 return rc2 == VINF_SUCCESS ? rc : rc2;
2157
2158 case USE_REG_CR8:
2159 return PDMApicSetTPR(pVM, val);
2160
2161 default:
2162 AssertFailed();
2163 case USE_REG_CR1: /* illegal op */
2164 break;
2165 }
2166 return VERR_EM_INTERPRETER;
2167}
2168
2169/**
2170 * Interpret CRx write
2171 *
2172 * @returns VBox status code.
2173 * @param pVM The VM handle.
2174 * @param pRegFrame The register frame.
2175 * @param DestRegCRx CRx register index (USE_REG_CR*)
2176 * @param SrcRegGen General purpose register index (USE_REG_E**))
2177 *
2178 */
2179VMMDECL(int) EMInterpretCRxWrite(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegCrx, uint32_t SrcRegGen)
2180{
2181 uint64_t val;
2182 int rc;
2183
2184 if (CPUMIsGuestIn64BitCode(pVM, pRegFrame))
2185 {
2186 rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
2187 }
2188 else
2189 {
2190 uint32_t val32;
2191 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
2192 val = val32;
2193 }
2194
2195 if (RT_SUCCESS(rc))
2196 return emUpdateCRx(pVM, pRegFrame, DestRegCrx, val);
2197
2198 return VERR_EM_INTERPRETER;
2199}
2200
2201/**
2202 * Interpret LMSW
2203 *
2204 * @returns VBox status code.
2205 * @param pVM The VM handle.
2206 * @param pRegFrame The register frame.
2207 * @param u16Data LMSW source data.
2208 *
2209 */
2210VMMDECL(int) EMInterpretLMSW(PVM pVM, PCPUMCTXCORE pRegFrame, uint16_t u16Data)
2211{
2212 uint64_t OldCr0 = CPUMGetGuestCR0(pVM);
2213
2214 /* Only PE, MP, EM and TS can be changed; note that PE can't be cleared by this instruction. */
2215 uint64_t NewCr0 = ( OldCr0 & ~( X86_CR0_MP | X86_CR0_EM | X86_CR0_TS))
2216 | (u16Data & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS));
2217
2218 return emUpdateCRx(pVM, pRegFrame, USE_REG_CR0, NewCr0);
2219}
2220
2221/**
2222 * LMSW Emulation.
2223 */
2224static int emInterpretLmsw(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2225{
2226 OP_PARAMVAL param1;
2227 uint32_t val;
2228
2229 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
2230 if(RT_FAILURE(rc))
2231 return VERR_EM_INTERPRETER;
2232
2233 switch(param1.type)
2234 {
2235 case PARMTYPE_IMMEDIATE:
2236 case PARMTYPE_ADDRESS:
2237 if(!(param1.flags & PARAM_VAL16))
2238 return VERR_EM_INTERPRETER;
2239 val = param1.val.val32;
2240 break;
2241
2242 default:
2243 return VERR_EM_INTERPRETER;
2244 }
2245
2246 LogFlow(("emInterpretLmsw %x\n", val));
2247 return EMInterpretLMSW(pVM, pRegFrame, val);
2248}
2249
2250#ifdef EM_EMULATE_SMSW
2251/**
2252 * SMSW Emulation.
2253 */
2254static int emInterpretSmsw(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2255{
2256 OP_PARAMVAL param1;
2257 uint64_t cr0 = CPUMGetGuestCR0(pVM);
2258
2259 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
2260 if(RT_FAILURE(rc))
2261 return VERR_EM_INTERPRETER;
2262
2263 switch(param1.type)
2264 {
2265 case PARMTYPE_IMMEDIATE:
2266 if(param1.size != sizeof(uint16_t))
2267 return VERR_EM_INTERPRETER;
2268 LogFlow(("emInterpretSmsw %d <- cr0 (%x)\n", pCpu->param1.base.reg_gen, cr0));
2269 rc = DISWriteReg16(pRegFrame, pCpu->param1.base.reg_gen, cr0);
2270 break;
2271
2272 case PARMTYPE_ADDRESS:
2273 {
2274 RTGCPTR pParam1;
2275
2276 /* Actually forced to 16 bits regardless of the operand size. */
2277 if(param1.size != sizeof(uint16_t))
2278 return VERR_EM_INTERPRETER;
2279
2280 pParam1 = (RTGCPTR)param1.val.val64;
2281 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, pParam1);
2282 LogFlow(("emInterpretSmsw %VGv <- cr0 (%x)\n", pParam1, cr0));
2283
2284 rc = emRamWrite(pVM, pRegFrame, pParam1, &cr0, sizeof(uint16_t));
2285 if (RT_FAILURE(rc))
2286 {
2287 AssertMsgFailed(("emRamWrite %RGv size=%d failed with %Rrc\n", pParam1, param1.size, rc));
2288 return VERR_EM_INTERPRETER;
2289 }
2290 break;
2291 }
2292
2293 default:
2294 return VERR_EM_INTERPRETER;
2295 }
2296
2297 LogFlow(("emInterpretSmsw %x\n", cr0));
2298 return rc;
2299}
2300#endif
2301
2302/**
2303 * MOV CRx
2304 */
2305static int emInterpretMovCRx(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2306{
2307 if ((pCpu->param1.flags == USE_REG_GEN32 || pCpu->param1.flags == USE_REG_GEN64) && pCpu->param2.flags == USE_REG_CR)
2308 return EMInterpretCRxRead(pVM, pRegFrame, pCpu->param1.base.reg_gen, pCpu->param2.base.reg_ctrl);
2309
2310 if (pCpu->param1.flags == USE_REG_CR && (pCpu->param2.flags == USE_REG_GEN32 || pCpu->param2.flags == USE_REG_GEN64))
2311 return EMInterpretCRxWrite(pVM, pRegFrame, pCpu->param1.base.reg_ctrl, pCpu->param2.base.reg_gen);
2312
2313 AssertMsgFailedReturn(("Unexpected control register move\n"), VERR_EM_INTERPRETER);
2314 return VERR_EM_INTERPRETER;
2315}
2316
2317
2318/**
2319 * Interpret DRx write
2320 *
2321 * @returns VBox status code.
2322 * @param pVM The VM handle.
2323 * @param pRegFrame The register frame.
2324 * @param DestRegDRx DRx register index (USE_REG_DR*)
2325 * @param SrcRegGen General purpose register index (USE_REG_E**))
2326 *
2327 */
2328VMMDECL(int) EMInterpretDRxWrite(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegDrx, uint32_t SrcRegGen)
2329{
2330 uint64_t val;
2331 int rc;
2332
2333 if (CPUMIsGuestIn64BitCode(pVM, pRegFrame))
2334 {
2335 rc = DISFetchReg64(pRegFrame, SrcRegGen, &val);
2336 }
2337 else
2338 {
2339 uint32_t val32;
2340 rc = DISFetchReg32(pRegFrame, SrcRegGen, &val32);
2341 val = val32;
2342 }
2343
2344 if (RT_SUCCESS(rc))
2345 {
2346 /** @todo we don't fail if illegal bits are set/cleared for e.g. dr7 */
2347 rc = CPUMSetGuestDRx(pVM, DestRegDrx, val);
2348 if (RT_SUCCESS(rc))
2349 return rc;
2350 AssertMsgFailed(("CPUMSetGuestDRx %d failed\n", DestRegDrx));
2351 }
2352 return VERR_EM_INTERPRETER;
2353}
2354
2355
2356/**
2357 * Interpret DRx read
2358 *
2359 * @returns VBox status code.
2360 * @param pVM The VM handle.
2361 * @param pRegFrame The register frame.
2362 * @param DestRegGen General purpose register index (USE_REG_E**))
2363 * @param SrcRegDRx DRx register index (USE_REG_DR*)
2364 *
2365 */
2366VMMDECL(int) EMInterpretDRxRead(PVM pVM, PCPUMCTXCORE pRegFrame, uint32_t DestRegGen, uint32_t SrcRegDrx)
2367{
2368 uint64_t val64;
2369
2370 int rc = CPUMGetGuestDRx(pVM, SrcRegDrx, &val64);
2371 AssertMsgRCReturn(rc, ("CPUMGetGuestDRx %d failed\n", SrcRegDrx), VERR_EM_INTERPRETER);
2372 if (CPUMIsGuestIn64BitCode(pVM, pRegFrame))
2373 {
2374 rc = DISWriteReg64(pRegFrame, DestRegGen, val64);
2375 }
2376 else
2377 rc = DISWriteReg32(pRegFrame, DestRegGen, (uint32_t)val64);
2378
2379 if (RT_SUCCESS(rc))
2380 return VINF_SUCCESS;
2381
2382 return VERR_EM_INTERPRETER;
2383}
2384
2385
2386/**
2387 * MOV DRx
2388 */
2389static int emInterpretMovDRx(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2390{
2391 int rc = VERR_EM_INTERPRETER;
2392
2393 if((pCpu->param1.flags == USE_REG_GEN32 || pCpu->param1.flags == USE_REG_GEN64) && pCpu->param2.flags == USE_REG_DBG)
2394 {
2395 rc = EMInterpretDRxRead(pVM, pRegFrame, pCpu->param1.base.reg_gen, pCpu->param2.base.reg_dbg);
2396 }
2397 else
2398 if(pCpu->param1.flags == USE_REG_DBG && (pCpu->param2.flags == USE_REG_GEN32 || pCpu->param2.flags == USE_REG_GEN64))
2399 {
2400 rc = EMInterpretDRxWrite(pVM, pRegFrame, pCpu->param1.base.reg_dbg, pCpu->param2.base.reg_gen);
2401 }
2402 else
2403 AssertMsgFailed(("Unexpected debug register move\n"));
2404
2405 return rc;
2406}
2407
2408
2409/**
2410 * LLDT Emulation.
2411 */
2412static int emInterpretLLdt(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2413{
2414 OP_PARAMVAL param1;
2415 RTSEL sel;
2416
2417 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
2418 if(RT_FAILURE(rc))
2419 return VERR_EM_INTERPRETER;
2420
2421 switch(param1.type)
2422 {
2423 case PARMTYPE_ADDRESS:
2424 return VERR_EM_INTERPRETER; //feeling lazy right now
2425
2426 case PARMTYPE_IMMEDIATE:
2427 if(!(param1.flags & PARAM_VAL16))
2428 return VERR_EM_INTERPRETER;
2429 sel = (RTSEL)param1.val.val16;
2430 break;
2431
2432 default:
2433 return VERR_EM_INTERPRETER;
2434 }
2435
2436 if (sel == 0)
2437 {
2438 if (CPUMGetHyperLDTR(pVM) == 0)
2439 {
2440 // this simple case is most frequent in Windows 2000 (31k - boot & shutdown)
2441 return VINF_SUCCESS;
2442 }
2443 }
2444 //still feeling lazy
2445 return VERR_EM_INTERPRETER;
2446}
2447
2448#ifdef IN_RING0
2449/**
2450 * LIDT/LGDT Emulation.
2451 */
2452static int emInterpretLIGdt(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2453{
2454 OP_PARAMVAL param1;
2455 RTGCPTR pParam1;
2456 X86XDTR32 dtr32;
2457
2458 Log(("Emulate %s at %RGv\n", emGetMnemonic(pCpu), (RTGCPTR)pRegFrame->rip));
2459
2460 /* Only for the VT-x real-mode emulation case. */
2461 if (!CPUMIsGuestInRealMode(pVM))
2462 return VERR_EM_INTERPRETER;
2463
2464 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
2465 if(RT_FAILURE(rc))
2466 return VERR_EM_INTERPRETER;
2467
2468 switch(param1.type)
2469 {
2470 case PARMTYPE_ADDRESS:
2471 pParam1 = emConvertToFlatAddr(pVM, pRegFrame, pCpu, &pCpu->param1, param1.val.val16);
2472 break;
2473
2474 default:
2475 return VERR_EM_INTERPRETER;
2476 }
2477
2478 rc = emRamRead(pVM, pRegFrame, &dtr32, pParam1, sizeof(dtr32));
2479 AssertRCReturn(rc, VERR_EM_INTERPRETER);
2480
2481 if (!(pCpu->prefix & PREFIX_OPSIZE))
2482 dtr32.uAddr &= 0xffffff; /* 16 bits operand size */
2483
2484 if (pCpu->pCurInstr->opcode == OP_LIDT)
2485 CPUMSetGuestIDTR(pVM, dtr32.uAddr, dtr32.cb);
2486 else
2487 CPUMSetGuestGDTR(pVM, dtr32.uAddr, dtr32.cb);
2488
2489 return VINF_SUCCESS;
2490}
2491#endif
2492
2493
2494#ifdef IN_RC
2495/**
2496 * STI Emulation.
2497 *
2498 * @remark the instruction following sti is guaranteed to be executed before any interrupts are dispatched
2499 */
2500static int emInterpretSti(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2501{
2502 PPATMGCSTATE pGCState = PATMQueryGCState(pVM);
2503
2504 if(!pGCState)
2505 {
2506 Assert(pGCState);
2507 return VERR_EM_INTERPRETER;
2508 }
2509 pGCState->uVMFlags |= X86_EFL_IF;
2510
2511 Assert(pRegFrame->eflags.u32 & X86_EFL_IF);
2512 Assert(pvFault == SELMToFlat(pVM, DIS_SELREG_CS, pRegFrame, (RTGCPTR)pRegFrame->rip));
2513
2514 pVM->em.s.GCPtrInhibitInterrupts = pRegFrame->eip + pCpu->opsize;
2515 VM_FF_SET(pVM, VM_FF_INHIBIT_INTERRUPTS);
2516
2517 return VINF_SUCCESS;
2518}
2519#endif /* IN_RC */
2520
2521
2522/**
2523 * HLT Emulation.
2524 */
2525static int emInterpretHlt(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2526{
2527 return VINF_EM_HALT;
2528}
2529
2530
2531/**
2532 * Interpret RDTSC
2533 *
2534 * @returns VBox status code.
2535 * @param pVM The VM handle.
2536 * @param pRegFrame The register frame.
2537 *
2538 */
2539VMMDECL(int) EMInterpretRdtsc(PVM pVM, PCPUMCTXCORE pRegFrame)
2540{
2541 unsigned uCR4 = CPUMGetGuestCR4(pVM);
2542
2543 if (uCR4 & X86_CR4_TSD)
2544 return VERR_EM_INTERPRETER; /* genuine #GP */
2545
2546 uint64_t uTicks = TMCpuTickGet(pVM);
2547
2548 /* Same behaviour in 32 & 64 bits mode */
2549 pRegFrame->rax = (uint32_t)uTicks;
2550 pRegFrame->rdx = (uTicks >> 32ULL);
2551
2552 return VINF_SUCCESS;
2553}
2554
2555VMMDECL(int) EMInterpretRdtscp(PVM pVM, PCPUMCTX pCtx)
2556{
2557 unsigned uCR4 = CPUMGetGuestCR4(pVM);
2558
2559 if (!CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
2560 {
2561 AssertFailed();
2562 return VERR_EM_INTERPRETER; /* genuine #UD */
2563 }
2564
2565 if (uCR4 & X86_CR4_TSD)
2566 return VERR_EM_INTERPRETER; /* genuine #GP */
2567
2568 uint64_t uTicks = TMCpuTickGet(pVM);
2569
2570 /* Same behaviour in 32 & 64 bits mode */
2571 pCtx->rax = (uint32_t)uTicks;
2572 pCtx->rdx = (uTicks >> 32ULL);
2573 /* Low dword of the TSC_AUX msr only. */
2574 pCtx->rcx = (uint32_t)CPUMGetGuestMsr(pVM, MSR_K8_TSC_AUX);
2575
2576 return VINF_SUCCESS;
2577}
2578
2579/**
2580 * RDTSC Emulation.
2581 */
2582static int emInterpretRdtsc(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2583{
2584 return EMInterpretRdtsc(pVM, pRegFrame);
2585}
2586
2587
2588/**
2589 * MONITOR Emulation.
2590 */
2591static int emInterpretMonitor(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2592{
2593 uint32_t u32Dummy, u32ExtFeatures, cpl;
2594
2595 Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
2596 if (pRegFrame->ecx != 0)
2597 return VERR_EM_INTERPRETER; /* illegal value. */
2598
2599 /* Get the current privilege level. */
2600 cpl = CPUMGetGuestCPL(pVM, pRegFrame);
2601 if (cpl != 0)
2602 return VERR_EM_INTERPRETER; /* supervisor only */
2603
2604 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
2605 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
2606 return VERR_EM_INTERPRETER; /* not supported */
2607
2608 return VINF_SUCCESS;
2609}
2610
2611
2612/**
2613 * MWAIT Emulation.
2614 */
2615static int emInterpretMWait(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2616{
2617 uint32_t u32Dummy, u32ExtFeatures, cpl;
2618
2619 Assert(pCpu->mode != CPUMODE_64BIT); /** @todo check */
2620 if (pRegFrame->ecx != 0)
2621 return VERR_EM_INTERPRETER; /* illegal value. */
2622
2623 /* Get the current privilege level. */
2624 cpl = CPUMGetGuestCPL(pVM, pRegFrame);
2625 if (cpl != 0)
2626 return VERR_EM_INTERPRETER; /* supervisor only */
2627
2628 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Dummy);
2629 if (!(u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR))
2630 return VERR_EM_INTERPRETER; /* not supported */
2631
2632 /** @todo not completely correct */
2633 return VINF_EM_HALT;
2634}
2635
2636
2637#ifdef LOG_ENABLED
2638static const char *emMSRtoString(uint32_t uMsr)
2639{
2640 switch (uMsr)
2641 {
2642 case MSR_IA32_APICBASE:
2643 return "MSR_IA32_APICBASE";
2644 case MSR_IA32_CR_PAT:
2645 return "MSR_IA32_CR_PAT";
2646 case MSR_IA32_SYSENTER_CS:
2647 return "MSR_IA32_SYSENTER_CS";
2648 case MSR_IA32_SYSENTER_EIP:
2649 return "MSR_IA32_SYSENTER_EIP";
2650 case MSR_IA32_SYSENTER_ESP:
2651 return "MSR_IA32_SYSENTER_ESP";
2652 case MSR_K6_EFER:
2653 return "MSR_K6_EFER";
2654 case MSR_K8_SF_MASK:
2655 return "MSR_K8_SF_MASK";
2656 case MSR_K6_STAR:
2657 return "MSR_K6_STAR";
2658 case MSR_K8_LSTAR:
2659 return "MSR_K8_LSTAR";
2660 case MSR_K8_CSTAR:
2661 return "MSR_K8_CSTAR";
2662 case MSR_K8_FS_BASE:
2663 return "MSR_K8_FS_BASE";
2664 case MSR_K8_GS_BASE:
2665 return "MSR_K8_GS_BASE";
2666 case MSR_K8_KERNEL_GS_BASE:
2667 return "MSR_K8_KERNEL_GS_BASE";
2668 case MSR_K8_TSC_AUX:
2669 return "MSR_K8_TSC_AUX";
2670 case MSR_IA32_BIOS_SIGN_ID:
2671 return "Unsupported MSR_IA32_BIOS_SIGN_ID";
2672 case MSR_IA32_PLATFORM_ID:
2673 return "Unsupported MSR_IA32_PLATFORM_ID";
2674 case MSR_IA32_BIOS_UPDT_TRIG:
2675 return "Unsupported MSR_IA32_BIOS_UPDT_TRIG";
2676 case MSR_IA32_TSC:
2677 return "Unsupported MSR_IA32_TSC";
2678 case MSR_IA32_MTRR_CAP:
2679 return "Unsupported MSR_IA32_MTRR_CAP";
2680 case MSR_IA32_MCP_CAP:
2681 return "Unsupported MSR_IA32_MCP_CAP";
2682 case MSR_IA32_MCP_STATUS:
2683 return "Unsupported MSR_IA32_MCP_STATUS";
2684 case MSR_IA32_MCP_CTRL:
2685 return "Unsupported MSR_IA32_MCP_CTRL";
2686 case MSR_IA32_MTRR_DEF_TYPE:
2687 return "Unsupported MSR_IA32_MTRR_DEF_TYPE";
2688 case MSR_K7_EVNTSEL0:
2689 return "Unsupported MSR_K7_EVNTSEL0";
2690 case MSR_K7_EVNTSEL1:
2691 return "Unsupported MSR_K7_EVNTSEL1";
2692 case MSR_K7_EVNTSEL2:
2693 return "Unsupported MSR_K7_EVNTSEL2";
2694 case MSR_K7_EVNTSEL3:
2695 return "Unsupported MSR_K7_EVNTSEL3";
2696 case MSR_IA32_MC0_CTL:
2697 return "Unsupported MSR_IA32_MC0_CTL";
2698 case MSR_IA32_MC0_STATUS:
2699 return "Unsupported MSR_IA32_MC0_STATUS";
2700 }
2701 return "Unknown MSR";
2702}
2703#endif /* LOG_ENABLED */
2704
2705
2706/**
2707 * Interpret RDMSR
2708 *
2709 * @returns VBox status code.
2710 * @param pVM The VM handle.
2711 * @param pRegFrame The register frame.
2712 *
2713 */
2714VMMDECL(int) EMInterpretRdmsr(PVM pVM, PCPUMCTXCORE pRegFrame)
2715{
2716 uint32_t u32Dummy, u32Features, cpl;
2717 uint64_t val;
2718 CPUMCTX *pCtx;
2719 int rc = VINF_SUCCESS;
2720
2721 /** @todo According to the Intel manuals, there's a REX version of RDMSR that is slightly different.
2722 * That version clears the high dwords of both RDX & RAX */
2723 pCtx = CPUMQueryGuestCtxPtr(pVM);
2724
2725 /* Get the current privilege level. */
2726 cpl = CPUMGetGuestCPL(pVM, pRegFrame);
2727 if (cpl != 0)
2728 return VERR_EM_INTERPRETER; /* supervisor only */
2729
2730 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2731 if (!(u32Features & X86_CPUID_FEATURE_EDX_MSR))
2732 return VERR_EM_INTERPRETER; /* not supported */
2733
2734 switch (pRegFrame->ecx)
2735 {
2736 case MSR_IA32_APICBASE:
2737 rc = PDMApicGetBase(pVM, &val);
2738 AssertRC(rc);
2739 break;
2740
2741 case MSR_IA32_CR_PAT:
2742 val = pCtx->msrPAT;
2743 break;
2744
2745 case MSR_IA32_SYSENTER_CS:
2746 val = pCtx->SysEnter.cs;
2747 break;
2748
2749 case MSR_IA32_SYSENTER_EIP:
2750 val = pCtx->SysEnter.eip;
2751 break;
2752
2753 case MSR_IA32_SYSENTER_ESP:
2754 val = pCtx->SysEnter.esp;
2755 break;
2756
2757 case MSR_K6_EFER:
2758 val = pCtx->msrEFER;
2759 break;
2760
2761 case MSR_K8_SF_MASK:
2762 val = pCtx->msrSFMASK;
2763 break;
2764
2765 case MSR_K6_STAR:
2766 val = pCtx->msrSTAR;
2767 break;
2768
2769 case MSR_K8_LSTAR:
2770 val = pCtx->msrLSTAR;
2771 break;
2772
2773 case MSR_K8_CSTAR:
2774 val = pCtx->msrCSTAR;
2775 break;
2776
2777 case MSR_K8_FS_BASE:
2778 val = pCtx->fsHid.u64Base;
2779 break;
2780
2781 case MSR_K8_GS_BASE:
2782 val = pCtx->gsHid.u64Base;
2783 break;
2784
2785 case MSR_K8_KERNEL_GS_BASE:
2786 val = pCtx->msrKERNELGSBASE;
2787 break;
2788
2789 case MSR_K8_TSC_AUX:
2790 val = CPUMGetGuestMsr(pVM, MSR_K8_TSC_AUX);
2791 break;
2792
2793#if 0 /*def IN_RING0 */
2794 case MSR_IA32_PLATFORM_ID:
2795 case MSR_IA32_BIOS_SIGN_ID:
2796 if (CPUMGetCPUVendor(pVM) == CPUMCPUVENDOR_INTEL)
2797 {
2798 /* Available since the P6 family. VT-x implies that this feature is present. */
2799 if (pRegFrame->ecx == MSR_IA32_PLATFORM_ID)
2800 val = ASMRdMsr(MSR_IA32_PLATFORM_ID);
2801 else
2802 if (pRegFrame->ecx == MSR_IA32_BIOS_SIGN_ID)
2803 val = ASMRdMsr(MSR_IA32_BIOS_SIGN_ID);
2804 break;
2805 }
2806 /* no break */
2807#endif
2808 default:
2809 /* In X2APIC specification this range is reserved for APIC control. */
2810 if ((pRegFrame->ecx >= MSR_IA32_APIC_START) && (pRegFrame->ecx < MSR_IA32_APIC_END))
2811 rc = PDMApicReadMSR(pVM, VMMGetCpuId(pVM), pRegFrame->ecx, &val);
2812 else
2813 /* We should actually trigger a #GP here, but don't as that might cause more trouble. */
2814 val = 0;
2815 break;
2816 }
2817 LogFlow(("EMInterpretRdmsr %s (%x) -> val=%RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx, val));
2818 if (rc == VINF_SUCCESS)
2819 {
2820 pRegFrame->rax = (uint32_t) val;
2821 pRegFrame->rdx = (uint32_t) (val >> 32ULL);
2822 }
2823 return rc;
2824}
2825
2826
2827/**
2828 * RDMSR Emulation.
2829 */
2830static int emInterpretRdmsr(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2831{
2832 /* Note: the Intel manual claims there's a REX version of RDMSR that's slightly different, so we play safe by completely disassembling the instruction. */
2833 Assert(!(pCpu->prefix & PREFIX_REX));
2834 return EMInterpretRdmsr(pVM, pRegFrame);
2835}
2836
2837
2838/**
2839 * Interpret WRMSR
2840 *
2841 * @returns VBox status code.
2842 * @param pVM The VM handle.
2843 * @param pRegFrame The register frame.
2844 */
2845VMMDECL(int) EMInterpretWrmsr(PVM pVM, PCPUMCTXCORE pRegFrame)
2846{
2847 uint32_t u32Dummy, u32Features, cpl;
2848 uint64_t val;
2849 CPUMCTX *pCtx;
2850
2851 /* Note: works the same in 32 and 64 bits modes. */
2852 pCtx = CPUMQueryGuestCtxPtr(pVM);
2853
2854 /* Get the current privilege level. */
2855 cpl = CPUMGetGuestCPL(pVM, pRegFrame);
2856 if (cpl != 0)
2857 return VERR_EM_INTERPRETER; /* supervisor only */
2858
2859 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2860 if (!(u32Features & X86_CPUID_FEATURE_EDX_MSR))
2861 return VERR_EM_INTERPRETER; /* not supported */
2862
2863 val = RT_MAKE_U64(pRegFrame->eax, pRegFrame->edx);
2864 LogFlow(("EMInterpretWrmsr %s (%x) val=%RX64\n", emMSRtoString(pRegFrame->ecx), pRegFrame->ecx, val));
2865 switch (pRegFrame->ecx)
2866 {
2867 case MSR_IA32_APICBASE:
2868 {
2869 int rc = PDMApicSetBase(pVM, val);
2870 AssertRC(rc);
2871 break;
2872 }
2873
2874 case MSR_IA32_CR_PAT:
2875 pCtx->msrPAT = val;
2876 break;
2877
2878 case MSR_IA32_SYSENTER_CS:
2879 pCtx->SysEnter.cs = val & 0xffff; /* 16 bits selector */
2880 break;
2881
2882 case MSR_IA32_SYSENTER_EIP:
2883 pCtx->SysEnter.eip = val;
2884 break;
2885
2886 case MSR_IA32_SYSENTER_ESP:
2887 pCtx->SysEnter.esp = val;
2888 break;
2889
2890 case MSR_K6_EFER:
2891 {
2892 uint64_t uMask = 0;
2893 uint64_t oldval = pCtx->msrEFER;
2894
2895 /* Filter out those bits the guest is allowed to change. (e.g. LMA is read-only) */
2896 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2897 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_NX)
2898 uMask |= MSR_K6_EFER_NXE;
2899 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_LONG_MODE)
2900 uMask |= MSR_K6_EFER_LME;
2901 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_SEP)
2902 uMask |= MSR_K6_EFER_SCE;
2903 if (u32Features & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
2904 uMask |= MSR_K6_EFER_FFXSR;
2905
2906 /* Check for illegal MSR_K6_EFER_LME transitions: not allowed to change LME if paging is enabled. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
2907 if ( ((pCtx->msrEFER & MSR_K6_EFER_LME) != (val & uMask & MSR_K6_EFER_LME))
2908 && (pCtx->cr0 & X86_CR0_PG))
2909 {
2910 AssertMsgFailed(("Illegal MSR_K6_EFER_LME change: paging is enabled!!\n"));
2911 return VERR_EM_INTERPRETER; /* @todo generate #GP(0) */
2912 }
2913
2914 /* There are a few more: e.g. MSR_K6_EFER_LMSLE */
2915 AssertMsg(!(val & ~(MSR_K6_EFER_NXE|MSR_K6_EFER_LME|MSR_K6_EFER_LMA /* ignored anyway */ |MSR_K6_EFER_SCE|MSR_K6_EFER_FFXSR)), ("Unexpected value %RX64\n", val));
2916 pCtx->msrEFER = (pCtx->msrEFER & ~uMask) | (val & uMask);
2917
2918 /* AMD64 Architecture Programmer's Manual: 15.15 TLB Control; flush the TLB if MSR_K6_EFER_NXE, MSR_K6_EFER_LME or MSR_K6_EFER_LMA are changed. */
2919 if ((oldval & (MSR_K6_EFER_NXE|MSR_K6_EFER_LME|MSR_K6_EFER_LMA)) != (pCtx->msrEFER & (MSR_K6_EFER_NXE|MSR_K6_EFER_LME|MSR_K6_EFER_LMA)))
2920 HWACCMFlushTLB(pVM);
2921
2922 break;
2923 }
2924
2925 case MSR_K8_SF_MASK:
2926 pCtx->msrSFMASK = val;
2927 break;
2928
2929 case MSR_K6_STAR:
2930 pCtx->msrSTAR = val;
2931 break;
2932
2933 case MSR_K8_LSTAR:
2934 pCtx->msrLSTAR = val;
2935 break;
2936
2937 case MSR_K8_CSTAR:
2938 pCtx->msrCSTAR = val;
2939 break;
2940
2941 case MSR_K8_FS_BASE:
2942 pCtx->fsHid.u64Base = val;
2943 break;
2944
2945 case MSR_K8_GS_BASE:
2946 pCtx->gsHid.u64Base = val;
2947 break;
2948
2949 case MSR_K8_KERNEL_GS_BASE:
2950 pCtx->msrKERNELGSBASE = val;
2951 break;
2952
2953 case MSR_K8_TSC_AUX:
2954 CPUMSetGuestMsr(pVM, MSR_K8_TSC_AUX, val);
2955 break;
2956
2957 default:
2958 /* In X2APIC specification this range is reserved for APIC control. */
2959 if ((pRegFrame->ecx >= MSR_IA32_APIC_START) && (pRegFrame->ecx < MSR_IA32_APIC_END))
2960 return PDMApicWriteMSR(pVM, VMMGetCpuId(pVM), pRegFrame->ecx, val);
2961
2962 /* We should actually trigger a #GP here, but don't as that might cause more trouble. */
2963 break;
2964 }
2965 return VINF_SUCCESS;
2966}
2967
2968
2969/**
2970 * WRMSR Emulation.
2971 */
2972static int emInterpretWrmsr(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2973{
2974 return EMInterpretWrmsr(pVM, pRegFrame);
2975}
2976
2977
2978/**
2979 * Internal worker.
2980 * @copydoc EMInterpretInstructionCPU
2981 */
2982DECLINLINE(int) emInterpretInstructionCPU(PVM pVM, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, uint32_t *pcbSize)
2983{
2984 Assert(pcbSize);
2985 *pcbSize = 0;
2986
2987 /*
2988 * Only supervisor guest code!!
2989 * And no complicated prefixes.
2990 */
2991 /* Get the current privilege level. */
2992 uint32_t cpl = CPUMGetGuestCPL(pVM, pRegFrame);
2993 if ( cpl != 0
2994 && pCpu->pCurInstr->opcode != OP_RDTSC) /* rdtsc requires emulation in ring 3 as well */
2995 {
2996 Log(("WARNING: refusing instruction emulation for user-mode code!!\n"));
2997 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedUserMode));
2998 return VERR_EM_INTERPRETER;
2999 }
3000
3001#ifdef IN_RC
3002 if ( (pCpu->prefix & (PREFIX_REPNE | PREFIX_REP))
3003 || ( (pCpu->prefix & PREFIX_LOCK)
3004 && pCpu->pCurInstr->opcode != OP_CMPXCHG
3005 && pCpu->pCurInstr->opcode != OP_CMPXCHG8B
3006 && pCpu->pCurInstr->opcode != OP_XADD
3007 && pCpu->pCurInstr->opcode != OP_OR
3008 && pCpu->pCurInstr->opcode != OP_BTR
3009 )
3010 )
3011#else
3012 if ( (pCpu->prefix & PREFIX_REPNE)
3013 || ( (pCpu->prefix & PREFIX_REP)
3014 && pCpu->pCurInstr->opcode != OP_STOSWD
3015 )
3016 || ( (pCpu->prefix & PREFIX_LOCK)
3017 && pCpu->pCurInstr->opcode != OP_OR
3018 && pCpu->pCurInstr->opcode != OP_BTR
3019 && pCpu->pCurInstr->opcode != OP_CMPXCHG
3020 && pCpu->pCurInstr->opcode != OP_CMPXCHG8B
3021 )
3022 )
3023#endif
3024 {
3025 //Log(("EMInterpretInstruction: wrong prefix!!\n"));
3026 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedPrefix));
3027 return VERR_EM_INTERPRETER;
3028 }
3029
3030#if HC_ARCH_BITS == 32
3031 /*
3032 * Unable to emulate most >4 bytes accesses in 32 bits mode.
3033 * Whitelisted instructions are safe.
3034 */
3035 if ( pCpu->param1.size > 4
3036 && CPUMIsGuestIn64BitCode(pVM, pRegFrame))
3037 {
3038 uint32_t uOpCode = pCpu->pCurInstr->opcode;
3039 if ( uOpCode != OP_STOSWD
3040 && uOpCode != OP_MOV
3041 && uOpCode != OP_CMPXCHG8B
3042 && uOpCode != OP_XCHG
3043 && uOpCode != OP_BTS
3044 && uOpCode != OP_BTR
3045 && uOpCode != OP_BTC
3046# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL_IN_R0
3047 && uOpCode != OP_CMPXCHG /* solaris */
3048 && uOpCode != OP_AND /* windows */
3049 && uOpCode != OP_OR /* windows */
3050 && uOpCode != OP_XOR /* because we can */
3051 && uOpCode != OP_ADD /* windows (dripple) */
3052 && uOpCode != OP_ADC /* because we can */
3053 && uOpCode != OP_SUB /* because we can */
3054 /** @todo OP_BTS or is that a different kind of failure? */
3055# endif
3056 )
3057 {
3058# ifdef VBOX_WITH_STATISTICS
3059 switch (pCpu->pCurInstr->opcode)
3060 {
3061# define INTERPRET_FAILED_CASE(opcode, Instr) \
3062 case opcode: STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); break;
3063 INTERPRET_FAILED_CASE(OP_XCHG,Xchg);
3064 INTERPRET_FAILED_CASE(OP_DEC,Dec);
3065 INTERPRET_FAILED_CASE(OP_INC,Inc);
3066 INTERPRET_FAILED_CASE(OP_POP,Pop);
3067 INTERPRET_FAILED_CASE(OP_OR, Or);
3068 INTERPRET_FAILED_CASE(OP_XOR,Xor);
3069 INTERPRET_FAILED_CASE(OP_AND,And);
3070 INTERPRET_FAILED_CASE(OP_MOV,Mov);
3071 INTERPRET_FAILED_CASE(OP_STOSWD,StosWD);
3072 INTERPRET_FAILED_CASE(OP_INVLPG,InvlPg);
3073 INTERPRET_FAILED_CASE(OP_CPUID,CpuId);
3074 INTERPRET_FAILED_CASE(OP_MOV_CR,MovCRx);
3075 INTERPRET_FAILED_CASE(OP_MOV_DR,MovDRx);
3076 INTERPRET_FAILED_CASE(OP_LLDT,LLdt);
3077 INTERPRET_FAILED_CASE(OP_LIDT,LIdt);
3078 INTERPRET_FAILED_CASE(OP_LGDT,LGdt);
3079 INTERPRET_FAILED_CASE(OP_LMSW,Lmsw);
3080 INTERPRET_FAILED_CASE(OP_CLTS,Clts);
3081 INTERPRET_FAILED_CASE(OP_MONITOR,Monitor);
3082 INTERPRET_FAILED_CASE(OP_MWAIT,MWait);
3083 INTERPRET_FAILED_CASE(OP_RDMSR,Rdmsr);
3084 INTERPRET_FAILED_CASE(OP_WRMSR,Wrmsr);
3085 INTERPRET_FAILED_CASE(OP_ADD,Add);
3086 INTERPRET_FAILED_CASE(OP_SUB,Sub);
3087 INTERPRET_FAILED_CASE(OP_ADC,Adc);
3088 INTERPRET_FAILED_CASE(OP_BTR,Btr);
3089 INTERPRET_FAILED_CASE(OP_BTS,Bts);
3090 INTERPRET_FAILED_CASE(OP_BTC,Btc);
3091 INTERPRET_FAILED_CASE(OP_RDTSC,Rdtsc);
3092 INTERPRET_FAILED_CASE(OP_CMPXCHG, CmpXchg);
3093 INTERPRET_FAILED_CASE(OP_STI, Sti);
3094 INTERPRET_FAILED_CASE(OP_XADD,XAdd);
3095 INTERPRET_FAILED_CASE(OP_CMPXCHG8B,CmpXchg8b);
3096 INTERPRET_FAILED_CASE(OP_HLT, Hlt);
3097 INTERPRET_FAILED_CASE(OP_IRET,Iret);
3098 INTERPRET_FAILED_CASE(OP_WBINVD,WbInvd);
3099 INTERPRET_FAILED_CASE(OP_MOVNTPS,MovNTPS);
3100# undef INTERPRET_FAILED_CASE
3101 default:
3102 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3103 break;
3104 }
3105# endif /* VBOX_WITH_STATISTICS */
3106 return VERR_EM_INTERPRETER;
3107 }
3108 }
3109#endif
3110
3111 int rc;
3112#if (defined(VBOX_STRICT) || defined(LOG_ENABLED))
3113 LogFlow(("emInterpretInstructionCPU %s\n", emGetMnemonic(pCpu)));
3114#endif
3115 switch (pCpu->pCurInstr->opcode)
3116 {
3117 /*
3118 * Macros for generating the right case statements.
3119 */
3120# define INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3121 case opcode:\
3122 if (pCpu->prefix & PREFIX_LOCK) \
3123 rc = emInterpretLock##InstrFn(pVM, pCpu, pRegFrame, pvFault, pcbSize, pfnEmulateLock); \
3124 else \
3125 rc = emInterpret##InstrFn(pVM, pCpu, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3126 if (RT_SUCCESS(rc)) \
3127 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3128 else \
3129 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3130 return rc
3131#define INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate) \
3132 case opcode:\
3133 rc = emInterpret##InstrFn(pVM, pCpu, pRegFrame, pvFault, pcbSize, pfnEmulate); \
3134 if (RT_SUCCESS(rc)) \
3135 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3136 else \
3137 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3138 return rc
3139
3140#define INTERPRET_CASE_EX_PARAM2(opcode, Instr, InstrFn, pfnEmulate) \
3141 INTERPRET_CASE_EX_PARAM3(opcode, Instr, InstrFn, pfnEmulate)
3142#define INTERPRET_CASE_EX_LOCK_PARAM2(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock) \
3143 INTERPRET_CASE_EX_LOCK_PARAM3(opcode, Instr, InstrFn, pfnEmulate, pfnEmulateLock)
3144
3145#define INTERPRET_CASE(opcode, Instr) \
3146 case opcode:\
3147 rc = emInterpret##Instr(pVM, pCpu, pRegFrame, pvFault, pcbSize); \
3148 if (RT_SUCCESS(rc)) \
3149 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3150 else \
3151 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3152 return rc
3153
3154#define INTERPRET_CASE_EX_DUAL_PARAM2(opcode, Instr, InstrFn) \
3155 case opcode:\
3156 rc = emInterpret##InstrFn(pVM, pCpu, pRegFrame, pvFault, pcbSize); \
3157 if (RT_SUCCESS(rc)) \
3158 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Instr)); \
3159 else \
3160 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); \
3161 return rc
3162
3163#define INTERPRET_STAT_CASE(opcode, Instr) \
3164 case opcode: STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,Failed##Instr)); return VERR_EM_INTERPRETER;
3165
3166 /*
3167 * The actual case statements.
3168 */
3169 INTERPRET_CASE(OP_XCHG,Xchg);
3170 INTERPRET_CASE_EX_PARAM2(OP_DEC,Dec, IncDec, EMEmulateDec);
3171 INTERPRET_CASE_EX_PARAM2(OP_INC,Inc, IncDec, EMEmulateInc);
3172 INTERPRET_CASE(OP_POP,Pop);
3173 INTERPRET_CASE_EX_LOCK_PARAM3(OP_OR, Or, OrXorAnd, EMEmulateOr, EMEmulateLockOr);
3174 INTERPRET_CASE_EX_PARAM3(OP_XOR,Xor, OrXorAnd, EMEmulateXor);
3175 INTERPRET_CASE_EX_PARAM3(OP_AND,And, OrXorAnd, EMEmulateAnd);
3176 INTERPRET_CASE(OP_MOV,Mov);
3177#ifndef IN_RC
3178 INTERPRET_CASE(OP_STOSWD,StosWD);
3179#endif
3180 INTERPRET_CASE(OP_INVLPG,InvlPg);
3181 INTERPRET_CASE(OP_CPUID,CpuId);
3182 INTERPRET_CASE(OP_MOV_CR,MovCRx);
3183 INTERPRET_CASE(OP_MOV_DR,MovDRx);
3184 INTERPRET_CASE(OP_LLDT,LLdt);
3185#ifdef IN_RING0
3186 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LIDT, LIdt, LIGdt);
3187 INTERPRET_CASE_EX_DUAL_PARAM2(OP_LGDT, LGdt, LIGdt);
3188#endif
3189 INTERPRET_CASE(OP_LMSW,Lmsw);
3190#ifdef EM_EMULATE_SMSW
3191 INTERPRET_CASE(OP_SMSW,Smsw);
3192#endif
3193 INTERPRET_CASE(OP_CLTS,Clts);
3194 INTERPRET_CASE(OP_MONITOR, Monitor);
3195 INTERPRET_CASE(OP_MWAIT, MWait);
3196 INTERPRET_CASE(OP_RDMSR, Rdmsr);
3197 INTERPRET_CASE(OP_WRMSR, Wrmsr);
3198 INTERPRET_CASE_EX_PARAM3(OP_ADD,Add, AddSub, EMEmulateAdd);
3199 INTERPRET_CASE_EX_PARAM3(OP_SUB,Sub, AddSub, EMEmulateSub);
3200 INTERPRET_CASE(OP_ADC,Adc);
3201 INTERPRET_CASE_EX_LOCK_PARAM2(OP_BTR,Btr, BitTest, EMEmulateBtr, EMEmulateLockBtr);
3202 INTERPRET_CASE_EX_PARAM2(OP_BTS,Bts, BitTest, EMEmulateBts);
3203 INTERPRET_CASE_EX_PARAM2(OP_BTC,Btc, BitTest, EMEmulateBtc);
3204 INTERPRET_CASE(OP_RDTSC,Rdtsc);
3205 INTERPRET_CASE(OP_CMPXCHG, CmpXchg);
3206#ifdef IN_RC
3207 INTERPRET_CASE(OP_STI,Sti);
3208 INTERPRET_CASE(OP_XADD, XAdd);
3209#endif
3210 INTERPRET_CASE(OP_CMPXCHG8B, CmpXchg8b);
3211 INTERPRET_CASE(OP_HLT,Hlt);
3212 INTERPRET_CASE(OP_IRET,Iret);
3213 INTERPRET_CASE(OP_WBINVD,WbInvd);
3214#ifdef VBOX_WITH_STATISTICS
3215# ifndef IN_RC
3216 INTERPRET_STAT_CASE(OP_XADD, XAdd);
3217# endif
3218 INTERPRET_STAT_CASE(OP_MOVNTPS,MovNTPS);
3219#endif
3220
3221 default:
3222 Log3(("emInterpretInstructionCPU: opcode=%d\n", pCpu->pCurInstr->opcode));
3223 STAM_COUNTER_INC(&pVM->em.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,FailedMisc));
3224 return VERR_EM_INTERPRETER;
3225
3226#undef INTERPRET_CASE_EX_PARAM2
3227#undef INTERPRET_STAT_CASE
3228#undef INTERPRET_CASE_EX
3229#undef INTERPRET_CASE
3230 } /* switch (opcode) */
3231 AssertFailed();
3232 return VERR_INTERNAL_ERROR;
3233}
3234
3235
3236/**
3237 * Sets the PC for which interrupts should be inhibited.
3238 *
3239 * @param pVM The VM handle.
3240 * @param PC The PC.
3241 */
3242VMMDECL(void) EMSetInhibitInterruptsPC(PVM pVM, RTGCUINTPTR PC)
3243{
3244 pVM->em.s.GCPtrInhibitInterrupts = PC;
3245 VM_FF_SET(pVM, VM_FF_INHIBIT_INTERRUPTS);
3246}
3247
3248
3249/**
3250 * Gets the PC for which interrupts should be inhibited.
3251 *
3252 * There are a few instructions which inhibits or delays interrupts
3253 * for the instruction following them. These instructions are:
3254 * - STI
3255 * - MOV SS, r/m16
3256 * - POP SS
3257 *
3258 * @returns The PC for which interrupts should be inhibited.
3259 * @param pVM VM handle.
3260 *
3261 */
3262VMMDECL(RTGCUINTPTR) EMGetInhibitInterruptsPC(PVM pVM)
3263{
3264 return pVM->em.s.GCPtrInhibitInterrupts;
3265}
3266
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette