1 | /* $Id: IEMAllN8veRecompiler.cpp 102876 2024-01-15 14:26:27Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - Native Recompiler
|
---|
4 | *
|
---|
5 | * Logging group IEM_RE_NATIVE assignments:
|
---|
6 | * - Level 1 (Log) : ...
|
---|
7 | * - Flow (LogFlow) : ...
|
---|
8 | * - Level 2 (Log2) : Details calls as they're recompiled.
|
---|
9 | * - Level 3 (Log3) : Disassemble native code after recompiling.
|
---|
10 | * - Level 4 (Log4) : ...
|
---|
11 | * - Level 5 (Log5) : ...
|
---|
12 | * - Level 6 (Log6) : ...
|
---|
13 | * - Level 7 (Log7) : ...
|
---|
14 | * - Level 8 (Log8) : ...
|
---|
15 | * - Level 9 (Log9) : ...
|
---|
16 | * - Level 10 (Log10): ...
|
---|
17 | * - Level 11 (Log11): Variable allocator.
|
---|
18 | * - Level 12 (Log12): Register allocator.
|
---|
19 | */
|
---|
20 |
|
---|
21 | /*
|
---|
22 | * Copyright (C) 2023 Oracle and/or its affiliates.
|
---|
23 | *
|
---|
24 | * This file is part of VirtualBox base platform packages, as
|
---|
25 | * available from https://www.virtualbox.org.
|
---|
26 | *
|
---|
27 | * This program is free software; you can redistribute it and/or
|
---|
28 | * modify it under the terms of the GNU General Public License
|
---|
29 | * as published by the Free Software Foundation, in version 3 of the
|
---|
30 | * License.
|
---|
31 | *
|
---|
32 | * This program is distributed in the hope that it will be useful, but
|
---|
33 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
34 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
35 | * General Public License for more details.
|
---|
36 | *
|
---|
37 | * You should have received a copy of the GNU General Public License
|
---|
38 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
39 | *
|
---|
40 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
41 | */
|
---|
42 |
|
---|
43 |
|
---|
44 | /*********************************************************************************************************************************
|
---|
45 | * Header Files *
|
---|
46 | *********************************************************************************************************************************/
|
---|
47 | #define LOG_GROUP LOG_GROUP_IEM_RE_NATIVE
|
---|
48 | #define IEM_WITH_OPAQUE_DECODER_STATE
|
---|
49 | #define VMCPU_INCL_CPUM_GST_CTX
|
---|
50 | #define VMM_INCLUDED_SRC_include_IEMMc_h /* block IEMMc.h inclusion. */
|
---|
51 | #include <VBox/vmm/iem.h>
|
---|
52 | #include <VBox/vmm/cpum.h>
|
---|
53 | #include <VBox/vmm/dbgf.h>
|
---|
54 | #include "IEMInternal.h"
|
---|
55 | #include <VBox/vmm/vmcc.h>
|
---|
56 | #include <VBox/log.h>
|
---|
57 | #include <VBox/err.h>
|
---|
58 | #include <VBox/dis.h>
|
---|
59 | #include <VBox/param.h>
|
---|
60 | #include <iprt/assert.h>
|
---|
61 | #include <iprt/heap.h>
|
---|
62 | #include <iprt/mem.h>
|
---|
63 | #include <iprt/string.h>
|
---|
64 | #if defined(RT_ARCH_AMD64)
|
---|
65 | # include <iprt/x86.h>
|
---|
66 | #elif defined(RT_ARCH_ARM64)
|
---|
67 | # include <iprt/armv8.h>
|
---|
68 | #endif
|
---|
69 |
|
---|
70 | #ifdef RT_OS_WINDOWS
|
---|
71 | # include <iprt/formats/pecoff.h> /* this is incomaptible with windows.h, thus: */
|
---|
72 | extern "C" DECLIMPORT(uint8_t) __cdecl RtlAddFunctionTable(void *pvFunctionTable, uint32_t cEntries, uintptr_t uBaseAddress);
|
---|
73 | extern "C" DECLIMPORT(uint8_t) __cdecl RtlDelFunctionTable(void *pvFunctionTable);
|
---|
74 | #else
|
---|
75 | # include <iprt/formats/dwarf.h>
|
---|
76 | # if defined(RT_OS_DARWIN)
|
---|
77 | # include <libkern/OSCacheControl.h>
|
---|
78 | # define IEMNATIVE_USE_LIBUNWIND
|
---|
79 | extern "C" void __register_frame(const void *pvFde);
|
---|
80 | extern "C" void __deregister_frame(const void *pvFde);
|
---|
81 | # else
|
---|
82 | # ifdef DEBUG_bird /** @todo not thread safe yet */
|
---|
83 | # define IEMNATIVE_USE_GDB_JIT
|
---|
84 | # endif
|
---|
85 | # ifdef IEMNATIVE_USE_GDB_JIT
|
---|
86 | # include <iprt/critsect.h>
|
---|
87 | # include <iprt/once.h>
|
---|
88 | # include <iprt/formats/elf64.h>
|
---|
89 | # endif
|
---|
90 | extern "C" void __register_frame_info(void *pvBegin, void *pvObj); /* found no header for these two */
|
---|
91 | extern "C" void *__deregister_frame_info(void *pvBegin); /* (returns pvObj from __register_frame_info call) */
|
---|
92 | # endif
|
---|
93 | #endif
|
---|
94 | #ifdef VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER
|
---|
95 | # include "/opt/local/include/capstone/capstone.h"
|
---|
96 | #endif
|
---|
97 |
|
---|
98 | #include "IEMInline.h"
|
---|
99 | #include "IEMThreadedFunctions.h"
|
---|
100 | #include "IEMN8veRecompiler.h"
|
---|
101 | #include "IEMN8veRecompilerEmit.h"
|
---|
102 | #include "IEMN8veRecompilerTlbLookup.h"
|
---|
103 | #include "IEMNativeFunctions.h"
|
---|
104 |
|
---|
105 |
|
---|
106 | /*
|
---|
107 | * Narrow down configs here to avoid wasting time on unused configs here.
|
---|
108 | * Note! Same checks in IEMAllThrdRecompiler.cpp.
|
---|
109 | */
|
---|
110 |
|
---|
111 | #ifndef IEM_WITH_CODE_TLB
|
---|
112 | # error The code TLB must be enabled for the recompiler.
|
---|
113 | #endif
|
---|
114 |
|
---|
115 | #ifndef IEM_WITH_DATA_TLB
|
---|
116 | # error The data TLB must be enabled for the recompiler.
|
---|
117 | #endif
|
---|
118 |
|
---|
119 | #ifndef IEM_WITH_SETJMP
|
---|
120 | # error The setjmp approach must be enabled for the recompiler.
|
---|
121 | #endif
|
---|
122 |
|
---|
123 | /** @todo eliminate this clang build hack. */
|
---|
124 | #if RT_CLANG_PREREQ(4, 0)
|
---|
125 | # pragma GCC diagnostic ignored "-Wunused-function"
|
---|
126 | #endif
|
---|
127 |
|
---|
128 |
|
---|
129 | /*********************************************************************************************************************************
|
---|
130 | * Internal Functions *
|
---|
131 | *********************************************************************************************************************************/
|
---|
132 | #ifdef VBOX_STRICT
|
---|
133 | static uint32_t iemNativeEmitGuestRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
134 | uint8_t idxReg, IEMNATIVEGSTREG enmGstReg);
|
---|
135 | static void iemNativeRegAssertSanity(PIEMRECOMPILERSTATE pReNative);
|
---|
136 | #endif
|
---|
137 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
138 | static void iemNativeDbgInfoAddNativeOffset(PIEMRECOMPILERSTATE pReNative, uint32_t off);
|
---|
139 | static void iemNativeDbgInfoAddLabel(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType, uint16_t uData);
|
---|
140 | #endif
|
---|
141 | DECL_FORCE_INLINE(void) iemNativeRegClearGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, uint32_t off);
|
---|
142 | DECL_FORCE_INLINE(void) iemNativeRegClearGstRegShadowingOne(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg,
|
---|
143 | IEMNATIVEGSTREG enmGstReg, uint32_t off);
|
---|
144 | DECL_INLINE_THROW(void) iemNativeVarRegisterRelease(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
|
---|
145 |
|
---|
146 |
|
---|
147 | /*********************************************************************************************************************************
|
---|
148 | * Executable Memory Allocator *
|
---|
149 | *********************************************************************************************************************************/
|
---|
150 | /** @def IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
151 | * Use an alternative chunk sub-allocator that does store internal data
|
---|
152 | * in the chunk.
|
---|
153 | *
|
---|
154 | * Using the RTHeapSimple is not practial on newer darwin systems where
|
---|
155 | * RTMEM_PROT_WRITE and RTMEM_PROT_EXEC are mutually exclusive in process
|
---|
156 | * memory. We would have to change the protection of the whole chunk for
|
---|
157 | * every call to RTHeapSimple, which would be rather expensive.
|
---|
158 | *
|
---|
159 | * This alternative implemenation let restrict page protection modifications
|
---|
160 | * to the pages backing the executable memory we just allocated.
|
---|
161 | */
|
---|
162 | #define IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
163 | /** The chunk sub-allocation unit size in bytes. */
|
---|
164 | #define IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SIZE 128
|
---|
165 | /** The chunk sub-allocation unit size as a shift factor. */
|
---|
166 | #define IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT 7
|
---|
167 |
|
---|
168 | #if defined(IN_RING3) && !defined(RT_OS_WINDOWS)
|
---|
169 | # ifdef IEMNATIVE_USE_GDB_JIT
|
---|
170 | # define IEMNATIVE_USE_GDB_JIT_ET_DYN
|
---|
171 |
|
---|
172 | /** GDB JIT: Code entry. */
|
---|
173 | typedef struct GDBJITCODEENTRY
|
---|
174 | {
|
---|
175 | struct GDBJITCODEENTRY *pNext;
|
---|
176 | struct GDBJITCODEENTRY *pPrev;
|
---|
177 | uint8_t *pbSymFile;
|
---|
178 | uint64_t cbSymFile;
|
---|
179 | } GDBJITCODEENTRY;
|
---|
180 |
|
---|
181 | /** GDB JIT: Actions. */
|
---|
182 | typedef enum GDBJITACTIONS : uint32_t
|
---|
183 | {
|
---|
184 | kGdbJitaction_NoAction = 0, kGdbJitaction_Register, kGdbJitaction_Unregister
|
---|
185 | } GDBJITACTIONS;
|
---|
186 |
|
---|
187 | /** GDB JIT: Descriptor. */
|
---|
188 | typedef struct GDBJITDESCRIPTOR
|
---|
189 | {
|
---|
190 | uint32_t uVersion;
|
---|
191 | GDBJITACTIONS enmAction;
|
---|
192 | GDBJITCODEENTRY *pRelevant;
|
---|
193 | GDBJITCODEENTRY *pHead;
|
---|
194 | /** Our addition: */
|
---|
195 | GDBJITCODEENTRY *pTail;
|
---|
196 | } GDBJITDESCRIPTOR;
|
---|
197 |
|
---|
198 | /** GDB JIT: Our simple symbol file data. */
|
---|
199 | typedef struct GDBJITSYMFILE
|
---|
200 | {
|
---|
201 | Elf64_Ehdr EHdr;
|
---|
202 | # ifndef IEMNATIVE_USE_GDB_JIT_ET_DYN
|
---|
203 | Elf64_Shdr aShdrs[5];
|
---|
204 | # else
|
---|
205 | Elf64_Shdr aShdrs[7];
|
---|
206 | Elf64_Phdr aPhdrs[2];
|
---|
207 | # endif
|
---|
208 | /** The dwarf ehframe data for the chunk. */
|
---|
209 | uint8_t abEhFrame[512];
|
---|
210 | char szzStrTab[128];
|
---|
211 | Elf64_Sym aSymbols[3];
|
---|
212 | # ifdef IEMNATIVE_USE_GDB_JIT_ET_DYN
|
---|
213 | Elf64_Sym aDynSyms[2];
|
---|
214 | Elf64_Dyn aDyn[6];
|
---|
215 | # endif
|
---|
216 | } GDBJITSYMFILE;
|
---|
217 |
|
---|
218 | extern "C" GDBJITDESCRIPTOR __jit_debug_descriptor;
|
---|
219 | extern "C" DECLEXPORT(void) __jit_debug_register_code(void);
|
---|
220 |
|
---|
221 | /** Init once for g_IemNativeGdbJitLock. */
|
---|
222 | static RTONCE g_IemNativeGdbJitOnce = RTONCE_INITIALIZER;
|
---|
223 | /** Init once for the critical section. */
|
---|
224 | static RTCRITSECT g_IemNativeGdbJitLock;
|
---|
225 |
|
---|
226 | /** GDB reads the info here. */
|
---|
227 | GDBJITDESCRIPTOR __jit_debug_descriptor = { 1, kGdbJitaction_NoAction, NULL, NULL };
|
---|
228 |
|
---|
229 | /** GDB sets a breakpoint on this and checks __jit_debug_descriptor when hit. */
|
---|
230 | DECL_NO_INLINE(RT_NOTHING, DECLEXPORT(void)) __jit_debug_register_code(void)
|
---|
231 | {
|
---|
232 | ASMNopPause();
|
---|
233 | }
|
---|
234 |
|
---|
235 | /** @callback_method_impl{FNRTONCE} */
|
---|
236 | static DECLCALLBACK(int32_t) iemNativeGdbJitInitOnce(void *pvUser)
|
---|
237 | {
|
---|
238 | RT_NOREF(pvUser);
|
---|
239 | return RTCritSectInit(&g_IemNativeGdbJitLock);
|
---|
240 | }
|
---|
241 |
|
---|
242 |
|
---|
243 | # endif /* IEMNATIVE_USE_GDB_JIT */
|
---|
244 |
|
---|
245 | /**
|
---|
246 | * Per-chunk unwind info for non-windows hosts.
|
---|
247 | */
|
---|
248 | typedef struct IEMEXECMEMCHUNKEHFRAME
|
---|
249 | {
|
---|
250 | # ifdef IEMNATIVE_USE_LIBUNWIND
|
---|
251 | /** The offset of the FDA into abEhFrame. */
|
---|
252 | uintptr_t offFda;
|
---|
253 | # else
|
---|
254 | /** 'struct object' storage area. */
|
---|
255 | uint8_t abObject[1024];
|
---|
256 | # endif
|
---|
257 | # ifdef IEMNATIVE_USE_GDB_JIT
|
---|
258 | # if 0
|
---|
259 | /** The GDB JIT 'symbol file' data. */
|
---|
260 | GDBJITSYMFILE GdbJitSymFile;
|
---|
261 | # endif
|
---|
262 | /** The GDB JIT list entry. */
|
---|
263 | GDBJITCODEENTRY GdbJitEntry;
|
---|
264 | # endif
|
---|
265 | /** The dwarf ehframe data for the chunk. */
|
---|
266 | uint8_t abEhFrame[512];
|
---|
267 | } IEMEXECMEMCHUNKEHFRAME;
|
---|
268 | /** Pointer to per-chunk info info for non-windows hosts. */
|
---|
269 | typedef IEMEXECMEMCHUNKEHFRAME *PIEMEXECMEMCHUNKEHFRAME;
|
---|
270 | #endif
|
---|
271 |
|
---|
272 |
|
---|
273 | /**
|
---|
274 | * An chunk of executable memory.
|
---|
275 | */
|
---|
276 | typedef struct IEMEXECMEMCHUNK
|
---|
277 | {
|
---|
278 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
279 | /** Number of free items in this chunk. */
|
---|
280 | uint32_t cFreeUnits;
|
---|
281 | /** Hint were to start searching for free space in the allocation bitmap. */
|
---|
282 | uint32_t idxFreeHint;
|
---|
283 | #else
|
---|
284 | /** The heap handle. */
|
---|
285 | RTHEAPSIMPLE hHeap;
|
---|
286 | #endif
|
---|
287 | /** Pointer to the chunk. */
|
---|
288 | void *pvChunk;
|
---|
289 | #ifdef IN_RING3
|
---|
290 | /**
|
---|
291 | * Pointer to the unwind information.
|
---|
292 | *
|
---|
293 | * This is used during C++ throw and longjmp (windows and probably most other
|
---|
294 | * platforms). Some debuggers (windbg) makes use of it as well.
|
---|
295 | *
|
---|
296 | * Windows: This is allocated from hHeap on windows because (at least for
|
---|
297 | * AMD64) the UNWIND_INFO structure address in the
|
---|
298 | * RUNTIME_FUNCTION entry is an RVA and the chunk is the "image".
|
---|
299 | *
|
---|
300 | * Others: Allocated from the regular heap to avoid unnecessary executable data
|
---|
301 | * structures. This points to an IEMEXECMEMCHUNKEHFRAME structure. */
|
---|
302 | void *pvUnwindInfo;
|
---|
303 | #elif defined(IN_RING0)
|
---|
304 | /** Allocation handle. */
|
---|
305 | RTR0MEMOBJ hMemObj;
|
---|
306 | #endif
|
---|
307 | } IEMEXECMEMCHUNK;
|
---|
308 | /** Pointer to a memory chunk. */
|
---|
309 | typedef IEMEXECMEMCHUNK *PIEMEXECMEMCHUNK;
|
---|
310 |
|
---|
311 |
|
---|
312 | /**
|
---|
313 | * Executable memory allocator for the native recompiler.
|
---|
314 | */
|
---|
315 | typedef struct IEMEXECMEMALLOCATOR
|
---|
316 | {
|
---|
317 | /** Magic value (IEMEXECMEMALLOCATOR_MAGIC). */
|
---|
318 | uint32_t uMagic;
|
---|
319 |
|
---|
320 | /** The chunk size. */
|
---|
321 | uint32_t cbChunk;
|
---|
322 | /** The maximum number of chunks. */
|
---|
323 | uint32_t cMaxChunks;
|
---|
324 | /** The current number of chunks. */
|
---|
325 | uint32_t cChunks;
|
---|
326 | /** Hint where to start looking for available memory. */
|
---|
327 | uint32_t idxChunkHint;
|
---|
328 | /** Statistics: Current number of allocations. */
|
---|
329 | uint32_t cAllocations;
|
---|
330 |
|
---|
331 | /** The total amount of memory available. */
|
---|
332 | uint64_t cbTotal;
|
---|
333 | /** Total amount of free memory. */
|
---|
334 | uint64_t cbFree;
|
---|
335 | /** Total amount of memory allocated. */
|
---|
336 | uint64_t cbAllocated;
|
---|
337 |
|
---|
338 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
339 | /** Pointer to the allocation bitmaps for all the chunks (follows aChunks).
|
---|
340 | *
|
---|
341 | * Since the chunk size is a power of two and the minimum chunk size is a lot
|
---|
342 | * higher than the IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SIZE, each chunk will always
|
---|
343 | * require a whole number of uint64_t elements in the allocation bitmap. So,
|
---|
344 | * for sake of simplicity, they are allocated as one continous chunk for
|
---|
345 | * simplicity/laziness. */
|
---|
346 | uint64_t *pbmAlloc;
|
---|
347 | /** Number of units (IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SIZE) per chunk. */
|
---|
348 | uint32_t cUnitsPerChunk;
|
---|
349 | /** Number of bitmap elements per chunk (for quickly locating the bitmap
|
---|
350 | * portion corresponding to an chunk). */
|
---|
351 | uint32_t cBitmapElementsPerChunk;
|
---|
352 | #else
|
---|
353 | /** @name Tweaks to get 64 byte aligned allocats w/o unnecessary fragmentation.
|
---|
354 | * @{ */
|
---|
355 | /** The size of the heap internal block header. This is used to adjust the
|
---|
356 | * request memory size to make sure there is exacly enough room for a header at
|
---|
357 | * the end of the blocks we allocate before the next 64 byte alignment line. */
|
---|
358 | uint32_t cbHeapBlockHdr;
|
---|
359 | /** The size of initial heap allocation required make sure the first
|
---|
360 | * allocation is correctly aligned. */
|
---|
361 | uint32_t cbHeapAlignTweak;
|
---|
362 | /** The alignment tweak allocation address. */
|
---|
363 | void *pvAlignTweak;
|
---|
364 | /** @} */
|
---|
365 | #endif
|
---|
366 |
|
---|
367 | #if defined(IN_RING3) && !defined(RT_OS_WINDOWS)
|
---|
368 | /** Pointer to the array of unwind info running parallel to aChunks (same
|
---|
369 | * allocation as this structure, located after the bitmaps).
|
---|
370 | * (For Windows, the structures must reside in 32-bit RVA distance to the
|
---|
371 | * actual chunk, so they are allocated off the chunk.) */
|
---|
372 | PIEMEXECMEMCHUNKEHFRAME paEhFrames;
|
---|
373 | #endif
|
---|
374 |
|
---|
375 | /** The allocation chunks. */
|
---|
376 | RT_FLEXIBLE_ARRAY_EXTENSION
|
---|
377 | IEMEXECMEMCHUNK aChunks[RT_FLEXIBLE_ARRAY];
|
---|
378 | } IEMEXECMEMALLOCATOR;
|
---|
379 | /** Pointer to an executable memory allocator. */
|
---|
380 | typedef IEMEXECMEMALLOCATOR *PIEMEXECMEMALLOCATOR;
|
---|
381 |
|
---|
382 | /** Magic value for IEMEXECMEMALLOCATOR::uMagic (Scott Frederick Turow). */
|
---|
383 | #define IEMEXECMEMALLOCATOR_MAGIC UINT32_C(0x19490412)
|
---|
384 |
|
---|
385 |
|
---|
386 | static int iemExecMemAllocatorGrow(PVMCPUCC pVCpu, PIEMEXECMEMALLOCATOR pExecMemAllocator);
|
---|
387 |
|
---|
388 |
|
---|
389 | /**
|
---|
390 | * Worker for iemExecMemAllocatorAlloc that returns @a pvRet after updating
|
---|
391 | * the heap statistics.
|
---|
392 | */
|
---|
393 | static void * iemExecMemAllocatorAllocTailCode(PIEMEXECMEMALLOCATOR pExecMemAllocator, void *pvRet,
|
---|
394 | uint32_t cbReq, uint32_t idxChunk)
|
---|
395 | {
|
---|
396 | pExecMemAllocator->cAllocations += 1;
|
---|
397 | pExecMemAllocator->cbAllocated += cbReq;
|
---|
398 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
399 | pExecMemAllocator->cbFree -= cbReq;
|
---|
400 | #else
|
---|
401 | pExecMemAllocator->cbFree -= RT_ALIGN_32(cbReq, 64);
|
---|
402 | #endif
|
---|
403 | pExecMemAllocator->idxChunkHint = idxChunk;
|
---|
404 |
|
---|
405 | #ifdef RT_OS_DARWIN
|
---|
406 | /*
|
---|
407 | * Sucks, but RTMEM_PROT_EXEC and RTMEM_PROT_WRITE are mutually exclusive
|
---|
408 | * on darwin. So, we mark the pages returned as read+write after alloc and
|
---|
409 | * expect the caller to call iemExecMemAllocatorReadyForUse when done
|
---|
410 | * writing to the allocation.
|
---|
411 | *
|
---|
412 | * See also https://developer.apple.com/documentation/apple-silicon/porting-just-in-time-compilers-to-apple-silicon
|
---|
413 | * for details.
|
---|
414 | */
|
---|
415 | /** @todo detect if this is necessary... it wasn't required on 10.15 or
|
---|
416 | * whatever older version it was. */
|
---|
417 | int rc = RTMemProtect(pvRet, cbReq, RTMEM_PROT_WRITE | RTMEM_PROT_READ);
|
---|
418 | AssertRC(rc);
|
---|
419 | #endif
|
---|
420 |
|
---|
421 | return pvRet;
|
---|
422 | }
|
---|
423 |
|
---|
424 |
|
---|
425 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
426 | static void *iemExecMemAllocatorAllocInChunkInt(PIEMEXECMEMALLOCATOR pExecMemAllocator, uint64_t *pbmAlloc, uint32_t idxFirst,
|
---|
427 | uint32_t cToScan, uint32_t cReqUnits, uint32_t idxChunk)
|
---|
428 | {
|
---|
429 | /*
|
---|
430 | * Shift the bitmap to the idxFirst bit so we can use ASMBitFirstClear.
|
---|
431 | */
|
---|
432 | Assert(!(cToScan & 63));
|
---|
433 | Assert(!(idxFirst & 63));
|
---|
434 | Assert(cToScan + idxFirst <= pExecMemAllocator->cUnitsPerChunk);
|
---|
435 | pbmAlloc += idxFirst / 64;
|
---|
436 |
|
---|
437 | /*
|
---|
438 | * Scan the bitmap for cReqUnits of consequtive clear bits
|
---|
439 | */
|
---|
440 | /** @todo This can probably be done more efficiently for non-x86 systems. */
|
---|
441 | int iBit = ASMBitFirstClear(pbmAlloc, cToScan);
|
---|
442 | while (iBit >= 0 && (uint32_t)iBit <= cToScan - cReqUnits)
|
---|
443 | {
|
---|
444 | uint32_t idxAddBit = 1;
|
---|
445 | while (idxAddBit < cReqUnits && !ASMBitTest(pbmAlloc, (uint32_t)iBit + idxAddBit))
|
---|
446 | idxAddBit++;
|
---|
447 | if (idxAddBit >= cReqUnits)
|
---|
448 | {
|
---|
449 | ASMBitSetRange(pbmAlloc, (uint32_t)iBit, (uint32_t)iBit + cReqUnits);
|
---|
450 |
|
---|
451 | PIEMEXECMEMCHUNK const pChunk = &pExecMemAllocator->aChunks[idxChunk];
|
---|
452 | pChunk->cFreeUnits -= cReqUnits;
|
---|
453 | pChunk->idxFreeHint = (uint32_t)iBit + cReqUnits;
|
---|
454 |
|
---|
455 | void * const pvRet = (uint8_t *)pChunk->pvChunk
|
---|
456 | + ((idxFirst + (uint32_t)iBit) << IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT);
|
---|
457 |
|
---|
458 | return iemExecMemAllocatorAllocTailCode(pExecMemAllocator, pvRet,
|
---|
459 | cReqUnits << IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT, idxChunk);
|
---|
460 | }
|
---|
461 |
|
---|
462 | iBit = ASMBitNextClear(pbmAlloc, cToScan, iBit + idxAddBit - 1);
|
---|
463 | }
|
---|
464 | return NULL;
|
---|
465 | }
|
---|
466 | #endif /* IEMEXECMEM_USE_ALT_SUB_ALLOCATOR */
|
---|
467 |
|
---|
468 |
|
---|
469 | static void *iemExecMemAllocatorAllocInChunk(PIEMEXECMEMALLOCATOR pExecMemAllocator, uint32_t idxChunk, uint32_t cbReq)
|
---|
470 | {
|
---|
471 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
472 | /*
|
---|
473 | * Figure out how much to allocate.
|
---|
474 | */
|
---|
475 | uint32_t const cReqUnits = (cbReq + IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SIZE - 1) >> IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT;
|
---|
476 | if (cReqUnits <= pExecMemAllocator->aChunks[idxChunk].cFreeUnits)
|
---|
477 | {
|
---|
478 | uint64_t * const pbmAlloc = &pExecMemAllocator->pbmAlloc[pExecMemAllocator->cBitmapElementsPerChunk * idxChunk];
|
---|
479 | uint32_t const idxHint = pExecMemAllocator->aChunks[idxChunk].idxFreeHint & ~(uint32_t)63;
|
---|
480 | if (idxHint + cReqUnits <= pExecMemAllocator->cUnitsPerChunk)
|
---|
481 | {
|
---|
482 | void *pvRet = iemExecMemAllocatorAllocInChunkInt(pExecMemAllocator, pbmAlloc, idxHint,
|
---|
483 | pExecMemAllocator->cUnitsPerChunk - idxHint, cReqUnits, idxChunk);
|
---|
484 | if (pvRet)
|
---|
485 | return pvRet;
|
---|
486 | }
|
---|
487 | return iemExecMemAllocatorAllocInChunkInt(pExecMemAllocator, pbmAlloc, 0,
|
---|
488 | RT_MIN(pExecMemAllocator->cUnitsPerChunk, RT_ALIGN_32(idxHint + cReqUnits, 64)),
|
---|
489 | cReqUnits, idxChunk);
|
---|
490 | }
|
---|
491 | #else
|
---|
492 | void *pvRet = RTHeapSimpleAlloc(pExecMemAllocator->aChunks[idxChunk].hHeap, cbReq, 32);
|
---|
493 | if (pvRet)
|
---|
494 | return iemExecMemAllocatorAllocTailCode(pExecMemAllocator, pvRet, cbReq, idxChunk);
|
---|
495 | #endif
|
---|
496 | return NULL;
|
---|
497 |
|
---|
498 | }
|
---|
499 |
|
---|
500 |
|
---|
501 | /**
|
---|
502 | * Allocates @a cbReq bytes of executable memory.
|
---|
503 | *
|
---|
504 | * @returns Pointer to the memory, NULL if out of memory or other problem
|
---|
505 | * encountered.
|
---|
506 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
507 | * thread.
|
---|
508 | * @param cbReq How many bytes are required.
|
---|
509 | */
|
---|
510 | static void *iemExecMemAllocatorAlloc(PVMCPU pVCpu, uint32_t cbReq)
|
---|
511 | {
|
---|
512 | PIEMEXECMEMALLOCATOR pExecMemAllocator = pVCpu->iem.s.pExecMemAllocatorR3;
|
---|
513 | AssertReturn(pExecMemAllocator && pExecMemAllocator->uMagic == IEMEXECMEMALLOCATOR_MAGIC, NULL);
|
---|
514 | AssertMsgReturn(cbReq > 32 && cbReq < _512K, ("%#x\n", cbReq), NULL);
|
---|
515 |
|
---|
516 |
|
---|
517 | for (unsigned iIteration = 0;; iIteration++)
|
---|
518 | {
|
---|
519 | /*
|
---|
520 | * Adjust the request size so it'll fit the allocator alignment/whatnot.
|
---|
521 | *
|
---|
522 | * For the RTHeapSimple allocator this means to follow the logic described
|
---|
523 | * in iemExecMemAllocatorGrow and attempt to allocate it from one of the
|
---|
524 | * existing chunks if we think we've got sufficient free memory around.
|
---|
525 | *
|
---|
526 | * While for the alternative one we just align it up to a whole unit size.
|
---|
527 | */
|
---|
528 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
529 | cbReq = RT_ALIGN_32(cbReq, IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SIZE);
|
---|
530 | #else
|
---|
531 | cbReq = RT_ALIGN_32(cbReq + pExecMemAllocator->cbHeapBlockHdr, 64) - pExecMemAllocator->cbHeapBlockHdr;
|
---|
532 | #endif
|
---|
533 | if (cbReq <= pExecMemAllocator->cbFree)
|
---|
534 | {
|
---|
535 | uint32_t const cChunks = pExecMemAllocator->cChunks;
|
---|
536 | uint32_t const idxChunkHint = pExecMemAllocator->idxChunkHint < cChunks ? pExecMemAllocator->idxChunkHint : 0;
|
---|
537 | for (uint32_t idxChunk = idxChunkHint; idxChunk < cChunks; idxChunk++)
|
---|
538 | {
|
---|
539 | void *pvRet = iemExecMemAllocatorAllocInChunk(pExecMemAllocator, idxChunk, cbReq);
|
---|
540 | if (pvRet)
|
---|
541 | return pvRet;
|
---|
542 | }
|
---|
543 | for (uint32_t idxChunk = 0; idxChunk < idxChunkHint; idxChunk++)
|
---|
544 | {
|
---|
545 | void *pvRet = iemExecMemAllocatorAllocInChunk(pExecMemAllocator, idxChunk, cbReq);
|
---|
546 | if (pvRet)
|
---|
547 | return pvRet;
|
---|
548 | }
|
---|
549 | }
|
---|
550 |
|
---|
551 | /*
|
---|
552 | * Can we grow it with another chunk?
|
---|
553 | */
|
---|
554 | if (pExecMemAllocator->cChunks < pExecMemAllocator->cMaxChunks)
|
---|
555 | {
|
---|
556 | int rc = iemExecMemAllocatorGrow(pVCpu, pExecMemAllocator);
|
---|
557 | AssertLogRelRCReturn(rc, NULL);
|
---|
558 |
|
---|
559 | uint32_t const idxChunk = pExecMemAllocator->cChunks - 1;
|
---|
560 | void *pvRet = iemExecMemAllocatorAllocInChunk(pExecMemAllocator, idxChunk, cbReq);
|
---|
561 | if (pvRet)
|
---|
562 | return pvRet;
|
---|
563 | AssertFailed();
|
---|
564 | }
|
---|
565 |
|
---|
566 | /*
|
---|
567 | * Try prune native TBs once.
|
---|
568 | */
|
---|
569 | if (iIteration == 0)
|
---|
570 | iemTbAllocatorFreeupNativeSpace(pVCpu, cbReq / sizeof(IEMNATIVEINSTR));
|
---|
571 | else
|
---|
572 | {
|
---|
573 | /** @todo stats... */
|
---|
574 | return NULL;
|
---|
575 | }
|
---|
576 | }
|
---|
577 |
|
---|
578 | }
|
---|
579 |
|
---|
580 |
|
---|
581 | /** This is a hook that we may need later for changing memory protection back
|
---|
582 | * to readonly+exec */
|
---|
583 | static void iemExecMemAllocatorReadyForUse(PVMCPUCC pVCpu, void *pv, size_t cb)
|
---|
584 | {
|
---|
585 | #ifdef RT_OS_DARWIN
|
---|
586 | /* See iemExecMemAllocatorAllocTailCode for the explanation. */
|
---|
587 | int rc = RTMemProtect(pv, cb, RTMEM_PROT_EXEC | RTMEM_PROT_READ);
|
---|
588 | AssertRC(rc); RT_NOREF(pVCpu);
|
---|
589 |
|
---|
590 | /*
|
---|
591 | * Flush the instruction cache:
|
---|
592 | * https://developer.apple.com/documentation/apple-silicon/porting-just-in-time-compilers-to-apple-silicon
|
---|
593 | */
|
---|
594 | /* sys_dcache_flush(pv, cb); - not necessary */
|
---|
595 | sys_icache_invalidate(pv, cb);
|
---|
596 | #else
|
---|
597 | RT_NOREF(pVCpu, pv, cb);
|
---|
598 | #endif
|
---|
599 | }
|
---|
600 |
|
---|
601 |
|
---|
602 | /**
|
---|
603 | * Frees executable memory.
|
---|
604 | */
|
---|
605 | void iemExecMemAllocatorFree(PVMCPU pVCpu, void *pv, size_t cb)
|
---|
606 | {
|
---|
607 | PIEMEXECMEMALLOCATOR pExecMemAllocator = pVCpu->iem.s.pExecMemAllocatorR3;
|
---|
608 | Assert(pExecMemAllocator && pExecMemAllocator->uMagic == IEMEXECMEMALLOCATOR_MAGIC);
|
---|
609 | Assert(pv);
|
---|
610 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
611 | Assert(!((uintptr_t)pv & (IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SIZE - 1)));
|
---|
612 | #else
|
---|
613 | Assert(!((uintptr_t)pv & 63));
|
---|
614 | #endif
|
---|
615 |
|
---|
616 | /* Align the size as we did when allocating the block. */
|
---|
617 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
618 | cb = RT_ALIGN_Z(cb, IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SIZE);
|
---|
619 | #else
|
---|
620 | cb = RT_ALIGN_Z(cb + pExecMemAllocator->cbHeapBlockHdr, 64) - pExecMemAllocator->cbHeapBlockHdr;
|
---|
621 | #endif
|
---|
622 |
|
---|
623 | /* Free it / assert sanity. */
|
---|
624 | #if defined(VBOX_STRICT) || defined(IEMEXECMEM_USE_ALT_SUB_ALLOCATOR)
|
---|
625 | uint32_t const cChunks = pExecMemAllocator->cChunks;
|
---|
626 | uint32_t const cbChunk = pExecMemAllocator->cbChunk;
|
---|
627 | bool fFound = false;
|
---|
628 | for (uint32_t idxChunk = 0; idxChunk < cChunks; idxChunk++)
|
---|
629 | {
|
---|
630 | uintptr_t const offChunk = (uintptr_t)pv - (uintptr_t)pExecMemAllocator->aChunks[idxChunk].pvChunk;
|
---|
631 | fFound = offChunk < cbChunk;
|
---|
632 | if (fFound)
|
---|
633 | {
|
---|
634 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
635 | uint32_t const idxFirst = (uint32_t)offChunk >> IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT;
|
---|
636 | uint32_t const cReqUnits = (uint32_t)cb >> IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT;
|
---|
637 |
|
---|
638 | /* Check that it's valid and free it. */
|
---|
639 | uint64_t * const pbmAlloc = &pExecMemAllocator->pbmAlloc[pExecMemAllocator->cBitmapElementsPerChunk * idxChunk];
|
---|
640 | AssertReturnVoid(ASMBitTest(pbmAlloc, idxFirst));
|
---|
641 | for (uint32_t i = 1; i < cReqUnits; i++)
|
---|
642 | AssertReturnVoid(ASMBitTest(pbmAlloc, idxFirst + i));
|
---|
643 | ASMBitClearRange(pbmAlloc, idxFirst, idxFirst + cReqUnits);
|
---|
644 |
|
---|
645 | pExecMemAllocator->aChunks[idxChunk].cFreeUnits += cReqUnits;
|
---|
646 | pExecMemAllocator->aChunks[idxChunk].idxFreeHint = idxFirst;
|
---|
647 |
|
---|
648 | /* Update the stats. */
|
---|
649 | pExecMemAllocator->cbAllocated -= cb;
|
---|
650 | pExecMemAllocator->cbFree += cb;
|
---|
651 | pExecMemAllocator->cAllocations -= 1;
|
---|
652 | return;
|
---|
653 | #else
|
---|
654 | Assert(RTHeapSimpleSize(pExecMemAllocator->aChunks[idxChunk].hHeap, pv) == cb);
|
---|
655 | break;
|
---|
656 | #endif
|
---|
657 | }
|
---|
658 | }
|
---|
659 | # ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
660 | AssertFailed();
|
---|
661 | # else
|
---|
662 | Assert(fFound);
|
---|
663 | # endif
|
---|
664 | #endif
|
---|
665 |
|
---|
666 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
667 | /* Update stats while cb is freshly calculated.*/
|
---|
668 | pExecMemAllocator->cbAllocated -= cb;
|
---|
669 | pExecMemAllocator->cbFree += RT_ALIGN_Z(cb, 64);
|
---|
670 | pExecMemAllocator->cAllocations -= 1;
|
---|
671 |
|
---|
672 | /* Free it. */
|
---|
673 | RTHeapSimpleFree(NIL_RTHEAPSIMPLE, pv);
|
---|
674 | #endif
|
---|
675 | }
|
---|
676 |
|
---|
677 |
|
---|
678 |
|
---|
679 | #ifdef IN_RING3
|
---|
680 | # ifdef RT_OS_WINDOWS
|
---|
681 |
|
---|
682 | /**
|
---|
683 | * Initializes the unwind info structures for windows hosts.
|
---|
684 | */
|
---|
685 | static int
|
---|
686 | iemExecMemAllocatorInitAndRegisterUnwindInfoForChunk(PVMCPUCC pVCpu, PIEMEXECMEMALLOCATOR pExecMemAllocator,
|
---|
687 | void *pvChunk, uint32_t idxChunk)
|
---|
688 | {
|
---|
689 | RT_NOREF(pVCpu);
|
---|
690 |
|
---|
691 | /*
|
---|
692 | * The AMD64 unwind opcodes.
|
---|
693 | *
|
---|
694 | * This is a program that starts with RSP after a RET instruction that
|
---|
695 | * ends up in recompiled code, and the operations we describe here will
|
---|
696 | * restore all non-volatile registers and bring RSP back to where our
|
---|
697 | * RET address is. This means it's reverse order from what happens in
|
---|
698 | * the prologue.
|
---|
699 | *
|
---|
700 | * Note! Using a frame register approach here both because we have one
|
---|
701 | * and but mainly because the UWOP_ALLOC_LARGE argument values
|
---|
702 | * would be a pain to write initializers for. On the positive
|
---|
703 | * side, we're impervious to changes in the the stack variable
|
---|
704 | * area can can deal with dynamic stack allocations if necessary.
|
---|
705 | */
|
---|
706 | static const IMAGE_UNWIND_CODE s_aOpcodes[] =
|
---|
707 | {
|
---|
708 | { { 16, IMAGE_AMD64_UWOP_SET_FPREG, 0 } }, /* RSP = RBP - FrameOffset * 10 (0x60) */
|
---|
709 | { { 16, IMAGE_AMD64_UWOP_ALLOC_SMALL, 0 } }, /* RSP += 8; */
|
---|
710 | { { 14, IMAGE_AMD64_UWOP_PUSH_NONVOL, X86_GREG_x15 } }, /* R15 = [RSP]; RSP += 8; */
|
---|
711 | { { 12, IMAGE_AMD64_UWOP_PUSH_NONVOL, X86_GREG_x14 } }, /* R14 = [RSP]; RSP += 8; */
|
---|
712 | { { 10, IMAGE_AMD64_UWOP_PUSH_NONVOL, X86_GREG_x13 } }, /* R13 = [RSP]; RSP += 8; */
|
---|
713 | { { 8, IMAGE_AMD64_UWOP_PUSH_NONVOL, X86_GREG_x12 } }, /* R12 = [RSP]; RSP += 8; */
|
---|
714 | { { 7, IMAGE_AMD64_UWOP_PUSH_NONVOL, X86_GREG_xDI } }, /* RDI = [RSP]; RSP += 8; */
|
---|
715 | { { 6, IMAGE_AMD64_UWOP_PUSH_NONVOL, X86_GREG_xSI } }, /* RSI = [RSP]; RSP += 8; */
|
---|
716 | { { 5, IMAGE_AMD64_UWOP_PUSH_NONVOL, X86_GREG_xBX } }, /* RBX = [RSP]; RSP += 8; */
|
---|
717 | { { 4, IMAGE_AMD64_UWOP_PUSH_NONVOL, X86_GREG_xBP } }, /* RBP = [RSP]; RSP += 8; */
|
---|
718 | };
|
---|
719 | union
|
---|
720 | {
|
---|
721 | IMAGE_UNWIND_INFO Info;
|
---|
722 | uint8_t abPadding[RT_UOFFSETOF(IMAGE_UNWIND_INFO, aOpcodes) + 16];
|
---|
723 | } s_UnwindInfo =
|
---|
724 | {
|
---|
725 | {
|
---|
726 | /* .Version = */ 1,
|
---|
727 | /* .Flags = */ 0,
|
---|
728 | /* .SizeOfProlog = */ 16, /* whatever */
|
---|
729 | /* .CountOfCodes = */ RT_ELEMENTS(s_aOpcodes),
|
---|
730 | /* .FrameRegister = */ X86_GREG_xBP,
|
---|
731 | /* .FrameOffset = */ (-IEMNATIVE_FP_OFF_LAST_PUSH + 8) / 16 /* we're off by one slot. sigh. */,
|
---|
732 | }
|
---|
733 | };
|
---|
734 | AssertCompile(-IEMNATIVE_FP_OFF_LAST_PUSH < 240 && -IEMNATIVE_FP_OFF_LAST_PUSH > 0);
|
---|
735 | AssertCompile((-IEMNATIVE_FP_OFF_LAST_PUSH & 0xf) == 8);
|
---|
736 |
|
---|
737 | /*
|
---|
738 | * Calc how much space we need and allocate it off the exec heap.
|
---|
739 | */
|
---|
740 | unsigned const cFunctionEntries = 1;
|
---|
741 | unsigned const cbUnwindInfo = sizeof(s_aOpcodes) + RT_UOFFSETOF(IMAGE_UNWIND_INFO, aOpcodes);
|
---|
742 | unsigned const cbNeeded = sizeof(IMAGE_RUNTIME_FUNCTION_ENTRY) * cFunctionEntries + cbUnwindInfo;
|
---|
743 | # ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
744 | unsigned const cbNeededAligned = RT_ALIGN_32(cbNeeded, IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SIZE);
|
---|
745 | PIMAGE_RUNTIME_FUNCTION_ENTRY const paFunctions
|
---|
746 | = (PIMAGE_RUNTIME_FUNCTION_ENTRY)iemExecMemAllocatorAllocInChunk(pExecMemAllocator, idxChunk, cbNeededAligned);
|
---|
747 | # else
|
---|
748 | unsigned const cbNeededAligned = RT_ALIGN_32(cbNeeded + pExecMemAllocator->cbHeapBlockHdr, 64)
|
---|
749 | - pExecMemAllocator->cbHeapBlockHdr;
|
---|
750 | PIMAGE_RUNTIME_FUNCTION_ENTRY const paFunctions = (PIMAGE_RUNTIME_FUNCTION_ENTRY)RTHeapSimpleAlloc(hHeap, cbNeededAligned,
|
---|
751 | 32 /*cbAlignment*/);
|
---|
752 | # endif
|
---|
753 | AssertReturn(paFunctions, VERR_INTERNAL_ERROR_5);
|
---|
754 | pExecMemAllocator->aChunks[idxChunk].pvUnwindInfo = paFunctions;
|
---|
755 |
|
---|
756 | /*
|
---|
757 | * Initialize the structures.
|
---|
758 | */
|
---|
759 | PIMAGE_UNWIND_INFO const pInfo = (PIMAGE_UNWIND_INFO)&paFunctions[cFunctionEntries];
|
---|
760 |
|
---|
761 | paFunctions[0].BeginAddress = 0;
|
---|
762 | paFunctions[0].EndAddress = pExecMemAllocator->cbChunk;
|
---|
763 | paFunctions[0].UnwindInfoAddress = (uint32_t)((uintptr_t)pInfo - (uintptr_t)pvChunk);
|
---|
764 |
|
---|
765 | memcpy(pInfo, &s_UnwindInfo, RT_UOFFSETOF(IMAGE_UNWIND_INFO, aOpcodes));
|
---|
766 | memcpy(&pInfo->aOpcodes[0], s_aOpcodes, sizeof(s_aOpcodes));
|
---|
767 |
|
---|
768 | /*
|
---|
769 | * Register it.
|
---|
770 | */
|
---|
771 | uint8_t fRet = RtlAddFunctionTable(paFunctions, cFunctionEntries, (uintptr_t)pvChunk);
|
---|
772 | AssertReturn(fRet, VERR_INTERNAL_ERROR_3); /* Nothing to clean up on failure, since its within the chunk itself. */
|
---|
773 |
|
---|
774 | return VINF_SUCCESS;
|
---|
775 | }
|
---|
776 |
|
---|
777 |
|
---|
778 | # else /* !RT_OS_WINDOWS */
|
---|
779 |
|
---|
780 | /**
|
---|
781 | * Emits a LEB128 encoded value between -0x2000 and 0x2000 (both exclusive).
|
---|
782 | */
|
---|
783 | DECLINLINE(RTPTRUNION) iemDwarfPutLeb128(RTPTRUNION Ptr, int32_t iValue)
|
---|
784 | {
|
---|
785 | if (iValue >= 64)
|
---|
786 | {
|
---|
787 | Assert(iValue < 0x2000);
|
---|
788 | *Ptr.pb++ = ((uint8_t)iValue & 0x7f) | 0x80;
|
---|
789 | *Ptr.pb++ = (uint8_t)(iValue >> 7) & 0x3f;
|
---|
790 | }
|
---|
791 | else if (iValue >= 0)
|
---|
792 | *Ptr.pb++ = (uint8_t)iValue;
|
---|
793 | else if (iValue > -64)
|
---|
794 | *Ptr.pb++ = ((uint8_t)iValue & 0x3f) | 0x40;
|
---|
795 | else
|
---|
796 | {
|
---|
797 | Assert(iValue > -0x2000);
|
---|
798 | *Ptr.pb++ = ((uint8_t)iValue & 0x7f) | 0x80;
|
---|
799 | *Ptr.pb++ = ((uint8_t)(iValue >> 7) & 0x3f) | 0x40;
|
---|
800 | }
|
---|
801 | return Ptr;
|
---|
802 | }
|
---|
803 |
|
---|
804 |
|
---|
805 | /**
|
---|
806 | * Emits an ULEB128 encoded value (up to 64-bit wide).
|
---|
807 | */
|
---|
808 | DECLINLINE(RTPTRUNION) iemDwarfPutUleb128(RTPTRUNION Ptr, uint64_t uValue)
|
---|
809 | {
|
---|
810 | while (uValue >= 0x80)
|
---|
811 | {
|
---|
812 | *Ptr.pb++ = ((uint8_t)uValue & 0x7f) | 0x80;
|
---|
813 | uValue >>= 7;
|
---|
814 | }
|
---|
815 | *Ptr.pb++ = (uint8_t)uValue;
|
---|
816 | return Ptr;
|
---|
817 | }
|
---|
818 |
|
---|
819 |
|
---|
820 | /**
|
---|
821 | * Emits a CFA rule as register @a uReg + offset @a off.
|
---|
822 | */
|
---|
823 | DECLINLINE(RTPTRUNION) iemDwarfPutCfaDefCfa(RTPTRUNION Ptr, uint32_t uReg, uint32_t off)
|
---|
824 | {
|
---|
825 | *Ptr.pb++ = DW_CFA_def_cfa;
|
---|
826 | Ptr = iemDwarfPutUleb128(Ptr, uReg);
|
---|
827 | Ptr = iemDwarfPutUleb128(Ptr, off);
|
---|
828 | return Ptr;
|
---|
829 | }
|
---|
830 |
|
---|
831 |
|
---|
832 | /**
|
---|
833 | * Emits a register (@a uReg) save location:
|
---|
834 | * CFA + @a off * data_alignment_factor
|
---|
835 | */
|
---|
836 | DECLINLINE(RTPTRUNION) iemDwarfPutCfaOffset(RTPTRUNION Ptr, uint32_t uReg, uint32_t off)
|
---|
837 | {
|
---|
838 | if (uReg < 0x40)
|
---|
839 | *Ptr.pb++ = DW_CFA_offset | uReg;
|
---|
840 | else
|
---|
841 | {
|
---|
842 | *Ptr.pb++ = DW_CFA_offset_extended;
|
---|
843 | Ptr = iemDwarfPutUleb128(Ptr, uReg);
|
---|
844 | }
|
---|
845 | Ptr = iemDwarfPutUleb128(Ptr, off);
|
---|
846 | return Ptr;
|
---|
847 | }
|
---|
848 |
|
---|
849 |
|
---|
850 | # if 0 /* unused */
|
---|
851 | /**
|
---|
852 | * Emits a register (@a uReg) save location, using signed offset:
|
---|
853 | * CFA + @a offSigned * data_alignment_factor
|
---|
854 | */
|
---|
855 | DECLINLINE(RTPTRUNION) iemDwarfPutCfaSignedOffset(RTPTRUNION Ptr, uint32_t uReg, int32_t offSigned)
|
---|
856 | {
|
---|
857 | *Ptr.pb++ = DW_CFA_offset_extended_sf;
|
---|
858 | Ptr = iemDwarfPutUleb128(Ptr, uReg);
|
---|
859 | Ptr = iemDwarfPutLeb128(Ptr, offSigned);
|
---|
860 | return Ptr;
|
---|
861 | }
|
---|
862 | # endif
|
---|
863 |
|
---|
864 |
|
---|
865 | /**
|
---|
866 | * Initializes the unwind info section for non-windows hosts.
|
---|
867 | */
|
---|
868 | static int
|
---|
869 | iemExecMemAllocatorInitAndRegisterUnwindInfoForChunk(PVMCPUCC pVCpu, PIEMEXECMEMALLOCATOR pExecMemAllocator,
|
---|
870 | void *pvChunk, uint32_t idxChunk)
|
---|
871 | {
|
---|
872 | PIEMEXECMEMCHUNKEHFRAME const pEhFrame = &pExecMemAllocator->paEhFrames[idxChunk];
|
---|
873 | pExecMemAllocator->aChunks[idxChunk].pvUnwindInfo = pEhFrame; /* not necessary, but whatever */
|
---|
874 |
|
---|
875 | RTPTRUNION Ptr = { pEhFrame->abEhFrame };
|
---|
876 |
|
---|
877 | /*
|
---|
878 | * Generate the CIE first.
|
---|
879 | */
|
---|
880 | # ifdef IEMNATIVE_USE_LIBUNWIND /* libunwind (llvm, darwin) only supports v1 and v3. */
|
---|
881 | uint8_t const iDwarfVer = 3;
|
---|
882 | # else
|
---|
883 | uint8_t const iDwarfVer = 4;
|
---|
884 | # endif
|
---|
885 | RTPTRUNION const PtrCie = Ptr;
|
---|
886 | *Ptr.pu32++ = 123; /* The CIE length will be determined later. */
|
---|
887 | *Ptr.pu32++ = 0 /*UINT32_MAX*/; /* I'm a CIE in .eh_frame speak. */
|
---|
888 | *Ptr.pb++ = iDwarfVer; /* DwARF version */
|
---|
889 | *Ptr.pb++ = 0; /* Augmentation. */
|
---|
890 | if (iDwarfVer >= 4)
|
---|
891 | {
|
---|
892 | *Ptr.pb++ = sizeof(uintptr_t); /* Address size. */
|
---|
893 | *Ptr.pb++ = 0; /* Segment selector size. */
|
---|
894 | }
|
---|
895 | # ifdef RT_ARCH_AMD64
|
---|
896 | Ptr = iemDwarfPutLeb128(Ptr, 1); /* Code alignment factor (LEB128 = 1). */
|
---|
897 | # else
|
---|
898 | Ptr = iemDwarfPutLeb128(Ptr, 4); /* Code alignment factor (LEB128 = 4). */
|
---|
899 | # endif
|
---|
900 | Ptr = iemDwarfPutLeb128(Ptr, -8); /* Data alignment factor (LEB128 = -8). */
|
---|
901 | # ifdef RT_ARCH_AMD64
|
---|
902 | Ptr = iemDwarfPutUleb128(Ptr, DWREG_AMD64_RA); /* Return address column (ULEB128) */
|
---|
903 | # elif defined(RT_ARCH_ARM64)
|
---|
904 | Ptr = iemDwarfPutUleb128(Ptr, DWREG_ARM64_LR); /* Return address column (ULEB128) */
|
---|
905 | # else
|
---|
906 | # error "port me"
|
---|
907 | # endif
|
---|
908 | /* Initial instructions: */
|
---|
909 | # ifdef RT_ARCH_AMD64
|
---|
910 | Ptr = iemDwarfPutCfaDefCfa(Ptr, DWREG_AMD64_RBP, 16); /* CFA = RBP + 0x10 - first stack parameter */
|
---|
911 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_AMD64_RA, 1); /* Ret RIP = [CFA + 1*-8] */
|
---|
912 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_AMD64_RBP, 2); /* RBP = [CFA + 2*-8] */
|
---|
913 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_AMD64_RBX, 3); /* RBX = [CFA + 3*-8] */
|
---|
914 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_AMD64_R12, 4); /* R12 = [CFA + 4*-8] */
|
---|
915 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_AMD64_R13, 5); /* R13 = [CFA + 5*-8] */
|
---|
916 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_AMD64_R14, 6); /* R14 = [CFA + 6*-8] */
|
---|
917 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_AMD64_R15, 7); /* R15 = [CFA + 7*-8] */
|
---|
918 | # elif defined(RT_ARCH_ARM64)
|
---|
919 | # if 1
|
---|
920 | Ptr = iemDwarfPutCfaDefCfa(Ptr, DWREG_ARM64_BP, 16); /* CFA = BP + 0x10 - first stack parameter */
|
---|
921 | # else
|
---|
922 | Ptr = iemDwarfPutCfaDefCfa(Ptr, DWREG_ARM64_SP, IEMNATIVE_FRAME_VAR_SIZE + IEMNATIVE_FRAME_SAVE_REG_SIZE);
|
---|
923 | # endif
|
---|
924 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_LR, 1); /* Ret PC = [CFA + 1*-8] */
|
---|
925 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_BP, 2); /* Ret BP = [CFA + 2*-8] */
|
---|
926 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_X28, 3); /* X28 = [CFA + 3*-8] */
|
---|
927 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_X27, 4); /* X27 = [CFA + 4*-8] */
|
---|
928 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_X26, 5); /* X26 = [CFA + 5*-8] */
|
---|
929 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_X25, 6); /* X25 = [CFA + 6*-8] */
|
---|
930 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_X24, 7); /* X24 = [CFA + 7*-8] */
|
---|
931 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_X23, 8); /* X23 = [CFA + 8*-8] */
|
---|
932 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_X22, 9); /* X22 = [CFA + 9*-8] */
|
---|
933 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_X21, 10); /* X21 = [CFA +10*-8] */
|
---|
934 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_X20, 11); /* X20 = [CFA +11*-8] */
|
---|
935 | Ptr = iemDwarfPutCfaOffset(Ptr, DWREG_ARM64_X19, 12); /* X19 = [CFA +12*-8] */
|
---|
936 | AssertCompile(IEMNATIVE_FRAME_SAVE_REG_SIZE / 8 == 12);
|
---|
937 | /** @todo we we need to do something about clearing DWREG_ARM64_RA_SIGN_STATE or something? */
|
---|
938 | # else
|
---|
939 | # error "port me"
|
---|
940 | # endif
|
---|
941 | while ((Ptr.u - PtrCie.u) & 3)
|
---|
942 | *Ptr.pb++ = DW_CFA_nop;
|
---|
943 | /* Finalize the CIE size. */
|
---|
944 | *PtrCie.pu32 = Ptr.u - PtrCie.u - sizeof(uint32_t);
|
---|
945 |
|
---|
946 | /*
|
---|
947 | * Generate an FDE for the whole chunk area.
|
---|
948 | */
|
---|
949 | # ifdef IEMNATIVE_USE_LIBUNWIND
|
---|
950 | pEhFrame->offFda = Ptr.u - (uintptr_t)&pEhFrame->abEhFrame[0];
|
---|
951 | # endif
|
---|
952 | RTPTRUNION const PtrFde = Ptr;
|
---|
953 | *Ptr.pu32++ = 123; /* The CIE length will be determined later. */
|
---|
954 | *Ptr.pu32 = Ptr.u - PtrCie.u; /* Negated self relative CIE address. */
|
---|
955 | Ptr.pu32++;
|
---|
956 | *Ptr.pu64++ = (uintptr_t)pvChunk; /* Absolute start PC of this FDE. */
|
---|
957 | *Ptr.pu64++ = pExecMemAllocator->cbChunk; /* PC range length for this PDE. */
|
---|
958 | # if 0 /* not requried for recent libunwind.dylib nor recent libgcc/glib. */
|
---|
959 | *Ptr.pb++ = DW_CFA_nop;
|
---|
960 | # endif
|
---|
961 | while ((Ptr.u - PtrFde.u) & 3)
|
---|
962 | *Ptr.pb++ = DW_CFA_nop;
|
---|
963 | /* Finalize the FDE size. */
|
---|
964 | *PtrFde.pu32 = Ptr.u - PtrFde.u - sizeof(uint32_t);
|
---|
965 |
|
---|
966 | /* Terminator entry. */
|
---|
967 | *Ptr.pu32++ = 0;
|
---|
968 | *Ptr.pu32++ = 0; /* just to be sure... */
|
---|
969 | Assert(Ptr.u - (uintptr_t)&pEhFrame->abEhFrame[0] <= sizeof(pEhFrame->abEhFrame));
|
---|
970 |
|
---|
971 | /*
|
---|
972 | * Register it.
|
---|
973 | */
|
---|
974 | # ifdef IEMNATIVE_USE_LIBUNWIND
|
---|
975 | __register_frame(&pEhFrame->abEhFrame[pEhFrame->offFda]);
|
---|
976 | # else
|
---|
977 | memset(pEhFrame->abObject, 0xf6, sizeof(pEhFrame->abObject)); /* color the memory to better spot usage */
|
---|
978 | __register_frame_info(pEhFrame->abEhFrame, pEhFrame->abObject);
|
---|
979 | # endif
|
---|
980 |
|
---|
981 | # ifdef IEMNATIVE_USE_GDB_JIT
|
---|
982 | /*
|
---|
983 | * Now for telling GDB about this (experimental).
|
---|
984 | *
|
---|
985 | * This seems to work best with ET_DYN.
|
---|
986 | */
|
---|
987 | unsigned const cbNeeded = sizeof(GDBJITSYMFILE);
|
---|
988 | # ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
989 | unsigned const cbNeededAligned = RT_ALIGN_32(cbNeeded, IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SIZE);
|
---|
990 | GDBJITSYMFILE * const pSymFile = (GDBJITSYMFILE *)iemExecMemAllocatorAllocInChunk(pExecMemAllocator, idxChunk, cbNeededAligned);
|
---|
991 | # else
|
---|
992 | unsigned const cbNeededAligned = RT_ALIGN_32(cbNeeded + pExecMemAllocator->cbHeapBlockHdr, 64)
|
---|
993 | - pExecMemAllocator->cbHeapBlockHdr;
|
---|
994 | GDBJITSYMFILE * const pSymFile = (PIMAGE_RUNTIME_FUNCTION_ENTRY)RTHeapSimpleAlloc(hHeap, cbNeededAligned, 32 /*cbAlignment*/);
|
---|
995 | # endif
|
---|
996 | AssertReturn(pSymFile, VERR_INTERNAL_ERROR_5);
|
---|
997 | unsigned const offSymFileInChunk = (uintptr_t)pSymFile - (uintptr_t)pvChunk;
|
---|
998 |
|
---|
999 | RT_ZERO(*pSymFile);
|
---|
1000 |
|
---|
1001 | /*
|
---|
1002 | * The ELF header:
|
---|
1003 | */
|
---|
1004 | pSymFile->EHdr.e_ident[0] = ELFMAG0;
|
---|
1005 | pSymFile->EHdr.e_ident[1] = ELFMAG1;
|
---|
1006 | pSymFile->EHdr.e_ident[2] = ELFMAG2;
|
---|
1007 | pSymFile->EHdr.e_ident[3] = ELFMAG3;
|
---|
1008 | pSymFile->EHdr.e_ident[EI_VERSION] = EV_CURRENT;
|
---|
1009 | pSymFile->EHdr.e_ident[EI_CLASS] = ELFCLASS64;
|
---|
1010 | pSymFile->EHdr.e_ident[EI_DATA] = ELFDATA2LSB;
|
---|
1011 | pSymFile->EHdr.e_ident[EI_OSABI] = ELFOSABI_NONE;
|
---|
1012 | # ifdef IEMNATIVE_USE_GDB_JIT_ET_DYN
|
---|
1013 | pSymFile->EHdr.e_type = ET_DYN;
|
---|
1014 | # else
|
---|
1015 | pSymFile->EHdr.e_type = ET_REL;
|
---|
1016 | # endif
|
---|
1017 | # ifdef RT_ARCH_AMD64
|
---|
1018 | pSymFile->EHdr.e_machine = EM_AMD64;
|
---|
1019 | # elif defined(RT_ARCH_ARM64)
|
---|
1020 | pSymFile->EHdr.e_machine = EM_AARCH64;
|
---|
1021 | # else
|
---|
1022 | # error "port me"
|
---|
1023 | # endif
|
---|
1024 | pSymFile->EHdr.e_version = 1; /*?*/
|
---|
1025 | pSymFile->EHdr.e_entry = 0;
|
---|
1026 | # if defined(IEMNATIVE_USE_GDB_JIT_ET_DYN)
|
---|
1027 | pSymFile->EHdr.e_phoff = RT_UOFFSETOF(GDBJITSYMFILE, aPhdrs);
|
---|
1028 | # else
|
---|
1029 | pSymFile->EHdr.e_phoff = 0;
|
---|
1030 | # endif
|
---|
1031 | pSymFile->EHdr.e_shoff = sizeof(pSymFile->EHdr);
|
---|
1032 | pSymFile->EHdr.e_flags = 0;
|
---|
1033 | pSymFile->EHdr.e_ehsize = sizeof(pSymFile->EHdr);
|
---|
1034 | # if defined(IEMNATIVE_USE_GDB_JIT_ET_DYN)
|
---|
1035 | pSymFile->EHdr.e_phentsize = sizeof(pSymFile->aPhdrs[0]);
|
---|
1036 | pSymFile->EHdr.e_phnum = RT_ELEMENTS(pSymFile->aPhdrs);
|
---|
1037 | # else
|
---|
1038 | pSymFile->EHdr.e_phentsize = 0;
|
---|
1039 | pSymFile->EHdr.e_phnum = 0;
|
---|
1040 | # endif
|
---|
1041 | pSymFile->EHdr.e_shentsize = sizeof(pSymFile->aShdrs[0]);
|
---|
1042 | pSymFile->EHdr.e_shnum = RT_ELEMENTS(pSymFile->aShdrs);
|
---|
1043 | pSymFile->EHdr.e_shstrndx = 0; /* set later */
|
---|
1044 |
|
---|
1045 | uint32_t offStrTab = 0;
|
---|
1046 | #define APPEND_STR(a_szStr) do { \
|
---|
1047 | memcpy(&pSymFile->szzStrTab[offStrTab], a_szStr, sizeof(a_szStr)); \
|
---|
1048 | offStrTab += sizeof(a_szStr); \
|
---|
1049 | Assert(offStrTab < sizeof(pSymFile->szzStrTab)); \
|
---|
1050 | } while (0)
|
---|
1051 | #define APPEND_STR_FMT(a_szStr, ...) do { \
|
---|
1052 | offStrTab += RTStrPrintf(&pSymFile->szzStrTab[offStrTab], sizeof(pSymFile->szzStrTab) - offStrTab, a_szStr, __VA_ARGS__); \
|
---|
1053 | offStrTab++; \
|
---|
1054 | Assert(offStrTab < sizeof(pSymFile->szzStrTab)); \
|
---|
1055 | } while (0)
|
---|
1056 |
|
---|
1057 | /*
|
---|
1058 | * Section headers.
|
---|
1059 | */
|
---|
1060 | /* Section header #0: NULL */
|
---|
1061 | unsigned i = 0;
|
---|
1062 | APPEND_STR("");
|
---|
1063 | RT_ZERO(pSymFile->aShdrs[i]);
|
---|
1064 | i++;
|
---|
1065 |
|
---|
1066 | /* Section header: .eh_frame */
|
---|
1067 | pSymFile->aShdrs[i].sh_name = offStrTab;
|
---|
1068 | APPEND_STR(".eh_frame");
|
---|
1069 | pSymFile->aShdrs[i].sh_type = SHT_PROGBITS;
|
---|
1070 | pSymFile->aShdrs[i].sh_flags = SHF_ALLOC | SHF_EXECINSTR;
|
---|
1071 | # if defined(IEMNATIVE_USE_GDB_JIT_ET_DYN) || defined(IEMNATIVE_USE_GDB_JIT_ELF_RVAS)
|
---|
1072 | pSymFile->aShdrs[i].sh_offset
|
---|
1073 | = pSymFile->aShdrs[i].sh_addr = RT_UOFFSETOF(GDBJITSYMFILE, abEhFrame);
|
---|
1074 | # else
|
---|
1075 | pSymFile->aShdrs[i].sh_addr = (uintptr_t)&pSymFile->abEhFrame[0];
|
---|
1076 | pSymFile->aShdrs[i].sh_offset = 0;
|
---|
1077 | # endif
|
---|
1078 |
|
---|
1079 | pSymFile->aShdrs[i].sh_size = sizeof(pEhFrame->abEhFrame);
|
---|
1080 | pSymFile->aShdrs[i].sh_link = 0;
|
---|
1081 | pSymFile->aShdrs[i].sh_info = 0;
|
---|
1082 | pSymFile->aShdrs[i].sh_addralign = 1;
|
---|
1083 | pSymFile->aShdrs[i].sh_entsize = 0;
|
---|
1084 | memcpy(pSymFile->abEhFrame, pEhFrame->abEhFrame, sizeof(pEhFrame->abEhFrame));
|
---|
1085 | i++;
|
---|
1086 |
|
---|
1087 | /* Section header: .shstrtab */
|
---|
1088 | unsigned const iShStrTab = i;
|
---|
1089 | pSymFile->EHdr.e_shstrndx = iShStrTab;
|
---|
1090 | pSymFile->aShdrs[i].sh_name = offStrTab;
|
---|
1091 | APPEND_STR(".shstrtab");
|
---|
1092 | pSymFile->aShdrs[i].sh_type = SHT_STRTAB;
|
---|
1093 | pSymFile->aShdrs[i].sh_flags = SHF_ALLOC;
|
---|
1094 | # if defined(IEMNATIVE_USE_GDB_JIT_ET_DYN) || defined(IEMNATIVE_USE_GDB_JIT_ELF_RVAS)
|
---|
1095 | pSymFile->aShdrs[i].sh_offset
|
---|
1096 | = pSymFile->aShdrs[i].sh_addr = RT_UOFFSETOF(GDBJITSYMFILE, szzStrTab);
|
---|
1097 | # else
|
---|
1098 | pSymFile->aShdrs[i].sh_addr = (uintptr_t)&pSymFile->szzStrTab[0];
|
---|
1099 | pSymFile->aShdrs[i].sh_offset = 0;
|
---|
1100 | # endif
|
---|
1101 | pSymFile->aShdrs[i].sh_size = sizeof(pSymFile->szzStrTab);
|
---|
1102 | pSymFile->aShdrs[i].sh_link = 0;
|
---|
1103 | pSymFile->aShdrs[i].sh_info = 0;
|
---|
1104 | pSymFile->aShdrs[i].sh_addralign = 1;
|
---|
1105 | pSymFile->aShdrs[i].sh_entsize = 0;
|
---|
1106 | i++;
|
---|
1107 |
|
---|
1108 | /* Section header: .symbols */
|
---|
1109 | pSymFile->aShdrs[i].sh_name = offStrTab;
|
---|
1110 | APPEND_STR(".symtab");
|
---|
1111 | pSymFile->aShdrs[i].sh_type = SHT_SYMTAB;
|
---|
1112 | pSymFile->aShdrs[i].sh_flags = SHF_ALLOC;
|
---|
1113 | pSymFile->aShdrs[i].sh_offset
|
---|
1114 | = pSymFile->aShdrs[i].sh_addr = RT_UOFFSETOF(GDBJITSYMFILE, aSymbols);
|
---|
1115 | pSymFile->aShdrs[i].sh_size = sizeof(pSymFile->aSymbols);
|
---|
1116 | pSymFile->aShdrs[i].sh_link = iShStrTab;
|
---|
1117 | pSymFile->aShdrs[i].sh_info = RT_ELEMENTS(pSymFile->aSymbols);
|
---|
1118 | pSymFile->aShdrs[i].sh_addralign = sizeof(pSymFile->aSymbols[0].st_value);
|
---|
1119 | pSymFile->aShdrs[i].sh_entsize = sizeof(pSymFile->aSymbols[0]);
|
---|
1120 | i++;
|
---|
1121 |
|
---|
1122 | # if defined(IEMNATIVE_USE_GDB_JIT_ET_DYN)
|
---|
1123 | /* Section header: .symbols */
|
---|
1124 | pSymFile->aShdrs[i].sh_name = offStrTab;
|
---|
1125 | APPEND_STR(".dynsym");
|
---|
1126 | pSymFile->aShdrs[i].sh_type = SHT_DYNSYM;
|
---|
1127 | pSymFile->aShdrs[i].sh_flags = SHF_ALLOC;
|
---|
1128 | pSymFile->aShdrs[i].sh_offset
|
---|
1129 | = pSymFile->aShdrs[i].sh_addr = RT_UOFFSETOF(GDBJITSYMFILE, aDynSyms);
|
---|
1130 | pSymFile->aShdrs[i].sh_size = sizeof(pSymFile->aDynSyms);
|
---|
1131 | pSymFile->aShdrs[i].sh_link = iShStrTab;
|
---|
1132 | pSymFile->aShdrs[i].sh_info = RT_ELEMENTS(pSymFile->aDynSyms);
|
---|
1133 | pSymFile->aShdrs[i].sh_addralign = sizeof(pSymFile->aDynSyms[0].st_value);
|
---|
1134 | pSymFile->aShdrs[i].sh_entsize = sizeof(pSymFile->aDynSyms[0]);
|
---|
1135 | i++;
|
---|
1136 | # endif
|
---|
1137 |
|
---|
1138 | # if defined(IEMNATIVE_USE_GDB_JIT_ET_DYN)
|
---|
1139 | /* Section header: .dynamic */
|
---|
1140 | pSymFile->aShdrs[i].sh_name = offStrTab;
|
---|
1141 | APPEND_STR(".dynamic");
|
---|
1142 | pSymFile->aShdrs[i].sh_type = SHT_DYNAMIC;
|
---|
1143 | pSymFile->aShdrs[i].sh_flags = SHF_ALLOC;
|
---|
1144 | pSymFile->aShdrs[i].sh_offset
|
---|
1145 | = pSymFile->aShdrs[i].sh_addr = RT_UOFFSETOF(GDBJITSYMFILE, aDyn);
|
---|
1146 | pSymFile->aShdrs[i].sh_size = sizeof(pSymFile->aDyn);
|
---|
1147 | pSymFile->aShdrs[i].sh_link = iShStrTab;
|
---|
1148 | pSymFile->aShdrs[i].sh_info = 0;
|
---|
1149 | pSymFile->aShdrs[i].sh_addralign = 1;
|
---|
1150 | pSymFile->aShdrs[i].sh_entsize = sizeof(pSymFile->aDyn[0]);
|
---|
1151 | i++;
|
---|
1152 | # endif
|
---|
1153 |
|
---|
1154 | /* Section header: .text */
|
---|
1155 | unsigned const iShText = i;
|
---|
1156 | pSymFile->aShdrs[i].sh_name = offStrTab;
|
---|
1157 | APPEND_STR(".text");
|
---|
1158 | pSymFile->aShdrs[i].sh_type = SHT_PROGBITS;
|
---|
1159 | pSymFile->aShdrs[i].sh_flags = SHF_ALLOC | SHF_EXECINSTR;
|
---|
1160 | # if defined(IEMNATIVE_USE_GDB_JIT_ET_DYN) || defined(IEMNATIVE_USE_GDB_JIT_ELF_RVAS)
|
---|
1161 | pSymFile->aShdrs[i].sh_offset
|
---|
1162 | = pSymFile->aShdrs[i].sh_addr = sizeof(GDBJITSYMFILE);
|
---|
1163 | # else
|
---|
1164 | pSymFile->aShdrs[i].sh_addr = (uintptr_t)(pSymFile + 1);
|
---|
1165 | pSymFile->aShdrs[i].sh_offset = 0;
|
---|
1166 | # endif
|
---|
1167 | pSymFile->aShdrs[i].sh_size = pExecMemAllocator->cbChunk - offSymFileInChunk - sizeof(GDBJITSYMFILE);
|
---|
1168 | pSymFile->aShdrs[i].sh_link = 0;
|
---|
1169 | pSymFile->aShdrs[i].sh_info = 0;
|
---|
1170 | pSymFile->aShdrs[i].sh_addralign = 1;
|
---|
1171 | pSymFile->aShdrs[i].sh_entsize = 0;
|
---|
1172 | i++;
|
---|
1173 |
|
---|
1174 | Assert(i == RT_ELEMENTS(pSymFile->aShdrs));
|
---|
1175 |
|
---|
1176 | # if defined(IEMNATIVE_USE_GDB_JIT_ET_DYN)
|
---|
1177 | /*
|
---|
1178 | * The program headers:
|
---|
1179 | */
|
---|
1180 | /* Everything in a single LOAD segment: */
|
---|
1181 | i = 0;
|
---|
1182 | pSymFile->aPhdrs[i].p_type = PT_LOAD;
|
---|
1183 | pSymFile->aPhdrs[i].p_flags = PF_X | PF_R;
|
---|
1184 | pSymFile->aPhdrs[i].p_offset
|
---|
1185 | = pSymFile->aPhdrs[i].p_vaddr
|
---|
1186 | = pSymFile->aPhdrs[i].p_paddr = 0;
|
---|
1187 | pSymFile->aPhdrs[i].p_filesz /* Size of segment in file. */
|
---|
1188 | = pSymFile->aPhdrs[i].p_memsz = pExecMemAllocator->cbChunk - offSymFileInChunk;
|
---|
1189 | pSymFile->aPhdrs[i].p_align = HOST_PAGE_SIZE;
|
---|
1190 | i++;
|
---|
1191 | /* The .dynamic segment. */
|
---|
1192 | pSymFile->aPhdrs[i].p_type = PT_DYNAMIC;
|
---|
1193 | pSymFile->aPhdrs[i].p_flags = PF_R;
|
---|
1194 | pSymFile->aPhdrs[i].p_offset
|
---|
1195 | = pSymFile->aPhdrs[i].p_vaddr
|
---|
1196 | = pSymFile->aPhdrs[i].p_paddr = RT_UOFFSETOF(GDBJITSYMFILE, aDyn);
|
---|
1197 | pSymFile->aPhdrs[i].p_filesz /* Size of segment in file. */
|
---|
1198 | = pSymFile->aPhdrs[i].p_memsz = sizeof(pSymFile->aDyn);
|
---|
1199 | pSymFile->aPhdrs[i].p_align = sizeof(pSymFile->aDyn[0].d_tag);
|
---|
1200 | i++;
|
---|
1201 |
|
---|
1202 | Assert(i == RT_ELEMENTS(pSymFile->aPhdrs));
|
---|
1203 |
|
---|
1204 | /*
|
---|
1205 | * The dynamic section:
|
---|
1206 | */
|
---|
1207 | i = 0;
|
---|
1208 | pSymFile->aDyn[i].d_tag = DT_SONAME;
|
---|
1209 | pSymFile->aDyn[i].d_un.d_val = offStrTab;
|
---|
1210 | APPEND_STR_FMT("iem-exec-chunk-%u-%u", pVCpu->idCpu, idxChunk);
|
---|
1211 | i++;
|
---|
1212 | pSymFile->aDyn[i].d_tag = DT_STRTAB;
|
---|
1213 | pSymFile->aDyn[i].d_un.d_ptr = RT_UOFFSETOF(GDBJITSYMFILE, szzStrTab);
|
---|
1214 | i++;
|
---|
1215 | pSymFile->aDyn[i].d_tag = DT_STRSZ;
|
---|
1216 | pSymFile->aDyn[i].d_un.d_val = sizeof(pSymFile->szzStrTab);
|
---|
1217 | i++;
|
---|
1218 | pSymFile->aDyn[i].d_tag = DT_SYMTAB;
|
---|
1219 | pSymFile->aDyn[i].d_un.d_ptr = RT_UOFFSETOF(GDBJITSYMFILE, aDynSyms);
|
---|
1220 | i++;
|
---|
1221 | pSymFile->aDyn[i].d_tag = DT_SYMENT;
|
---|
1222 | pSymFile->aDyn[i].d_un.d_val = sizeof(pSymFile->aDynSyms[0]);
|
---|
1223 | i++;
|
---|
1224 | pSymFile->aDyn[i].d_tag = DT_NULL;
|
---|
1225 | i++;
|
---|
1226 | Assert(i == RT_ELEMENTS(pSymFile->aDyn));
|
---|
1227 | # endif /* IEMNATIVE_USE_GDB_JIT_ET_DYN */
|
---|
1228 |
|
---|
1229 | /*
|
---|
1230 | * Symbol tables:
|
---|
1231 | */
|
---|
1232 | /** @todo gdb doesn't seem to really like this ... */
|
---|
1233 | i = 0;
|
---|
1234 | pSymFile->aSymbols[i].st_name = 0;
|
---|
1235 | pSymFile->aSymbols[i].st_shndx = SHN_UNDEF;
|
---|
1236 | pSymFile->aSymbols[i].st_value = 0;
|
---|
1237 | pSymFile->aSymbols[i].st_size = 0;
|
---|
1238 | pSymFile->aSymbols[i].st_info = ELF64_ST_INFO(STB_LOCAL, STT_NOTYPE);
|
---|
1239 | pSymFile->aSymbols[i].st_other = 0 /* STV_DEFAULT */;
|
---|
1240 | # ifdef IEMNATIVE_USE_GDB_JIT_ET_DYN
|
---|
1241 | pSymFile->aDynSyms[0] = pSymFile->aSymbols[i];
|
---|
1242 | # endif
|
---|
1243 | i++;
|
---|
1244 |
|
---|
1245 | pSymFile->aSymbols[i].st_name = 0;
|
---|
1246 | pSymFile->aSymbols[i].st_shndx = SHN_ABS;
|
---|
1247 | pSymFile->aSymbols[i].st_value = 0;
|
---|
1248 | pSymFile->aSymbols[i].st_size = 0;
|
---|
1249 | pSymFile->aSymbols[i].st_info = ELF64_ST_INFO(STB_LOCAL, STT_FILE);
|
---|
1250 | pSymFile->aSymbols[i].st_other = 0 /* STV_DEFAULT */;
|
---|
1251 | i++;
|
---|
1252 |
|
---|
1253 | pSymFile->aSymbols[i].st_name = offStrTab;
|
---|
1254 | APPEND_STR_FMT("iem_exec_chunk_%u_%u", pVCpu->idCpu, idxChunk);
|
---|
1255 | # if 0
|
---|
1256 | pSymFile->aSymbols[i].st_shndx = iShText;
|
---|
1257 | pSymFile->aSymbols[i].st_value = 0;
|
---|
1258 | # else
|
---|
1259 | pSymFile->aSymbols[i].st_shndx = SHN_ABS;
|
---|
1260 | pSymFile->aSymbols[i].st_value = (uintptr_t)(pSymFile + 1);
|
---|
1261 | # endif
|
---|
1262 | pSymFile->aSymbols[i].st_size = pSymFile->aShdrs[iShText].sh_size;
|
---|
1263 | pSymFile->aSymbols[i].st_info = ELF64_ST_INFO(STB_GLOBAL, STT_FUNC);
|
---|
1264 | pSymFile->aSymbols[i].st_other = 0 /* STV_DEFAULT */;
|
---|
1265 | # ifdef IEMNATIVE_USE_GDB_JIT_ET_DYN
|
---|
1266 | pSymFile->aDynSyms[1] = pSymFile->aSymbols[i];
|
---|
1267 | pSymFile->aDynSyms[1].st_value = (uintptr_t)(pSymFile + 1);
|
---|
1268 | # endif
|
---|
1269 | i++;
|
---|
1270 |
|
---|
1271 | Assert(i == RT_ELEMENTS(pSymFile->aSymbols));
|
---|
1272 | Assert(offStrTab < sizeof(pSymFile->szzStrTab));
|
---|
1273 |
|
---|
1274 | /*
|
---|
1275 | * The GDB JIT entry and informing GDB.
|
---|
1276 | */
|
---|
1277 | pEhFrame->GdbJitEntry.pbSymFile = (uint8_t *)pSymFile;
|
---|
1278 | # if 1
|
---|
1279 | pEhFrame->GdbJitEntry.cbSymFile = pExecMemAllocator->cbChunk - ((uintptr_t)pSymFile - (uintptr_t)pvChunk);
|
---|
1280 | # else
|
---|
1281 | pEhFrame->GdbJitEntry.cbSymFile = sizeof(GDBJITSYMFILE);
|
---|
1282 | # endif
|
---|
1283 |
|
---|
1284 | RTOnce(&g_IemNativeGdbJitOnce, iemNativeGdbJitInitOnce, NULL);
|
---|
1285 | RTCritSectEnter(&g_IemNativeGdbJitLock);
|
---|
1286 | pEhFrame->GdbJitEntry.pNext = NULL;
|
---|
1287 | pEhFrame->GdbJitEntry.pPrev = __jit_debug_descriptor.pTail;
|
---|
1288 | if (__jit_debug_descriptor.pTail)
|
---|
1289 | __jit_debug_descriptor.pTail->pNext = &pEhFrame->GdbJitEntry;
|
---|
1290 | else
|
---|
1291 | __jit_debug_descriptor.pHead = &pEhFrame->GdbJitEntry;
|
---|
1292 | __jit_debug_descriptor.pTail = &pEhFrame->GdbJitEntry;
|
---|
1293 | __jit_debug_descriptor.pRelevant = &pEhFrame->GdbJitEntry;
|
---|
1294 |
|
---|
1295 | /* Notify GDB: */
|
---|
1296 | __jit_debug_descriptor.enmAction = kGdbJitaction_Register;
|
---|
1297 | __jit_debug_register_code();
|
---|
1298 | __jit_debug_descriptor.enmAction = kGdbJitaction_NoAction;
|
---|
1299 | RTCritSectLeave(&g_IemNativeGdbJitLock);
|
---|
1300 |
|
---|
1301 | # else /* !IEMNATIVE_USE_GDB_JIT */
|
---|
1302 | RT_NOREF(pVCpu);
|
---|
1303 | # endif /* !IEMNATIVE_USE_GDB_JIT */
|
---|
1304 |
|
---|
1305 | return VINF_SUCCESS;
|
---|
1306 | }
|
---|
1307 |
|
---|
1308 | # endif /* !RT_OS_WINDOWS */
|
---|
1309 | #endif /* IN_RING3 */
|
---|
1310 |
|
---|
1311 |
|
---|
1312 | /**
|
---|
1313 | * Adds another chunk to the executable memory allocator.
|
---|
1314 | *
|
---|
1315 | * This is used by the init code for the initial allocation and later by the
|
---|
1316 | * regular allocator function when it's out of memory.
|
---|
1317 | */
|
---|
1318 | static int iemExecMemAllocatorGrow(PVMCPUCC pVCpu, PIEMEXECMEMALLOCATOR pExecMemAllocator)
|
---|
1319 | {
|
---|
1320 | /* Check that we've room for growth. */
|
---|
1321 | uint32_t const idxChunk = pExecMemAllocator->cChunks;
|
---|
1322 | AssertLogRelReturn(idxChunk < pExecMemAllocator->cMaxChunks, VERR_OUT_OF_RESOURCES);
|
---|
1323 |
|
---|
1324 | /* Allocate a chunk. */
|
---|
1325 | #ifdef RT_OS_DARWIN
|
---|
1326 | void *pvChunk = RTMemPageAllocEx(pExecMemAllocator->cbChunk, 0);
|
---|
1327 | #else
|
---|
1328 | void *pvChunk = RTMemPageAllocEx(pExecMemAllocator->cbChunk, RTMEMPAGEALLOC_F_EXECUTABLE);
|
---|
1329 | #endif
|
---|
1330 | AssertLogRelReturn(pvChunk, VERR_NO_EXEC_MEMORY);
|
---|
1331 |
|
---|
1332 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
1333 | int rc = VINF_SUCCESS;
|
---|
1334 | #else
|
---|
1335 | /* Initialize the heap for the chunk. */
|
---|
1336 | RTHEAPSIMPLE hHeap = NIL_RTHEAPSIMPLE;
|
---|
1337 | int rc = RTHeapSimpleInit(&hHeap, pvChunk, pExecMemAllocator->cbChunk);
|
---|
1338 | AssertRC(rc);
|
---|
1339 | if (RT_SUCCESS(rc))
|
---|
1340 | {
|
---|
1341 | /*
|
---|
1342 | * We want the memory to be aligned on 64 byte, so the first time thru
|
---|
1343 | * here we do some exploratory allocations to see how we can achieve this.
|
---|
1344 | * On subsequent runs we only make an initial adjustment allocation, if
|
---|
1345 | * necessary.
|
---|
1346 | *
|
---|
1347 | * Since we own the heap implementation, we know that the internal block
|
---|
1348 | * header is 32 bytes in size for 64-bit systems (see RTHEAPSIMPLEBLOCK),
|
---|
1349 | * so all we need to wrt allocation size adjustments is to add 32 bytes
|
---|
1350 | * to the size, align up by 64 bytes, and subtract 32 bytes.
|
---|
1351 | *
|
---|
1352 | * The heap anchor block is 8 * sizeof(void *) (see RTHEAPSIMPLEINTERNAL),
|
---|
1353 | * which mean 64 bytes on a 64-bit system, so we need to make a 64 byte
|
---|
1354 | * allocation to force subsequent allocations to return 64 byte aligned
|
---|
1355 | * user areas.
|
---|
1356 | */
|
---|
1357 | if (!pExecMemAllocator->cbHeapBlockHdr)
|
---|
1358 | {
|
---|
1359 | pExecMemAllocator->cbHeapBlockHdr = sizeof(void *) * 4; /* See RTHEAPSIMPLEBLOCK. */
|
---|
1360 | pExecMemAllocator->cbHeapAlignTweak = 64;
|
---|
1361 | pExecMemAllocator->pvAlignTweak = RTHeapSimpleAlloc(hHeap, pExecMemAllocator->cbHeapAlignTweak,
|
---|
1362 | 32 /*cbAlignment*/);
|
---|
1363 | AssertStmt(pExecMemAllocator->pvAlignTweak, rc = VERR_INTERNAL_ERROR_2);
|
---|
1364 |
|
---|
1365 | void *pvTest1 = RTHeapSimpleAlloc(hHeap,
|
---|
1366 | RT_ALIGN_32(256 + pExecMemAllocator->cbHeapBlockHdr, 64)
|
---|
1367 | - pExecMemAllocator->cbHeapBlockHdr, 32 /*cbAlignment*/);
|
---|
1368 | AssertStmt(pvTest1, rc = VERR_INTERNAL_ERROR_2);
|
---|
1369 | AssertStmt(!((uintptr_t)pvTest1 & 63), rc = VERR_INTERNAL_ERROR_3);
|
---|
1370 |
|
---|
1371 | void *pvTest2 = RTHeapSimpleAlloc(hHeap,
|
---|
1372 | RT_ALIGN_32(687 + pExecMemAllocator->cbHeapBlockHdr, 64)
|
---|
1373 | - pExecMemAllocator->cbHeapBlockHdr, 32 /*cbAlignment*/);
|
---|
1374 | AssertStmt(pvTest2, rc = VERR_INTERNAL_ERROR_2);
|
---|
1375 | AssertStmt(!((uintptr_t)pvTest2 & 63), rc = VERR_INTERNAL_ERROR_3);
|
---|
1376 |
|
---|
1377 | RTHeapSimpleFree(hHeap, pvTest2);
|
---|
1378 | RTHeapSimpleFree(hHeap, pvTest1);
|
---|
1379 | }
|
---|
1380 | else
|
---|
1381 | {
|
---|
1382 | pExecMemAllocator->pvAlignTweak = RTHeapSimpleAlloc(hHeap, pExecMemAllocator->cbHeapAlignTweak, 32 /*cbAlignment*/);
|
---|
1383 | AssertStmt(pExecMemAllocator->pvAlignTweak, rc = VERR_INTERNAL_ERROR_4);
|
---|
1384 | }
|
---|
1385 | if (RT_SUCCESS(rc))
|
---|
1386 | #endif /* !IEMEXECMEM_USE_ALT_SUB_ALLOCATOR */
|
---|
1387 | {
|
---|
1388 | /*
|
---|
1389 | * Add the chunk.
|
---|
1390 | *
|
---|
1391 | * This must be done before the unwind init so windows can allocate
|
---|
1392 | * memory from the chunk when using the alternative sub-allocator.
|
---|
1393 | */
|
---|
1394 | pExecMemAllocator->aChunks[idxChunk].pvChunk = pvChunk;
|
---|
1395 | #ifdef IN_RING3
|
---|
1396 | pExecMemAllocator->aChunks[idxChunk].pvUnwindInfo = NULL;
|
---|
1397 | #endif
|
---|
1398 | #ifndef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
1399 | pExecMemAllocator->aChunks[idxChunk].hHeap = hHeap;
|
---|
1400 | #else
|
---|
1401 | pExecMemAllocator->aChunks[idxChunk].cFreeUnits = pExecMemAllocator->cUnitsPerChunk;
|
---|
1402 | pExecMemAllocator->aChunks[idxChunk].idxFreeHint = 0;
|
---|
1403 | memset(&pExecMemAllocator->pbmAlloc[pExecMemAllocator->cBitmapElementsPerChunk * idxChunk],
|
---|
1404 | 0, sizeof(pExecMemAllocator->pbmAlloc[0]) * pExecMemAllocator->cBitmapElementsPerChunk);
|
---|
1405 | #endif
|
---|
1406 |
|
---|
1407 | pExecMemAllocator->cChunks = idxChunk + 1;
|
---|
1408 | pExecMemAllocator->idxChunkHint = idxChunk;
|
---|
1409 |
|
---|
1410 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
1411 | pExecMemAllocator->cbTotal += pExecMemAllocator->cbChunk;
|
---|
1412 | pExecMemAllocator->cbFree += pExecMemAllocator->cbChunk;
|
---|
1413 | #else
|
---|
1414 | size_t const cbFree = RTHeapSimpleGetFreeSize(hHeap);
|
---|
1415 | pExecMemAllocator->cbTotal += cbFree;
|
---|
1416 | pExecMemAllocator->cbFree += cbFree;
|
---|
1417 | #endif
|
---|
1418 |
|
---|
1419 | #ifdef IN_RING3
|
---|
1420 | /*
|
---|
1421 | * Initialize the unwind information (this cannot really fail atm).
|
---|
1422 | * (This sets pvUnwindInfo.)
|
---|
1423 | */
|
---|
1424 | rc = iemExecMemAllocatorInitAndRegisterUnwindInfoForChunk(pVCpu, pExecMemAllocator, pvChunk, idxChunk);
|
---|
1425 | if (RT_SUCCESS(rc))
|
---|
1426 | #endif
|
---|
1427 | {
|
---|
1428 | return VINF_SUCCESS;
|
---|
1429 | }
|
---|
1430 |
|
---|
1431 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
1432 | /* Just in case the impossible happens, undo the above up: */
|
---|
1433 | pExecMemAllocator->cbTotal -= pExecMemAllocator->cbChunk;
|
---|
1434 | pExecMemAllocator->cbFree -= pExecMemAllocator->aChunks[idxChunk].cFreeUnits << IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT;
|
---|
1435 | pExecMemAllocator->cChunks = idxChunk;
|
---|
1436 | memset(&pExecMemAllocator->pbmAlloc[pExecMemAllocator->cBitmapElementsPerChunk * idxChunk],
|
---|
1437 | 0xff, sizeof(pExecMemAllocator->pbmAlloc[0]) * pExecMemAllocator->cBitmapElementsPerChunk);
|
---|
1438 | pExecMemAllocator->aChunks[idxChunk].pvChunk = NULL;
|
---|
1439 | pExecMemAllocator->aChunks[idxChunk].cFreeUnits = 0;
|
---|
1440 | #endif
|
---|
1441 | }
|
---|
1442 | #ifndef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
1443 | }
|
---|
1444 | #endif
|
---|
1445 | RTMemPageFree(pvChunk, pExecMemAllocator->cbChunk);
|
---|
1446 | RT_NOREF(pVCpu);
|
---|
1447 | return rc;
|
---|
1448 | }
|
---|
1449 |
|
---|
1450 |
|
---|
1451 | /**
|
---|
1452 | * Initializes the executable memory allocator for native recompilation on the
|
---|
1453 | * calling EMT.
|
---|
1454 | *
|
---|
1455 | * @returns VBox status code.
|
---|
1456 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
1457 | * thread.
|
---|
1458 | * @param cbMax The max size of the allocator.
|
---|
1459 | * @param cbInitial The initial allocator size.
|
---|
1460 | * @param cbChunk The chunk size, 0 or UINT32_MAX for default (@a cbMax
|
---|
1461 | * dependent).
|
---|
1462 | */
|
---|
1463 | int iemExecMemAllocatorInit(PVMCPU pVCpu, uint64_t cbMax, uint64_t cbInitial, uint32_t cbChunk)
|
---|
1464 | {
|
---|
1465 | /*
|
---|
1466 | * Validate input.
|
---|
1467 | */
|
---|
1468 | AssertLogRelMsgReturn(cbMax >= _1M && cbMax <= _4G+_4G, ("cbMax=%RU64 (%RX64)\n", cbMax, cbMax), VERR_OUT_OF_RANGE);
|
---|
1469 | AssertReturn(cbInitial <= cbMax, VERR_OUT_OF_RANGE);
|
---|
1470 | AssertLogRelMsgReturn( cbChunk != UINT32_MAX
|
---|
1471 | || cbChunk == 0
|
---|
1472 | || ( RT_IS_POWER_OF_TWO(cbChunk)
|
---|
1473 | && cbChunk >= _1M
|
---|
1474 | && cbChunk <= _256M
|
---|
1475 | && cbChunk <= cbMax),
|
---|
1476 | ("cbChunk=%RU32 (%RX32) cbMax=%RU64\n", cbChunk, cbChunk, cbMax),
|
---|
1477 | VERR_OUT_OF_RANGE);
|
---|
1478 |
|
---|
1479 | /*
|
---|
1480 | * Adjust/figure out the chunk size.
|
---|
1481 | */
|
---|
1482 | if (cbChunk == 0 || cbChunk == UINT32_MAX)
|
---|
1483 | {
|
---|
1484 | if (cbMax >= _256M)
|
---|
1485 | cbChunk = _64M;
|
---|
1486 | else
|
---|
1487 | {
|
---|
1488 | if (cbMax < _16M)
|
---|
1489 | cbChunk = cbMax >= _4M ? _4M : (uint32_t)cbMax;
|
---|
1490 | else
|
---|
1491 | cbChunk = (uint32_t)cbMax / 4;
|
---|
1492 | if (!RT_IS_POWER_OF_TWO(cbChunk))
|
---|
1493 | cbChunk = RT_BIT_32(ASMBitLastSetU32(cbChunk));
|
---|
1494 | }
|
---|
1495 | }
|
---|
1496 |
|
---|
1497 | if (cbChunk > cbMax)
|
---|
1498 | cbMax = cbChunk;
|
---|
1499 | else
|
---|
1500 | cbMax = (cbMax - 1 + cbChunk) / cbChunk * cbChunk;
|
---|
1501 | uint32_t const cMaxChunks = (uint32_t)(cbMax / cbChunk);
|
---|
1502 | AssertLogRelReturn((uint64_t)cMaxChunks * cbChunk == cbMax, VERR_INTERNAL_ERROR_3);
|
---|
1503 |
|
---|
1504 | /*
|
---|
1505 | * Allocate and initialize the allocatore instance.
|
---|
1506 | */
|
---|
1507 | size_t cbNeeded = RT_UOFFSETOF_DYN(IEMEXECMEMALLOCATOR, aChunks[cMaxChunks]);
|
---|
1508 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
1509 | size_t const offBitmaps = RT_ALIGN_Z(cbNeeded, RT_CACHELINE_SIZE);
|
---|
1510 | size_t const cbBitmap = cbChunk >> (IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT + 3);
|
---|
1511 | cbNeeded += cbBitmap * cMaxChunks;
|
---|
1512 | AssertCompile(IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT <= 10);
|
---|
1513 | Assert(cbChunk > RT_BIT_32(IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT + 3));
|
---|
1514 | #endif
|
---|
1515 | #if defined(IN_RING3) && !defined(RT_OS_WINDOWS)
|
---|
1516 | size_t const offEhFrames = RT_ALIGN_Z(cbNeeded, RT_CACHELINE_SIZE);
|
---|
1517 | cbNeeded += sizeof(IEMEXECMEMCHUNKEHFRAME) * cMaxChunks;
|
---|
1518 | #endif
|
---|
1519 | PIEMEXECMEMALLOCATOR pExecMemAllocator = (PIEMEXECMEMALLOCATOR)RTMemAllocZ(cbNeeded);
|
---|
1520 | AssertLogRelMsgReturn(pExecMemAllocator, ("cbNeeded=%zx cMaxChunks=%#x cbChunk=%#x\n", cbNeeded, cMaxChunks, cbChunk),
|
---|
1521 | VERR_NO_MEMORY);
|
---|
1522 | pExecMemAllocator->uMagic = IEMEXECMEMALLOCATOR_MAGIC;
|
---|
1523 | pExecMemAllocator->cbChunk = cbChunk;
|
---|
1524 | pExecMemAllocator->cMaxChunks = cMaxChunks;
|
---|
1525 | pExecMemAllocator->cChunks = 0;
|
---|
1526 | pExecMemAllocator->idxChunkHint = 0;
|
---|
1527 | pExecMemAllocator->cAllocations = 0;
|
---|
1528 | pExecMemAllocator->cbTotal = 0;
|
---|
1529 | pExecMemAllocator->cbFree = 0;
|
---|
1530 | pExecMemAllocator->cbAllocated = 0;
|
---|
1531 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
1532 | pExecMemAllocator->pbmAlloc = (uint64_t *)((uintptr_t)pExecMemAllocator + offBitmaps);
|
---|
1533 | pExecMemAllocator->cUnitsPerChunk = cbChunk >> IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT;
|
---|
1534 | pExecMemAllocator->cBitmapElementsPerChunk = cbChunk >> (IEMEXECMEM_ALT_SUB_ALLOC_UNIT_SHIFT + 6);
|
---|
1535 | memset(pExecMemAllocator->pbmAlloc, 0xff, cbBitmap); /* Mark everything as allocated. Clear when chunks are added. */
|
---|
1536 | #endif
|
---|
1537 | #if defined(IN_RING3) && !defined(RT_OS_WINDOWS)
|
---|
1538 | pExecMemAllocator->paEhFrames = (PIEMEXECMEMCHUNKEHFRAME)((uintptr_t)pExecMemAllocator + offEhFrames);
|
---|
1539 | #endif
|
---|
1540 | for (uint32_t i = 0; i < cMaxChunks; i++)
|
---|
1541 | {
|
---|
1542 | #ifdef IEMEXECMEM_USE_ALT_SUB_ALLOCATOR
|
---|
1543 | pExecMemAllocator->aChunks[i].cFreeUnits = 0;
|
---|
1544 | pExecMemAllocator->aChunks[i].idxFreeHint = 0;
|
---|
1545 | #else
|
---|
1546 | pExecMemAllocator->aChunks[i].hHeap = NIL_RTHEAPSIMPLE;
|
---|
1547 | #endif
|
---|
1548 | pExecMemAllocator->aChunks[i].pvChunk = NULL;
|
---|
1549 | #ifdef IN_RING0
|
---|
1550 | pExecMemAllocator->aChunks[i].hMemObj = NIL_RTR0MEMOBJ;
|
---|
1551 | #else
|
---|
1552 | pExecMemAllocator->aChunks[i].pvUnwindInfo = NULL;
|
---|
1553 | #endif
|
---|
1554 | }
|
---|
1555 | pVCpu->iem.s.pExecMemAllocatorR3 = pExecMemAllocator;
|
---|
1556 |
|
---|
1557 | /*
|
---|
1558 | * Do the initial allocations.
|
---|
1559 | */
|
---|
1560 | while (cbInitial < (uint64_t)pExecMemAllocator->cChunks * pExecMemAllocator->cbChunk)
|
---|
1561 | {
|
---|
1562 | int rc = iemExecMemAllocatorGrow(pVCpu, pExecMemAllocator);
|
---|
1563 | AssertLogRelRCReturn(rc, rc);
|
---|
1564 | }
|
---|
1565 |
|
---|
1566 | pExecMemAllocator->idxChunkHint = 0;
|
---|
1567 |
|
---|
1568 | return VINF_SUCCESS;
|
---|
1569 | }
|
---|
1570 |
|
---|
1571 |
|
---|
1572 | /*********************************************************************************************************************************
|
---|
1573 | * Native Recompilation *
|
---|
1574 | *********************************************************************************************************************************/
|
---|
1575 |
|
---|
1576 |
|
---|
1577 | /**
|
---|
1578 | * Used by TB code when encountering a non-zero status or rcPassUp after a call.
|
---|
1579 | */
|
---|
1580 | IEM_DECL_NATIVE_HLP_DEF(int, iemNativeHlpExecStatusCodeFiddling,(PVMCPUCC pVCpu, int rc, uint8_t idxInstr))
|
---|
1581 | {
|
---|
1582 | pVCpu->iem.s.cInstructions += idxInstr;
|
---|
1583 | return VBOXSTRICTRC_VAL(iemExecStatusCodeFiddling(pVCpu, rc == VINF_IEM_REEXEC_BREAK ? VINF_SUCCESS : rc));
|
---|
1584 | }
|
---|
1585 |
|
---|
1586 |
|
---|
1587 | /**
|
---|
1588 | * Used by TB code when it wants to raise a \#GP(0).
|
---|
1589 | */
|
---|
1590 | IEM_DECL_NATIVE_HLP_DEF(int, iemNativeHlpExecRaiseGp0,(PVMCPUCC pVCpu))
|
---|
1591 | {
|
---|
1592 | iemRaiseGeneralProtectionFault0Jmp(pVCpu);
|
---|
1593 | #ifndef _MSC_VER
|
---|
1594 | return VINF_IEM_RAISED_XCPT; /* not reached */
|
---|
1595 | #endif
|
---|
1596 | }
|
---|
1597 |
|
---|
1598 |
|
---|
1599 | /**
|
---|
1600 | * Used by TB code when detecting opcode changes.
|
---|
1601 | * @see iemThreadeFuncWorkerObsoleteTb
|
---|
1602 | */
|
---|
1603 | IEM_DECL_NATIVE_HLP_DEF(int, iemNativeHlpObsoleteTb,(PVMCPUCC pVCpu))
|
---|
1604 | {
|
---|
1605 | /* We set fSafeToFree to false where as we're being called in the context
|
---|
1606 | of a TB callback function, which for native TBs means we cannot release
|
---|
1607 | the executable memory till we've returned our way back to iemTbExec as
|
---|
1608 | that return path codes via the native code generated for the TB. */
|
---|
1609 | Log7(("TB obsolete: %p at %04x:%08RX64\n", pVCpu->iem.s.pCurTbR3, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
1610 | iemThreadedTbObsolete(pVCpu, pVCpu->iem.s.pCurTbR3, false /*fSafeToFree*/);
|
---|
1611 | return VINF_IEM_REEXEC_BREAK;
|
---|
1612 | }
|
---|
1613 |
|
---|
1614 |
|
---|
1615 | /**
|
---|
1616 | * Used by TB code when we need to switch to a TB with CS.LIM checking.
|
---|
1617 | */
|
---|
1618 | IEM_DECL_NATIVE_HLP_DEF(int, iemNativeHlpNeedCsLimChecking,(PVMCPUCC pVCpu))
|
---|
1619 | {
|
---|
1620 | Log7(("TB need CS.LIM: %p at %04x:%08RX64; offFromLim=%#RX64 CS.LIM=%#RX32 CS.BASE=%#RX64\n",
|
---|
1621 | pVCpu->iem.s.pCurTbR3, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
|
---|
1622 | (int64_t)pVCpu->cpum.GstCtx.cs.u32Limit - (int64_t)pVCpu->cpum.GstCtx.rip,
|
---|
1623 | pVCpu->cpum.GstCtx.cs.u32Limit, pVCpu->cpum.GstCtx.cs.u64Base));
|
---|
1624 | STAM_REL_COUNTER_INC(&pVCpu->iem.s.StatCheckNeedCsLimChecking);
|
---|
1625 | return VINF_IEM_REEXEC_BREAK;
|
---|
1626 | }
|
---|
1627 |
|
---|
1628 |
|
---|
1629 | /**
|
---|
1630 | * Used by TB code when we missed a PC check after a branch.
|
---|
1631 | */
|
---|
1632 | IEM_DECL_NATIVE_HLP_DEF(int, iemNativeHlpCheckBranchMiss,(PVMCPUCC pVCpu))
|
---|
1633 | {
|
---|
1634 | Log7(("TB jmp miss: %p at %04x:%08RX64; GCPhysWithOffset=%RGp, pbInstrBuf=%p\n",
|
---|
1635 | pVCpu->iem.s.pCurTbR3, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
|
---|
1636 | pVCpu->iem.s.GCPhysInstrBuf + pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base - pVCpu->iem.s.uInstrBufPc,
|
---|
1637 | pVCpu->iem.s.pbInstrBuf));
|
---|
1638 | STAM_REL_COUNTER_INC(&pVCpu->iem.s.StatCheckBranchMisses);
|
---|
1639 | return VINF_IEM_REEXEC_BREAK;
|
---|
1640 | }
|
---|
1641 |
|
---|
1642 |
|
---|
1643 |
|
---|
1644 | /*********************************************************************************************************************************
|
---|
1645 | * Helpers: Segmented memory fetches and stores. *
|
---|
1646 | *********************************************************************************************************************************/
|
---|
1647 |
|
---|
1648 | /**
|
---|
1649 | * Used by TB code to load unsigned 8-bit data w/ segmentation.
|
---|
1650 | */
|
---|
1651 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpMemFetchDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
1652 | {
|
---|
1653 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_FETCH
|
---|
1654 | return (uint64_t)iemMemFetchDataU8SafeJmp(pVCpu, iSegReg, GCPtrMem);
|
---|
1655 | #else
|
---|
1656 | return (uint64_t)iemMemFetchDataU8Jmp(pVCpu, iSegReg, GCPtrMem);
|
---|
1657 | #endif
|
---|
1658 | }
|
---|
1659 |
|
---|
1660 |
|
---|
1661 | /**
|
---|
1662 | * Used by TB code to load signed 8-bit data w/ segmentation, sign extending it
|
---|
1663 | * to 16 bits.
|
---|
1664 | */
|
---|
1665 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
1666 | {
|
---|
1667 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_FETCH
|
---|
1668 | return (uint64_t)(uint16_t)(int16_t)(int8_t)iemMemFetchDataU8SafeJmp(pVCpu, iSegReg, GCPtrMem);
|
---|
1669 | #else
|
---|
1670 | return (uint64_t)(uint16_t)(int16_t)(int8_t)iemMemFetchDataU8Jmp(pVCpu, iSegReg, GCPtrMem);
|
---|
1671 | #endif
|
---|
1672 | }
|
---|
1673 |
|
---|
1674 |
|
---|
1675 | /**
|
---|
1676 | * Used by TB code to load signed 8-bit data w/ segmentation, sign extending it
|
---|
1677 | * to 32 bits.
|
---|
1678 | */
|
---|
1679 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
1680 | {
|
---|
1681 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_FETCH
|
---|
1682 | return (uint64_t)(uint32_t)(int32_t)(int8_t)iemMemFetchDataU8SafeJmp(pVCpu, iSegReg, GCPtrMem);
|
---|
1683 | #else
|
---|
1684 | return (uint64_t)(uint32_t)(int32_t)(int8_t)iemMemFetchDataU8Jmp(pVCpu, iSegReg, GCPtrMem);
|
---|
1685 | #endif
|
---|
1686 | }
|
---|
1687 |
|
---|
1688 | /**
|
---|
1689 | * Used by TB code to load signed 8-bit data w/ segmentation, sign extending it
|
---|
1690 | * to 64 bits.
|
---|
1691 | */
|
---|
1692 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
1693 | {
|
---|
1694 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_FETCH
|
---|
1695 | return (uint64_t)(int64_t)(int8_t)iemMemFetchDataU8SafeJmp(pVCpu, iSegReg, GCPtrMem);
|
---|
1696 | #else
|
---|
1697 | return (uint64_t)(int64_t)(int8_t)iemMemFetchDataU8Jmp(pVCpu, iSegReg, GCPtrMem);
|
---|
1698 | #endif
|
---|
1699 | }
|
---|
1700 |
|
---|
1701 |
|
---|
1702 | /**
|
---|
1703 | * Used by TB code to load unsigned 16-bit data w/ segmentation.
|
---|
1704 | */
|
---|
1705 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpMemFetchDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
1706 | {
|
---|
1707 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_FETCH
|
---|
1708 | return (uint64_t)iemMemFetchDataU16SafeJmp(pVCpu, iSegReg, GCPtrMem);
|
---|
1709 | #else
|
---|
1710 | return (uint64_t)iemMemFetchDataU16Jmp(pVCpu, iSegReg, GCPtrMem);
|
---|
1711 | #endif
|
---|
1712 | }
|
---|
1713 |
|
---|
1714 |
|
---|
1715 | /**
|
---|
1716 | * Used by TB code to load signed 16-bit data w/ segmentation, sign extending it
|
---|
1717 | * to 32 bits.
|
---|
1718 | */
|
---|
1719 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpMemFetchDataU16_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
1720 | {
|
---|
1721 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_FETCH
|
---|
1722 | return (uint64_t)(uint32_t)(int32_t)(int16_t)iemMemFetchDataU16SafeJmp(pVCpu, iSegReg, GCPtrMem);
|
---|
1723 | #else
|
---|
1724 | return (uint64_t)(uint32_t)(int32_t)(int16_t)iemMemFetchDataU16Jmp(pVCpu, iSegReg, GCPtrMem);
|
---|
1725 | #endif
|
---|
1726 | }
|
---|
1727 |
|
---|
1728 |
|
---|
1729 | /**
|
---|
1730 | * Used by TB code to load signed 16-bit data w/ segmentation, sign extending it
|
---|
1731 | * to 64 bits.
|
---|
1732 | */
|
---|
1733 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpMemFetchDataU16_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
1734 | {
|
---|
1735 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_FETCH
|
---|
1736 | return (uint64_t)(int64_t)(int16_t)iemMemFetchDataU16SafeJmp(pVCpu, iSegReg, GCPtrMem);
|
---|
1737 | #else
|
---|
1738 | return (uint64_t)(int64_t)(int16_t)iemMemFetchDataU16Jmp(pVCpu, iSegReg, GCPtrMem);
|
---|
1739 | #endif
|
---|
1740 | }
|
---|
1741 |
|
---|
1742 |
|
---|
1743 | /**
|
---|
1744 | * Used by TB code to load unsigned 32-bit data w/ segmentation.
|
---|
1745 | */
|
---|
1746 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpMemFetchDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
1747 | {
|
---|
1748 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_FETCH
|
---|
1749 | return (uint64_t)iemMemFetchDataU32SafeJmp(pVCpu, iSegReg, GCPtrMem);
|
---|
1750 | #else
|
---|
1751 | return (uint64_t)iemMemFetchDataU32Jmp(pVCpu, iSegReg, GCPtrMem);
|
---|
1752 | #endif
|
---|
1753 | }
|
---|
1754 |
|
---|
1755 |
|
---|
1756 | /**
|
---|
1757 | * Used by TB code to load signed 32-bit data w/ segmentation, sign extending it
|
---|
1758 | * to 64 bits.
|
---|
1759 | */
|
---|
1760 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpMemFetchDataU32_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
1761 | {
|
---|
1762 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_FETCH
|
---|
1763 | return (uint64_t)(int64_t)(int32_t)iemMemFetchDataU32SafeJmp(pVCpu, iSegReg, GCPtrMem);
|
---|
1764 | #else
|
---|
1765 | return (uint64_t)(int64_t)(int32_t)iemMemFetchDataU32Jmp(pVCpu, iSegReg, GCPtrMem);
|
---|
1766 | #endif
|
---|
1767 | }
|
---|
1768 |
|
---|
1769 |
|
---|
1770 | /**
|
---|
1771 | * Used by TB code to load unsigned 64-bit data w/ segmentation.
|
---|
1772 | */
|
---|
1773 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpMemFetchDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
1774 | {
|
---|
1775 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_FETCH
|
---|
1776 | return iemMemFetchDataU64SafeJmp(pVCpu, iSegReg, GCPtrMem);
|
---|
1777 | #else
|
---|
1778 | return iemMemFetchDataU64Jmp(pVCpu, iSegReg, GCPtrMem);
|
---|
1779 | #endif
|
---|
1780 | }
|
---|
1781 |
|
---|
1782 |
|
---|
1783 | /**
|
---|
1784 | * Used by TB code to store unsigned 8-bit data w/ segmentation.
|
---|
1785 | */
|
---|
1786 | IEM_DECL_NATIVE_HLP_DEF(void, iemNativeHlpMemStoreDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint8_t u8Value))
|
---|
1787 | {
|
---|
1788 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_STORE
|
---|
1789 | iemMemStoreDataU8SafeJmp(pVCpu, iSegReg, GCPtrMem, u8Value);
|
---|
1790 | #else
|
---|
1791 | iemMemStoreDataU8Jmp(pVCpu, iSegReg, GCPtrMem, u8Value);
|
---|
1792 | #endif
|
---|
1793 | }
|
---|
1794 |
|
---|
1795 |
|
---|
1796 | /**
|
---|
1797 | * Used by TB code to store unsigned 16-bit data w/ segmentation.
|
---|
1798 | */
|
---|
1799 | IEM_DECL_NATIVE_HLP_DEF(void, iemNativeHlpMemStoreDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint16_t u16Value))
|
---|
1800 | {
|
---|
1801 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_STORE
|
---|
1802 | iemMemStoreDataU16SafeJmp(pVCpu, iSegReg, GCPtrMem, u16Value);
|
---|
1803 | #else
|
---|
1804 | iemMemStoreDataU16Jmp(pVCpu, iSegReg, GCPtrMem, u16Value);
|
---|
1805 | #endif
|
---|
1806 | }
|
---|
1807 |
|
---|
1808 |
|
---|
1809 | /**
|
---|
1810 | * Used by TB code to store unsigned 32-bit data w/ segmentation.
|
---|
1811 | */
|
---|
1812 | IEM_DECL_NATIVE_HLP_DEF(void, iemNativeHlpMemStoreDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint32_t u32Value))
|
---|
1813 | {
|
---|
1814 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_STORE
|
---|
1815 | iemMemStoreDataU32SafeJmp(pVCpu, iSegReg, GCPtrMem, u32Value);
|
---|
1816 | #else
|
---|
1817 | iemMemStoreDataU32Jmp(pVCpu, iSegReg, GCPtrMem, u32Value);
|
---|
1818 | #endif
|
---|
1819 | }
|
---|
1820 |
|
---|
1821 |
|
---|
1822 | /**
|
---|
1823 | * Used by TB code to store unsigned 64-bit data w/ segmentation.
|
---|
1824 | */
|
---|
1825 | IEM_DECL_NATIVE_HLP_DEF(void, iemNativeHlpMemStoreDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint64_t u64Value))
|
---|
1826 | {
|
---|
1827 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_STORE
|
---|
1828 | iemMemStoreDataU64SafeJmp(pVCpu, iSegReg, GCPtrMem, u64Value);
|
---|
1829 | #else
|
---|
1830 | iemMemStoreDataU64Jmp(pVCpu, iSegReg, GCPtrMem, u64Value);
|
---|
1831 | #endif
|
---|
1832 | }
|
---|
1833 |
|
---|
1834 |
|
---|
1835 |
|
---|
1836 | /**
|
---|
1837 | * Used by TB code to store an unsigned 16-bit value onto a generic stack.
|
---|
1838 | */
|
---|
1839 | IEM_DECL_NATIVE_HLP_DEF(void, iemNativeHlpStackStoreU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value))
|
---|
1840 | {
|
---|
1841 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_PUSH
|
---|
1842 | iemMemStoreStackU16SafeJmp(pVCpu, GCPtrMem, u16Value);
|
---|
1843 | #else
|
---|
1844 | iemMemStoreStackU16Jmp(pVCpu, GCPtrMem, u16Value);
|
---|
1845 | #endif
|
---|
1846 | }
|
---|
1847 |
|
---|
1848 |
|
---|
1849 | /**
|
---|
1850 | * Used by TB code to store an unsigned 32-bit value onto a generic stack.
|
---|
1851 | */
|
---|
1852 | IEM_DECL_NATIVE_HLP_DEF(void, iemNativeHlpStackStoreU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value))
|
---|
1853 | {
|
---|
1854 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_PUSH
|
---|
1855 | iemMemStoreStackU32SafeJmp(pVCpu, GCPtrMem, u32Value);
|
---|
1856 | #else
|
---|
1857 | iemMemStoreStackU32Jmp(pVCpu, GCPtrMem, u32Value);
|
---|
1858 | #endif
|
---|
1859 | }
|
---|
1860 |
|
---|
1861 |
|
---|
1862 | /**
|
---|
1863 | * Used by TB code to store an 32-bit selector value onto a generic stack.
|
---|
1864 | *
|
---|
1865 | * Intel CPUs doesn't do write a whole dword, thus the special function.
|
---|
1866 | */
|
---|
1867 | IEM_DECL_NATIVE_HLP_DEF(void, iemNativeHlpStackStoreU32SReg,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value))
|
---|
1868 | {
|
---|
1869 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_PUSH
|
---|
1870 | iemMemStoreStackU32SRegSafeJmp(pVCpu, GCPtrMem, u32Value);
|
---|
1871 | #else
|
---|
1872 | iemMemStoreStackU32SRegJmp(pVCpu, GCPtrMem, u32Value);
|
---|
1873 | #endif
|
---|
1874 | }
|
---|
1875 |
|
---|
1876 |
|
---|
1877 | /**
|
---|
1878 | * Used by TB code to push unsigned 64-bit value onto a generic stack.
|
---|
1879 | */
|
---|
1880 | IEM_DECL_NATIVE_HLP_DEF(void, iemNativeHlpStackStoreU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value))
|
---|
1881 | {
|
---|
1882 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_PUSH
|
---|
1883 | iemMemStoreStackU64SafeJmp(pVCpu, GCPtrMem, u64Value);
|
---|
1884 | #else
|
---|
1885 | iemMemStoreStackU64Jmp(pVCpu, GCPtrMem, u64Value);
|
---|
1886 | #endif
|
---|
1887 | }
|
---|
1888 |
|
---|
1889 |
|
---|
1890 | /**
|
---|
1891 | * Used by TB code to fetch an unsigned 16-bit item off a generic stack.
|
---|
1892 | */
|
---|
1893 | IEM_DECL_NATIVE_HLP_DEF(uint16_t, iemNativeHlpStackFetchU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem))
|
---|
1894 | {
|
---|
1895 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_POP
|
---|
1896 | return iemMemFetchStackU16SafeJmp(pVCpu, GCPtrMem);
|
---|
1897 | #else
|
---|
1898 | return iemMemFetchStackU16Jmp(pVCpu, GCPtrMem);
|
---|
1899 | #endif
|
---|
1900 | }
|
---|
1901 |
|
---|
1902 |
|
---|
1903 | /**
|
---|
1904 | * Used by TB code to fetch an unsigned 32-bit item off a generic stack.
|
---|
1905 | */
|
---|
1906 | IEM_DECL_NATIVE_HLP_DEF(uint32_t, iemNativeHlpStackFetchU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem))
|
---|
1907 | {
|
---|
1908 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_POP
|
---|
1909 | return iemMemFetchStackU32SafeJmp(pVCpu, GCPtrMem);
|
---|
1910 | #else
|
---|
1911 | return iemMemFetchStackU32Jmp(pVCpu, GCPtrMem);
|
---|
1912 | #endif
|
---|
1913 | }
|
---|
1914 |
|
---|
1915 |
|
---|
1916 | /**
|
---|
1917 | * Used by TB code to fetch an unsigned 64-bit item off a generic stack.
|
---|
1918 | */
|
---|
1919 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpStackFetchU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem))
|
---|
1920 | {
|
---|
1921 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_POP
|
---|
1922 | return iemMemFetchStackU64SafeJmp(pVCpu, GCPtrMem);
|
---|
1923 | #else
|
---|
1924 | return iemMemFetchStackU64Jmp(pVCpu, GCPtrMem);
|
---|
1925 | #endif
|
---|
1926 | }
|
---|
1927 |
|
---|
1928 |
|
---|
1929 |
|
---|
1930 | /*********************************************************************************************************************************
|
---|
1931 | * Helpers: Flat memory fetches and stores. *
|
---|
1932 | *********************************************************************************************************************************/
|
---|
1933 |
|
---|
1934 | /**
|
---|
1935 | * Used by TB code to load unsigned 8-bit data w/ flat address.
|
---|
1936 | * @note Zero extending the value to 64-bit to simplify assembly.
|
---|
1937 | */
|
---|
1938 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpMemFlatFetchDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem))
|
---|
1939 | {
|
---|
1940 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_FETCH
|
---|
1941 | return (uint64_t)iemMemFetchDataU8SafeJmp(pVCpu, UINT8_MAX, GCPtrMem);
|
---|
1942 | #else
|
---|
1943 | return (uint64_t)iemMemFlatFetchDataU8Jmp(pVCpu, GCPtrMem);
|
---|
1944 | #endif
|
---|
1945 | }
|
---|
1946 |
|
---|
1947 |
|
---|
1948 | /**
|
---|
1949 | * Used by TB code to load signed 8-bit data w/ flat address, sign extending it
|
---|
1950 | * to 16 bits.
|
---|
1951 | * @note Zero extending the value to 64-bit to simplify assembly.
|
---|
1952 | */
|
---|
1953 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem))
|
---|
1954 | {
|
---|
1955 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_FETCH
|
---|
1956 | return (uint64_t)(uint16_t)(int16_t)(int8_t)iemMemFetchDataU8SafeJmp(pVCpu, UINT8_MAX, GCPtrMem);
|
---|
1957 | #else
|
---|
1958 | return (uint64_t)(uint16_t)(int16_t)(int8_t)iemMemFlatFetchDataU8Jmp(pVCpu, GCPtrMem);
|
---|
1959 | #endif
|
---|
1960 | }
|
---|
1961 |
|
---|
1962 |
|
---|
1963 | /**
|
---|
1964 | * Used by TB code to load signed 8-bit data w/ flat address, sign extending it
|
---|
1965 | * to 32 bits.
|
---|
1966 | * @note Zero extending the value to 64-bit to simplify assembly.
|
---|
1967 | */
|
---|
1968 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem))
|
---|
1969 | {
|
---|
1970 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_FETCH
|
---|
1971 | return (uint64_t)(uint32_t)(int32_t)(int8_t)iemMemFetchDataU8SafeJmp(pVCpu, UINT8_MAX, GCPtrMem);
|
---|
1972 | #else
|
---|
1973 | return (uint64_t)(uint32_t)(int32_t)(int8_t)iemMemFlatFetchDataU8Jmp(pVCpu, GCPtrMem);
|
---|
1974 | #endif
|
---|
1975 | }
|
---|
1976 |
|
---|
1977 |
|
---|
1978 | /**
|
---|
1979 | * Used by TB code to load signed 8-bit data w/ flat address, sign extending it
|
---|
1980 | * to 64 bits.
|
---|
1981 | */
|
---|
1982 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem))
|
---|
1983 | {
|
---|
1984 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_FETCH
|
---|
1985 | return (uint64_t)(int64_t)(int8_t)iemMemFetchDataU8SafeJmp(pVCpu, UINT8_MAX, GCPtrMem);
|
---|
1986 | #else
|
---|
1987 | return (uint64_t)(int64_t)(int8_t)iemMemFlatFetchDataU8Jmp(pVCpu, GCPtrMem);
|
---|
1988 | #endif
|
---|
1989 | }
|
---|
1990 |
|
---|
1991 |
|
---|
1992 | /**
|
---|
1993 | * Used by TB code to load unsigned 16-bit data w/ flat address.
|
---|
1994 | * @note Zero extending the value to 64-bit to simplify assembly.
|
---|
1995 | */
|
---|
1996 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpMemFlatFetchDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem))
|
---|
1997 | {
|
---|
1998 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_FETCH
|
---|
1999 | return (uint64_t)iemMemFetchDataU16SafeJmp(pVCpu, UINT8_MAX, GCPtrMem);
|
---|
2000 | #else
|
---|
2001 | return (uint64_t)iemMemFlatFetchDataU16Jmp(pVCpu, GCPtrMem);
|
---|
2002 | #endif
|
---|
2003 | }
|
---|
2004 |
|
---|
2005 |
|
---|
2006 | /**
|
---|
2007 | * Used by TB code to load signed 16-bit data w/ flat address, sign extending it
|
---|
2008 | * to 32 bits.
|
---|
2009 | * @note Zero extending the value to 64-bit to simplify assembly.
|
---|
2010 | */
|
---|
2011 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpMemFlatFetchDataU16_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem))
|
---|
2012 | {
|
---|
2013 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_FETCH
|
---|
2014 | return (uint64_t)(uint32_t)(int32_t)(int16_t)iemMemFetchDataU16SafeJmp(pVCpu, UINT8_MAX, GCPtrMem);
|
---|
2015 | #else
|
---|
2016 | return (uint64_t)(uint32_t)(int32_t)(int16_t)iemMemFlatFetchDataU16Jmp(pVCpu, GCPtrMem);
|
---|
2017 | #endif
|
---|
2018 | }
|
---|
2019 |
|
---|
2020 |
|
---|
2021 | /**
|
---|
2022 | * Used by TB code to load signed 16-bit data w/ flat address, sign extending it
|
---|
2023 | * to 64 bits.
|
---|
2024 | * @note Zero extending the value to 64-bit to simplify assembly.
|
---|
2025 | */
|
---|
2026 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpMemFlatFetchDataU16_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem))
|
---|
2027 | {
|
---|
2028 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_FETCH
|
---|
2029 | return (uint64_t)(int64_t)(int16_t)iemMemFetchDataU16SafeJmp(pVCpu, UINT8_MAX, GCPtrMem);
|
---|
2030 | #else
|
---|
2031 | return (uint64_t)(int64_t)(int16_t)iemMemFlatFetchDataU16Jmp(pVCpu, GCPtrMem);
|
---|
2032 | #endif
|
---|
2033 | }
|
---|
2034 |
|
---|
2035 |
|
---|
2036 | /**
|
---|
2037 | * Used by TB code to load unsigned 32-bit data w/ flat address.
|
---|
2038 | * @note Zero extending the value to 64-bit to simplify assembly.
|
---|
2039 | */
|
---|
2040 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpMemFlatFetchDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem))
|
---|
2041 | {
|
---|
2042 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_FETCH
|
---|
2043 | return (uint64_t)iemMemFetchDataU32SafeJmp(pVCpu, UINT8_MAX, GCPtrMem);
|
---|
2044 | #else
|
---|
2045 | return (uint64_t)iemMemFlatFetchDataU32Jmp(pVCpu, GCPtrMem);
|
---|
2046 | #endif
|
---|
2047 | }
|
---|
2048 |
|
---|
2049 |
|
---|
2050 | /**
|
---|
2051 | * Used by TB code to load signed 32-bit data w/ flat address, sign extending it
|
---|
2052 | * to 64 bits.
|
---|
2053 | * @note Zero extending the value to 64-bit to simplify assembly.
|
---|
2054 | */
|
---|
2055 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpMemFlatFetchDataU32_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem))
|
---|
2056 | {
|
---|
2057 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_FETCH
|
---|
2058 | return (uint64_t)(int64_t)(int32_t)iemMemFetchDataU32SafeJmp(pVCpu, UINT8_MAX, GCPtrMem);
|
---|
2059 | #else
|
---|
2060 | return (uint64_t)(int64_t)(int32_t)iemMemFlatFetchDataU32Jmp(pVCpu, GCPtrMem);
|
---|
2061 | #endif
|
---|
2062 | }
|
---|
2063 |
|
---|
2064 |
|
---|
2065 | /**
|
---|
2066 | * Used by TB code to load unsigned 64-bit data w/ flat address.
|
---|
2067 | */
|
---|
2068 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpMemFlatFetchDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem))
|
---|
2069 | {
|
---|
2070 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_FETCH
|
---|
2071 | return iemMemFetchDataU64SafeJmp(pVCpu, UINT8_MAX, GCPtrMem);
|
---|
2072 | #else
|
---|
2073 | return iemMemFlatFetchDataU64Jmp(pVCpu, GCPtrMem);
|
---|
2074 | #endif
|
---|
2075 | }
|
---|
2076 |
|
---|
2077 |
|
---|
2078 | /**
|
---|
2079 | * Used by TB code to store unsigned 8-bit data w/ flat address.
|
---|
2080 | */
|
---|
2081 | IEM_DECL_NATIVE_HLP_DEF(void, iemNativeHlpMemFlatStoreDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t u8Value))
|
---|
2082 | {
|
---|
2083 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_STORE
|
---|
2084 | iemMemStoreDataU8SafeJmp(pVCpu, UINT8_MAX, GCPtrMem, u8Value);
|
---|
2085 | #else
|
---|
2086 | iemMemFlatStoreDataU8Jmp(pVCpu, GCPtrMem, u8Value);
|
---|
2087 | #endif
|
---|
2088 | }
|
---|
2089 |
|
---|
2090 |
|
---|
2091 | /**
|
---|
2092 | * Used by TB code to store unsigned 16-bit data w/ flat address.
|
---|
2093 | */
|
---|
2094 | IEM_DECL_NATIVE_HLP_DEF(void, iemNativeHlpMemFlatStoreDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value))
|
---|
2095 | {
|
---|
2096 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_STORE
|
---|
2097 | iemMemStoreDataU16SafeJmp(pVCpu, UINT8_MAX, GCPtrMem, u16Value);
|
---|
2098 | #else
|
---|
2099 | iemMemFlatStoreDataU16Jmp(pVCpu, GCPtrMem, u16Value);
|
---|
2100 | #endif
|
---|
2101 | }
|
---|
2102 |
|
---|
2103 |
|
---|
2104 | /**
|
---|
2105 | * Used by TB code to store unsigned 32-bit data w/ flat address.
|
---|
2106 | */
|
---|
2107 | IEM_DECL_NATIVE_HLP_DEF(void, iemNativeHlpMemFlatStoreDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value))
|
---|
2108 | {
|
---|
2109 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_STORE
|
---|
2110 | iemMemStoreDataU32SafeJmp(pVCpu, UINT8_MAX, GCPtrMem, u32Value);
|
---|
2111 | #else
|
---|
2112 | iemMemFlatStoreDataU32Jmp(pVCpu, GCPtrMem, u32Value);
|
---|
2113 | #endif
|
---|
2114 | }
|
---|
2115 |
|
---|
2116 |
|
---|
2117 | /**
|
---|
2118 | * Used by TB code to store unsigned 64-bit data w/ flat address.
|
---|
2119 | */
|
---|
2120 | IEM_DECL_NATIVE_HLP_DEF(void, iemNativeHlpMemFlatStoreDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value))
|
---|
2121 | {
|
---|
2122 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_STORE
|
---|
2123 | iemMemStoreDataU64SafeJmp(pVCpu, UINT8_MAX, GCPtrMem, u64Value);
|
---|
2124 | #else
|
---|
2125 | iemMemFlatStoreDataU64Jmp(pVCpu, GCPtrMem, u64Value);
|
---|
2126 | #endif
|
---|
2127 | }
|
---|
2128 |
|
---|
2129 |
|
---|
2130 |
|
---|
2131 | /**
|
---|
2132 | * Used by TB code to store an unsigned 16-bit value onto a flat stack.
|
---|
2133 | */
|
---|
2134 | IEM_DECL_NATIVE_HLP_DEF(void, iemNativeHlpStackFlatStoreU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value))
|
---|
2135 | {
|
---|
2136 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_PUSH
|
---|
2137 | iemMemStoreStackU16SafeJmp(pVCpu, GCPtrMem, u16Value);
|
---|
2138 | #else
|
---|
2139 | iemMemFlatStoreStackU16Jmp(pVCpu, GCPtrMem, u16Value);
|
---|
2140 | #endif
|
---|
2141 | }
|
---|
2142 |
|
---|
2143 |
|
---|
2144 | /**
|
---|
2145 | * Used by TB code to store an unsigned 32-bit value onto a flat stack.
|
---|
2146 | */
|
---|
2147 | IEM_DECL_NATIVE_HLP_DEF(void, iemNativeHlpStackFlatStoreU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value))
|
---|
2148 | {
|
---|
2149 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_PUSH
|
---|
2150 | iemMemStoreStackU32SafeJmp(pVCpu, GCPtrMem, u32Value);
|
---|
2151 | #else
|
---|
2152 | iemMemFlatStoreStackU32Jmp(pVCpu, GCPtrMem, u32Value);
|
---|
2153 | #endif
|
---|
2154 | }
|
---|
2155 |
|
---|
2156 |
|
---|
2157 | /**
|
---|
2158 | * Used by TB code to store a segment selector value onto a flat stack.
|
---|
2159 | *
|
---|
2160 | * Intel CPUs doesn't do write a whole dword, thus the special function.
|
---|
2161 | */
|
---|
2162 | IEM_DECL_NATIVE_HLP_DEF(void, iemNativeHlpStackFlatStoreU32SReg,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value))
|
---|
2163 | {
|
---|
2164 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_PUSH
|
---|
2165 | iemMemStoreStackU32SRegSafeJmp(pVCpu, GCPtrMem, u32Value);
|
---|
2166 | #else
|
---|
2167 | iemMemFlatStoreStackU32SRegJmp(pVCpu, GCPtrMem, u32Value);
|
---|
2168 | #endif
|
---|
2169 | }
|
---|
2170 |
|
---|
2171 |
|
---|
2172 | /**
|
---|
2173 | * Used by TB code to store an unsigned 64-bit value onto a flat stack.
|
---|
2174 | */
|
---|
2175 | IEM_DECL_NATIVE_HLP_DEF(void, iemNativeHlpStackFlatStoreU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value))
|
---|
2176 | {
|
---|
2177 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_PUSH
|
---|
2178 | iemMemStoreStackU64SafeJmp(pVCpu, GCPtrMem, u64Value);
|
---|
2179 | #else
|
---|
2180 | iemMemFlatStoreStackU64Jmp(pVCpu, GCPtrMem, u64Value);
|
---|
2181 | #endif
|
---|
2182 | }
|
---|
2183 |
|
---|
2184 |
|
---|
2185 | /**
|
---|
2186 | * Used by TB code to fetch an unsigned 16-bit item off a generic stack.
|
---|
2187 | */
|
---|
2188 | IEM_DECL_NATIVE_HLP_DEF(uint16_t, iemNativeHlpStackFlatFetchU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem))
|
---|
2189 | {
|
---|
2190 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_POP
|
---|
2191 | return iemMemFetchStackU16SafeJmp(pVCpu, GCPtrMem);
|
---|
2192 | #else
|
---|
2193 | return iemMemFlatFetchStackU16Jmp(pVCpu, GCPtrMem);
|
---|
2194 | #endif
|
---|
2195 | }
|
---|
2196 |
|
---|
2197 |
|
---|
2198 | /**
|
---|
2199 | * Used by TB code to fetch an unsigned 32-bit item off a generic stack.
|
---|
2200 | */
|
---|
2201 | IEM_DECL_NATIVE_HLP_DEF(uint32_t, iemNativeHlpStackFlatFetchU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem))
|
---|
2202 | {
|
---|
2203 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_POP
|
---|
2204 | return iemMemFetchStackU32SafeJmp(pVCpu, GCPtrMem);
|
---|
2205 | #else
|
---|
2206 | return iemMemFlatFetchStackU32Jmp(pVCpu, GCPtrMem);
|
---|
2207 | #endif
|
---|
2208 | }
|
---|
2209 |
|
---|
2210 |
|
---|
2211 | /**
|
---|
2212 | * Used by TB code to fetch an unsigned 64-bit item off a generic stack.
|
---|
2213 | */
|
---|
2214 | IEM_DECL_NATIVE_HLP_DEF(uint64_t, iemNativeHlpStackFlatFetchU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem))
|
---|
2215 | {
|
---|
2216 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_POP
|
---|
2217 | return iemMemFetchStackU64SafeJmp(pVCpu, GCPtrMem);
|
---|
2218 | #else
|
---|
2219 | return iemMemFlatFetchStackU64Jmp(pVCpu, GCPtrMem);
|
---|
2220 | #endif
|
---|
2221 | }
|
---|
2222 |
|
---|
2223 |
|
---|
2224 |
|
---|
2225 | /*********************************************************************************************************************************
|
---|
2226 | * Helpers: Segmented memory mapping. *
|
---|
2227 | *********************************************************************************************************************************/
|
---|
2228 |
|
---|
2229 | /**
|
---|
2230 | * Used by TB code to map unsigned 8-bit data read-write w/ segmentation.
|
---|
2231 | */
|
---|
2232 | IEM_DECL_NATIVE_HLP_DEF(uint8_t *, iemNativeHlpMemMapDataU8Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo,
|
---|
2233 | RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
2234 | {
|
---|
2235 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2236 | return iemMemMapDataU8RwSafeJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2237 | #else
|
---|
2238 | return iemMemMapDataU8RwJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2239 | #endif
|
---|
2240 | }
|
---|
2241 |
|
---|
2242 |
|
---|
2243 | /**
|
---|
2244 | * Used by TB code to map unsigned 8-bit data writeonly w/ segmentation.
|
---|
2245 | */
|
---|
2246 | IEM_DECL_NATIVE_HLP_DEF(uint8_t *, iemNativeHlpMemMapDataU8Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo,
|
---|
2247 | RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
2248 | {
|
---|
2249 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2250 | return iemMemMapDataU8WoSafeJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2251 | #else
|
---|
2252 | return iemMemMapDataU8WoJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2253 | #endif
|
---|
2254 | }
|
---|
2255 |
|
---|
2256 |
|
---|
2257 | /**
|
---|
2258 | * Used by TB code to map unsigned 8-bit data readonly w/ segmentation.
|
---|
2259 | */
|
---|
2260 | IEM_DECL_NATIVE_HLP_DEF(uint8_t const *, iemNativeHlpMemMapDataU8Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo,
|
---|
2261 | RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
2262 | {
|
---|
2263 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2264 | return iemMemMapDataU8RoSafeJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2265 | #else
|
---|
2266 | return iemMemMapDataU8RoJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2267 | #endif
|
---|
2268 | }
|
---|
2269 |
|
---|
2270 |
|
---|
2271 | /**
|
---|
2272 | * Used by TB code to map unsigned 16-bit data read-write w/ segmentation.
|
---|
2273 | */
|
---|
2274 | IEM_DECL_NATIVE_HLP_DEF(uint16_t *, iemNativeHlpMemMapDataU16Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo,
|
---|
2275 | RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
2276 | {
|
---|
2277 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2278 | return iemMemMapDataU16RwSafeJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2279 | #else
|
---|
2280 | return iemMemMapDataU16RwJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2281 | #endif
|
---|
2282 | }
|
---|
2283 |
|
---|
2284 |
|
---|
2285 | /**
|
---|
2286 | * Used by TB code to map unsigned 16-bit data writeonly w/ segmentation.
|
---|
2287 | */
|
---|
2288 | IEM_DECL_NATIVE_HLP_DEF(uint16_t *, iemNativeHlpMemMapDataU16Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo,
|
---|
2289 | RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
2290 | {
|
---|
2291 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2292 | return iemMemMapDataU16WoSafeJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2293 | #else
|
---|
2294 | return iemMemMapDataU16WoJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2295 | #endif
|
---|
2296 | }
|
---|
2297 |
|
---|
2298 |
|
---|
2299 | /**
|
---|
2300 | * Used by TB code to map unsigned 16-bit data readonly w/ segmentation.
|
---|
2301 | */
|
---|
2302 | IEM_DECL_NATIVE_HLP_DEF(uint16_t const *, iemNativeHlpMemMapDataU16Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo,
|
---|
2303 | RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
2304 | {
|
---|
2305 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2306 | return iemMemMapDataU16RoSafeJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2307 | #else
|
---|
2308 | return iemMemMapDataU16RoJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2309 | #endif
|
---|
2310 | }
|
---|
2311 |
|
---|
2312 |
|
---|
2313 | /**
|
---|
2314 | * Used by TB code to map unsigned 32-bit data read-write w/ segmentation.
|
---|
2315 | */
|
---|
2316 | IEM_DECL_NATIVE_HLP_DEF(uint32_t *, iemNativeHlpMemMapDataU32Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo,
|
---|
2317 | RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
2318 | {
|
---|
2319 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2320 | return iemMemMapDataU32RwSafeJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2321 | #else
|
---|
2322 | return iemMemMapDataU32RwJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2323 | #endif
|
---|
2324 | }
|
---|
2325 |
|
---|
2326 |
|
---|
2327 | /**
|
---|
2328 | * Used by TB code to map unsigned 32-bit data writeonly w/ segmentation.
|
---|
2329 | */
|
---|
2330 | IEM_DECL_NATIVE_HLP_DEF(uint32_t *, iemNativeHlpMemMapDataU32Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo,
|
---|
2331 | RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
2332 | {
|
---|
2333 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2334 | return iemMemMapDataU32WoSafeJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2335 | #else
|
---|
2336 | return iemMemMapDataU32WoJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2337 | #endif
|
---|
2338 | }
|
---|
2339 |
|
---|
2340 |
|
---|
2341 | /**
|
---|
2342 | * Used by TB code to map unsigned 32-bit data readonly w/ segmentation.
|
---|
2343 | */
|
---|
2344 | IEM_DECL_NATIVE_HLP_DEF(uint32_t const *, iemNativeHlpMemMapDataU32Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo,
|
---|
2345 | RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
2346 | {
|
---|
2347 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2348 | return iemMemMapDataU32RoSafeJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2349 | #else
|
---|
2350 | return iemMemMapDataU32RoJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2351 | #endif
|
---|
2352 | }
|
---|
2353 |
|
---|
2354 |
|
---|
2355 | /**
|
---|
2356 | * Used by TB code to map unsigned 64-bit data read-write w/ segmentation.
|
---|
2357 | */
|
---|
2358 | IEM_DECL_NATIVE_HLP_DEF(uint64_t *, iemNativeHlpMemMapDataU64Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo,
|
---|
2359 | RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
2360 | {
|
---|
2361 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2362 | return iemMemMapDataU64RwSafeJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2363 | #else
|
---|
2364 | return iemMemMapDataU64RwJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2365 | #endif
|
---|
2366 | }
|
---|
2367 |
|
---|
2368 |
|
---|
2369 | /**
|
---|
2370 | * Used by TB code to map unsigned 64-bit data writeonly w/ segmentation.
|
---|
2371 | */
|
---|
2372 | IEM_DECL_NATIVE_HLP_DEF(uint64_t *, iemNativeHlpMemMapDataU64Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo,
|
---|
2373 | RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
2374 | {
|
---|
2375 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2376 | return iemMemMapDataU64WoSafeJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2377 | #else
|
---|
2378 | return iemMemMapDataU64WoJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2379 | #endif
|
---|
2380 | }
|
---|
2381 |
|
---|
2382 |
|
---|
2383 | /**
|
---|
2384 | * Used by TB code to map unsigned 64-bit data readonly w/ segmentation.
|
---|
2385 | */
|
---|
2386 | IEM_DECL_NATIVE_HLP_DEF(uint64_t const *, iemNativeHlpMemMapDataU64Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo,
|
---|
2387 | RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
2388 | {
|
---|
2389 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2390 | return iemMemMapDataU64RoSafeJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2391 | #else
|
---|
2392 | return iemMemMapDataU64RoJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2393 | #endif
|
---|
2394 | }
|
---|
2395 |
|
---|
2396 |
|
---|
2397 | /**
|
---|
2398 | * Used by TB code to map 80-bit float data writeonly w/ segmentation.
|
---|
2399 | */
|
---|
2400 | IEM_DECL_NATIVE_HLP_DEF(RTFLOAT80U *, iemNativeHlpMemMapDataR80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo,
|
---|
2401 | RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
2402 | {
|
---|
2403 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2404 | return iemMemMapDataR80WoSafeJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2405 | #else
|
---|
2406 | return iemMemMapDataR80WoJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2407 | #endif
|
---|
2408 | }
|
---|
2409 |
|
---|
2410 |
|
---|
2411 | /**
|
---|
2412 | * Used by TB code to map 80-bit BCD data writeonly w/ segmentation.
|
---|
2413 | */
|
---|
2414 | IEM_DECL_NATIVE_HLP_DEF(RTPBCD80U *, iemNativeHlpMemMapDataD80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo,
|
---|
2415 | RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
2416 | {
|
---|
2417 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2418 | return iemMemMapDataD80WoSafeJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2419 | #else
|
---|
2420 | return iemMemMapDataD80WoJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2421 | #endif
|
---|
2422 | }
|
---|
2423 |
|
---|
2424 |
|
---|
2425 | /**
|
---|
2426 | * Used by TB code to map unsigned 128-bit data read-write w/ segmentation.
|
---|
2427 | */
|
---|
2428 | IEM_DECL_NATIVE_HLP_DEF(RTUINT128U *, iemNativeHlpMemMapDataU128Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo,
|
---|
2429 | RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
2430 | {
|
---|
2431 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2432 | return iemMemMapDataU128RwSafeJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2433 | #else
|
---|
2434 | return iemMemMapDataU128RwJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2435 | #endif
|
---|
2436 | }
|
---|
2437 |
|
---|
2438 |
|
---|
2439 | /**
|
---|
2440 | * Used by TB code to map unsigned 128-bit data writeonly w/ segmentation.
|
---|
2441 | */
|
---|
2442 | IEM_DECL_NATIVE_HLP_DEF(RTUINT128U *, iemNativeHlpMemMapDataU128Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo,
|
---|
2443 | RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
2444 | {
|
---|
2445 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2446 | return iemMemMapDataU128WoSafeJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2447 | #else
|
---|
2448 | return iemMemMapDataU128WoJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2449 | #endif
|
---|
2450 | }
|
---|
2451 |
|
---|
2452 |
|
---|
2453 | /**
|
---|
2454 | * Used by TB code to map unsigned 128-bit data readonly w/ segmentation.
|
---|
2455 | */
|
---|
2456 | IEM_DECL_NATIVE_HLP_DEF(RTUINT128U const *, iemNativeHlpMemMapDataU128Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo,
|
---|
2457 | RTGCPTR GCPtrMem, uint8_t iSegReg))
|
---|
2458 | {
|
---|
2459 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2460 | return iemMemMapDataU128RoSafeJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2461 | #else
|
---|
2462 | return iemMemMapDataU128RoJmp(pVCpu, pbUnmapInfo, iSegReg, GCPtrMem);
|
---|
2463 | #endif
|
---|
2464 | }
|
---|
2465 |
|
---|
2466 |
|
---|
2467 | /*********************************************************************************************************************************
|
---|
2468 | * Helpers: Flat memory mapping. *
|
---|
2469 | *********************************************************************************************************************************/
|
---|
2470 |
|
---|
2471 | /**
|
---|
2472 | * Used by TB code to map unsigned 8-bit data read-write w/ flat address.
|
---|
2473 | */
|
---|
2474 | IEM_DECL_NATIVE_HLP_DEF(uint8_t *, iemNativeHlpMemFlatMapDataU8Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem))
|
---|
2475 | {
|
---|
2476 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2477 | return iemMemMapDataU8RwSafeJmp(pVCpu, pbUnmapInfo, UINT8_MAX, GCPtrMem);
|
---|
2478 | #else
|
---|
2479 | return iemMemFlatMapDataU8RwJmp(pVCpu, pbUnmapInfo, GCPtrMem);
|
---|
2480 | #endif
|
---|
2481 | }
|
---|
2482 |
|
---|
2483 |
|
---|
2484 | /**
|
---|
2485 | * Used by TB code to map unsigned 8-bit data writeonly w/ flat address.
|
---|
2486 | */
|
---|
2487 | IEM_DECL_NATIVE_HLP_DEF(uint8_t *, iemNativeHlpMemFlatMapDataU8Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem))
|
---|
2488 | {
|
---|
2489 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2490 | return iemMemMapDataU8WoSafeJmp(pVCpu, pbUnmapInfo, UINT8_MAX, GCPtrMem);
|
---|
2491 | #else
|
---|
2492 | return iemMemFlatMapDataU8WoJmp(pVCpu, pbUnmapInfo, GCPtrMem);
|
---|
2493 | #endif
|
---|
2494 | }
|
---|
2495 |
|
---|
2496 |
|
---|
2497 | /**
|
---|
2498 | * Used by TB code to map unsigned 8-bit data readonly w/ flat address.
|
---|
2499 | */
|
---|
2500 | IEM_DECL_NATIVE_HLP_DEF(uint8_t const *, iemNativeHlpMemFlatMapDataU8Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem))
|
---|
2501 | {
|
---|
2502 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2503 | return iemMemMapDataU8RoSafeJmp(pVCpu, pbUnmapInfo, UINT8_MAX, GCPtrMem);
|
---|
2504 | #else
|
---|
2505 | return iemMemFlatMapDataU8RoJmp(pVCpu, pbUnmapInfo, GCPtrMem);
|
---|
2506 | #endif
|
---|
2507 | }
|
---|
2508 |
|
---|
2509 |
|
---|
2510 | /**
|
---|
2511 | * Used by TB code to map unsigned 16-bit data read-write w/ flat address.
|
---|
2512 | */
|
---|
2513 | IEM_DECL_NATIVE_HLP_DEF(uint16_t *, iemNativeHlpMemFlatMapDataU16Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem))
|
---|
2514 | {
|
---|
2515 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2516 | return iemMemMapDataU16RwSafeJmp(pVCpu, pbUnmapInfo, UINT8_MAX, GCPtrMem);
|
---|
2517 | #else
|
---|
2518 | return iemMemFlatMapDataU16RwJmp(pVCpu, pbUnmapInfo, GCPtrMem);
|
---|
2519 | #endif
|
---|
2520 | }
|
---|
2521 |
|
---|
2522 |
|
---|
2523 | /**
|
---|
2524 | * Used by TB code to map unsigned 16-bit data writeonly w/ flat address.
|
---|
2525 | */
|
---|
2526 | IEM_DECL_NATIVE_HLP_DEF(uint16_t *, iemNativeHlpMemFlatMapDataU16Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem))
|
---|
2527 | {
|
---|
2528 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2529 | return iemMemMapDataU16WoSafeJmp(pVCpu, pbUnmapInfo, UINT8_MAX, GCPtrMem);
|
---|
2530 | #else
|
---|
2531 | return iemMemFlatMapDataU16WoJmp(pVCpu, pbUnmapInfo, GCPtrMem);
|
---|
2532 | #endif
|
---|
2533 | }
|
---|
2534 |
|
---|
2535 |
|
---|
2536 | /**
|
---|
2537 | * Used by TB code to map unsigned 16-bit data readonly w/ flat address.
|
---|
2538 | */
|
---|
2539 | IEM_DECL_NATIVE_HLP_DEF(uint16_t const *, iemNativeHlpMemFlatMapDataU16Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem))
|
---|
2540 | {
|
---|
2541 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2542 | return iemMemMapDataU16RoSafeJmp(pVCpu, pbUnmapInfo, UINT8_MAX, GCPtrMem);
|
---|
2543 | #else
|
---|
2544 | return iemMemFlatMapDataU16RoJmp(pVCpu, pbUnmapInfo, GCPtrMem);
|
---|
2545 | #endif
|
---|
2546 | }
|
---|
2547 |
|
---|
2548 |
|
---|
2549 | /**
|
---|
2550 | * Used by TB code to map unsigned 32-bit data read-write w/ flat address.
|
---|
2551 | */
|
---|
2552 | IEM_DECL_NATIVE_HLP_DEF(uint32_t *, iemNativeHlpMemFlatMapDataU32Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem))
|
---|
2553 | {
|
---|
2554 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2555 | return iemMemMapDataU32RwSafeJmp(pVCpu, pbUnmapInfo, UINT8_MAX, GCPtrMem);
|
---|
2556 | #else
|
---|
2557 | return iemMemFlatMapDataU32RwJmp(pVCpu, pbUnmapInfo, GCPtrMem);
|
---|
2558 | #endif
|
---|
2559 | }
|
---|
2560 |
|
---|
2561 |
|
---|
2562 | /**
|
---|
2563 | * Used by TB code to map unsigned 32-bit data writeonly w/ flat address.
|
---|
2564 | */
|
---|
2565 | IEM_DECL_NATIVE_HLP_DEF(uint32_t *, iemNativeHlpMemFlatMapDataU32Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem))
|
---|
2566 | {
|
---|
2567 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2568 | return iemMemMapDataU32WoSafeJmp(pVCpu, pbUnmapInfo, UINT8_MAX, GCPtrMem);
|
---|
2569 | #else
|
---|
2570 | return iemMemFlatMapDataU32WoJmp(pVCpu, pbUnmapInfo, GCPtrMem);
|
---|
2571 | #endif
|
---|
2572 | }
|
---|
2573 |
|
---|
2574 |
|
---|
2575 | /**
|
---|
2576 | * Used by TB code to map unsigned 32-bit data readonly w/ flat address.
|
---|
2577 | */
|
---|
2578 | IEM_DECL_NATIVE_HLP_DEF(uint32_t const *, iemNativeHlpMemFlatMapDataU32Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem))
|
---|
2579 | {
|
---|
2580 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2581 | return iemMemMapDataU32RoSafeJmp(pVCpu, pbUnmapInfo, UINT8_MAX, GCPtrMem);
|
---|
2582 | #else
|
---|
2583 | return iemMemFlatMapDataU32RoJmp(pVCpu, pbUnmapInfo, GCPtrMem);
|
---|
2584 | #endif
|
---|
2585 | }
|
---|
2586 |
|
---|
2587 |
|
---|
2588 | /**
|
---|
2589 | * Used by TB code to map unsigned 64-bit data read-write w/ flat address.
|
---|
2590 | */
|
---|
2591 | IEM_DECL_NATIVE_HLP_DEF(uint64_t *, iemNativeHlpMemFlatMapDataU64Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem))
|
---|
2592 | {
|
---|
2593 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2594 | return iemMemMapDataU64RwSafeJmp(pVCpu, pbUnmapInfo, UINT8_MAX, GCPtrMem);
|
---|
2595 | #else
|
---|
2596 | return iemMemFlatMapDataU64RwJmp(pVCpu, pbUnmapInfo, GCPtrMem);
|
---|
2597 | #endif
|
---|
2598 | }
|
---|
2599 |
|
---|
2600 |
|
---|
2601 | /**
|
---|
2602 | * Used by TB code to map unsigned 64-bit data writeonly w/ flat address.
|
---|
2603 | */
|
---|
2604 | IEM_DECL_NATIVE_HLP_DEF(uint64_t *, iemNativeHlpMemFlatMapDataU64Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem))
|
---|
2605 | {
|
---|
2606 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2607 | return iemMemMapDataU64WoSafeJmp(pVCpu, pbUnmapInfo, UINT8_MAX, GCPtrMem);
|
---|
2608 | #else
|
---|
2609 | return iemMemFlatMapDataU64WoJmp(pVCpu, pbUnmapInfo, GCPtrMem);
|
---|
2610 | #endif
|
---|
2611 | }
|
---|
2612 |
|
---|
2613 |
|
---|
2614 | /**
|
---|
2615 | * Used by TB code to map unsigned 64-bit data readonly w/ flat address.
|
---|
2616 | */
|
---|
2617 | IEM_DECL_NATIVE_HLP_DEF(uint64_t const *, iemNativeHlpMemFlatMapDataU64Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem))
|
---|
2618 | {
|
---|
2619 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2620 | return iemMemMapDataU64RoSafeJmp(pVCpu, pbUnmapInfo, UINT8_MAX, GCPtrMem);
|
---|
2621 | #else
|
---|
2622 | return iemMemFlatMapDataU64RoJmp(pVCpu, pbUnmapInfo, GCPtrMem);
|
---|
2623 | #endif
|
---|
2624 | }
|
---|
2625 |
|
---|
2626 |
|
---|
2627 | /**
|
---|
2628 | * Used by TB code to map 80-bit float data writeonly w/ flat address.
|
---|
2629 | */
|
---|
2630 | IEM_DECL_NATIVE_HLP_DEF(RTFLOAT80U *, iemNativeHlpMemFlatMapDataR80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem))
|
---|
2631 | {
|
---|
2632 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2633 | return iemMemMapDataR80WoSafeJmp(pVCpu, pbUnmapInfo, UINT8_MAX, GCPtrMem);
|
---|
2634 | #else
|
---|
2635 | return iemMemFlatMapDataR80WoJmp(pVCpu, pbUnmapInfo, GCPtrMem);
|
---|
2636 | #endif
|
---|
2637 | }
|
---|
2638 |
|
---|
2639 |
|
---|
2640 | /**
|
---|
2641 | * Used by TB code to map 80-bit BCD data writeonly w/ flat address.
|
---|
2642 | */
|
---|
2643 | IEM_DECL_NATIVE_HLP_DEF(RTPBCD80U *, iemNativeHlpMemFlatMapDataD80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem))
|
---|
2644 | {
|
---|
2645 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2646 | return iemMemMapDataD80WoSafeJmp(pVCpu, pbUnmapInfo, UINT8_MAX, GCPtrMem);
|
---|
2647 | #else
|
---|
2648 | return iemMemFlatMapDataD80WoJmp(pVCpu, pbUnmapInfo, GCPtrMem);
|
---|
2649 | #endif
|
---|
2650 | }
|
---|
2651 |
|
---|
2652 |
|
---|
2653 | /**
|
---|
2654 | * Used by TB code to map unsigned 128-bit data read-write w/ flat address.
|
---|
2655 | */
|
---|
2656 | IEM_DECL_NATIVE_HLP_DEF(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem))
|
---|
2657 | {
|
---|
2658 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2659 | return iemMemMapDataU128RwSafeJmp(pVCpu, pbUnmapInfo, UINT8_MAX, GCPtrMem);
|
---|
2660 | #else
|
---|
2661 | return iemMemFlatMapDataU128RwJmp(pVCpu, pbUnmapInfo, GCPtrMem);
|
---|
2662 | #endif
|
---|
2663 | }
|
---|
2664 |
|
---|
2665 |
|
---|
2666 | /**
|
---|
2667 | * Used by TB code to map unsigned 128-bit data writeonly w/ flat address.
|
---|
2668 | */
|
---|
2669 | IEM_DECL_NATIVE_HLP_DEF(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem))
|
---|
2670 | {
|
---|
2671 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2672 | return iemMemMapDataU128WoSafeJmp(pVCpu, pbUnmapInfo, UINT8_MAX, GCPtrMem);
|
---|
2673 | #else
|
---|
2674 | return iemMemFlatMapDataU128WoJmp(pVCpu, pbUnmapInfo, GCPtrMem);
|
---|
2675 | #endif
|
---|
2676 | }
|
---|
2677 |
|
---|
2678 |
|
---|
2679 | /**
|
---|
2680 | * Used by TB code to map unsigned 128-bit data readonly w/ flat address.
|
---|
2681 | */
|
---|
2682 | IEM_DECL_NATIVE_HLP_DEF(RTUINT128U const *, iemNativeHlpMemFlatMapDataU128Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem))
|
---|
2683 | {
|
---|
2684 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP_MAPPED
|
---|
2685 | return iemMemMapDataU128RoSafeJmp(pVCpu, pbUnmapInfo, UINT8_MAX, GCPtrMem);
|
---|
2686 | #else
|
---|
2687 | return iemMemFlatMapDataU128RoJmp(pVCpu, pbUnmapInfo, GCPtrMem);
|
---|
2688 | #endif
|
---|
2689 | }
|
---|
2690 |
|
---|
2691 |
|
---|
2692 | /*********************************************************************************************************************************
|
---|
2693 | * Helpers: Commit, rollback & unmap *
|
---|
2694 | *********************************************************************************************************************************/
|
---|
2695 |
|
---|
2696 | /**
|
---|
2697 | * Used by TB code to commit and unmap a read-write memory mapping.
|
---|
2698 | */
|
---|
2699 | IEM_DECL_NATIVE_HLP_DEF(void, iemNativeHlpMemCommitAndUnmapRw,(PVMCPUCC pVCpu, uint8_t bUnmapInfo))
|
---|
2700 | {
|
---|
2701 | return iemMemCommitAndUnmapRwSafeJmp(pVCpu, bUnmapInfo);
|
---|
2702 | }
|
---|
2703 |
|
---|
2704 |
|
---|
2705 | /**
|
---|
2706 | * Used by TB code to commit and unmap a write-only memory mapping.
|
---|
2707 | */
|
---|
2708 | IEM_DECL_NATIVE_HLP_DEF(void, iemNativeHlpMemCommitAndUnmapWo,(PVMCPUCC pVCpu, uint8_t bUnmapInfo))
|
---|
2709 | {
|
---|
2710 | return iemMemCommitAndUnmapWoSafeJmp(pVCpu, bUnmapInfo);
|
---|
2711 | }
|
---|
2712 |
|
---|
2713 |
|
---|
2714 | /**
|
---|
2715 | * Used by TB code to commit and unmap a read-only memory mapping.
|
---|
2716 | */
|
---|
2717 | IEM_DECL_NATIVE_HLP_DEF(void, iemNativeHlpMemCommitAndUnmapRo,(PVMCPUCC pVCpu, uint8_t bUnmapInfo))
|
---|
2718 | {
|
---|
2719 | return iemMemCommitAndUnmapRoSafeJmp(pVCpu, bUnmapInfo);
|
---|
2720 | }
|
---|
2721 |
|
---|
2722 |
|
---|
2723 | /**
|
---|
2724 | * Reinitializes the native recompiler state.
|
---|
2725 | *
|
---|
2726 | * Called before starting a new recompile job.
|
---|
2727 | */
|
---|
2728 | static PIEMRECOMPILERSTATE iemNativeReInit(PIEMRECOMPILERSTATE pReNative, PCIEMTB pTb)
|
---|
2729 | {
|
---|
2730 | pReNative->cLabels = 0;
|
---|
2731 | pReNative->bmLabelTypes = 0;
|
---|
2732 | pReNative->cFixups = 0;
|
---|
2733 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
2734 | pReNative->pDbgInfo->cEntries = 0;
|
---|
2735 | #endif
|
---|
2736 | pReNative->pTbOrg = pTb;
|
---|
2737 | pReNative->cCondDepth = 0;
|
---|
2738 | pReNative->uCondSeqNo = 0;
|
---|
2739 | pReNative->uCheckIrqSeqNo = 0;
|
---|
2740 | pReNative->uTlbSeqNo = 0;
|
---|
2741 |
|
---|
2742 | pReNative->Core.bmHstRegs = IEMNATIVE_REG_FIXED_MASK
|
---|
2743 | #if IEMNATIVE_HST_GREG_COUNT < 32
|
---|
2744 | | ~(RT_BIT(IEMNATIVE_HST_GREG_COUNT) - 1U)
|
---|
2745 | #endif
|
---|
2746 | ;
|
---|
2747 | pReNative->Core.bmHstRegsWithGstShadow = 0;
|
---|
2748 | pReNative->Core.bmGstRegShadows = 0;
|
---|
2749 | pReNative->Core.bmVars = 0;
|
---|
2750 | pReNative->Core.bmStack = 0;
|
---|
2751 | AssertCompile(sizeof(pReNative->Core.bmStack) * 8 == IEMNATIVE_FRAME_VAR_SLOTS); /* Must set reserved slots to 1 otherwise. */
|
---|
2752 | pReNative->Core.u64ArgVars = UINT64_MAX;
|
---|
2753 |
|
---|
2754 | AssertCompile(RT_ELEMENTS(pReNative->aidxUniqueLabels) == 9);
|
---|
2755 | pReNative->aidxUniqueLabels[0] = UINT32_MAX;
|
---|
2756 | pReNative->aidxUniqueLabels[1] = UINT32_MAX;
|
---|
2757 | pReNative->aidxUniqueLabels[2] = UINT32_MAX;
|
---|
2758 | pReNative->aidxUniqueLabels[3] = UINT32_MAX;
|
---|
2759 | pReNative->aidxUniqueLabels[4] = UINT32_MAX;
|
---|
2760 | pReNative->aidxUniqueLabels[5] = UINT32_MAX;
|
---|
2761 | pReNative->aidxUniqueLabels[6] = UINT32_MAX;
|
---|
2762 | pReNative->aidxUniqueLabels[7] = UINT32_MAX;
|
---|
2763 | pReNative->aidxUniqueLabels[8] = UINT32_MAX;
|
---|
2764 |
|
---|
2765 | /* Full host register reinit: */
|
---|
2766 | for (unsigned i = 0; i < RT_ELEMENTS(pReNative->Core.aHstRegs); i++)
|
---|
2767 | {
|
---|
2768 | pReNative->Core.aHstRegs[i].fGstRegShadows = 0;
|
---|
2769 | pReNative->Core.aHstRegs[i].enmWhat = kIemNativeWhat_Invalid;
|
---|
2770 | pReNative->Core.aHstRegs[i].idxVar = UINT8_MAX;
|
---|
2771 | }
|
---|
2772 |
|
---|
2773 | uint32_t fRegs = IEMNATIVE_REG_FIXED_MASK
|
---|
2774 | & ~( RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU)
|
---|
2775 | #ifdef IEMNATIVE_REG_FIXED_PCPUMCTX
|
---|
2776 | | RT_BIT_32(IEMNATIVE_REG_FIXED_PCPUMCTX)
|
---|
2777 | #endif
|
---|
2778 | #ifdef IEMNATIVE_REG_FIXED_PCPUMCTX
|
---|
2779 | | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0)
|
---|
2780 | #endif
|
---|
2781 | );
|
---|
2782 | for (uint32_t idxReg = ASMBitFirstSetU32(fRegs) - 1; fRegs != 0; idxReg = ASMBitFirstSetU32(fRegs) - 1)
|
---|
2783 | {
|
---|
2784 | fRegs &= ~RT_BIT_32(idxReg);
|
---|
2785 | pReNative->Core.aHstRegs[IEMNATIVE_REG_FIXED_PVMCPU].enmWhat = kIemNativeWhat_FixedReserved;
|
---|
2786 | }
|
---|
2787 |
|
---|
2788 | pReNative->Core.aHstRegs[IEMNATIVE_REG_FIXED_PVMCPU].enmWhat = kIemNativeWhat_pVCpuFixed;
|
---|
2789 | #ifdef IEMNATIVE_REG_FIXED_PCPUMCTX
|
---|
2790 | pReNative->Core.aHstRegs[IEMNATIVE_REG_FIXED_PCPUMCTX].enmWhat = kIemNativeWhat_pCtxFixed;
|
---|
2791 | #endif
|
---|
2792 | #ifdef IEMNATIVE_REG_FIXED_TMP0
|
---|
2793 | pReNative->Core.aHstRegs[IEMNATIVE_REG_FIXED_TMP0].enmWhat = kIemNativeWhat_FixedTmp;
|
---|
2794 | #endif
|
---|
2795 | return pReNative;
|
---|
2796 | }
|
---|
2797 |
|
---|
2798 |
|
---|
2799 | /**
|
---|
2800 | * Allocates and initializes the native recompiler state.
|
---|
2801 | *
|
---|
2802 | * This is called the first time an EMT wants to recompile something.
|
---|
2803 | *
|
---|
2804 | * @returns Pointer to the new recompiler state.
|
---|
2805 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
2806 | * thread.
|
---|
2807 | * @param pTb The TB that's about to be recompiled.
|
---|
2808 | * @thread EMT(pVCpu)
|
---|
2809 | */
|
---|
2810 | static PIEMRECOMPILERSTATE iemNativeInit(PVMCPUCC pVCpu, PCIEMTB pTb)
|
---|
2811 | {
|
---|
2812 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
2813 |
|
---|
2814 | PIEMRECOMPILERSTATE pReNative = (PIEMRECOMPILERSTATE)RTMemAllocZ(sizeof(*pReNative));
|
---|
2815 | AssertReturn(pReNative, NULL);
|
---|
2816 |
|
---|
2817 | /*
|
---|
2818 | * Try allocate all the buffers and stuff we need.
|
---|
2819 | */
|
---|
2820 | pReNative->pInstrBuf = (PIEMNATIVEINSTR)RTMemAllocZ(_64K);
|
---|
2821 | pReNative->paLabels = (PIEMNATIVELABEL)RTMemAllocZ(sizeof(IEMNATIVELABEL) * _8K);
|
---|
2822 | pReNative->paFixups = (PIEMNATIVEFIXUP)RTMemAllocZ(sizeof(IEMNATIVEFIXUP) * _16K);
|
---|
2823 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
2824 | pReNative->pDbgInfo = (PIEMTBDBG)RTMemAllocZ(RT_UOFFSETOF_DYN(IEMTBDBG, aEntries[_16K]));
|
---|
2825 | #endif
|
---|
2826 | if (RT_LIKELY( pReNative->pInstrBuf
|
---|
2827 | && pReNative->paLabels
|
---|
2828 | && pReNative->paFixups)
|
---|
2829 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
2830 | && pReNative->pDbgInfo
|
---|
2831 | #endif
|
---|
2832 | )
|
---|
2833 | {
|
---|
2834 | /*
|
---|
2835 | * Set the buffer & array sizes on success.
|
---|
2836 | */
|
---|
2837 | pReNative->cInstrBufAlloc = _64K / sizeof(IEMNATIVEINSTR);
|
---|
2838 | pReNative->cLabelsAlloc = _8K;
|
---|
2839 | pReNative->cFixupsAlloc = _16K;
|
---|
2840 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
2841 | pReNative->cDbgInfoAlloc = _16K;
|
---|
2842 | #endif
|
---|
2843 |
|
---|
2844 | /* Other constant stuff: */
|
---|
2845 | pReNative->pVCpu = pVCpu;
|
---|
2846 |
|
---|
2847 | /*
|
---|
2848 | * Done, just need to save it and reinit it.
|
---|
2849 | */
|
---|
2850 | pVCpu->iem.s.pNativeRecompilerStateR3 = pReNative;
|
---|
2851 | return iemNativeReInit(pReNative, pTb);
|
---|
2852 | }
|
---|
2853 |
|
---|
2854 | /*
|
---|
2855 | * Failed. Cleanup and return.
|
---|
2856 | */
|
---|
2857 | AssertFailed();
|
---|
2858 | RTMemFree(pReNative->pInstrBuf);
|
---|
2859 | RTMemFree(pReNative->paLabels);
|
---|
2860 | RTMemFree(pReNative->paFixups);
|
---|
2861 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
2862 | RTMemFree(pReNative->pDbgInfo);
|
---|
2863 | #endif
|
---|
2864 | RTMemFree(pReNative);
|
---|
2865 | return NULL;
|
---|
2866 | }
|
---|
2867 |
|
---|
2868 |
|
---|
2869 | /**
|
---|
2870 | * Creates a label
|
---|
2871 | *
|
---|
2872 | * If the label does not yet have a defined position,
|
---|
2873 | * call iemNativeLabelDefine() later to set it.
|
---|
2874 | *
|
---|
2875 | * @returns Label ID. Throws VBox status code on failure, so no need to check
|
---|
2876 | * the return value.
|
---|
2877 | * @param pReNative The native recompile state.
|
---|
2878 | * @param enmType The label type.
|
---|
2879 | * @param offWhere The instruction offset of the label. UINT32_MAX if the
|
---|
2880 | * label is not yet defined (default).
|
---|
2881 | * @param uData Data associated with the lable. Only applicable to
|
---|
2882 | * certain type of labels. Default is zero.
|
---|
2883 | */
|
---|
2884 | DECL_HIDDEN_THROW(uint32_t)
|
---|
2885 | iemNativeLabelCreate(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType,
|
---|
2886 | uint32_t offWhere /*= UINT32_MAX*/, uint16_t uData /*= 0*/)
|
---|
2887 | {
|
---|
2888 | Assert(uData == 0 || enmType >= kIemNativeLabelType_FirstWithMultipleInstances);
|
---|
2889 |
|
---|
2890 | /*
|
---|
2891 | * Locate existing label definition.
|
---|
2892 | *
|
---|
2893 | * This is only allowed for forward declarations where offWhere=UINT32_MAX
|
---|
2894 | * and uData is zero.
|
---|
2895 | */
|
---|
2896 | PIEMNATIVELABEL paLabels = pReNative->paLabels;
|
---|
2897 | uint32_t const cLabels = pReNative->cLabels;
|
---|
2898 | if ( pReNative->bmLabelTypes & RT_BIT_64(enmType)
|
---|
2899 | #ifndef VBOX_STRICT
|
---|
2900 | && enmType < kIemNativeLabelType_FirstWithMultipleInstances
|
---|
2901 | && offWhere == UINT32_MAX
|
---|
2902 | && uData == 0
|
---|
2903 | #endif
|
---|
2904 | )
|
---|
2905 | {
|
---|
2906 | #ifndef VBOX_STRICT
|
---|
2907 | AssertStmt(enmType > kIemNativeLabelType_Invalid && enmType < kIemNativeLabelType_FirstWithMultipleInstances,
|
---|
2908 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_IPE_1));
|
---|
2909 | uint32_t const idxLabel = pReNative->aidxUniqueLabels[enmType];
|
---|
2910 | if (idxLabel < pReNative->cLabels)
|
---|
2911 | return idxLabel;
|
---|
2912 | #else
|
---|
2913 | for (uint32_t i = 0; i < cLabels; i++)
|
---|
2914 | if ( paLabels[i].enmType == enmType
|
---|
2915 | && paLabels[i].uData == uData)
|
---|
2916 | {
|
---|
2917 | AssertStmt(uData == 0, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_IPE_1));
|
---|
2918 | AssertStmt(offWhere == UINT32_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_IPE_1));
|
---|
2919 | AssertStmt(paLabels[i].off == UINT32_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_IPE_2));
|
---|
2920 | AssertStmt(enmType < kIemNativeLabelType_FirstWithMultipleInstances && pReNative->aidxUniqueLabels[enmType] == i,
|
---|
2921 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_IPE_1));
|
---|
2922 | return i;
|
---|
2923 | }
|
---|
2924 | AssertStmt( enmType >= kIemNativeLabelType_FirstWithMultipleInstances
|
---|
2925 | || pReNative->aidxUniqueLabels[enmType] == UINT32_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_IPE_1));
|
---|
2926 | #endif
|
---|
2927 | }
|
---|
2928 |
|
---|
2929 | /*
|
---|
2930 | * Make sure we've got room for another label.
|
---|
2931 | */
|
---|
2932 | if (RT_LIKELY(cLabels < pReNative->cLabelsAlloc))
|
---|
2933 | { /* likely */ }
|
---|
2934 | else
|
---|
2935 | {
|
---|
2936 | uint32_t cNew = pReNative->cLabelsAlloc;
|
---|
2937 | AssertStmt(cNew, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_IPE_3));
|
---|
2938 | AssertStmt(cLabels == cNew, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_IPE_3));
|
---|
2939 | cNew *= 2;
|
---|
2940 | AssertStmt(cNew <= _64K, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_TOO_MANY)); /* IEMNATIVEFIXUP::idxLabel type restrict this */
|
---|
2941 | paLabels = (PIEMNATIVELABEL)RTMemRealloc(paLabels, cNew * sizeof(paLabels[0]));
|
---|
2942 | AssertStmt(paLabels, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_OUT_OF_MEMORY));
|
---|
2943 | pReNative->paLabels = paLabels;
|
---|
2944 | pReNative->cLabelsAlloc = cNew;
|
---|
2945 | }
|
---|
2946 |
|
---|
2947 | /*
|
---|
2948 | * Define a new label.
|
---|
2949 | */
|
---|
2950 | paLabels[cLabels].off = offWhere;
|
---|
2951 | paLabels[cLabels].enmType = enmType;
|
---|
2952 | paLabels[cLabels].uData = uData;
|
---|
2953 | pReNative->cLabels = cLabels + 1;
|
---|
2954 |
|
---|
2955 | Assert((unsigned)enmType < 64);
|
---|
2956 | pReNative->bmLabelTypes |= RT_BIT_64(enmType);
|
---|
2957 |
|
---|
2958 | if (enmType < kIemNativeLabelType_FirstWithMultipleInstances)
|
---|
2959 | {
|
---|
2960 | Assert(uData == 0);
|
---|
2961 | pReNative->aidxUniqueLabels[enmType] = cLabels;
|
---|
2962 | }
|
---|
2963 |
|
---|
2964 | if (offWhere != UINT32_MAX)
|
---|
2965 | {
|
---|
2966 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
2967 | iemNativeDbgInfoAddNativeOffset(pReNative, offWhere);
|
---|
2968 | iemNativeDbgInfoAddLabel(pReNative, enmType, uData);
|
---|
2969 | #endif
|
---|
2970 | }
|
---|
2971 | return cLabels;
|
---|
2972 | }
|
---|
2973 |
|
---|
2974 |
|
---|
2975 | /**
|
---|
2976 | * Defines the location of an existing label.
|
---|
2977 | *
|
---|
2978 | * @param pReNative The native recompile state.
|
---|
2979 | * @param idxLabel The label to define.
|
---|
2980 | * @param offWhere The position.
|
---|
2981 | */
|
---|
2982 | DECL_HIDDEN_THROW(void) iemNativeLabelDefine(PIEMRECOMPILERSTATE pReNative, uint32_t idxLabel, uint32_t offWhere)
|
---|
2983 | {
|
---|
2984 | AssertStmt(idxLabel < pReNative->cLabels, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_IPE_4));
|
---|
2985 | PIEMNATIVELABEL const pLabel = &pReNative->paLabels[idxLabel];
|
---|
2986 | AssertStmt(pLabel->off == UINT32_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_IPE_5));
|
---|
2987 | pLabel->off = offWhere;
|
---|
2988 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
2989 | iemNativeDbgInfoAddNativeOffset(pReNative, offWhere);
|
---|
2990 | iemNativeDbgInfoAddLabel(pReNative, (IEMNATIVELABELTYPE)pLabel->enmType, pLabel->uData);
|
---|
2991 | #endif
|
---|
2992 | }
|
---|
2993 |
|
---|
2994 |
|
---|
2995 | /**
|
---|
2996 | * Looks up a lable.
|
---|
2997 | *
|
---|
2998 | * @returns Label ID if found, UINT32_MAX if not.
|
---|
2999 | */
|
---|
3000 | static uint32_t iemNativeLabelFind(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType,
|
---|
3001 | uint32_t offWhere = UINT32_MAX, uint16_t uData = 0) RT_NOEXCEPT
|
---|
3002 | {
|
---|
3003 | Assert((unsigned)enmType < 64);
|
---|
3004 | if (RT_BIT_64(enmType) & pReNative->bmLabelTypes)
|
---|
3005 | {
|
---|
3006 | if (enmType < kIemNativeLabelType_FirstWithMultipleInstances)
|
---|
3007 | return pReNative->aidxUniqueLabels[enmType];
|
---|
3008 |
|
---|
3009 | PIEMNATIVELABEL paLabels = pReNative->paLabels;
|
---|
3010 | uint32_t const cLabels = pReNative->cLabels;
|
---|
3011 | for (uint32_t i = 0; i < cLabels; i++)
|
---|
3012 | if ( paLabels[i].enmType == enmType
|
---|
3013 | && paLabels[i].uData == uData
|
---|
3014 | && ( paLabels[i].off == offWhere
|
---|
3015 | || offWhere == UINT32_MAX
|
---|
3016 | || paLabels[i].off == UINT32_MAX))
|
---|
3017 | return i;
|
---|
3018 | }
|
---|
3019 | return UINT32_MAX;
|
---|
3020 | }
|
---|
3021 |
|
---|
3022 |
|
---|
3023 | /**
|
---|
3024 | * Adds a fixup.
|
---|
3025 | *
|
---|
3026 | * @throws VBox status code (int) on failure.
|
---|
3027 | * @param pReNative The native recompile state.
|
---|
3028 | * @param offWhere The instruction offset of the fixup location.
|
---|
3029 | * @param idxLabel The target label ID for the fixup.
|
---|
3030 | * @param enmType The fixup type.
|
---|
3031 | * @param offAddend Fixup addend if applicable to the type. Default is 0.
|
---|
3032 | */
|
---|
3033 | DECL_HIDDEN_THROW(void)
|
---|
3034 | iemNativeAddFixup(PIEMRECOMPILERSTATE pReNative, uint32_t offWhere, uint32_t idxLabel,
|
---|
3035 | IEMNATIVEFIXUPTYPE enmType, int8_t offAddend /*= 0*/)
|
---|
3036 | {
|
---|
3037 | Assert(idxLabel <= UINT16_MAX);
|
---|
3038 | Assert((unsigned)enmType <= UINT8_MAX);
|
---|
3039 |
|
---|
3040 | /*
|
---|
3041 | * Make sure we've room.
|
---|
3042 | */
|
---|
3043 | PIEMNATIVEFIXUP paFixups = pReNative->paFixups;
|
---|
3044 | uint32_t const cFixups = pReNative->cFixups;
|
---|
3045 | if (RT_LIKELY(cFixups < pReNative->cFixupsAlloc))
|
---|
3046 | { /* likely */ }
|
---|
3047 | else
|
---|
3048 | {
|
---|
3049 | uint32_t cNew = pReNative->cFixupsAlloc;
|
---|
3050 | AssertStmt(cNew, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_FIXUP_IPE_1));
|
---|
3051 | AssertStmt(cFixups == cNew, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_FIXUP_IPE_1));
|
---|
3052 | cNew *= 2;
|
---|
3053 | AssertStmt(cNew <= _128K, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_FIXUP_TOO_MANY));
|
---|
3054 | paFixups = (PIEMNATIVEFIXUP)RTMemRealloc(paFixups, cNew * sizeof(paFixups[0]));
|
---|
3055 | AssertStmt(paFixups, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_FIXUP_OUT_OF_MEMORY));
|
---|
3056 | pReNative->paFixups = paFixups;
|
---|
3057 | pReNative->cFixupsAlloc = cNew;
|
---|
3058 | }
|
---|
3059 |
|
---|
3060 | /*
|
---|
3061 | * Add the fixup.
|
---|
3062 | */
|
---|
3063 | paFixups[cFixups].off = offWhere;
|
---|
3064 | paFixups[cFixups].idxLabel = (uint16_t)idxLabel;
|
---|
3065 | paFixups[cFixups].enmType = enmType;
|
---|
3066 | paFixups[cFixups].offAddend = offAddend;
|
---|
3067 | pReNative->cFixups = cFixups + 1;
|
---|
3068 | }
|
---|
3069 |
|
---|
3070 |
|
---|
3071 | /**
|
---|
3072 | * Slow code path for iemNativeInstrBufEnsure.
|
---|
3073 | */
|
---|
3074 | DECL_HIDDEN_THROW(PIEMNATIVEINSTR) iemNativeInstrBufEnsureSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq)
|
---|
3075 | {
|
---|
3076 | /* Double the buffer size till we meet the request. */
|
---|
3077 | uint32_t cNew = pReNative->cInstrBufAlloc;
|
---|
3078 | AssertReturn(cNew > 0, NULL);
|
---|
3079 | do
|
---|
3080 | cNew *= 2;
|
---|
3081 | while (cNew < off + cInstrReq);
|
---|
3082 |
|
---|
3083 | uint32_t const cbNew = cNew * sizeof(IEMNATIVEINSTR);
|
---|
3084 | #ifdef RT_ARCH_ARM64
|
---|
3085 | uint32_t const cbMaxInstrBuf = _1M; /* Limited by the branch instruction range (18+2 bits). */
|
---|
3086 | #else
|
---|
3087 | uint32_t const cbMaxInstrBuf = _2M;
|
---|
3088 | #endif
|
---|
3089 | AssertStmt(cbNew <= cbMaxInstrBuf, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_INSTR_BUF_TOO_LARGE));
|
---|
3090 |
|
---|
3091 | void *pvNew = RTMemRealloc(pReNative->pInstrBuf, cbNew);
|
---|
3092 | AssertStmt(pvNew, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_INSTR_BUF_OUT_OF_MEMORY));
|
---|
3093 |
|
---|
3094 | #ifdef VBOX_STRICT
|
---|
3095 | pReNative->offInstrBufChecked = off + cInstrReq;
|
---|
3096 | #endif
|
---|
3097 | pReNative->cInstrBufAlloc = cNew;
|
---|
3098 | return pReNative->pInstrBuf = (PIEMNATIVEINSTR)pvNew;
|
---|
3099 | }
|
---|
3100 |
|
---|
3101 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
3102 |
|
---|
3103 | /**
|
---|
3104 | * Grows the static debug info array used during recompilation.
|
---|
3105 | *
|
---|
3106 | * @returns Pointer to the new debug info block; throws VBox status code on
|
---|
3107 | * failure, so no need to check the return value.
|
---|
3108 | */
|
---|
3109 | DECL_NO_INLINE(static, PIEMTBDBG) iemNativeDbgInfoGrow(PIEMRECOMPILERSTATE pReNative, PIEMTBDBG pDbgInfo)
|
---|
3110 | {
|
---|
3111 | uint32_t cNew = pReNative->cDbgInfoAlloc * 2;
|
---|
3112 | AssertStmt(cNew < _1M && cNew != 0, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_DBGINFO_IPE_1));
|
---|
3113 | pDbgInfo = (PIEMTBDBG)RTMemRealloc(pDbgInfo, RT_UOFFSETOF_DYN(IEMTBDBG, aEntries[cNew]));
|
---|
3114 | AssertStmt(pDbgInfo, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_DBGINFO_OUT_OF_MEMORY));
|
---|
3115 | pReNative->pDbgInfo = pDbgInfo;
|
---|
3116 | pReNative->cDbgInfoAlloc = cNew;
|
---|
3117 | return pDbgInfo;
|
---|
3118 | }
|
---|
3119 |
|
---|
3120 |
|
---|
3121 | /**
|
---|
3122 | * Adds a new debug info uninitialized entry, returning the pointer to it.
|
---|
3123 | */
|
---|
3124 | DECL_INLINE_THROW(PIEMTBDBGENTRY) iemNativeDbgInfoAddNewEntry(PIEMRECOMPILERSTATE pReNative, PIEMTBDBG pDbgInfo)
|
---|
3125 | {
|
---|
3126 | if (RT_LIKELY(pDbgInfo->cEntries < pReNative->cDbgInfoAlloc))
|
---|
3127 | { /* likely */ }
|
---|
3128 | else
|
---|
3129 | pDbgInfo = iemNativeDbgInfoGrow(pReNative, pDbgInfo);
|
---|
3130 | return &pDbgInfo->aEntries[pDbgInfo->cEntries++];
|
---|
3131 | }
|
---|
3132 |
|
---|
3133 |
|
---|
3134 | /**
|
---|
3135 | * Debug Info: Adds a native offset record, if necessary.
|
---|
3136 | */
|
---|
3137 | static void iemNativeDbgInfoAddNativeOffset(PIEMRECOMPILERSTATE pReNative, uint32_t off)
|
---|
3138 | {
|
---|
3139 | PIEMTBDBG pDbgInfo = pReNative->pDbgInfo;
|
---|
3140 |
|
---|
3141 | /*
|
---|
3142 | * Search backwards to see if we've got a similar record already.
|
---|
3143 | */
|
---|
3144 | uint32_t idx = pDbgInfo->cEntries;
|
---|
3145 | uint32_t idxStop = idx > 8 ? idx - 8 : 0;
|
---|
3146 | while (idx-- > idxStop)
|
---|
3147 | if (pDbgInfo->aEntries[idx].Gen.uType == kIemTbDbgEntryType_NativeOffset)
|
---|
3148 | {
|
---|
3149 | if (pDbgInfo->aEntries[idx].NativeOffset.offNative == off)
|
---|
3150 | return;
|
---|
3151 | AssertStmt(pDbgInfo->aEntries[idx].NativeOffset.offNative < off,
|
---|
3152 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_DBGINFO_IPE_2));
|
---|
3153 | break;
|
---|
3154 | }
|
---|
3155 |
|
---|
3156 | /*
|
---|
3157 | * Add it.
|
---|
3158 | */
|
---|
3159 | PIEMTBDBGENTRY const pEntry = iemNativeDbgInfoAddNewEntry(pReNative, pDbgInfo);
|
---|
3160 | pEntry->NativeOffset.uType = kIemTbDbgEntryType_NativeOffset;
|
---|
3161 | pEntry->NativeOffset.offNative = off;
|
---|
3162 | }
|
---|
3163 |
|
---|
3164 |
|
---|
3165 | /**
|
---|
3166 | * Debug Info: Record info about a label.
|
---|
3167 | */
|
---|
3168 | static void iemNativeDbgInfoAddLabel(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType, uint16_t uData)
|
---|
3169 | {
|
---|
3170 | PIEMTBDBGENTRY const pEntry = iemNativeDbgInfoAddNewEntry(pReNative, pReNative->pDbgInfo);
|
---|
3171 | pEntry->Label.uType = kIemTbDbgEntryType_Label;
|
---|
3172 | pEntry->Label.uUnused = 0;
|
---|
3173 | pEntry->Label.enmLabel = (uint8_t)enmType;
|
---|
3174 | pEntry->Label.uData = uData;
|
---|
3175 | }
|
---|
3176 |
|
---|
3177 |
|
---|
3178 | /**
|
---|
3179 | * Debug Info: Record info about a threaded call.
|
---|
3180 | */
|
---|
3181 | static void iemNativeDbgInfoAddThreadedCall(PIEMRECOMPILERSTATE pReNative, IEMTHREADEDFUNCS enmCall, bool fRecompiled)
|
---|
3182 | {
|
---|
3183 | PIEMTBDBGENTRY const pEntry = iemNativeDbgInfoAddNewEntry(pReNative, pReNative->pDbgInfo);
|
---|
3184 | pEntry->ThreadedCall.uType = kIemTbDbgEntryType_ThreadedCall;
|
---|
3185 | pEntry->ThreadedCall.fRecompiled = fRecompiled;
|
---|
3186 | pEntry->ThreadedCall.uUnused = 0;
|
---|
3187 | pEntry->ThreadedCall.enmCall = (uint16_t)enmCall;
|
---|
3188 | }
|
---|
3189 |
|
---|
3190 |
|
---|
3191 | /**
|
---|
3192 | * Debug Info: Record info about a new guest instruction.
|
---|
3193 | */
|
---|
3194 | static void iemNativeDbgInfoAddGuestInstruction(PIEMRECOMPILERSTATE pReNative, uint32_t fExec)
|
---|
3195 | {
|
---|
3196 | PIEMTBDBGENTRY const pEntry = iemNativeDbgInfoAddNewEntry(pReNative, pReNative->pDbgInfo);
|
---|
3197 | pEntry->GuestInstruction.uType = kIemTbDbgEntryType_GuestInstruction;
|
---|
3198 | pEntry->GuestInstruction.uUnused = 0;
|
---|
3199 | pEntry->GuestInstruction.fExec = fExec;
|
---|
3200 | }
|
---|
3201 |
|
---|
3202 |
|
---|
3203 | /**
|
---|
3204 | * Debug Info: Record info about guest register shadowing.
|
---|
3205 | */
|
---|
3206 | static void iemNativeDbgInfoAddGuestRegShadowing(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg,
|
---|
3207 | uint8_t idxHstReg = UINT8_MAX, uint8_t idxHstRegPrev = UINT8_MAX)
|
---|
3208 | {
|
---|
3209 | PIEMTBDBGENTRY const pEntry = iemNativeDbgInfoAddNewEntry(pReNative, pReNative->pDbgInfo);
|
---|
3210 | pEntry->GuestRegShadowing.uType = kIemTbDbgEntryType_GuestRegShadowing;
|
---|
3211 | pEntry->GuestRegShadowing.uUnused = 0;
|
---|
3212 | pEntry->GuestRegShadowing.idxGstReg = enmGstReg;
|
---|
3213 | pEntry->GuestRegShadowing.idxHstReg = idxHstReg;
|
---|
3214 | pEntry->GuestRegShadowing.idxHstRegPrev = idxHstRegPrev;
|
---|
3215 | }
|
---|
3216 |
|
---|
3217 | #endif /* IEMNATIVE_WITH_TB_DEBUG_INFO */
|
---|
3218 |
|
---|
3219 |
|
---|
3220 | /*********************************************************************************************************************************
|
---|
3221 | * Register Allocator *
|
---|
3222 | *********************************************************************************************************************************/
|
---|
3223 |
|
---|
3224 | /**
|
---|
3225 | * Register parameter indexes (indexed by argument number).
|
---|
3226 | */
|
---|
3227 | DECL_HIDDEN_CONST(uint8_t) const g_aidxIemNativeCallRegs[] =
|
---|
3228 | {
|
---|
3229 | IEMNATIVE_CALL_ARG0_GREG,
|
---|
3230 | IEMNATIVE_CALL_ARG1_GREG,
|
---|
3231 | IEMNATIVE_CALL_ARG2_GREG,
|
---|
3232 | IEMNATIVE_CALL_ARG3_GREG,
|
---|
3233 | #if defined(IEMNATIVE_CALL_ARG4_GREG)
|
---|
3234 | IEMNATIVE_CALL_ARG4_GREG,
|
---|
3235 | # if defined(IEMNATIVE_CALL_ARG5_GREG)
|
---|
3236 | IEMNATIVE_CALL_ARG5_GREG,
|
---|
3237 | # if defined(IEMNATIVE_CALL_ARG6_GREG)
|
---|
3238 | IEMNATIVE_CALL_ARG6_GREG,
|
---|
3239 | # if defined(IEMNATIVE_CALL_ARG7_GREG)
|
---|
3240 | IEMNATIVE_CALL_ARG7_GREG,
|
---|
3241 | # endif
|
---|
3242 | # endif
|
---|
3243 | # endif
|
---|
3244 | #endif
|
---|
3245 | };
|
---|
3246 |
|
---|
3247 | /**
|
---|
3248 | * Call register masks indexed by argument count.
|
---|
3249 | */
|
---|
3250 | DECL_HIDDEN_CONST(uint32_t) const g_afIemNativeCallRegs[] =
|
---|
3251 | {
|
---|
3252 | 0,
|
---|
3253 | RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG),
|
---|
3254 | RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG),
|
---|
3255 | RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG),
|
---|
3256 | RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG)
|
---|
3257 | | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG),
|
---|
3258 | #if defined(IEMNATIVE_CALL_ARG4_GREG)
|
---|
3259 | RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG)
|
---|
3260 | | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG4_GREG),
|
---|
3261 | # if defined(IEMNATIVE_CALL_ARG5_GREG)
|
---|
3262 | RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG)
|
---|
3263 | | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG4_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG5_GREG),
|
---|
3264 | # if defined(IEMNATIVE_CALL_ARG6_GREG)
|
---|
3265 | RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG)
|
---|
3266 | | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG4_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG5_GREG)
|
---|
3267 | | RT_BIT_32(IEMNATIVE_CALL_ARG6_GREG),
|
---|
3268 | # if defined(IEMNATIVE_CALL_ARG7_GREG)
|
---|
3269 | RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG)
|
---|
3270 | | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG4_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG5_GREG)
|
---|
3271 | | RT_BIT_32(IEMNATIVE_CALL_ARG6_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG7_GREG),
|
---|
3272 | # endif
|
---|
3273 | # endif
|
---|
3274 | # endif
|
---|
3275 | #endif
|
---|
3276 | };
|
---|
3277 |
|
---|
3278 | #ifdef IEMNATIVE_FP_OFF_STACK_ARG0
|
---|
3279 | /**
|
---|
3280 | * BP offset of the stack argument slots.
|
---|
3281 | *
|
---|
3282 | * This array is indexed by \#argument - IEMNATIVE_CALL_ARG_GREG_COUNT and has
|
---|
3283 | * IEMNATIVE_FRAME_STACK_ARG_COUNT entries.
|
---|
3284 | */
|
---|
3285 | DECL_HIDDEN_CONST(int32_t) const g_aoffIemNativeCallStackArgBpDisp[] =
|
---|
3286 | {
|
---|
3287 | IEMNATIVE_FP_OFF_STACK_ARG0,
|
---|
3288 | # ifdef IEMNATIVE_FP_OFF_STACK_ARG1
|
---|
3289 | IEMNATIVE_FP_OFF_STACK_ARG1,
|
---|
3290 | # endif
|
---|
3291 | # ifdef IEMNATIVE_FP_OFF_STACK_ARG2
|
---|
3292 | IEMNATIVE_FP_OFF_STACK_ARG2,
|
---|
3293 | # endif
|
---|
3294 | # ifdef IEMNATIVE_FP_OFF_STACK_ARG3
|
---|
3295 | IEMNATIVE_FP_OFF_STACK_ARG3,
|
---|
3296 | # endif
|
---|
3297 | };
|
---|
3298 | AssertCompile(RT_ELEMENTS(g_aoffIemNativeCallStackArgBpDisp) == IEMNATIVE_FRAME_STACK_ARG_COUNT);
|
---|
3299 | #endif /* IEMNATIVE_FP_OFF_STACK_ARG0 */
|
---|
3300 |
|
---|
3301 | /**
|
---|
3302 | * Info about shadowed guest register values.
|
---|
3303 | * @see IEMNATIVEGSTREG
|
---|
3304 | */
|
---|
3305 | static struct
|
---|
3306 | {
|
---|
3307 | /** Offset in VMCPU. */
|
---|
3308 | uint32_t off;
|
---|
3309 | /** The field size. */
|
---|
3310 | uint8_t cb;
|
---|
3311 | /** Name (for logging). */
|
---|
3312 | const char *pszName;
|
---|
3313 | } const g_aGstShadowInfo[] =
|
---|
3314 | {
|
---|
3315 | #define CPUMCTX_OFF_AND_SIZE(a_Reg) (uint32_t)RT_UOFFSETOF(VMCPU, cpum.GstCtx. a_Reg), RT_SIZEOFMEMB(VMCPU, cpum.GstCtx. a_Reg)
|
---|
3316 | /* [kIemNativeGstReg_GprFirst + X86_GREG_xAX] = */ { CPUMCTX_OFF_AND_SIZE(rax), "rax", },
|
---|
3317 | /* [kIemNativeGstReg_GprFirst + X86_GREG_xCX] = */ { CPUMCTX_OFF_AND_SIZE(rcx), "rcx", },
|
---|
3318 | /* [kIemNativeGstReg_GprFirst + X86_GREG_xDX] = */ { CPUMCTX_OFF_AND_SIZE(rdx), "rdx", },
|
---|
3319 | /* [kIemNativeGstReg_GprFirst + X86_GREG_xBX] = */ { CPUMCTX_OFF_AND_SIZE(rbx), "rbx", },
|
---|
3320 | /* [kIemNativeGstReg_GprFirst + X86_GREG_xSP] = */ { CPUMCTX_OFF_AND_SIZE(rsp), "rsp", },
|
---|
3321 | /* [kIemNativeGstReg_GprFirst + X86_GREG_xBP] = */ { CPUMCTX_OFF_AND_SIZE(rbp), "rbp", },
|
---|
3322 | /* [kIemNativeGstReg_GprFirst + X86_GREG_xSI] = */ { CPUMCTX_OFF_AND_SIZE(rsi), "rsi", },
|
---|
3323 | /* [kIemNativeGstReg_GprFirst + X86_GREG_xDI] = */ { CPUMCTX_OFF_AND_SIZE(rdi), "rdi", },
|
---|
3324 | /* [kIemNativeGstReg_GprFirst + X86_GREG_x8 ] = */ { CPUMCTX_OFF_AND_SIZE(r8), "r8", },
|
---|
3325 | /* [kIemNativeGstReg_GprFirst + X86_GREG_x9 ] = */ { CPUMCTX_OFF_AND_SIZE(r9), "r9", },
|
---|
3326 | /* [kIemNativeGstReg_GprFirst + X86_GREG_x10] = */ { CPUMCTX_OFF_AND_SIZE(r10), "r10", },
|
---|
3327 | /* [kIemNativeGstReg_GprFirst + X86_GREG_x11] = */ { CPUMCTX_OFF_AND_SIZE(r11), "r11", },
|
---|
3328 | /* [kIemNativeGstReg_GprFirst + X86_GREG_x12] = */ { CPUMCTX_OFF_AND_SIZE(r12), "r12", },
|
---|
3329 | /* [kIemNativeGstReg_GprFirst + X86_GREG_x13] = */ { CPUMCTX_OFF_AND_SIZE(r13), "r13", },
|
---|
3330 | /* [kIemNativeGstReg_GprFirst + X86_GREG_x14] = */ { CPUMCTX_OFF_AND_SIZE(r14), "r14", },
|
---|
3331 | /* [kIemNativeGstReg_GprFirst + X86_GREG_x15] = */ { CPUMCTX_OFF_AND_SIZE(r15), "r15", },
|
---|
3332 | /* [kIemNativeGstReg_Pc] = */ { CPUMCTX_OFF_AND_SIZE(rip), "rip", },
|
---|
3333 | /* [kIemNativeGstReg_EFlags] = */ { CPUMCTX_OFF_AND_SIZE(eflags), "eflags", },
|
---|
3334 | /* [kIemNativeGstReg_SegSelFirst + 0] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[0].Sel), "es", },
|
---|
3335 | /* [kIemNativeGstReg_SegSelFirst + 1] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[1].Sel), "cs", },
|
---|
3336 | /* [kIemNativeGstReg_SegSelFirst + 2] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[2].Sel), "ss", },
|
---|
3337 | /* [kIemNativeGstReg_SegSelFirst + 3] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[3].Sel), "ds", },
|
---|
3338 | /* [kIemNativeGstReg_SegSelFirst + 4] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[4].Sel), "fs", },
|
---|
3339 | /* [kIemNativeGstReg_SegSelFirst + 5] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[5].Sel), "gs", },
|
---|
3340 | /* [kIemNativeGstReg_SegBaseFirst + 0] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[0].u64Base), "es_base", },
|
---|
3341 | /* [kIemNativeGstReg_SegBaseFirst + 1] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[1].u64Base), "cs_base", },
|
---|
3342 | /* [kIemNativeGstReg_SegBaseFirst + 2] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[2].u64Base), "ss_base", },
|
---|
3343 | /* [kIemNativeGstReg_SegBaseFirst + 3] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[3].u64Base), "ds_base", },
|
---|
3344 | /* [kIemNativeGstReg_SegBaseFirst + 4] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[4].u64Base), "fs_base", },
|
---|
3345 | /* [kIemNativeGstReg_SegBaseFirst + 5] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[5].u64Base), "gs_base", },
|
---|
3346 | /* [kIemNativeGstReg_SegLimitFirst + 0] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[0].u32Limit), "es_limit", },
|
---|
3347 | /* [kIemNativeGstReg_SegLimitFirst + 1] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[1].u32Limit), "cs_limit", },
|
---|
3348 | /* [kIemNativeGstReg_SegLimitFirst + 2] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[2].u32Limit), "ss_limit", },
|
---|
3349 | /* [kIemNativeGstReg_SegLimitFirst + 3] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[3].u32Limit), "ds_limit", },
|
---|
3350 | /* [kIemNativeGstReg_SegLimitFirst + 4] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[4].u32Limit), "fs_limit", },
|
---|
3351 | /* [kIemNativeGstReg_SegLimitFirst + 5] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[5].u32Limit), "gs_limit", },
|
---|
3352 | /* [kIemNativeGstReg_SegAttribFirst + 0] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[0].Attr.u), "es_attrib", },
|
---|
3353 | /* [kIemNativeGstReg_SegAttribFirst + 1] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[1].Attr.u), "cs_attrib", },
|
---|
3354 | /* [kIemNativeGstReg_SegAttribFirst + 2] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[2].Attr.u), "ss_attrib", },
|
---|
3355 | /* [kIemNativeGstReg_SegAttribFirst + 3] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[3].Attr.u), "ds_attrib", },
|
---|
3356 | /* [kIemNativeGstReg_SegAttribFirst + 4] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[4].Attr.u), "fs_attrib", },
|
---|
3357 | /* [kIemNativeGstReg_SegAttribFirst + 5] = */ { CPUMCTX_OFF_AND_SIZE(aSRegs[5].Attr.u), "gs_attrib", },
|
---|
3358 | #undef CPUMCTX_OFF_AND_SIZE
|
---|
3359 | };
|
---|
3360 | AssertCompile(RT_ELEMENTS(g_aGstShadowInfo) == kIemNativeGstReg_End);
|
---|
3361 |
|
---|
3362 |
|
---|
3363 | /** Host CPU general purpose register names. */
|
---|
3364 | DECL_HIDDEN_CONST(const char * const) g_apszIemNativeHstRegNames[] =
|
---|
3365 | {
|
---|
3366 | #ifdef RT_ARCH_AMD64
|
---|
3367 | "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
|
---|
3368 | #elif RT_ARCH_ARM64
|
---|
3369 | "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
|
---|
3370 | "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", "x24", "x25", "x26", "x27", "x28", "bp", "lr", "sp/xzr",
|
---|
3371 | #else
|
---|
3372 | # error "port me"
|
---|
3373 | #endif
|
---|
3374 | };
|
---|
3375 |
|
---|
3376 |
|
---|
3377 | DECL_FORCE_INLINE(uint8_t) iemNativeRegMarkAllocated(PIEMRECOMPILERSTATE pReNative, unsigned idxReg,
|
---|
3378 | IEMNATIVEWHAT enmWhat, uint8_t idxVar = UINT8_MAX) RT_NOEXCEPT
|
---|
3379 | {
|
---|
3380 | pReNative->Core.bmHstRegs |= RT_BIT_32(idxReg);
|
---|
3381 |
|
---|
3382 | pReNative->Core.aHstRegs[idxReg].enmWhat = enmWhat;
|
---|
3383 | pReNative->Core.aHstRegs[idxReg].fGstRegShadows = 0;
|
---|
3384 | pReNative->Core.aHstRegs[idxReg].idxVar = idxVar;
|
---|
3385 | return (uint8_t)idxReg;
|
---|
3386 | }
|
---|
3387 |
|
---|
3388 |
|
---|
3389 | /**
|
---|
3390 | * Tries to locate a suitable register in the given register mask.
|
---|
3391 | *
|
---|
3392 | * This ASSUMES the caller has done the minimal/optimal allocation checks and
|
---|
3393 | * failed.
|
---|
3394 | *
|
---|
3395 | * @returns Host register number on success, returns UINT8_MAX on failure.
|
---|
3396 | */
|
---|
3397 | static uint8_t iemNativeRegTryAllocFree(PIEMRECOMPILERSTATE pReNative, uint32_t fRegMask)
|
---|
3398 | {
|
---|
3399 | Assert(!(fRegMask & ~IEMNATIVE_HST_GREG_MASK));
|
---|
3400 | uint32_t fRegs = ~pReNative->Core.bmHstRegs & fRegMask;
|
---|
3401 | if (fRegs)
|
---|
3402 | {
|
---|
3403 | /** @todo pick better here: */
|
---|
3404 | unsigned const idxReg = ASMBitFirstSetU32(fRegs) - 1;
|
---|
3405 |
|
---|
3406 | Assert(pReNative->Core.aHstRegs[idxReg].fGstRegShadows != 0);
|
---|
3407 | Assert( (pReNative->Core.aHstRegs[idxReg].fGstRegShadows & pReNative->Core.bmGstRegShadows)
|
---|
3408 | == pReNative->Core.aHstRegs[idxReg].fGstRegShadows);
|
---|
3409 | Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxReg));
|
---|
3410 |
|
---|
3411 | pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxReg].fGstRegShadows;
|
---|
3412 | pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxReg);
|
---|
3413 | pReNative->Core.aHstRegs[idxReg].fGstRegShadows = 0;
|
---|
3414 | return idxReg;
|
---|
3415 | }
|
---|
3416 | return UINT8_MAX;
|
---|
3417 | }
|
---|
3418 |
|
---|
3419 |
|
---|
3420 | /**
|
---|
3421 | * Locate a register, possibly freeing one up.
|
---|
3422 | *
|
---|
3423 | * This ASSUMES the caller has done the minimal/optimal allocation checks and
|
---|
3424 | * failed.
|
---|
3425 | *
|
---|
3426 | * @returns Host register number on success. Returns UINT8_MAX if no registers
|
---|
3427 | * found, the caller is supposed to deal with this and raise a
|
---|
3428 | * allocation type specific status code (if desired).
|
---|
3429 | *
|
---|
3430 | * @throws VBox status code if we're run into trouble spilling a variable of
|
---|
3431 | * recording debug info. Does NOT throw anything if we're out of
|
---|
3432 | * registers, though.
|
---|
3433 | */
|
---|
3434 | static uint8_t iemNativeRegAllocFindFree(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile,
|
---|
3435 | uint32_t fRegMask = IEMNATIVE_HST_GREG_MASK & ~IEMNATIVE_REG_FIXED_MASK)
|
---|
3436 | {
|
---|
3437 | Assert(!(fRegMask & ~IEMNATIVE_HST_GREG_MASK));
|
---|
3438 | Assert(!(fRegMask & IEMNATIVE_REG_FIXED_MASK));
|
---|
3439 |
|
---|
3440 | /*
|
---|
3441 | * Try a freed register that's shadowing a guest register
|
---|
3442 | */
|
---|
3443 | uint32_t fRegs = ~pReNative->Core.bmHstRegs & fRegMask;
|
---|
3444 | if (fRegs)
|
---|
3445 | {
|
---|
3446 | unsigned const idxReg = (fPreferVolatile
|
---|
3447 | ? ASMBitFirstSetU32(fRegs)
|
---|
3448 | : ASMBitLastSetU32( fRegs & ~IEMNATIVE_CALL_VOLATILE_GREG_MASK
|
---|
3449 | ? fRegs & ~IEMNATIVE_CALL_VOLATILE_GREG_MASK: fRegs))
|
---|
3450 | - 1;
|
---|
3451 |
|
---|
3452 | Assert(pReNative->Core.aHstRegs[idxReg].fGstRegShadows != 0);
|
---|
3453 | Assert( (pReNative->Core.aHstRegs[idxReg].fGstRegShadows & pReNative->Core.bmGstRegShadows)
|
---|
3454 | == pReNative->Core.aHstRegs[idxReg].fGstRegShadows);
|
---|
3455 | Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxReg));
|
---|
3456 |
|
---|
3457 | pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxReg);
|
---|
3458 | pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxReg].fGstRegShadows;
|
---|
3459 | pReNative->Core.aHstRegs[idxReg].fGstRegShadows = 0;
|
---|
3460 | return idxReg;
|
---|
3461 | }
|
---|
3462 |
|
---|
3463 | /*
|
---|
3464 | * Try free up a variable that's in a register.
|
---|
3465 | *
|
---|
3466 | * We do two rounds here, first evacuating variables we don't need to be
|
---|
3467 | * saved on the stack, then in the second round move things to the stack.
|
---|
3468 | */
|
---|
3469 | for (uint32_t iLoop = 0; iLoop < 2; iLoop++)
|
---|
3470 | {
|
---|
3471 | uint32_t fVars = pReNative->Core.bmVars;
|
---|
3472 | while (fVars)
|
---|
3473 | {
|
---|
3474 | uint32_t const idxVar = ASMBitFirstSetU32(fVars) - 1;
|
---|
3475 | uint8_t const idxReg = pReNative->Core.aVars[idxVar].idxReg;
|
---|
3476 | if ( idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs)
|
---|
3477 | && (RT_BIT_32(idxReg) & fRegMask)
|
---|
3478 | && ( iLoop == 0
|
---|
3479 | ? pReNative->Core.aVars[idxVar].enmKind != kIemNativeVarKind_Stack
|
---|
3480 | : pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Stack)
|
---|
3481 | && !pReNative->Core.aVars[idxVar].fRegAcquired)
|
---|
3482 | {
|
---|
3483 | Assert(pReNative->Core.bmHstRegs & RT_BIT_32(idxReg));
|
---|
3484 | Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxReg].fGstRegShadows)
|
---|
3485 | == pReNative->Core.aHstRegs[idxReg].fGstRegShadows);
|
---|
3486 | Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
|
---|
3487 | Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxReg))
|
---|
3488 | == RT_BOOL(pReNative->Core.aHstRegs[idxReg].fGstRegShadows));
|
---|
3489 |
|
---|
3490 | if (pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Stack)
|
---|
3491 | {
|
---|
3492 | uint8_t const idxStackSlot = iemNativeVarGetStackSlot(pReNative, idxVar);
|
---|
3493 | *poff = iemNativeEmitStoreGprByBp(pReNative, *poff, iemNativeStackCalcBpDisp(idxStackSlot), idxReg);
|
---|
3494 | }
|
---|
3495 |
|
---|
3496 | pReNative->Core.aVars[idxVar].idxReg = UINT8_MAX;
|
---|
3497 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(idxReg);
|
---|
3498 |
|
---|
3499 | pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxReg);
|
---|
3500 | pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxReg].fGstRegShadows;
|
---|
3501 | pReNative->Core.aHstRegs[idxReg].fGstRegShadows = 0;
|
---|
3502 | return idxReg;
|
---|
3503 | }
|
---|
3504 | fVars &= ~RT_BIT_32(idxVar);
|
---|
3505 | }
|
---|
3506 | }
|
---|
3507 |
|
---|
3508 | return UINT8_MAX;
|
---|
3509 | }
|
---|
3510 |
|
---|
3511 |
|
---|
3512 | /**
|
---|
3513 | * Reassigns a variable to a different register specified by the caller.
|
---|
3514 | *
|
---|
3515 | * @returns The new code buffer position.
|
---|
3516 | * @param pReNative The native recompile state.
|
---|
3517 | * @param off The current code buffer position.
|
---|
3518 | * @param idxVar The variable index.
|
---|
3519 | * @param idxRegOld The old host register number.
|
---|
3520 | * @param idxRegNew The new host register number.
|
---|
3521 | * @param pszCaller The caller for logging.
|
---|
3522 | */
|
---|
3523 | static uint32_t iemNativeRegMoveVar(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVar,
|
---|
3524 | uint8_t idxRegOld, uint8_t idxRegNew, const char *pszCaller)
|
---|
3525 | {
|
---|
3526 | Assert(pReNative->Core.aVars[idxVar].idxReg == idxRegOld);
|
---|
3527 | RT_NOREF(pszCaller);
|
---|
3528 |
|
---|
3529 | iemNativeRegClearGstRegShadowing(pReNative, idxRegNew, off);
|
---|
3530 |
|
---|
3531 | uint64_t fGstRegShadows = pReNative->Core.aHstRegs[idxRegOld].fGstRegShadows;
|
---|
3532 | Log12(("%s: moving idxVar=%d from %s to %s (fGstRegShadows=%RX64)\n",
|
---|
3533 | pszCaller, idxVar, g_apszIemNativeHstRegNames[idxRegOld], g_apszIemNativeHstRegNames[idxRegNew], fGstRegShadows));
|
---|
3534 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, idxRegNew, idxRegOld);
|
---|
3535 |
|
---|
3536 | pReNative->Core.aHstRegs[idxRegNew].fGstRegShadows = fGstRegShadows;
|
---|
3537 | pReNative->Core.aHstRegs[idxRegNew].enmWhat = kIemNativeWhat_Var;
|
---|
3538 | pReNative->Core.aHstRegs[idxRegNew].idxVar = idxVar;
|
---|
3539 | if (fGstRegShadows)
|
---|
3540 | {
|
---|
3541 | pReNative->Core.bmHstRegsWithGstShadow = (pReNative->Core.bmHstRegsWithGstShadow & ~RT_BIT_32(idxRegOld))
|
---|
3542 | | RT_BIT_32(idxRegNew);
|
---|
3543 | while (fGstRegShadows)
|
---|
3544 | {
|
---|
3545 | unsigned const idxGstReg = ASMBitFirstSetU64(fGstRegShadows) - 1;
|
---|
3546 | fGstRegShadows &= ~RT_BIT_64(idxGstReg);
|
---|
3547 |
|
---|
3548 | Assert(pReNative->Core.aidxGstRegShadows[idxGstReg] == idxRegOld);
|
---|
3549 | pReNative->Core.aidxGstRegShadows[idxGstReg] = idxRegNew;
|
---|
3550 | }
|
---|
3551 | }
|
---|
3552 |
|
---|
3553 | pReNative->Core.aVars[idxVar].idxReg = (uint8_t)idxRegNew;
|
---|
3554 | pReNative->Core.aHstRegs[idxRegOld].fGstRegShadows = 0;
|
---|
3555 | pReNative->Core.bmHstRegs = RT_BIT_32(idxRegNew) | (pReNative->Core.bmHstRegs & ~RT_BIT_32(idxRegOld));
|
---|
3556 | return off;
|
---|
3557 | }
|
---|
3558 |
|
---|
3559 |
|
---|
3560 | /**
|
---|
3561 | * Moves a variable to a different register or spills it onto the stack.
|
---|
3562 | *
|
---|
3563 | * This must be a stack variable (kIemNativeVarKind_Stack) because the other
|
---|
3564 | * kinds can easily be recreated if needed later.
|
---|
3565 | *
|
---|
3566 | * @returns The new code buffer position.
|
---|
3567 | * @param pReNative The native recompile state.
|
---|
3568 | * @param off The current code buffer position.
|
---|
3569 | * @param idxVar The variable index.
|
---|
3570 | * @param fForbiddenRegs Mask of the forbidden registers. Defaults to
|
---|
3571 | * call-volatile registers.
|
---|
3572 | */
|
---|
3573 | static uint32_t iemNativeRegMoveOrSpillStackVar(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVar,
|
---|
3574 | uint32_t fForbiddenRegs = IEMNATIVE_CALL_VOLATILE_GREG_MASK)
|
---|
3575 | {
|
---|
3576 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
|
---|
3577 | Assert(pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Stack);
|
---|
3578 | Assert(!pReNative->Core.aVars[idxVar].fRegAcquired);
|
---|
3579 |
|
---|
3580 | uint8_t const idxRegOld = pReNative->Core.aVars[idxVar].idxReg;
|
---|
3581 | Assert(idxRegOld < RT_ELEMENTS(pReNative->Core.aHstRegs));
|
---|
3582 | Assert(pReNative->Core.bmHstRegs & RT_BIT_32(idxRegOld));
|
---|
3583 | Assert(pReNative->Core.aHstRegs[idxRegOld].enmWhat == kIemNativeWhat_Var);
|
---|
3584 | Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegOld].fGstRegShadows)
|
---|
3585 | == pReNative->Core.aHstRegs[idxRegOld].fGstRegShadows);
|
---|
3586 | Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
|
---|
3587 | Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxRegOld))
|
---|
3588 | == RT_BOOL(pReNative->Core.aHstRegs[idxRegOld].fGstRegShadows));
|
---|
3589 |
|
---|
3590 |
|
---|
3591 | /** @todo Add statistics on this.*/
|
---|
3592 | /** @todo Implement basic variable liveness analysis (python) so variables
|
---|
3593 | * can be freed immediately once no longer used. This has the potential to
|
---|
3594 | * be trashing registers and stack for dead variables. */
|
---|
3595 |
|
---|
3596 | /*
|
---|
3597 | * First try move it to a different register, as that's cheaper.
|
---|
3598 | */
|
---|
3599 | fForbiddenRegs |= RT_BIT_32(idxRegOld);
|
---|
3600 | fForbiddenRegs |= IEMNATIVE_REG_FIXED_MASK;
|
---|
3601 | uint32_t fRegs = ~pReNative->Core.bmHstRegs & ~fForbiddenRegs;
|
---|
3602 | if (fRegs)
|
---|
3603 | {
|
---|
3604 | /* Avoid using shadow registers, if possible. */
|
---|
3605 | if (fRegs & ~pReNative->Core.bmHstRegsWithGstShadow)
|
---|
3606 | fRegs &= ~pReNative->Core.bmHstRegsWithGstShadow;
|
---|
3607 | unsigned const idxRegNew = ASMBitFirstSetU32(fRegs) - 1;
|
---|
3608 | return iemNativeRegMoveVar(pReNative, off, idxVar, idxRegOld, idxRegNew, "iemNativeRegMoveOrSpillStackVar");
|
---|
3609 | }
|
---|
3610 |
|
---|
3611 | /*
|
---|
3612 | * Otherwise we must spill the register onto the stack.
|
---|
3613 | */
|
---|
3614 | uint8_t const idxStackSlot = iemNativeVarGetStackSlot(pReNative, idxVar);
|
---|
3615 | Log12(("iemNativeRegMoveOrSpillStackVar: spilling idxVar=%d/idxReg=%d onto the stack (slot %#x bp+%d, off=%#x)\n",
|
---|
3616 | idxVar, idxRegOld, idxStackSlot, iemNativeStackCalcBpDisp(idxStackSlot), off));
|
---|
3617 | off = iemNativeEmitStoreGprByBp(pReNative, off, iemNativeStackCalcBpDisp(idxStackSlot), idxRegOld);
|
---|
3618 |
|
---|
3619 | pReNative->Core.aVars[idxVar].idxReg = UINT8_MAX;
|
---|
3620 | pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxRegOld);
|
---|
3621 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(idxRegOld);
|
---|
3622 | pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxRegOld].fGstRegShadows;
|
---|
3623 | pReNative->Core.aHstRegs[idxRegOld].fGstRegShadows = 0;
|
---|
3624 | return off;
|
---|
3625 | }
|
---|
3626 |
|
---|
3627 |
|
---|
3628 | /**
|
---|
3629 | * Allocates a temporary host general purpose register.
|
---|
3630 | *
|
---|
3631 | * This may emit code to save register content onto the stack in order to free
|
---|
3632 | * up a register.
|
---|
3633 | *
|
---|
3634 | * @returns The host register number; throws VBox status code on failure,
|
---|
3635 | * so no need to check the return value.
|
---|
3636 | * @param pReNative The native recompile state.
|
---|
3637 | * @param poff Pointer to the variable with the code buffer position.
|
---|
3638 | * This will be update if we need to move a variable from
|
---|
3639 | * register to stack in order to satisfy the request.
|
---|
3640 | * @param fPreferVolatile Whether to prefer volatile over non-volatile
|
---|
3641 | * registers (@c true, default) or the other way around
|
---|
3642 | * (@c false, for iemNativeRegAllocTmpForGuestReg()).
|
---|
3643 | */
|
---|
3644 | DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile /*= true*/)
|
---|
3645 | {
|
---|
3646 | /*
|
---|
3647 | * Try find a completely unused register, preferably a call-volatile one.
|
---|
3648 | */
|
---|
3649 | uint8_t idxReg;
|
---|
3650 | uint32_t fRegs = ~pReNative->Core.bmHstRegs
|
---|
3651 | & ~pReNative->Core.bmHstRegsWithGstShadow
|
---|
3652 | & (~IEMNATIVE_REG_FIXED_MASK & IEMNATIVE_HST_GREG_MASK);
|
---|
3653 | if (fRegs)
|
---|
3654 | {
|
---|
3655 | if (fPreferVolatile)
|
---|
3656 | idxReg = (uint8_t)ASMBitFirstSetU32( fRegs & IEMNATIVE_CALL_VOLATILE_GREG_MASK
|
---|
3657 | ? fRegs & IEMNATIVE_CALL_VOLATILE_GREG_MASK : fRegs) - 1;
|
---|
3658 | else
|
---|
3659 | idxReg = (uint8_t)ASMBitFirstSetU32( fRegs & ~IEMNATIVE_CALL_VOLATILE_GREG_MASK
|
---|
3660 | ? fRegs & ~IEMNATIVE_CALL_VOLATILE_GREG_MASK : fRegs) - 1;
|
---|
3661 | Assert(pReNative->Core.aHstRegs[idxReg].fGstRegShadows == 0);
|
---|
3662 | Assert(!(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxReg)));
|
---|
3663 | }
|
---|
3664 | else
|
---|
3665 | {
|
---|
3666 | idxReg = iemNativeRegAllocFindFree(pReNative, poff, fPreferVolatile);
|
---|
3667 | AssertStmt(idxReg != UINT8_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_ALLOCATOR_NO_FREE_TMP));
|
---|
3668 | }
|
---|
3669 | return iemNativeRegMarkAllocated(pReNative, idxReg, kIemNativeWhat_Tmp);
|
---|
3670 | }
|
---|
3671 |
|
---|
3672 |
|
---|
3673 | /**
|
---|
3674 | * Alternative version of iemNativeRegAllocTmp that takes mask with acceptable
|
---|
3675 | * registers.
|
---|
3676 | *
|
---|
3677 | * @returns The host register number; throws VBox status code on failure,
|
---|
3678 | * so no need to check the return value.
|
---|
3679 | * @param pReNative The native recompile state.
|
---|
3680 | * @param poff Pointer to the variable with the code buffer position.
|
---|
3681 | * This will be update if we need to move a variable from
|
---|
3682 | * register to stack in order to satisfy the request.
|
---|
3683 | * @param fRegMask Mask of acceptable registers.
|
---|
3684 | * @param fPreferVolatile Whether to prefer volatile over non-volatile
|
---|
3685 | * registers (@c true, default) or the other way around
|
---|
3686 | * (@c false, for iemNativeRegAllocTmpForGuestReg()).
|
---|
3687 | */
|
---|
3688 | DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask,
|
---|
3689 | bool fPreferVolatile /*= true*/)
|
---|
3690 | {
|
---|
3691 | Assert(!(fRegMask & ~IEMNATIVE_HST_GREG_MASK));
|
---|
3692 | Assert(!(fRegMask & IEMNATIVE_REG_FIXED_MASK));
|
---|
3693 |
|
---|
3694 | /*
|
---|
3695 | * Try find a completely unused register, preferably a call-volatile one.
|
---|
3696 | */
|
---|
3697 | uint8_t idxReg;
|
---|
3698 | uint32_t fRegs = ~pReNative->Core.bmHstRegs
|
---|
3699 | & ~pReNative->Core.bmHstRegsWithGstShadow
|
---|
3700 | & (~IEMNATIVE_REG_FIXED_MASK & IEMNATIVE_HST_GREG_MASK)
|
---|
3701 | & fRegMask;
|
---|
3702 | if (fRegs)
|
---|
3703 | {
|
---|
3704 | if (fPreferVolatile)
|
---|
3705 | idxReg = (uint8_t)ASMBitFirstSetU32( fRegs & IEMNATIVE_CALL_VOLATILE_GREG_MASK
|
---|
3706 | ? fRegs & IEMNATIVE_CALL_VOLATILE_GREG_MASK : fRegs) - 1;
|
---|
3707 | else
|
---|
3708 | idxReg = (uint8_t)ASMBitFirstSetU32( fRegs & ~IEMNATIVE_CALL_VOLATILE_GREG_MASK
|
---|
3709 | ? fRegs & ~IEMNATIVE_CALL_VOLATILE_GREG_MASK : fRegs) - 1;
|
---|
3710 | Assert(pReNative->Core.aHstRegs[idxReg].fGstRegShadows == 0);
|
---|
3711 | Assert(!(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxReg)));
|
---|
3712 | }
|
---|
3713 | else
|
---|
3714 | {
|
---|
3715 | idxReg = iemNativeRegAllocFindFree(pReNative, poff, fPreferVolatile, fRegMask);
|
---|
3716 | AssertStmt(idxReg != UINT8_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_ALLOCATOR_NO_FREE_TMP));
|
---|
3717 | }
|
---|
3718 | return iemNativeRegMarkAllocated(pReNative, idxReg, kIemNativeWhat_Tmp);
|
---|
3719 | }
|
---|
3720 |
|
---|
3721 |
|
---|
3722 | /**
|
---|
3723 | * Allocates a temporary register for loading an immediate value into.
|
---|
3724 | *
|
---|
3725 | * This will emit code to load the immediate, unless there happens to be an
|
---|
3726 | * unused register with the value already loaded.
|
---|
3727 | *
|
---|
3728 | * The caller will not modify the returned register, it must be considered
|
---|
3729 | * read-only. Free using iemNativeRegFreeTmpImm.
|
---|
3730 | *
|
---|
3731 | * @returns The host register number; throws VBox status code on failure, so no
|
---|
3732 | * need to check the return value.
|
---|
3733 | * @param pReNative The native recompile state.
|
---|
3734 | * @param poff Pointer to the variable with the code buffer position.
|
---|
3735 | * @param uImm The immediate value that the register must hold upon
|
---|
3736 | * return.
|
---|
3737 | * @param fPreferVolatile Whether to prefer volatile over non-volatile
|
---|
3738 | * registers (@c true, default) or the other way around
|
---|
3739 | * (@c false).
|
---|
3740 | *
|
---|
3741 | * @note Reusing immediate values has not been implemented yet.
|
---|
3742 | */
|
---|
3743 | DECL_HIDDEN_THROW(uint8_t)
|
---|
3744 | iemNativeRegAllocTmpImm(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t uImm, bool fPreferVolatile /*= true*/)
|
---|
3745 | {
|
---|
3746 | uint8_t const idxReg = iemNativeRegAllocTmp(pReNative, poff, fPreferVolatile);
|
---|
3747 | *poff = iemNativeEmitLoadGprImm64(pReNative, *poff, idxReg, uImm);
|
---|
3748 | return idxReg;
|
---|
3749 | }
|
---|
3750 |
|
---|
3751 |
|
---|
3752 | /**
|
---|
3753 | * Marks host register @a idxHstReg as containing a shadow copy of guest
|
---|
3754 | * register @a enmGstReg.
|
---|
3755 | *
|
---|
3756 | * ASSUMES that caller has made sure @a enmGstReg is not associated with any
|
---|
3757 | * host register before calling.
|
---|
3758 | */
|
---|
3759 | DECL_FORCE_INLINE(void)
|
---|
3760 | iemNativeRegMarkAsGstRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off)
|
---|
3761 | {
|
---|
3762 | Assert(!(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg)));
|
---|
3763 | Assert(!pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows);
|
---|
3764 | Assert((unsigned)enmGstReg < (unsigned)kIemNativeGstReg_End);
|
---|
3765 |
|
---|
3766 | pReNative->Core.aidxGstRegShadows[enmGstReg] = idxHstReg;
|
---|
3767 | pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = RT_BIT_64(enmGstReg); /** @todo why? not OR? */
|
---|
3768 | pReNative->Core.bmGstRegShadows |= RT_BIT_64(enmGstReg);
|
---|
3769 | pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxHstReg);
|
---|
3770 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
3771 | iemNativeDbgInfoAddNativeOffset(pReNative, off);
|
---|
3772 | iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxHstReg);
|
---|
3773 | #else
|
---|
3774 | RT_NOREF(off);
|
---|
3775 | #endif
|
---|
3776 | }
|
---|
3777 |
|
---|
3778 |
|
---|
3779 | /**
|
---|
3780 | * Clear any guest register shadow claims from @a idxHstReg.
|
---|
3781 | *
|
---|
3782 | * The register does not need to be shadowing any guest registers.
|
---|
3783 | */
|
---|
3784 | DECL_FORCE_INLINE(void)
|
---|
3785 | iemNativeRegClearGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, uint32_t off)
|
---|
3786 | {
|
---|
3787 | Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
|
---|
3788 | == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows
|
---|
3789 | && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
|
---|
3790 | Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg))
|
---|
3791 | == RT_BOOL(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows));
|
---|
3792 |
|
---|
3793 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
3794 | uint64_t fGstRegs = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
|
---|
3795 | if (fGstRegs)
|
---|
3796 | {
|
---|
3797 | Assert(fGstRegs < RT_BIT_64(kIemNativeGstReg_End));
|
---|
3798 | iemNativeDbgInfoAddNativeOffset(pReNative, off);
|
---|
3799 | while (fGstRegs)
|
---|
3800 | {
|
---|
3801 | unsigned const iGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
|
---|
3802 | fGstRegs &= ~RT_BIT_64(iGstReg);
|
---|
3803 | iemNativeDbgInfoAddGuestRegShadowing(pReNative, (IEMNATIVEGSTREG)iGstReg, UINT8_MAX, idxHstReg);
|
---|
3804 | }
|
---|
3805 | }
|
---|
3806 | #else
|
---|
3807 | RT_NOREF(off);
|
---|
3808 | #endif
|
---|
3809 |
|
---|
3810 | pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
|
---|
3811 | pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
|
---|
3812 | pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = 0;
|
---|
3813 | }
|
---|
3814 |
|
---|
3815 |
|
---|
3816 | /**
|
---|
3817 | * Clear guest register shadow claim regarding @a enmGstReg from @a idxHstReg
|
---|
3818 | * and global overview flags.
|
---|
3819 | */
|
---|
3820 | DECL_FORCE_INLINE(void)
|
---|
3821 | iemNativeRegClearGstRegShadowingOne(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off)
|
---|
3822 | {
|
---|
3823 | Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
|
---|
3824 | Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
|
---|
3825 | == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows
|
---|
3826 | && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
|
---|
3827 | Assert(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg));
|
---|
3828 | Assert(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & RT_BIT_64(enmGstReg));
|
---|
3829 | Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg));
|
---|
3830 |
|
---|
3831 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
3832 | iemNativeDbgInfoAddNativeOffset(pReNative, off);
|
---|
3833 | iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, UINT8_MAX, idxHstReg);
|
---|
3834 | #else
|
---|
3835 | RT_NOREF(off);
|
---|
3836 | #endif
|
---|
3837 |
|
---|
3838 | uint64_t const fGstRegShadowsNew = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & ~RT_BIT_64(enmGstReg);
|
---|
3839 | pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = fGstRegShadowsNew;
|
---|
3840 | if (!fGstRegShadowsNew)
|
---|
3841 | pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
|
---|
3842 | pReNative->Core.bmGstRegShadows &= ~RT_BIT_64(enmGstReg);
|
---|
3843 | }
|
---|
3844 |
|
---|
3845 |
|
---|
3846 | /**
|
---|
3847 | * Clear any guest register shadow claim for @a enmGstReg.
|
---|
3848 | */
|
---|
3849 | DECL_FORCE_INLINE(void)
|
---|
3850 | iemNativeRegClearGstRegShadowingByGstReg(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg, uint32_t off)
|
---|
3851 | {
|
---|
3852 | Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
|
---|
3853 | if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
|
---|
3854 | {
|
---|
3855 | Assert(pReNative->Core.aidxGstRegShadows[enmGstReg] < RT_ELEMENTS(pReNative->Core.aHstRegs));
|
---|
3856 | iemNativeRegClearGstRegShadowingOne(pReNative, pReNative->Core.aidxGstRegShadows[enmGstReg], enmGstReg, off);
|
---|
3857 | }
|
---|
3858 | }
|
---|
3859 |
|
---|
3860 |
|
---|
3861 | /**
|
---|
3862 | * Clear any guest register shadow claim for @a enmGstReg and mark @a idxHstRegNew
|
---|
3863 | * as the new shadow of it.
|
---|
3864 | */
|
---|
3865 | DECL_FORCE_INLINE(void)
|
---|
3866 | iemNativeRegClearAndMarkAsGstRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstRegNew,
|
---|
3867 | IEMNATIVEGSTREG enmGstReg, uint32_t off)
|
---|
3868 | {
|
---|
3869 | Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
|
---|
3870 | if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
|
---|
3871 | {
|
---|
3872 | Assert(pReNative->Core.aidxGstRegShadows[enmGstReg] < RT_ELEMENTS(pReNative->Core.aHstRegs));
|
---|
3873 | if (pReNative->Core.aidxGstRegShadows[enmGstReg] == idxHstRegNew)
|
---|
3874 | return;
|
---|
3875 | iemNativeRegClearGstRegShadowingOne(pReNative, pReNative->Core.aidxGstRegShadows[enmGstReg], enmGstReg, off);
|
---|
3876 | }
|
---|
3877 | iemNativeRegMarkAsGstRegShadow(pReNative, idxHstRegNew, enmGstReg, off);
|
---|
3878 | }
|
---|
3879 |
|
---|
3880 |
|
---|
3881 | /**
|
---|
3882 | * Transfers the guest register shadow claims of @a enmGstReg from @a idxRegFrom
|
---|
3883 | * to @a idxRegTo.
|
---|
3884 | */
|
---|
3885 | DECL_FORCE_INLINE(void)
|
---|
3886 | iemNativeRegTransferGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxRegFrom, uint8_t idxRegTo,
|
---|
3887 | IEMNATIVEGSTREG enmGstReg, uint32_t off)
|
---|
3888 | {
|
---|
3889 | Assert(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & RT_BIT_64(enmGstReg));
|
---|
3890 | Assert(pReNative->Core.aidxGstRegShadows[enmGstReg] == idxRegFrom);
|
---|
3891 | Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows)
|
---|
3892 | == pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows
|
---|
3893 | && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
|
---|
3894 | Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows)
|
---|
3895 | == pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows);
|
---|
3896 | Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxRegFrom))
|
---|
3897 | == RT_BOOL(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows));
|
---|
3898 |
|
---|
3899 | uint64_t const fGstRegShadowsFrom = pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & ~RT_BIT_64(enmGstReg);
|
---|
3900 | pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows = fGstRegShadowsFrom;
|
---|
3901 | if (!fGstRegShadowsFrom)
|
---|
3902 | pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxRegFrom);
|
---|
3903 | pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxRegTo);
|
---|
3904 | pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows |= RT_BIT_64(enmGstReg);
|
---|
3905 | pReNative->Core.aidxGstRegShadows[enmGstReg] = idxRegTo;
|
---|
3906 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
3907 | iemNativeDbgInfoAddNativeOffset(pReNative, off);
|
---|
3908 | iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxRegTo, idxRegFrom);
|
---|
3909 | #else
|
---|
3910 | RT_NOREF(off);
|
---|
3911 | #endif
|
---|
3912 | }
|
---|
3913 |
|
---|
3914 |
|
---|
3915 | /**
|
---|
3916 | * Allocates a temporary host general purpose register for keeping a guest
|
---|
3917 | * register value.
|
---|
3918 | *
|
---|
3919 | * Since we may already have a register holding the guest register value,
|
---|
3920 | * code will be emitted to do the loading if that's not the case. Code may also
|
---|
3921 | * be emitted if we have to free up a register to satify the request.
|
---|
3922 | *
|
---|
3923 | * @returns The host register number; throws VBox status code on failure, so no
|
---|
3924 | * need to check the return value.
|
---|
3925 | * @param pReNative The native recompile state.
|
---|
3926 | * @param poff Pointer to the variable with the code buffer
|
---|
3927 | * position. This will be update if we need to move a
|
---|
3928 | * variable from register to stack in order to satisfy
|
---|
3929 | * the request.
|
---|
3930 | * @param enmGstReg The guest register that will is to be updated.
|
---|
3931 | * @param enmIntendedUse How the caller will be using the host register.
|
---|
3932 | * @param fNoVolatileRegs Set if no volatile register allowed, clear if any
|
---|
3933 | * register is okay (default). The ASSUMPTION here is
|
---|
3934 | * that the caller has already flushed all volatile
|
---|
3935 | * registers, so this is only applied if we allocate a
|
---|
3936 | * new register.
|
---|
3937 | * @sa iemNativeRegAllocTmpForGuestRegIfAlreadyPresent
|
---|
3938 | */
|
---|
3939 | DECL_HIDDEN_THROW(uint8_t)
|
---|
3940 | iemNativeRegAllocTmpForGuestReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg,
|
---|
3941 | IEMNATIVEGSTREGUSE enmIntendedUse /*= kIemNativeGstRegUse_ReadOnly*/,
|
---|
3942 | bool fNoVolatileRegs /*= false*/)
|
---|
3943 | {
|
---|
3944 | Assert(enmGstReg < kIemNativeGstReg_End && g_aGstShadowInfo[enmGstReg].cb != 0);
|
---|
3945 | #if defined(LOG_ENABLED) || defined(VBOX_STRICT)
|
---|
3946 | static const char * const s_pszIntendedUse[] = { "fetch", "update", "full write", "destructive calc" };
|
---|
3947 | #endif
|
---|
3948 | uint32_t const fRegMask = !fNoVolatileRegs
|
---|
3949 | ? IEMNATIVE_HST_GREG_MASK & ~IEMNATIVE_REG_FIXED_MASK
|
---|
3950 | : IEMNATIVE_HST_GREG_MASK & ~IEMNATIVE_REG_FIXED_MASK & ~IEMNATIVE_CALL_VOLATILE_GREG_MASK;
|
---|
3951 |
|
---|
3952 | /*
|
---|
3953 | * First check if the guest register value is already in a host register.
|
---|
3954 | */
|
---|
3955 | if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
|
---|
3956 | {
|
---|
3957 | uint8_t idxReg = pReNative->Core.aidxGstRegShadows[enmGstReg];
|
---|
3958 | Assert(idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs));
|
---|
3959 | Assert(pReNative->Core.aHstRegs[idxReg].fGstRegShadows & RT_BIT_64(enmGstReg));
|
---|
3960 | Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxReg));
|
---|
3961 |
|
---|
3962 | /* It's not supposed to be allocated... */
|
---|
3963 | if (!(pReNative->Core.bmHstRegs & RT_BIT_32(idxReg)))
|
---|
3964 | {
|
---|
3965 | /*
|
---|
3966 | * If the register will trash the guest shadow copy, try find a
|
---|
3967 | * completely unused register we can use instead. If that fails,
|
---|
3968 | * we need to disassociate the host reg from the guest reg.
|
---|
3969 | */
|
---|
3970 | /** @todo would be nice to know if preserving the register is in any way helpful. */
|
---|
3971 | /* If the purpose is calculations, try duplicate the register value as
|
---|
3972 | we'll be clobbering the shadow. */
|
---|
3973 | if ( enmIntendedUse == kIemNativeGstRegUse_Calculation
|
---|
3974 | && ( ~pReNative->Core.bmHstRegs
|
---|
3975 | & ~pReNative->Core.bmHstRegsWithGstShadow
|
---|
3976 | & (~IEMNATIVE_REG_FIXED_MASK & IEMNATIVE_HST_GREG_MASK)))
|
---|
3977 | {
|
---|
3978 | uint8_t const idxRegNew = iemNativeRegAllocTmpEx(pReNative, poff, fRegMask);
|
---|
3979 |
|
---|
3980 | *poff = iemNativeEmitLoadGprFromGpr(pReNative, *poff, idxRegNew, idxReg);
|
---|
3981 |
|
---|
3982 | Log12(("iemNativeRegAllocTmpForGuestReg: Duplicated %s for guest %s into %s for destructive calc\n",
|
---|
3983 | g_apszIemNativeHstRegNames[idxReg], g_aGstShadowInfo[enmGstReg].pszName,
|
---|
3984 | g_apszIemNativeHstRegNames[idxRegNew]));
|
---|
3985 | idxReg = idxRegNew;
|
---|
3986 | }
|
---|
3987 | /* If the current register matches the restrictions, go ahead and allocate
|
---|
3988 | it for the caller. */
|
---|
3989 | else if (fRegMask & RT_BIT_32(idxReg))
|
---|
3990 | {
|
---|
3991 | pReNative->Core.bmHstRegs |= RT_BIT_32(idxReg);
|
---|
3992 | pReNative->Core.aHstRegs[idxReg].enmWhat = kIemNativeWhat_Tmp;
|
---|
3993 | pReNative->Core.aHstRegs[idxReg].idxVar = UINT8_MAX;
|
---|
3994 | if (enmIntendedUse != kIemNativeGstRegUse_Calculation)
|
---|
3995 | Log12(("iemNativeRegAllocTmpForGuestReg: Reusing %s for guest %s %s\n",
|
---|
3996 | g_apszIemNativeHstRegNames[idxReg], g_aGstShadowInfo[enmGstReg].pszName, s_pszIntendedUse[enmIntendedUse]));
|
---|
3997 | else
|
---|
3998 | {
|
---|
3999 | iemNativeRegClearGstRegShadowing(pReNative, idxReg, *poff);
|
---|
4000 | Log12(("iemNativeRegAllocTmpForGuestReg: Grabbing %s for guest %s - destructive calc\n",
|
---|
4001 | g_apszIemNativeHstRegNames[idxReg], g_aGstShadowInfo[enmGstReg].pszName));
|
---|
4002 | }
|
---|
4003 | }
|
---|
4004 | /* Otherwise, allocate a register that satisfies the caller and transfer
|
---|
4005 | the shadowing if compatible with the intended use. (This basically
|
---|
4006 | means the call wants a non-volatile register (RSP push/pop scenario).) */
|
---|
4007 | else
|
---|
4008 | {
|
---|
4009 | Assert(fNoVolatileRegs);
|
---|
4010 | uint8_t const idxRegNew = iemNativeRegAllocTmpEx(pReNative, poff, fRegMask,
|
---|
4011 | !fNoVolatileRegs
|
---|
4012 | && enmIntendedUse == kIemNativeGstRegUse_Calculation);
|
---|
4013 | *poff = iemNativeEmitLoadGprFromGpr(pReNative, *poff, idxRegNew, idxReg);
|
---|
4014 | if (enmIntendedUse != kIemNativeGstRegUse_Calculation)
|
---|
4015 | {
|
---|
4016 | iemNativeRegTransferGstRegShadowing(pReNative, idxReg, idxRegNew, enmGstReg, *poff);
|
---|
4017 | Log12(("iemNativeRegAllocTmpForGuestReg: Transfering %s to %s for guest %s %s\n",
|
---|
4018 | g_apszIemNativeHstRegNames[idxReg], g_apszIemNativeHstRegNames[idxRegNew],
|
---|
4019 | g_aGstShadowInfo[enmGstReg].pszName, s_pszIntendedUse[enmIntendedUse]));
|
---|
4020 | }
|
---|
4021 | else
|
---|
4022 | Log12(("iemNativeRegAllocTmpForGuestReg: Duplicated %s for guest %s into %s for destructive calc\n",
|
---|
4023 | g_apszIemNativeHstRegNames[idxReg], g_aGstShadowInfo[enmGstReg].pszName,
|
---|
4024 | g_apszIemNativeHstRegNames[idxRegNew]));
|
---|
4025 | idxReg = idxRegNew;
|
---|
4026 | }
|
---|
4027 | }
|
---|
4028 | else
|
---|
4029 | {
|
---|
4030 | /*
|
---|
4031 | * Oops. Shadowed guest register already allocated!
|
---|
4032 | *
|
---|
4033 | * Allocate a new register, copy the value and, if updating, the
|
---|
4034 | * guest shadow copy assignment to the new register.
|
---|
4035 | */
|
---|
4036 | AssertMsg( enmIntendedUse != kIemNativeGstRegUse_ForUpdate
|
---|
4037 | && enmIntendedUse != kIemNativeGstRegUse_ForFullWrite,
|
---|
4038 | ("This shouldn't happen: idxReg=%d enmGstReg=%d enmIntendedUse=%s\n",
|
---|
4039 | idxReg, enmGstReg, s_pszIntendedUse[enmIntendedUse]));
|
---|
4040 |
|
---|
4041 | /** @todo share register for readonly access. */
|
---|
4042 | uint8_t const idxRegNew = iemNativeRegAllocTmpEx(pReNative, poff, fRegMask,
|
---|
4043 | enmIntendedUse == kIemNativeGstRegUse_Calculation);
|
---|
4044 |
|
---|
4045 | if (enmIntendedUse != kIemNativeGstRegUse_ForFullWrite)
|
---|
4046 | *poff = iemNativeEmitLoadGprFromGpr(pReNative, *poff, idxRegNew, idxReg);
|
---|
4047 |
|
---|
4048 | if ( enmIntendedUse != kIemNativeGstRegUse_ForUpdate
|
---|
4049 | && enmIntendedUse != kIemNativeGstRegUse_ForFullWrite)
|
---|
4050 | Log12(("iemNativeRegAllocTmpForGuestReg: Duplicated %s for guest %s into %s for %s\n",
|
---|
4051 | g_apszIemNativeHstRegNames[idxReg], g_aGstShadowInfo[enmGstReg].pszName,
|
---|
4052 | g_apszIemNativeHstRegNames[idxRegNew], s_pszIntendedUse[enmIntendedUse]));
|
---|
4053 | else
|
---|
4054 | {
|
---|
4055 | iemNativeRegTransferGstRegShadowing(pReNative, idxReg, idxRegNew, enmGstReg, *poff);
|
---|
4056 | Log12(("iemNativeRegAllocTmpForGuestReg: Moved %s for guest %s into %s for %s\n",
|
---|
4057 | g_apszIemNativeHstRegNames[idxReg], g_aGstShadowInfo[enmGstReg].pszName,
|
---|
4058 | g_apszIemNativeHstRegNames[idxRegNew], s_pszIntendedUse[enmIntendedUse]));
|
---|
4059 | }
|
---|
4060 | idxReg = idxRegNew;
|
---|
4061 | }
|
---|
4062 | Assert(RT_BIT_32(idxReg) & fRegMask); /* See assumption in fNoVolatileRegs docs. */
|
---|
4063 |
|
---|
4064 | #ifdef VBOX_STRICT
|
---|
4065 | /* Strict builds: Check that the value is correct. */
|
---|
4066 | *poff = iemNativeEmitGuestRegValueCheck(pReNative, *poff, idxReg, enmGstReg);
|
---|
4067 | #endif
|
---|
4068 |
|
---|
4069 | return idxReg;
|
---|
4070 | }
|
---|
4071 |
|
---|
4072 | /*
|
---|
4073 | * Allocate a new register, load it with the guest value and designate it as a copy of the
|
---|
4074 | */
|
---|
4075 | uint8_t const idxRegNew = iemNativeRegAllocTmpEx(pReNative, poff, fRegMask, enmIntendedUse == kIemNativeGstRegUse_Calculation);
|
---|
4076 |
|
---|
4077 | if (enmIntendedUse != kIemNativeGstRegUse_ForFullWrite)
|
---|
4078 | *poff = iemNativeEmitLoadGprWithGstShadowReg(pReNative, *poff, idxRegNew, enmGstReg);
|
---|
4079 |
|
---|
4080 | if (enmIntendedUse != kIemNativeGstRegUse_Calculation)
|
---|
4081 | iemNativeRegMarkAsGstRegShadow(pReNative, idxRegNew, enmGstReg, *poff);
|
---|
4082 | Log12(("iemNativeRegAllocTmpForGuestReg: Allocated %s for guest %s %s\n",
|
---|
4083 | g_apszIemNativeHstRegNames[idxRegNew], g_aGstShadowInfo[enmGstReg].pszName, s_pszIntendedUse[enmIntendedUse]));
|
---|
4084 |
|
---|
4085 | return idxRegNew;
|
---|
4086 | }
|
---|
4087 |
|
---|
4088 |
|
---|
4089 | /**
|
---|
4090 | * Allocates a temporary host general purpose register that already holds the
|
---|
4091 | * given guest register value.
|
---|
4092 | *
|
---|
4093 | * The use case for this function is places where the shadowing state cannot be
|
---|
4094 | * modified due to branching and such. This will fail if the we don't have a
|
---|
4095 | * current shadow copy handy or if it's incompatible. The only code that will
|
---|
4096 | * be emitted here is value checking code in strict builds.
|
---|
4097 | *
|
---|
4098 | * The intended use can only be readonly!
|
---|
4099 | *
|
---|
4100 | * @returns The host register number, UINT8_MAX if not present.
|
---|
4101 | * @param pReNative The native recompile state.
|
---|
4102 | * @param poff Pointer to the instruction buffer offset.
|
---|
4103 | * Will be updated in strict builds if a register is
|
---|
4104 | * found.
|
---|
4105 | * @param enmGstReg The guest register that will is to be updated.
|
---|
4106 | * @note In strict builds, this may throw instruction buffer growth failures.
|
---|
4107 | * Non-strict builds will not throw anything.
|
---|
4108 | * @sa iemNativeRegAllocTmpForGuestReg
|
---|
4109 | */
|
---|
4110 | DECL_HIDDEN_THROW(uint8_t)
|
---|
4111 | iemNativeRegAllocTmpForGuestRegIfAlreadyPresent(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg)
|
---|
4112 | {
|
---|
4113 | Assert(enmGstReg < kIemNativeGstReg_End && g_aGstShadowInfo[enmGstReg].cb != 0);
|
---|
4114 |
|
---|
4115 | /*
|
---|
4116 | * First check if the guest register value is already in a host register.
|
---|
4117 | */
|
---|
4118 | if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
|
---|
4119 | {
|
---|
4120 | uint8_t idxReg = pReNative->Core.aidxGstRegShadows[enmGstReg];
|
---|
4121 | Assert(idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs));
|
---|
4122 | Assert(pReNative->Core.aHstRegs[idxReg].fGstRegShadows & RT_BIT_64(enmGstReg));
|
---|
4123 | Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxReg));
|
---|
4124 |
|
---|
4125 | if (!(pReNative->Core.bmHstRegs & RT_BIT_32(idxReg)))
|
---|
4126 | {
|
---|
4127 | /*
|
---|
4128 | * We only do readonly use here, so easy compared to the other
|
---|
4129 | * variant of this code.
|
---|
4130 | */
|
---|
4131 | pReNative->Core.bmHstRegs |= RT_BIT_32(idxReg);
|
---|
4132 | pReNative->Core.aHstRegs[idxReg].enmWhat = kIemNativeWhat_Tmp;
|
---|
4133 | pReNative->Core.aHstRegs[idxReg].idxVar = UINT8_MAX;
|
---|
4134 | Log12(("iemNativeRegAllocTmpForGuestRegIfAlreadyPresent: Reusing %s for guest %s readonly\n",
|
---|
4135 | g_apszIemNativeHstRegNames[idxReg], g_aGstShadowInfo[enmGstReg].pszName));
|
---|
4136 |
|
---|
4137 | #ifdef VBOX_STRICT
|
---|
4138 | /* Strict builds: Check that the value is correct. */
|
---|
4139 | *poff = iemNativeEmitGuestRegValueCheck(pReNative, *poff, idxReg, enmGstReg);
|
---|
4140 | #else
|
---|
4141 | RT_NOREF(poff);
|
---|
4142 | #endif
|
---|
4143 | return idxReg;
|
---|
4144 | }
|
---|
4145 | }
|
---|
4146 |
|
---|
4147 | return UINT8_MAX;
|
---|
4148 | }
|
---|
4149 |
|
---|
4150 |
|
---|
4151 | DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocVar(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint8_t idxVar);
|
---|
4152 |
|
---|
4153 |
|
---|
4154 | /**
|
---|
4155 | * Allocates argument registers for a function call.
|
---|
4156 | *
|
---|
4157 | * @returns New code buffer offset on success; throws VBox status code on failure, so no
|
---|
4158 | * need to check the return value.
|
---|
4159 | * @param pReNative The native recompile state.
|
---|
4160 | * @param off The current code buffer offset.
|
---|
4161 | * @param cArgs The number of arguments the function call takes.
|
---|
4162 | */
|
---|
4163 | DECL_HIDDEN_THROW(uint32_t) iemNativeRegAllocArgs(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs)
|
---|
4164 | {
|
---|
4165 | AssertStmt(cArgs <= IEMNATIVE_CALL_ARG_GREG_COUNT + IEMNATIVE_FRAME_STACK_ARG_COUNT,
|
---|
4166 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_IPE_4));
|
---|
4167 | Assert(RT_ELEMENTS(g_aidxIemNativeCallRegs) == IEMNATIVE_CALL_ARG_GREG_COUNT);
|
---|
4168 | Assert(RT_ELEMENTS(g_afIemNativeCallRegs) == IEMNATIVE_CALL_ARG_GREG_COUNT);
|
---|
4169 |
|
---|
4170 | if (cArgs > RT_ELEMENTS(g_aidxIemNativeCallRegs))
|
---|
4171 | cArgs = RT_ELEMENTS(g_aidxIemNativeCallRegs);
|
---|
4172 | else if (cArgs == 0)
|
---|
4173 | return true;
|
---|
4174 |
|
---|
4175 | /*
|
---|
4176 | * Do we get luck and all register are free and not shadowing anything?
|
---|
4177 | */
|
---|
4178 | if (((pReNative->Core.bmHstRegs | pReNative->Core.bmHstRegsWithGstShadow) & g_afIemNativeCallRegs[cArgs]) == 0)
|
---|
4179 | for (uint32_t i = 0; i < cArgs; i++)
|
---|
4180 | {
|
---|
4181 | uint8_t const idxReg = g_aidxIemNativeCallRegs[i];
|
---|
4182 | pReNative->Core.aHstRegs[idxReg].enmWhat = kIemNativeWhat_Arg;
|
---|
4183 | pReNative->Core.aHstRegs[idxReg].idxVar = UINT8_MAX;
|
---|
4184 | Assert(pReNative->Core.aHstRegs[idxReg].fGstRegShadows == 0);
|
---|
4185 | }
|
---|
4186 | /*
|
---|
4187 | * Okay, not lucky so we have to free up the registers.
|
---|
4188 | */
|
---|
4189 | else
|
---|
4190 | for (uint32_t i = 0; i < cArgs; i++)
|
---|
4191 | {
|
---|
4192 | uint8_t const idxReg = g_aidxIemNativeCallRegs[i];
|
---|
4193 | if (pReNative->Core.bmHstRegs & RT_BIT_32(idxReg))
|
---|
4194 | {
|
---|
4195 | switch (pReNative->Core.aHstRegs[idxReg].enmWhat)
|
---|
4196 | {
|
---|
4197 | case kIemNativeWhat_Var:
|
---|
4198 | {
|
---|
4199 | uint8_t const idxVar = pReNative->Core.aHstRegs[idxReg].idxVar;
|
---|
4200 | AssertStmt(idxVar < RT_ELEMENTS(pReNative->Core.aVars),
|
---|
4201 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_IPE_5));
|
---|
4202 | Assert(pReNative->Core.aVars[idxVar].idxReg == idxReg);
|
---|
4203 | Assert(pReNative->Core.bmVars & RT_BIT_32(idxVar));
|
---|
4204 |
|
---|
4205 | if (pReNative->Core.aVars[idxVar].enmKind != kIemNativeVarKind_Stack)
|
---|
4206 | pReNative->Core.aVars[idxVar].idxReg = UINT8_MAX;
|
---|
4207 | else
|
---|
4208 | {
|
---|
4209 | off = iemNativeRegMoveOrSpillStackVar(pReNative, off, idxVar);
|
---|
4210 | Assert(!(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxReg)));
|
---|
4211 | }
|
---|
4212 | break;
|
---|
4213 | }
|
---|
4214 |
|
---|
4215 | case kIemNativeWhat_Tmp:
|
---|
4216 | case kIemNativeWhat_Arg:
|
---|
4217 | case kIemNativeWhat_rc:
|
---|
4218 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_IPE_5));
|
---|
4219 | default:
|
---|
4220 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_IPE_6));
|
---|
4221 | }
|
---|
4222 |
|
---|
4223 | }
|
---|
4224 | if (pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxReg))
|
---|
4225 | {
|
---|
4226 | Assert(pReNative->Core.aHstRegs[idxReg].fGstRegShadows != 0);
|
---|
4227 | Assert( (pReNative->Core.aHstRegs[idxReg].fGstRegShadows & pReNative->Core.bmGstRegShadows)
|
---|
4228 | == pReNative->Core.aHstRegs[idxReg].fGstRegShadows);
|
---|
4229 | pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxReg);
|
---|
4230 | pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxReg].fGstRegShadows;
|
---|
4231 | pReNative->Core.aHstRegs[idxReg].fGstRegShadows = 0;
|
---|
4232 | }
|
---|
4233 | else
|
---|
4234 | Assert(pReNative->Core.aHstRegs[idxReg].fGstRegShadows == 0);
|
---|
4235 | pReNative->Core.aHstRegs[idxReg].enmWhat = kIemNativeWhat_Arg;
|
---|
4236 | pReNative->Core.aHstRegs[idxReg].idxVar = UINT8_MAX;
|
---|
4237 | }
|
---|
4238 | pReNative->Core.bmHstRegs |= g_afIemNativeCallRegs[cArgs];
|
---|
4239 | return true;
|
---|
4240 | }
|
---|
4241 |
|
---|
4242 |
|
---|
4243 | DECL_HIDDEN_THROW(uint8_t) iemNativeRegAssignRc(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg);
|
---|
4244 |
|
---|
4245 |
|
---|
4246 | #if 0
|
---|
4247 | /**
|
---|
4248 | * Frees a register assignment of any type.
|
---|
4249 | *
|
---|
4250 | * @param pReNative The native recompile state.
|
---|
4251 | * @param idxHstReg The register to free.
|
---|
4252 | *
|
---|
4253 | * @note Does not update variables.
|
---|
4254 | */
|
---|
4255 | DECLHIDDEN(void) iemNativeRegFree(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT
|
---|
4256 | {
|
---|
4257 | Assert(idxHstReg < RT_ELEMENTS(pReNative->Core.aHstRegs));
|
---|
4258 | Assert(pReNative->Core.bmHstRegs & RT_BIT_32(idxHstReg));
|
---|
4259 | Assert(!(IEMNATIVE_REG_FIXED_MASK & RT_BIT_32(idxHstReg)));
|
---|
4260 | Assert( pReNative->Core.aHstRegs[idxHstReg].enmWhat == kIemNativeWhat_Var
|
---|
4261 | || pReNative->Core.aHstRegs[idxHstReg].enmWhat == kIemNativeWhat_Tmp
|
---|
4262 | || pReNative->Core.aHstRegs[idxHstReg].enmWhat == kIemNativeWhat_Arg
|
---|
4263 | || pReNative->Core.aHstRegs[idxHstReg].enmWhat == kIemNativeWhat_rc);
|
---|
4264 | Assert( pReNative->Core.aHstRegs[idxHstReg].enmWhat != kIemNativeWhat_Var
|
---|
4265 | || pReNative->Core.aVars[pReNative->Core.aHstRegs[idxHstReg].idxVar].idxReg == UINT8_MAX
|
---|
4266 | || (pReNative->Core.bmVars & RT_BIT_32(pReNative->Core.aHstRegs[idxHstReg].idxVar)));
|
---|
4267 | Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
|
---|
4268 | == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows);
|
---|
4269 | Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg))
|
---|
4270 | == RT_BOOL(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows));
|
---|
4271 |
|
---|
4272 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(idxHstReg);
|
---|
4273 | /* no flushing, right:
|
---|
4274 | pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
|
---|
4275 | pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
|
---|
4276 | pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = 0;
|
---|
4277 | */
|
---|
4278 | }
|
---|
4279 | #endif
|
---|
4280 |
|
---|
4281 |
|
---|
4282 | /**
|
---|
4283 | * Frees a temporary register.
|
---|
4284 | *
|
---|
4285 | * Any shadow copies of guest registers assigned to the host register will not
|
---|
4286 | * be flushed by this operation.
|
---|
4287 | */
|
---|
4288 | DECLHIDDEN(void) iemNativeRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT
|
---|
4289 | {
|
---|
4290 | Assert(pReNative->Core.bmHstRegs & RT_BIT_32(idxHstReg));
|
---|
4291 | Assert(pReNative->Core.aHstRegs[idxHstReg].enmWhat == kIemNativeWhat_Tmp);
|
---|
4292 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(idxHstReg);
|
---|
4293 | Log12(("iemNativeRegFreeTmp: %s (gst: %#RX64)\n",
|
---|
4294 | g_apszIemNativeHstRegNames[idxHstReg], pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows));
|
---|
4295 | }
|
---|
4296 |
|
---|
4297 |
|
---|
4298 | /**
|
---|
4299 | * Frees a temporary immediate register.
|
---|
4300 | *
|
---|
4301 | * It is assumed that the call has not modified the register, so it still hold
|
---|
4302 | * the same value as when it was allocated via iemNativeRegAllocTmpImm().
|
---|
4303 | */
|
---|
4304 | DECLHIDDEN(void) iemNativeRegFreeTmpImm(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT
|
---|
4305 | {
|
---|
4306 | iemNativeRegFreeTmp(pReNative, idxHstReg);
|
---|
4307 | }
|
---|
4308 |
|
---|
4309 |
|
---|
4310 | /**
|
---|
4311 | * Frees a register assigned to a variable.
|
---|
4312 | *
|
---|
4313 | * The register will be disassociated from the variable.
|
---|
4314 | */
|
---|
4315 | DECLHIDDEN(void) iemNativeRegFreeVar(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, bool fFlushShadows) RT_NOEXCEPT
|
---|
4316 | {
|
---|
4317 | Assert(pReNative->Core.bmHstRegs & RT_BIT_32(idxHstReg));
|
---|
4318 | Assert(pReNative->Core.aHstRegs[idxHstReg].enmWhat == kIemNativeWhat_Var);
|
---|
4319 | uint8_t const idxVar = pReNative->Core.aHstRegs[idxHstReg].idxVar;
|
---|
4320 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
|
---|
4321 | Assert(pReNative->Core.aVars[idxVar].idxReg == idxHstReg);
|
---|
4322 |
|
---|
4323 | pReNative->Core.aVars[idxVar].idxReg = UINT8_MAX;
|
---|
4324 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(idxHstReg);
|
---|
4325 | if (!fFlushShadows)
|
---|
4326 | Log12(("iemNativeRegFreeVar: %s (gst: %#RX64) idxVar=%d\n",
|
---|
4327 | g_apszIemNativeHstRegNames[idxHstReg], pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows, idxVar));
|
---|
4328 | else
|
---|
4329 | {
|
---|
4330 | pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
|
---|
4331 | uint64_t const fGstRegShadowsOld = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
|
---|
4332 | pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = 0;
|
---|
4333 | pReNative->Core.bmGstRegShadows &= ~fGstRegShadowsOld;
|
---|
4334 | uint64_t fGstRegShadows = fGstRegShadowsOld;
|
---|
4335 | while (fGstRegShadows)
|
---|
4336 | {
|
---|
4337 | unsigned const idxGstReg = ASMBitFirstSetU64(fGstRegShadows) - 1;
|
---|
4338 | fGstRegShadows &= ~RT_BIT_64(idxGstReg);
|
---|
4339 |
|
---|
4340 | Assert(pReNative->Core.aidxGstRegShadows[idxGstReg] == idxHstReg);
|
---|
4341 | pReNative->Core.aidxGstRegShadows[idxGstReg] = UINT8_MAX;
|
---|
4342 | }
|
---|
4343 | Log12(("iemNativeRegFreeVar: %s (gst: %#RX64 -> 0) idxVar=%d\n",
|
---|
4344 | g_apszIemNativeHstRegNames[idxHstReg], fGstRegShadowsOld, idxVar));
|
---|
4345 | }
|
---|
4346 | }
|
---|
4347 |
|
---|
4348 |
|
---|
4349 | /**
|
---|
4350 | * Called right before emitting a call instruction to move anything important
|
---|
4351 | * out of call-volatile registers, free and flush the call-volatile registers,
|
---|
4352 | * optionally freeing argument variables.
|
---|
4353 | *
|
---|
4354 | * @returns New code buffer offset, UINT32_MAX on failure.
|
---|
4355 | * @param pReNative The native recompile state.
|
---|
4356 | * @param off The code buffer offset.
|
---|
4357 | * @param cArgs The number of arguments the function call takes.
|
---|
4358 | * It is presumed that the host register part of these have
|
---|
4359 | * been allocated as such already and won't need moving,
|
---|
4360 | * just freeing.
|
---|
4361 | * @param fKeepVars Mask of variables that should keep their register
|
---|
4362 | * assignments. Caller must take care to handle these.
|
---|
4363 | */
|
---|
4364 | DECL_HIDDEN_THROW(uint32_t)
|
---|
4365 | iemNativeRegMoveAndFreeAndFlushAtCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs, uint32_t fKeepVars /*= 0*/)
|
---|
4366 | {
|
---|
4367 | Assert(cArgs <= IEMNATIVE_CALL_MAX_ARG_COUNT);
|
---|
4368 |
|
---|
4369 | /* fKeepVars will reduce this mask. */
|
---|
4370 | uint32_t fRegsToFree = IEMNATIVE_CALL_VOLATILE_GREG_MASK;
|
---|
4371 |
|
---|
4372 | /*
|
---|
4373 | * Move anything important out of volatile registers.
|
---|
4374 | */
|
---|
4375 | if (cArgs > RT_ELEMENTS(g_aidxIemNativeCallRegs))
|
---|
4376 | cArgs = RT_ELEMENTS(g_aidxIemNativeCallRegs);
|
---|
4377 | uint32_t fRegsToMove = IEMNATIVE_CALL_VOLATILE_GREG_MASK
|
---|
4378 | #ifdef IEMNATIVE_REG_FIXED_TMP0
|
---|
4379 | & ~RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0)
|
---|
4380 | #endif
|
---|
4381 | & ~g_afIemNativeCallRegs[cArgs];
|
---|
4382 |
|
---|
4383 | fRegsToMove &= pReNative->Core.bmHstRegs;
|
---|
4384 | if (!fRegsToMove)
|
---|
4385 | { /* likely */ }
|
---|
4386 | else
|
---|
4387 | {
|
---|
4388 | Log12(("iemNativeRegMoveAndFreeAndFlushAtCall: fRegsToMove=%#x\n", fRegsToMove));
|
---|
4389 | while (fRegsToMove != 0)
|
---|
4390 | {
|
---|
4391 | unsigned const idxReg = ASMBitFirstSetU32(fRegsToMove) - 1;
|
---|
4392 | fRegsToMove &= ~RT_BIT_32(idxReg);
|
---|
4393 |
|
---|
4394 | switch (pReNative->Core.aHstRegs[idxReg].enmWhat)
|
---|
4395 | {
|
---|
4396 | case kIemNativeWhat_Var:
|
---|
4397 | {
|
---|
4398 | uint8_t const idxVar = pReNative->Core.aHstRegs[idxReg].idxVar;
|
---|
4399 | Assert(idxVar < RT_ELEMENTS(pReNative->Core.aVars));
|
---|
4400 | Assert(pReNative->Core.bmVars & RT_BIT_32(idxVar));
|
---|
4401 | Assert(pReNative->Core.aVars[idxVar].idxReg == idxReg);
|
---|
4402 | if (!(RT_BIT_32(idxVar) & fKeepVars))
|
---|
4403 | {
|
---|
4404 | Log12(("iemNativeRegMoveAndFreeAndFlushAtCall: idxVar=%d enmKind=%d idxReg=%d\n",
|
---|
4405 | idxVar, pReNative->Core.aVars[idxVar].enmKind, pReNative->Core.aVars[idxVar].idxReg));
|
---|
4406 | if (pReNative->Core.aVars[idxVar].enmKind != kIemNativeVarKind_Stack)
|
---|
4407 | pReNative->Core.aVars[idxVar].idxReg = UINT8_MAX;
|
---|
4408 | else
|
---|
4409 | off = iemNativeRegMoveOrSpillStackVar(pReNative, off, idxVar);
|
---|
4410 | }
|
---|
4411 | else
|
---|
4412 | fRegsToFree &= ~RT_BIT_32(idxReg);
|
---|
4413 | continue;
|
---|
4414 | }
|
---|
4415 |
|
---|
4416 | case kIemNativeWhat_Arg:
|
---|
4417 | AssertMsgFailed(("What?!?: %u\n", idxReg));
|
---|
4418 | continue;
|
---|
4419 |
|
---|
4420 | case kIemNativeWhat_rc:
|
---|
4421 | case kIemNativeWhat_Tmp:
|
---|
4422 | AssertMsgFailed(("Missing free: %u\n", idxReg));
|
---|
4423 | continue;
|
---|
4424 |
|
---|
4425 | case kIemNativeWhat_FixedTmp:
|
---|
4426 | case kIemNativeWhat_pVCpuFixed:
|
---|
4427 | case kIemNativeWhat_pCtxFixed:
|
---|
4428 | case kIemNativeWhat_FixedReserved:
|
---|
4429 | case kIemNativeWhat_Invalid:
|
---|
4430 | case kIemNativeWhat_End:
|
---|
4431 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_IPE_1));
|
---|
4432 | }
|
---|
4433 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_IPE_2));
|
---|
4434 | }
|
---|
4435 | }
|
---|
4436 |
|
---|
4437 | /*
|
---|
4438 | * Do the actual freeing.
|
---|
4439 | */
|
---|
4440 | if (pReNative->Core.bmHstRegs & fRegsToFree)
|
---|
4441 | Log12(("iemNativeRegMoveAndFreeAndFlushAtCall: bmHstRegs %#x -> %#x\n",
|
---|
4442 | pReNative->Core.bmHstRegs, pReNative->Core.bmHstRegs & ~fRegsToFree));
|
---|
4443 | pReNative->Core.bmHstRegs &= ~fRegsToFree;
|
---|
4444 |
|
---|
4445 | /* If there are guest register shadows in any call-volatile register, we
|
---|
4446 | have to clear the corrsponding guest register masks for each register. */
|
---|
4447 | uint32_t fHstRegsWithGstShadow = pReNative->Core.bmHstRegsWithGstShadow & fRegsToFree;
|
---|
4448 | if (fHstRegsWithGstShadow)
|
---|
4449 | {
|
---|
4450 | Log12(("iemNativeRegMoveAndFreeAndFlushAtCall: bmHstRegsWithGstShadow %#RX32 -> %#RX32; removed %#RX32\n",
|
---|
4451 | pReNative->Core.bmHstRegsWithGstShadow, pReNative->Core.bmHstRegsWithGstShadow & ~IEMNATIVE_CALL_VOLATILE_GREG_MASK, fHstRegsWithGstShadow));
|
---|
4452 | pReNative->Core.bmHstRegsWithGstShadow &= ~fHstRegsWithGstShadow;
|
---|
4453 | do
|
---|
4454 | {
|
---|
4455 | unsigned const idxReg = ASMBitFirstSetU32(fHstRegsWithGstShadow) - 1;
|
---|
4456 | fHstRegsWithGstShadow &= ~RT_BIT_32(idxReg);
|
---|
4457 |
|
---|
4458 | AssertMsg(pReNative->Core.aHstRegs[idxReg].fGstRegShadows != 0, ("idxReg=%#x\n", idxReg));
|
---|
4459 | pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxReg].fGstRegShadows;
|
---|
4460 | pReNative->Core.aHstRegs[idxReg].fGstRegShadows = 0;
|
---|
4461 | } while (fHstRegsWithGstShadow != 0);
|
---|
4462 | }
|
---|
4463 |
|
---|
4464 | return off;
|
---|
4465 | }
|
---|
4466 |
|
---|
4467 |
|
---|
4468 | /**
|
---|
4469 | * Flushes a set of guest register shadow copies.
|
---|
4470 | *
|
---|
4471 | * This is usually done after calling a threaded function or a C-implementation
|
---|
4472 | * of an instruction.
|
---|
4473 | *
|
---|
4474 | * @param pReNative The native recompile state.
|
---|
4475 | * @param fGstRegs Set of guest registers to flush.
|
---|
4476 | */
|
---|
4477 | DECLHIDDEN(void) iemNativeRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstRegs) RT_NOEXCEPT
|
---|
4478 | {
|
---|
4479 | /*
|
---|
4480 | * Reduce the mask by what's currently shadowed
|
---|
4481 | */
|
---|
4482 | uint64_t const bmGstRegShadowsOld = pReNative->Core.bmGstRegShadows;
|
---|
4483 | fGstRegs &= bmGstRegShadowsOld;
|
---|
4484 | if (fGstRegs)
|
---|
4485 | {
|
---|
4486 | uint64_t const bmGstRegShadowsNew = bmGstRegShadowsOld & ~fGstRegs;
|
---|
4487 | Log12(("iemNativeRegFlushGuestShadows: flushing %#RX64 (%#RX64 -> %#RX64)\n", fGstRegs, bmGstRegShadowsOld, bmGstRegShadowsNew));
|
---|
4488 | pReNative->Core.bmGstRegShadows = bmGstRegShadowsNew;
|
---|
4489 | if (bmGstRegShadowsNew)
|
---|
4490 | {
|
---|
4491 | /*
|
---|
4492 | * Partial.
|
---|
4493 | */
|
---|
4494 | do
|
---|
4495 | {
|
---|
4496 | unsigned const idxGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
|
---|
4497 | uint8_t const idxHstReg = pReNative->Core.aidxGstRegShadows[idxGstReg];
|
---|
4498 | Assert(idxHstReg < RT_ELEMENTS(pReNative->Core.aidxGstRegShadows));
|
---|
4499 | Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg));
|
---|
4500 | Assert(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & RT_BIT_64(idxGstReg));
|
---|
4501 |
|
---|
4502 | uint64_t const fInThisHstReg = (pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & fGstRegs) | RT_BIT_64(idxGstReg);
|
---|
4503 | fGstRegs &= ~fInThisHstReg;
|
---|
4504 | uint64_t const fGstRegShadowsNew = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & ~fInThisHstReg;
|
---|
4505 | pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = fGstRegShadowsNew;
|
---|
4506 | if (!fGstRegShadowsNew)
|
---|
4507 | pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
|
---|
4508 | } while (fGstRegs != 0);
|
---|
4509 | }
|
---|
4510 | else
|
---|
4511 | {
|
---|
4512 | /*
|
---|
4513 | * Clear all.
|
---|
4514 | */
|
---|
4515 | do
|
---|
4516 | {
|
---|
4517 | unsigned const idxGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
|
---|
4518 | uint8_t const idxHstReg = pReNative->Core.aidxGstRegShadows[idxGstReg];
|
---|
4519 | Assert(idxHstReg < RT_ELEMENTS(pReNative->Core.aidxGstRegShadows));
|
---|
4520 | Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg));
|
---|
4521 | Assert(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & RT_BIT_64(idxGstReg));
|
---|
4522 |
|
---|
4523 | fGstRegs &= ~(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows | RT_BIT_64(idxGstReg));
|
---|
4524 | pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = 0;
|
---|
4525 | } while (fGstRegs != 0);
|
---|
4526 | pReNative->Core.bmHstRegsWithGstShadow = 0;
|
---|
4527 | }
|
---|
4528 | }
|
---|
4529 | }
|
---|
4530 |
|
---|
4531 |
|
---|
4532 | /**
|
---|
4533 | * Flushes guest register shadow copies held by a set of host registers.
|
---|
4534 | *
|
---|
4535 | * This is used with the TLB lookup code for ensuring that we don't carry on
|
---|
4536 | * with any guest shadows in volatile registers, as these will get corrupted by
|
---|
4537 | * a TLB miss.
|
---|
4538 | *
|
---|
4539 | * @param pReNative The native recompile state.
|
---|
4540 | * @param fHstRegs Set of host registers to flush guest shadows for.
|
---|
4541 | */
|
---|
4542 | DECLHIDDEN(void) iemNativeRegFlushGuestShadowsByHostMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegs) RT_NOEXCEPT
|
---|
4543 | {
|
---|
4544 | /*
|
---|
4545 | * Reduce the mask by what's currently shadowed.
|
---|
4546 | */
|
---|
4547 | uint32_t const bmHstRegsWithGstShadowOld = pReNative->Core.bmHstRegsWithGstShadow;
|
---|
4548 | fHstRegs &= bmHstRegsWithGstShadowOld;
|
---|
4549 | if (fHstRegs)
|
---|
4550 | {
|
---|
4551 | uint32_t const bmHstRegsWithGstShadowNew = bmHstRegsWithGstShadowOld & ~fHstRegs;
|
---|
4552 | Log12(("iemNativeRegFlushGuestShadowsByHostMask: flushing %#RX32 (%#RX32 -> %#RX32)\n",
|
---|
4553 | fHstRegs, bmHstRegsWithGstShadowOld, bmHstRegsWithGstShadowNew));
|
---|
4554 | pReNative->Core.bmHstRegsWithGstShadow = bmHstRegsWithGstShadowNew;
|
---|
4555 | if (bmHstRegsWithGstShadowNew)
|
---|
4556 | {
|
---|
4557 | /*
|
---|
4558 | * Partial (likely).
|
---|
4559 | */
|
---|
4560 | uint64_t fGstShadows = 0;
|
---|
4561 | do
|
---|
4562 | {
|
---|
4563 | unsigned const idxHstReg = ASMBitFirstSetU32(fHstRegs) - 1;
|
---|
4564 | Assert(!(pReNative->Core.bmHstRegs & RT_BIT_32(idxHstReg)));
|
---|
4565 | Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
|
---|
4566 | == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows);
|
---|
4567 |
|
---|
4568 | fGstShadows |= pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
|
---|
4569 | pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = 0;
|
---|
4570 | fHstRegs &= ~RT_BIT_32(idxHstReg);
|
---|
4571 | } while (fHstRegs != 0);
|
---|
4572 | pReNative->Core.bmGstRegShadows &= ~fGstShadows;
|
---|
4573 | }
|
---|
4574 | else
|
---|
4575 | {
|
---|
4576 | /*
|
---|
4577 | * Clear all.
|
---|
4578 | */
|
---|
4579 | do
|
---|
4580 | {
|
---|
4581 | unsigned const idxHstReg = ASMBitFirstSetU32(fHstRegs) - 1;
|
---|
4582 | Assert(!(pReNative->Core.bmHstRegs & RT_BIT_32(idxHstReg)));
|
---|
4583 | Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
|
---|
4584 | == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows);
|
---|
4585 |
|
---|
4586 | pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = 0;
|
---|
4587 | fHstRegs &= ~RT_BIT_32(idxHstReg);
|
---|
4588 | } while (fHstRegs != 0);
|
---|
4589 | pReNative->Core.bmGstRegShadows = 0;
|
---|
4590 | }
|
---|
4591 | }
|
---|
4592 | }
|
---|
4593 |
|
---|
4594 |
|
---|
4595 | /**
|
---|
4596 | * Restores guest shadow copies in volatile registers.
|
---|
4597 | *
|
---|
4598 | * This is used after calling a helper function (think TLB miss) to restore the
|
---|
4599 | * register state of volatile registers.
|
---|
4600 | *
|
---|
4601 | * @param pReNative The native recompile state.
|
---|
4602 | * @param off The code buffer offset.
|
---|
4603 | * @param fHstRegsActiveShadows Set of host registers which are allowed to
|
---|
4604 | * be active (allocated) w/o asserting. Hack.
|
---|
4605 | * @see iemNativeVarSaveVolatileRegsPreHlpCall(),
|
---|
4606 | * iemNativeVarRestoreVolatileRegsPostHlpCall()
|
---|
4607 | */
|
---|
4608 | DECL_HIDDEN_THROW(uint32_t)
|
---|
4609 | iemNativeRegRestoreGuestShadowsInVolatileRegs(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fHstRegsActiveShadows)
|
---|
4610 | {
|
---|
4611 | uint32_t fHstRegs = pReNative->Core.bmHstRegsWithGstShadow & IEMNATIVE_CALL_VOLATILE_GREG_MASK;
|
---|
4612 | if (fHstRegs)
|
---|
4613 | {
|
---|
4614 | Log12(("iemNativeRegRestoreGuestShadowsInVolatileRegs: %#RX32\n", fHstRegs));
|
---|
4615 | do
|
---|
4616 | {
|
---|
4617 | unsigned const idxHstReg = ASMBitFirstSetU32(fHstRegs) - 1;
|
---|
4618 |
|
---|
4619 | /* It's not fatal if a register is active holding a variable that
|
---|
4620 | shadowing a guest register, ASSUMING all pending guest register
|
---|
4621 | writes were flushed prior to the helper call. However, we'll be
|
---|
4622 | emitting duplicate restores, so it wasts code space. */
|
---|
4623 | Assert(!(pReNative->Core.bmHstRegs & ~fHstRegsActiveShadows & RT_BIT_32(idxHstReg)));
|
---|
4624 | RT_NOREF(fHstRegsActiveShadows);
|
---|
4625 |
|
---|
4626 | uint64_t const fGstRegShadows = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
|
---|
4627 | Assert((pReNative->Core.bmGstRegShadows & fGstRegShadows) == fGstRegShadows);
|
---|
4628 | AssertStmt(fGstRegShadows != 0 && fGstRegShadows < RT_BIT_64(kIemNativeGstReg_End),
|
---|
4629 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_IPE_12));
|
---|
4630 |
|
---|
4631 | unsigned const idxGstReg = ASMBitFirstSetU64(fGstRegShadows) - 1;
|
---|
4632 | off = iemNativeEmitLoadGprWithGstShadowReg(pReNative, off, idxHstReg, (IEMNATIVEGSTREG)idxGstReg);
|
---|
4633 |
|
---|
4634 | fHstRegs &= ~RT_BIT_32(idxHstReg);
|
---|
4635 | } while (fHstRegs != 0);
|
---|
4636 | }
|
---|
4637 | return off;
|
---|
4638 | }
|
---|
4639 |
|
---|
4640 |
|
---|
4641 | /**
|
---|
4642 | * Flushes delayed write of a specific guest register.
|
---|
4643 | *
|
---|
4644 | * This must be called prior to calling CImpl functions and any helpers that use
|
---|
4645 | * the guest state (like raising exceptions) and such.
|
---|
4646 | *
|
---|
4647 | * This optimization has not yet been implemented. The first target would be
|
---|
4648 | * RIP updates, since these are the most common ones.
|
---|
4649 | */
|
---|
4650 | DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingSpecificWrite(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
4651 | IEMNATIVEGSTREGREF enmClass, uint8_t idxReg)
|
---|
4652 | {
|
---|
4653 | RT_NOREF(pReNative, enmClass, idxReg);
|
---|
4654 | return off;
|
---|
4655 | }
|
---|
4656 |
|
---|
4657 |
|
---|
4658 | /**
|
---|
4659 | * Flushes any delayed guest register writes.
|
---|
4660 | *
|
---|
4661 | * This must be called prior to calling CImpl functions and any helpers that use
|
---|
4662 | * the guest state (like raising exceptions) and such.
|
---|
4663 | *
|
---|
4664 | * This optimization has not yet been implemented. The first target would be
|
---|
4665 | * RIP updates, since these are the most common ones.
|
---|
4666 | */
|
---|
4667 | DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWrites(PIEMRECOMPILERSTATE pReNative, uint32_t off)
|
---|
4668 | {
|
---|
4669 | RT_NOREF(pReNative, off);
|
---|
4670 | return off;
|
---|
4671 | }
|
---|
4672 |
|
---|
4673 |
|
---|
4674 | #ifdef VBOX_STRICT
|
---|
4675 | /**
|
---|
4676 | * Does internal register allocator sanity checks.
|
---|
4677 | */
|
---|
4678 | static void iemNativeRegAssertSanity(PIEMRECOMPILERSTATE pReNative)
|
---|
4679 | {
|
---|
4680 | /*
|
---|
4681 | * Iterate host registers building a guest shadowing set.
|
---|
4682 | */
|
---|
4683 | uint64_t bmGstRegShadows = 0;
|
---|
4684 | uint32_t bmHstRegsWithGstShadow = pReNative->Core.bmHstRegsWithGstShadow;
|
---|
4685 | AssertMsg(!(bmHstRegsWithGstShadow & IEMNATIVE_REG_FIXED_MASK), ("%#RX32\n", bmHstRegsWithGstShadow));
|
---|
4686 | while (bmHstRegsWithGstShadow)
|
---|
4687 | {
|
---|
4688 | unsigned const idxHstReg = ASMBitFirstSetU32(bmHstRegsWithGstShadow) - 1;
|
---|
4689 | Assert(idxHstReg < RT_ELEMENTS(pReNative->Core.aHstRegs));
|
---|
4690 | bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
|
---|
4691 |
|
---|
4692 | uint64_t fThisGstRegShadows = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
|
---|
4693 | AssertMsg(fThisGstRegShadows != 0, ("idxHstReg=%d\n", idxHstReg));
|
---|
4694 | AssertMsg(fThisGstRegShadows < RT_BIT_64(kIemNativeGstReg_End), ("idxHstReg=%d %#RX64\n", idxHstReg, fThisGstRegShadows));
|
---|
4695 | bmGstRegShadows |= fThisGstRegShadows;
|
---|
4696 | while (fThisGstRegShadows)
|
---|
4697 | {
|
---|
4698 | unsigned const idxGstReg = ASMBitFirstSetU64(fThisGstRegShadows) - 1;
|
---|
4699 | fThisGstRegShadows &= ~RT_BIT_64(idxGstReg);
|
---|
4700 | AssertMsg(pReNative->Core.aidxGstRegShadows[idxGstReg] == idxHstReg,
|
---|
4701 | ("idxHstReg=%d aidxGstRegShadows[idxGstReg=%d]=%d\n",
|
---|
4702 | idxHstReg, idxGstReg, pReNative->Core.aidxGstRegShadows[idxGstReg]));
|
---|
4703 | }
|
---|
4704 | }
|
---|
4705 | AssertMsg(bmGstRegShadows == pReNative->Core.bmGstRegShadows,
|
---|
4706 | ("%RX64 vs %RX64; diff %RX64\n", bmGstRegShadows, pReNative->Core.bmGstRegShadows,
|
---|
4707 | bmGstRegShadows ^ pReNative->Core.bmGstRegShadows));
|
---|
4708 |
|
---|
4709 | /*
|
---|
4710 | * Now the other way around, checking the guest to host index array.
|
---|
4711 | */
|
---|
4712 | bmHstRegsWithGstShadow = 0;
|
---|
4713 | bmGstRegShadows = pReNative->Core.bmGstRegShadows;
|
---|
4714 | Assert(bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
|
---|
4715 | while (bmGstRegShadows)
|
---|
4716 | {
|
---|
4717 | unsigned const idxGstReg = ASMBitFirstSetU64(bmGstRegShadows) - 1;
|
---|
4718 | Assert(idxGstReg < RT_ELEMENTS(pReNative->Core.aidxGstRegShadows));
|
---|
4719 | bmGstRegShadows &= ~RT_BIT_64(idxGstReg);
|
---|
4720 |
|
---|
4721 | uint8_t const idxHstReg = pReNative->Core.aidxGstRegShadows[idxGstReg];
|
---|
4722 | AssertMsg(idxHstReg < RT_ELEMENTS(pReNative->Core.aHstRegs), ("aidxGstRegShadows[%d]=%d\n", idxGstReg, idxHstReg));
|
---|
4723 | AssertMsg(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & RT_BIT_64(idxGstReg),
|
---|
4724 | ("idxGstReg=%d idxHstReg=%d fGstRegShadows=%RX64\n",
|
---|
4725 | idxGstReg, idxHstReg, pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows));
|
---|
4726 | bmHstRegsWithGstShadow |= RT_BIT_32(idxHstReg);
|
---|
4727 | }
|
---|
4728 | AssertMsg(bmHstRegsWithGstShadow == pReNative->Core.bmHstRegsWithGstShadow,
|
---|
4729 | ("%RX64 vs %RX64; diff %RX64\n", bmHstRegsWithGstShadow, pReNative->Core.bmHstRegsWithGstShadow,
|
---|
4730 | bmHstRegsWithGstShadow ^ pReNative->Core.bmHstRegsWithGstShadow));
|
---|
4731 | }
|
---|
4732 | #endif
|
---|
4733 |
|
---|
4734 |
|
---|
4735 | /*********************************************************************************************************************************
|
---|
4736 | * Code Emitters (larger snippets) *
|
---|
4737 | *********************************************************************************************************************************/
|
---|
4738 |
|
---|
4739 | /**
|
---|
4740 | * Loads the guest shadow register @a enmGstReg into host reg @a idxHstReg, zero
|
---|
4741 | * extending to 64-bit width.
|
---|
4742 | *
|
---|
4743 | * @returns New code buffer offset on success, UINT32_MAX on failure.
|
---|
4744 | * @param pReNative .
|
---|
4745 | * @param off The current code buffer position.
|
---|
4746 | * @param idxHstReg The host register to load the guest register value into.
|
---|
4747 | * @param enmGstReg The guest register to load.
|
---|
4748 | *
|
---|
4749 | * @note This does not mark @a idxHstReg as having a shadow copy of @a enmGstReg,
|
---|
4750 | * that is something the caller needs to do if applicable.
|
---|
4751 | */
|
---|
4752 | DECL_HIDDEN_THROW(uint32_t)
|
---|
4753 | iemNativeEmitLoadGprWithGstShadowReg(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg)
|
---|
4754 | {
|
---|
4755 | Assert((unsigned)enmGstReg < RT_ELEMENTS(g_aGstShadowInfo));
|
---|
4756 | Assert(g_aGstShadowInfo[enmGstReg].cb != 0);
|
---|
4757 |
|
---|
4758 | switch (g_aGstShadowInfo[enmGstReg].cb)
|
---|
4759 | {
|
---|
4760 | case sizeof(uint64_t):
|
---|
4761 | return iemNativeEmitLoadGprFromVCpuU64(pReNative, off, idxHstReg, g_aGstShadowInfo[enmGstReg].off);
|
---|
4762 | case sizeof(uint32_t):
|
---|
4763 | return iemNativeEmitLoadGprFromVCpuU32(pReNative, off, idxHstReg, g_aGstShadowInfo[enmGstReg].off);
|
---|
4764 | case sizeof(uint16_t):
|
---|
4765 | return iemNativeEmitLoadGprFromVCpuU16(pReNative, off, idxHstReg, g_aGstShadowInfo[enmGstReg].off);
|
---|
4766 | #if 0 /* not present in the table. */
|
---|
4767 | case sizeof(uint8_t):
|
---|
4768 | return iemNativeEmitLoadGprFromVCpuU8(pReNative, off, idxHstReg, g_aGstShadowInfo[enmGstReg].off);
|
---|
4769 | #endif
|
---|
4770 | default:
|
---|
4771 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IPE_NOT_REACHED_DEFAULT_CASE));
|
---|
4772 | }
|
---|
4773 | }
|
---|
4774 |
|
---|
4775 |
|
---|
4776 | #ifdef VBOX_STRICT
|
---|
4777 | /**
|
---|
4778 | * Emitting code that checks that the value of @a idxReg is UINT32_MAX or less.
|
---|
4779 | *
|
---|
4780 | * @note May of course trash IEMNATIVE_REG_FIXED_TMP0.
|
---|
4781 | * Trashes EFLAGS on AMD64.
|
---|
4782 | */
|
---|
4783 | static uint32_t
|
---|
4784 | iemNativeEmitTop32BitsClearCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg)
|
---|
4785 | {
|
---|
4786 | # ifdef RT_ARCH_AMD64
|
---|
4787 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 20);
|
---|
4788 |
|
---|
4789 | /* rol reg64, 32 */
|
---|
4790 | pbCodeBuf[off++] = X86_OP_REX_W | (idxReg < 8 ? 0 : X86_OP_REX_B);
|
---|
4791 | pbCodeBuf[off++] = 0xc1;
|
---|
4792 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, idxReg & 7);
|
---|
4793 | pbCodeBuf[off++] = 32;
|
---|
4794 |
|
---|
4795 | /* test reg32, ffffffffh */
|
---|
4796 | if (idxReg >= 8)
|
---|
4797 | pbCodeBuf[off++] = X86_OP_REX_B;
|
---|
4798 | pbCodeBuf[off++] = 0xf7;
|
---|
4799 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, idxReg & 7);
|
---|
4800 | pbCodeBuf[off++] = 0xff;
|
---|
4801 | pbCodeBuf[off++] = 0xff;
|
---|
4802 | pbCodeBuf[off++] = 0xff;
|
---|
4803 | pbCodeBuf[off++] = 0xff;
|
---|
4804 |
|
---|
4805 | /* je/jz +1 */
|
---|
4806 | pbCodeBuf[off++] = 0x74;
|
---|
4807 | pbCodeBuf[off++] = 0x01;
|
---|
4808 |
|
---|
4809 | /* int3 */
|
---|
4810 | pbCodeBuf[off++] = 0xcc;
|
---|
4811 |
|
---|
4812 | /* rol reg64, 32 */
|
---|
4813 | pbCodeBuf[off++] = X86_OP_REX_W | (idxReg < 8 ? 0 : X86_OP_REX_B);
|
---|
4814 | pbCodeBuf[off++] = 0xc1;
|
---|
4815 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, idxReg & 7);
|
---|
4816 | pbCodeBuf[off++] = 32;
|
---|
4817 |
|
---|
4818 | # elif defined(RT_ARCH_ARM64)
|
---|
4819 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3);
|
---|
4820 | /* lsr tmp0, reg64, #32 */
|
---|
4821 | pu32CodeBuf[off++] = Armv8A64MkInstrLsrImm(IEMNATIVE_REG_FIXED_TMP0, idxReg, 32);
|
---|
4822 | /* cbz tmp0, +1 */
|
---|
4823 | pu32CodeBuf[off++] = Armv8A64MkInstrCbzCbnz(false /*fJmpIfNotZero*/, 2, IEMNATIVE_REG_FIXED_TMP0);
|
---|
4824 | /* brk #0x1100 */
|
---|
4825 | pu32CodeBuf[off++] = Armv8A64MkInstrBrk(UINT32_C(0x1100));
|
---|
4826 |
|
---|
4827 | # else
|
---|
4828 | # error "Port me!"
|
---|
4829 | # endif
|
---|
4830 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
4831 | return off;
|
---|
4832 | }
|
---|
4833 | #endif /* VBOX_STRICT */
|
---|
4834 |
|
---|
4835 |
|
---|
4836 | #ifdef VBOX_STRICT
|
---|
4837 | /**
|
---|
4838 | * Emitting code that checks that the content of register @a idxReg is the same
|
---|
4839 | * as what's in the guest register @a enmGstReg, resulting in a breakpoint
|
---|
4840 | * instruction if that's not the case.
|
---|
4841 | *
|
---|
4842 | * @note May of course trash IEMNATIVE_REG_FIXED_TMP0.
|
---|
4843 | * Trashes EFLAGS on AMD64.
|
---|
4844 | */
|
---|
4845 | static uint32_t
|
---|
4846 | iemNativeEmitGuestRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg, IEMNATIVEGSTREG enmGstReg)
|
---|
4847 | {
|
---|
4848 | # ifdef RT_ARCH_AMD64
|
---|
4849 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 32);
|
---|
4850 |
|
---|
4851 | /* cmp reg, [mem] */
|
---|
4852 | if (g_aGstShadowInfo[enmGstReg].cb == sizeof(uint8_t))
|
---|
4853 | {
|
---|
4854 | if (idxReg >= 8)
|
---|
4855 | pbCodeBuf[off++] = X86_OP_REX_R;
|
---|
4856 | pbCodeBuf[off++] = 0x38;
|
---|
4857 | }
|
---|
4858 | else
|
---|
4859 | {
|
---|
4860 | if (g_aGstShadowInfo[enmGstReg].cb == sizeof(uint64_t))
|
---|
4861 | pbCodeBuf[off++] = X86_OP_REX_W | (idxReg < 8 ? 0 : X86_OP_REX_R);
|
---|
4862 | else
|
---|
4863 | {
|
---|
4864 | if (g_aGstShadowInfo[enmGstReg].cb == sizeof(uint16_t))
|
---|
4865 | pbCodeBuf[off++] = X86_OP_PRF_SIZE_OP;
|
---|
4866 | else
|
---|
4867 | AssertStmt(g_aGstShadowInfo[enmGstReg].cb == sizeof(uint32_t),
|
---|
4868 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_LABEL_IPE_6));
|
---|
4869 | if (idxReg >= 8)
|
---|
4870 | pbCodeBuf[off++] = X86_OP_REX_R;
|
---|
4871 | }
|
---|
4872 | pbCodeBuf[off++] = 0x39;
|
---|
4873 | }
|
---|
4874 | off = iemNativeEmitGprByVCpuDisp(pbCodeBuf, off, idxReg, g_aGstShadowInfo[enmGstReg].off);
|
---|
4875 |
|
---|
4876 | /* je/jz +1 */
|
---|
4877 | pbCodeBuf[off++] = 0x74;
|
---|
4878 | pbCodeBuf[off++] = 0x01;
|
---|
4879 |
|
---|
4880 | /* int3 */
|
---|
4881 | pbCodeBuf[off++] = 0xcc;
|
---|
4882 |
|
---|
4883 | /* For values smaller than the register size, we must check that the rest
|
---|
4884 | of the register is all zeros. */
|
---|
4885 | if (g_aGstShadowInfo[enmGstReg].cb < sizeof(uint32_t))
|
---|
4886 | {
|
---|
4887 | /* test reg64, imm32 */
|
---|
4888 | pbCodeBuf[off++] = X86_OP_REX_W | (idxReg < 8 ? 0 : X86_OP_REX_B);
|
---|
4889 | pbCodeBuf[off++] = 0xf7;
|
---|
4890 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, idxReg & 7);
|
---|
4891 | pbCodeBuf[off++] = 0;
|
---|
4892 | pbCodeBuf[off++] = g_aGstShadowInfo[enmGstReg].cb > sizeof(uint8_t) ? 0 : 0xff;
|
---|
4893 | pbCodeBuf[off++] = 0xff;
|
---|
4894 | pbCodeBuf[off++] = 0xff;
|
---|
4895 |
|
---|
4896 | /* je/jz +1 */
|
---|
4897 | pbCodeBuf[off++] = 0x74;
|
---|
4898 | pbCodeBuf[off++] = 0x01;
|
---|
4899 |
|
---|
4900 | /* int3 */
|
---|
4901 | pbCodeBuf[off++] = 0xcc;
|
---|
4902 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
4903 | }
|
---|
4904 | else
|
---|
4905 | {
|
---|
4906 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
4907 | if (g_aGstShadowInfo[enmGstReg].cb == sizeof(uint32_t))
|
---|
4908 | iemNativeEmitTop32BitsClearCheck(pReNative, off, idxReg);
|
---|
4909 | }
|
---|
4910 |
|
---|
4911 | # elif defined(RT_ARCH_ARM64)
|
---|
4912 | /* mov TMP0, [gstreg] */
|
---|
4913 | off = iemNativeEmitLoadGprWithGstShadowReg(pReNative, off, IEMNATIVE_REG_FIXED_TMP0, enmGstReg);
|
---|
4914 |
|
---|
4915 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3);
|
---|
4916 | /* sub tmp0, tmp0, idxReg */
|
---|
4917 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubReg(true /*fSub*/, IEMNATIVE_REG_FIXED_TMP0, IEMNATIVE_REG_FIXED_TMP0, idxReg);
|
---|
4918 | /* cbz tmp0, +1 */
|
---|
4919 | pu32CodeBuf[off++] = Armv8A64MkInstrCbzCbnz(false /*fJmpIfNotZero*/, 2, IEMNATIVE_REG_FIXED_TMP0);
|
---|
4920 | /* brk #0x1000+enmGstReg */
|
---|
4921 | pu32CodeBuf[off++] = Armv8A64MkInstrBrk((uint32_t)enmGstReg | UINT32_C(0x1000));
|
---|
4922 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
4923 |
|
---|
4924 | # else
|
---|
4925 | # error "Port me!"
|
---|
4926 | # endif
|
---|
4927 | return off;
|
---|
4928 | }
|
---|
4929 | #endif /* VBOX_STRICT */
|
---|
4930 |
|
---|
4931 |
|
---|
4932 | #ifdef VBOX_STRICT
|
---|
4933 | /**
|
---|
4934 | * Emitting code that checks that IEMCPU::fExec matches @a fExec for all
|
---|
4935 | * important bits.
|
---|
4936 | *
|
---|
4937 | * @note May of course trash IEMNATIVE_REG_FIXED_TMP0.
|
---|
4938 | * Trashes EFLAGS on AMD64.
|
---|
4939 | */
|
---|
4940 | static uint32_t
|
---|
4941 | iemNativeEmitExecFlagsCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fExec)
|
---|
4942 | {
|
---|
4943 | uint8_t const idxRegTmp = iemNativeRegAllocTmp(pReNative, &off);
|
---|
4944 | off = iemNativeEmitLoadGprFromVCpuU32(pReNative, off, idxRegTmp, RT_UOFFSETOF(VMCPUCC, iem.s.fExec));
|
---|
4945 | off = iemNativeEmitAndGpr32ByImm(pReNative, off, idxRegTmp, IEMTB_F_IEM_F_MASK & IEMTB_F_KEY_MASK);
|
---|
4946 | off = iemNativeEmitCmpGpr32WithImm(pReNative, off, idxRegTmp, fExec & IEMTB_F_KEY_MASK);
|
---|
4947 |
|
---|
4948 | #ifdef RT_ARCH_AMD64
|
---|
4949 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3);
|
---|
4950 |
|
---|
4951 | /* je/jz +1 */
|
---|
4952 | pbCodeBuf[off++] = 0x74;
|
---|
4953 | pbCodeBuf[off++] = 0x01;
|
---|
4954 |
|
---|
4955 | /* int3 */
|
---|
4956 | pbCodeBuf[off++] = 0xcc;
|
---|
4957 |
|
---|
4958 | # elif defined(RT_ARCH_ARM64)
|
---|
4959 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 2);
|
---|
4960 |
|
---|
4961 | /* b.eq +1 */
|
---|
4962 | pu32CodeBuf[off++] = Armv8A64MkInstrBCond(kArmv8InstrCond_Eq, 2);
|
---|
4963 | /* brk #0x2000 */
|
---|
4964 | pu32CodeBuf[off++] = Armv8A64MkInstrBrk(UINT32_C(0x2000));
|
---|
4965 |
|
---|
4966 | # else
|
---|
4967 | # error "Port me!"
|
---|
4968 | # endif
|
---|
4969 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
4970 |
|
---|
4971 | iemNativeRegFreeTmp(pReNative, idxRegTmp);
|
---|
4972 | return off;
|
---|
4973 | }
|
---|
4974 | #endif /* VBOX_STRICT */
|
---|
4975 |
|
---|
4976 |
|
---|
4977 | /**
|
---|
4978 | * Emits a code for checking the return code of a call and rcPassUp, returning
|
---|
4979 | * from the code if either are non-zero.
|
---|
4980 | */
|
---|
4981 | DECL_HIDDEN_THROW(uint32_t)
|
---|
4982 | iemNativeEmitCheckCallRetAndPassUp(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr)
|
---|
4983 | {
|
---|
4984 | #ifdef RT_ARCH_AMD64
|
---|
4985 | /*
|
---|
4986 | * AMD64: eax = call status code.
|
---|
4987 | */
|
---|
4988 |
|
---|
4989 | /* edx = rcPassUp */
|
---|
4990 | off = iemNativeEmitLoadGprFromVCpuU32(pReNative, off, X86_GREG_xDX, RT_UOFFSETOF(VMCPUCC, iem.s.rcPassUp));
|
---|
4991 | # ifdef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
4992 | off = iemNativeEmitLoadGpr8Imm(pReNative, off, X86_GREG_xCX, idxInstr);
|
---|
4993 | # endif
|
---|
4994 |
|
---|
4995 | /* edx = eax | rcPassUp */
|
---|
4996 | uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 2);
|
---|
4997 | pbCodeBuf[off++] = 0x0b; /* or edx, eax */
|
---|
4998 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, X86_GREG_xDX, X86_GREG_xAX);
|
---|
4999 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
5000 |
|
---|
5001 | /* Jump to non-zero status return path. */
|
---|
5002 | off = iemNativeEmitJnzToNewLabel(pReNative, off, kIemNativeLabelType_NonZeroRetOrPassUp);
|
---|
5003 |
|
---|
5004 | /* done. */
|
---|
5005 |
|
---|
5006 | #elif RT_ARCH_ARM64
|
---|
5007 | /*
|
---|
5008 | * ARM64: w0 = call status code.
|
---|
5009 | */
|
---|
5010 | # ifdef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
5011 | off = iemNativeEmitLoadGprImm64(pReNative, off, ARMV8_A64_REG_X2, idxInstr);
|
---|
5012 | # endif
|
---|
5013 | off = iemNativeEmitLoadGprFromVCpuU32(pReNative, off, ARMV8_A64_REG_X3, RT_UOFFSETOF(VMCPUCC, iem.s.rcPassUp));
|
---|
5014 |
|
---|
5015 | uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3);
|
---|
5016 |
|
---|
5017 | pu32CodeBuf[off++] = Armv8A64MkInstrOrr(ARMV8_A64_REG_X4, ARMV8_A64_REG_X3, ARMV8_A64_REG_X0, false /*f64Bit*/);
|
---|
5018 |
|
---|
5019 | uint32_t const idxLabel = iemNativeLabelCreate(pReNative, kIemNativeLabelType_NonZeroRetOrPassUp);
|
---|
5020 | iemNativeAddFixup(pReNative, off, idxLabel, kIemNativeFixupType_RelImm19At5);
|
---|
5021 | pu32CodeBuf[off++] = Armv8A64MkInstrCbzCbnz(true /*fJmpIfNotZero*/, 0, ARMV8_A64_REG_X4, false /*f64Bit*/);
|
---|
5022 |
|
---|
5023 | #else
|
---|
5024 | # error "port me"
|
---|
5025 | #endif
|
---|
5026 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
5027 | return off;
|
---|
5028 | }
|
---|
5029 |
|
---|
5030 |
|
---|
5031 | /**
|
---|
5032 | * Emits code to check if the content of @a idxAddrReg is a canonical address,
|
---|
5033 | * raising a \#GP(0) if it isn't.
|
---|
5034 | *
|
---|
5035 | * @returns New code buffer offset, UINT32_MAX on failure.
|
---|
5036 | * @param pReNative The native recompile state.
|
---|
5037 | * @param off The code buffer offset.
|
---|
5038 | * @param idxAddrReg The host register with the address to check.
|
---|
5039 | * @param idxInstr The current instruction.
|
---|
5040 | */
|
---|
5041 | DECL_HIDDEN_THROW(uint32_t)
|
---|
5042 | iemNativeEmitCheckGprCanonicalMaybeRaiseGp0(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxAddrReg, uint8_t idxInstr)
|
---|
5043 | {
|
---|
5044 | /*
|
---|
5045 | * Make sure we don't have any outstanding guest register writes as we may
|
---|
5046 | * raise an #GP(0) and all guest register must be up to date in CPUMCTX.
|
---|
5047 | */
|
---|
5048 | off = iemNativeRegFlushPendingWrites(pReNative, off);
|
---|
5049 |
|
---|
5050 | #ifdef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
5051 | off = iemNativeEmitStoreImmToVCpuU8(pReNative, off, idxInstr, RT_UOFFSETOF(VMCPUCC, iem.s.idxTbCurInstr));
|
---|
5052 | #else
|
---|
5053 | RT_NOREF(idxInstr);
|
---|
5054 | #endif
|
---|
5055 |
|
---|
5056 | #ifdef RT_ARCH_AMD64
|
---|
5057 | /*
|
---|
5058 | * if ((((uint32_t)(a_u64Addr >> 32) + UINT32_C(0x8000)) >> 16) != 0)
|
---|
5059 | * return raisexcpt();
|
---|
5060 | * ---- this wariant avoid loading a 64-bit immediate, but is an instruction longer.
|
---|
5061 | */
|
---|
5062 | uint8_t const iTmpReg = iemNativeRegAllocTmp(pReNative, &off);
|
---|
5063 |
|
---|
5064 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, iTmpReg, idxAddrReg);
|
---|
5065 | off = iemNativeEmitShiftGprRight(pReNative, off, iTmpReg, 32);
|
---|
5066 | off = iemNativeEmitAddGpr32Imm(pReNative, off, iTmpReg, (int32_t)0x8000);
|
---|
5067 | off = iemNativeEmitShiftGprRight(pReNative, off, iTmpReg, 16);
|
---|
5068 | off = iemNativeEmitJnzToNewLabel(pReNative, off, kIemNativeLabelType_RaiseGp0);
|
---|
5069 |
|
---|
5070 | iemNativeRegFreeTmp(pReNative, iTmpReg);
|
---|
5071 |
|
---|
5072 | #elif defined(RT_ARCH_ARM64)
|
---|
5073 | /*
|
---|
5074 | * if ((((uint64_t)(a_u64Addr) + UINT64_C(0x800000000000)) >> 48) != 0)
|
---|
5075 | * return raisexcpt();
|
---|
5076 | * ----
|
---|
5077 | * mov x1, 0x800000000000
|
---|
5078 | * add x1, x0, x1
|
---|
5079 | * cmp xzr, x1, lsr 48
|
---|
5080 | * b.ne .Lraisexcpt
|
---|
5081 | */
|
---|
5082 | uint8_t const iTmpReg = iemNativeRegAllocTmp(pReNative, &off);
|
---|
5083 |
|
---|
5084 | off = iemNativeEmitLoadGprImm64(pReNative, off, iTmpReg, UINT64_C(0x800000000000));
|
---|
5085 | off = iemNativeEmitAddTwoGprs(pReNative, off, iTmpReg, idxAddrReg);
|
---|
5086 | off = iemNativeEmitCmpArm64(pReNative, off, ARMV8_A64_REG_XZR, iTmpReg, true /*f64Bit*/, 48 /*cShift*/, kArmv8A64InstrShift_Lsr);
|
---|
5087 | off = iemNativeEmitJnzToNewLabel(pReNative, off, kIemNativeLabelType_RaiseGp0);
|
---|
5088 |
|
---|
5089 | iemNativeRegFreeTmp(pReNative, iTmpReg);
|
---|
5090 |
|
---|
5091 | #else
|
---|
5092 | # error "Port me"
|
---|
5093 | #endif
|
---|
5094 | return off;
|
---|
5095 | }
|
---|
5096 |
|
---|
5097 |
|
---|
5098 | /**
|
---|
5099 | * Emits code to check if the content of @a idxAddrReg is within the limit of
|
---|
5100 | * idxSegReg, raising a \#GP(0) if it isn't.
|
---|
5101 | *
|
---|
5102 | * @returns New code buffer offset; throws VBox status code on error.
|
---|
5103 | * @param pReNative The native recompile state.
|
---|
5104 | * @param off The code buffer offset.
|
---|
5105 | * @param idxAddrReg The host register (32-bit) with the address to
|
---|
5106 | * check.
|
---|
5107 | * @param idxSegReg The segment register (X86_SREG_XXX) to check
|
---|
5108 | * against.
|
---|
5109 | * @param idxInstr The current instruction.
|
---|
5110 | */
|
---|
5111 | DECL_HIDDEN_THROW(uint32_t)
|
---|
5112 | iemNativeEmitCheckGpr32AgainstSegLimitMaybeRaiseGp0(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
5113 | uint8_t idxAddrReg, uint8_t idxSegReg, uint8_t idxInstr)
|
---|
5114 | {
|
---|
5115 | /*
|
---|
5116 | * Make sure we don't have any outstanding guest register writes as we may
|
---|
5117 | * raise an #GP(0) and all guest register must be up to date in CPUMCTX.
|
---|
5118 | */
|
---|
5119 | off = iemNativeRegFlushPendingWrites(pReNative, off);
|
---|
5120 |
|
---|
5121 | #ifdef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
5122 | off = iemNativeEmitStoreImmToVCpuU8(pReNative, off, idxInstr, RT_UOFFSETOF(VMCPUCC, iem.s.idxTbCurInstr));
|
---|
5123 | #else
|
---|
5124 | RT_NOREF(idxInstr);
|
---|
5125 | #endif
|
---|
5126 |
|
---|
5127 | /** @todo implement expand down/whatnot checking */
|
---|
5128 | AssertStmt(idxSegReg == X86_SREG_CS, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_EMIT_CASE_NOT_IMPLEMENTED_1));
|
---|
5129 |
|
---|
5130 | uint8_t const iTmpLimReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off,
|
---|
5131 | (IEMNATIVEGSTREG)(kIemNativeGstReg_SegLimitFirst + idxSegReg),
|
---|
5132 | kIemNativeGstRegUse_ForUpdate);
|
---|
5133 |
|
---|
5134 | off = iemNativeEmitCmpGpr32WithGpr(pReNative, off, idxAddrReg, iTmpLimReg);
|
---|
5135 | off = iemNativeEmitJaToNewLabel(pReNative, off, kIemNativeLabelType_RaiseGp0);
|
---|
5136 |
|
---|
5137 | iemNativeRegFreeTmp(pReNative, iTmpLimReg);
|
---|
5138 | return off;
|
---|
5139 | }
|
---|
5140 |
|
---|
5141 |
|
---|
5142 | /**
|
---|
5143 | * Converts IEM_CIMPL_F_XXX flags into a guest register shadow copy flush mask.
|
---|
5144 | *
|
---|
5145 | * @returns The flush mask.
|
---|
5146 | * @param fCImpl The IEM_CIMPL_F_XXX flags.
|
---|
5147 | * @param fGstShwFlush The starting flush mask.
|
---|
5148 | */
|
---|
5149 | DECL_FORCE_INLINE(uint64_t) iemNativeCImplFlagsToGuestShadowFlushMask(uint32_t fCImpl, uint64_t fGstShwFlush)
|
---|
5150 | {
|
---|
5151 | if (fCImpl & IEM_CIMPL_F_BRANCH_FAR)
|
---|
5152 | fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_CS)
|
---|
5153 | | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_CS)
|
---|
5154 | | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_CS);
|
---|
5155 | if (fCImpl & IEM_CIMPL_F_BRANCH_STACK_FAR)
|
---|
5156 | fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP)
|
---|
5157 | | RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_SS)
|
---|
5158 | | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_SS)
|
---|
5159 | | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_SS);
|
---|
5160 | else if (fCImpl & IEM_CIMPL_F_BRANCH_STACK)
|
---|
5161 | fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP);
|
---|
5162 | if (fCImpl & (IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_STATUS_FLAGS | IEM_CIMPL_F_INHIBIT_SHADOW))
|
---|
5163 | fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_EFlags);
|
---|
5164 | return fGstShwFlush;
|
---|
5165 | }
|
---|
5166 |
|
---|
5167 |
|
---|
5168 | /**
|
---|
5169 | * Emits a call to a CImpl function or something similar.
|
---|
5170 | */
|
---|
5171 | DECL_HIDDEN_THROW(uint32_t)
|
---|
5172 | iemNativeEmitCImplCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr, uint64_t fGstShwFlush, uintptr_t pfnCImpl,
|
---|
5173 | uint8_t cbInstr, uint8_t cAddParams, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
|
---|
5174 | {
|
---|
5175 | /*
|
---|
5176 | * Flush stuff. PC and EFlags are implictly flushed, the latter because we
|
---|
5177 | * don't do with/without flags variants of defer-to-cimpl stuff at the moment.
|
---|
5178 | */
|
---|
5179 | fGstShwFlush = iemNativeCImplFlagsToGuestShadowFlushMask(pReNative->fCImpl,
|
---|
5180 | fGstShwFlush
|
---|
5181 | | RT_BIT_64(kIemNativeGstReg_Pc)
|
---|
5182 | | RT_BIT_64(kIemNativeGstReg_EFlags));
|
---|
5183 | iemNativeRegFlushGuestShadows(pReNative, fGstShwFlush);
|
---|
5184 |
|
---|
5185 | off = iemNativeRegMoveAndFreeAndFlushAtCall(pReNative, off, 4);
|
---|
5186 |
|
---|
5187 | /*
|
---|
5188 | * Load the parameters.
|
---|
5189 | */
|
---|
5190 | #if defined(RT_OS_WINDOWS) && defined(VBOXSTRICTRC_STRICT_ENABLED)
|
---|
5191 | /* Special code the hidden VBOXSTRICTRC pointer. */
|
---|
5192 | off = iemNativeEmitLoadGprFromGpr( pReNative, off, IEMNATIVE_CALL_ARG1_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
5193 | off = iemNativeEmitLoadGprImm64( pReNative, off, IEMNATIVE_CALL_ARG2_GREG, cbInstr); /** @todo 8-bit reg load opt for amd64 */
|
---|
5194 | if (cAddParams > 0)
|
---|
5195 | off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_CALL_ARG3_GREG, uParam0);
|
---|
5196 | if (cAddParams > 1)
|
---|
5197 | off = iemNativeEmitStoreImm64ByBp(pReNative, off, IEMNATIVE_FP_OFF_STACK_ARG0, uParam1);
|
---|
5198 | if (cAddParams > 2)
|
---|
5199 | off = iemNativeEmitStoreImm64ByBp(pReNative, off, IEMNATIVE_FP_OFF_STACK_ARG1, uParam2);
|
---|
5200 | off = iemNativeEmitLeaGprByBp(pReNative, off, X86_GREG_xCX, IEMNATIVE_FP_OFF_IN_SHADOW_ARG0); /* rcStrict */
|
---|
5201 |
|
---|
5202 | #else
|
---|
5203 | AssertCompile(IEMNATIVE_CALL_ARG_GREG_COUNT >= 4);
|
---|
5204 | off = iemNativeEmitLoadGprFromGpr( pReNative, off, IEMNATIVE_CALL_ARG0_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
5205 | off = iemNativeEmitLoadGprImm64( pReNative, off, IEMNATIVE_CALL_ARG1_GREG, cbInstr); /** @todo 8-bit reg load opt for amd64 */
|
---|
5206 | if (cAddParams > 0)
|
---|
5207 | off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_CALL_ARG2_GREG, uParam0);
|
---|
5208 | if (cAddParams > 1)
|
---|
5209 | off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_CALL_ARG3_GREG, uParam1);
|
---|
5210 | if (cAddParams > 2)
|
---|
5211 | # if IEMNATIVE_CALL_ARG_GREG_COUNT >= 5
|
---|
5212 | off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_CALL_ARG4_GREG, uParam2);
|
---|
5213 | # else
|
---|
5214 | off = iemNativeEmitStoreImm64ByBp(pReNative, off, IEMNATIVE_FP_OFF_STACK_ARG0, uParam2);
|
---|
5215 | # endif
|
---|
5216 | #endif
|
---|
5217 |
|
---|
5218 | /*
|
---|
5219 | * Make the call.
|
---|
5220 | */
|
---|
5221 | off = iemNativeEmitCallImm(pReNative, off, pfnCImpl);
|
---|
5222 |
|
---|
5223 | #if defined(RT_ARCH_AMD64) && defined(VBOXSTRICTRC_STRICT_ENABLED) && defined(RT_OS_WINDOWS)
|
---|
5224 | off = iemNativeEmitLoadGprByBpU32(pReNative, off, X86_GREG_xAX, IEMNATIVE_FP_OFF_IN_SHADOW_ARG0); /* rcStrict (see above) */
|
---|
5225 | #endif
|
---|
5226 |
|
---|
5227 | /*
|
---|
5228 | * Check the status code.
|
---|
5229 | */
|
---|
5230 | return iemNativeEmitCheckCallRetAndPassUp(pReNative, off, idxInstr);
|
---|
5231 | }
|
---|
5232 |
|
---|
5233 |
|
---|
5234 | /**
|
---|
5235 | * Emits a call to a threaded worker function.
|
---|
5236 | */
|
---|
5237 | DECL_HIDDEN_THROW(uint32_t)
|
---|
5238 | iemNativeEmitThreadedCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry)
|
---|
5239 | {
|
---|
5240 | iemNativeRegFlushGuestShadows(pReNative, UINT64_MAX); /** @todo optimize this */
|
---|
5241 | off = iemNativeRegMoveAndFreeAndFlushAtCall(pReNative, off, 4);
|
---|
5242 |
|
---|
5243 | #ifdef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
5244 | /* The threaded function may throw / long jmp, so set current instruction
|
---|
5245 | number if we're counting. */
|
---|
5246 | off = iemNativeEmitStoreImmToVCpuU8(pReNative, off, pCallEntry->idxInstr, RT_UOFFSETOF(VMCPUCC, iem.s.idxTbCurInstr));
|
---|
5247 | #endif
|
---|
5248 |
|
---|
5249 | uint8_t const cParams = g_acIemThreadedFunctionUsedArgs[pCallEntry->enmFunction];
|
---|
5250 |
|
---|
5251 | #ifdef RT_ARCH_AMD64
|
---|
5252 | /* Load the parameters and emit the call. */
|
---|
5253 | # ifdef RT_OS_WINDOWS
|
---|
5254 | # ifndef VBOXSTRICTRC_STRICT_ENABLED
|
---|
5255 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, X86_GREG_xCX, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
5256 | if (cParams > 0)
|
---|
5257 | off = iemNativeEmitLoadGprImm64(pReNative, off, X86_GREG_xDX, pCallEntry->auParams[0]);
|
---|
5258 | if (cParams > 1)
|
---|
5259 | off = iemNativeEmitLoadGprImm64(pReNative, off, X86_GREG_x8, pCallEntry->auParams[1]);
|
---|
5260 | if (cParams > 2)
|
---|
5261 | off = iemNativeEmitLoadGprImm64(pReNative, off, X86_GREG_x9, pCallEntry->auParams[2]);
|
---|
5262 | # else /* VBOXSTRICTRC: Returned via hidden parameter. Sigh. */
|
---|
5263 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, X86_GREG_xDX, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
5264 | if (cParams > 0)
|
---|
5265 | off = iemNativeEmitLoadGprImm64(pReNative, off, X86_GREG_x8, pCallEntry->auParams[0]);
|
---|
5266 | if (cParams > 1)
|
---|
5267 | off = iemNativeEmitLoadGprImm64(pReNative, off, X86_GREG_x9, pCallEntry->auParams[1]);
|
---|
5268 | if (cParams > 2)
|
---|
5269 | {
|
---|
5270 | off = iemNativeEmitLoadGprImm64(pReNative, off, X86_GREG_x10, pCallEntry->auParams[2]);
|
---|
5271 | off = iemNativeEmitStoreGprByBp(pReNative, off, IEMNATIVE_FP_OFF_STACK_ARG0, X86_GREG_x10);
|
---|
5272 | }
|
---|
5273 | off = iemNativeEmitLeaGprByBp(pReNative, off, X86_GREG_xCX, IEMNATIVE_FP_OFF_IN_SHADOW_ARG0); /* rcStrict */
|
---|
5274 | # endif /* VBOXSTRICTRC_STRICT_ENABLED */
|
---|
5275 | # else
|
---|
5276 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, X86_GREG_xDI, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
5277 | if (cParams > 0)
|
---|
5278 | off = iemNativeEmitLoadGprImm64(pReNative, off, X86_GREG_xSI, pCallEntry->auParams[0]);
|
---|
5279 | if (cParams > 1)
|
---|
5280 | off = iemNativeEmitLoadGprImm64(pReNative, off, X86_GREG_xDX, pCallEntry->auParams[1]);
|
---|
5281 | if (cParams > 2)
|
---|
5282 | off = iemNativeEmitLoadGprImm64(pReNative, off, X86_GREG_xCX, pCallEntry->auParams[2]);
|
---|
5283 | # endif
|
---|
5284 |
|
---|
5285 | off = iemNativeEmitCallImm(pReNative, off, (uintptr_t)g_apfnIemThreadedFunctions[pCallEntry->enmFunction]);
|
---|
5286 |
|
---|
5287 | # if defined(VBOXSTRICTRC_STRICT_ENABLED) && defined(RT_OS_WINDOWS)
|
---|
5288 | off = iemNativeEmitLoadGprByBpU32(pReNative, off, X86_GREG_xAX, IEMNATIVE_FP_OFF_IN_SHADOW_ARG0); /* rcStrict (see above) */
|
---|
5289 | # endif
|
---|
5290 |
|
---|
5291 | #elif RT_ARCH_ARM64
|
---|
5292 | /*
|
---|
5293 | * ARM64:
|
---|
5294 | */
|
---|
5295 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG0_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
5296 | if (cParams > 0)
|
---|
5297 | off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_CALL_ARG1_GREG, pCallEntry->auParams[0]);
|
---|
5298 | if (cParams > 1)
|
---|
5299 | off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_CALL_ARG2_GREG, pCallEntry->auParams[1]);
|
---|
5300 | if (cParams > 2)
|
---|
5301 | off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_CALL_ARG3_GREG, pCallEntry->auParams[2]);
|
---|
5302 |
|
---|
5303 | off = iemNativeEmitCallImm(pReNative, off, (uintptr_t)g_apfnIemThreadedFunctions[pCallEntry->enmFunction]);
|
---|
5304 |
|
---|
5305 | #else
|
---|
5306 | # error "port me"
|
---|
5307 | #endif
|
---|
5308 |
|
---|
5309 | /*
|
---|
5310 | * Check the status code.
|
---|
5311 | */
|
---|
5312 | off = iemNativeEmitCheckCallRetAndPassUp(pReNative, off, pCallEntry->idxInstr);
|
---|
5313 |
|
---|
5314 | return off;
|
---|
5315 | }
|
---|
5316 |
|
---|
5317 |
|
---|
5318 | /**
|
---|
5319 | * Emits the code at the CheckBranchMiss label.
|
---|
5320 | */
|
---|
5321 | static uint32_t iemNativeEmitCheckBranchMiss(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t idxReturnLabel)
|
---|
5322 | {
|
---|
5323 | uint32_t const idxLabel = iemNativeLabelFind(pReNative, kIemNativeLabelType_CheckBranchMiss);
|
---|
5324 | if (idxLabel != UINT32_MAX)
|
---|
5325 | {
|
---|
5326 | iemNativeLabelDefine(pReNative, idxLabel, off);
|
---|
5327 |
|
---|
5328 | /* int iemNativeHlpCheckBranchMiss(PVMCPUCC pVCpu) */
|
---|
5329 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG0_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
5330 | off = iemNativeEmitCallImm(pReNative, off, (uintptr_t)iemNativeHlpCheckBranchMiss);
|
---|
5331 |
|
---|
5332 | /* jump back to the return sequence. */
|
---|
5333 | off = iemNativeEmitJmpToLabel(pReNative, off, idxReturnLabel);
|
---|
5334 | }
|
---|
5335 | return off;
|
---|
5336 | }
|
---|
5337 |
|
---|
5338 |
|
---|
5339 | /**
|
---|
5340 | * Emits the code at the NeedCsLimChecking label.
|
---|
5341 | */
|
---|
5342 | static uint32_t iemNativeEmitNeedCsLimChecking(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t idxReturnLabel)
|
---|
5343 | {
|
---|
5344 | uint32_t const idxLabel = iemNativeLabelFind(pReNative, kIemNativeLabelType_NeedCsLimChecking);
|
---|
5345 | if (idxLabel != UINT32_MAX)
|
---|
5346 | {
|
---|
5347 | iemNativeLabelDefine(pReNative, idxLabel, off);
|
---|
5348 |
|
---|
5349 | /* int iemNativeHlpNeedCsLimChecking(PVMCPUCC pVCpu) */
|
---|
5350 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG0_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
5351 | off = iemNativeEmitCallImm(pReNative, off, (uintptr_t)iemNativeHlpNeedCsLimChecking);
|
---|
5352 |
|
---|
5353 | /* jump back to the return sequence. */
|
---|
5354 | off = iemNativeEmitJmpToLabel(pReNative, off, idxReturnLabel);
|
---|
5355 | }
|
---|
5356 | return off;
|
---|
5357 | }
|
---|
5358 |
|
---|
5359 |
|
---|
5360 | /**
|
---|
5361 | * Emits the code at the ObsoleteTb label.
|
---|
5362 | */
|
---|
5363 | static uint32_t iemNativeEmitObsoleteTb(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t idxReturnLabel)
|
---|
5364 | {
|
---|
5365 | uint32_t const idxLabel = iemNativeLabelFind(pReNative, kIemNativeLabelType_ObsoleteTb);
|
---|
5366 | if (idxLabel != UINT32_MAX)
|
---|
5367 | {
|
---|
5368 | iemNativeLabelDefine(pReNative, idxLabel, off);
|
---|
5369 |
|
---|
5370 | /* int iemNativeHlpObsoleteTb(PVMCPUCC pVCpu) */
|
---|
5371 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG0_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
5372 | off = iemNativeEmitCallImm(pReNative, off, (uintptr_t)iemNativeHlpObsoleteTb);
|
---|
5373 |
|
---|
5374 | /* jump back to the return sequence. */
|
---|
5375 | off = iemNativeEmitJmpToLabel(pReNative, off, idxReturnLabel);
|
---|
5376 | }
|
---|
5377 | return off;
|
---|
5378 | }
|
---|
5379 |
|
---|
5380 |
|
---|
5381 | /**
|
---|
5382 | * Emits the code at the RaiseGP0 label.
|
---|
5383 | */
|
---|
5384 | static uint32_t iemNativeEmitRaiseGp0(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t idxReturnLabel)
|
---|
5385 | {
|
---|
5386 | uint32_t const idxLabel = iemNativeLabelFind(pReNative, kIemNativeLabelType_RaiseGp0);
|
---|
5387 | if (idxLabel != UINT32_MAX)
|
---|
5388 | {
|
---|
5389 | iemNativeLabelDefine(pReNative, idxLabel, off);
|
---|
5390 |
|
---|
5391 | /* iemNativeHlpExecRaiseGp0(PVMCPUCC pVCpu) */
|
---|
5392 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG0_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
5393 | off = iemNativeEmitCallImm(pReNative, off, (uintptr_t)iemNativeHlpExecRaiseGp0);
|
---|
5394 |
|
---|
5395 | /* jump back to the return sequence. */
|
---|
5396 | off = iemNativeEmitJmpToLabel(pReNative, off, idxReturnLabel);
|
---|
5397 | }
|
---|
5398 | return off;
|
---|
5399 | }
|
---|
5400 |
|
---|
5401 |
|
---|
5402 | /**
|
---|
5403 | * Emits the code at the ReturnWithFlags label (returns
|
---|
5404 | * VINF_IEM_REEXEC_FINISH_WITH_FLAGS).
|
---|
5405 | */
|
---|
5406 | static uint32_t iemNativeEmitReturnWithFlags(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t idxReturnLabel)
|
---|
5407 | {
|
---|
5408 | uint32_t const idxLabel = iemNativeLabelFind(pReNative, kIemNativeLabelType_ReturnWithFlags);
|
---|
5409 | if (idxLabel != UINT32_MAX)
|
---|
5410 | {
|
---|
5411 | iemNativeLabelDefine(pReNative, idxLabel, off);
|
---|
5412 |
|
---|
5413 | off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_CALL_RET_GREG, VINF_IEM_REEXEC_FINISH_WITH_FLAGS);
|
---|
5414 |
|
---|
5415 | /* jump back to the return sequence. */
|
---|
5416 | off = iemNativeEmitJmpToLabel(pReNative, off, idxReturnLabel);
|
---|
5417 | }
|
---|
5418 | return off;
|
---|
5419 | }
|
---|
5420 |
|
---|
5421 |
|
---|
5422 | /**
|
---|
5423 | * Emits the code at the ReturnBreak label (returns VINF_IEM_REEXEC_BREAK).
|
---|
5424 | */
|
---|
5425 | static uint32_t iemNativeEmitReturnBreak(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t idxReturnLabel)
|
---|
5426 | {
|
---|
5427 | uint32_t const idxLabel = iemNativeLabelFind(pReNative, kIemNativeLabelType_ReturnBreak);
|
---|
5428 | if (idxLabel != UINT32_MAX)
|
---|
5429 | {
|
---|
5430 | iemNativeLabelDefine(pReNative, idxLabel, off);
|
---|
5431 |
|
---|
5432 | off = iemNativeEmitLoadGprImm64(pReNative, off, IEMNATIVE_CALL_RET_GREG, VINF_IEM_REEXEC_BREAK);
|
---|
5433 |
|
---|
5434 | /* jump back to the return sequence. */
|
---|
5435 | off = iemNativeEmitJmpToLabel(pReNative, off, idxReturnLabel);
|
---|
5436 | }
|
---|
5437 | return off;
|
---|
5438 | }
|
---|
5439 |
|
---|
5440 |
|
---|
5441 | /**
|
---|
5442 | * Emits the RC fiddling code for handling non-zero return code or rcPassUp.
|
---|
5443 | */
|
---|
5444 | static uint32_t iemNativeEmitRcFiddling(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t idxReturnLabel)
|
---|
5445 | {
|
---|
5446 | /*
|
---|
5447 | * Generate the rc + rcPassUp fiddling code if needed.
|
---|
5448 | */
|
---|
5449 | uint32_t const idxLabel = iemNativeLabelFind(pReNative, kIemNativeLabelType_NonZeroRetOrPassUp);
|
---|
5450 | if (idxLabel != UINT32_MAX)
|
---|
5451 | {
|
---|
5452 | iemNativeLabelDefine(pReNative, idxLabel, off);
|
---|
5453 |
|
---|
5454 | /* iemNativeHlpExecStatusCodeFiddling(PVMCPUCC pVCpu, int rc, uint8_t idxInstr) */
|
---|
5455 | #ifdef RT_ARCH_AMD64
|
---|
5456 | # ifdef RT_OS_WINDOWS
|
---|
5457 | # ifdef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
5458 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, X86_GREG_x8, X86_GREG_xCX); /* cl = instruction number */
|
---|
5459 | # endif
|
---|
5460 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, X86_GREG_xCX, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
5461 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, X86_GREG_xDX, X86_GREG_xAX);
|
---|
5462 | # else
|
---|
5463 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, X86_GREG_xDI, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
5464 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, X86_GREG_xSI, X86_GREG_xAX);
|
---|
5465 | # ifdef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
5466 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, X86_GREG_xDX, X86_GREG_xCX); /* cl = instruction number */
|
---|
5467 | # endif
|
---|
5468 | # endif
|
---|
5469 | # ifndef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
5470 | off = iemNativeEmitLoadGpr8Imm(pReNative, off, X86_GREG_xCX, 0);
|
---|
5471 | # endif
|
---|
5472 |
|
---|
5473 | #else
|
---|
5474 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG1_GREG, IEMNATIVE_CALL_RET_GREG);
|
---|
5475 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG0_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
5476 | /* IEMNATIVE_CALL_ARG2_GREG is already set. */
|
---|
5477 | #endif
|
---|
5478 |
|
---|
5479 | off = iemNativeEmitCallImm(pReNative, off, (uintptr_t)iemNativeHlpExecStatusCodeFiddling);
|
---|
5480 | off = iemNativeEmitJmpToLabel(pReNative, off, idxReturnLabel);
|
---|
5481 | }
|
---|
5482 | return off;
|
---|
5483 | }
|
---|
5484 |
|
---|
5485 |
|
---|
5486 | /**
|
---|
5487 | * Emits a standard epilog.
|
---|
5488 | */
|
---|
5489 | static uint32_t iemNativeEmitEpilog(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t *pidxReturnLabel)
|
---|
5490 | {
|
---|
5491 | *pidxReturnLabel = UINT32_MAX;
|
---|
5492 |
|
---|
5493 | /*
|
---|
5494 | * Successful return, so clear the return register (eax, w0).
|
---|
5495 | */
|
---|
5496 | off = iemNativeEmitGprZero(pReNative,off, IEMNATIVE_CALL_RET_GREG);
|
---|
5497 |
|
---|
5498 | /*
|
---|
5499 | * Define label for common return point.
|
---|
5500 | */
|
---|
5501 | uint32_t const idxReturn = iemNativeLabelCreate(pReNative, kIemNativeLabelType_Return, off);
|
---|
5502 | *pidxReturnLabel = idxReturn;
|
---|
5503 |
|
---|
5504 | /*
|
---|
5505 | * Restore registers and return.
|
---|
5506 | */
|
---|
5507 | #ifdef RT_ARCH_AMD64
|
---|
5508 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 20);
|
---|
5509 |
|
---|
5510 | /* Reposition esp at the r15 restore point. */
|
---|
5511 | pbCodeBuf[off++] = X86_OP_REX_W;
|
---|
5512 | pbCodeBuf[off++] = 0x8d; /* lea rsp, [rbp - (gcc ? 5 : 7) * 8] */
|
---|
5513 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_MEM1, X86_GREG_xSP, X86_GREG_xBP);
|
---|
5514 | pbCodeBuf[off++] = (uint8_t)IEMNATIVE_FP_OFF_LAST_PUSH;
|
---|
5515 |
|
---|
5516 | /* Pop non-volatile registers and return */
|
---|
5517 | pbCodeBuf[off++] = X86_OP_REX_B; /* pop r15 */
|
---|
5518 | pbCodeBuf[off++] = 0x58 + X86_GREG_x15 - 8;
|
---|
5519 | pbCodeBuf[off++] = X86_OP_REX_B; /* pop r14 */
|
---|
5520 | pbCodeBuf[off++] = 0x58 + X86_GREG_x14 - 8;
|
---|
5521 | pbCodeBuf[off++] = X86_OP_REX_B; /* pop r13 */
|
---|
5522 | pbCodeBuf[off++] = 0x58 + X86_GREG_x13 - 8;
|
---|
5523 | pbCodeBuf[off++] = X86_OP_REX_B; /* pop r12 */
|
---|
5524 | pbCodeBuf[off++] = 0x58 + X86_GREG_x12 - 8;
|
---|
5525 | # ifdef RT_OS_WINDOWS
|
---|
5526 | pbCodeBuf[off++] = 0x58 + X86_GREG_xDI; /* pop rdi */
|
---|
5527 | pbCodeBuf[off++] = 0x58 + X86_GREG_xSI; /* pop rsi */
|
---|
5528 | # endif
|
---|
5529 | pbCodeBuf[off++] = 0x58 + X86_GREG_xBX; /* pop rbx */
|
---|
5530 | pbCodeBuf[off++] = 0xc9; /* leave */
|
---|
5531 | pbCodeBuf[off++] = 0xc3; /* ret */
|
---|
5532 | pbCodeBuf[off++] = 0xcc; /* int3 poison */
|
---|
5533 |
|
---|
5534 | #elif RT_ARCH_ARM64
|
---|
5535 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 10);
|
---|
5536 |
|
---|
5537 | /* ldp x19, x20, [sp #IEMNATIVE_FRAME_VAR_SIZE]! ; Unallocate the variable space and restore x19+x20. */
|
---|
5538 | AssertCompile(IEMNATIVE_FRAME_VAR_SIZE < 64*8);
|
---|
5539 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(true /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_PreIndex,
|
---|
5540 | ARMV8_A64_REG_X19, ARMV8_A64_REG_X20, ARMV8_A64_REG_SP,
|
---|
5541 | IEMNATIVE_FRAME_VAR_SIZE / 8);
|
---|
5542 | /* Restore x21 thru x28 + BP and LR (ret address) (SP remains unchanged in the kSigned variant). */
|
---|
5543 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(true /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_Signed,
|
---|
5544 | ARMV8_A64_REG_X21, ARMV8_A64_REG_X22, ARMV8_A64_REG_SP, 2);
|
---|
5545 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(true /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_Signed,
|
---|
5546 | ARMV8_A64_REG_X23, ARMV8_A64_REG_X24, ARMV8_A64_REG_SP, 4);
|
---|
5547 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(true /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_Signed,
|
---|
5548 | ARMV8_A64_REG_X25, ARMV8_A64_REG_X26, ARMV8_A64_REG_SP, 6);
|
---|
5549 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(true /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_Signed,
|
---|
5550 | ARMV8_A64_REG_X27, ARMV8_A64_REG_X28, ARMV8_A64_REG_SP, 8);
|
---|
5551 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(true /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_Signed,
|
---|
5552 | ARMV8_A64_REG_BP, ARMV8_A64_REG_LR, ARMV8_A64_REG_SP, 10);
|
---|
5553 | AssertCompile(IEMNATIVE_FRAME_SAVE_REG_SIZE / 8 == 12);
|
---|
5554 |
|
---|
5555 | /* add sp, sp, IEMNATIVE_FRAME_SAVE_REG_SIZE ; */
|
---|
5556 | AssertCompile(IEMNATIVE_FRAME_SAVE_REG_SIZE < 4096);
|
---|
5557 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(false /*fSub*/, ARMV8_A64_REG_SP, ARMV8_A64_REG_SP,
|
---|
5558 | IEMNATIVE_FRAME_SAVE_REG_SIZE);
|
---|
5559 |
|
---|
5560 | /* retab / ret */
|
---|
5561 | # ifdef RT_OS_DARWIN /** @todo See todo on pacibsp in the prolog. */
|
---|
5562 | if (1)
|
---|
5563 | pu32CodeBuf[off++] = ARMV8_A64_INSTR_RETAB;
|
---|
5564 | else
|
---|
5565 | # endif
|
---|
5566 | pu32CodeBuf[off++] = ARMV8_A64_INSTR_RET;
|
---|
5567 |
|
---|
5568 | #else
|
---|
5569 | # error "port me"
|
---|
5570 | #endif
|
---|
5571 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
5572 |
|
---|
5573 | return iemNativeEmitRcFiddling(pReNative, off, idxReturn);
|
---|
5574 | }
|
---|
5575 |
|
---|
5576 |
|
---|
5577 | /**
|
---|
5578 | * Emits a standard prolog.
|
---|
5579 | */
|
---|
5580 | static uint32_t iemNativeEmitProlog(PIEMRECOMPILERSTATE pReNative, uint32_t off)
|
---|
5581 | {
|
---|
5582 | #ifdef RT_ARCH_AMD64
|
---|
5583 | /*
|
---|
5584 | * Set up a regular xBP stack frame, pushing all non-volatile GPRs,
|
---|
5585 | * reserving 64 bytes for stack variables plus 4 non-register argument
|
---|
5586 | * slots. Fixed register assignment: xBX = pReNative;
|
---|
5587 | *
|
---|
5588 | * Since we always do the same register spilling, we can use the same
|
---|
5589 | * unwind description for all the code.
|
---|
5590 | */
|
---|
5591 | uint8_t *const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 32);
|
---|
5592 | pbCodeBuf[off++] = 0x50 + X86_GREG_xBP; /* push rbp */
|
---|
5593 | pbCodeBuf[off++] = X86_OP_REX_W; /* mov rbp, rsp */
|
---|
5594 | pbCodeBuf[off++] = 0x8b;
|
---|
5595 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, X86_GREG_xBP, X86_GREG_xSP);
|
---|
5596 | pbCodeBuf[off++] = 0x50 + X86_GREG_xBX; /* push rbx */
|
---|
5597 | AssertCompile(IEMNATIVE_REG_FIXED_PVMCPU == X86_GREG_xBX);
|
---|
5598 | # ifdef RT_OS_WINDOWS
|
---|
5599 | pbCodeBuf[off++] = X86_OP_REX_W; /* mov rbx, rcx ; RBX = pVCpu */
|
---|
5600 | pbCodeBuf[off++] = 0x8b;
|
---|
5601 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, X86_GREG_xBX, X86_GREG_xCX);
|
---|
5602 | pbCodeBuf[off++] = 0x50 + X86_GREG_xSI; /* push rsi */
|
---|
5603 | pbCodeBuf[off++] = 0x50 + X86_GREG_xDI; /* push rdi */
|
---|
5604 | # else
|
---|
5605 | pbCodeBuf[off++] = X86_OP_REX_W; /* mov rbx, rdi ; RBX = pVCpu */
|
---|
5606 | pbCodeBuf[off++] = 0x8b;
|
---|
5607 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, X86_GREG_xBX, X86_GREG_xDI);
|
---|
5608 | # endif
|
---|
5609 | pbCodeBuf[off++] = X86_OP_REX_B; /* push r12 */
|
---|
5610 | pbCodeBuf[off++] = 0x50 + X86_GREG_x12 - 8;
|
---|
5611 | pbCodeBuf[off++] = X86_OP_REX_B; /* push r13 */
|
---|
5612 | pbCodeBuf[off++] = 0x50 + X86_GREG_x13 - 8;
|
---|
5613 | pbCodeBuf[off++] = X86_OP_REX_B; /* push r14 */
|
---|
5614 | pbCodeBuf[off++] = 0x50 + X86_GREG_x14 - 8;
|
---|
5615 | pbCodeBuf[off++] = X86_OP_REX_B; /* push r15 */
|
---|
5616 | pbCodeBuf[off++] = 0x50 + X86_GREG_x15 - 8;
|
---|
5617 |
|
---|
5618 | off = iemNativeEmitSubGprImm(pReNative, off, /* sub rsp, byte 28h */
|
---|
5619 | X86_GREG_xSP,
|
---|
5620 | IEMNATIVE_FRAME_ALIGN_SIZE
|
---|
5621 | + IEMNATIVE_FRAME_VAR_SIZE
|
---|
5622 | + IEMNATIVE_FRAME_STACK_ARG_COUNT * 8
|
---|
5623 | + IEMNATIVE_FRAME_SHADOW_ARG_COUNT * 8);
|
---|
5624 | AssertCompile(!(IEMNATIVE_FRAME_VAR_SIZE & 0xf));
|
---|
5625 | AssertCompile(!(IEMNATIVE_FRAME_STACK_ARG_COUNT & 0x1));
|
---|
5626 | AssertCompile(!(IEMNATIVE_FRAME_SHADOW_ARG_COUNT & 0x1));
|
---|
5627 |
|
---|
5628 | #elif RT_ARCH_ARM64
|
---|
5629 | /*
|
---|
5630 | * We set up a stack frame exactly like on x86, only we have to push the
|
---|
5631 | * return address our selves here. We save all non-volatile registers.
|
---|
5632 | */
|
---|
5633 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 10);
|
---|
5634 |
|
---|
5635 | # ifdef RT_OS_DARWIN /** @todo This seems to be requirement by libunwind for JIT FDEs. Investigate further as been unable
|
---|
5636 | * to figure out where the BRK following AUTHB*+XPACB* stuff comes from in libunwind. It's
|
---|
5637 | * definitely the dwarf stepping code, but till found it's very tedious to figure out whether it's
|
---|
5638 | * in any way conditional, so just emitting this instructions now and hoping for the best... */
|
---|
5639 | /* pacibsp */
|
---|
5640 | pu32CodeBuf[off++] = ARMV8_A64_INSTR_PACIBSP;
|
---|
5641 | # endif
|
---|
5642 |
|
---|
5643 | /* stp x19, x20, [sp, #-IEMNATIVE_FRAME_SAVE_REG_SIZE] ; Allocate space for saving registers and place x19+x20 at the bottom. */
|
---|
5644 | AssertCompile(IEMNATIVE_FRAME_SAVE_REG_SIZE < 64*8);
|
---|
5645 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(false /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_PreIndex,
|
---|
5646 | ARMV8_A64_REG_X19, ARMV8_A64_REG_X20, ARMV8_A64_REG_SP,
|
---|
5647 | -IEMNATIVE_FRAME_SAVE_REG_SIZE / 8);
|
---|
5648 | /* Save x21 thru x28 (SP remains unchanged in the kSigned variant). */
|
---|
5649 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(false /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_Signed,
|
---|
5650 | ARMV8_A64_REG_X21, ARMV8_A64_REG_X22, ARMV8_A64_REG_SP, 2);
|
---|
5651 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(false /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_Signed,
|
---|
5652 | ARMV8_A64_REG_X23, ARMV8_A64_REG_X24, ARMV8_A64_REG_SP, 4);
|
---|
5653 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(false /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_Signed,
|
---|
5654 | ARMV8_A64_REG_X25, ARMV8_A64_REG_X26, ARMV8_A64_REG_SP, 6);
|
---|
5655 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(false /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_Signed,
|
---|
5656 | ARMV8_A64_REG_X27, ARMV8_A64_REG_X28, ARMV8_A64_REG_SP, 8);
|
---|
5657 | /* Save the BP and LR (ret address) registers at the top of the frame. */
|
---|
5658 | pu32CodeBuf[off++] = Armv8A64MkInstrStLdPair(false /*fLoad*/, 2 /*64-bit*/, kArm64InstrStLdPairType_Signed,
|
---|
5659 | ARMV8_A64_REG_BP, ARMV8_A64_REG_LR, ARMV8_A64_REG_SP, 10);
|
---|
5660 | AssertCompile(IEMNATIVE_FRAME_SAVE_REG_SIZE / 8 == 12);
|
---|
5661 | /* add bp, sp, IEMNATIVE_FRAME_SAVE_REG_SIZE - 16 ; Set BP to point to the old BP stack address. */
|
---|
5662 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(false /*fSub*/, ARMV8_A64_REG_BP,
|
---|
5663 | ARMV8_A64_REG_SP, IEMNATIVE_FRAME_SAVE_REG_SIZE - 16);
|
---|
5664 |
|
---|
5665 | /* sub sp, sp, IEMNATIVE_FRAME_VAR_SIZE ; Allocate the variable area from SP. */
|
---|
5666 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(true /*fSub*/, ARMV8_A64_REG_SP, ARMV8_A64_REG_SP, IEMNATIVE_FRAME_VAR_SIZE);
|
---|
5667 |
|
---|
5668 | /* mov r28, r0 */
|
---|
5669 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_REG_FIXED_PVMCPU, IEMNATIVE_CALL_ARG0_GREG);
|
---|
5670 | /* mov r27, r1 */
|
---|
5671 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_REG_FIXED_PCPUMCTX, IEMNATIVE_CALL_ARG1_GREG);
|
---|
5672 |
|
---|
5673 | #else
|
---|
5674 | # error "port me"
|
---|
5675 | #endif
|
---|
5676 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
5677 | return off;
|
---|
5678 | }
|
---|
5679 |
|
---|
5680 |
|
---|
5681 |
|
---|
5682 |
|
---|
5683 | /*********************************************************************************************************************************
|
---|
5684 | * Emitters for IEM_MC_BEGIN and IEM_MC_END. *
|
---|
5685 | *********************************************************************************************************************************/
|
---|
5686 |
|
---|
5687 | #define IEM_MC_BEGIN(a_cArgs, a_cLocals, a_fMcFlags, a_fCImplFlags) \
|
---|
5688 | { \
|
---|
5689 | Assert(pReNative->Core.bmVars == 0); \
|
---|
5690 | Assert(pReNative->Core.u64ArgVars == UINT64_MAX); \
|
---|
5691 | Assert(pReNative->Core.bmStack == 0); \
|
---|
5692 | pReNative->fMc = (a_fMcFlags); \
|
---|
5693 | pReNative->fCImpl = (a_fCImplFlags); \
|
---|
5694 | pReNative->cArgs = ((a_cArgs) + iemNativeArgGetHiddenArgCount(pReNative))
|
---|
5695 |
|
---|
5696 | /** We have to get to the end in recompilation mode, as otherwise we won't
|
---|
5697 | * generate code for all the IEM_MC_IF_XXX branches. */
|
---|
5698 | #define IEM_MC_END() \
|
---|
5699 | iemNativeVarFreeAll(pReNative); \
|
---|
5700 | } return off
|
---|
5701 |
|
---|
5702 |
|
---|
5703 |
|
---|
5704 | /*********************************************************************************************************************************
|
---|
5705 | * Emitters for standalone C-implementation deferals (IEM_MC_DEFER_TO_CIMPL_XXXX) *
|
---|
5706 | *********************************************************************************************************************************/
|
---|
5707 |
|
---|
5708 | #define IEM_MC_DEFER_TO_CIMPL_0_RET_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl) \
|
---|
5709 | pReNative->fMc = 0; \
|
---|
5710 | pReNative->fCImpl = (a_fFlags); \
|
---|
5711 | return iemNativeEmitCImplCall0(pReNative, off, pCallEntry->idxInstr, a_fGstShwFlush, (uintptr_t)a_pfnCImpl, a_cbInstr) /** @todo not used ... */
|
---|
5712 |
|
---|
5713 |
|
---|
5714 | #define IEM_MC_DEFER_TO_CIMPL_1_RET_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0) \
|
---|
5715 | pReNative->fMc = 0; \
|
---|
5716 | pReNative->fCImpl = (a_fFlags); \
|
---|
5717 | return iemNativeEmitCImplCall1(pReNative, off, pCallEntry->idxInstr, a_fGstShwFlush, (uintptr_t)a_pfnCImpl, a_cbInstr, a0)
|
---|
5718 |
|
---|
5719 | DECL_INLINE_THROW(uint32_t) iemNativeEmitCImplCall1(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
5720 | uint8_t idxInstr, uint64_t a_fGstShwFlush,
|
---|
5721 | uintptr_t pfnCImpl, uint8_t cbInstr, uint64_t uArg0)
|
---|
5722 | {
|
---|
5723 | return iemNativeEmitCImplCall(pReNative, off, idxInstr, a_fGstShwFlush, pfnCImpl, cbInstr, 1, uArg0, 0, 0);
|
---|
5724 | }
|
---|
5725 |
|
---|
5726 |
|
---|
5727 | #define IEM_MC_DEFER_TO_CIMPL_2_RET_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1) \
|
---|
5728 | pReNative->fMc = 0; \
|
---|
5729 | pReNative->fCImpl = (a_fFlags); \
|
---|
5730 | return iemNativeEmitCImplCall2(pReNative, off, pCallEntry->idxInstr, a_fGstShwFlush, \
|
---|
5731 | (uintptr_t)a_pfnCImpl, a_cbInstr, a0, a1)
|
---|
5732 |
|
---|
5733 | DECL_INLINE_THROW(uint32_t) iemNativeEmitCImplCall2(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
5734 | uint8_t idxInstr, uint64_t a_fGstShwFlush,
|
---|
5735 | uintptr_t pfnCImpl, uint8_t cbInstr, uint64_t uArg0, uint64_t uArg1)
|
---|
5736 | {
|
---|
5737 | return iemNativeEmitCImplCall(pReNative, off, idxInstr, a_fGstShwFlush, pfnCImpl, cbInstr, 2, uArg0, uArg1, 0);
|
---|
5738 | }
|
---|
5739 |
|
---|
5740 |
|
---|
5741 | #define IEM_MC_DEFER_TO_CIMPL_3_RET_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2) \
|
---|
5742 | pReNative->fMc = 0; \
|
---|
5743 | pReNative->fCImpl = (a_fFlags); \
|
---|
5744 | return iemNativeEmitCImplCall3(pReNative, off, pCallEntry->idxInstr, a_fGstShwFlush, \
|
---|
5745 | (uintptr_t)a_pfnCImpl, a_cbInstr, a0, a1, a2)
|
---|
5746 |
|
---|
5747 | DECL_INLINE_THROW(uint32_t) iemNativeEmitCImplCall3(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
5748 | uint8_t idxInstr, uint64_t a_fGstShwFlush,
|
---|
5749 | uintptr_t pfnCImpl, uint8_t cbInstr, uint64_t uArg0, uint64_t uArg1,
|
---|
5750 | uint64_t uArg2)
|
---|
5751 | {
|
---|
5752 | return iemNativeEmitCImplCall(pReNative, off, idxInstr, a_fGstShwFlush, pfnCImpl, cbInstr, 3, uArg0, uArg1, uArg2);
|
---|
5753 | }
|
---|
5754 |
|
---|
5755 |
|
---|
5756 |
|
---|
5757 | /*********************************************************************************************************************************
|
---|
5758 | * Emitters for advancing PC/RIP/EIP/IP (IEM_MC_ADVANCE_RIP_AND_FINISH_XXX) *
|
---|
5759 | *********************************************************************************************************************************/
|
---|
5760 |
|
---|
5761 | /** Emits the flags check for IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC64_WITH_FLAGS
|
---|
5762 | * and the other _WITH_FLAGS MCs, see iemRegFinishClearingRF. */
|
---|
5763 | DECL_INLINE_THROW(uint32_t)
|
---|
5764 | iemNativeEmitFinishInstructionFlagsCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off)
|
---|
5765 | {
|
---|
5766 | /*
|
---|
5767 | * If its not just X86_EFL_RF and CPUMCTX_INHIBIT_SHADOW that are set, we
|
---|
5768 | * return with special status code and make the execution loop deal with
|
---|
5769 | * this. If TF or CPUMCTX_DBG_HIT_DRX_MASK triggers, we have to raise an
|
---|
5770 | * exception and won't continue execution. While CPUMCTX_DBG_DBGF_MASK
|
---|
5771 | * could continue w/o interruption, it probably will drop into the
|
---|
5772 | * debugger, so not worth the effort of trying to services it here and we
|
---|
5773 | * just lump it in with the handling of the others.
|
---|
5774 | *
|
---|
5775 | * To simplify the code and the register state management even more (wrt
|
---|
5776 | * immediate in AND operation), we always update the flags and skip the
|
---|
5777 | * extra check associated conditional jump.
|
---|
5778 | */
|
---|
5779 | AssertCompile( (X86_EFL_TF | X86_EFL_RF | CPUMCTX_INHIBIT_SHADOW | CPUMCTX_DBG_HIT_DRX_MASK | CPUMCTX_DBG_DBGF_MASK)
|
---|
5780 | <= UINT32_MAX);
|
---|
5781 | uint8_t const idxEflReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_EFlags,
|
---|
5782 | kIemNativeGstRegUse_ForUpdate);
|
---|
5783 | off = iemNativeEmitTestAnyBitsInGprAndJmpToLabelIfAnySet(pReNative, off, idxEflReg,
|
---|
5784 | X86_EFL_TF | CPUMCTX_DBG_HIT_DRX_MASK | CPUMCTX_DBG_DBGF_MASK,
|
---|
5785 | iemNativeLabelCreate(pReNative, kIemNativeLabelType_ReturnWithFlags));
|
---|
5786 | off = iemNativeEmitAndGpr32ByImm(pReNative, off, idxEflReg, ~(uint32_t)(X86_EFL_RF | CPUMCTX_INHIBIT_SHADOW));
|
---|
5787 | off = iemNativeEmitStoreGprToVCpuU32(pReNative, off, idxEflReg, RT_UOFFSETOF(VMCPU, cpum.GstCtx.eflags));
|
---|
5788 |
|
---|
5789 | /* Free but don't flush the EFLAGS register. */
|
---|
5790 | iemNativeRegFreeTmp(pReNative, idxEflReg);
|
---|
5791 |
|
---|
5792 | return off;
|
---|
5793 | }
|
---|
5794 |
|
---|
5795 |
|
---|
5796 | /** The VINF_SUCCESS dummy. */
|
---|
5797 | template<int const a_rcNormal>
|
---|
5798 | DECL_FORCE_INLINE(uint32_t)
|
---|
5799 | iemNativeEmitFinishInstructionWithStatus(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr)
|
---|
5800 | {
|
---|
5801 | AssertCompile(a_rcNormal == VINF_SUCCESS || a_rcNormal == VINF_IEM_REEXEC_BREAK);
|
---|
5802 | if (a_rcNormal != VINF_SUCCESS)
|
---|
5803 | {
|
---|
5804 | #ifdef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
5805 | off = iemNativeEmitStoreImmToVCpuU8(pReNative, off, idxInstr, RT_UOFFSETOF(VMCPUCC, iem.s.idxTbCurInstr));
|
---|
5806 | #endif
|
---|
5807 | return iemNativeEmitJmpToNewLabel(pReNative, off, kIemNativeLabelType_ReturnBreak);
|
---|
5808 | }
|
---|
5809 | return off;
|
---|
5810 | }
|
---|
5811 |
|
---|
5812 |
|
---|
5813 | #define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC64(a_cbInstr, a_rcNormal) \
|
---|
5814 | off = iemNativeEmitAddToRip64AndFinishingNoFlags(pReNative, off, (a_cbInstr)); \
|
---|
5815 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
5816 |
|
---|
5817 | #define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_cbInstr, a_rcNormal) \
|
---|
5818 | off = iemNativeEmitAddToRip64AndFinishingNoFlags(pReNative, off, (a_cbInstr)); \
|
---|
5819 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off); \
|
---|
5820 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
5821 |
|
---|
5822 | /** Same as iemRegAddToRip64AndFinishingNoFlags. */
|
---|
5823 | DECL_INLINE_THROW(uint32_t)
|
---|
5824 | iemNativeEmitAddToRip64AndFinishingNoFlags(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr)
|
---|
5825 | {
|
---|
5826 | /* Allocate a temporary PC register. */
|
---|
5827 | uint8_t const idxPcReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_Pc, kIemNativeGstRegUse_ForUpdate);
|
---|
5828 |
|
---|
5829 | /* Perform the addition and store the result. */
|
---|
5830 | off = iemNativeEmitAddGprImm8(pReNative, off, idxPcReg, cbInstr);
|
---|
5831 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxPcReg, RT_UOFFSETOF(VMCPU, cpum.GstCtx.rip));
|
---|
5832 |
|
---|
5833 | /* Free but don't flush the PC register. */
|
---|
5834 | iemNativeRegFreeTmp(pReNative, idxPcReg);
|
---|
5835 |
|
---|
5836 | return off;
|
---|
5837 | }
|
---|
5838 |
|
---|
5839 |
|
---|
5840 | #define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC32(a_cbInstr, a_rcNormal) \
|
---|
5841 | off = iemNativeEmitAddToEip32AndFinishingNoFlags(pReNative, off, (a_cbInstr)); \
|
---|
5842 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
5843 |
|
---|
5844 | #define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_cbInstr, a_rcNormal) \
|
---|
5845 | off = iemNativeEmitAddToEip32AndFinishingNoFlags(pReNative, off, (a_cbInstr)); \
|
---|
5846 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off); \
|
---|
5847 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
5848 |
|
---|
5849 | /** Same as iemRegAddToEip32AndFinishingNoFlags. */
|
---|
5850 | DECL_INLINE_THROW(uint32_t)
|
---|
5851 | iemNativeEmitAddToEip32AndFinishingNoFlags(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr)
|
---|
5852 | {
|
---|
5853 | /* Allocate a temporary PC register. */
|
---|
5854 | uint8_t const idxPcReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_Pc, kIemNativeGstRegUse_ForUpdate);
|
---|
5855 |
|
---|
5856 | /* Perform the addition and store the result. */
|
---|
5857 | off = iemNativeEmitAddGpr32Imm8(pReNative, off, idxPcReg, cbInstr);
|
---|
5858 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxPcReg, RT_UOFFSETOF(VMCPU, cpum.GstCtx.rip));
|
---|
5859 |
|
---|
5860 | /* Free but don't flush the PC register. */
|
---|
5861 | iemNativeRegFreeTmp(pReNative, idxPcReg);
|
---|
5862 |
|
---|
5863 | return off;
|
---|
5864 | }
|
---|
5865 |
|
---|
5866 |
|
---|
5867 | #define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC16(a_cbInstr, a_rcNormal) \
|
---|
5868 | off = iemNativeEmitAddToIp16AndFinishingNoFlags(pReNative, off, (a_cbInstr)); \
|
---|
5869 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
5870 |
|
---|
5871 | #define IEM_MC_ADVANCE_RIP_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_cbInstr, a_rcNormal) \
|
---|
5872 | off = iemNativeEmitAddToIp16AndFinishingNoFlags(pReNative, off, (a_cbInstr)); \
|
---|
5873 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off); \
|
---|
5874 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
5875 |
|
---|
5876 | /** Same as iemRegAddToIp16AndFinishingNoFlags. */
|
---|
5877 | DECL_INLINE_THROW(uint32_t)
|
---|
5878 | iemNativeEmitAddToIp16AndFinishingNoFlags(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr)
|
---|
5879 | {
|
---|
5880 | /* Allocate a temporary PC register. */
|
---|
5881 | uint8_t const idxPcReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_Pc, kIemNativeGstRegUse_ForUpdate);
|
---|
5882 |
|
---|
5883 | /* Perform the addition and store the result. */
|
---|
5884 | off = iemNativeEmitAddGpr32Imm8(pReNative, off, idxPcReg, cbInstr);
|
---|
5885 | off = iemNativeEmitClear16UpGpr(pReNative, off, idxPcReg);
|
---|
5886 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxPcReg, RT_UOFFSETOF(VMCPU, cpum.GstCtx.rip));
|
---|
5887 |
|
---|
5888 | /* Free but don't flush the PC register. */
|
---|
5889 | iemNativeRegFreeTmp(pReNative, idxPcReg);
|
---|
5890 |
|
---|
5891 | return off;
|
---|
5892 | }
|
---|
5893 |
|
---|
5894 |
|
---|
5895 |
|
---|
5896 | /*********************************************************************************************************************************
|
---|
5897 | * Emitters for changing PC/RIP/EIP/IP with a relative jump (IEM_MC_REL_JMP_XXX_AND_FINISH_XXX). *
|
---|
5898 | *********************************************************************************************************************************/
|
---|
5899 |
|
---|
5900 | #define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC64(a_i8, a_cbInstr, a_enmEffOpSize, a_rcNormal) \
|
---|
5901 | off = iemNativeEmitRip64RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (int8_t)(a_i8), \
|
---|
5902 | (a_enmEffOpSize), pCallEntry->idxInstr); \
|
---|
5903 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
5904 |
|
---|
5905 | #define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_i8, a_cbInstr, a_enmEffOpSize, a_rcNormal) \
|
---|
5906 | off = iemNativeEmitRip64RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (int8_t)(a_i8), \
|
---|
5907 | (a_enmEffOpSize), pCallEntry->idxInstr); \
|
---|
5908 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off); \
|
---|
5909 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
5910 |
|
---|
5911 | #define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC64(a_i16, a_cbInstr, a_rcNormal) \
|
---|
5912 | off = iemNativeEmitRip64RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (int16_t)(a_i16), \
|
---|
5913 | IEMMODE_16BIT, pCallEntry->idxInstr); \
|
---|
5914 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
5915 |
|
---|
5916 | #define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_i16, a_cbInstr, a_rcNormal) \
|
---|
5917 | off = iemNativeEmitRip64RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (int16_t)(a_i16), \
|
---|
5918 | IEMMODE_16BIT, pCallEntry->idxInstr); \
|
---|
5919 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off); \
|
---|
5920 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
5921 |
|
---|
5922 | #define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC64(a_i32, a_cbInstr, a_rcNormal) \
|
---|
5923 | off = iemNativeEmitRip64RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (a_i32), \
|
---|
5924 | IEMMODE_64BIT, pCallEntry->idxInstr); \
|
---|
5925 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
5926 |
|
---|
5927 | #define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_i32, a_cbInstr, a_rcNormal) \
|
---|
5928 | off = iemNativeEmitRip64RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (a_i32), \
|
---|
5929 | IEMMODE_64BIT, pCallEntry->idxInstr); \
|
---|
5930 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off); \
|
---|
5931 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
5932 |
|
---|
5933 | /** Same as iemRegRip64RelativeJumpS8AndFinishNoFlags,
|
---|
5934 | * iemRegRip64RelativeJumpS16AndFinishNoFlags and
|
---|
5935 | * iemRegRip64RelativeJumpS32AndFinishNoFlags. */
|
---|
5936 | DECL_INLINE_THROW(uint32_t)
|
---|
5937 | iemNativeEmitRip64RelativeJumpAndFinishingNoFlags(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr,
|
---|
5938 | int32_t offDisp, IEMMODE enmEffOpSize, uint8_t idxInstr)
|
---|
5939 | {
|
---|
5940 | Assert(enmEffOpSize == IEMMODE_64BIT || enmEffOpSize == IEMMODE_16BIT);
|
---|
5941 |
|
---|
5942 | /* We speculatively modify PC and may raise #GP(0), so make sure the right values are in CPUMCTX. */
|
---|
5943 | off = iemNativeRegFlushPendingWrites(pReNative, off);
|
---|
5944 |
|
---|
5945 | /* Allocate a temporary PC register. */
|
---|
5946 | uint8_t const idxPcReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_Pc, kIemNativeGstRegUse_ForUpdate);
|
---|
5947 |
|
---|
5948 | /* Perform the addition. */
|
---|
5949 | off = iemNativeEmitAddGprImm(pReNative, off, idxPcReg, (int64_t)offDisp + cbInstr);
|
---|
5950 |
|
---|
5951 | if (RT_LIKELY(enmEffOpSize == IEMMODE_64BIT))
|
---|
5952 | {
|
---|
5953 | /* Check that the address is canonical, raising #GP(0) + exit TB if it isn't. */
|
---|
5954 | off = iemNativeEmitCheckGprCanonicalMaybeRaiseGp0(pReNative, off, idxPcReg, idxInstr);
|
---|
5955 | }
|
---|
5956 | else
|
---|
5957 | {
|
---|
5958 | /* Just truncate the result to 16-bit IP. */
|
---|
5959 | Assert(enmEffOpSize == IEMMODE_16BIT);
|
---|
5960 | off = iemNativeEmitClear16UpGpr(pReNative, off, idxPcReg);
|
---|
5961 | }
|
---|
5962 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxPcReg, RT_UOFFSETOF(VMCPU, cpum.GstCtx.rip));
|
---|
5963 |
|
---|
5964 | /* Free but don't flush the PC register. */
|
---|
5965 | iemNativeRegFreeTmp(pReNative, idxPcReg);
|
---|
5966 |
|
---|
5967 | return off;
|
---|
5968 | }
|
---|
5969 |
|
---|
5970 |
|
---|
5971 | #define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC32(a_i8, a_cbInstr, a_enmEffOpSize, a_rcNormal) \
|
---|
5972 | off = iemNativeEmitEip32RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (int8_t)(a_i8), \
|
---|
5973 | (a_enmEffOpSize), pCallEntry->idxInstr); \
|
---|
5974 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
5975 |
|
---|
5976 | #define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_i8, a_cbInstr, a_enmEffOpSize, a_rcNormal) \
|
---|
5977 | off = iemNativeEmitEip32RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (int8_t)(a_i8), \
|
---|
5978 | (a_enmEffOpSize), pCallEntry->idxInstr); \
|
---|
5979 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off); \
|
---|
5980 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
5981 |
|
---|
5982 | #define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC32(a_i16, a_cbInstr, a_rcNormal) \
|
---|
5983 | off = iemNativeEmitEip32RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (int16_t)(a_i16), \
|
---|
5984 | IEMMODE_16BIT, pCallEntry->idxInstr); \
|
---|
5985 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
5986 |
|
---|
5987 | #define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_i16, a_cbInstr, a_rcNormal) \
|
---|
5988 | off = iemNativeEmitEip32RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (int16_t)(a_i16), \
|
---|
5989 | IEMMODE_16BIT, pCallEntry->idxInstr); \
|
---|
5990 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off); \
|
---|
5991 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
5992 |
|
---|
5993 | #define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC32(a_i32, a_cbInstr, a_rcNormal) \
|
---|
5994 | off = iemNativeEmitEip32RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (a_i32), \
|
---|
5995 | IEMMODE_32BIT, pCallEntry->idxInstr); \
|
---|
5996 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
5997 |
|
---|
5998 | #define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_i32, a_cbInstr, a_rcNormal) \
|
---|
5999 | off = iemNativeEmitEip32RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (a_i32), \
|
---|
6000 | IEMMODE_32BIT, pCallEntry->idxInstr); \
|
---|
6001 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off); \
|
---|
6002 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
6003 |
|
---|
6004 | /** Same as iemRegEip32RelativeJumpS8AndFinishNoFlags,
|
---|
6005 | * iemRegEip32RelativeJumpS16AndFinishNoFlags and
|
---|
6006 | * iemRegEip32RelativeJumpS32AndFinishNoFlags. */
|
---|
6007 | DECL_INLINE_THROW(uint32_t)
|
---|
6008 | iemNativeEmitEip32RelativeJumpAndFinishingNoFlags(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr,
|
---|
6009 | int32_t offDisp, IEMMODE enmEffOpSize, uint8_t idxInstr)
|
---|
6010 | {
|
---|
6011 | Assert(enmEffOpSize == IEMMODE_32BIT || enmEffOpSize == IEMMODE_16BIT);
|
---|
6012 |
|
---|
6013 | /* We speculatively modify PC and may raise #GP(0), so make sure the right values are in CPUMCTX. */
|
---|
6014 | off = iemNativeRegFlushPendingWrites(pReNative, off);
|
---|
6015 |
|
---|
6016 | /* Allocate a temporary PC register. */
|
---|
6017 | uint8_t const idxPcReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_Pc, kIemNativeGstRegUse_ForUpdate);
|
---|
6018 |
|
---|
6019 | /* Perform the addition. */
|
---|
6020 | off = iemNativeEmitAddGpr32Imm(pReNative, off, idxPcReg, offDisp + cbInstr);
|
---|
6021 |
|
---|
6022 | /* Truncate the result to 16-bit IP if the operand size is 16-bit. */
|
---|
6023 | if (enmEffOpSize == IEMMODE_16BIT)
|
---|
6024 | off = iemNativeEmitClear16UpGpr(pReNative, off, idxPcReg);
|
---|
6025 |
|
---|
6026 | /* Perform limit checking, potentially raising #GP(0) and exit the TB. */
|
---|
6027 | off = iemNativeEmitCheckGpr32AgainstSegLimitMaybeRaiseGp0(pReNative, off, idxPcReg, X86_SREG_CS, idxInstr);
|
---|
6028 |
|
---|
6029 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxPcReg, RT_UOFFSETOF(VMCPU, cpum.GstCtx.rip));
|
---|
6030 |
|
---|
6031 | /* Free but don't flush the PC register. */
|
---|
6032 | iemNativeRegFreeTmp(pReNative, idxPcReg);
|
---|
6033 |
|
---|
6034 | return off;
|
---|
6035 | }
|
---|
6036 |
|
---|
6037 |
|
---|
6038 | #define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC16(a_i8, a_cbInstr, a_rcNormal) \
|
---|
6039 | off = iemNativeEmitIp16RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (int8_t)(a_i8), pCallEntry->idxInstr); \
|
---|
6040 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
6041 |
|
---|
6042 | #define IEM_MC_REL_JMP_S8_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_i8, a_cbInstr, a_rcNormal) \
|
---|
6043 | off = iemNativeEmitIp16RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (int8_t)(a_i8), pCallEntry->idxInstr); \
|
---|
6044 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off); \
|
---|
6045 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
6046 |
|
---|
6047 | #define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC16(a_i16, a_cbInstr, a_rcNormal) \
|
---|
6048 | off = iemNativeEmitIp16RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (int16_t)(a_i16), pCallEntry->idxInstr); \
|
---|
6049 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
6050 |
|
---|
6051 | #define IEM_MC_REL_JMP_S16_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_i16, a_cbInstr, a_rcNormal) \
|
---|
6052 | off = iemNativeEmitIp16RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (int16_t)(a_i16), pCallEntry->idxInstr); \
|
---|
6053 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off); \
|
---|
6054 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
6055 |
|
---|
6056 | #define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC16(a_i32, a_cbInstr, a_rcNormal) \
|
---|
6057 | off = iemNativeEmitIp16RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (a_i32), pCallEntry->idxInstr); \
|
---|
6058 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
6059 |
|
---|
6060 | #define IEM_MC_REL_JMP_S32_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_i32, a_cbInstr, a_rcNormal) \
|
---|
6061 | off = iemNativeEmitIp16RelativeJumpAndFinishingNoFlags(pReNative, off, (a_cbInstr), (a_i32), pCallEntry->idxInstr); \
|
---|
6062 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off); \
|
---|
6063 | off = iemNativeEmitFinishInstructionWithStatus<a_rcNormal>(pReNative, off, pCallEntry->idxInstr)
|
---|
6064 |
|
---|
6065 | /** Same as iemRegIp16RelativeJumpS8AndFinishNoFlags. */
|
---|
6066 | DECL_INLINE_THROW(uint32_t)
|
---|
6067 | iemNativeEmitIp16RelativeJumpAndFinishingNoFlags(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
6068 | uint8_t cbInstr, int32_t offDisp, uint8_t idxInstr)
|
---|
6069 | {
|
---|
6070 | /* We speculatively modify PC and may raise #GP(0), so make sure the right values are in CPUMCTX. */
|
---|
6071 | off = iemNativeRegFlushPendingWrites(pReNative, off);
|
---|
6072 |
|
---|
6073 | /* Allocate a temporary PC register. */
|
---|
6074 | uint8_t const idxPcReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_Pc, kIemNativeGstRegUse_ForUpdate);
|
---|
6075 |
|
---|
6076 | /* Perform the addition, clamp the result, check limit (may #GP(0) + exit TB) and store the result. */
|
---|
6077 | off = iemNativeEmitAddGpr32Imm(pReNative, off, idxPcReg, offDisp + cbInstr);
|
---|
6078 | off = iemNativeEmitClear16UpGpr(pReNative, off, idxPcReg);
|
---|
6079 | off = iemNativeEmitCheckGpr32AgainstSegLimitMaybeRaiseGp0(pReNative, off, idxPcReg, X86_SREG_CS, idxInstr);
|
---|
6080 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxPcReg, RT_UOFFSETOF(VMCPU, cpum.GstCtx.rip));
|
---|
6081 |
|
---|
6082 | /* Free but don't flush the PC register. */
|
---|
6083 | iemNativeRegFreeTmp(pReNative, idxPcReg);
|
---|
6084 |
|
---|
6085 | return off;
|
---|
6086 | }
|
---|
6087 |
|
---|
6088 |
|
---|
6089 |
|
---|
6090 | /*********************************************************************************************************************************
|
---|
6091 | * Emitters for changing PC/RIP/EIP/IP with a indirect jump (IEM_MC_SET_RIP_UXX_AND_FINISH). *
|
---|
6092 | *********************************************************************************************************************************/
|
---|
6093 |
|
---|
6094 | /** Variant of IEM_MC_SET_RIP_U16_AND_FINISH for pre-386 targets. */
|
---|
6095 | #define IEM_MC_SET_RIP_U16_AND_FINISH_THREADED_PC16(a_u16NewIP) \
|
---|
6096 | off = iemNativeEmitRipJumpNoFlags(pReNative, off, (a_u16NewIP), false /*f64Bit*/, pCallEntry->idxInstr, sizeof(uint16_t))
|
---|
6097 |
|
---|
6098 | /** Variant of IEM_MC_SET_RIP_U16_AND_FINISH for 386+ targets. */
|
---|
6099 | #define IEM_MC_SET_RIP_U16_AND_FINISH_THREADED_PC32(a_u16NewIP) \
|
---|
6100 | off = iemNativeEmitRipJumpNoFlags(pReNative, off, (a_u16NewIP), false /*f64Bit*/, pCallEntry->idxInstr, sizeof(uint16_t))
|
---|
6101 |
|
---|
6102 | /** Variant of IEM_MC_SET_RIP_U16_AND_FINISH for use in 64-bit code. */
|
---|
6103 | #define IEM_MC_SET_RIP_U16_AND_FINISH_THREADED_PC64(a_u16NewIP) \
|
---|
6104 | off = iemNativeEmitRipJumpNoFlags(pReNative, off, (a_u16NewIP), true /*f64Bit*/, pCallEntry->idxInstr, sizeof(uint16_t))
|
---|
6105 |
|
---|
6106 | /** Variant of IEM_MC_SET_RIP_U16_AND_FINISH for pre-386 targets that checks and
|
---|
6107 | * clears flags. */
|
---|
6108 | #define IEM_MC_SET_RIP_U16_AND_FINISH_THREADED_PC16_WITH_FLAGS(a_u16NewIP) \
|
---|
6109 | IEM_MC_SET_RIP_U16_AND_FINISH_THREADED_PC16(a_u16NewIP); \
|
---|
6110 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off)
|
---|
6111 |
|
---|
6112 | /** Variant of IEM_MC_SET_RIP_U16_AND_FINISH for 386+ targets that checks and
|
---|
6113 | * clears flags. */
|
---|
6114 | #define IEM_MC_SET_RIP_U16_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_u16NewIP) \
|
---|
6115 | IEM_MC_SET_RIP_U16_AND_FINISH_THREADED_PC32(a_u16NewIP); \
|
---|
6116 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off)
|
---|
6117 |
|
---|
6118 | /** Variant of IEM_MC_SET_RIP_U16_AND_FINISH for use in 64-bit code that checks and
|
---|
6119 | * clears flags. */
|
---|
6120 | #define IEM_MC_SET_RIP_U16_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_u16NewIP) \
|
---|
6121 | IEM_MC_SET_RIP_U16_AND_FINISH_THREADED_PC64(a_u16NewIP); \
|
---|
6122 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off)
|
---|
6123 |
|
---|
6124 | #undef IEM_MC_SET_RIP_U16_AND_FINISH
|
---|
6125 |
|
---|
6126 |
|
---|
6127 | /** Variant of IEM_MC_SET_RIP_U32_AND_FINISH for 386+ targets. */
|
---|
6128 | #define IEM_MC_SET_RIP_U32_AND_FINISH_THREADED_PC32(a_u32NewEIP) \
|
---|
6129 | off = iemNativeEmitRipJumpNoFlags(pReNative, off, (a_u32NewEIP), false /*f64Bit*/, pCallEntry->idxInstr, sizeof(uint32_t))
|
---|
6130 |
|
---|
6131 | /** Variant of IEM_MC_SET_RIP_U32_AND_FINISH for use in 64-bit code. */
|
---|
6132 | #define IEM_MC_SET_RIP_U32_AND_FINISH_THREADED_PC64(a_u32NewEIP) \
|
---|
6133 | off = iemNativeEmitRipJumpNoFlags(pReNative, off, (a_u32NewEIP), true /*f64Bit*/, pCallEntry->idxInstr, sizeof(uint32_t))
|
---|
6134 |
|
---|
6135 | /** Variant of IEM_MC_SET_RIP_U32_AND_FINISH for 386+ targets that checks and
|
---|
6136 | * clears flags. */
|
---|
6137 | #define IEM_MC_SET_RIP_U32_AND_FINISH_THREADED_PC32_WITH_FLAGS(a_u32NewEIP) \
|
---|
6138 | IEM_MC_SET_RIP_U32_AND_FINISH_THREADED_PC32(a_u32NewEIP); \
|
---|
6139 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off)
|
---|
6140 |
|
---|
6141 | /** Variant of IEM_MC_SET_RIP_U32_AND_FINISH for use in 64-bit code that checks
|
---|
6142 | * and clears flags. */
|
---|
6143 | #define IEM_MC_SET_RIP_U32_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_u32NewEIP) \
|
---|
6144 | IEM_MC_SET_RIP_U32_AND_FINISH_THREADED_PC64(a_u32NewEIP); \
|
---|
6145 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off)
|
---|
6146 |
|
---|
6147 | #undef IEM_MC_SET_RIP_U32_AND_FINISH
|
---|
6148 |
|
---|
6149 |
|
---|
6150 | /** Variant of IEM_MC_SET_RIP_U64_AND_FINISH for use in 64-bit code. */
|
---|
6151 | #define IEM_MC_SET_RIP_U64_AND_FINISH_THREADED_PC64(a_u64NewEIP) \
|
---|
6152 | off = iemNativeEmitRipJumpNoFlags(pReNative, off, (a_u64NewEIP), true /*f64Bit*/, pCallEntry->idxInstr, sizeof(uint64_t))
|
---|
6153 |
|
---|
6154 | /** Variant of IEM_MC_SET_RIP_U64_AND_FINISH for use in 64-bit code that checks
|
---|
6155 | * and clears flags. */
|
---|
6156 | #define IEM_MC_SET_RIP_U64_AND_FINISH_THREADED_PC64_WITH_FLAGS(a_u64NewEIP) \
|
---|
6157 | IEM_MC_SET_RIP_U64_AND_FINISH_THREADED_PC64(a_u64NewEIP); \
|
---|
6158 | off = iemNativeEmitFinishInstructionFlagsCheck(pReNative, off)
|
---|
6159 |
|
---|
6160 | #undef IEM_MC_SET_RIP_U64_AND_FINISH
|
---|
6161 |
|
---|
6162 |
|
---|
6163 | /** Same as iemRegRipJumpU16AndFinishNoFlags,
|
---|
6164 | * iemRegRipJumpU32AndFinishNoFlags and iemRegRipJumpU64AndFinishNoFlags. */
|
---|
6165 | DECL_INLINE_THROW(uint32_t)
|
---|
6166 | iemNativeEmitRipJumpNoFlags(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVarPc, bool f64Bit,
|
---|
6167 | uint8_t idxInstr, uint8_t cbVar)
|
---|
6168 | {
|
---|
6169 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVarPc);
|
---|
6170 | Assert(pReNative->Core.aVars[idxVarPc].cbVar == cbVar);
|
---|
6171 |
|
---|
6172 | /* We speculatively modify PC and may raise #GP(0), so make sure the right values are in CPUMCTX. */
|
---|
6173 | off = iemNativeRegFlushPendingWrites(pReNative, off);
|
---|
6174 |
|
---|
6175 | /* Get a register with the new PC loaded from idxVarPc.
|
---|
6176 | Note! This ASSUMES that the high bits of the GPR is zeroed. */
|
---|
6177 | uint8_t const idxPcReg = iemNativeVarRegisterAcquireForGuestReg(pReNative, idxVarPc, kIemNativeGstReg_Pc, &off);
|
---|
6178 |
|
---|
6179 | /* Check limit (may #GP(0) + exit TB). */
|
---|
6180 | if (!f64Bit)
|
---|
6181 | off = iemNativeEmitCheckGpr32AgainstSegLimitMaybeRaiseGp0(pReNative, off, idxPcReg, X86_SREG_CS, idxInstr);
|
---|
6182 | /* Check that the address is canonical, raising #GP(0) + exit TB if it isn't. */
|
---|
6183 | else if (cbVar > sizeof(uint32_t))
|
---|
6184 | off = iemNativeEmitCheckGprCanonicalMaybeRaiseGp0(pReNative, off, idxPcReg, idxInstr);
|
---|
6185 |
|
---|
6186 | /* Store the result. */
|
---|
6187 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxPcReg, RT_UOFFSETOF(VMCPU, cpum.GstCtx.rip));
|
---|
6188 |
|
---|
6189 | iemNativeVarRegisterRelease(pReNative, idxVarPc);
|
---|
6190 | /** @todo implictly free the variable? */
|
---|
6191 |
|
---|
6192 | return off;
|
---|
6193 | }
|
---|
6194 |
|
---|
6195 |
|
---|
6196 |
|
---|
6197 | /*********************************************************************************************************************************
|
---|
6198 | * Emitters for conditionals (IEM_MC_IF_XXX, IEM_MC_ELSE, IEM_MC_ENDIF) *
|
---|
6199 | *********************************************************************************************************************************/
|
---|
6200 |
|
---|
6201 | /**
|
---|
6202 | * Pushes an IEM_MC_IF_XXX onto the condition stack.
|
---|
6203 | *
|
---|
6204 | * @returns Pointer to the condition stack entry on success, NULL on failure
|
---|
6205 | * (too many nestings)
|
---|
6206 | */
|
---|
6207 | DECL_INLINE_THROW(PIEMNATIVECOND) iemNativeCondPushIf(PIEMRECOMPILERSTATE pReNative)
|
---|
6208 | {
|
---|
6209 | uint32_t const idxStack = pReNative->cCondDepth;
|
---|
6210 | AssertStmt(idxStack < RT_ELEMENTS(pReNative->aCondStack), IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_COND_TOO_DEEPLY_NESTED));
|
---|
6211 |
|
---|
6212 | PIEMNATIVECOND const pEntry = &pReNative->aCondStack[idxStack];
|
---|
6213 | pReNative->cCondDepth = (uint8_t)(idxStack + 1);
|
---|
6214 |
|
---|
6215 | uint16_t const uCondSeqNo = ++pReNative->uCondSeqNo;
|
---|
6216 | pEntry->fInElse = false;
|
---|
6217 | pEntry->idxLabelElse = iemNativeLabelCreate(pReNative, kIemNativeLabelType_Else, UINT32_MAX /*offWhere*/, uCondSeqNo);
|
---|
6218 | pEntry->idxLabelEndIf = iemNativeLabelCreate(pReNative, kIemNativeLabelType_Endif, UINT32_MAX /*offWhere*/, uCondSeqNo);
|
---|
6219 |
|
---|
6220 | return pEntry;
|
---|
6221 | }
|
---|
6222 |
|
---|
6223 |
|
---|
6224 | /**
|
---|
6225 | * Start of the if-block, snapshotting the register and variable state.
|
---|
6226 | */
|
---|
6227 | DECL_INLINE_THROW(void)
|
---|
6228 | iemNativeCondStartIfBlock(PIEMRECOMPILERSTATE pReNative, uint32_t offIfBlock, uint32_t idxLabelIf = UINT32_MAX)
|
---|
6229 | {
|
---|
6230 | Assert(offIfBlock != UINT32_MAX);
|
---|
6231 | Assert(pReNative->cCondDepth > 0 && pReNative->cCondDepth <= RT_ELEMENTS(pReNative->aCondStack));
|
---|
6232 | PIEMNATIVECOND const pEntry = &pReNative->aCondStack[pReNative->cCondDepth - 1];
|
---|
6233 | Assert(!pEntry->fInElse);
|
---|
6234 |
|
---|
6235 | /* Define the start of the IF block if request or for disassembly purposes. */
|
---|
6236 | if (idxLabelIf != UINT32_MAX)
|
---|
6237 | iemNativeLabelDefine(pReNative, idxLabelIf, offIfBlock);
|
---|
6238 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
6239 | else
|
---|
6240 | iemNativeLabelCreate(pReNative, kIemNativeLabelType_If, offIfBlock, pReNative->paLabels[pEntry->idxLabelElse].uData);
|
---|
6241 | #else
|
---|
6242 | RT_NOREF(offIfBlock);
|
---|
6243 | #endif
|
---|
6244 |
|
---|
6245 | /* Copy the initial state so we can restore it in the 'else' block. */
|
---|
6246 | pEntry->InitialState = pReNative->Core;
|
---|
6247 | }
|
---|
6248 |
|
---|
6249 |
|
---|
6250 | #define IEM_MC_ELSE() } while (0); \
|
---|
6251 | off = iemNativeEmitElse(pReNative, off); \
|
---|
6252 | do {
|
---|
6253 |
|
---|
6254 | /** Emits code related to IEM_MC_ELSE. */
|
---|
6255 | DECL_INLINE_THROW(uint32_t) iemNativeEmitElse(PIEMRECOMPILERSTATE pReNative, uint32_t off)
|
---|
6256 | {
|
---|
6257 | /* Check sanity and get the conditional stack entry. */
|
---|
6258 | Assert(off != UINT32_MAX);
|
---|
6259 | Assert(pReNative->cCondDepth > 0 && pReNative->cCondDepth <= RT_ELEMENTS(pReNative->aCondStack));
|
---|
6260 | PIEMNATIVECOND const pEntry = &pReNative->aCondStack[pReNative->cCondDepth - 1];
|
---|
6261 | Assert(!pEntry->fInElse);
|
---|
6262 |
|
---|
6263 | /* Jump to the endif */
|
---|
6264 | off = iemNativeEmitJmpToLabel(pReNative, off, pEntry->idxLabelEndIf);
|
---|
6265 |
|
---|
6266 | /* Define the else label and enter the else part of the condition. */
|
---|
6267 | iemNativeLabelDefine(pReNative, pEntry->idxLabelElse, off);
|
---|
6268 | pEntry->fInElse = true;
|
---|
6269 |
|
---|
6270 | /* Snapshot the core state so we can do a merge at the endif and restore
|
---|
6271 | the snapshot we took at the start of the if-block. */
|
---|
6272 | pEntry->IfFinalState = pReNative->Core;
|
---|
6273 | pReNative->Core = pEntry->InitialState;
|
---|
6274 |
|
---|
6275 | return off;
|
---|
6276 | }
|
---|
6277 |
|
---|
6278 |
|
---|
6279 | #define IEM_MC_ENDIF() } while (0); \
|
---|
6280 | off = iemNativeEmitEndIf(pReNative, off)
|
---|
6281 |
|
---|
6282 | /** Emits code related to IEM_MC_ENDIF. */
|
---|
6283 | DECL_INLINE_THROW(uint32_t) iemNativeEmitEndIf(PIEMRECOMPILERSTATE pReNative, uint32_t off)
|
---|
6284 | {
|
---|
6285 | /* Check sanity and get the conditional stack entry. */
|
---|
6286 | Assert(off != UINT32_MAX);
|
---|
6287 | Assert(pReNative->cCondDepth > 0 && pReNative->cCondDepth <= RT_ELEMENTS(pReNative->aCondStack));
|
---|
6288 | PIEMNATIVECOND const pEntry = &pReNative->aCondStack[pReNative->cCondDepth - 1];
|
---|
6289 |
|
---|
6290 | /*
|
---|
6291 | * Now we have find common group with the core state at the end of the
|
---|
6292 | * if-final. Use the smallest common denominator and just drop anything
|
---|
6293 | * that isn't the same in both states.
|
---|
6294 | */
|
---|
6295 | /** @todo We could, maybe, shuffle registers around if we thought it helpful,
|
---|
6296 | * which is why we're doing this at the end of the else-block.
|
---|
6297 | * But we'd need more info about future for that to be worth the effort. */
|
---|
6298 | PCIEMNATIVECORESTATE const pOther = pEntry->fInElse ? &pEntry->IfFinalState : &pEntry->InitialState;
|
---|
6299 | if (memcmp(&pReNative->Core, pOther, sizeof(*pOther)) != 0)
|
---|
6300 | {
|
---|
6301 | /* shadow guest stuff first. */
|
---|
6302 | uint64_t fGstRegs = pReNative->Core.bmGstRegShadows;
|
---|
6303 | if (fGstRegs)
|
---|
6304 | {
|
---|
6305 | Assert(pReNative->Core.bmHstRegsWithGstShadow != 0);
|
---|
6306 | do
|
---|
6307 | {
|
---|
6308 | unsigned idxGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
|
---|
6309 | fGstRegs &= ~RT_BIT_64(idxGstReg);
|
---|
6310 |
|
---|
6311 | uint8_t const idxHstReg = pReNative->Core.aidxGstRegShadows[idxGstReg];
|
---|
6312 | if ( !(pOther->bmGstRegShadows & RT_BIT_64(idxGstReg))
|
---|
6313 | || idxHstReg != pOther->aidxGstRegShadows[idxGstReg])
|
---|
6314 | {
|
---|
6315 | Log12(("iemNativeEmitEndIf: dropping gst %s from hst %s\n",
|
---|
6316 | g_aGstShadowInfo[idxGstReg].pszName, g_apszIemNativeHstRegNames[idxHstReg]));
|
---|
6317 | iemNativeRegClearGstRegShadowing(pReNative, idxHstReg, off);
|
---|
6318 | }
|
---|
6319 | } while (fGstRegs);
|
---|
6320 | }
|
---|
6321 | else
|
---|
6322 | Assert(pReNative->Core.bmHstRegsWithGstShadow == 0);
|
---|
6323 |
|
---|
6324 | /* Check variables next. For now we must require them to be identical
|
---|
6325 | or stuff we can recreate. */
|
---|
6326 | Assert(pReNative->Core.u64ArgVars == pOther->u64ArgVars);
|
---|
6327 | uint32_t fVars = pReNative->Core.bmVars | pOther->bmVars;
|
---|
6328 | if (fVars)
|
---|
6329 | {
|
---|
6330 | uint32_t const fVarsMustRemove = pReNative->Core.bmVars ^ pOther->bmVars;
|
---|
6331 | do
|
---|
6332 | {
|
---|
6333 | unsigned idxVar = ASMBitFirstSetU32(fVars) - 1;
|
---|
6334 | fVars &= ~RT_BIT_32(idxVar);
|
---|
6335 |
|
---|
6336 | if (!(fVarsMustRemove & RT_BIT_32(idxVar)))
|
---|
6337 | {
|
---|
6338 | if (pReNative->Core.aVars[idxVar].idxReg == pOther->aVars[idxVar].idxReg)
|
---|
6339 | continue;
|
---|
6340 | if (pReNative->Core.aVars[idxVar].enmKind != kIemNativeVarKind_Stack)
|
---|
6341 | {
|
---|
6342 | uint8_t const idxHstReg = pReNative->Core.aVars[idxVar].idxReg;
|
---|
6343 | if (idxHstReg != UINT8_MAX)
|
---|
6344 | {
|
---|
6345 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(idxHstReg);
|
---|
6346 | pReNative->Core.aVars[idxVar].idxReg = UINT8_MAX;
|
---|
6347 | Log12(("iemNativeEmitEndIf: Dropping hst reg %s for var #%u\n",
|
---|
6348 | g_apszIemNativeHstRegNames[idxHstReg], idxVar));
|
---|
6349 | }
|
---|
6350 | continue;
|
---|
6351 | }
|
---|
6352 | }
|
---|
6353 | else if (!(pReNative->Core.bmVars & RT_BIT_32(idxVar)))
|
---|
6354 | continue;
|
---|
6355 |
|
---|
6356 | /* Irreconcilable, so drop it. */
|
---|
6357 | uint8_t const idxHstReg = pReNative->Core.aVars[idxVar].idxReg;
|
---|
6358 | if (idxHstReg != UINT8_MAX)
|
---|
6359 | {
|
---|
6360 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(idxHstReg);
|
---|
6361 | pReNative->Core.aVars[idxVar].idxReg = UINT8_MAX;
|
---|
6362 | Log12(("iemNativeEmitEndIf: Dropping hst reg %s for var #%u (also dropped)\n",
|
---|
6363 | g_apszIemNativeHstRegNames[idxHstReg], idxVar));
|
---|
6364 | }
|
---|
6365 | Log11(("iemNativeEmitEndIf: Freeing variable #%u\n", idxVar));
|
---|
6366 | pReNative->Core.bmVars &= ~RT_BIT_32(idxVar);
|
---|
6367 | } while (fVars);
|
---|
6368 | }
|
---|
6369 |
|
---|
6370 | /* Finally, check that the host register allocations matches. */
|
---|
6371 | AssertMsgStmt(pReNative->Core.bmHstRegs == pOther->bmHstRegs,
|
---|
6372 | ("Core.bmHstRegs=%#x pOther->bmHstRegs=%#x - %#x\n",
|
---|
6373 | pReNative->Core.bmHstRegs, pOther->bmHstRegs, pReNative->Core.bmHstRegs ^ pOther->bmHstRegs),
|
---|
6374 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_COND_ENDIF_RECONCILIATION_FAILED));
|
---|
6375 | }
|
---|
6376 |
|
---|
6377 | /*
|
---|
6378 | * Define the endif label and maybe the else one if we're still in the 'if' part.
|
---|
6379 | */
|
---|
6380 | if (!pEntry->fInElse)
|
---|
6381 | iemNativeLabelDefine(pReNative, pEntry->idxLabelElse, off);
|
---|
6382 | else
|
---|
6383 | Assert(pReNative->paLabels[pEntry->idxLabelElse].off <= off);
|
---|
6384 | iemNativeLabelDefine(pReNative, pEntry->idxLabelEndIf, off);
|
---|
6385 |
|
---|
6386 | /* Pop the conditional stack.*/
|
---|
6387 | pReNative->cCondDepth -= 1;
|
---|
6388 |
|
---|
6389 | return off;
|
---|
6390 | }
|
---|
6391 |
|
---|
6392 |
|
---|
6393 | #define IEM_MC_IF_EFL_ANY_BITS_SET(a_fBits) \
|
---|
6394 | off = iemNativeEmitIfEflagAnysBitsSet(pReNative, off, (a_fBits)); \
|
---|
6395 | do {
|
---|
6396 |
|
---|
6397 | /** Emits code for IEM_MC_IF_EFL_ANY_BITS_SET. */
|
---|
6398 | DECL_INLINE_THROW(uint32_t) iemNativeEmitIfEflagAnysBitsSet(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fBitsInEfl)
|
---|
6399 | {
|
---|
6400 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
6401 |
|
---|
6402 | /* Get the eflags. */
|
---|
6403 | uint8_t const idxEflReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_EFlags,
|
---|
6404 | kIemNativeGstRegUse_ReadOnly);
|
---|
6405 |
|
---|
6406 | /* Test and jump. */
|
---|
6407 | off = iemNativeEmitTestAnyBitsInGprAndJmpToLabelIfNoneSet(pReNative, off, idxEflReg, fBitsInEfl, pEntry->idxLabelElse);
|
---|
6408 |
|
---|
6409 | /* Free but don't flush the EFlags register. */
|
---|
6410 | iemNativeRegFreeTmp(pReNative, idxEflReg);
|
---|
6411 |
|
---|
6412 | /* Make a copy of the core state now as we start the if-block. */
|
---|
6413 | iemNativeCondStartIfBlock(pReNative, off);
|
---|
6414 |
|
---|
6415 | return off;
|
---|
6416 | }
|
---|
6417 |
|
---|
6418 |
|
---|
6419 | #define IEM_MC_IF_EFL_NO_BITS_SET(a_fBits) \
|
---|
6420 | off = iemNativeEmitIfEflagNoBitsSet(pReNative, off, (a_fBits)); \
|
---|
6421 | do {
|
---|
6422 |
|
---|
6423 | /** Emits code for IEM_MC_IF_EFL_NO_BITS_SET. */
|
---|
6424 | DECL_INLINE_THROW(uint32_t) iemNativeEmitIfEflagNoBitsSet(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fBitsInEfl)
|
---|
6425 | {
|
---|
6426 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
6427 |
|
---|
6428 | /* Get the eflags. */
|
---|
6429 | uint8_t const idxEflReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_EFlags,
|
---|
6430 | kIemNativeGstRegUse_ReadOnly);
|
---|
6431 |
|
---|
6432 | /* Test and jump. */
|
---|
6433 | off = iemNativeEmitTestAnyBitsInGprAndJmpToLabelIfAnySet(pReNative, off, idxEflReg, fBitsInEfl, pEntry->idxLabelElse);
|
---|
6434 |
|
---|
6435 | /* Free but don't flush the EFlags register. */
|
---|
6436 | iemNativeRegFreeTmp(pReNative, idxEflReg);
|
---|
6437 |
|
---|
6438 | /* Make a copy of the core state now as we start the if-block. */
|
---|
6439 | iemNativeCondStartIfBlock(pReNative, off);
|
---|
6440 |
|
---|
6441 | return off;
|
---|
6442 | }
|
---|
6443 |
|
---|
6444 |
|
---|
6445 | #define IEM_MC_IF_EFL_BIT_SET(a_fBit) \
|
---|
6446 | off = iemNativeEmitIfEflagsBitSet(pReNative, off, (a_fBit)); \
|
---|
6447 | do {
|
---|
6448 |
|
---|
6449 | /** Emits code for IEM_MC_IF_EFL_BIT_SET. */
|
---|
6450 | DECL_INLINE_THROW(uint32_t) iemNativeEmitIfEflagsBitSet(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fBitInEfl)
|
---|
6451 | {
|
---|
6452 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
6453 |
|
---|
6454 | /* Get the eflags. */
|
---|
6455 | uint8_t const idxEflReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_EFlags,
|
---|
6456 | kIemNativeGstRegUse_ReadOnly);
|
---|
6457 |
|
---|
6458 | unsigned const iBitNo = ASMBitFirstSetU32(fBitInEfl) - 1;
|
---|
6459 | Assert(RT_BIT_32(iBitNo) == fBitInEfl);
|
---|
6460 |
|
---|
6461 | /* Test and jump. */
|
---|
6462 | off = iemNativeEmitTestBitInGprAndJmpToLabelIfNotSet(pReNative, off, idxEflReg, iBitNo, pEntry->idxLabelElse);
|
---|
6463 |
|
---|
6464 | /* Free but don't flush the EFlags register. */
|
---|
6465 | iemNativeRegFreeTmp(pReNative, idxEflReg);
|
---|
6466 |
|
---|
6467 | /* Make a copy of the core state now as we start the if-block. */
|
---|
6468 | iemNativeCondStartIfBlock(pReNative, off);
|
---|
6469 |
|
---|
6470 | return off;
|
---|
6471 | }
|
---|
6472 |
|
---|
6473 |
|
---|
6474 | #define IEM_MC_IF_EFL_BIT_NOT_SET(a_fBit) \
|
---|
6475 | off = iemNativeEmitIfEflagsBitNotSet(pReNative, off, (a_fBit)); \
|
---|
6476 | do {
|
---|
6477 |
|
---|
6478 | /** Emits code for IEM_MC_IF_EFL_BIT_NOT_SET. */
|
---|
6479 | DECL_INLINE_THROW(uint32_t) iemNativeEmitIfEflagsBitNotSet(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fBitInEfl)
|
---|
6480 | {
|
---|
6481 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
6482 |
|
---|
6483 | /* Get the eflags. */
|
---|
6484 | uint8_t const idxEflReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_EFlags,
|
---|
6485 | kIemNativeGstRegUse_ReadOnly);
|
---|
6486 |
|
---|
6487 | unsigned const iBitNo = ASMBitFirstSetU32(fBitInEfl) - 1;
|
---|
6488 | Assert(RT_BIT_32(iBitNo) == fBitInEfl);
|
---|
6489 |
|
---|
6490 | /* Test and jump. */
|
---|
6491 | off = iemNativeEmitTestBitInGprAndJmpToLabelIfSet(pReNative, off, idxEflReg, iBitNo, pEntry->idxLabelElse);
|
---|
6492 |
|
---|
6493 | /* Free but don't flush the EFlags register. */
|
---|
6494 | iemNativeRegFreeTmp(pReNative, idxEflReg);
|
---|
6495 |
|
---|
6496 | /* Make a copy of the core state now as we start the if-block. */
|
---|
6497 | iemNativeCondStartIfBlock(pReNative, off);
|
---|
6498 |
|
---|
6499 | return off;
|
---|
6500 | }
|
---|
6501 |
|
---|
6502 |
|
---|
6503 | #define IEM_MC_IF_EFL_BITS_EQ(a_fBit1, a_fBit2) \
|
---|
6504 | off = iemNativeEmitIfEflagsTwoBitsEqual(pReNative, off, a_fBit1, a_fBit2, false /*fInverted*/); \
|
---|
6505 | do {
|
---|
6506 |
|
---|
6507 | #define IEM_MC_IF_EFL_BITS_NE(a_fBit1, a_fBit2) \
|
---|
6508 | off = iemNativeEmitIfEflagsTwoBitsEqual(pReNative, off, a_fBit1, a_fBit2, true /*fInverted*/); \
|
---|
6509 | do {
|
---|
6510 |
|
---|
6511 | /** Emits code for IEM_MC_IF_EFL_BITS_EQ and IEM_MC_IF_EFL_BITS_NE. */
|
---|
6512 | DECL_INLINE_THROW(uint32_t)
|
---|
6513 | iemNativeEmitIfEflagsTwoBitsEqual(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
6514 | uint32_t fBit1InEfl, uint32_t fBit2InEfl, bool fInverted)
|
---|
6515 | {
|
---|
6516 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
6517 |
|
---|
6518 | /* Get the eflags. */
|
---|
6519 | uint8_t const idxEflReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_EFlags,
|
---|
6520 | kIemNativeGstRegUse_ReadOnly);
|
---|
6521 |
|
---|
6522 | unsigned const iBitNo1 = ASMBitFirstSetU32(fBit1InEfl) - 1;
|
---|
6523 | Assert(RT_BIT_32(iBitNo1) == fBit1InEfl);
|
---|
6524 |
|
---|
6525 | unsigned const iBitNo2 = ASMBitFirstSetU32(fBit2InEfl) - 1;
|
---|
6526 | Assert(RT_BIT_32(iBitNo2) == fBit2InEfl);
|
---|
6527 | Assert(iBitNo1 != iBitNo2);
|
---|
6528 |
|
---|
6529 | #ifdef RT_ARCH_AMD64
|
---|
6530 | uint8_t const idxTmpReg = iemNativeRegAllocTmpImm(pReNative, &off, fBit1InEfl);
|
---|
6531 |
|
---|
6532 | off = iemNativeEmitAndGpr32ByGpr32(pReNative, off, idxTmpReg, idxEflReg);
|
---|
6533 | if (iBitNo1 > iBitNo2)
|
---|
6534 | off = iemNativeEmitShiftGpr32Right(pReNative, off, idxTmpReg, iBitNo1 - iBitNo2);
|
---|
6535 | else
|
---|
6536 | off = iemNativeEmitShiftGpr32Left(pReNative, off, idxTmpReg, iBitNo2 - iBitNo1);
|
---|
6537 | off = iemNativeEmitXorGpr32ByGpr32(pReNative, off, idxTmpReg, idxEflReg);
|
---|
6538 |
|
---|
6539 | #elif defined(RT_ARCH_ARM64)
|
---|
6540 | uint8_t const idxTmpReg = iemNativeRegAllocTmp(pReNative, &off);
|
---|
6541 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 2);
|
---|
6542 |
|
---|
6543 | /* and tmpreg, eflreg, #1<<iBitNo1 */
|
---|
6544 | pu32CodeBuf[off++] = Armv8A64MkInstrAndImm(idxTmpReg, idxEflReg, 0 /*uImm7SizeLen -> 32*/, 32 - iBitNo1, false /*f64Bit*/);
|
---|
6545 |
|
---|
6546 | /* eeyore tmpreg, eflreg, tmpreg, LSL/LSR, #abs(iBitNo2 - iBitNo1) */
|
---|
6547 | if (iBitNo1 > iBitNo2)
|
---|
6548 | pu32CodeBuf[off++] = Armv8A64MkInstrEor(idxTmpReg, idxEflReg, idxTmpReg, false /*64bit*/,
|
---|
6549 | iBitNo1 - iBitNo2, kArmv8A64InstrShift_Lsr);
|
---|
6550 | else
|
---|
6551 | pu32CodeBuf[off++] = Armv8A64MkInstrEor(idxTmpReg, idxEflReg, idxTmpReg, false /*64bit*/,
|
---|
6552 | iBitNo2 - iBitNo1, kArmv8A64InstrShift_Lsl);
|
---|
6553 |
|
---|
6554 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
6555 |
|
---|
6556 | #else
|
---|
6557 | # error "Port me"
|
---|
6558 | #endif
|
---|
6559 |
|
---|
6560 | /* Test (bit #2 is set in tmpreg if not-equal) and jump. */
|
---|
6561 | off = iemNativeEmitTestBitInGprAndJmpToLabelIfCc(pReNative, off, idxTmpReg, iBitNo2,
|
---|
6562 | pEntry->idxLabelElse, !fInverted /*fJmpIfSet*/);
|
---|
6563 |
|
---|
6564 | /* Free but don't flush the EFlags and tmp registers. */
|
---|
6565 | iemNativeRegFreeTmp(pReNative, idxTmpReg);
|
---|
6566 | iemNativeRegFreeTmp(pReNative, idxEflReg);
|
---|
6567 |
|
---|
6568 | /* Make a copy of the core state now as we start the if-block. */
|
---|
6569 | iemNativeCondStartIfBlock(pReNative, off);
|
---|
6570 |
|
---|
6571 | return off;
|
---|
6572 | }
|
---|
6573 |
|
---|
6574 |
|
---|
6575 | #define IEM_MC_IF_EFL_BIT_NOT_SET_AND_BITS_EQ(a_fBit, a_fBit1, a_fBit2) \
|
---|
6576 | off = iemNativeEmitIfEflagsBitNotSetAndTwoBitsEqual(pReNative, off, a_fBit, a_fBit1, a_fBit2, false /*fInverted*/); \
|
---|
6577 | do {
|
---|
6578 |
|
---|
6579 | #define IEM_MC_IF_EFL_BIT_SET_OR_BITS_NE(a_fBit, a_fBit1, a_fBit2) \
|
---|
6580 | off = iemNativeEmitIfEflagsBitNotSetAndTwoBitsEqual(pReNative, off, a_fBit, a_fBit1, a_fBit2, true /*fInverted*/); \
|
---|
6581 | do {
|
---|
6582 |
|
---|
6583 | /** Emits code for IEM_MC_IF_EFL_BIT_NOT_SET_AND_BITS_EQ and
|
---|
6584 | * IEM_MC_IF_EFL_BIT_SET_OR_BITS_NE. */
|
---|
6585 | DECL_INLINE_THROW(uint32_t)
|
---|
6586 | iemNativeEmitIfEflagsBitNotSetAndTwoBitsEqual(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fBitInEfl,
|
---|
6587 | uint32_t fBit1InEfl, uint32_t fBit2InEfl, bool fInverted)
|
---|
6588 | {
|
---|
6589 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
6590 |
|
---|
6591 | /* We need an if-block label for the non-inverted variant. */
|
---|
6592 | uint32_t const idxLabelIf = fInverted ? iemNativeLabelCreate(pReNative, kIemNativeLabelType_If, UINT32_MAX,
|
---|
6593 | pReNative->paLabels[pEntry->idxLabelElse].uData) : UINT32_MAX;
|
---|
6594 |
|
---|
6595 | /* Get the eflags. */
|
---|
6596 | uint8_t const idxEflReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_EFlags,
|
---|
6597 | kIemNativeGstRegUse_ReadOnly);
|
---|
6598 |
|
---|
6599 | /* Translate the flag masks to bit numbers. */
|
---|
6600 | unsigned const iBitNo = ASMBitFirstSetU32(fBitInEfl) - 1;
|
---|
6601 | Assert(RT_BIT_32(iBitNo) == fBitInEfl);
|
---|
6602 |
|
---|
6603 | unsigned const iBitNo1 = ASMBitFirstSetU32(fBit1InEfl) - 1;
|
---|
6604 | Assert(RT_BIT_32(iBitNo1) == fBit1InEfl);
|
---|
6605 | Assert(iBitNo1 != iBitNo);
|
---|
6606 |
|
---|
6607 | unsigned const iBitNo2 = ASMBitFirstSetU32(fBit2InEfl) - 1;
|
---|
6608 | Assert(RT_BIT_32(iBitNo2) == fBit2InEfl);
|
---|
6609 | Assert(iBitNo2 != iBitNo);
|
---|
6610 | Assert(iBitNo2 != iBitNo1);
|
---|
6611 |
|
---|
6612 | #ifdef RT_ARCH_AMD64
|
---|
6613 | uint8_t const idxTmpReg = iemNativeRegAllocTmpImm(pReNative, &off, fBit1InEfl); /* This must come before we jump anywhere! */
|
---|
6614 | #elif defined(RT_ARCH_ARM64)
|
---|
6615 | uint8_t const idxTmpReg = iemNativeRegAllocTmp(pReNative, &off);
|
---|
6616 | #endif
|
---|
6617 |
|
---|
6618 | /* Check for the lone bit first. */
|
---|
6619 | if (!fInverted)
|
---|
6620 | off = iemNativeEmitTestBitInGprAndJmpToLabelIfSet(pReNative, off, idxEflReg, iBitNo, pEntry->idxLabelElse);
|
---|
6621 | else
|
---|
6622 | off = iemNativeEmitTestBitInGprAndJmpToLabelIfSet(pReNative, off, idxEflReg, iBitNo, idxLabelIf);
|
---|
6623 |
|
---|
6624 | /* Then extract and compare the other two bits. */
|
---|
6625 | #ifdef RT_ARCH_AMD64
|
---|
6626 | off = iemNativeEmitAndGpr32ByGpr32(pReNative, off, idxTmpReg, idxEflReg);
|
---|
6627 | if (iBitNo1 > iBitNo2)
|
---|
6628 | off = iemNativeEmitShiftGpr32Right(pReNative, off, idxTmpReg, iBitNo1 - iBitNo2);
|
---|
6629 | else
|
---|
6630 | off = iemNativeEmitShiftGpr32Left(pReNative, off, idxTmpReg, iBitNo2 - iBitNo1);
|
---|
6631 | off = iemNativeEmitXorGpr32ByGpr32(pReNative, off, idxTmpReg, idxEflReg);
|
---|
6632 |
|
---|
6633 | #elif defined(RT_ARCH_ARM64)
|
---|
6634 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 2);
|
---|
6635 |
|
---|
6636 | /* and tmpreg, eflreg, #1<<iBitNo1 */
|
---|
6637 | pu32CodeBuf[off++] = Armv8A64MkInstrAndImm(idxTmpReg, idxEflReg, 0 /*uImm7SizeLen -> 32*/, 32 - iBitNo1, false /*f64Bit*/);
|
---|
6638 |
|
---|
6639 | /* eeyore tmpreg, eflreg, tmpreg, LSL/LSR, #abs(iBitNo2 - iBitNo1) */
|
---|
6640 | if (iBitNo1 > iBitNo2)
|
---|
6641 | pu32CodeBuf[off++] = Armv8A64MkInstrEor(idxTmpReg, idxEflReg, idxTmpReg, false /*64bit*/,
|
---|
6642 | iBitNo1 - iBitNo2, kArmv8A64InstrShift_Lsr);
|
---|
6643 | else
|
---|
6644 | pu32CodeBuf[off++] = Armv8A64MkInstrEor(idxTmpReg, idxEflReg, idxTmpReg, false /*64bit*/,
|
---|
6645 | iBitNo2 - iBitNo1, kArmv8A64InstrShift_Lsl);
|
---|
6646 |
|
---|
6647 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
6648 |
|
---|
6649 | #else
|
---|
6650 | # error "Port me"
|
---|
6651 | #endif
|
---|
6652 |
|
---|
6653 | /* Test (bit #2 is set in tmpreg if not-equal) and jump. */
|
---|
6654 | off = iemNativeEmitTestBitInGprAndJmpToLabelIfCc(pReNative, off, idxTmpReg, iBitNo2,
|
---|
6655 | pEntry->idxLabelElse, !fInverted /*fJmpIfSet*/);
|
---|
6656 |
|
---|
6657 | /* Free but don't flush the EFlags and tmp registers. */
|
---|
6658 | iemNativeRegFreeTmp(pReNative, idxTmpReg);
|
---|
6659 | iemNativeRegFreeTmp(pReNative, idxEflReg);
|
---|
6660 |
|
---|
6661 | /* Make a copy of the core state now as we start the if-block. */
|
---|
6662 | iemNativeCondStartIfBlock(pReNative, off, idxLabelIf);
|
---|
6663 |
|
---|
6664 | return off;
|
---|
6665 | }
|
---|
6666 |
|
---|
6667 |
|
---|
6668 | #define IEM_MC_IF_CX_IS_NZ() \
|
---|
6669 | off = iemNativeEmitIfCxIsNotZero(pReNative, off); \
|
---|
6670 | do {
|
---|
6671 |
|
---|
6672 | /** Emits code for IEM_MC_IF_CX_IS_NZ. */
|
---|
6673 | DECL_INLINE_THROW(uint32_t) iemNativeEmitIfCxIsNotZero(PIEMRECOMPILERSTATE pReNative, uint32_t off)
|
---|
6674 | {
|
---|
6675 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
6676 |
|
---|
6677 | uint8_t const idxGstRcxReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(X86_GREG_xCX),
|
---|
6678 | kIemNativeGstRegUse_ReadOnly);
|
---|
6679 | off = iemNativeEmitTestAnyBitsInGprAndJmpToLabelIfNoneSet(pReNative, off, idxGstRcxReg, UINT16_MAX, pEntry->idxLabelElse);
|
---|
6680 | iemNativeRegFreeTmp(pReNative, idxGstRcxReg);
|
---|
6681 |
|
---|
6682 | iemNativeCondStartIfBlock(pReNative, off);
|
---|
6683 | return off;
|
---|
6684 | }
|
---|
6685 |
|
---|
6686 |
|
---|
6687 | #define IEM_MC_IF_ECX_IS_NZ() \
|
---|
6688 | off = iemNativeEmitIfRcxEcxIsNotZero(pReNative, off, false /*f64Bit*/); \
|
---|
6689 | do {
|
---|
6690 |
|
---|
6691 | #define IEM_MC_IF_RCX_IS_NZ() \
|
---|
6692 | off = iemNativeEmitIfRcxEcxIsNotZero(pReNative, off, true /*f64Bit*/); \
|
---|
6693 | do {
|
---|
6694 |
|
---|
6695 | /** Emits code for IEM_MC_IF_ECX_IS_NZ and IEM_MC_IF_RCX_IS_NZ. */
|
---|
6696 | DECL_INLINE_THROW(uint32_t) iemNativeEmitIfRcxEcxIsNotZero(PIEMRECOMPILERSTATE pReNative, uint32_t off, bool f64Bit)
|
---|
6697 | {
|
---|
6698 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
6699 |
|
---|
6700 | uint8_t const idxGstRcxReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(X86_GREG_xCX),
|
---|
6701 | kIemNativeGstRegUse_ReadOnly);
|
---|
6702 | off = iemNativeEmitTestIfGprIsZeroAndJmpToLabel(pReNative, off, idxGstRcxReg, f64Bit, pEntry->idxLabelElse);
|
---|
6703 | iemNativeRegFreeTmp(pReNative, idxGstRcxReg);
|
---|
6704 |
|
---|
6705 | iemNativeCondStartIfBlock(pReNative, off);
|
---|
6706 | return off;
|
---|
6707 | }
|
---|
6708 |
|
---|
6709 |
|
---|
6710 | #define IEM_MC_IF_CX_IS_NOT_ONE() \
|
---|
6711 | off = iemNativeEmitIfCxIsNotOne(pReNative, off); \
|
---|
6712 | do {
|
---|
6713 |
|
---|
6714 | /** Emits code for IEM_MC_IF_CX_IS_NOT_ONE. */
|
---|
6715 | DECL_INLINE_THROW(uint32_t) iemNativeEmitIfCxIsNotOne(PIEMRECOMPILERSTATE pReNative, uint32_t off)
|
---|
6716 | {
|
---|
6717 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
6718 |
|
---|
6719 | uint8_t const idxGstRcxReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(X86_GREG_xCX),
|
---|
6720 | kIemNativeGstRegUse_ReadOnly);
|
---|
6721 | #ifdef RT_ARCH_AMD64
|
---|
6722 | off = iemNativeEmitTestIfGpr16EqualsImmAndJmpToLabel(pReNative, off, idxGstRcxReg, 1, pEntry->idxLabelElse);
|
---|
6723 | #else
|
---|
6724 | uint8_t const idxTmpReg = iemNativeRegAllocTmp(pReNative, &off);
|
---|
6725 | off = iemNativeEmitTestIfGpr16EqualsImmAndJmpToLabel(pReNative, off, idxGstRcxReg, 1, pEntry->idxLabelElse, idxTmpReg);
|
---|
6726 | iemNativeRegFreeTmp(pReNative, idxTmpReg);
|
---|
6727 | #endif
|
---|
6728 | iemNativeRegFreeTmp(pReNative, idxGstRcxReg);
|
---|
6729 |
|
---|
6730 | iemNativeCondStartIfBlock(pReNative, off);
|
---|
6731 | return off;
|
---|
6732 | }
|
---|
6733 |
|
---|
6734 |
|
---|
6735 | #define IEM_MC_IF_ECX_IS_NOT_ONE() \
|
---|
6736 | off = iemNativeEmitIfRcxEcxIsNotOne(pReNative, off, false /*f64Bit*/); \
|
---|
6737 | do {
|
---|
6738 |
|
---|
6739 | #define IEM_MC_IF_RCX_IS_NOT_ONE() \
|
---|
6740 | off = iemNativeEmitIfRcxEcxIsNotOne(pReNative, off, true /*f64Bit*/); \
|
---|
6741 | do {
|
---|
6742 |
|
---|
6743 | /** Emits code for IEM_MC_IF_ECX_IS_NOT_ONE and IEM_MC_IF_RCX_IS_NOT_ONE. */
|
---|
6744 | DECL_INLINE_THROW(uint32_t) iemNativeEmitIfRcxEcxIsNotOne(PIEMRECOMPILERSTATE pReNative, uint32_t off, bool f64Bit)
|
---|
6745 | {
|
---|
6746 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
6747 |
|
---|
6748 | uint8_t const idxGstRcxReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(X86_GREG_xCX),
|
---|
6749 | kIemNativeGstRegUse_ReadOnly);
|
---|
6750 | if (f64Bit)
|
---|
6751 | off = iemNativeEmitTestIfGprEqualsImmAndJmpToLabel(pReNative, off, idxGstRcxReg, 1, pEntry->idxLabelElse);
|
---|
6752 | else
|
---|
6753 | off = iemNativeEmitTestIfGpr32EqualsImmAndJmpToLabel(pReNative, off, idxGstRcxReg, 1, pEntry->idxLabelElse);
|
---|
6754 | iemNativeRegFreeTmp(pReNative, idxGstRcxReg);
|
---|
6755 |
|
---|
6756 | iemNativeCondStartIfBlock(pReNative, off);
|
---|
6757 | return off;
|
---|
6758 | }
|
---|
6759 |
|
---|
6760 |
|
---|
6761 | #define IEM_MC_IF_CX_IS_NOT_ONE_AND_EFL_BIT_SET(a_fBit) \
|
---|
6762 | off = iemNativeEmitIfCxIsNotOneAndTestEflagsBit(pReNative, off, a_fBit, true /*fCheckIfSet*/); \
|
---|
6763 | do {
|
---|
6764 |
|
---|
6765 | #define IEM_MC_IF_CX_IS_NOT_ONE_AND_EFL_BIT_NOT_SET(a_fBit) \
|
---|
6766 | off = iemNativeEmitIfCxIsNotOneAndTestEflagsBit(pReNative, off, a_fBit, false /*fCheckIfSet*/); \
|
---|
6767 | do {
|
---|
6768 |
|
---|
6769 | /** Emits code for IEM_MC_IF_CX_IS_NOT_ONE_AND_EFL_BIT_SET and
|
---|
6770 | * IEM_MC_IF_CX_IS_NOT_ONE_AND_EFL_BIT_NOT_SET. */
|
---|
6771 | DECL_INLINE_THROW(uint32_t)
|
---|
6772 | iemNativeEmitIfCxIsNotOneAndTestEflagsBit(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fBitInEfl, bool fCheckIfSet)
|
---|
6773 | {
|
---|
6774 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
6775 |
|
---|
6776 | /* We have to load both RCX and EFLAGS before we can start branching,
|
---|
6777 | otherwise we'll end up in the else-block with an inconsistent
|
---|
6778 | register allocator state.
|
---|
6779 | Doing EFLAGS first as it's more likely to be loaded, right? */
|
---|
6780 | uint8_t const idxEflReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_EFlags,
|
---|
6781 | kIemNativeGstRegUse_ReadOnly);
|
---|
6782 | uint8_t const idxGstRcxReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(X86_GREG_xCX),
|
---|
6783 | kIemNativeGstRegUse_ReadOnly);
|
---|
6784 |
|
---|
6785 | /** @todo we could reduce this to a single branch instruction by spending a
|
---|
6786 | * temporary register and some setnz stuff. Not sure if loops are
|
---|
6787 | * worth it. */
|
---|
6788 | /* Check CX. */
|
---|
6789 | #ifdef RT_ARCH_AMD64
|
---|
6790 | off = iemNativeEmitTestIfGpr16EqualsImmAndJmpToLabel(pReNative, off, idxGstRcxReg, 1, pEntry->idxLabelElse);
|
---|
6791 | #else
|
---|
6792 | uint8_t const idxTmpReg = iemNativeRegAllocTmp(pReNative, &off);
|
---|
6793 | off = iemNativeEmitTestIfGpr16EqualsImmAndJmpToLabel(pReNative, off, idxGstRcxReg, 1, pEntry->idxLabelElse, idxTmpReg);
|
---|
6794 | iemNativeRegFreeTmp(pReNative, idxTmpReg);
|
---|
6795 | #endif
|
---|
6796 |
|
---|
6797 | /* Check the EFlags bit. */
|
---|
6798 | unsigned const iBitNo = ASMBitFirstSetU32(fBitInEfl) - 1;
|
---|
6799 | Assert(RT_BIT_32(iBitNo) == fBitInEfl);
|
---|
6800 | off = iemNativeEmitTestBitInGprAndJmpToLabelIfCc(pReNative, off, idxEflReg, iBitNo, pEntry->idxLabelElse,
|
---|
6801 | !fCheckIfSet /*fJmpIfSet*/);
|
---|
6802 |
|
---|
6803 | iemNativeRegFreeTmp(pReNative, idxGstRcxReg);
|
---|
6804 | iemNativeRegFreeTmp(pReNative, idxEflReg);
|
---|
6805 |
|
---|
6806 | iemNativeCondStartIfBlock(pReNative, off);
|
---|
6807 | return off;
|
---|
6808 | }
|
---|
6809 |
|
---|
6810 |
|
---|
6811 | #define IEM_MC_IF_ECX_IS_NOT_ONE_AND_EFL_BIT_SET(a_fBit) \
|
---|
6812 | off = iemNativeEmitIfRcxEcxIsNotOneAndTestEflagsBit(pReNative, off, a_fBit, true /*fCheckIfSet*/, false /*f64Bit*/); \
|
---|
6813 | do {
|
---|
6814 |
|
---|
6815 | #define IEM_MC_IF_ECX_IS_NOT_ONE_AND_EFL_BIT_NOT_SET(a_fBit) \
|
---|
6816 | off = iemNativeEmitIfRcxEcxIsNotOneAndTestEflagsBit(pReNative, off, a_fBit, false /*fCheckIfSet*/, false /*f64Bit*/); \
|
---|
6817 | do {
|
---|
6818 |
|
---|
6819 | #define IEM_MC_IF_RCX_IS_NOT_ONE_AND_EFL_BIT_SET(a_fBit) \
|
---|
6820 | off = iemNativeEmitIfRcxEcxIsNotOneAndTestEflagsBit(pReNative, off, a_fBit, true /*fCheckIfSet*/, true /*f64Bit*/); \
|
---|
6821 | do {
|
---|
6822 |
|
---|
6823 | #define IEM_MC_IF_RCX_IS_NOT_ONE_AND_EFL_BIT_NOT_SET(a_fBit) \
|
---|
6824 | off = iemNativeEmitIfRcxEcxIsNotOneAndTestEflagsBit(pReNative, off, a_fBit, false /*fCheckIfSet*/, true /*f64Bit*/); \
|
---|
6825 | do {
|
---|
6826 |
|
---|
6827 | /** Emits code for IEM_MC_IF_ECX_IS_NOT_ONE_AND_EFL_BIT_SET,
|
---|
6828 | * IEM_MC_IF_ECX_IS_NOT_ONE_AND_EFL_BIT_NOT_SET,
|
---|
6829 | * IEM_MC_IF_RCX_IS_NOT_ONE_AND_EFL_BIT_SET and
|
---|
6830 | * IEM_MC_IF_RCX_IS_NOT_ONE_AND_EFL_BIT_NOT_SET. */
|
---|
6831 | DECL_INLINE_THROW(uint32_t)
|
---|
6832 | iemNativeEmitIfRcxEcxIsNotOneAndTestEflagsBit(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
6833 | uint32_t fBitInEfl, bool fCheckIfSet, bool f64Bit)
|
---|
6834 | {
|
---|
6835 | PIEMNATIVECOND const pEntry = iemNativeCondPushIf(pReNative);
|
---|
6836 |
|
---|
6837 | /* We have to load both RCX and EFLAGS before we can start branching,
|
---|
6838 | otherwise we'll end up in the else-block with an inconsistent
|
---|
6839 | register allocator state.
|
---|
6840 | Doing EFLAGS first as it's more likely to be loaded, right? */
|
---|
6841 | uint8_t const idxEflReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_EFlags,
|
---|
6842 | kIemNativeGstRegUse_ReadOnly);
|
---|
6843 | uint8_t const idxGstRcxReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(X86_GREG_xCX),
|
---|
6844 | kIemNativeGstRegUse_ReadOnly);
|
---|
6845 |
|
---|
6846 | /** @todo we could reduce this to a single branch instruction by spending a
|
---|
6847 | * temporary register and some setnz stuff. Not sure if loops are
|
---|
6848 | * worth it. */
|
---|
6849 | /* Check RCX/ECX. */
|
---|
6850 | if (f64Bit)
|
---|
6851 | off = iemNativeEmitTestIfGprEqualsImmAndJmpToLabel(pReNative, off, idxGstRcxReg, 1, pEntry->idxLabelElse);
|
---|
6852 | else
|
---|
6853 | off = iemNativeEmitTestIfGpr32EqualsImmAndJmpToLabel(pReNative, off, idxGstRcxReg, 1, pEntry->idxLabelElse);
|
---|
6854 |
|
---|
6855 | /* Check the EFlags bit. */
|
---|
6856 | unsigned const iBitNo = ASMBitFirstSetU32(fBitInEfl) - 1;
|
---|
6857 | Assert(RT_BIT_32(iBitNo) == fBitInEfl);
|
---|
6858 | off = iemNativeEmitTestBitInGprAndJmpToLabelIfCc(pReNative, off, idxEflReg, iBitNo, pEntry->idxLabelElse,
|
---|
6859 | !fCheckIfSet /*fJmpIfSet*/);
|
---|
6860 |
|
---|
6861 | iemNativeRegFreeTmp(pReNative, idxGstRcxReg);
|
---|
6862 | iemNativeRegFreeTmp(pReNative, idxEflReg);
|
---|
6863 |
|
---|
6864 | iemNativeCondStartIfBlock(pReNative, off);
|
---|
6865 | return off;
|
---|
6866 | }
|
---|
6867 |
|
---|
6868 |
|
---|
6869 |
|
---|
6870 | /*********************************************************************************************************************************
|
---|
6871 | * Emitters for IEM_MC_ARG_XXX, IEM_MC_LOCAL, IEM_MC_LOCAL_CONST, ++ *
|
---|
6872 | *********************************************************************************************************************************/
|
---|
6873 | /** Number of hidden arguments for CIMPL calls.
|
---|
6874 | * @note We're sufferning from the usual VBOXSTRICTRC fun on Windows. */
|
---|
6875 | #if defined(VBOXSTRICTRC_STRICT_ENABLED) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64)
|
---|
6876 | # define IEM_CIMPL_HIDDEN_ARGS 3
|
---|
6877 | #else
|
---|
6878 | # define IEM_CIMPL_HIDDEN_ARGS 2
|
---|
6879 | #endif
|
---|
6880 |
|
---|
6881 | #define IEM_MC_ARG(a_Type, a_Name, a_iArg) \
|
---|
6882 | uint8_t const a_Name = iemNativeArgAlloc(pReNative, (a_iArg), sizeof(a_Type))
|
---|
6883 |
|
---|
6884 | #define IEM_MC_ARG_CONST(a_Type, a_Name, a_Value, a_iArg) \
|
---|
6885 | uint8_t const a_Name = iemNativeArgAllocConst(pReNative, (a_iArg), sizeof(a_Type), (a_Value))
|
---|
6886 |
|
---|
6887 | #define IEM_MC_ARG_LOCAL_REF(a_Type, a_Name, a_Local, a_iArg) \
|
---|
6888 | uint8_t const a_Name = iemNativeArgAllocLocalRef(pReNative, (a_iArg), (a_Local))
|
---|
6889 |
|
---|
6890 | #define IEM_MC_LOCAL(a_Type, a_Name) \
|
---|
6891 | uint8_t const a_Name = iemNativeVarAlloc(pReNative, sizeof(a_Type))
|
---|
6892 |
|
---|
6893 | #define IEM_MC_LOCAL_CONST(a_Type, a_Name, a_Value) \
|
---|
6894 | uint8_t const a_Name = iemNativeVarAllocConst(pReNative, sizeof(a_Type), (a_Value))
|
---|
6895 |
|
---|
6896 |
|
---|
6897 | /**
|
---|
6898 | * Gets the number of hidden arguments for an expected IEM_MC_CALL statement.
|
---|
6899 | */
|
---|
6900 | DECLINLINE(uint8_t) iemNativeArgGetHiddenArgCount(PIEMRECOMPILERSTATE pReNative)
|
---|
6901 | {
|
---|
6902 | if (pReNative->fCImpl & IEM_CIMPL_F_CALLS_CIMPL)
|
---|
6903 | return IEM_CIMPL_HIDDEN_ARGS;
|
---|
6904 | if (pReNative->fCImpl & IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE)
|
---|
6905 | return 1;
|
---|
6906 | return 0;
|
---|
6907 | }
|
---|
6908 |
|
---|
6909 |
|
---|
6910 | /**
|
---|
6911 | * Internal work that allocates a variable with kind set to
|
---|
6912 | * kIemNativeVarKind_Invalid and no current stack allocation.
|
---|
6913 | *
|
---|
6914 | * The kind will either be set by the caller or later when the variable is first
|
---|
6915 | * assigned a value.
|
---|
6916 | */
|
---|
6917 | static uint8_t iemNativeVarAllocInt(PIEMRECOMPILERSTATE pReNative, uint8_t cbType)
|
---|
6918 | {
|
---|
6919 | Assert(cbType > 0 && cbType <= 64);
|
---|
6920 | unsigned const idxVar = ASMBitFirstSetU32(~pReNative->Core.bmVars) - 1;
|
---|
6921 | AssertStmt(idxVar < RT_ELEMENTS(pReNative->Core.aVars), IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_EXHAUSTED));
|
---|
6922 | pReNative->Core.bmVars |= RT_BIT_32(idxVar);
|
---|
6923 | pReNative->Core.aVars[idxVar].enmKind = kIemNativeVarKind_Invalid;
|
---|
6924 | pReNative->Core.aVars[idxVar].cbVar = cbType;
|
---|
6925 | pReNative->Core.aVars[idxVar].idxStackSlot = UINT8_MAX;
|
---|
6926 | pReNative->Core.aVars[idxVar].idxReg = UINT8_MAX;
|
---|
6927 | pReNative->Core.aVars[idxVar].uArgNo = UINT8_MAX;
|
---|
6928 | pReNative->Core.aVars[idxVar].idxReferrerVar = UINT8_MAX;
|
---|
6929 | pReNative->Core.aVars[idxVar].enmGstReg = kIemNativeGstReg_End;
|
---|
6930 | pReNative->Core.aVars[idxVar].fRegAcquired = false;
|
---|
6931 | pReNative->Core.aVars[idxVar].u.uValue = 0;
|
---|
6932 | return idxVar;
|
---|
6933 | }
|
---|
6934 |
|
---|
6935 |
|
---|
6936 | /**
|
---|
6937 | * Internal work that allocates an argument variable w/o setting enmKind.
|
---|
6938 | */
|
---|
6939 | static uint8_t iemNativeArgAllocInt(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType)
|
---|
6940 | {
|
---|
6941 | iArgNo += iemNativeArgGetHiddenArgCount(pReNative);
|
---|
6942 | AssertStmt(iArgNo < RT_ELEMENTS(pReNative->Core.aidxArgVars), IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_1));
|
---|
6943 | AssertStmt(pReNative->Core.aidxArgVars[iArgNo] == UINT8_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_DUP_ARG_NO));
|
---|
6944 |
|
---|
6945 | uint8_t const idxVar = iemNativeVarAllocInt(pReNative, cbType);
|
---|
6946 | pReNative->Core.aidxArgVars[iArgNo] = idxVar;
|
---|
6947 | pReNative->Core.aVars[idxVar].uArgNo = iArgNo;
|
---|
6948 | return idxVar;
|
---|
6949 | }
|
---|
6950 |
|
---|
6951 |
|
---|
6952 | /**
|
---|
6953 | * Gets the stack slot for a stack variable, allocating one if necessary.
|
---|
6954 | *
|
---|
6955 | * Calling this function implies that the stack slot will contain a valid
|
---|
6956 | * variable value. The caller deals with any register currently assigned to the
|
---|
6957 | * variable, typically by spilling it into the stack slot.
|
---|
6958 | *
|
---|
6959 | * @returns The stack slot number.
|
---|
6960 | * @param pReNative The recompiler state.
|
---|
6961 | * @param idxVar The variable.
|
---|
6962 | * @throws VERR_IEM_VAR_OUT_OF_STACK_SLOTS
|
---|
6963 | */
|
---|
6964 | DECL_HIDDEN_THROW(uint8_t) iemNativeVarGetStackSlot(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
|
---|
6965 | {
|
---|
6966 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
|
---|
6967 | Assert(pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Stack);
|
---|
6968 |
|
---|
6969 | /* Already got a slot? */
|
---|
6970 | uint8_t const idxStackSlot = pReNative->Core.aVars[idxVar].idxStackSlot;
|
---|
6971 | if (idxStackSlot != UINT8_MAX)
|
---|
6972 | {
|
---|
6973 | Assert(idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS);
|
---|
6974 | return idxStackSlot;
|
---|
6975 | }
|
---|
6976 |
|
---|
6977 | /*
|
---|
6978 | * A single slot is easy to allocate.
|
---|
6979 | * Allocate them from the top end, closest to BP, to reduce the displacement.
|
---|
6980 | */
|
---|
6981 | if (pReNative->Core.aVars[idxVar].cbVar <= sizeof(uint64_t))
|
---|
6982 | {
|
---|
6983 | unsigned const iSlot = ASMBitLastSetU32(~pReNative->Core.bmStack) - 1;
|
---|
6984 | AssertStmt(iSlot < IEMNATIVE_FRAME_VAR_SLOTS, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_OUT_OF_STACK_SLOTS));
|
---|
6985 | pReNative->Core.bmStack |= RT_BIT_32(iSlot);
|
---|
6986 | pReNative->Core.aVars[idxVar].idxStackSlot = (uint8_t)iSlot;
|
---|
6987 | Log11(("iemNativeVarSetKindToStack: idxVar=%d iSlot=%#x\n", idxVar, iSlot));
|
---|
6988 | return (uint8_t)iSlot;
|
---|
6989 | }
|
---|
6990 |
|
---|
6991 | /*
|
---|
6992 | * We need more than one stack slot.
|
---|
6993 | *
|
---|
6994 | * cbVar -> fBitAlignMask: 16 -> 1; 32 -> 3; 64 -> 7;
|
---|
6995 | */
|
---|
6996 | AssertCompile(RT_IS_POWER_OF_TWO(IEMNATIVE_FRAME_VAR_SLOTS)); /* If not we have to add an overflow check. */
|
---|
6997 | Assert(pReNative->Core.aVars[idxVar].cbVar <= 64);
|
---|
6998 | uint32_t const fBitAlignMask = RT_BIT_32(ASMBitLastSetU32(pReNative->Core.aVars[idxVar].cbVar) - 4) - 1;
|
---|
6999 | uint32_t fBitAllocMask = RT_BIT_32((pReNative->Core.aVars[idxVar].cbVar + 7) >> 3) - 1;
|
---|
7000 | uint32_t bmStack = ~pReNative->Core.bmStack;
|
---|
7001 | while (bmStack != UINT32_MAX)
|
---|
7002 | {
|
---|
7003 | /** @todo allocate from the top to reduce BP displacement. */
|
---|
7004 | unsigned const iSlot = ASMBitFirstSetU32(bmStack) - 1;
|
---|
7005 | AssertStmt(iSlot < IEMNATIVE_FRAME_VAR_SLOTS, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_OUT_OF_STACK_SLOTS));
|
---|
7006 | if (!(iSlot & fBitAlignMask))
|
---|
7007 | {
|
---|
7008 | if ((bmStack & (fBitAllocMask << iSlot)) == (fBitAllocMask << iSlot))
|
---|
7009 | {
|
---|
7010 | pReNative->Core.bmStack |= (fBitAllocMask << iSlot);
|
---|
7011 | pReNative->Core.aVars[idxVar].idxStackSlot = (uint8_t)iSlot;
|
---|
7012 | Log11(("iemNativeVarSetKindToStack: idxVar=%d iSlot=%#x/%#x (cbVar=%#x)\n",
|
---|
7013 | idxVar, iSlot, fBitAllocMask, pReNative->Core.aVars[idxVar].cbVar));
|
---|
7014 | return (uint8_t)iSlot;
|
---|
7015 | }
|
---|
7016 | }
|
---|
7017 | bmStack |= fBitAlignMask << (iSlot & ~fBitAlignMask);
|
---|
7018 | }
|
---|
7019 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_OUT_OF_STACK_SLOTS));
|
---|
7020 | }
|
---|
7021 |
|
---|
7022 |
|
---|
7023 | /**
|
---|
7024 | * Changes the variable to a stack variable.
|
---|
7025 | *
|
---|
7026 | * Currently this is s only possible to do the first time the variable is used,
|
---|
7027 | * switching later is can be implemented but not done.
|
---|
7028 | *
|
---|
7029 | * @param pReNative The recompiler state.
|
---|
7030 | * @param idxVar The variable.
|
---|
7031 | * @throws VERR_IEM_VAR_IPE_2
|
---|
7032 | */
|
---|
7033 | static void iemNativeVarSetKindToStack(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
|
---|
7034 | {
|
---|
7035 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
|
---|
7036 | if (pReNative->Core.aVars[idxVar].enmKind != kIemNativeVarKind_Stack)
|
---|
7037 | {
|
---|
7038 | /* We could in theory transition from immediate to stack as well, but it
|
---|
7039 | would involve the caller doing work storing the value on the stack. So,
|
---|
7040 | till that's required we only allow transition from invalid. */
|
---|
7041 | AssertStmt(pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Invalid,
|
---|
7042 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_2));
|
---|
7043 | AssertStmt(pReNative->Core.aVars[idxVar].idxReg == UINT8_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_2));
|
---|
7044 | pReNative->Core.aVars[idxVar].enmKind = kIemNativeVarKind_Stack;
|
---|
7045 |
|
---|
7046 | /* Note! We don't allocate a stack slot here, that's only done when a
|
---|
7047 | slot is actually needed to hold a variable value. */
|
---|
7048 | }
|
---|
7049 | }
|
---|
7050 |
|
---|
7051 |
|
---|
7052 | /**
|
---|
7053 | * Sets it to a variable with a constant value.
|
---|
7054 | *
|
---|
7055 | * This does not require stack storage as we know the value and can always
|
---|
7056 | * reload it, unless of course it's referenced.
|
---|
7057 | *
|
---|
7058 | * @param pReNative The recompiler state.
|
---|
7059 | * @param idxVar The variable.
|
---|
7060 | * @param uValue The immediate value.
|
---|
7061 | * @throws VERR_IEM_VAR_OUT_OF_STACK_SLOTS, VERR_IEM_VAR_IPE_2
|
---|
7062 | */
|
---|
7063 | static void iemNativeVarSetKindToConst(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint64_t uValue)
|
---|
7064 | {
|
---|
7065 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
|
---|
7066 | if (pReNative->Core.aVars[idxVar].enmKind != kIemNativeVarKind_Immediate)
|
---|
7067 | {
|
---|
7068 | /* Only simple transitions for now. */
|
---|
7069 | AssertStmt(pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Invalid,
|
---|
7070 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_2));
|
---|
7071 | pReNative->Core.aVars[idxVar].enmKind = kIemNativeVarKind_Immediate;
|
---|
7072 | }
|
---|
7073 | AssertStmt(pReNative->Core.aVars[idxVar].idxReg == UINT8_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_2));
|
---|
7074 |
|
---|
7075 | pReNative->Core.aVars[idxVar].u.uValue = uValue;
|
---|
7076 | AssertMsg( pReNative->Core.aVars[idxVar].cbVar >= sizeof(uint64_t)
|
---|
7077 | || pReNative->Core.aVars[idxVar].u.uValue < RT_BIT_64(pReNative->Core.aVars[idxVar].cbVar * 8),
|
---|
7078 | ("idxVar=%d cbVar=%u uValue=%#RX64\n", idxVar, pReNative->Core.aVars[idxVar].cbVar, uValue));
|
---|
7079 | }
|
---|
7080 |
|
---|
7081 |
|
---|
7082 | /**
|
---|
7083 | * Sets the variable to a reference (pointer) to @a idxOtherVar.
|
---|
7084 | *
|
---|
7085 | * This does not require stack storage as we know the value and can always
|
---|
7086 | * reload it. Loading is postponed till needed.
|
---|
7087 | *
|
---|
7088 | * @param pReNative The recompiler state.
|
---|
7089 | * @param idxVar The variable.
|
---|
7090 | * @param idxOtherVar The variable to take the (stack) address of.
|
---|
7091 | *
|
---|
7092 | * @throws VERR_IEM_VAR_OUT_OF_STACK_SLOTS, VERR_IEM_VAR_IPE_2
|
---|
7093 | */
|
---|
7094 | static void iemNativeVarSetKindToLocalRef(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint8_t idxOtherVar)
|
---|
7095 | {
|
---|
7096 | Assert(idxVar < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxVar)));
|
---|
7097 | Assert(idxOtherVar < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxOtherVar)));
|
---|
7098 |
|
---|
7099 | if (pReNative->Core.aVars[idxVar].enmKind != kIemNativeVarKind_VarRef)
|
---|
7100 | {
|
---|
7101 | /* Only simple transitions for now. */
|
---|
7102 | AssertStmt(pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Invalid,
|
---|
7103 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_2));
|
---|
7104 | pReNative->Core.aVars[idxVar].enmKind = kIemNativeVarKind_VarRef;
|
---|
7105 | }
|
---|
7106 | AssertStmt(pReNative->Core.aVars[idxVar].idxReg == UINT8_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_2));
|
---|
7107 |
|
---|
7108 | pReNative->Core.aVars[idxVar].u.idxRefVar = idxOtherVar;
|
---|
7109 |
|
---|
7110 | /* Update the other variable, ensure it's a stack variable. */
|
---|
7111 | /** @todo handle variables with const values... that'll go boom now. */
|
---|
7112 | pReNative->Core.aVars[idxOtherVar].idxReferrerVar = idxVar;
|
---|
7113 | iemNativeVarSetKindToStack(pReNative, idxOtherVar);
|
---|
7114 | }
|
---|
7115 |
|
---|
7116 |
|
---|
7117 | /**
|
---|
7118 | * Sets the variable to a reference (pointer) to a guest register reference.
|
---|
7119 | *
|
---|
7120 | * This does not require stack storage as we know the value and can always
|
---|
7121 | * reload it. Loading is postponed till needed.
|
---|
7122 | *
|
---|
7123 | * @param pReNative The recompiler state.
|
---|
7124 | * @param idxVar The variable.
|
---|
7125 | * @param enmRegClass The class guest registers to reference.
|
---|
7126 | * @param idxReg The register within @a enmRegClass to reference.
|
---|
7127 | *
|
---|
7128 | * @throws VERR_IEM_VAR_IPE_2
|
---|
7129 | */
|
---|
7130 | static void iemNativeVarSetKindToGstRegRef(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
|
---|
7131 | IEMNATIVEGSTREGREF enmRegClass, uint8_t idxReg)
|
---|
7132 | {
|
---|
7133 | Assert(idxVar < RT_ELEMENTS(pReNative->Core.aVars) && (pReNative->Core.bmVars & RT_BIT_32(idxVar)));
|
---|
7134 |
|
---|
7135 | if (pReNative->Core.aVars[idxVar].enmKind != kIemNativeVarKind_GstRegRef)
|
---|
7136 | {
|
---|
7137 | /* Only simple transitions for now. */
|
---|
7138 | AssertStmt(pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Invalid,
|
---|
7139 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_2));
|
---|
7140 | pReNative->Core.aVars[idxVar].enmKind = kIemNativeVarKind_GstRegRef;
|
---|
7141 | }
|
---|
7142 | AssertStmt(pReNative->Core.aVars[idxVar].idxReg == UINT8_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_2));
|
---|
7143 |
|
---|
7144 | pReNative->Core.aVars[idxVar].u.GstRegRef.enmClass = enmRegClass;
|
---|
7145 | pReNative->Core.aVars[idxVar].u.GstRegRef.idx = idxReg;
|
---|
7146 | }
|
---|
7147 |
|
---|
7148 |
|
---|
7149 | DECL_HIDDEN_THROW(uint8_t) iemNativeArgAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType)
|
---|
7150 | {
|
---|
7151 | return iemNativeArgAllocInt(pReNative, iArgNo, cbType);
|
---|
7152 | }
|
---|
7153 |
|
---|
7154 |
|
---|
7155 | DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType, uint64_t uValue)
|
---|
7156 | {
|
---|
7157 | uint8_t const idxVar = iemNativeArgAllocInt(pReNative, iArgNo, cbType);
|
---|
7158 |
|
---|
7159 | /* Since we're using a generic uint64_t value type, we must truncate it if
|
---|
7160 | the variable is smaller otherwise we may end up with too large value when
|
---|
7161 | scaling up a imm8 w/ sign-extension.
|
---|
7162 |
|
---|
7163 | This caused trouble with a "add bx, 0xffff" instruction (around f000:ac60
|
---|
7164 | in the bios, bx=1) when running on arm, because clang expect 16-bit
|
---|
7165 | register parameters to have bits 16 and up set to zero. Instead of
|
---|
7166 | setting x1 = 0xffff we ended up with x1 = 0xffffffffffffff and the wrong
|
---|
7167 | CF value in the result. */
|
---|
7168 | switch (cbType)
|
---|
7169 | {
|
---|
7170 | case sizeof(uint8_t): uValue &= UINT64_C(0xff); break;
|
---|
7171 | case sizeof(uint16_t): uValue &= UINT64_C(0xffff); break;
|
---|
7172 | case sizeof(uint32_t): uValue &= UINT64_C(0xffffffff); break;
|
---|
7173 | }
|
---|
7174 | iemNativeVarSetKindToConst(pReNative, idxVar, uValue);
|
---|
7175 | return idxVar;
|
---|
7176 | }
|
---|
7177 |
|
---|
7178 |
|
---|
7179 | DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocLocalRef(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t idxOtherVar)
|
---|
7180 | {
|
---|
7181 | AssertStmt( idxOtherVar < RT_ELEMENTS(pReNative->Core.aVars)
|
---|
7182 | && (pReNative->Core.bmVars & RT_BIT_32(idxOtherVar))
|
---|
7183 | && pReNative->Core.aVars[idxOtherVar].uArgNo == UINT8_MAX,
|
---|
7184 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_1));
|
---|
7185 |
|
---|
7186 | uint8_t const idxArgVar = iemNativeArgAlloc(pReNative, iArgNo, sizeof(uintptr_t));
|
---|
7187 | iemNativeVarSetKindToLocalRef(pReNative, idxArgVar, idxOtherVar);
|
---|
7188 | return idxArgVar;
|
---|
7189 | }
|
---|
7190 |
|
---|
7191 |
|
---|
7192 | DECL_HIDDEN_THROW(uint8_t) iemNativeVarAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t cbType)
|
---|
7193 | {
|
---|
7194 | uint8_t const idxVar = iemNativeVarAllocInt(pReNative, cbType);
|
---|
7195 | /* Don't set to stack now, leave that to the first use as for instance
|
---|
7196 | IEM_MC_CALC_RM_EFF_ADDR may produce a const/immediate result (esp. in DOS). */
|
---|
7197 | return idxVar;
|
---|
7198 | }
|
---|
7199 |
|
---|
7200 |
|
---|
7201 | DECL_HIDDEN_THROW(uint8_t) iemNativeVarAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t cbType, uint64_t uValue)
|
---|
7202 | {
|
---|
7203 | uint8_t const idxVar = iemNativeVarAllocInt(pReNative, cbType);
|
---|
7204 |
|
---|
7205 | /* Since we're using a generic uint64_t value type, we must truncate it if
|
---|
7206 | the variable is smaller otherwise we may end up with too large value when
|
---|
7207 | scaling up a imm8 w/ sign-extension. */
|
---|
7208 | switch (cbType)
|
---|
7209 | {
|
---|
7210 | case sizeof(uint8_t): uValue &= UINT64_C(0xff); break;
|
---|
7211 | case sizeof(uint16_t): uValue &= UINT64_C(0xffff); break;
|
---|
7212 | case sizeof(uint32_t): uValue &= UINT64_C(0xffffffff); break;
|
---|
7213 | }
|
---|
7214 | iemNativeVarSetKindToConst(pReNative, idxVar, uValue);
|
---|
7215 | return idxVar;
|
---|
7216 | }
|
---|
7217 |
|
---|
7218 |
|
---|
7219 | /**
|
---|
7220 | * Makes sure variable @a idxVar has a register assigned to it and that it stays
|
---|
7221 | * fixed till we call iemNativeVarRegisterRelease.
|
---|
7222 | *
|
---|
7223 | * @returns The host register number.
|
---|
7224 | * @param pReNative The recompiler state.
|
---|
7225 | * @param idxVar The variable.
|
---|
7226 | * @param poff Pointer to the instruction buffer offset.
|
---|
7227 | * In case a register needs to be freed up or the value
|
---|
7228 | * loaded off the stack.
|
---|
7229 | * @param fInitialized Set if the variable must already have been initialized.
|
---|
7230 | * Will throw VERR_IEM_VAR_NOT_INITIALIZED if this is not
|
---|
7231 | * the case.
|
---|
7232 | * @param idxRegPref Preferred register number or UINT8_MAX.
|
---|
7233 | */
|
---|
7234 | DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquire(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff,
|
---|
7235 | bool fInitialized /*= false*/, uint8_t idxRegPref /*= UINT8_MAX*/)
|
---|
7236 | {
|
---|
7237 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
|
---|
7238 | Assert(pReNative->Core.aVars[idxVar].cbVar <= 8);
|
---|
7239 | Assert(!pReNative->Core.aVars[idxVar].fRegAcquired);
|
---|
7240 |
|
---|
7241 | uint8_t idxReg = pReNative->Core.aVars[idxVar].idxReg;
|
---|
7242 | if (idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
|
---|
7243 | {
|
---|
7244 | Assert( pReNative->Core.aVars[idxVar].enmKind > kIemNativeVarKind_Invalid
|
---|
7245 | && pReNative->Core.aVars[idxVar].enmKind < kIemNativeVarKind_End);
|
---|
7246 | pReNative->Core.aVars[idxVar].fRegAcquired = true;
|
---|
7247 | return idxReg;
|
---|
7248 | }
|
---|
7249 |
|
---|
7250 | /*
|
---|
7251 | * If the kind of variable has not yet been set, default to 'stack'.
|
---|
7252 | */
|
---|
7253 | Assert( pReNative->Core.aVars[idxVar].enmKind >= kIemNativeVarKind_Invalid
|
---|
7254 | && pReNative->Core.aVars[idxVar].enmKind < kIemNativeVarKind_End);
|
---|
7255 | if (pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Invalid)
|
---|
7256 | iemNativeVarSetKindToStack(pReNative, idxVar);
|
---|
7257 |
|
---|
7258 | /*
|
---|
7259 | * We have to allocate a register for the variable, even if its a stack one
|
---|
7260 | * as we don't know if there are modification being made to it before its
|
---|
7261 | * finalized (todo: analyze and insert hints about that?).
|
---|
7262 | *
|
---|
7263 | * If we can, we try get the correct register for argument variables. This
|
---|
7264 | * is assuming that most argument variables are fetched as close as possible
|
---|
7265 | * to the actual call, so that there aren't any interfering hidden calls
|
---|
7266 | * (memory accesses, etc) inbetween.
|
---|
7267 | *
|
---|
7268 | * If we cannot or it's a variable, we make sure no argument registers
|
---|
7269 | * that will be used by this MC block will be allocated here, and we always
|
---|
7270 | * prefer non-volatile registers to avoid needing to spill stuff for internal
|
---|
7271 | * call.
|
---|
7272 | */
|
---|
7273 | /** @todo Detect too early argument value fetches and warn about hidden
|
---|
7274 | * calls causing less optimal code to be generated in the python script. */
|
---|
7275 |
|
---|
7276 | uint8_t const uArgNo = pReNative->Core.aVars[idxVar].uArgNo;
|
---|
7277 | if ( uArgNo < RT_ELEMENTS(g_aidxIemNativeCallRegs)
|
---|
7278 | && !(pReNative->Core.bmHstRegs & RT_BIT_32(g_aidxIemNativeCallRegs[uArgNo])))
|
---|
7279 | {
|
---|
7280 | idxReg = g_aidxIemNativeCallRegs[uArgNo];
|
---|
7281 | iemNativeRegClearGstRegShadowing(pReNative, idxReg, *poff);
|
---|
7282 | Log11(("iemNativeVarRegisterAcquire: idxVar=%u idxReg=%u (matching arg %u)\n", idxVar, idxReg, uArgNo));
|
---|
7283 | }
|
---|
7284 | else if ( idxRegPref >= RT_ELEMENTS(pReNative->Core.aHstRegs)
|
---|
7285 | || (pReNative->Core.bmHstRegs & RT_BIT_32(idxRegPref)))
|
---|
7286 | {
|
---|
7287 | uint32_t const fNotArgsMask = ~g_afIemNativeCallRegs[RT_MIN(pReNative->cArgs, IEMNATIVE_CALL_ARG_GREG_COUNT)];
|
---|
7288 | uint32_t const fRegs = ~pReNative->Core.bmHstRegs
|
---|
7289 | & ~pReNative->Core.bmHstRegsWithGstShadow
|
---|
7290 | & (~IEMNATIVE_REG_FIXED_MASK & IEMNATIVE_HST_GREG_MASK)
|
---|
7291 | & fNotArgsMask;
|
---|
7292 | if (fRegs)
|
---|
7293 | {
|
---|
7294 | /* Pick from the top as that both arm64 and amd64 have a block of non-volatile registers there. */
|
---|
7295 | idxReg = (uint8_t)ASMBitLastSetU32( fRegs & ~IEMNATIVE_CALL_VOLATILE_GREG_MASK
|
---|
7296 | ? fRegs & ~IEMNATIVE_CALL_VOLATILE_GREG_MASK : fRegs) - 1;
|
---|
7297 | Assert(pReNative->Core.aHstRegs[idxReg].fGstRegShadows == 0);
|
---|
7298 | Assert(!(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxReg)));
|
---|
7299 | Log11(("iemNativeVarRegisterAcquire: idxVar=%u idxReg=%u (uArgNo=%u)\n", idxVar, idxReg, uArgNo));
|
---|
7300 | }
|
---|
7301 | else
|
---|
7302 | {
|
---|
7303 | idxReg = iemNativeRegAllocFindFree(pReNative, poff, false /*fPreferVolatile*/,
|
---|
7304 | IEMNATIVE_HST_GREG_MASK & ~IEMNATIVE_REG_FIXED_MASK & fNotArgsMask);
|
---|
7305 | AssertStmt(idxReg != UINT8_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_ALLOCATOR_NO_FREE_VAR));
|
---|
7306 | Log11(("iemNativeVarRegisterAcquire: idxVar=%u idxReg=%u (slow, uArgNo=%u)\n", idxVar, idxReg, uArgNo));
|
---|
7307 | }
|
---|
7308 | }
|
---|
7309 | else
|
---|
7310 | {
|
---|
7311 | idxReg = idxRegPref;
|
---|
7312 | iemNativeRegClearGstRegShadowing(pReNative, idxReg, *poff);
|
---|
7313 | Log11(("iemNativeVarRegisterAcquire: idxVar=%u idxReg=%u (preferred)\n", idxVar, idxReg));
|
---|
7314 | }
|
---|
7315 | iemNativeRegMarkAllocated(pReNative, idxReg, kIemNativeWhat_Var, idxVar);
|
---|
7316 | pReNative->Core.aVars[idxVar].idxReg = idxReg;
|
---|
7317 |
|
---|
7318 | /*
|
---|
7319 | * Load it off the stack if we've got a stack slot.
|
---|
7320 | */
|
---|
7321 | uint8_t const idxStackSlot = pReNative->Core.aVars[idxVar].idxStackSlot;
|
---|
7322 | if (idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS)
|
---|
7323 | {
|
---|
7324 | Assert(fInitialized);
|
---|
7325 | int32_t const offDispBp = iemNativeStackCalcBpDisp(idxStackSlot);
|
---|
7326 | switch (pReNative->Core.aVars[idxVar].cbVar)
|
---|
7327 | {
|
---|
7328 | case 1: *poff = iemNativeEmitLoadGprByBpU8( pReNative, *poff, idxReg, offDispBp); break;
|
---|
7329 | case 2: *poff = iemNativeEmitLoadGprByBpU16(pReNative, *poff, idxReg, offDispBp); break;
|
---|
7330 | case 3: AssertFailed(); RT_FALL_THRU();
|
---|
7331 | case 4: *poff = iemNativeEmitLoadGprByBpU32(pReNative, *poff, idxReg, offDispBp); break;
|
---|
7332 | default: AssertFailed(); RT_FALL_THRU();
|
---|
7333 | case 8: *poff = iemNativeEmitLoadGprByBp( pReNative, *poff, idxReg, offDispBp); break;
|
---|
7334 | }
|
---|
7335 | }
|
---|
7336 | else
|
---|
7337 | {
|
---|
7338 | Assert(idxStackSlot == UINT8_MAX);
|
---|
7339 | AssertStmt(!fInitialized, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_NOT_INITIALIZED));
|
---|
7340 | }
|
---|
7341 | pReNative->Core.aVars[idxVar].fRegAcquired = true;
|
---|
7342 | return idxReg;
|
---|
7343 | }
|
---|
7344 |
|
---|
7345 |
|
---|
7346 | /**
|
---|
7347 | * The value of variable @a idxVar will be written in full to the @a enmGstReg
|
---|
7348 | * guest register.
|
---|
7349 | *
|
---|
7350 | * This function makes sure there is a register for it and sets it to be the
|
---|
7351 | * current shadow copy of @a enmGstReg.
|
---|
7352 | *
|
---|
7353 | * @returns The host register number.
|
---|
7354 | * @param pReNative The recompiler state.
|
---|
7355 | * @param idxVar The variable.
|
---|
7356 | * @param enmGstReg The guest register this variable will be written to
|
---|
7357 | * after this call.
|
---|
7358 | * @param poff Pointer to the instruction buffer offset.
|
---|
7359 | * In case a register needs to be freed up or if the
|
---|
7360 | * variable content needs to be loaded off the stack.
|
---|
7361 | *
|
---|
7362 | * @note We DO NOT expect @a idxVar to be an argument variable,
|
---|
7363 | * because we can only in the commit stage of an instruction when this
|
---|
7364 | * function is used.
|
---|
7365 | */
|
---|
7366 | DECL_HIDDEN_THROW(uint8_t)
|
---|
7367 | iemNativeVarRegisterAcquireForGuestReg(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, IEMNATIVEGSTREG enmGstReg, uint32_t *poff)
|
---|
7368 | {
|
---|
7369 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
|
---|
7370 | Assert(!pReNative->Core.aVars[idxVar].fRegAcquired);
|
---|
7371 | AssertMsgStmt( pReNative->Core.aVars[idxVar].cbVar <= 8
|
---|
7372 | && ( pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Immediate
|
---|
7373 | || pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Stack),
|
---|
7374 | ("idxVar=%d cbVar=%d enmKind=%d enmGstReg=%s\n", idxVar, pReNative->Core.aVars[idxVar].cbVar,
|
---|
7375 | pReNative->Core.aVars[idxVar].enmKind, g_aGstShadowInfo[enmGstReg].pszName),
|
---|
7376 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_6));
|
---|
7377 |
|
---|
7378 | /*
|
---|
7379 | * This shouldn't ever be used for arguments, unless it's in a weird else
|
---|
7380 | * branch that doesn't do any calling and even then it's questionable.
|
---|
7381 | *
|
---|
7382 | * However, in case someone writes crazy wrong MC code and does register
|
---|
7383 | * updates before making calls, just use the regular register allocator to
|
---|
7384 | * ensure we get a register suitable for the intended argument number.
|
---|
7385 | */
|
---|
7386 | AssertStmt(pReNative->Core.aVars[idxVar].uArgNo == UINT8_MAX, iemNativeVarRegisterAcquire(pReNative, idxVar, poff));
|
---|
7387 |
|
---|
7388 | /*
|
---|
7389 | * If there is already a register for the variable, we transfer/set the
|
---|
7390 | * guest shadow copy assignment to it.
|
---|
7391 | */
|
---|
7392 | uint8_t idxReg = pReNative->Core.aVars[idxVar].idxReg;
|
---|
7393 | if (idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
|
---|
7394 | {
|
---|
7395 | if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
|
---|
7396 | {
|
---|
7397 | uint8_t const idxRegOld = pReNative->Core.aidxGstRegShadows[enmGstReg];
|
---|
7398 | iemNativeRegTransferGstRegShadowing(pReNative, idxRegOld, idxReg, enmGstReg, *poff);
|
---|
7399 | Log12(("iemNativeVarRegisterAcquireForGuestReg: Moved %s for guest %s into %s for full write\n",
|
---|
7400 | g_apszIemNativeHstRegNames[idxRegOld], g_aGstShadowInfo[enmGstReg].pszName, g_apszIemNativeHstRegNames[idxReg]));
|
---|
7401 | }
|
---|
7402 | else
|
---|
7403 | {
|
---|
7404 | iemNativeRegMarkAsGstRegShadow(pReNative, idxReg, enmGstReg, *poff);
|
---|
7405 | Log12(("iemNativeVarRegisterAcquireForGuestReg: Marking %s as copy of guest %s (full write)\n",
|
---|
7406 | g_apszIemNativeHstRegNames[idxReg], g_aGstShadowInfo[enmGstReg].pszName));
|
---|
7407 | }
|
---|
7408 | /** @todo figure this one out. We need some way of making sure the register isn't
|
---|
7409 | * modified after this point, just in case we start writing crappy MC code. */
|
---|
7410 | pReNative->Core.aVars[idxVar].enmGstReg = enmGstReg;
|
---|
7411 | pReNative->Core.aVars[idxVar].fRegAcquired = true;
|
---|
7412 | return idxReg;
|
---|
7413 | }
|
---|
7414 | Assert(pReNative->Core.aVars[idxVar].uArgNo == UINT8_MAX);
|
---|
7415 |
|
---|
7416 | /*
|
---|
7417 | * Because this is supposed to be the commit stage, we're just tag along with the
|
---|
7418 | * temporary register allocator and upgrade it to a variable register.
|
---|
7419 | */
|
---|
7420 | idxReg = iemNativeRegAllocTmpForGuestReg(pReNative, poff, enmGstReg, kIemNativeGstRegUse_ForFullWrite);
|
---|
7421 | Assert(pReNative->Core.aHstRegs[idxReg].enmWhat == kIemNativeWhat_Tmp);
|
---|
7422 | Assert(pReNative->Core.aHstRegs[idxReg].idxVar == UINT8_MAX);
|
---|
7423 | pReNative->Core.aHstRegs[idxReg].enmWhat = kIemNativeWhat_Var;
|
---|
7424 | pReNative->Core.aHstRegs[idxReg].idxVar = idxVar;
|
---|
7425 | pReNative->Core.aVars[idxVar].idxReg = idxReg;
|
---|
7426 |
|
---|
7427 | /*
|
---|
7428 | * Now we need to load the register value.
|
---|
7429 | */
|
---|
7430 | if (pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Immediate)
|
---|
7431 | *poff = iemNativeEmitLoadGprImm64(pReNative, *poff, idxReg, pReNative->Core.aVars[idxVar].u.uValue);
|
---|
7432 | else
|
---|
7433 | {
|
---|
7434 | uint8_t const idxStackSlot = iemNativeVarGetStackSlot(pReNative, idxVar);
|
---|
7435 | int32_t const offDispBp = iemNativeStackCalcBpDisp(idxStackSlot);
|
---|
7436 | switch (pReNative->Core.aVars[idxVar].cbVar)
|
---|
7437 | {
|
---|
7438 | case sizeof(uint64_t):
|
---|
7439 | *poff = iemNativeEmitLoadGprByBp(pReNative, *poff, idxReg, offDispBp);
|
---|
7440 | break;
|
---|
7441 | case sizeof(uint32_t):
|
---|
7442 | *poff = iemNativeEmitLoadGprByBpU32(pReNative, *poff, idxReg, offDispBp);
|
---|
7443 | break;
|
---|
7444 | case sizeof(uint16_t):
|
---|
7445 | *poff = iemNativeEmitLoadGprByBpU16(pReNative, *poff, idxReg, offDispBp);
|
---|
7446 | break;
|
---|
7447 | case sizeof(uint8_t):
|
---|
7448 | *poff = iemNativeEmitLoadGprByBpU8(pReNative, *poff, idxReg, offDispBp);
|
---|
7449 | break;
|
---|
7450 | default:
|
---|
7451 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_6));
|
---|
7452 | }
|
---|
7453 | }
|
---|
7454 |
|
---|
7455 | pReNative->Core.aVars[idxVar].fRegAcquired = true;
|
---|
7456 | return idxReg;
|
---|
7457 | }
|
---|
7458 |
|
---|
7459 |
|
---|
7460 | /**
|
---|
7461 | * Sets the host register for @a idxVarRc to @a idxReg.
|
---|
7462 | *
|
---|
7463 | * The register must not be allocated. Any guest register shadowing will be
|
---|
7464 | * implictly dropped by this call.
|
---|
7465 | *
|
---|
7466 | * The variable must not have any register associated with it (causes
|
---|
7467 | * VERR_IEM_VAR_IPE_10 to be raised). Conversion to a stack variable is
|
---|
7468 | * implied.
|
---|
7469 | *
|
---|
7470 | * @returns idxReg
|
---|
7471 | * @param pReNative The recompiler state.
|
---|
7472 | * @param idxVar The variable.
|
---|
7473 | * @param idxReg The host register (typically IEMNATIVE_CALL_RET_GREG).
|
---|
7474 | * @param off For recording in debug info.
|
---|
7475 | *
|
---|
7476 | * @throws VERR_IEM_VAR_IPE_10, VERR_IEM_VAR_IPE_11
|
---|
7477 | */
|
---|
7478 | DECL_INLINE_THROW(uint8_t) iemNativeVarRegisterSet(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint8_t idxReg, uint32_t off)
|
---|
7479 | {
|
---|
7480 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
|
---|
7481 | Assert(!pReNative->Core.aVars[idxVar].fRegAcquired);
|
---|
7482 | Assert(idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs));
|
---|
7483 | AssertStmt(pReNative->Core.aVars[idxVar].idxReg == UINT8_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_10));
|
---|
7484 | AssertStmt(!(pReNative->Core.bmHstRegs & RT_BIT_32(idxReg)), IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_11));
|
---|
7485 |
|
---|
7486 | iemNativeRegClearGstRegShadowing(pReNative, idxReg, off);
|
---|
7487 | iemNativeRegMarkAllocated(pReNative, idxReg, kIemNativeWhat_Var, idxVar);
|
---|
7488 |
|
---|
7489 | iemNativeVarSetKindToStack(pReNative, idxVar);
|
---|
7490 | pReNative->Core.aVars[idxVar].idxReg = idxReg;
|
---|
7491 |
|
---|
7492 | return idxReg;
|
---|
7493 | }
|
---|
7494 |
|
---|
7495 |
|
---|
7496 | /**
|
---|
7497 | * A convenient helper function.
|
---|
7498 | */
|
---|
7499 | DECL_INLINE_THROW(uint8_t) iemNativeVarRegisterSetAndAcquire(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
|
---|
7500 | uint8_t idxReg, uint32_t *poff)
|
---|
7501 | {
|
---|
7502 | idxReg = iemNativeVarRegisterSet(pReNative, idxVar, idxReg, *poff);
|
---|
7503 | pReNative->Core.aVars[idxVar].fRegAcquired = true;
|
---|
7504 | return idxReg;
|
---|
7505 | }
|
---|
7506 |
|
---|
7507 |
|
---|
7508 | /**
|
---|
7509 | * Emit code to save volatile registers prior to a call to a helper (TLB miss).
|
---|
7510 | *
|
---|
7511 | * This is used together with iemNativeVarRestoreVolatileRegsPostHlpCall() and
|
---|
7512 | * optionally iemNativeRegRestoreGuestShadowsInVolatileRegs() to bypass the
|
---|
7513 | * requirement of flushing anything in volatile host registers when making a
|
---|
7514 | * call.
|
---|
7515 | *
|
---|
7516 | * @returns New @a off value.
|
---|
7517 | * @param pReNative The recompiler state.
|
---|
7518 | * @param off The code buffer position.
|
---|
7519 | * @param fHstRegsNotToSave Set of registers not to save & restore.
|
---|
7520 | */
|
---|
7521 | DECL_HIDDEN_THROW(uint32_t)
|
---|
7522 | iemNativeVarSaveVolatileRegsPreHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fHstRegsNotToSave)
|
---|
7523 | {
|
---|
7524 | uint32_t fHstRegs = pReNative->Core.bmHstRegs & IEMNATIVE_CALL_VOLATILE_GREG_MASK & ~fHstRegsNotToSave;
|
---|
7525 | if (fHstRegs)
|
---|
7526 | {
|
---|
7527 | do
|
---|
7528 | {
|
---|
7529 | unsigned int const idxHstReg = ASMBitFirstSetU32(fHstRegs) - 1;
|
---|
7530 | fHstRegs &= ~RT_BIT_32(idxHstReg);
|
---|
7531 |
|
---|
7532 | if (pReNative->Core.aHstRegs[idxHstReg].enmWhat == kIemNativeWhat_Var)
|
---|
7533 | {
|
---|
7534 | uint8_t const idxVar = pReNative->Core.aHstRegs[idxHstReg].idxVar;
|
---|
7535 | AssertStmt( idxVar < RT_ELEMENTS(pReNative->Core.aVars)
|
---|
7536 | && (pReNative->Core.bmVars & RT_BIT_32(idxVar))
|
---|
7537 | && pReNative->Core.aVars[idxVar].idxReg == idxHstReg,
|
---|
7538 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_12));
|
---|
7539 | switch (pReNative->Core.aVars[idxVar].enmKind)
|
---|
7540 | {
|
---|
7541 | case kIemNativeVarKind_Stack:
|
---|
7542 | {
|
---|
7543 | /* Temporarily spill the variable register. */
|
---|
7544 | uint8_t const idxStackSlot = iemNativeVarGetStackSlot(pReNative, idxVar);
|
---|
7545 | Log12(("iemNativeVarSaveVolatileRegsPreHlpCall: spilling idxVar=%d/idxReg=%d onto the stack (slot %#x bp+%d, off=%#x)\n",
|
---|
7546 | idxVar, idxHstReg, idxStackSlot, iemNativeStackCalcBpDisp(idxStackSlot), off));
|
---|
7547 | off = iemNativeEmitStoreGprByBp(pReNative, off, iemNativeStackCalcBpDisp(idxStackSlot), idxHstReg);
|
---|
7548 | continue;
|
---|
7549 | }
|
---|
7550 |
|
---|
7551 | case kIemNativeVarKind_Immediate:
|
---|
7552 | case kIemNativeVarKind_VarRef:
|
---|
7553 | case kIemNativeVarKind_GstRegRef:
|
---|
7554 | /* It is weird to have any of these loaded at this point. */
|
---|
7555 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_13));
|
---|
7556 | continue;
|
---|
7557 |
|
---|
7558 | case kIemNativeVarKind_End:
|
---|
7559 | case kIemNativeVarKind_Invalid:
|
---|
7560 | break;
|
---|
7561 | }
|
---|
7562 | AssertFailed();
|
---|
7563 | }
|
---|
7564 | else
|
---|
7565 | {
|
---|
7566 | /*
|
---|
7567 | * Allocate a temporary stack slot and spill the register to it.
|
---|
7568 | */
|
---|
7569 | unsigned const idxStackSlot = ASMBitLastSetU32(~pReNative->Core.bmStack) - 1;
|
---|
7570 | AssertStmt(idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS,
|
---|
7571 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_OUT_OF_STACK_SLOTS));
|
---|
7572 | pReNative->Core.bmStack |= RT_BIT_32(idxStackSlot);
|
---|
7573 | pReNative->Core.aHstRegs[idxHstReg].idxStackSlot = (uint8_t)idxStackSlot;
|
---|
7574 | Log12(("iemNativeVarSaveVolatileRegsPreHlpCall: spilling idxReg=%d onto the stack (slot %#x bp+%d, off=%#x)\n",
|
---|
7575 | idxHstReg, idxStackSlot, iemNativeStackCalcBpDisp(idxStackSlot), off));
|
---|
7576 | off = iemNativeEmitStoreGprByBp(pReNative, off, iemNativeStackCalcBpDisp(idxStackSlot), idxHstReg);
|
---|
7577 | }
|
---|
7578 | } while (fHstRegs);
|
---|
7579 | }
|
---|
7580 | return off;
|
---|
7581 | }
|
---|
7582 |
|
---|
7583 |
|
---|
7584 | /**
|
---|
7585 | * Emit code to restore volatile registers after to a call to a helper.
|
---|
7586 | *
|
---|
7587 | * @returns New @a off value.
|
---|
7588 | * @param pReNative The recompiler state.
|
---|
7589 | * @param off The code buffer position.
|
---|
7590 | * @param fHstRegsNotToSave Set of registers not to save & restore.
|
---|
7591 | * @see iemNativeVarSaveVolatileRegsPreHlpCall(),
|
---|
7592 | * iemNativeRegRestoreGuestShadowsInVolatileRegs()
|
---|
7593 | */
|
---|
7594 | DECL_HIDDEN_THROW(uint32_t)
|
---|
7595 | iemNativeVarRestoreVolatileRegsPostHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fHstRegsNotToSave)
|
---|
7596 | {
|
---|
7597 | uint32_t fHstRegs = pReNative->Core.bmHstRegs & IEMNATIVE_CALL_VOLATILE_GREG_MASK & ~fHstRegsNotToSave;
|
---|
7598 | if (fHstRegs)
|
---|
7599 | {
|
---|
7600 | do
|
---|
7601 | {
|
---|
7602 | unsigned int const idxHstReg = ASMBitFirstSetU32(fHstRegs) - 1;
|
---|
7603 | fHstRegs &= ~RT_BIT_32(idxHstReg);
|
---|
7604 |
|
---|
7605 | if (pReNative->Core.aHstRegs[idxHstReg].enmWhat == kIemNativeWhat_Var)
|
---|
7606 | {
|
---|
7607 | uint8_t const idxVar = pReNative->Core.aHstRegs[idxHstReg].idxVar;
|
---|
7608 | AssertStmt( idxVar < RT_ELEMENTS(pReNative->Core.aVars)
|
---|
7609 | && (pReNative->Core.bmVars & RT_BIT_32(idxVar))
|
---|
7610 | && pReNative->Core.aVars[idxVar].idxReg == idxHstReg,
|
---|
7611 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_12));
|
---|
7612 | switch (pReNative->Core.aVars[idxVar].enmKind)
|
---|
7613 | {
|
---|
7614 | case kIemNativeVarKind_Stack:
|
---|
7615 | {
|
---|
7616 | /* Unspill the variable register. */
|
---|
7617 | uint8_t const idxStackSlot = iemNativeVarGetStackSlot(pReNative, idxVar);
|
---|
7618 | Log12(("iemNativeVarRestoreVolatileRegsPostHlpCall: unspilling idxVar=%d/idxReg=%d (slot %#x bp+%d, off=%#x)\n",
|
---|
7619 | idxVar, idxHstReg, idxStackSlot, iemNativeStackCalcBpDisp(idxStackSlot), off));
|
---|
7620 | off = iemNativeEmitLoadGprByBp(pReNative, off, idxHstReg, iemNativeStackCalcBpDisp(idxStackSlot));
|
---|
7621 | continue;
|
---|
7622 | }
|
---|
7623 |
|
---|
7624 | case kIemNativeVarKind_Immediate:
|
---|
7625 | case kIemNativeVarKind_VarRef:
|
---|
7626 | case kIemNativeVarKind_GstRegRef:
|
---|
7627 | /* It is weird to have any of these loaded at this point. */
|
---|
7628 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_13));
|
---|
7629 | continue;
|
---|
7630 |
|
---|
7631 | case kIemNativeVarKind_End:
|
---|
7632 | case kIemNativeVarKind_Invalid:
|
---|
7633 | break;
|
---|
7634 | }
|
---|
7635 | AssertFailed();
|
---|
7636 | }
|
---|
7637 | else
|
---|
7638 | {
|
---|
7639 | /*
|
---|
7640 | * Restore from temporary stack slot.
|
---|
7641 | */
|
---|
7642 | uint8_t const idxStackSlot = pReNative->Core.aHstRegs[idxHstReg].idxStackSlot;
|
---|
7643 | AssertContinue(idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS && (pReNative->Core.bmStack & RT_BIT_32(idxStackSlot)));
|
---|
7644 | pReNative->Core.bmStack &= ~RT_BIT_32(idxStackSlot);
|
---|
7645 | pReNative->Core.aHstRegs[idxHstReg].idxStackSlot = UINT8_MAX;
|
---|
7646 |
|
---|
7647 | off = iemNativeEmitLoadGprByBp(pReNative, off, idxHstReg, iemNativeStackCalcBpDisp(idxStackSlot));
|
---|
7648 | }
|
---|
7649 | } while (fHstRegs);
|
---|
7650 | }
|
---|
7651 | return off;
|
---|
7652 | }
|
---|
7653 |
|
---|
7654 |
|
---|
7655 | /**
|
---|
7656 | * Worker that frees the stack slots for variable @a idxVar if any allocated.
|
---|
7657 | *
|
---|
7658 | * This is used both by iemNativeVarFreeOneWorker and iemNativeEmitCallCommon.
|
---|
7659 | */
|
---|
7660 | DECL_FORCE_INLINE(void) iemNativeVarFreeStackSlots(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
|
---|
7661 | {
|
---|
7662 | uint8_t const idxStackSlot = pReNative->Core.aVars[idxVar].idxStackSlot;
|
---|
7663 | if (idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS)
|
---|
7664 | {
|
---|
7665 | uint8_t const cbVar = pReNative->Core.aVars[idxVar].cbVar;
|
---|
7666 | uint8_t const cSlots = (cbVar + sizeof(uint64_t) - 1) / sizeof(uint64_t);
|
---|
7667 | uint32_t const fAllocMask = (uint32_t)(RT_BIT_32(cSlots) - 1U);
|
---|
7668 | Assert(cSlots > 0);
|
---|
7669 | Assert(((pReNative->Core.bmStack >> idxStackSlot) & fAllocMask) == fAllocMask);
|
---|
7670 | Log11(("iemNativeVarFreeStackSlots: idxVar=%d iSlot=%#x/%#x (cbVar=%#x)\n", idxVar, idxStackSlot, fAllocMask, cbVar));
|
---|
7671 | pReNative->Core.bmStack &= ~(fAllocMask << idxStackSlot);
|
---|
7672 | pReNative->Core.aVars[idxVar].idxStackSlot = UINT8_MAX;
|
---|
7673 | }
|
---|
7674 | else
|
---|
7675 | Assert(idxStackSlot == UINT8_MAX);
|
---|
7676 | }
|
---|
7677 |
|
---|
7678 |
|
---|
7679 | /**
|
---|
7680 | * Worker that frees a single variable.
|
---|
7681 | *
|
---|
7682 | * ASSUMES that @a idxVar is valid.
|
---|
7683 | */
|
---|
7684 | DECLINLINE(void) iemNativeVarFreeOneWorker(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
|
---|
7685 | {
|
---|
7686 | Assert( pReNative->Core.aVars[idxVar].enmKind >= kIemNativeVarKind_Invalid /* Including invalid as we may have unused */
|
---|
7687 | && pReNative->Core.aVars[idxVar].enmKind < kIemNativeVarKind_End); /* variables in conditional branches. */
|
---|
7688 | Assert(!pReNative->Core.aVars[idxVar].fRegAcquired);
|
---|
7689 |
|
---|
7690 | /* Free the host register first if any assigned. */
|
---|
7691 | uint8_t const idxHstReg = pReNative->Core.aVars[idxVar].idxReg;
|
---|
7692 | if (idxHstReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
|
---|
7693 | {
|
---|
7694 | Assert(pReNative->Core.aHstRegs[idxHstReg].idxVar == idxVar);
|
---|
7695 | pReNative->Core.aHstRegs[idxHstReg].idxVar = UINT8_MAX;
|
---|
7696 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(idxHstReg);
|
---|
7697 | }
|
---|
7698 |
|
---|
7699 | /* Free argument mapping. */
|
---|
7700 | uint8_t const uArgNo = pReNative->Core.aVars[idxVar].uArgNo;
|
---|
7701 | if (uArgNo < RT_ELEMENTS(pReNative->Core.aidxArgVars))
|
---|
7702 | pReNative->Core.aidxArgVars[uArgNo] = UINT8_MAX;
|
---|
7703 |
|
---|
7704 | /* Free the stack slots. */
|
---|
7705 | iemNativeVarFreeStackSlots(pReNative, idxVar);
|
---|
7706 |
|
---|
7707 | /* Free the actual variable. */
|
---|
7708 | pReNative->Core.aVars[idxVar].enmKind = kIemNativeVarKind_Invalid;
|
---|
7709 | pReNative->Core.bmVars &= ~RT_BIT_32(idxVar);
|
---|
7710 | }
|
---|
7711 |
|
---|
7712 |
|
---|
7713 | /**
|
---|
7714 | * Worker for iemNativeVarFreeAll that's called when there is anything to do.
|
---|
7715 | */
|
---|
7716 | DECLINLINE(void) iemNativeVarFreeAllSlow(PIEMRECOMPILERSTATE pReNative, uint32_t bmVars)
|
---|
7717 | {
|
---|
7718 | while (bmVars != 0)
|
---|
7719 | {
|
---|
7720 | uint8_t const idxVar = ASMBitFirstSetU32(bmVars) - 1;
|
---|
7721 | bmVars &= ~RT_BIT_32(idxVar);
|
---|
7722 |
|
---|
7723 | #if 1 /** @todo optimize by simplifying this later... */
|
---|
7724 | iemNativeVarFreeOneWorker(pReNative, idxVar);
|
---|
7725 | #else
|
---|
7726 | /* Only need to free the host register, the rest is done as bulk updates below. */
|
---|
7727 | uint8_t const idxHstReg = pReNative->Core.aVars[idxVar].idxReg;
|
---|
7728 | if (idxHstReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
|
---|
7729 | {
|
---|
7730 | Assert(pReNative->Core.aHstRegs[idxHstReg].idxVar == idxVar);
|
---|
7731 | pReNative->Core.aHstRegs[idxHstReg].idxVar = UINT8_MAX;
|
---|
7732 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(idxHstReg);
|
---|
7733 | }
|
---|
7734 | #endif
|
---|
7735 | }
|
---|
7736 | #if 0 /** @todo optimize by simplifying this later... */
|
---|
7737 | pReNative->Core.bmVars = 0;
|
---|
7738 | pReNative->Core.bmStack = 0;
|
---|
7739 | pReNative->Core.u64ArgVars = UINT64_MAX;
|
---|
7740 | #endif
|
---|
7741 | }
|
---|
7742 |
|
---|
7743 |
|
---|
7744 | /**
|
---|
7745 | * This is called by IEM_MC_END() to clean up all variables.
|
---|
7746 | */
|
---|
7747 | DECL_FORCE_INLINE(void) iemNativeVarFreeAll(PIEMRECOMPILERSTATE pReNative)
|
---|
7748 | {
|
---|
7749 | uint32_t const bmVars = pReNative->Core.bmVars;
|
---|
7750 | if (bmVars != 0)
|
---|
7751 | iemNativeVarFreeAllSlow(pReNative, bmVars);
|
---|
7752 | Assert(pReNative->Core.u64ArgVars == UINT64_MAX);
|
---|
7753 | Assert(pReNative->Core.bmStack == 0);
|
---|
7754 | }
|
---|
7755 |
|
---|
7756 |
|
---|
7757 | #define IEM_MC_FREE_LOCAL(a_Name) iemNativeVarFreeLocal(pReNative, a_Name)
|
---|
7758 |
|
---|
7759 | /**
|
---|
7760 | * This is called by IEM_MC_FREE_LOCAL.
|
---|
7761 | */
|
---|
7762 | DECLINLINE(void) iemNativeVarFreeLocal(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
|
---|
7763 | {
|
---|
7764 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
|
---|
7765 | Assert(pReNative->Core.aVars[idxVar].uArgNo == UINT8_MAX);
|
---|
7766 | iemNativeVarFreeOneWorker(pReNative, idxVar);
|
---|
7767 | }
|
---|
7768 |
|
---|
7769 |
|
---|
7770 | #define IEM_MC_FREE_ARG(a_Name) iemNativeVarFreeArg(pReNative, a_Name)
|
---|
7771 |
|
---|
7772 | /**
|
---|
7773 | * This is called by IEM_MC_FREE_ARG.
|
---|
7774 | */
|
---|
7775 | DECLINLINE(void) iemNativeVarFreeArg(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
|
---|
7776 | {
|
---|
7777 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
|
---|
7778 | Assert(pReNative->Core.aVars[idxVar].uArgNo < RT_ELEMENTS(pReNative->Core.aidxArgVars));
|
---|
7779 | iemNativeVarFreeOneWorker(pReNative, idxVar);
|
---|
7780 | }
|
---|
7781 |
|
---|
7782 |
|
---|
7783 | #define IEM_MC_ASSIGN_TO_SMALLER(a_VarDst, a_VarSrcEol) off = iemNativeVarAssignToSmaller(pReNative, off, a_VarDst, a_VarSrcEol)
|
---|
7784 |
|
---|
7785 | /**
|
---|
7786 | * This is called by IEM_MC_ASSIGN_TO_SMALLER.
|
---|
7787 | */
|
---|
7788 | DECL_INLINE_THROW(uint32_t)
|
---|
7789 | iemNativeVarAssignToSmaller(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVarDst, uint8_t idxVarSrc)
|
---|
7790 | {
|
---|
7791 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVarDst);
|
---|
7792 | AssertStmt(pReNative->Core.aVars[idxVarDst].enmKind == kIemNativeVarKind_Invalid,
|
---|
7793 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_UNEXPECTED_KIND));
|
---|
7794 | Assert( pReNative->Core.aVars[idxVarDst].cbVar == sizeof(uint16_t)
|
---|
7795 | || pReNative->Core.aVars[idxVarDst].cbVar == sizeof(uint32_t));
|
---|
7796 |
|
---|
7797 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVarSrc);
|
---|
7798 | AssertStmt( pReNative->Core.aVars[idxVarSrc].enmKind == kIemNativeVarKind_Stack
|
---|
7799 | || pReNative->Core.aVars[idxVarSrc].enmKind == kIemNativeVarKind_Immediate,
|
---|
7800 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_UNEXPECTED_KIND));
|
---|
7801 |
|
---|
7802 | Assert(pReNative->Core.aVars[idxVarDst].cbVar < pReNative->Core.aVars[idxVarSrc].cbVar);
|
---|
7803 |
|
---|
7804 | /*
|
---|
7805 | * Special case for immediates.
|
---|
7806 | */
|
---|
7807 | if (pReNative->Core.aVars[idxVarSrc].enmKind == kIemNativeVarKind_Immediate)
|
---|
7808 | {
|
---|
7809 | switch (pReNative->Core.aVars[idxVarDst].cbVar)
|
---|
7810 | {
|
---|
7811 | case sizeof(uint16_t):
|
---|
7812 | iemNativeVarSetKindToConst(pReNative, idxVarDst, (uint16_t)pReNative->Core.aVars[idxVarSrc].u.uValue);
|
---|
7813 | break;
|
---|
7814 | case sizeof(uint32_t):
|
---|
7815 | iemNativeVarSetKindToConst(pReNative, idxVarDst, (uint32_t)pReNative->Core.aVars[idxVarSrc].u.uValue);
|
---|
7816 | break;
|
---|
7817 | default: AssertFailed(); break;
|
---|
7818 | }
|
---|
7819 | }
|
---|
7820 | else
|
---|
7821 | {
|
---|
7822 | /*
|
---|
7823 | * The generic solution for now.
|
---|
7824 | */
|
---|
7825 | /** @todo optimize this by having the python script make sure the source
|
---|
7826 | * variable passed to IEM_MC_ASSIGN_TO_SMALLER is not used after the
|
---|
7827 | * statement. Then we could just transfer the register assignments. */
|
---|
7828 | uint8_t const idxRegDst = iemNativeVarRegisterAcquire(pReNative, idxVarDst, &off);
|
---|
7829 | uint8_t const idxRegSrc = iemNativeVarRegisterAcquire(pReNative, idxVarSrc, &off);
|
---|
7830 | switch (pReNative->Core.aVars[idxVarDst].cbVar)
|
---|
7831 | {
|
---|
7832 | case sizeof(uint16_t):
|
---|
7833 | off = iemNativeEmitLoadGprFromGpr16(pReNative, off, idxRegDst, idxRegSrc);
|
---|
7834 | break;
|
---|
7835 | case sizeof(uint32_t):
|
---|
7836 | off = iemNativeEmitLoadGprFromGpr32(pReNative, off, idxRegDst, idxRegSrc);
|
---|
7837 | break;
|
---|
7838 | default: AssertFailed(); break;
|
---|
7839 | }
|
---|
7840 | iemNativeVarRegisterRelease(pReNative, idxVarSrc);
|
---|
7841 | iemNativeVarRegisterRelease(pReNative, idxVarDst);
|
---|
7842 | }
|
---|
7843 | return off;
|
---|
7844 | }
|
---|
7845 |
|
---|
7846 |
|
---|
7847 |
|
---|
7848 | /*********************************************************************************************************************************
|
---|
7849 | * Emitters for IEM_MC_CALL_CIMPL_XXX *
|
---|
7850 | *********************************************************************************************************************************/
|
---|
7851 |
|
---|
7852 | /**
|
---|
7853 | * Emits code to load a reference to the given guest register into @a idxGprDst.
|
---|
7854 | */
|
---|
7855 | DECL_INLINE_THROW(uint32_t)
|
---|
7856 | iemNativeEmitLeaGprByGstRegRef(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxGprDst,
|
---|
7857 | IEMNATIVEGSTREGREF enmClass, uint8_t idxRegInClass)
|
---|
7858 | {
|
---|
7859 | /*
|
---|
7860 | * Get the offset relative to the CPUMCTX structure.
|
---|
7861 | */
|
---|
7862 | uint32_t offCpumCtx;
|
---|
7863 | switch (enmClass)
|
---|
7864 | {
|
---|
7865 | case kIemNativeGstRegRef_Gpr:
|
---|
7866 | Assert(idxRegInClass < 16);
|
---|
7867 | offCpumCtx = RT_UOFFSETOF_DYN(CPUMCTX, aGRegs[idxRegInClass]);
|
---|
7868 | break;
|
---|
7869 |
|
---|
7870 | case kIemNativeGstRegRef_GprHighByte: /**< AH, CH, DH, BH*/
|
---|
7871 | Assert(idxRegInClass < 4);
|
---|
7872 | offCpumCtx = RT_UOFFSETOF_DYN(CPUMCTX, aGRegs[0].bHi) + idxRegInClass * sizeof(CPUMCTXGREG);
|
---|
7873 | break;
|
---|
7874 |
|
---|
7875 | case kIemNativeGstRegRef_EFlags:
|
---|
7876 | Assert(idxRegInClass == 0);
|
---|
7877 | offCpumCtx = RT_UOFFSETOF(CPUMCTX, eflags);
|
---|
7878 | break;
|
---|
7879 |
|
---|
7880 | case kIemNativeGstRegRef_MxCsr:
|
---|
7881 | Assert(idxRegInClass == 0);
|
---|
7882 | offCpumCtx = RT_UOFFSETOF(CPUMCTX, XState.x87.MXCSR);
|
---|
7883 | break;
|
---|
7884 |
|
---|
7885 | case kIemNativeGstRegRef_FpuReg:
|
---|
7886 | Assert(idxRegInClass < 8);
|
---|
7887 | AssertFailed(); /** @todo what kind of indexing? */
|
---|
7888 | offCpumCtx = RT_UOFFSETOF_DYN(CPUMCTX, XState.x87.aRegs[idxRegInClass]);
|
---|
7889 | break;
|
---|
7890 |
|
---|
7891 | case kIemNativeGstRegRef_MReg:
|
---|
7892 | Assert(idxRegInClass < 8);
|
---|
7893 | AssertFailed(); /** @todo what kind of indexing? */
|
---|
7894 | offCpumCtx = RT_UOFFSETOF_DYN(CPUMCTX, XState.x87.aRegs[idxRegInClass]);
|
---|
7895 | break;
|
---|
7896 |
|
---|
7897 | case kIemNativeGstRegRef_XReg:
|
---|
7898 | Assert(idxRegInClass < 16);
|
---|
7899 | offCpumCtx = RT_UOFFSETOF_DYN(CPUMCTX, XState.x87.aXMM[idxRegInClass]);
|
---|
7900 | break;
|
---|
7901 |
|
---|
7902 | default:
|
---|
7903 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_5));
|
---|
7904 | }
|
---|
7905 |
|
---|
7906 | /*
|
---|
7907 | * Load the value into the destination register.
|
---|
7908 | */
|
---|
7909 | #ifdef RT_ARCH_AMD64
|
---|
7910 | off = iemNativeEmitLeaGprByVCpu(pReNative, off, idxGprDst, offCpumCtx + RT_UOFFSETOF(VMCPUCC, cpum.GstCtx));
|
---|
7911 |
|
---|
7912 | #elif defined(RT_ARCH_ARM64)
|
---|
7913 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 2);
|
---|
7914 | Assert(offCpumCtx < 4096);
|
---|
7915 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(false /*fSub*/, idxGprDst, IEMNATIVE_REG_FIXED_PCPUMCTX, offCpumCtx);
|
---|
7916 |
|
---|
7917 | #else
|
---|
7918 | # error "Port me!"
|
---|
7919 | #endif
|
---|
7920 |
|
---|
7921 | return off;
|
---|
7922 | }
|
---|
7923 |
|
---|
7924 |
|
---|
7925 | /**
|
---|
7926 | * Common code for CIMPL and AIMPL calls.
|
---|
7927 | *
|
---|
7928 | * These are calls that uses argument variables and such. They should not be
|
---|
7929 | * confused with internal calls required to implement an MC operation,
|
---|
7930 | * like a TLB load and similar.
|
---|
7931 | *
|
---|
7932 | * Upon return all that is left to do is to load any hidden arguments and
|
---|
7933 | * perform the call. All argument variables are freed.
|
---|
7934 | *
|
---|
7935 | * @returns New code buffer offset; throws VBox status code on error.
|
---|
7936 | * @param pReNative The native recompile state.
|
---|
7937 | * @param off The code buffer offset.
|
---|
7938 | * @param cArgs The total nubmer of arguments (includes hidden
|
---|
7939 | * count).
|
---|
7940 | * @param cHiddenArgs The number of hidden arguments. The hidden
|
---|
7941 | * arguments must not have any variable declared for
|
---|
7942 | * them, whereas all the regular arguments must
|
---|
7943 | * (tstIEMCheckMc ensures this).
|
---|
7944 | */
|
---|
7945 | DECL_HIDDEN_THROW(uint32_t)
|
---|
7946 | iemNativeEmitCallCommon(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs, uint8_t cHiddenArgs)
|
---|
7947 | {
|
---|
7948 | #ifdef VBOX_STRICT
|
---|
7949 | /*
|
---|
7950 | * Assert sanity.
|
---|
7951 | */
|
---|
7952 | Assert(cArgs <= IEMNATIVE_CALL_MAX_ARG_COUNT);
|
---|
7953 | Assert(cHiddenArgs < IEMNATIVE_CALL_ARG_GREG_COUNT);
|
---|
7954 | for (unsigned i = 0; i < cHiddenArgs; i++)
|
---|
7955 | Assert(pReNative->Core.aidxArgVars[i] == UINT8_MAX);
|
---|
7956 | for (unsigned i = cHiddenArgs; i < cArgs; i++)
|
---|
7957 | {
|
---|
7958 | Assert(pReNative->Core.aidxArgVars[i] != UINT8_MAX); /* checked by tstIEMCheckMc.cpp */
|
---|
7959 | Assert(pReNative->Core.bmVars & RT_BIT_32(pReNative->Core.aidxArgVars[i]));
|
---|
7960 | }
|
---|
7961 | iemNativeRegAssertSanity(pReNative);
|
---|
7962 | #endif
|
---|
7963 |
|
---|
7964 | /*
|
---|
7965 | * Before we do anything else, go over variables that are referenced and
|
---|
7966 | * make sure they are not in a register.
|
---|
7967 | */
|
---|
7968 | uint32_t bmVars = pReNative->Core.bmVars;
|
---|
7969 | if (bmVars)
|
---|
7970 | {
|
---|
7971 | do
|
---|
7972 | {
|
---|
7973 | uint8_t const idxVar = ASMBitFirstSetU32(bmVars) - 1;
|
---|
7974 | bmVars &= ~RT_BIT_32(idxVar);
|
---|
7975 |
|
---|
7976 | if (pReNative->Core.aVars[idxVar].idxReferrerVar != UINT8_MAX)
|
---|
7977 | {
|
---|
7978 | uint8_t const idxRegOld = pReNative->Core.aVars[idxVar].idxReg;
|
---|
7979 | if (idxRegOld < RT_ELEMENTS(pReNative->Core.aHstRegs))
|
---|
7980 | {
|
---|
7981 | uint8_t const idxStackSlot = iemNativeVarGetStackSlot(pReNative, idxVar);
|
---|
7982 | Log12(("iemNativeEmitCallCommon: spilling idxVar=%d/idxReg=%d (referred to by %d) onto the stack (slot %#x bp+%d, off=%#x)\n",
|
---|
7983 | idxVar, idxRegOld, pReNative->Core.aVars[idxVar].idxReferrerVar,
|
---|
7984 | idxStackSlot, iemNativeStackCalcBpDisp(idxStackSlot), off));
|
---|
7985 | off = iemNativeEmitStoreGprByBp(pReNative, off, iemNativeStackCalcBpDisp(idxStackSlot), idxRegOld);
|
---|
7986 |
|
---|
7987 | pReNative->Core.aVars[idxVar].idxReg = UINT8_MAX;
|
---|
7988 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(idxRegOld);
|
---|
7989 | pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxRegOld);
|
---|
7990 | pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxRegOld].fGstRegShadows;
|
---|
7991 | pReNative->Core.aHstRegs[idxRegOld].fGstRegShadows = 0;
|
---|
7992 | }
|
---|
7993 | }
|
---|
7994 | } while (bmVars != 0);
|
---|
7995 | #if 0 //def VBOX_STRICT
|
---|
7996 | iemNativeRegAssertSanity(pReNative);
|
---|
7997 | #endif
|
---|
7998 | }
|
---|
7999 |
|
---|
8000 | uint8_t const cRegArgs = RT_MIN(cArgs, RT_ELEMENTS(g_aidxIemNativeCallRegs));
|
---|
8001 |
|
---|
8002 | /*
|
---|
8003 | * First, go over the host registers that will be used for arguments and make
|
---|
8004 | * sure they either hold the desired argument or are free.
|
---|
8005 | */
|
---|
8006 | if (pReNative->Core.bmHstRegs & g_afIemNativeCallRegs[cRegArgs])
|
---|
8007 | {
|
---|
8008 | for (uint32_t i = 0; i < cRegArgs; i++)
|
---|
8009 | {
|
---|
8010 | uint8_t const idxArgReg = g_aidxIemNativeCallRegs[i];
|
---|
8011 | if (pReNative->Core.bmHstRegs & RT_BIT_32(idxArgReg))
|
---|
8012 | {
|
---|
8013 | if (pReNative->Core.aHstRegs[idxArgReg].enmWhat == kIemNativeWhat_Var)
|
---|
8014 | {
|
---|
8015 | uint8_t const idxVar = pReNative->Core.aHstRegs[idxArgReg].idxVar;
|
---|
8016 | Assert(idxVar < RT_ELEMENTS(pReNative->Core.aVars));
|
---|
8017 | Assert(pReNative->Core.aVars[idxVar].idxReg == idxArgReg);
|
---|
8018 | uint8_t const uArgNo = pReNative->Core.aVars[idxVar].uArgNo;
|
---|
8019 | if (uArgNo == i)
|
---|
8020 | { /* prefect */ }
|
---|
8021 | /* The variable allocator logic should make sure this is impossible,
|
---|
8022 | except for when the return register is used as a parameter (ARM,
|
---|
8023 | but not x86). */
|
---|
8024 | #if RT_BIT_32(IEMNATIVE_CALL_RET_GREG) & IEMNATIVE_CALL_ARGS_GREG_MASK
|
---|
8025 | else if (idxArgReg == IEMNATIVE_CALL_RET_GREG && uArgNo != UINT8_MAX)
|
---|
8026 | {
|
---|
8027 | # ifdef IEMNATIVE_FP_OFF_STACK_ARG0
|
---|
8028 | # error "Implement this"
|
---|
8029 | # endif
|
---|
8030 | Assert(uArgNo < IEMNATIVE_CALL_ARG_GREG_COUNT);
|
---|
8031 | uint8_t const idxFinalArgReg = g_aidxIemNativeCallRegs[uArgNo];
|
---|
8032 | AssertStmt(!(pReNative->Core.bmHstRegs & RT_BIT_32(idxFinalArgReg)),
|
---|
8033 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_IPE_10));
|
---|
8034 | off = iemNativeRegMoveVar(pReNative, off, idxVar, idxArgReg, idxFinalArgReg, "iemNativeEmitCallCommon");
|
---|
8035 | }
|
---|
8036 | #endif
|
---|
8037 | else
|
---|
8038 | {
|
---|
8039 | AssertStmt(uArgNo == UINT8_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_IPE_10));
|
---|
8040 |
|
---|
8041 | if (pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Stack)
|
---|
8042 | off = iemNativeRegMoveOrSpillStackVar(pReNative, off, idxVar);
|
---|
8043 | else
|
---|
8044 | {
|
---|
8045 | /* just free it, can be reloaded if used again */
|
---|
8046 | pReNative->Core.aVars[idxVar].idxReg = UINT8_MAX;
|
---|
8047 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(idxArgReg);
|
---|
8048 | iemNativeRegClearGstRegShadowing(pReNative, idxArgReg, off);
|
---|
8049 | }
|
---|
8050 | }
|
---|
8051 | }
|
---|
8052 | else
|
---|
8053 | AssertStmt(pReNative->Core.aHstRegs[idxArgReg].enmWhat == kIemNativeWhat_Arg,
|
---|
8054 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_REG_IPE_8));
|
---|
8055 | }
|
---|
8056 | }
|
---|
8057 | #if 0 //def VBOX_STRICT
|
---|
8058 | iemNativeRegAssertSanity(pReNative);
|
---|
8059 | #endif
|
---|
8060 | }
|
---|
8061 |
|
---|
8062 | Assert(!(pReNative->Core.bmHstRegs & g_afIemNativeCallRegs[cHiddenArgs])); /* No variables for hidden arguments. */
|
---|
8063 |
|
---|
8064 | #ifdef IEMNATIVE_FP_OFF_STACK_ARG0
|
---|
8065 | /*
|
---|
8066 | * If there are any stack arguments, make sure they are in their place as well.
|
---|
8067 | *
|
---|
8068 | * We can use IEMNATIVE_CALL_ARG0_GREG as temporary register since we'll (or
|
---|
8069 | * the caller) be loading it later and it must be free (see first loop).
|
---|
8070 | */
|
---|
8071 | if (cArgs > IEMNATIVE_CALL_ARG_GREG_COUNT)
|
---|
8072 | {
|
---|
8073 | for (unsigned i = IEMNATIVE_CALL_ARG_GREG_COUNT; i < cArgs; i++)
|
---|
8074 | {
|
---|
8075 | uint8_t const idxVar = pReNative->Core.aidxArgVars[i];
|
---|
8076 | int32_t const offBpDisp = g_aoffIemNativeCallStackArgBpDisp[i - IEMNATIVE_CALL_ARG_GREG_COUNT];
|
---|
8077 | if (pReNative->Core.aVars[idxVar].idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
|
---|
8078 | {
|
---|
8079 | Assert(pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Stack); /* Imm as well? */
|
---|
8080 | off = iemNativeEmitStoreGprByBp(pReNative, off, offBpDisp, pReNative->Core.aVars[idxVar].idxReg);
|
---|
8081 | pReNative->Core.bmHstRegs &= ~RT_BIT_32(pReNative->Core.aVars[idxVar].idxReg);
|
---|
8082 | pReNative->Core.aVars[idxVar].idxReg = UINT8_MAX;
|
---|
8083 | }
|
---|
8084 | else
|
---|
8085 | {
|
---|
8086 | /* Use ARG0 as temp for stuff we need registers for. */
|
---|
8087 | switch (pReNative->Core.aVars[idxVar].enmKind)
|
---|
8088 | {
|
---|
8089 | case kIemNativeVarKind_Stack:
|
---|
8090 | {
|
---|
8091 | uint8_t const idxStackSlot = pReNative->Core.aVars[idxVar].idxStackSlot;
|
---|
8092 | AssertStmt(idxStackSlot != UINT8_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_NOT_INITIALIZED));
|
---|
8093 | off = iemNativeEmitLoadGprByBp(pReNative, off, IEMNATIVE_CALL_ARG0_GREG /* is free */,
|
---|
8094 | iemNativeStackCalcBpDisp(idxStackSlot));
|
---|
8095 | off = iemNativeEmitStoreGprByBp(pReNative, off, offBpDisp, IEMNATIVE_CALL_ARG0_GREG);
|
---|
8096 | continue;
|
---|
8097 | }
|
---|
8098 |
|
---|
8099 | case kIemNativeVarKind_Immediate:
|
---|
8100 | off = iemNativeEmitStoreImm64ByBp(pReNative, off, offBpDisp, pReNative->Core.aVars[idxVar].u.uValue);
|
---|
8101 | continue;
|
---|
8102 |
|
---|
8103 | case kIemNativeVarKind_VarRef:
|
---|
8104 | {
|
---|
8105 | uint8_t const idxOtherVar = pReNative->Core.aVars[idxVar].u.idxRefVar;
|
---|
8106 | Assert(idxOtherVar < RT_ELEMENTS(pReNative->Core.aVars));
|
---|
8107 | uint8_t const idxStackSlot = iemNativeVarGetStackSlot(pReNative, idxOtherVar);
|
---|
8108 | int32_t const offBpDispOther = iemNativeStackCalcBpDisp(idxStackSlot);
|
---|
8109 | uint8_t const idxRegOther = pReNative->Core.aVars[idxOtherVar].idxReg;
|
---|
8110 | if (idxRegOther < RT_ELEMENTS(pReNative->Core.aHstRegs))
|
---|
8111 | {
|
---|
8112 | off = iemNativeEmitStoreGprByBp(pReNative, off, offBpDispOther, idxRegOther);
|
---|
8113 | iemNativeRegFreeVar(pReNative, idxRegOther, true); /** @todo const ref? */
|
---|
8114 | Assert(pReNative->Core.aVars[idxOtherVar].idxReg == UINT8_MAX);
|
---|
8115 | }
|
---|
8116 | Assert( pReNative->Core.aVars[idxOtherVar].idxStackSlot != UINT8_MAX
|
---|
8117 | && pReNative->Core.aVars[idxOtherVar].idxReg == UINT8_MAX);
|
---|
8118 | off = iemNativeEmitLeaGprByBp(pReNative, off, IEMNATIVE_CALL_ARG0_GREG, offBpDispOther);
|
---|
8119 | off = iemNativeEmitStoreGprByBp(pReNative, off, offBpDisp, IEMNATIVE_CALL_ARG0_GREG);
|
---|
8120 | continue;
|
---|
8121 | }
|
---|
8122 |
|
---|
8123 | case kIemNativeVarKind_GstRegRef:
|
---|
8124 | off = iemNativeEmitLeaGprByGstRegRef(pReNative, off, IEMNATIVE_CALL_ARG0_GREG,
|
---|
8125 | pReNative->Core.aVars[idxVar].u.GstRegRef.enmClass,
|
---|
8126 | pReNative->Core.aVars[idxVar].u.GstRegRef.idx);
|
---|
8127 | off = iemNativeEmitStoreGprByBp(pReNative, off, offBpDisp, IEMNATIVE_CALL_ARG0_GREG);
|
---|
8128 | continue;
|
---|
8129 |
|
---|
8130 | case kIemNativeVarKind_Invalid:
|
---|
8131 | case kIemNativeVarKind_End:
|
---|
8132 | break;
|
---|
8133 | }
|
---|
8134 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_3));
|
---|
8135 | }
|
---|
8136 | }
|
---|
8137 | # if 0 //def VBOX_STRICT
|
---|
8138 | iemNativeRegAssertSanity(pReNative);
|
---|
8139 | # endif
|
---|
8140 | }
|
---|
8141 | #else
|
---|
8142 | AssertCompile(IEMNATIVE_CALL_MAX_ARG_COUNT <= IEMNATIVE_CALL_ARG_GREG_COUNT);
|
---|
8143 | #endif
|
---|
8144 |
|
---|
8145 | /*
|
---|
8146 | * Make sure the argument variables are loaded into their respective registers.
|
---|
8147 | *
|
---|
8148 | * We can optimize this by ASSUMING that any register allocations are for
|
---|
8149 | * registeres that have already been loaded and are ready. The previous step
|
---|
8150 | * saw to that.
|
---|
8151 | */
|
---|
8152 | if (~pReNative->Core.bmHstRegs & (g_afIemNativeCallRegs[cRegArgs] & ~g_afIemNativeCallRegs[cHiddenArgs]))
|
---|
8153 | {
|
---|
8154 | for (unsigned i = cHiddenArgs; i < cRegArgs; i++)
|
---|
8155 | {
|
---|
8156 | uint8_t const idxArgReg = g_aidxIemNativeCallRegs[i];
|
---|
8157 | if (pReNative->Core.bmHstRegs & RT_BIT_32(idxArgReg))
|
---|
8158 | Assert( pReNative->Core.aHstRegs[idxArgReg].idxVar == pReNative->Core.aidxArgVars[i]
|
---|
8159 | && pReNative->Core.aVars[pReNative->Core.aidxArgVars[i]].uArgNo == i
|
---|
8160 | && pReNative->Core.aVars[pReNative->Core.aidxArgVars[i]].idxReg == idxArgReg);
|
---|
8161 | else
|
---|
8162 | {
|
---|
8163 | uint8_t const idxVar = pReNative->Core.aidxArgVars[i];
|
---|
8164 | if (pReNative->Core.aVars[idxVar].idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
|
---|
8165 | {
|
---|
8166 | Assert(pReNative->Core.aVars[idxVar].enmKind == kIemNativeVarKind_Stack);
|
---|
8167 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, idxArgReg, pReNative->Core.aVars[idxVar].idxReg);
|
---|
8168 | pReNative->Core.bmHstRegs = (pReNative->Core.bmHstRegs & ~RT_BIT_32(pReNative->Core.aVars[idxVar].idxReg))
|
---|
8169 | | RT_BIT_32(idxArgReg);
|
---|
8170 | pReNative->Core.aVars[idxVar].idxReg = idxArgReg;
|
---|
8171 | }
|
---|
8172 | else
|
---|
8173 | {
|
---|
8174 | /* Use ARG0 as temp for stuff we need registers for. */
|
---|
8175 | switch (pReNative->Core.aVars[idxVar].enmKind)
|
---|
8176 | {
|
---|
8177 | case kIemNativeVarKind_Stack:
|
---|
8178 | {
|
---|
8179 | uint8_t const idxStackSlot = pReNative->Core.aVars[idxVar].idxStackSlot;
|
---|
8180 | AssertStmt(idxStackSlot != UINT8_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_NOT_INITIALIZED));
|
---|
8181 | off = iemNativeEmitLoadGprByBp(pReNative, off, idxArgReg, iemNativeStackCalcBpDisp(idxStackSlot));
|
---|
8182 | continue;
|
---|
8183 | }
|
---|
8184 |
|
---|
8185 | case kIemNativeVarKind_Immediate:
|
---|
8186 | off = iemNativeEmitLoadGprImm64(pReNative, off, idxArgReg, pReNative->Core.aVars[idxVar].u.uValue);
|
---|
8187 | continue;
|
---|
8188 |
|
---|
8189 | case kIemNativeVarKind_VarRef:
|
---|
8190 | {
|
---|
8191 | uint8_t const idxOtherVar = pReNative->Core.aVars[idxVar].u.idxRefVar;
|
---|
8192 | Assert(idxOtherVar < RT_ELEMENTS(pReNative->Core.aVars));
|
---|
8193 | uint8_t const idxStackSlot = iemNativeVarGetStackSlot(pReNative, idxOtherVar);
|
---|
8194 | int32_t const offBpDispOther = iemNativeStackCalcBpDisp(idxStackSlot);
|
---|
8195 | uint8_t const idxRegOther = pReNative->Core.aVars[idxOtherVar].idxReg;
|
---|
8196 | if (idxRegOther < RT_ELEMENTS(pReNative->Core.aHstRegs))
|
---|
8197 | {
|
---|
8198 | off = iemNativeEmitStoreGprByBp(pReNative, off, offBpDispOther, idxRegOther);
|
---|
8199 | iemNativeRegFreeVar(pReNative, idxRegOther, true); /** @todo const ref? */
|
---|
8200 | Assert(pReNative->Core.aVars[idxOtherVar].idxReg == UINT8_MAX);
|
---|
8201 | }
|
---|
8202 | Assert( pReNative->Core.aVars[idxOtherVar].idxStackSlot != UINT8_MAX
|
---|
8203 | && pReNative->Core.aVars[idxOtherVar].idxReg == UINT8_MAX);
|
---|
8204 | off = iemNativeEmitLeaGprByBp(pReNative, off, idxArgReg, offBpDispOther);
|
---|
8205 | continue;
|
---|
8206 | }
|
---|
8207 |
|
---|
8208 | case kIemNativeVarKind_GstRegRef:
|
---|
8209 | off = iemNativeEmitLeaGprByGstRegRef(pReNative, off, idxArgReg,
|
---|
8210 | pReNative->Core.aVars[idxVar].u.GstRegRef.enmClass,
|
---|
8211 | pReNative->Core.aVars[idxVar].u.GstRegRef.idx);
|
---|
8212 | continue;
|
---|
8213 |
|
---|
8214 | case kIemNativeVarKind_Invalid:
|
---|
8215 | case kIemNativeVarKind_End:
|
---|
8216 | break;
|
---|
8217 | }
|
---|
8218 | AssertFailedStmt(IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_3));
|
---|
8219 | }
|
---|
8220 | }
|
---|
8221 | }
|
---|
8222 | #if 0 //def VBOX_STRICT
|
---|
8223 | iemNativeRegAssertSanity(pReNative);
|
---|
8224 | #endif
|
---|
8225 | }
|
---|
8226 | #ifdef VBOX_STRICT
|
---|
8227 | else
|
---|
8228 | for (unsigned i = cHiddenArgs; i < cRegArgs; i++)
|
---|
8229 | {
|
---|
8230 | Assert(pReNative->Core.aVars[pReNative->Core.aidxArgVars[i]].uArgNo == i);
|
---|
8231 | Assert(pReNative->Core.aVars[pReNative->Core.aidxArgVars[i]].idxReg == g_aidxIemNativeCallRegs[i]);
|
---|
8232 | }
|
---|
8233 | #endif
|
---|
8234 |
|
---|
8235 | /*
|
---|
8236 | * Free all argument variables (simplified).
|
---|
8237 | * Their lifetime always expires with the call they are for.
|
---|
8238 | */
|
---|
8239 | /** @todo Make the python script check that arguments aren't used after
|
---|
8240 | * IEM_MC_CALL_XXXX. */
|
---|
8241 | /** @todo There is a special with IEM_MC_MEM_MAP_U16_RW and friends requiring
|
---|
8242 | * a IEM_MC_MEM_COMMIT_AND_UNMAP_RW after a AIMPL call typically with
|
---|
8243 | * an argument value. There is also some FPU stuff. */
|
---|
8244 | for (uint32_t i = cHiddenArgs; i < cArgs; i++)
|
---|
8245 | {
|
---|
8246 | uint8_t const idxVar = pReNative->Core.aidxArgVars[i];
|
---|
8247 | Assert(idxVar < RT_ELEMENTS(pReNative->Core.aVars));
|
---|
8248 |
|
---|
8249 | /* no need to free registers: */
|
---|
8250 | AssertMsg(i < IEMNATIVE_CALL_ARG_GREG_COUNT
|
---|
8251 | ? pReNative->Core.aVars[idxVar].idxReg == g_aidxIemNativeCallRegs[i]
|
---|
8252 | || pReNative->Core.aVars[idxVar].idxReg == UINT8_MAX
|
---|
8253 | : pReNative->Core.aVars[idxVar].idxReg == UINT8_MAX,
|
---|
8254 | ("i=%d idxVar=%d idxReg=%d, expected %d\n", i, idxVar, pReNative->Core.aVars[idxVar].idxReg,
|
---|
8255 | i < IEMNATIVE_CALL_ARG_GREG_COUNT ? g_aidxIemNativeCallRegs[i] : UINT8_MAX));
|
---|
8256 |
|
---|
8257 | pReNative->Core.aidxArgVars[i] = UINT8_MAX;
|
---|
8258 | pReNative->Core.bmVars &= ~RT_BIT_32(idxVar);
|
---|
8259 | iemNativeVarFreeStackSlots(pReNative, idxVar);
|
---|
8260 | }
|
---|
8261 | Assert(pReNative->Core.u64ArgVars == UINT64_MAX);
|
---|
8262 |
|
---|
8263 | /*
|
---|
8264 | * Flush volatile registers as we make the call.
|
---|
8265 | */
|
---|
8266 | off = iemNativeRegMoveAndFreeAndFlushAtCall(pReNative, off, cRegArgs);
|
---|
8267 |
|
---|
8268 | return off;
|
---|
8269 | }
|
---|
8270 |
|
---|
8271 |
|
---|
8272 | /** Common emit function for IEM_MC_CALL_CIMPL_XXXX. */
|
---|
8273 | DECL_HIDDEN_THROW(uint32_t)
|
---|
8274 | iemNativeEmitCallCImplCommon(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr, uint8_t idxInstr,
|
---|
8275 | uint64_t fGstShwFlush, uintptr_t pfnCImpl, uint8_t cArgs)
|
---|
8276 |
|
---|
8277 | {
|
---|
8278 | /*
|
---|
8279 | * Do all the call setup and cleanup.
|
---|
8280 | */
|
---|
8281 | off = iemNativeEmitCallCommon(pReNative, off, cArgs + IEM_CIMPL_HIDDEN_ARGS, IEM_CIMPL_HIDDEN_ARGS);
|
---|
8282 |
|
---|
8283 | /*
|
---|
8284 | * Load the two or three hidden arguments.
|
---|
8285 | */
|
---|
8286 | #if defined(VBOXSTRICTRC_STRICT_ENABLED) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64)
|
---|
8287 | off = iemNativeEmitLeaGprByBp(pReNative, off, IEMNATIVE_CALL_ARG0_GREG, IEMNATIVE_FP_OFF_IN_SHADOW_ARG0); /* rcStrict */
|
---|
8288 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG1_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
8289 | off = iemNativeEmitLoadGpr8Imm(pReNative, off, IEMNATIVE_CALL_ARG2_GREG, cbInstr);
|
---|
8290 | #else
|
---|
8291 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG0_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
8292 | off = iemNativeEmitLoadGpr8Imm(pReNative, off, IEMNATIVE_CALL_ARG1_GREG, cbInstr);
|
---|
8293 | #endif
|
---|
8294 |
|
---|
8295 | /*
|
---|
8296 | * Make the call and check the return code.
|
---|
8297 | *
|
---|
8298 | * Shadow PC copies are always flushed here, other stuff depends on flags.
|
---|
8299 | * Segment and general purpose registers are explictily flushed via the
|
---|
8300 | * IEM_MC_HINT_FLUSH_GUEST_SHADOW_GREG and IEM_MC_HINT_FLUSH_GUEST_SHADOW_SREG
|
---|
8301 | * macros.
|
---|
8302 | */
|
---|
8303 | off = iemNativeEmitCallImm(pReNative, off, (uintptr_t)pfnCImpl);
|
---|
8304 | #if defined(VBOXSTRICTRC_STRICT_ENABLED) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64)
|
---|
8305 | off = iemNativeEmitLoadGprByBpU32(pReNative, off, X86_GREG_xAX, IEMNATIVE_FP_OFF_IN_SHADOW_ARG0); /* rcStrict (see above) */
|
---|
8306 | #endif
|
---|
8307 | fGstShwFlush = iemNativeCImplFlagsToGuestShadowFlushMask(pReNative->fCImpl, fGstShwFlush | RT_BIT_64(kIemNativeGstReg_Pc));
|
---|
8308 | if (!(pReNative->fMc & IEM_MC_F_WITHOUT_FLAGS)) /** @todo We don't emit with-flags/without-flags variations for CIMPL calls. */
|
---|
8309 | fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_EFlags);
|
---|
8310 | iemNativeRegFlushGuestShadows(pReNative, fGstShwFlush);
|
---|
8311 |
|
---|
8312 | return iemNativeEmitCheckCallRetAndPassUp(pReNative, off, idxInstr);
|
---|
8313 | }
|
---|
8314 |
|
---|
8315 |
|
---|
8316 | #define IEM_MC_CALL_CIMPL_1_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0) \
|
---|
8317 | off = iemNativeEmitCallCImpl1(pReNative, off, a_cbInstr, pCallEntry->idxInstr, a_fGstShwFlush, (uintptr_t)a_pfnCImpl, a0)
|
---|
8318 |
|
---|
8319 | /** Emits code for IEM_MC_CALL_CIMPL_1. */
|
---|
8320 | DECL_INLINE_THROW(uint32_t)
|
---|
8321 | iemNativeEmitCallCImpl1(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr, uint8_t idxInstr, uint64_t fGstShwFlush,
|
---|
8322 | uintptr_t pfnCImpl, uint8_t idxArg0)
|
---|
8323 | {
|
---|
8324 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg0, 0 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
8325 | return iemNativeEmitCallCImplCommon(pReNative, off, cbInstr, idxInstr, fGstShwFlush, pfnCImpl, 1);
|
---|
8326 | }
|
---|
8327 |
|
---|
8328 |
|
---|
8329 | #define IEM_MC_CALL_CIMPL_2_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1) \
|
---|
8330 | off = iemNativeEmitCallCImpl2(pReNative, off, a_cbInstr, pCallEntry->idxInstr, a_fGstShwFlush, (uintptr_t)a_pfnCImpl, a0, a1)
|
---|
8331 |
|
---|
8332 | /** Emits code for IEM_MC_CALL_CIMPL_2. */
|
---|
8333 | DECL_INLINE_THROW(uint32_t)
|
---|
8334 | iemNativeEmitCallCImpl2(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr, uint8_t idxInstr, uint64_t fGstShwFlush,
|
---|
8335 | uintptr_t pfnCImpl, uint8_t idxArg0, uint8_t idxArg1)
|
---|
8336 | {
|
---|
8337 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg0, 0 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
8338 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg1, 1 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
8339 | return iemNativeEmitCallCImplCommon(pReNative, off, cbInstr, idxInstr, fGstShwFlush, pfnCImpl, 2);
|
---|
8340 | }
|
---|
8341 |
|
---|
8342 |
|
---|
8343 | #define IEM_MC_CALL_CIMPL_3_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2) \
|
---|
8344 | off = iemNativeEmitCallCImpl3(pReNative, off, a_cbInstr, pCallEntry->idxInstr, a_fGstShwFlush, \
|
---|
8345 | (uintptr_t)a_pfnCImpl, a0, a1, a2)
|
---|
8346 |
|
---|
8347 | /** Emits code for IEM_MC_CALL_CIMPL_3. */
|
---|
8348 | DECL_INLINE_THROW(uint32_t)
|
---|
8349 | iemNativeEmitCallCImpl3(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr, uint8_t idxInstr, uint64_t fGstShwFlush,
|
---|
8350 | uintptr_t pfnCImpl, uint8_t idxArg0, uint8_t idxArg1, uint8_t idxArg2)
|
---|
8351 | {
|
---|
8352 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg0, 0 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
8353 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg1, 1 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
8354 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg2, 2 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
8355 | return iemNativeEmitCallCImplCommon(pReNative, off, cbInstr, idxInstr, fGstShwFlush, pfnCImpl, 3);
|
---|
8356 | }
|
---|
8357 |
|
---|
8358 |
|
---|
8359 | #define IEM_MC_CALL_CIMPL_4_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2, a3) \
|
---|
8360 | off = iemNativeEmitCallCImpl4(pReNative, off, a_cbInstr, pCallEntry->idxInstr, a_fGstShwFlush, \
|
---|
8361 | (uintptr_t)a_pfnCImpl, a0, a1, a2, a3)
|
---|
8362 |
|
---|
8363 | /** Emits code for IEM_MC_CALL_CIMPL_4. */
|
---|
8364 | DECL_INLINE_THROW(uint32_t)
|
---|
8365 | iemNativeEmitCallCImpl4(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr, uint8_t idxInstr, uint64_t fGstShwFlush,
|
---|
8366 | uintptr_t pfnCImpl, uint8_t idxArg0, uint8_t idxArg1, uint8_t idxArg2, uint8_t idxArg3)
|
---|
8367 | {
|
---|
8368 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg0, 0 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
8369 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg1, 1 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
8370 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg2, 2 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
8371 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg3, 3 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
8372 | return iemNativeEmitCallCImplCommon(pReNative, off, cbInstr, idxInstr, fGstShwFlush, pfnCImpl, 4);
|
---|
8373 | }
|
---|
8374 |
|
---|
8375 |
|
---|
8376 | #define IEM_MC_CALL_CIMPL_5_THREADED(a_cbInstr, a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2, a3, a4) \
|
---|
8377 | off = iemNativeEmitCallCImpl5(pReNative, off, a_cbInstr, pCallEntry->idxInstr, a_fGstShwFlush, \
|
---|
8378 | (uintptr_t)a_pfnCImpl, a0, a1, a2, a3, a4)
|
---|
8379 |
|
---|
8380 | /** Emits code for IEM_MC_CALL_CIMPL_4. */
|
---|
8381 | DECL_INLINE_THROW(uint32_t)
|
---|
8382 | iemNativeEmitCallCImpl5(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cbInstr, uint8_t idxInstr, uint64_t fGstShwFlush,
|
---|
8383 | uintptr_t pfnCImpl, uint8_t idxArg0, uint8_t idxArg1, uint8_t idxArg2, uint8_t idxArg3, uint8_t idxArg4)
|
---|
8384 | {
|
---|
8385 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg0, 0 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
8386 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg1, 1 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
8387 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg2, 2 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
8388 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg3, 3 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
8389 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg4, 4 + IEM_CIMPL_HIDDEN_ARGS);
|
---|
8390 | return iemNativeEmitCallCImplCommon(pReNative, off, cbInstr, idxInstr, fGstShwFlush, pfnCImpl, 5);
|
---|
8391 | }
|
---|
8392 |
|
---|
8393 |
|
---|
8394 | /** Recompiler debugging: Flush guest register shadow copies. */
|
---|
8395 | #define IEM_MC_HINT_FLUSH_GUEST_SHADOW(g_fGstShwFlush) iemNativeRegFlushGuestShadows(pReNative, g_fGstShwFlush)
|
---|
8396 |
|
---|
8397 |
|
---|
8398 |
|
---|
8399 | /*********************************************************************************************************************************
|
---|
8400 | * Emitters for IEM_MC_CALL_VOID_AIMPL_XXX and IEM_MC_CALL_AIMPL_XXX *
|
---|
8401 | *********************************************************************************************************************************/
|
---|
8402 |
|
---|
8403 | /**
|
---|
8404 | * Common worker for IEM_MC_CALL_VOID_AIMPL_XXX and IEM_MC_CALL_AIMPL_XXX.
|
---|
8405 | */
|
---|
8406 | DECL_INLINE_THROW(uint32_t)
|
---|
8407 | iemNativeEmitCallAImplCommon(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVarRc,
|
---|
8408 | uintptr_t pfnAImpl, uint8_t cArgs)
|
---|
8409 | {
|
---|
8410 | if (idxVarRc != UINT8_MAX)
|
---|
8411 | {
|
---|
8412 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVarRc);
|
---|
8413 | AssertStmt(pReNative->Core.aVars[idxVarRc].uArgNo == UINT8_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_8));
|
---|
8414 | AssertStmt(pReNative->Core.aVars[idxVarRc].cbVar <= sizeof(uint64_t), IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_IPE_9));
|
---|
8415 | }
|
---|
8416 |
|
---|
8417 | /*
|
---|
8418 | * Do all the call setup and cleanup.
|
---|
8419 | */
|
---|
8420 | off = iemNativeEmitCallCommon(pReNative, off, cArgs, 0 /*cHiddenArgs*/);
|
---|
8421 |
|
---|
8422 | /*
|
---|
8423 | * Make the call and update the return code variable if we've got one.
|
---|
8424 | */
|
---|
8425 | off = iemNativeEmitCallImm(pReNative, off, pfnAImpl);
|
---|
8426 | if (idxVarRc < RT_ELEMENTS(pReNative->Core.aVars))
|
---|
8427 | {
|
---|
8428 | pReNative->pInstrBuf[off++] = 0xcc; /** @todo test IEM_MC_CALL_AIMPL_3 and IEM_MC_CALL_AIMPL_4 return codes. */
|
---|
8429 | iemNativeVarRegisterSet(pReNative, idxVarRc, IEMNATIVE_CALL_RET_GREG, off);
|
---|
8430 | }
|
---|
8431 |
|
---|
8432 | return off;
|
---|
8433 | }
|
---|
8434 |
|
---|
8435 |
|
---|
8436 |
|
---|
8437 | #define IEM_MC_CALL_VOID_AIMPL_0(a_pfn) \
|
---|
8438 | off = iemNativeEmitCallAImpl0(pReNative, off, UINT8_MAX /*idxVarRc*/, (uintptr_t)(a_pfn))
|
---|
8439 |
|
---|
8440 | #define IEM_MC_CALL_AIMPL_0(a_rc, a_pfn) \
|
---|
8441 | off = iemNativeEmitCallAImpl0(pReNative, off, a_rc, (uintptr_t)(a_pfn))
|
---|
8442 |
|
---|
8443 | /** Emits code for IEM_MC_CALL_VOID_AIMPL_0 and IEM_MC_CALL_AIMPL_0. */
|
---|
8444 | DECL_INLINE_THROW(uint32_t)
|
---|
8445 | iemNativeEmitCallAImpl0(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVarRc, uintptr_t pfnAImpl)
|
---|
8446 | {
|
---|
8447 | return iemNativeEmitCallAImplCommon(pReNative, off, idxVarRc, pfnAImpl, 0);
|
---|
8448 | }
|
---|
8449 |
|
---|
8450 |
|
---|
8451 | #define IEM_MC_CALL_VOID_AIMPL_1(a_pfn, a0) \
|
---|
8452 | off = iemNativeEmitCallAImpl1(pReNative, off, UINT8_MAX /*idxVarRc*/, (uintptr_t)(a_pfn), a0)
|
---|
8453 |
|
---|
8454 | #define IEM_MC_CALL_AIMPL_1(a_rc, a_pfn, a0) \
|
---|
8455 | off = iemNativeEmitCallAImpl1(pReNative, off, a_rc, (uintptr_t)(a_pfn), a0)
|
---|
8456 |
|
---|
8457 | /** Emits code for IEM_MC_CALL_VOID_AIMPL_1 and IEM_MC_CALL_AIMPL_1. */
|
---|
8458 | DECL_INLINE_THROW(uint32_t)
|
---|
8459 | iemNativeEmitCallAImpl1(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVarRc, uintptr_t pfnAImpl, uint8_t idxArg0)
|
---|
8460 | {
|
---|
8461 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg0, 0);
|
---|
8462 | return iemNativeEmitCallAImplCommon(pReNative, off, idxVarRc, pfnAImpl, 1);
|
---|
8463 | }
|
---|
8464 |
|
---|
8465 |
|
---|
8466 | #define IEM_MC_CALL_VOID_AIMPL_2(a_pfn, a0, a1) \
|
---|
8467 | off = iemNativeEmitCallAImpl2(pReNative, off, UINT8_MAX /*idxVarRc*/, (uintptr_t)(a_pfn), a0, a1)
|
---|
8468 |
|
---|
8469 | #define IEM_MC_CALL_AIMPL_2(a_rc, a_pfn, a0, a1) \
|
---|
8470 | off = iemNativeEmitCallAImpl2(pReNative, off, a_rc, (uintptr_t)(a_pfn), a0, a1)
|
---|
8471 |
|
---|
8472 | /** Emits code for IEM_MC_CALL_VOID_AIMPL_2 and IEM_MC_CALL_AIMPL_2. */
|
---|
8473 | DECL_INLINE_THROW(uint32_t)
|
---|
8474 | iemNativeEmitCallAImpl2(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVarRc,
|
---|
8475 | uintptr_t pfnAImpl, uint8_t idxArg0, uint8_t idxArg1)
|
---|
8476 | {
|
---|
8477 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg0, 0);
|
---|
8478 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg1, 1);
|
---|
8479 | return iemNativeEmitCallAImplCommon(pReNative, off, idxVarRc, pfnAImpl, 2);
|
---|
8480 | }
|
---|
8481 |
|
---|
8482 |
|
---|
8483 | #define IEM_MC_CALL_VOID_AIMPL_3(a_pfn, a0, a1, a2) \
|
---|
8484 | off = iemNativeEmitCallAImpl3(pReNative, off, UINT8_MAX /*idxVarRc*/, (uintptr_t)(a_pfn), a0, a1, a2)
|
---|
8485 |
|
---|
8486 | #define IEM_MC_CALL_AIMPL_3(a_rc, a_pfn, a0, a1, a2) \
|
---|
8487 | off = iemNativeEmitCallAImpl3(pReNative, off, a_rc, (uintptr_t)(a_pfn), a0, a1, a2)
|
---|
8488 |
|
---|
8489 | /** Emits code for IEM_MC_CALL_VOID_AIMPL_3 and IEM_MC_CALL_AIMPL_3. */
|
---|
8490 | DECL_INLINE_THROW(uint32_t)
|
---|
8491 | iemNativeEmitCallAImpl3(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVarRc,
|
---|
8492 | uintptr_t pfnAImpl, uint8_t idxArg0, uint8_t idxArg1, uint8_t idxArg2)
|
---|
8493 | {
|
---|
8494 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg0, 0);
|
---|
8495 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg1, 1);
|
---|
8496 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg2, 2);
|
---|
8497 | return iemNativeEmitCallAImplCommon(pReNative, off, idxVarRc, pfnAImpl, 3);
|
---|
8498 | }
|
---|
8499 |
|
---|
8500 |
|
---|
8501 | #define IEM_MC_CALL_VOID_AIMPL_4(a_pfn, a0, a1, a2, a3) \
|
---|
8502 | off = iemNativeEmitCallAImpl4(pReNative, off, UINT8_MAX /*idxVarRc*/, (uintptr_t)(a_pfn), a0, a1, a2, a3)
|
---|
8503 |
|
---|
8504 | #define IEM_MC_CALL_AIMPL_4(a_rc, a_pfn, a0, a1, a2, a3) \
|
---|
8505 | off = iemNativeEmitCallAImpl4(pReNative, off, a_rc, (uintptr_t)(a_pfn), a0, a1, a2, a3)
|
---|
8506 |
|
---|
8507 | /** Emits code for IEM_MC_CALL_VOID_AIMPL_4 and IEM_MC_CALL_AIMPL_4. */
|
---|
8508 | DECL_INLINE_THROW(uint32_t)
|
---|
8509 | iemNativeEmitCallAImpl4(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVarRc,
|
---|
8510 | uintptr_t pfnAImpl, uint8_t idxArg0, uint8_t idxArg1, uint8_t idxArg2, uint8_t idxArg3)
|
---|
8511 | {
|
---|
8512 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg0, 0);
|
---|
8513 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg1, 1);
|
---|
8514 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg2, 2);
|
---|
8515 | IEMNATIVE_ASSERT_ARG_VAR_IDX(pReNative, idxArg3, 3);
|
---|
8516 | return iemNativeEmitCallAImplCommon(pReNative, off, idxVarRc, pfnAImpl, 4);
|
---|
8517 | }
|
---|
8518 |
|
---|
8519 |
|
---|
8520 |
|
---|
8521 | /*********************************************************************************************************************************
|
---|
8522 | * Emitters for general purpose register fetches (IEM_MC_FETCH_GREG_XXX). *
|
---|
8523 | *********************************************************************************************************************************/
|
---|
8524 |
|
---|
8525 | #define IEM_MC_FETCH_GREG_U8_THREADED(a_u8Dst, a_iGRegEx) \
|
---|
8526 | off = iemNativeEmitFetchGregU8(pReNative, off, a_u8Dst, a_iGRegEx, sizeof(uint8_t) /*cbZeroExtended*/)
|
---|
8527 |
|
---|
8528 | #define IEM_MC_FETCH_GREG_U8_ZX_U16_THREADED(a_u16Dst, a_iGRegEx) \
|
---|
8529 | off = iemNativeEmitFetchGregU8(pReNative, off, a_u16Dst, a_iGRegEx, sizeof(uint16_t) /*cbZeroExtended*/)
|
---|
8530 |
|
---|
8531 | #define IEM_MC_FETCH_GREG_U8_ZX_U32_THREADED(a_u32Dst, a_iGRegEx) \
|
---|
8532 | off = iemNativeEmitFetchGregU8(pReNative, off, a_u32Dst, a_iGRegEx, sizeof(uint32_t) /*cbZeroExtended*/)
|
---|
8533 |
|
---|
8534 | #define IEM_MC_FETCH_GREG_U8_ZX_U64_THREADED(a_u64Dst, a_iGRegEx) \
|
---|
8535 | off = iemNativeEmitFetchGregU8(pReNative, off, a_u64Dst, a_iGRegEx, sizeof(uint64_t) /*cbZeroExtended*/)
|
---|
8536 |
|
---|
8537 |
|
---|
8538 | /** Emits code for IEM_MC_FETCH_GREG_U8_THREADED and
|
---|
8539 | * IEM_MC_FETCH_GREG_U8_ZX_U16/32/64_THREADED. */
|
---|
8540 | DECL_INLINE_THROW(uint32_t)
|
---|
8541 | iemNativeEmitFetchGregU8(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxDstVar, uint8_t iGRegEx, int8_t cbZeroExtended)
|
---|
8542 | {
|
---|
8543 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxDstVar);
|
---|
8544 | Assert(pReNative->Core.aVars[idxDstVar].cbVar == cbZeroExtended); RT_NOREF(cbZeroExtended);
|
---|
8545 | Assert(iGRegEx < 20);
|
---|
8546 |
|
---|
8547 | /* Same discussion as in iemNativeEmitFetchGregU16 */
|
---|
8548 | uint8_t const idxGstFullReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGRegEx & 15),
|
---|
8549 | kIemNativeGstRegUse_ReadOnly);
|
---|
8550 |
|
---|
8551 | iemNativeVarSetKindToStack(pReNative, idxDstVar);
|
---|
8552 | uint8_t const idxVarReg = iemNativeVarRegisterAcquire(pReNative, idxDstVar, &off);
|
---|
8553 |
|
---|
8554 | /* The value is zero-extended to the full 64-bit host register width. */
|
---|
8555 | if (iGRegEx < 16)
|
---|
8556 | off = iemNativeEmitLoadGprFromGpr8(pReNative, off, idxVarReg, idxGstFullReg);
|
---|
8557 | else
|
---|
8558 | off = iemNativeEmitLoadGprFromGpr8Hi(pReNative, off, idxVarReg, idxGstFullReg);
|
---|
8559 |
|
---|
8560 | iemNativeVarRegisterRelease(pReNative, idxDstVar);
|
---|
8561 | iemNativeRegFreeTmp(pReNative, idxGstFullReg);
|
---|
8562 | return off;
|
---|
8563 | }
|
---|
8564 |
|
---|
8565 |
|
---|
8566 | #define IEM_MC_FETCH_GREG_U8_SX_U16_THREADED(a_u16Dst, a_iGRegEx) \
|
---|
8567 | off = iemNativeEmitFetchGregU8Sx(pReNative, off, a_u16Dst, a_iGRegEx, sizeof(uint16_t))
|
---|
8568 |
|
---|
8569 | #define IEM_MC_FETCH_GREG_U8_SX_U32_THREADED(a_u32Dst, a_iGRegEx) \
|
---|
8570 | off = iemNativeEmitFetchGregU8Sx(pReNative, off, a_u32Dst, a_iGRegEx, sizeof(uint32_t))
|
---|
8571 |
|
---|
8572 | #define IEM_MC_FETCH_GREG_U8_SX_U64_THREADED(a_u64Dst, a_iGRegEx) \
|
---|
8573 | off = iemNativeEmitFetchGregU8Sx(pReNative, off, a_u64Dst, a_iGRegEx, sizeof(uint64_t))
|
---|
8574 |
|
---|
8575 | /** Emits code for IEM_MC_FETCH_GREG_U8_SX_U16/32/64_THREADED. */
|
---|
8576 | DECL_INLINE_THROW(uint32_t)
|
---|
8577 | iemNativeEmitFetchGregU8Sx(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxDstVar, uint8_t iGRegEx, uint8_t cbSignExtended)
|
---|
8578 | {
|
---|
8579 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxDstVar);
|
---|
8580 | Assert(pReNative->Core.aVars[idxDstVar].cbVar == cbSignExtended);
|
---|
8581 | Assert(iGRegEx < 20);
|
---|
8582 |
|
---|
8583 | /* Same discussion as in iemNativeEmitFetchGregU16 */
|
---|
8584 | uint8_t const idxGstFullReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGRegEx & 15),
|
---|
8585 | kIemNativeGstRegUse_ReadOnly);
|
---|
8586 |
|
---|
8587 | iemNativeVarSetKindToStack(pReNative, idxDstVar);
|
---|
8588 | uint8_t const idxVarReg = iemNativeVarRegisterAcquire(pReNative, idxDstVar, &off);
|
---|
8589 |
|
---|
8590 | if (iGRegEx < 16)
|
---|
8591 | {
|
---|
8592 | switch (cbSignExtended)
|
---|
8593 | {
|
---|
8594 | case sizeof(uint16_t):
|
---|
8595 | off = iemNativeEmitLoadGpr16SignExtendedFromGpr8(pReNative, off, idxVarReg, idxGstFullReg);
|
---|
8596 | break;
|
---|
8597 | case sizeof(uint32_t):
|
---|
8598 | off = iemNativeEmitLoadGpr32SignExtendedFromGpr8(pReNative, off, idxVarReg, idxGstFullReg);
|
---|
8599 | break;
|
---|
8600 | case sizeof(uint64_t):
|
---|
8601 | off = iemNativeEmitLoadGprSignExtendedFromGpr8(pReNative, off, idxVarReg, idxGstFullReg);
|
---|
8602 | break;
|
---|
8603 | default: AssertFailed(); break;
|
---|
8604 | }
|
---|
8605 | }
|
---|
8606 | else
|
---|
8607 | {
|
---|
8608 | off = iemNativeEmitLoadGprFromGpr8Hi(pReNative, off, idxVarReg, idxGstFullReg);
|
---|
8609 | switch (cbSignExtended)
|
---|
8610 | {
|
---|
8611 | case sizeof(uint16_t):
|
---|
8612 | off = iemNativeEmitLoadGpr16SignExtendedFromGpr8(pReNative, off, idxVarReg, idxVarReg);
|
---|
8613 | break;
|
---|
8614 | case sizeof(uint32_t):
|
---|
8615 | off = iemNativeEmitLoadGpr32SignExtendedFromGpr8(pReNative, off, idxVarReg, idxVarReg);
|
---|
8616 | break;
|
---|
8617 | case sizeof(uint64_t):
|
---|
8618 | off = iemNativeEmitLoadGprSignExtendedFromGpr8(pReNative, off, idxVarReg, idxVarReg);
|
---|
8619 | break;
|
---|
8620 | default: AssertFailed(); break;
|
---|
8621 | }
|
---|
8622 | }
|
---|
8623 |
|
---|
8624 | iemNativeVarRegisterRelease(pReNative, idxDstVar);
|
---|
8625 | iemNativeRegFreeTmp(pReNative, idxGstFullReg);
|
---|
8626 | return off;
|
---|
8627 | }
|
---|
8628 |
|
---|
8629 |
|
---|
8630 |
|
---|
8631 | #define IEM_MC_FETCH_GREG_U16(a_u16Dst, a_iGReg) \
|
---|
8632 | off = iemNativeEmitFetchGregU16(pReNative, off, a_u16Dst, a_iGReg, sizeof(uint16_t))
|
---|
8633 |
|
---|
8634 | #define IEM_MC_FETCH_GREG_U16_ZX_U32(a_u16Dst, a_iGReg) \
|
---|
8635 | off = iemNativeEmitFetchGregU16(pReNative, off, a_u16Dst, a_iGReg, sizeof(uint32_t))
|
---|
8636 |
|
---|
8637 | #define IEM_MC_FETCH_GREG_U16_ZX_U64(a_u16Dst, a_iGReg) \
|
---|
8638 | off = iemNativeEmitFetchGregU16(pReNative, off, a_u16Dst, a_iGReg, sizeof(uint64_t))
|
---|
8639 |
|
---|
8640 | /** Emits code for IEM_MC_FETCH_GREG_U16 and IEM_MC_FETCH_GREG_U16_ZX_U32/64. */
|
---|
8641 | DECL_INLINE_THROW(uint32_t)
|
---|
8642 | iemNativeEmitFetchGregU16(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxDstVar, uint8_t iGReg, uint8_t cbZeroExtended)
|
---|
8643 | {
|
---|
8644 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxDstVar);
|
---|
8645 | Assert(pReNative->Core.aVars[idxDstVar].cbVar == cbZeroExtended); RT_NOREF(cbZeroExtended);
|
---|
8646 | Assert(iGReg < 16);
|
---|
8647 |
|
---|
8648 | /*
|
---|
8649 | * We can either just load the low 16-bit of the GPR into a host register
|
---|
8650 | * for the variable, or we can do so via a shadow copy host register. The
|
---|
8651 | * latter will avoid having to reload it if it's being stored later, but
|
---|
8652 | * will waste a host register if it isn't touched again. Since we don't
|
---|
8653 | * know what going to happen, we choose the latter for now.
|
---|
8654 | */
|
---|
8655 | uint8_t const idxGstFullReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
8656 | kIemNativeGstRegUse_ReadOnly);
|
---|
8657 |
|
---|
8658 | iemNativeVarSetKindToStack(pReNative, idxDstVar);
|
---|
8659 | uint8_t const idxVarReg = iemNativeVarRegisterAcquire(pReNative, idxDstVar, &off);
|
---|
8660 | off = iemNativeEmitLoadGprFromGpr16(pReNative, off, idxVarReg, idxGstFullReg);
|
---|
8661 | iemNativeVarRegisterRelease(pReNative, idxDstVar);
|
---|
8662 |
|
---|
8663 | iemNativeRegFreeTmp(pReNative, idxGstFullReg);
|
---|
8664 | return off;
|
---|
8665 | }
|
---|
8666 |
|
---|
8667 |
|
---|
8668 | #define IEM_MC_FETCH_GREG_U16_SX_U32(a_u16Dst, a_iGReg) \
|
---|
8669 | off = iemNativeEmitFetchGregU16Sx(pReNative, off, a_u16Dst, a_iGReg, sizeof(uint32_t))
|
---|
8670 |
|
---|
8671 | #define IEM_MC_FETCH_GREG_U16_SX_U64(a_u16Dst, a_iGReg) \
|
---|
8672 | off = iemNativeEmitFetchGregU16Sx(pReNative, off, a_u16Dst, a_iGReg, sizeof(uint64_t))
|
---|
8673 |
|
---|
8674 | /** Emits code for IEM_MC_FETCH_GREG_U16_SX_U32/64. */
|
---|
8675 | DECL_INLINE_THROW(uint32_t)
|
---|
8676 | iemNativeEmitFetchGregU16Sx(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxDstVar, uint8_t iGReg, uint8_t cbSignExtended)
|
---|
8677 | {
|
---|
8678 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxDstVar);
|
---|
8679 | Assert(pReNative->Core.aVars[idxDstVar].cbVar == cbSignExtended);
|
---|
8680 | Assert(iGReg < 16);
|
---|
8681 |
|
---|
8682 | /*
|
---|
8683 | * We can either just load the low 16-bit of the GPR into a host register
|
---|
8684 | * for the variable, or we can do so via a shadow copy host register. The
|
---|
8685 | * latter will avoid having to reload it if it's being stored later, but
|
---|
8686 | * will waste a host register if it isn't touched again. Since we don't
|
---|
8687 | * know what going to happen, we choose the latter for now.
|
---|
8688 | */
|
---|
8689 | uint8_t const idxGstFullReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
8690 | kIemNativeGstRegUse_ReadOnly);
|
---|
8691 |
|
---|
8692 | iemNativeVarSetKindToStack(pReNative, idxDstVar);
|
---|
8693 | uint8_t const idxVarReg = iemNativeVarRegisterAcquire(pReNative, idxDstVar, &off);
|
---|
8694 | if (cbSignExtended == sizeof(uint32_t))
|
---|
8695 | off = iemNativeEmitLoadGpr32SignExtendedFromGpr16(pReNative, off, idxVarReg, idxGstFullReg);
|
---|
8696 | else
|
---|
8697 | {
|
---|
8698 | Assert(cbSignExtended == sizeof(uint64_t));
|
---|
8699 | off = iemNativeEmitLoadGprSignExtendedFromGpr16(pReNative, off, idxVarReg, idxGstFullReg);
|
---|
8700 | }
|
---|
8701 | iemNativeVarRegisterRelease(pReNative, idxDstVar);
|
---|
8702 |
|
---|
8703 | iemNativeRegFreeTmp(pReNative, idxGstFullReg);
|
---|
8704 | return off;
|
---|
8705 | }
|
---|
8706 |
|
---|
8707 |
|
---|
8708 | #define IEM_MC_FETCH_GREG_U32(a_u32Dst, a_iGReg) \
|
---|
8709 | off = iemNativeEmitFetchGregU32(pReNative, off, a_u32Dst, a_iGReg, sizeof(uint32_t))
|
---|
8710 |
|
---|
8711 | #define IEM_MC_FETCH_GREG_U32_ZX_U64(a_u32Dst, a_iGReg) \
|
---|
8712 | off = iemNativeEmitFetchGregU32(pReNative, off, a_u32Dst, a_iGReg, sizeof(uint64_t))
|
---|
8713 |
|
---|
8714 | /** Emits code for IEM_MC_FETCH_GREG_U32. */
|
---|
8715 | DECL_INLINE_THROW(uint32_t)
|
---|
8716 | iemNativeEmitFetchGregU32(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxDstVar, uint8_t iGReg, uint8_t cbZeroExtended)
|
---|
8717 | {
|
---|
8718 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxDstVar);
|
---|
8719 | Assert(pReNative->Core.aVars[idxDstVar].cbVar == cbZeroExtended); RT_NOREF_PV(cbZeroExtended);
|
---|
8720 | Assert(iGReg < 16);
|
---|
8721 |
|
---|
8722 | /*
|
---|
8723 | * We can either just load the low 16-bit of the GPR into a host register
|
---|
8724 | * for the variable, or we can do so via a shadow copy host register. The
|
---|
8725 | * latter will avoid having to reload it if it's being stored later, but
|
---|
8726 | * will waste a host register if it isn't touched again. Since we don't
|
---|
8727 | * know what going to happen, we choose the latter for now.
|
---|
8728 | */
|
---|
8729 | uint8_t const idxGstFullReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
8730 | kIemNativeGstRegUse_ReadOnly);
|
---|
8731 |
|
---|
8732 | iemNativeVarSetKindToStack(pReNative, idxDstVar);
|
---|
8733 | uint8_t const idxVarReg = iemNativeVarRegisterAcquire(pReNative, idxDstVar, &off);
|
---|
8734 | off = iemNativeEmitLoadGprFromGpr32(pReNative, off, idxVarReg, idxGstFullReg);
|
---|
8735 | iemNativeVarRegisterRelease(pReNative, idxDstVar);
|
---|
8736 |
|
---|
8737 | iemNativeRegFreeTmp(pReNative, idxGstFullReg);
|
---|
8738 | return off;
|
---|
8739 | }
|
---|
8740 |
|
---|
8741 |
|
---|
8742 | #define IEM_MC_FETCH_GREG_U32_SX_U64(a_u32Dst, a_iGReg) \
|
---|
8743 | off = iemNativeEmitFetchGregU32SxU64(pReNative, off, a_u32Dst, a_iGReg)
|
---|
8744 |
|
---|
8745 | /** Emits code for IEM_MC_FETCH_GREG_U32. */
|
---|
8746 | DECL_INLINE_THROW(uint32_t)
|
---|
8747 | iemNativeEmitFetchGregU32SxU64(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxDstVar, uint8_t iGReg)
|
---|
8748 | {
|
---|
8749 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxDstVar);
|
---|
8750 | Assert(pReNative->Core.aVars[idxDstVar].cbVar == sizeof(uint64_t));
|
---|
8751 | Assert(iGReg < 16);
|
---|
8752 |
|
---|
8753 | /*
|
---|
8754 | * We can either just load the low 32-bit of the GPR into a host register
|
---|
8755 | * for the variable, or we can do so via a shadow copy host register. The
|
---|
8756 | * latter will avoid having to reload it if it's being stored later, but
|
---|
8757 | * will waste a host register if it isn't touched again. Since we don't
|
---|
8758 | * know what going to happen, we choose the latter for now.
|
---|
8759 | */
|
---|
8760 | uint8_t const idxGstFullReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
8761 | kIemNativeGstRegUse_ReadOnly);
|
---|
8762 |
|
---|
8763 | iemNativeVarSetKindToStack(pReNative, idxDstVar);
|
---|
8764 | uint8_t const idxVarReg = iemNativeVarRegisterAcquire(pReNative, idxDstVar, &off);
|
---|
8765 | off = iemNativeEmitLoadGprSignExtendedFromGpr32(pReNative, off, idxVarReg, idxGstFullReg);
|
---|
8766 | iemNativeVarRegisterRelease(pReNative, idxDstVar);
|
---|
8767 |
|
---|
8768 | iemNativeRegFreeTmp(pReNative, idxGstFullReg);
|
---|
8769 | return off;
|
---|
8770 | }
|
---|
8771 |
|
---|
8772 |
|
---|
8773 | #define IEM_MC_FETCH_GREG_U64(a_u64Dst, a_iGReg) \
|
---|
8774 | off = iemNativeEmitFetchGregU64(pReNative, off, a_u64Dst, a_iGReg)
|
---|
8775 |
|
---|
8776 | #define IEM_MC_FETCH_GREG_U64_ZX_U64(a_u64Dst, a_iGReg) \
|
---|
8777 | off = iemNativeEmitFetchGregU64(pReNative, off, a_u64Dst, a_iGReg)
|
---|
8778 |
|
---|
8779 | /** Emits code for IEM_MC_FETCH_GREG_U64 (and the
|
---|
8780 | * IEM_MC_FETCH_GREG_U64_ZX_U64 alias). */
|
---|
8781 | DECL_INLINE_THROW(uint32_t)
|
---|
8782 | iemNativeEmitFetchGregU64(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxDstVar, uint8_t iGReg)
|
---|
8783 | {
|
---|
8784 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxDstVar);
|
---|
8785 | Assert(pReNative->Core.aVars[idxDstVar].cbVar == sizeof(uint64_t));
|
---|
8786 | Assert(iGReg < 16);
|
---|
8787 |
|
---|
8788 | uint8_t const idxGstFullReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
8789 | kIemNativeGstRegUse_ReadOnly);
|
---|
8790 |
|
---|
8791 | iemNativeVarSetKindToStack(pReNative, idxDstVar);
|
---|
8792 | uint8_t const idxVarReg = iemNativeVarRegisterAcquire(pReNative, idxDstVar, &off);
|
---|
8793 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, idxVarReg, idxGstFullReg);
|
---|
8794 | /** @todo name the register a shadow one already? */
|
---|
8795 | iemNativeVarRegisterRelease(pReNative, idxDstVar);
|
---|
8796 |
|
---|
8797 | iemNativeRegFreeTmp(pReNative, idxGstFullReg);
|
---|
8798 | return off;
|
---|
8799 | }
|
---|
8800 |
|
---|
8801 |
|
---|
8802 |
|
---|
8803 | /*********************************************************************************************************************************
|
---|
8804 | * Emitters for general purpose register stores (IEM_MC_STORE_GREG_XXX). *
|
---|
8805 | *********************************************************************************************************************************/
|
---|
8806 |
|
---|
8807 | #define IEM_MC_STORE_GREG_U8_CONST_THREADED(a_iGRegEx, a_u8Value) \
|
---|
8808 | off = iemNativeEmitStoreGregU8Const(pReNative, off, a_iGRegEx, a_u8Value)
|
---|
8809 |
|
---|
8810 | /** Emits code for IEM_MC_STORE_GREG_U8_CONST_THREADED. */
|
---|
8811 | DECL_INLINE_THROW(uint32_t)
|
---|
8812 | iemNativeEmitStoreGregU8Const(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGRegEx, uint8_t u8Value)
|
---|
8813 | {
|
---|
8814 | Assert(iGRegEx < 20);
|
---|
8815 | uint8_t const idxGstTmpReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGRegEx & 15),
|
---|
8816 | kIemNativeGstRegUse_ForUpdate);
|
---|
8817 | #ifdef RT_ARCH_AMD64
|
---|
8818 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 12);
|
---|
8819 |
|
---|
8820 | /* To the lowest byte of the register: mov r8, imm8 */
|
---|
8821 | if (iGRegEx < 16)
|
---|
8822 | {
|
---|
8823 | if (idxGstTmpReg >= 8)
|
---|
8824 | pbCodeBuf[off++] = X86_OP_REX_B;
|
---|
8825 | else if (idxGstTmpReg >= 4)
|
---|
8826 | pbCodeBuf[off++] = X86_OP_REX;
|
---|
8827 | pbCodeBuf[off++] = 0xb0 + (idxGstTmpReg & 7);
|
---|
8828 | pbCodeBuf[off++] = u8Value;
|
---|
8829 | }
|
---|
8830 | /* Otherwise it's to ah, ch, dh or bh: use mov r8, imm8 if we can, otherwise, we rotate. */
|
---|
8831 | else if (idxGstTmpReg < 4)
|
---|
8832 | {
|
---|
8833 | pbCodeBuf[off++] = 0xb4 + idxGstTmpReg;
|
---|
8834 | pbCodeBuf[off++] = u8Value;
|
---|
8835 | }
|
---|
8836 | else
|
---|
8837 | {
|
---|
8838 | /* ror reg64, 8 */
|
---|
8839 | pbCodeBuf[off++] = X86_OP_REX_W | (idxGstTmpReg < 8 ? 0 : X86_OP_REX_B);
|
---|
8840 | pbCodeBuf[off++] = 0xc1;
|
---|
8841 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 1, idxGstTmpReg & 7);
|
---|
8842 | pbCodeBuf[off++] = 8;
|
---|
8843 |
|
---|
8844 | /* mov reg8, imm8 */
|
---|
8845 | if (idxGstTmpReg >= 8)
|
---|
8846 | pbCodeBuf[off++] = X86_OP_REX_B;
|
---|
8847 | else if (idxGstTmpReg >= 4)
|
---|
8848 | pbCodeBuf[off++] = X86_OP_REX;
|
---|
8849 | pbCodeBuf[off++] = 0xb0 + (idxGstTmpReg & 7);
|
---|
8850 | pbCodeBuf[off++] = u8Value;
|
---|
8851 |
|
---|
8852 | /* rol reg64, 8 */
|
---|
8853 | pbCodeBuf[off++] = X86_OP_REX_W | (idxGstTmpReg < 8 ? 0 : X86_OP_REX_B);
|
---|
8854 | pbCodeBuf[off++] = 0xc1;
|
---|
8855 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, idxGstTmpReg & 7);
|
---|
8856 | pbCodeBuf[off++] = 8;
|
---|
8857 | }
|
---|
8858 |
|
---|
8859 | #elif defined(RT_ARCH_ARM64)
|
---|
8860 | uint8_t const idxImmReg = iemNativeRegAllocTmpImm(pReNative, &off, u8Value);
|
---|
8861 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 2);
|
---|
8862 | if (iGRegEx < 16)
|
---|
8863 | /* bfi w1, w2, 0, 8 - moves bits 7:0 from idxImmReg to idxGstTmpReg bits 7:0. */
|
---|
8864 | pu32CodeBuf[off++] = Armv8A64MkInstrBfi(idxGstTmpReg, idxImmReg, 0, 8);
|
---|
8865 | else
|
---|
8866 | /* bfi w1, w2, 8, 8 - moves bits 7:0 from idxImmReg to idxGstTmpReg bits 15:8. */
|
---|
8867 | pu32CodeBuf[off++] = Armv8A64MkInstrBfi(idxGstTmpReg, idxImmReg, 8, 8);
|
---|
8868 | iemNativeRegFreeTmp(pReNative, idxImmReg);
|
---|
8869 |
|
---|
8870 | #else
|
---|
8871 | # error "Port me!"
|
---|
8872 | #endif
|
---|
8873 |
|
---|
8874 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
8875 |
|
---|
8876 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxGstTmpReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[iGRegEx & 15]));
|
---|
8877 |
|
---|
8878 | iemNativeRegFreeTmp(pReNative, idxGstTmpReg);
|
---|
8879 | return off;
|
---|
8880 | }
|
---|
8881 |
|
---|
8882 |
|
---|
8883 | #define IEM_MC_STORE_GREG_U8_THREADED(a_iGRegEx, a_u8Value) \
|
---|
8884 | off = iemNativeEmitStoreGregU8(pReNative, off, a_iGRegEx, a_u8Value)
|
---|
8885 |
|
---|
8886 | /** Emits code for IEM_MC_STORE_GREG_U8_THREADED. */
|
---|
8887 | DECL_INLINE_THROW(uint32_t)
|
---|
8888 | iemNativeEmitStoreGregU8(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGRegEx, uint8_t idxValueVar)
|
---|
8889 | {
|
---|
8890 | Assert(iGRegEx < 20);
|
---|
8891 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxValueVar);
|
---|
8892 |
|
---|
8893 | /*
|
---|
8894 | * If it's a constant value (unlikely) we treat this as a
|
---|
8895 | * IEM_MC_STORE_GREG_U8_CONST statement.
|
---|
8896 | */
|
---|
8897 | if (pReNative->Core.aVars[idxValueVar].enmKind == kIemNativeVarKind_Stack)
|
---|
8898 | { /* likely */ }
|
---|
8899 | else
|
---|
8900 | {
|
---|
8901 | AssertStmt(pReNative->Core.aVars[idxValueVar].enmKind == kIemNativeVarKind_Immediate,
|
---|
8902 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_UNEXPECTED_KIND));
|
---|
8903 | return iemNativeEmitStoreGregU8Const(pReNative, off, iGRegEx, (uint8_t)pReNative->Core.aVars[idxValueVar].u.uValue);
|
---|
8904 | }
|
---|
8905 |
|
---|
8906 | uint8_t const idxGstTmpReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGRegEx & 15),
|
---|
8907 | kIemNativeGstRegUse_ForUpdate);
|
---|
8908 | uint8_t const idxVarReg = iemNativeVarRegisterAcquire(pReNative, idxValueVar, &off, true /*fInitialized*/);
|
---|
8909 |
|
---|
8910 | #ifdef RT_ARCH_AMD64
|
---|
8911 | /* To the lowest byte of the register: mov reg8, reg8(r/m) */
|
---|
8912 | if (iGRegEx < 16)
|
---|
8913 | {
|
---|
8914 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 3);
|
---|
8915 | if (idxGstTmpReg >= 8 || idxVarReg >= 8)
|
---|
8916 | pbCodeBuf[off++] = (idxGstTmpReg >= 8 ? X86_OP_REX_R : 0) | (idxVarReg >= 8 ? X86_OP_REX_B : 0);
|
---|
8917 | else if (idxGstTmpReg >= 4 || idxVarReg >= 4)
|
---|
8918 | pbCodeBuf[off++] = X86_OP_REX;
|
---|
8919 | pbCodeBuf[off++] = 0x8a;
|
---|
8920 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, idxGstTmpReg & 7, idxVarReg & 7);
|
---|
8921 | }
|
---|
8922 | /* Otherwise it's to ah, ch, dh or bh from al, cl, dl or bl: use mov r8, r8 if we can, otherwise, we rotate. */
|
---|
8923 | else if (idxGstTmpReg < 4 && idxVarReg < 4)
|
---|
8924 | {
|
---|
8925 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 2+1);
|
---|
8926 | pbCodeBuf[off++] = 0x8a;
|
---|
8927 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, idxGstTmpReg + 4, idxVarReg);
|
---|
8928 | }
|
---|
8929 | else
|
---|
8930 | {
|
---|
8931 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 15);
|
---|
8932 |
|
---|
8933 | /* ror reg64, 8 */
|
---|
8934 | pbCodeBuf[off++] = X86_OP_REX_W | (idxGstTmpReg < 8 ? 0 : X86_OP_REX_B);
|
---|
8935 | pbCodeBuf[off++] = 0xc1;
|
---|
8936 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 1, idxGstTmpReg & 7);
|
---|
8937 | pbCodeBuf[off++] = 8;
|
---|
8938 |
|
---|
8939 | /* mov reg8, reg8(r/m) */
|
---|
8940 | if (idxGstTmpReg >= 8 || idxVarReg >= 8)
|
---|
8941 | pbCodeBuf[off++] = (idxGstTmpReg >= 8 ? X86_OP_REX_R : 0) | (idxVarReg >= 8 ? X86_OP_REX_B : 0);
|
---|
8942 | else if (idxGstTmpReg >= 4 || idxVarReg >= 4)
|
---|
8943 | pbCodeBuf[off++] = X86_OP_REX;
|
---|
8944 | pbCodeBuf[off++] = 0x8a;
|
---|
8945 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, idxGstTmpReg & 7, idxVarReg & 7);
|
---|
8946 |
|
---|
8947 | /* rol reg64, 8 */
|
---|
8948 | pbCodeBuf[off++] = X86_OP_REX_W | (idxGstTmpReg < 8 ? 0 : X86_OP_REX_B);
|
---|
8949 | pbCodeBuf[off++] = 0xc1;
|
---|
8950 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, idxGstTmpReg & 7);
|
---|
8951 | pbCodeBuf[off++] = 8;
|
---|
8952 | }
|
---|
8953 |
|
---|
8954 | #elif defined(RT_ARCH_ARM64)
|
---|
8955 | /* bfi w1, w2, 0, 8 - moves bits 7:0 from idxVarReg to idxGstTmpReg bits 7:0.
|
---|
8956 | or
|
---|
8957 | bfi w1, w2, 8, 8 - moves bits 7:0 from idxVarReg to idxGstTmpReg bits 15:8. */
|
---|
8958 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
8959 | if (iGRegEx < 16)
|
---|
8960 | pu32CodeBuf[off++] = Armv8A64MkInstrBfi(idxGstTmpReg, idxVarReg, 0, 8);
|
---|
8961 | else
|
---|
8962 | pu32CodeBuf[off++] = Armv8A64MkInstrBfi(idxGstTmpReg, idxVarReg, 8, 8);
|
---|
8963 |
|
---|
8964 | #else
|
---|
8965 | # error "Port me!"
|
---|
8966 | #endif
|
---|
8967 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
8968 |
|
---|
8969 | iemNativeVarRegisterRelease(pReNative, idxValueVar);
|
---|
8970 |
|
---|
8971 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxGstTmpReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[iGRegEx & 15]));
|
---|
8972 | iemNativeRegFreeTmp(pReNative, idxGstTmpReg);
|
---|
8973 | return off;
|
---|
8974 | }
|
---|
8975 |
|
---|
8976 |
|
---|
8977 |
|
---|
8978 | #define IEM_MC_STORE_GREG_U16_CONST(a_iGReg, a_u16Const) \
|
---|
8979 | off = iemNativeEmitStoreGregU16Const(pReNative, off, a_iGReg, a_u16Const)
|
---|
8980 |
|
---|
8981 | /** Emits code for IEM_MC_STORE_GREG_U16. */
|
---|
8982 | DECL_INLINE_THROW(uint32_t)
|
---|
8983 | iemNativeEmitStoreGregU16Const(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGReg, uint16_t uValue)
|
---|
8984 | {
|
---|
8985 | Assert(iGReg < 16);
|
---|
8986 | uint8_t const idxGstTmpReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
8987 | kIemNativeGstRegUse_ForUpdate);
|
---|
8988 | #ifdef RT_ARCH_AMD64
|
---|
8989 | /* mov reg16, imm16 */
|
---|
8990 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 5);
|
---|
8991 | pbCodeBuf[off++] = X86_OP_PRF_SIZE_OP;
|
---|
8992 | if (idxGstTmpReg >= 8)
|
---|
8993 | pbCodeBuf[off++] = X86_OP_REX_B;
|
---|
8994 | pbCodeBuf[off++] = 0xb8 + (idxGstTmpReg & 7);
|
---|
8995 | pbCodeBuf[off++] = RT_BYTE1(uValue);
|
---|
8996 | pbCodeBuf[off++] = RT_BYTE2(uValue);
|
---|
8997 |
|
---|
8998 | #elif defined(RT_ARCH_ARM64)
|
---|
8999 | /* movk xdst, #uValue, lsl #0 */
|
---|
9000 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
9001 | pu32CodeBuf[off++] = Armv8A64MkInstrMovK(idxGstTmpReg, uValue);
|
---|
9002 |
|
---|
9003 | #else
|
---|
9004 | # error "Port me!"
|
---|
9005 | #endif
|
---|
9006 |
|
---|
9007 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
9008 |
|
---|
9009 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxGstTmpReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[iGReg]));
|
---|
9010 | iemNativeRegFreeTmp(pReNative, idxGstTmpReg);
|
---|
9011 | return off;
|
---|
9012 | }
|
---|
9013 |
|
---|
9014 |
|
---|
9015 | #define IEM_MC_STORE_GREG_U16(a_iGReg, a_u16Value) \
|
---|
9016 | off = iemNativeEmitStoreGregU16(pReNative, off, a_iGReg, a_u16Value)
|
---|
9017 |
|
---|
9018 | /** Emits code for IEM_MC_STORE_GREG_U16. */
|
---|
9019 | DECL_INLINE_THROW(uint32_t)
|
---|
9020 | iemNativeEmitStoreGregU16(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGReg, uint8_t idxValueVar)
|
---|
9021 | {
|
---|
9022 | Assert(iGReg < 16);
|
---|
9023 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxValueVar);
|
---|
9024 |
|
---|
9025 | /*
|
---|
9026 | * If it's a constant value (unlikely) we treat this as a
|
---|
9027 | * IEM_MC_STORE_GREG_U16_CONST statement.
|
---|
9028 | */
|
---|
9029 | if (pReNative->Core.aVars[idxValueVar].enmKind == kIemNativeVarKind_Stack)
|
---|
9030 | { /* likely */ }
|
---|
9031 | else
|
---|
9032 | {
|
---|
9033 | AssertStmt(pReNative->Core.aVars[idxValueVar].enmKind == kIemNativeVarKind_Immediate,
|
---|
9034 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_UNEXPECTED_KIND));
|
---|
9035 | return iemNativeEmitStoreGregU16Const(pReNative, off, iGReg, (uint16_t)pReNative->Core.aVars[idxValueVar].u.uValue);
|
---|
9036 | }
|
---|
9037 |
|
---|
9038 | uint8_t const idxGstTmpReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
9039 | kIemNativeGstRegUse_ForUpdate);
|
---|
9040 |
|
---|
9041 | #ifdef RT_ARCH_AMD64
|
---|
9042 | /* mov reg16, reg16 or [mem16] */
|
---|
9043 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 12);
|
---|
9044 | pbCodeBuf[off++] = X86_OP_PRF_SIZE_OP;
|
---|
9045 | if (pReNative->Core.aVars[idxValueVar].idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
|
---|
9046 | {
|
---|
9047 | if (idxGstTmpReg >= 8 || pReNative->Core.aVars[idxValueVar].idxReg >= 8)
|
---|
9048 | pbCodeBuf[off++] = (idxGstTmpReg >= 8 ? X86_OP_REX_R : 0)
|
---|
9049 | | (pReNative->Core.aVars[idxValueVar].idxReg >= 8 ? X86_OP_REX_B : 0);
|
---|
9050 | pbCodeBuf[off++] = 0x8b;
|
---|
9051 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, idxGstTmpReg & 7, pReNative->Core.aVars[idxValueVar].idxReg & 7);
|
---|
9052 | }
|
---|
9053 | else
|
---|
9054 | {
|
---|
9055 | uint8_t const idxStackSlot = pReNative->Core.aVars[idxValueVar].idxStackSlot;
|
---|
9056 | AssertStmt(idxStackSlot != UINT8_MAX, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_NOT_INITIALIZED));
|
---|
9057 | if (idxGstTmpReg >= 8)
|
---|
9058 | pbCodeBuf[off++] = X86_OP_REX_R;
|
---|
9059 | pbCodeBuf[off++] = 0x8b;
|
---|
9060 | off = iemNativeEmitGprByBpDisp(pbCodeBuf, off, idxGstTmpReg, iemNativeStackCalcBpDisp(idxStackSlot), pReNative);
|
---|
9061 | }
|
---|
9062 |
|
---|
9063 | #elif defined(RT_ARCH_ARM64)
|
---|
9064 | /* bfi w1, w2, 0, 16 - moves bits 15:0 from idxVarReg to idxGstTmpReg bits 15:0. */
|
---|
9065 | uint8_t const idxVarReg = iemNativeVarRegisterAcquire(pReNative, idxValueVar, &off, true /*fInitialized*/);
|
---|
9066 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
9067 | pu32CodeBuf[off++] = Armv8A64MkInstrBfi(idxGstTmpReg, idxVarReg, 0, 16);
|
---|
9068 | iemNativeVarRegisterRelease(pReNative, idxValueVar);
|
---|
9069 |
|
---|
9070 | #else
|
---|
9071 | # error "Port me!"
|
---|
9072 | #endif
|
---|
9073 |
|
---|
9074 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
9075 |
|
---|
9076 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxGstTmpReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[iGReg]));
|
---|
9077 | iemNativeRegFreeTmp(pReNative, idxGstTmpReg);
|
---|
9078 | return off;
|
---|
9079 | }
|
---|
9080 |
|
---|
9081 |
|
---|
9082 | #define IEM_MC_STORE_GREG_U32_CONST(a_iGReg, a_u32Const) \
|
---|
9083 | off = iemNativeEmitStoreGregU32Const(pReNative, off, a_iGReg, a_u32Const)
|
---|
9084 |
|
---|
9085 | /** Emits code for IEM_MC_STORE_GREG_U32_CONST. */
|
---|
9086 | DECL_INLINE_THROW(uint32_t)
|
---|
9087 | iemNativeEmitStoreGregU32Const(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGReg, uint32_t uValue)
|
---|
9088 | {
|
---|
9089 | Assert(iGReg < 16);
|
---|
9090 | uint8_t const idxGstTmpReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
9091 | kIemNativeGstRegUse_ForFullWrite);
|
---|
9092 | off = iemNativeEmitLoadGprImm64(pReNative, off, idxGstTmpReg, uValue);
|
---|
9093 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxGstTmpReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[iGReg]));
|
---|
9094 | iemNativeRegFreeTmp(pReNative, idxGstTmpReg);
|
---|
9095 | return off;
|
---|
9096 | }
|
---|
9097 |
|
---|
9098 |
|
---|
9099 | #define IEM_MC_STORE_GREG_U32(a_iGReg, a_u32Value) \
|
---|
9100 | off = iemNativeEmitStoreGregU32(pReNative, off, a_iGReg, a_u32Value)
|
---|
9101 |
|
---|
9102 | /** Emits code for IEM_MC_STORE_GREG_U32. */
|
---|
9103 | DECL_INLINE_THROW(uint32_t)
|
---|
9104 | iemNativeEmitStoreGregU32(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGReg, uint8_t idxValueVar)
|
---|
9105 | {
|
---|
9106 | Assert(iGReg < 16);
|
---|
9107 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxValueVar);
|
---|
9108 |
|
---|
9109 | /*
|
---|
9110 | * If it's a constant value (unlikely) we treat this as a
|
---|
9111 | * IEM_MC_STORE_GREG_U32_CONST statement.
|
---|
9112 | */
|
---|
9113 | if (pReNative->Core.aVars[idxValueVar].enmKind == kIemNativeVarKind_Stack)
|
---|
9114 | { /* likely */ }
|
---|
9115 | else
|
---|
9116 | {
|
---|
9117 | AssertStmt(pReNative->Core.aVars[idxValueVar].enmKind == kIemNativeVarKind_Immediate,
|
---|
9118 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_UNEXPECTED_KIND));
|
---|
9119 | return iemNativeEmitStoreGregU32Const(pReNative, off, iGReg, (uint32_t)pReNative->Core.aVars[idxValueVar].u.uValue);
|
---|
9120 | }
|
---|
9121 |
|
---|
9122 | /*
|
---|
9123 | * For the rest we allocate a guest register for the variable and writes
|
---|
9124 | * it to the CPUMCTX structure.
|
---|
9125 | */
|
---|
9126 | uint8_t const idxVarReg = iemNativeVarRegisterAcquireForGuestReg(pReNative, idxValueVar, IEMNATIVEGSTREG_GPR(iGReg), &off);
|
---|
9127 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxVarReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[iGReg]));
|
---|
9128 | #ifdef VBOX_STRICT
|
---|
9129 | off = iemNativeEmitTop32BitsClearCheck(pReNative, off, idxVarReg);
|
---|
9130 | #endif
|
---|
9131 | iemNativeVarRegisterRelease(pReNative, idxValueVar);
|
---|
9132 | return off;
|
---|
9133 | }
|
---|
9134 |
|
---|
9135 |
|
---|
9136 | #define IEM_MC_STORE_GREG_U64_CONST(a_iGReg, a_u64Const) \
|
---|
9137 | off = iemNativeEmitStoreGregU64Const(pReNative, off, a_iGReg, a_u64Const)
|
---|
9138 |
|
---|
9139 | /** Emits code for IEM_MC_STORE_GREG_U64_CONST. */
|
---|
9140 | DECL_INLINE_THROW(uint32_t)
|
---|
9141 | iemNativeEmitStoreGregU64Const(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGReg, uint64_t uValue)
|
---|
9142 | {
|
---|
9143 | Assert(iGReg < 16);
|
---|
9144 | uint8_t const idxGstTmpReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
9145 | kIemNativeGstRegUse_ForFullWrite);
|
---|
9146 | off = iemNativeEmitLoadGprImm64(pReNative, off, idxGstTmpReg, uValue);
|
---|
9147 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxGstTmpReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[iGReg]));
|
---|
9148 | iemNativeRegFreeTmp(pReNative, idxGstTmpReg);
|
---|
9149 | return off;
|
---|
9150 | }
|
---|
9151 |
|
---|
9152 |
|
---|
9153 | #define IEM_MC_STORE_GREG_U64(a_iGReg, a_u64Value) \
|
---|
9154 | off = iemNativeEmitStoreGregU64(pReNative, off, a_iGReg, a_u64Value)
|
---|
9155 |
|
---|
9156 | /** Emits code for IEM_MC_STORE_GREG_U64. */
|
---|
9157 | DECL_INLINE_THROW(uint32_t)
|
---|
9158 | iemNativeEmitStoreGregU64(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGReg, uint8_t idxValueVar)
|
---|
9159 | {
|
---|
9160 | Assert(iGReg < 16);
|
---|
9161 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxValueVar);
|
---|
9162 |
|
---|
9163 | /*
|
---|
9164 | * If it's a constant value (unlikely) we treat this as a
|
---|
9165 | * IEM_MC_STORE_GREG_U64_CONST statement.
|
---|
9166 | */
|
---|
9167 | if (pReNative->Core.aVars[idxValueVar].enmKind == kIemNativeVarKind_Stack)
|
---|
9168 | { /* likely */ }
|
---|
9169 | else
|
---|
9170 | {
|
---|
9171 | AssertStmt(pReNative->Core.aVars[idxValueVar].enmKind == kIemNativeVarKind_Immediate,
|
---|
9172 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_UNEXPECTED_KIND));
|
---|
9173 | return iemNativeEmitStoreGregU64Const(pReNative, off, iGReg, pReNative->Core.aVars[idxValueVar].u.uValue);
|
---|
9174 | }
|
---|
9175 |
|
---|
9176 | /*
|
---|
9177 | * For the rest we allocate a guest register for the variable and writes
|
---|
9178 | * it to the CPUMCTX structure.
|
---|
9179 | */
|
---|
9180 | uint8_t const idxVarReg = iemNativeVarRegisterAcquireForGuestReg(pReNative, idxValueVar, IEMNATIVEGSTREG_GPR(iGReg), &off);
|
---|
9181 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxVarReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[iGReg]));
|
---|
9182 | iemNativeVarRegisterRelease(pReNative, idxValueVar);
|
---|
9183 | return off;
|
---|
9184 | }
|
---|
9185 |
|
---|
9186 |
|
---|
9187 | #define IEM_MC_CLEAR_HIGH_GREG_U64(a_iGReg) \
|
---|
9188 | off = iemNativeEmitClearHighGregU64(pReNative, off, a_iGReg)
|
---|
9189 |
|
---|
9190 | /** Emits code for IEM_MC_CLEAR_HIGH_GREG_U64. */
|
---|
9191 | DECL_INLINE_THROW(uint32_t)
|
---|
9192 | iemNativeEmitClearHighGregU64(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGReg)
|
---|
9193 | {
|
---|
9194 | Assert(iGReg < 16);
|
---|
9195 | uint8_t const idxGstTmpReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
9196 | kIemNativeGstRegUse_ForUpdate);
|
---|
9197 | off = iemNativeEmitLoadGprFromGpr32(pReNative, off, idxGstTmpReg, idxGstTmpReg);
|
---|
9198 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxGstTmpReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[iGReg]));
|
---|
9199 | iemNativeRegFreeTmp(pReNative, idxGstTmpReg);
|
---|
9200 | return off;
|
---|
9201 | }
|
---|
9202 |
|
---|
9203 |
|
---|
9204 | /*********************************************************************************************************************************
|
---|
9205 | * General purpose register manipulation (add, sub). *
|
---|
9206 | *********************************************************************************************************************************/
|
---|
9207 |
|
---|
9208 | #define IEM_MC_ADD_GREG_U16(a_iGReg, a_u8SubtrahendConst) \
|
---|
9209 | off = iemNativeEmitAddGregU16(pReNative, off, a_iGReg, a_u8SubtrahendConst)
|
---|
9210 |
|
---|
9211 | /** Emits code for IEM_MC_ADD_GREG_U16. */
|
---|
9212 | DECL_INLINE_THROW(uint32_t)
|
---|
9213 | iemNativeEmitAddGregU16(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGReg, uint8_t uAddend)
|
---|
9214 | {
|
---|
9215 | uint8_t const idxGstTmpReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
9216 | kIemNativeGstRegUse_ForUpdate);
|
---|
9217 |
|
---|
9218 | #ifdef RT_ARCH_AMD64
|
---|
9219 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 6);
|
---|
9220 | pbCodeBuf[off++] = X86_OP_PRF_SIZE_OP;
|
---|
9221 | if (idxGstTmpReg >= 8)
|
---|
9222 | pbCodeBuf[off++] = X86_OP_REX_B;
|
---|
9223 | if (uAddend == 1)
|
---|
9224 | {
|
---|
9225 | pbCodeBuf[off++] = 0xff; /* inc */
|
---|
9226 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, idxGstTmpReg & 7);
|
---|
9227 | }
|
---|
9228 | else
|
---|
9229 | {
|
---|
9230 | pbCodeBuf[off++] = 0x81;
|
---|
9231 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, idxGstTmpReg & 7);
|
---|
9232 | pbCodeBuf[off++] = uAddend;
|
---|
9233 | pbCodeBuf[off++] = 0;
|
---|
9234 | }
|
---|
9235 |
|
---|
9236 | #else
|
---|
9237 | uint8_t const idxTmpReg = iemNativeRegAllocTmp(pReNative, &off);
|
---|
9238 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 2);
|
---|
9239 |
|
---|
9240 | /* sub tmp, gstgrp, uAddend */
|
---|
9241 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(false /*fSub*/, idxTmpReg, idxGstTmpReg, uAddend, false /*f64Bit*/);
|
---|
9242 |
|
---|
9243 | /* bfi w1, w2, 0, 16 - moves bits 15:0 from tmpreg2 to tmpreg. */
|
---|
9244 | pu32CodeBuf[off++] = Armv8A64MkInstrBfi(idxGstTmpReg, idxTmpReg, 0, 16);
|
---|
9245 |
|
---|
9246 | iemNativeRegFreeTmp(pReNative, idxTmpReg);
|
---|
9247 | #endif
|
---|
9248 |
|
---|
9249 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
9250 |
|
---|
9251 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxGstTmpReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[iGReg]));
|
---|
9252 |
|
---|
9253 | iemNativeRegFreeTmp(pReNative, idxGstTmpReg);
|
---|
9254 | return off;
|
---|
9255 | }
|
---|
9256 |
|
---|
9257 |
|
---|
9258 | #define IEM_MC_ADD_GREG_U32(a_iGReg, a_u8Const) \
|
---|
9259 | off = iemNativeEmitAddGregU32U64(pReNative, off, a_iGReg, a_u8Const, false /*f64Bit*/)
|
---|
9260 |
|
---|
9261 | #define IEM_MC_ADD_GREG_U64(a_iGReg, a_u8Const) \
|
---|
9262 | off = iemNativeEmitAddGregU32U64(pReNative, off, a_iGReg, a_u8Const, true /*f64Bit*/)
|
---|
9263 |
|
---|
9264 | /** Emits code for IEM_MC_ADD_GREG_U32 and IEM_MC_ADD_GREG_U64. */
|
---|
9265 | DECL_INLINE_THROW(uint32_t)
|
---|
9266 | iemNativeEmitAddGregU32U64(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGReg, uint8_t uAddend, bool f64Bit)
|
---|
9267 | {
|
---|
9268 | uint8_t const idxGstTmpReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
9269 | kIemNativeGstRegUse_ForUpdate);
|
---|
9270 |
|
---|
9271 | #ifdef RT_ARCH_AMD64
|
---|
9272 | uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7);
|
---|
9273 | if (f64Bit)
|
---|
9274 | pbCodeBuf[off++] = X86_OP_REX_W | (idxGstTmpReg >= 8 ? X86_OP_REX_B : 0);
|
---|
9275 | else if (idxGstTmpReg >= 8)
|
---|
9276 | pbCodeBuf[off++] = X86_OP_REX_B;
|
---|
9277 | if (uAddend == 1)
|
---|
9278 | {
|
---|
9279 | pbCodeBuf[off++] = 0xff; /* inc */
|
---|
9280 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, idxGstTmpReg & 7);
|
---|
9281 | }
|
---|
9282 | else if (uAddend < 128)
|
---|
9283 | {
|
---|
9284 | pbCodeBuf[off++] = 0x83; /* add */
|
---|
9285 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, idxGstTmpReg & 7);
|
---|
9286 | pbCodeBuf[off++] = RT_BYTE1(uAddend);
|
---|
9287 | }
|
---|
9288 | else
|
---|
9289 | {
|
---|
9290 | pbCodeBuf[off++] = 0x81; /* add */
|
---|
9291 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 0, idxGstTmpReg & 7);
|
---|
9292 | pbCodeBuf[off++] = RT_BYTE1(uAddend);
|
---|
9293 | pbCodeBuf[off++] = 0;
|
---|
9294 | pbCodeBuf[off++] = 0;
|
---|
9295 | pbCodeBuf[off++] = 0;
|
---|
9296 | }
|
---|
9297 |
|
---|
9298 | #else
|
---|
9299 | /* sub tmp, gstgrp, uAddend */
|
---|
9300 | uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
9301 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(false /*fSub*/, idxGstTmpReg, idxGstTmpReg, uAddend, f64Bit);
|
---|
9302 |
|
---|
9303 | #endif
|
---|
9304 |
|
---|
9305 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
9306 |
|
---|
9307 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxGstTmpReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[iGReg]));
|
---|
9308 |
|
---|
9309 | iemNativeRegFreeTmp(pReNative, idxGstTmpReg);
|
---|
9310 | return off;
|
---|
9311 | }
|
---|
9312 |
|
---|
9313 |
|
---|
9314 |
|
---|
9315 | #define IEM_MC_SUB_GREG_U16(a_iGReg, a_u8SubtrahendConst) \
|
---|
9316 | off = iemNativeEmitSubGregU16(pReNative, off, a_iGReg, a_u8SubtrahendConst)
|
---|
9317 |
|
---|
9318 | /** Emits code for IEM_MC_SUB_GREG_U16. */
|
---|
9319 | DECL_INLINE_THROW(uint32_t)
|
---|
9320 | iemNativeEmitSubGregU16(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGReg, uint8_t uSubtrahend)
|
---|
9321 | {
|
---|
9322 | uint8_t const idxGstTmpReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
9323 | kIemNativeGstRegUse_ForUpdate);
|
---|
9324 |
|
---|
9325 | #ifdef RT_ARCH_AMD64
|
---|
9326 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 6);
|
---|
9327 | pbCodeBuf[off++] = X86_OP_PRF_SIZE_OP;
|
---|
9328 | if (idxGstTmpReg >= 8)
|
---|
9329 | pbCodeBuf[off++] = X86_OP_REX_B;
|
---|
9330 | if (uSubtrahend == 1)
|
---|
9331 | {
|
---|
9332 | pbCodeBuf[off++] = 0xff; /* dec */
|
---|
9333 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 1, idxGstTmpReg & 7);
|
---|
9334 | }
|
---|
9335 | else
|
---|
9336 | {
|
---|
9337 | pbCodeBuf[off++] = 0x81;
|
---|
9338 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 5, idxGstTmpReg & 7);
|
---|
9339 | pbCodeBuf[off++] = uSubtrahend;
|
---|
9340 | pbCodeBuf[off++] = 0;
|
---|
9341 | }
|
---|
9342 |
|
---|
9343 | #else
|
---|
9344 | uint8_t const idxTmpReg = iemNativeRegAllocTmp(pReNative, &off);
|
---|
9345 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 2);
|
---|
9346 |
|
---|
9347 | /* sub tmp, gstgrp, uSubtrahend */
|
---|
9348 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(true /*fSub*/, idxTmpReg, idxGstTmpReg, uSubtrahend, false /*f64Bit*/);
|
---|
9349 |
|
---|
9350 | /* bfi w1, w2, 0, 16 - moves bits 15:0 from tmpreg2 to tmpreg. */
|
---|
9351 | pu32CodeBuf[off++] = Armv8A64MkInstrBfi(idxGstTmpReg, idxTmpReg, 0, 16);
|
---|
9352 |
|
---|
9353 | iemNativeRegFreeTmp(pReNative, idxTmpReg);
|
---|
9354 | #endif
|
---|
9355 |
|
---|
9356 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
9357 |
|
---|
9358 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxGstTmpReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[iGReg]));
|
---|
9359 |
|
---|
9360 | iemNativeRegFreeTmp(pReNative, idxGstTmpReg);
|
---|
9361 | return off;
|
---|
9362 | }
|
---|
9363 |
|
---|
9364 |
|
---|
9365 | #define IEM_MC_SUB_GREG_U32(a_iGReg, a_u8Const) \
|
---|
9366 | off = iemNativeEmitSubGregU32U64(pReNative, off, a_iGReg, a_u8Const, false /*f64Bit*/)
|
---|
9367 |
|
---|
9368 | #define IEM_MC_SUB_GREG_U64(a_iGReg, a_u8Const) \
|
---|
9369 | off = iemNativeEmitSubGregU32U64(pReNative, off, a_iGReg, a_u8Const, true /*f64Bit*/)
|
---|
9370 |
|
---|
9371 | /** Emits code for IEM_MC_SUB_GREG_U32 and IEM_MC_SUB_GREG_U64. */
|
---|
9372 | DECL_INLINE_THROW(uint32_t)
|
---|
9373 | iemNativeEmitSubGregU32U64(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t iGReg, uint8_t uSubtrahend, bool f64Bit)
|
---|
9374 | {
|
---|
9375 | uint8_t const idxGstTmpReg = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(iGReg),
|
---|
9376 | kIemNativeGstRegUse_ForUpdate);
|
---|
9377 |
|
---|
9378 | #ifdef RT_ARCH_AMD64
|
---|
9379 | uint8_t *pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7);
|
---|
9380 | if (f64Bit)
|
---|
9381 | pbCodeBuf[off++] = X86_OP_REX_W | (idxGstTmpReg >= 8 ? X86_OP_REX_B : 0);
|
---|
9382 | else if (idxGstTmpReg >= 8)
|
---|
9383 | pbCodeBuf[off++] = X86_OP_REX_B;
|
---|
9384 | if (uSubtrahend == 1)
|
---|
9385 | {
|
---|
9386 | pbCodeBuf[off++] = 0xff; /* dec */
|
---|
9387 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 1, idxGstTmpReg & 7);
|
---|
9388 | }
|
---|
9389 | else if (uSubtrahend < 128)
|
---|
9390 | {
|
---|
9391 | pbCodeBuf[off++] = 0x83; /* sub */
|
---|
9392 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 5, idxGstTmpReg & 7);
|
---|
9393 | pbCodeBuf[off++] = RT_BYTE1(uSubtrahend);
|
---|
9394 | }
|
---|
9395 | else
|
---|
9396 | {
|
---|
9397 | pbCodeBuf[off++] = 0x81; /* sub */
|
---|
9398 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_REG, 5, idxGstTmpReg & 7);
|
---|
9399 | pbCodeBuf[off++] = RT_BYTE1(uSubtrahend);
|
---|
9400 | pbCodeBuf[off++] = 0;
|
---|
9401 | pbCodeBuf[off++] = 0;
|
---|
9402 | pbCodeBuf[off++] = 0;
|
---|
9403 | }
|
---|
9404 |
|
---|
9405 | #else
|
---|
9406 | /* sub tmp, gstgrp, uSubtrahend */
|
---|
9407 | uint32_t *pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
9408 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(true /*fSub*/, idxGstTmpReg, idxGstTmpReg, uSubtrahend, f64Bit);
|
---|
9409 |
|
---|
9410 | #endif
|
---|
9411 |
|
---|
9412 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
9413 |
|
---|
9414 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxGstTmpReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[iGReg]));
|
---|
9415 |
|
---|
9416 | iemNativeRegFreeTmp(pReNative, idxGstTmpReg);
|
---|
9417 | return off;
|
---|
9418 | }
|
---|
9419 |
|
---|
9420 |
|
---|
9421 |
|
---|
9422 | /*********************************************************************************************************************************
|
---|
9423 | * EFLAGS *
|
---|
9424 | *********************************************************************************************************************************/
|
---|
9425 |
|
---|
9426 | #define IEM_MC_FETCH_EFLAGS(a_EFlags) \
|
---|
9427 | off = iemNativeEmitFetchEFlags(pReNative, off, a_EFlags)
|
---|
9428 |
|
---|
9429 | /** Handles IEM_MC_FETCH_EFLAGS. */
|
---|
9430 | DECL_INLINE_THROW(uint32_t)
|
---|
9431 | iemNativeEmitFetchEFlags(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVarEFlags)
|
---|
9432 | {
|
---|
9433 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVarEFlags);
|
---|
9434 | Assert(pReNative->Core.aVars[idxVarEFlags].cbVar == sizeof(uint32_t));
|
---|
9435 |
|
---|
9436 | uint8_t const idxReg = iemNativeVarRegisterAcquire(pReNative, idxVarEFlags, &off, false /*fInitialized*/);
|
---|
9437 | iemNativeRegClearAndMarkAsGstRegShadow(pReNative, idxReg, kIemNativeGstReg_EFlags, off);
|
---|
9438 | off = iemNativeEmitLoadGprFromVCpuU32(pReNative, off, idxReg, RT_UOFFSETOF(VMCPUCC, cpum.GstCtx.eflags));
|
---|
9439 | iemNativeVarRegisterRelease(pReNative, idxVarEFlags);
|
---|
9440 | return off;
|
---|
9441 | }
|
---|
9442 |
|
---|
9443 |
|
---|
9444 | #define IEM_MC_COMMIT_EFLAGS(a_EFlags) \
|
---|
9445 | off = iemNativeEmitCommitEFlags(pReNative, off, a_EFlags)
|
---|
9446 |
|
---|
9447 | /** Handles IEM_MC_COMMIT_EFLAGS. */
|
---|
9448 | DECL_INLINE_THROW(uint32_t)
|
---|
9449 | iemNativeEmitCommitEFlags(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVarEFlags)
|
---|
9450 | {
|
---|
9451 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVarEFlags);
|
---|
9452 | Assert(pReNative->Core.aVars[idxVarEFlags].cbVar == sizeof(uint32_t));
|
---|
9453 |
|
---|
9454 | uint8_t const idxReg = iemNativeVarRegisterAcquire(pReNative, idxVarEFlags, &off, true /*fInitialized*/);
|
---|
9455 |
|
---|
9456 | #ifdef VBOX_STRICT
|
---|
9457 | off = iemNativeEmitTestAnyBitsInGpr(pReNative, off, idxReg, X86_EFL_RA1_MASK);
|
---|
9458 | uint32_t offFixup = off;
|
---|
9459 | off = iemNativeEmitJnzToFixed(pReNative, off, off);
|
---|
9460 | off = iemNativeEmitBrk(pReNative, off, UINT32_C(0x2001));
|
---|
9461 | iemNativeFixupFixedJump(pReNative, offFixup, off);
|
---|
9462 |
|
---|
9463 | off = iemNativeEmitTestAnyBitsInGpr(pReNative, off, idxReg, X86_EFL_RAZ_MASK & CPUMX86EFLAGS_HW_MASK_32);
|
---|
9464 | offFixup = off;
|
---|
9465 | off = iemNativeEmitJzToFixed(pReNative, off, off);
|
---|
9466 | off = iemNativeEmitBrk(pReNative, off, UINT32_C(0x2002));
|
---|
9467 | iemNativeFixupFixedJump(pReNative, offFixup, off);
|
---|
9468 | #endif
|
---|
9469 |
|
---|
9470 | iemNativeRegClearAndMarkAsGstRegShadow(pReNative, idxReg, kIemNativeGstReg_EFlags, off);
|
---|
9471 | off = iemNativeEmitStoreGprToVCpuU32(pReNative, off, idxReg, RT_UOFFSETOF_DYN(VMCPUCC, cpum.GstCtx.eflags));
|
---|
9472 | iemNativeVarRegisterRelease(pReNative, idxVarEFlags);
|
---|
9473 | return off;
|
---|
9474 | }
|
---|
9475 |
|
---|
9476 |
|
---|
9477 |
|
---|
9478 | /*********************************************************************************************************************************
|
---|
9479 | * Emitters for segment register fetches (IEM_MC_FETCH_SREG_XXX).
|
---|
9480 | *********************************************************************************************************************************/
|
---|
9481 |
|
---|
9482 | #define IEM_MC_FETCH_SREG_U16(a_u16Dst, a_iSReg) \
|
---|
9483 | off = iemNativeEmitFetchSReg(pReNative, off, a_u16Dst, a_iSReg, sizeof(uint16_t))
|
---|
9484 |
|
---|
9485 | #define IEM_MC_FETCH_SREG_ZX_U32(a_u32Dst, a_iSReg) \
|
---|
9486 | off = iemNativeEmitFetchSReg(pReNative, off, a_u32Dst, a_iSReg, sizeof(uint32_t))
|
---|
9487 |
|
---|
9488 | #define IEM_MC_FETCH_SREG_ZX_U64(a_u64Dst, a_iSReg) \
|
---|
9489 | off = iemNativeEmitFetchSReg(pReNative, off, a_u64Dst, a_iSReg, sizeof(uint64_t))
|
---|
9490 |
|
---|
9491 |
|
---|
9492 | /** Emits code for IEM_MC_FETCH_SREG_U16, IEM_MC_FETCH_SREG_ZX_U32 and
|
---|
9493 | * IEM_MC_FETCH_SREG_ZX_U64. */
|
---|
9494 | DECL_INLINE_THROW(uint32_t)
|
---|
9495 | iemNativeEmitFetchSReg(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxDstVar, uint8_t iSReg, int8_t cbVar)
|
---|
9496 | {
|
---|
9497 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxDstVar);
|
---|
9498 | Assert(pReNative->Core.aVars[idxDstVar].cbVar == cbVar); RT_NOREF(cbVar);
|
---|
9499 | Assert(iSReg < X86_SREG_COUNT);
|
---|
9500 |
|
---|
9501 | /*
|
---|
9502 | * For now, we will not create a shadow copy of a selector. The rational
|
---|
9503 | * is that since we do not recompile the popping and loading of segment
|
---|
9504 | * registers and that the the IEM_MC_FETCH_SREG_U* MCs are only used for
|
---|
9505 | * pushing and moving to registers, there is only a small chance that the
|
---|
9506 | * shadow copy will be accessed again before the register is reloaded. One
|
---|
9507 | * scenario would be nested called in 16-bit code, but I doubt it's worth
|
---|
9508 | * the extra register pressure atm.
|
---|
9509 | *
|
---|
9510 | * What we really need first, though, is to combine iemNativeRegAllocTmpForGuestReg
|
---|
9511 | * and iemNativeVarRegisterAcquire for a load scenario. We only got the
|
---|
9512 | * store scencario covered at present (r160730).
|
---|
9513 | */
|
---|
9514 | iemNativeVarSetKindToStack(pReNative, idxDstVar);
|
---|
9515 | uint8_t const idxVarReg = iemNativeVarRegisterAcquire(pReNative, idxDstVar, &off);
|
---|
9516 | off = iemNativeEmitLoadGprFromVCpuU16(pReNative, off, idxVarReg, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aSRegs[iSReg].Sel));
|
---|
9517 | iemNativeVarRegisterRelease(pReNative, idxDstVar);
|
---|
9518 | return off;
|
---|
9519 | }
|
---|
9520 |
|
---|
9521 |
|
---|
9522 |
|
---|
9523 | /*********************************************************************************************************************************
|
---|
9524 | * Register references. *
|
---|
9525 | *********************************************************************************************************************************/
|
---|
9526 |
|
---|
9527 | #define IEM_MC_REF_GREG_U8_THREADED(a_pu8Dst, a_iGRegEx) \
|
---|
9528 | off = iemNativeEmitRefGregU8(pReNative, off, a_pu8Dst, a_iGRegEx, false /*fConst*/)
|
---|
9529 |
|
---|
9530 | #define IEM_MC_REF_GREG_U8_CONST_THREADED(a_pu8Dst, a_iGReg) \
|
---|
9531 | off = iemNativeEmitRefGregU8(pReNative, off, a_pu8Dst, a_iGRegEx, true /*fConst*/)
|
---|
9532 |
|
---|
9533 | /** Handles IEM_MC_REF_GREG_U8[_CONST]. */
|
---|
9534 | DECL_INLINE_THROW(uint32_t)
|
---|
9535 | iemNativeEmitRefGregU8(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVarRef, uint8_t iGRegEx, bool fConst)
|
---|
9536 | {
|
---|
9537 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVarRef);
|
---|
9538 | Assert(pReNative->Core.aVars[idxVarRef].cbVar == sizeof(void *));
|
---|
9539 | Assert(iGRegEx < 20);
|
---|
9540 |
|
---|
9541 | if (iGRegEx < 16)
|
---|
9542 | iemNativeVarSetKindToGstRegRef(pReNative, idxVarRef, kIemNativeGstRegRef_Gpr, iGRegEx & 15);
|
---|
9543 | else
|
---|
9544 | iemNativeVarSetKindToGstRegRef(pReNative, idxVarRef, kIemNativeGstRegRef_GprHighByte, iGRegEx & 15);
|
---|
9545 |
|
---|
9546 | /* If we've delayed writing back the register value, flush it now. */
|
---|
9547 | off = iemNativeRegFlushPendingSpecificWrite(pReNative, off, kIemNativeGstRegRef_Gpr, iGRegEx & 15);
|
---|
9548 |
|
---|
9549 | /* If it's not a const reference we need to flush the shadow copy of the register now. */
|
---|
9550 | if (!fConst)
|
---|
9551 | iemNativeRegFlushGuestShadows(pReNative, RT_BIT_64(IEMNATIVEGSTREG_GPR(iGRegEx & 15)));
|
---|
9552 |
|
---|
9553 | return off;
|
---|
9554 | }
|
---|
9555 |
|
---|
9556 | #define IEM_MC_REF_GREG_U16(a_pu16Dst, a_iGReg) \
|
---|
9557 | off = iemNativeEmitRefGregUxx(pReNative, off, a_pu16Dst, a_iGReg, false /*fConst*/)
|
---|
9558 |
|
---|
9559 | #define IEM_MC_REF_GREG_U16_CONST(a_pu16Dst, a_iGReg) \
|
---|
9560 | off = iemNativeEmitRefGregUxx(pReNative, off, a_pu16Dst, a_iGReg, true /*fConst*/)
|
---|
9561 |
|
---|
9562 | #define IEM_MC_REF_GREG_U32(a_pu32Dst, a_iGReg) \
|
---|
9563 | off = iemNativeEmitRefGregUxx(pReNative, off, a_pu32Dst, a_iGReg, false /*fConst*/)
|
---|
9564 |
|
---|
9565 | #define IEM_MC_REF_GREG_U32_CONST(a_pu32Dst, a_iGReg) \
|
---|
9566 | off = iemNativeEmitRefGregUxx(pReNative, off, a_pu32Dst, a_iGReg, true /*fConst*/)
|
---|
9567 |
|
---|
9568 | #define IEM_MC_REF_GREG_I32(a_pi32Dst, a_iGReg) \
|
---|
9569 | off = iemNativeEmitRefGregUxx(pReNative, off, a_pi32Dst, a_iGReg, false /*fConst*/)
|
---|
9570 |
|
---|
9571 | #define IEM_MC_REF_GREG_I32_CONST(a_pi32Dst, a_iGReg) \
|
---|
9572 | off = iemNativeEmitRefGregUxx(pReNative, off, a_pi32Dst, a_iGReg, true /*fConst*/)
|
---|
9573 |
|
---|
9574 | #define IEM_MC_REF_GREG_U64(a_pu64Dst, a_iGReg) \
|
---|
9575 | off = iemNativeEmitRefGregUxx(pReNative, off, a_pu64Dst, a_iGReg, false /*fConst*/)
|
---|
9576 |
|
---|
9577 | #define IEM_MC_REF_GREG_U64_CONST(a_pu64Dst, a_iGReg) \
|
---|
9578 | off = iemNativeEmitRefGregUxx(pReNative, off, a_pu64Dst, a_iGReg, true /*fConst*/)
|
---|
9579 |
|
---|
9580 | #define IEM_MC_REF_GREG_I64(a_pi64Dst, a_iGReg) \
|
---|
9581 | off = iemNativeEmitRefGregUxx(pReNative, off, a_pi64Dst, a_iGReg, false /*fConst*/)
|
---|
9582 |
|
---|
9583 | #define IEM_MC_REF_GREG_I64_CONST(a_pi64Dst, a_iGReg) \
|
---|
9584 | off = iemNativeEmitRefGregUxx(pReNative, off, a_pi64Dst, a_iGReg, true /*fConst*/)
|
---|
9585 |
|
---|
9586 | /** Handles IEM_MC_REF_GREG_Uxx[_CONST] and IEM_MC_REF_GREG_Ixx[_CONST]. */
|
---|
9587 | DECL_INLINE_THROW(uint32_t)
|
---|
9588 | iemNativeEmitRefGregUxx(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVarRef, uint8_t iGReg, bool fConst)
|
---|
9589 | {
|
---|
9590 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVarRef);
|
---|
9591 | Assert(pReNative->Core.aVars[idxVarRef].cbVar == sizeof(void *));
|
---|
9592 | Assert(iGReg < 16);
|
---|
9593 |
|
---|
9594 | iemNativeVarSetKindToGstRegRef(pReNative, idxVarRef, kIemNativeGstRegRef_Gpr, iGReg);
|
---|
9595 |
|
---|
9596 | /* If we've delayed writing back the register value, flush it now. */
|
---|
9597 | off = iemNativeRegFlushPendingSpecificWrite(pReNative, off, kIemNativeGstRegRef_Gpr, iGReg);
|
---|
9598 |
|
---|
9599 | /* If it's not a const reference we need to flush the shadow copy of the register now. */
|
---|
9600 | if (!fConst)
|
---|
9601 | iemNativeRegFlushGuestShadows(pReNative, RT_BIT_64(IEMNATIVEGSTREG_GPR(iGReg)));
|
---|
9602 |
|
---|
9603 | return off;
|
---|
9604 | }
|
---|
9605 |
|
---|
9606 |
|
---|
9607 | #define IEM_MC_REF_EFLAGS(a_pEFlags) \
|
---|
9608 | off = iemNativeEmitRefEFlags(pReNative, off, a_pEFlags)
|
---|
9609 |
|
---|
9610 | /** Handles IEM_MC_REF_EFLAGS. */
|
---|
9611 | DECL_INLINE_THROW(uint32_t)
|
---|
9612 | iemNativeEmitRefEFlags(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVarRef)
|
---|
9613 | {
|
---|
9614 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVarRef);
|
---|
9615 | Assert(pReNative->Core.aVars[idxVarRef].cbVar == sizeof(void *));
|
---|
9616 |
|
---|
9617 | iemNativeVarSetKindToGstRegRef(pReNative, idxVarRef, kIemNativeGstRegRef_EFlags, 0);
|
---|
9618 |
|
---|
9619 | /* If we've delayed writing back the register value, flush it now. */
|
---|
9620 | off = iemNativeRegFlushPendingSpecificWrite(pReNative, off, kIemNativeGstRegRef_EFlags, 0);
|
---|
9621 |
|
---|
9622 | /* If there is a shadow copy of guest EFLAGS, flush it now. */
|
---|
9623 | iemNativeRegFlushGuestShadows(pReNative, RT_BIT_64(kIemNativeGstReg_EFlags));
|
---|
9624 |
|
---|
9625 | return off;
|
---|
9626 | }
|
---|
9627 |
|
---|
9628 |
|
---|
9629 | /*********************************************************************************************************************************
|
---|
9630 | * Effective Address Calculation *
|
---|
9631 | *********************************************************************************************************************************/
|
---|
9632 | #define IEM_MC_CALC_RM_EFF_ADDR_THREADED_16(a_GCPtrEff, a_bRm, a_u16Disp) \
|
---|
9633 | off = iemNativeEmitCalcRmEffAddrThreadedAddr16(pReNative, off, a_bRm, a_u16Disp, a_GCPtrEff)
|
---|
9634 |
|
---|
9635 | /** Emit code for IEM_MC_CALC_RM_EFF_ADDR_THREADED_16.
|
---|
9636 | * @sa iemOpHlpCalcRmEffAddrThreadedAddr16 */
|
---|
9637 | DECL_INLINE_THROW(uint32_t)
|
---|
9638 | iemNativeEmitCalcRmEffAddrThreadedAddr16(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
9639 | uint8_t bRm, uint16_t u16Disp, uint8_t idxVarRet)
|
---|
9640 | {
|
---|
9641 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVarRet);
|
---|
9642 |
|
---|
9643 | /*
|
---|
9644 | * Handle the disp16 form with no registers first.
|
---|
9645 | *
|
---|
9646 | * Convert to an immediate value, as that'll delay the register allocation
|
---|
9647 | * and assignment till the memory access / call / whatever and we can use
|
---|
9648 | * a more appropriate register (or none at all).
|
---|
9649 | */
|
---|
9650 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
|
---|
9651 | {
|
---|
9652 | iemNativeVarSetKindToConst(pReNative, idxVarRet, u16Disp);
|
---|
9653 | return off;
|
---|
9654 | }
|
---|
9655 |
|
---|
9656 | /* Determin the displacment. */
|
---|
9657 | uint16_t u16EffAddr;
|
---|
9658 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
9659 | {
|
---|
9660 | case 0: u16EffAddr = 0; break;
|
---|
9661 | case 1: u16EffAddr = (int16_t)(int8_t)u16Disp; break;
|
---|
9662 | case 2: u16EffAddr = u16Disp; break;
|
---|
9663 | default: AssertFailedStmt(u16EffAddr = 0);
|
---|
9664 | }
|
---|
9665 |
|
---|
9666 | /* Determine the registers involved. */
|
---|
9667 | uint8_t idxGstRegBase;
|
---|
9668 | uint8_t idxGstRegIndex;
|
---|
9669 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
9670 | {
|
---|
9671 | case 0:
|
---|
9672 | idxGstRegBase = X86_GREG_xBX;
|
---|
9673 | idxGstRegIndex = X86_GREG_xSI;
|
---|
9674 | break;
|
---|
9675 | case 1:
|
---|
9676 | idxGstRegBase = X86_GREG_xBX;
|
---|
9677 | idxGstRegIndex = X86_GREG_xDI;
|
---|
9678 | break;
|
---|
9679 | case 2:
|
---|
9680 | idxGstRegBase = X86_GREG_xBP;
|
---|
9681 | idxGstRegIndex = X86_GREG_xSI;
|
---|
9682 | break;
|
---|
9683 | case 3:
|
---|
9684 | idxGstRegBase = X86_GREG_xBP;
|
---|
9685 | idxGstRegIndex = X86_GREG_xDI;
|
---|
9686 | break;
|
---|
9687 | case 4:
|
---|
9688 | idxGstRegBase = X86_GREG_xSI;
|
---|
9689 | idxGstRegIndex = UINT8_MAX;
|
---|
9690 | break;
|
---|
9691 | case 5:
|
---|
9692 | idxGstRegBase = X86_GREG_xDI;
|
---|
9693 | idxGstRegIndex = UINT8_MAX;
|
---|
9694 | break;
|
---|
9695 | case 6:
|
---|
9696 | idxGstRegBase = X86_GREG_xBP;
|
---|
9697 | idxGstRegIndex = UINT8_MAX;
|
---|
9698 | break;
|
---|
9699 | #ifdef _MSC_VER /* lazy compiler, thinks idxGstRegBase and idxGstRegIndex may otherwise be used uninitialized. */
|
---|
9700 | default:
|
---|
9701 | #endif
|
---|
9702 | case 7:
|
---|
9703 | idxGstRegBase = X86_GREG_xBX;
|
---|
9704 | idxGstRegIndex = UINT8_MAX;
|
---|
9705 | break;
|
---|
9706 | }
|
---|
9707 |
|
---|
9708 | /*
|
---|
9709 | * Now emit code that calculates: idxRegRet = (uint16_t)(u16EffAddr + idxGstRegBase [+ idxGstRegIndex])
|
---|
9710 | */
|
---|
9711 | uint8_t const idxRegRet = iemNativeVarRegisterAcquire(pReNative, idxVarRet, &off);
|
---|
9712 | uint8_t const idxRegBase = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(idxGstRegBase),
|
---|
9713 | kIemNativeGstRegUse_ReadOnly);
|
---|
9714 | uint8_t const idxRegIndex = idxGstRegIndex != UINT8_MAX
|
---|
9715 | ? iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(idxGstRegIndex),
|
---|
9716 | kIemNativeGstRegUse_ReadOnly)
|
---|
9717 | : UINT8_MAX;
|
---|
9718 | #ifdef RT_ARCH_AMD64
|
---|
9719 | if (idxRegIndex == UINT8_MAX)
|
---|
9720 | {
|
---|
9721 | if (u16EffAddr == 0)
|
---|
9722 | {
|
---|
9723 | /* movxz ret, base */
|
---|
9724 | off = iemNativeEmitLoadGprFromGpr16(pReNative, off, idxRegRet, idxRegBase);
|
---|
9725 | }
|
---|
9726 | else
|
---|
9727 | {
|
---|
9728 | /* lea ret32, [base64 + disp32] */
|
---|
9729 | Assert(idxRegBase != X86_GREG_xSP /*SIB*/);
|
---|
9730 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 8);
|
---|
9731 | if (idxRegRet >= 8 || idxRegBase >= 8)
|
---|
9732 | pbCodeBuf[off++] = (idxRegRet >= 8 ? X86_OP_REX_R : 0) | (idxRegBase >= 8 ? X86_OP_REX_B : 0);
|
---|
9733 | pbCodeBuf[off++] = 0x8d;
|
---|
9734 | if (idxRegBase != X86_GREG_x12 /*SIB*/)
|
---|
9735 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_MEM4, idxRegRet & 7, idxRegBase & 7);
|
---|
9736 | else
|
---|
9737 | {
|
---|
9738 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_MEM4, idxRegRet & 7, 4 /*SIB*/);
|
---|
9739 | pbCodeBuf[off++] = X86_SIB_MAKE(X86_GREG_x12 & 7, 4 /*no index*/, 0);
|
---|
9740 | }
|
---|
9741 | pbCodeBuf[off++] = RT_BYTE1(u16EffAddr);
|
---|
9742 | pbCodeBuf[off++] = RT_BYTE2(u16EffAddr);
|
---|
9743 | pbCodeBuf[off++] = 0;
|
---|
9744 | pbCodeBuf[off++] = 0;
|
---|
9745 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
9746 |
|
---|
9747 | off = iemNativeEmitClear16UpGpr(pReNative, off, idxRegRet);
|
---|
9748 | }
|
---|
9749 | }
|
---|
9750 | else
|
---|
9751 | {
|
---|
9752 | /* lea ret32, [index64 + base64 (+ disp32)] */
|
---|
9753 | Assert(idxRegIndex != X86_GREG_xSP /*no-index*/);
|
---|
9754 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 8);
|
---|
9755 | if (idxRegRet >= 8 || idxRegBase >= 8 || idxRegIndex >= 8)
|
---|
9756 | pbCodeBuf[off++] = (idxRegRet >= 8 ? X86_OP_REX_R : 0)
|
---|
9757 | | (idxRegBase >= 8 ? X86_OP_REX_B : 0)
|
---|
9758 | | (idxRegIndex >= 8 ? X86_OP_REX_X : 0);
|
---|
9759 | pbCodeBuf[off++] = 0x8d;
|
---|
9760 | uint8_t const bMod = u16EffAddr == 0 && (idxRegBase & 7) != X86_GREG_xBP ? X86_MOD_MEM0 : X86_MOD_MEM4;
|
---|
9761 | pbCodeBuf[off++] = X86_MODRM_MAKE(bMod, idxRegRet & 7, 4 /*SIB*/);
|
---|
9762 | pbCodeBuf[off++] = X86_SIB_MAKE(idxRegBase & 7, idxRegIndex & 7, 0);
|
---|
9763 | if (bMod == X86_MOD_MEM4)
|
---|
9764 | {
|
---|
9765 | pbCodeBuf[off++] = RT_BYTE1(u16EffAddr);
|
---|
9766 | pbCodeBuf[off++] = RT_BYTE2(u16EffAddr);
|
---|
9767 | pbCodeBuf[off++] = 0;
|
---|
9768 | pbCodeBuf[off++] = 0;
|
---|
9769 | }
|
---|
9770 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
9771 | off = iemNativeEmitClear16UpGpr(pReNative, off, idxRegRet);
|
---|
9772 | }
|
---|
9773 |
|
---|
9774 | #elif defined(RT_ARCH_ARM64)
|
---|
9775 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 5);
|
---|
9776 | if (u16EffAddr == 0)
|
---|
9777 | {
|
---|
9778 | if (idxRegIndex == UINT8_MAX)
|
---|
9779 | pu32CodeBuf[off++] = Armv8A64MkInstrUxth(idxRegRet, idxRegBase);
|
---|
9780 | else
|
---|
9781 | {
|
---|
9782 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubReg(false /*fSub*/, idxRegRet, idxRegBase, idxRegIndex, false /*f64Bit*/);
|
---|
9783 | pu32CodeBuf[off++] = Armv8A64MkInstrUxth(idxRegRet, idxRegRet);
|
---|
9784 | }
|
---|
9785 | }
|
---|
9786 | else
|
---|
9787 | {
|
---|
9788 | if ((int16_t)u16EffAddr < 4096 && (int16_t)u16EffAddr >= 0)
|
---|
9789 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(false /*fSub*/, idxRegRet, idxRegBase, u16EffAddr, false /*f64Bit*/);
|
---|
9790 | else if ((int16_t)u16EffAddr > -4096 && (int16_t)u16EffAddr < 0)
|
---|
9791 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(true /*fSub*/, idxRegRet, idxRegBase,
|
---|
9792 | (uint16_t)-(int16_t)u16EffAddr, false /*f64Bit*/);
|
---|
9793 | else
|
---|
9794 | {
|
---|
9795 | pu32CodeBuf[off++] = Armv8A64MkInstrMovZ(idxRegRet, u16EffAddr);
|
---|
9796 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubReg(false /*fSub*/, idxRegRet, idxRegRet, idxRegBase, false /*f64Bit*/);
|
---|
9797 | }
|
---|
9798 | if (idxRegIndex != UINT8_MAX)
|
---|
9799 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubReg(false /*fSub*/, idxRegRet, idxRegRet, idxRegIndex, false /*f64Bit*/);
|
---|
9800 | pu32CodeBuf[off++] = Armv8A64MkInstrUxth(idxRegRet, idxRegRet);
|
---|
9801 | }
|
---|
9802 |
|
---|
9803 | #else
|
---|
9804 | # error "port me"
|
---|
9805 | #endif
|
---|
9806 |
|
---|
9807 | if (idxRegIndex != UINT8_MAX)
|
---|
9808 | iemNativeRegFreeTmp(pReNative, idxRegIndex);
|
---|
9809 | iemNativeRegFreeTmp(pReNative, idxRegBase);
|
---|
9810 | iemNativeVarRegisterRelease(pReNative, idxVarRet);
|
---|
9811 | return off;
|
---|
9812 | }
|
---|
9813 |
|
---|
9814 |
|
---|
9815 | #define IEM_MC_CALC_RM_EFF_ADDR_THREADED_32(a_GCPtrEff, a_bRm, a_uSibAndRspOffset, a_u32Disp) \
|
---|
9816 | off = iemNativeEmitCalcRmEffAddrThreadedAddr32(pReNative, off, a_bRm, a_uSibAndRspOffset, a_u32Disp, a_GCPtrEff)
|
---|
9817 |
|
---|
9818 | /** Emit code for IEM_MC_CALC_RM_EFF_ADDR_THREADED_32.
|
---|
9819 | * @see iemOpHlpCalcRmEffAddrThreadedAddr32 */
|
---|
9820 | DECL_INLINE_THROW(uint32_t)
|
---|
9821 | iemNativeEmitCalcRmEffAddrThreadedAddr32(PIEMRECOMPILERSTATE pReNative, uint32_t off,
|
---|
9822 | uint8_t bRm, uint32_t uSibAndRspOffset, uint32_t u32Disp, uint8_t idxVarRet)
|
---|
9823 | {
|
---|
9824 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVarRet);
|
---|
9825 |
|
---|
9826 | /*
|
---|
9827 | * Handle the disp32 form with no registers first.
|
---|
9828 | *
|
---|
9829 | * Convert to an immediate value, as that'll delay the register allocation
|
---|
9830 | * and assignment till the memory access / call / whatever and we can use
|
---|
9831 | * a more appropriate register (or none at all).
|
---|
9832 | */
|
---|
9833 | if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
9834 | {
|
---|
9835 | iemNativeVarSetKindToConst(pReNative, idxVarRet, u32Disp);
|
---|
9836 | return off;
|
---|
9837 | }
|
---|
9838 |
|
---|
9839 | /* Calculate the fixed displacement (more down in SIB.B=4 and SIB.B=5 on this). */
|
---|
9840 | uint32_t u32EffAddr = 0;
|
---|
9841 | switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
9842 | {
|
---|
9843 | case 0: break;
|
---|
9844 | case 1: u32EffAddr = (int8_t)u32Disp; break;
|
---|
9845 | case 2: u32EffAddr = u32Disp; break;
|
---|
9846 | default: AssertFailed();
|
---|
9847 | }
|
---|
9848 |
|
---|
9849 | /* Get the register (or SIB) value. */
|
---|
9850 | uint8_t idxGstRegBase = UINT8_MAX;
|
---|
9851 | uint8_t idxGstRegIndex = UINT8_MAX;
|
---|
9852 | uint8_t cShiftIndex = 0;
|
---|
9853 | switch (bRm & X86_MODRM_RM_MASK)
|
---|
9854 | {
|
---|
9855 | case 0: idxGstRegBase = X86_GREG_xAX; break;
|
---|
9856 | case 1: idxGstRegBase = X86_GREG_xCX; break;
|
---|
9857 | case 2: idxGstRegBase = X86_GREG_xDX; break;
|
---|
9858 | case 3: idxGstRegBase = X86_GREG_xBX; break;
|
---|
9859 | case 4: /* SIB */
|
---|
9860 | {
|
---|
9861 | /* index /w scaling . */
|
---|
9862 | cShiftIndex = (uSibAndRspOffset >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
9863 | switch ((uSibAndRspOffset >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
|
---|
9864 | {
|
---|
9865 | case 0: idxGstRegIndex = X86_GREG_xAX; break;
|
---|
9866 | case 1: idxGstRegIndex = X86_GREG_xCX; break;
|
---|
9867 | case 2: idxGstRegIndex = X86_GREG_xDX; break;
|
---|
9868 | case 3: idxGstRegIndex = X86_GREG_xBX; break;
|
---|
9869 | case 4: cShiftIndex = 0; /*no index*/ break;
|
---|
9870 | case 5: idxGstRegIndex = X86_GREG_xBP; break;
|
---|
9871 | case 6: idxGstRegIndex = X86_GREG_xSI; break;
|
---|
9872 | case 7: idxGstRegIndex = X86_GREG_xDI; break;
|
---|
9873 | }
|
---|
9874 |
|
---|
9875 | /* base */
|
---|
9876 | switch (uSibAndRspOffset & X86_SIB_BASE_MASK)
|
---|
9877 | {
|
---|
9878 | case 0: idxGstRegBase = X86_GREG_xAX; break;
|
---|
9879 | case 1: idxGstRegBase = X86_GREG_xCX; break;
|
---|
9880 | case 2: idxGstRegBase = X86_GREG_xDX; break;
|
---|
9881 | case 3: idxGstRegBase = X86_GREG_xBX; break;
|
---|
9882 | case 4:
|
---|
9883 | idxGstRegBase = X86_GREG_xSP;
|
---|
9884 | u32EffAddr += uSibAndRspOffset >> 8;
|
---|
9885 | break;
|
---|
9886 | case 5:
|
---|
9887 | if ((bRm & X86_MODRM_MOD_MASK) != 0)
|
---|
9888 | idxGstRegBase = X86_GREG_xBP;
|
---|
9889 | else
|
---|
9890 | {
|
---|
9891 | Assert(u32EffAddr == 0);
|
---|
9892 | u32EffAddr = u32Disp;
|
---|
9893 | }
|
---|
9894 | break;
|
---|
9895 | case 6: idxGstRegBase = X86_GREG_xSI; break;
|
---|
9896 | case 7: idxGstRegBase = X86_GREG_xDI; break;
|
---|
9897 | }
|
---|
9898 | break;
|
---|
9899 | }
|
---|
9900 | case 5: idxGstRegBase = X86_GREG_xBP; break;
|
---|
9901 | case 6: idxGstRegBase = X86_GREG_xSI; break;
|
---|
9902 | case 7: idxGstRegBase = X86_GREG_xDI; break;
|
---|
9903 | }
|
---|
9904 |
|
---|
9905 | /*
|
---|
9906 | * If no registers are involved (SIB.B=5, SIB.X=4) repeat what we did at
|
---|
9907 | * the start of the function.
|
---|
9908 | */
|
---|
9909 | if (idxGstRegBase == UINT8_MAX && idxGstRegIndex == UINT8_MAX)
|
---|
9910 | {
|
---|
9911 | iemNativeVarSetKindToConst(pReNative, idxVarRet, u32EffAddr);
|
---|
9912 | return off;
|
---|
9913 | }
|
---|
9914 |
|
---|
9915 | /*
|
---|
9916 | * Now emit code that calculates: idxRegRet = (uint32_t)(u32EffAddr [+ idxGstRegBase] [+ (idxGstRegIndex << cShiftIndex)])
|
---|
9917 | */
|
---|
9918 | uint8_t const idxRegRet = iemNativeVarRegisterAcquire(pReNative, idxVarRet, &off);
|
---|
9919 | uint8_t idxRegBase = idxGstRegBase == UINT8_MAX ? UINT8_MAX
|
---|
9920 | : iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(idxGstRegBase),
|
---|
9921 | kIemNativeGstRegUse_ReadOnly);
|
---|
9922 | uint8_t idxRegIndex = idxGstRegIndex == UINT8_MAX ? UINT8_MAX
|
---|
9923 | : iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(idxGstRegIndex),
|
---|
9924 | kIemNativeGstRegUse_ReadOnly);
|
---|
9925 |
|
---|
9926 | /* If base is not given and there is no shifting, swap the registers to avoid code duplication. */
|
---|
9927 | if (idxRegBase == UINT8_MAX && cShiftIndex == 0)
|
---|
9928 | {
|
---|
9929 | idxRegBase = idxRegIndex;
|
---|
9930 | idxRegIndex = UINT8_MAX;
|
---|
9931 | }
|
---|
9932 |
|
---|
9933 | #ifdef RT_ARCH_AMD64
|
---|
9934 | if (idxRegIndex == UINT8_MAX)
|
---|
9935 | {
|
---|
9936 | if (u32EffAddr == 0)
|
---|
9937 | {
|
---|
9938 | /* mov ret, base */
|
---|
9939 | off = iemNativeEmitLoadGprFromGpr32(pReNative, off, idxRegRet, idxRegBase);
|
---|
9940 | }
|
---|
9941 | else
|
---|
9942 | {
|
---|
9943 | /* lea ret32, [base64 + disp32] */
|
---|
9944 | Assert(idxRegBase != X86_GREG_xSP /*SIB*/);
|
---|
9945 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 8);
|
---|
9946 | if (idxRegRet >= 8 || idxRegBase >= 8)
|
---|
9947 | pbCodeBuf[off++] = (idxRegRet >= 8 ? X86_OP_REX_R : 0) | (idxRegBase >= 8 ? X86_OP_REX_B : 0);
|
---|
9948 | pbCodeBuf[off++] = 0x8d;
|
---|
9949 | uint8_t const bMod = (int8_t)u32EffAddr == (int32_t)u32EffAddr ? X86_MOD_MEM1 : X86_MOD_MEM4;
|
---|
9950 | if (idxRegBase != X86_GREG_x12 /*SIB*/)
|
---|
9951 | pbCodeBuf[off++] = X86_MODRM_MAKE(bMod, idxRegRet & 7, idxRegBase & 7);
|
---|
9952 | else
|
---|
9953 | {
|
---|
9954 | pbCodeBuf[off++] = X86_MODRM_MAKE(bMod, idxRegRet & 7, 4 /*SIB*/);
|
---|
9955 | pbCodeBuf[off++] = X86_SIB_MAKE(X86_GREG_x12 & 7, 4 /*no index*/, 0);
|
---|
9956 | }
|
---|
9957 | pbCodeBuf[off++] = RT_BYTE1(u32EffAddr);
|
---|
9958 | if (bMod == X86_MOD_MEM4)
|
---|
9959 | {
|
---|
9960 | pbCodeBuf[off++] = RT_BYTE2(u32EffAddr);
|
---|
9961 | pbCodeBuf[off++] = RT_BYTE3(u32EffAddr);
|
---|
9962 | pbCodeBuf[off++] = RT_BYTE4(u32EffAddr);
|
---|
9963 | }
|
---|
9964 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
9965 | }
|
---|
9966 | }
|
---|
9967 | else
|
---|
9968 | {
|
---|
9969 | Assert(idxRegIndex != X86_GREG_xSP /*no-index*/);
|
---|
9970 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 8);
|
---|
9971 | if (idxRegBase == UINT8_MAX)
|
---|
9972 | {
|
---|
9973 | /* lea ret32, [(index64 << cShiftIndex) + disp32] */
|
---|
9974 | if (idxRegRet >= 8 || idxRegIndex >= 8)
|
---|
9975 | pbCodeBuf[off++] = (idxRegRet >= 8 ? X86_OP_REX_R : 0)
|
---|
9976 | | (idxRegIndex >= 8 ? X86_OP_REX_X : 0);
|
---|
9977 | pbCodeBuf[off++] = 0x8d;
|
---|
9978 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_MEM0, idxRegRet & 7, 4 /*SIB*/);
|
---|
9979 | pbCodeBuf[off++] = X86_SIB_MAKE(5 /*nobase/bp*/, idxRegIndex & 7, cShiftIndex);
|
---|
9980 | pbCodeBuf[off++] = RT_BYTE1(u32EffAddr);
|
---|
9981 | pbCodeBuf[off++] = RT_BYTE2(u32EffAddr);
|
---|
9982 | pbCodeBuf[off++] = RT_BYTE3(u32EffAddr);
|
---|
9983 | pbCodeBuf[off++] = RT_BYTE4(u32EffAddr);
|
---|
9984 | }
|
---|
9985 | else
|
---|
9986 | {
|
---|
9987 | /* lea ret32, [(index64 << cShiftIndex) + base64 (+ disp32)] */
|
---|
9988 | if (idxRegRet >= 8 || idxRegBase >= 8 || idxRegIndex >= 8)
|
---|
9989 | pbCodeBuf[off++] = (idxRegRet >= 8 ? X86_OP_REX_R : 0)
|
---|
9990 | | (idxRegBase >= 8 ? X86_OP_REX_B : 0)
|
---|
9991 | | (idxRegIndex >= 8 ? X86_OP_REX_X : 0);
|
---|
9992 | pbCodeBuf[off++] = 0x8d;
|
---|
9993 | uint8_t const bMod = u32EffAddr == 0 && (idxRegBase & 7) != X86_GREG_xBP ? X86_MOD_MEM0
|
---|
9994 | : (int8_t)u32EffAddr == (int32_t)u32EffAddr ? X86_MOD_MEM1 : X86_MOD_MEM4;
|
---|
9995 | pbCodeBuf[off++] = X86_MODRM_MAKE(bMod, idxRegRet & 7, 4 /*SIB*/);
|
---|
9996 | pbCodeBuf[off++] = X86_SIB_MAKE(idxRegBase & 7, idxRegIndex & 7, cShiftIndex);
|
---|
9997 | if (bMod != X86_MOD_MEM0)
|
---|
9998 | {
|
---|
9999 | pbCodeBuf[off++] = RT_BYTE1(u32EffAddr);
|
---|
10000 | if (bMod == X86_MOD_MEM4)
|
---|
10001 | {
|
---|
10002 | pbCodeBuf[off++] = RT_BYTE2(u32EffAddr);
|
---|
10003 | pbCodeBuf[off++] = RT_BYTE3(u32EffAddr);
|
---|
10004 | pbCodeBuf[off++] = RT_BYTE4(u32EffAddr);
|
---|
10005 | }
|
---|
10006 | }
|
---|
10007 | }
|
---|
10008 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
10009 | }
|
---|
10010 |
|
---|
10011 | #elif defined(RT_ARCH_ARM64)
|
---|
10012 | if (u32EffAddr == 0)
|
---|
10013 | {
|
---|
10014 | if (idxRegIndex == UINT8_MAX)
|
---|
10015 | off = iemNativeEmitLoadGprFromGpr32(pReNative, off, idxRegRet, idxRegBase);
|
---|
10016 | else if (idxRegBase == UINT8_MAX)
|
---|
10017 | {
|
---|
10018 | if (cShiftIndex == 0)
|
---|
10019 | off = iemNativeEmitLoadGprFromGpr32(pReNative, off, idxRegRet, idxRegIndex);
|
---|
10020 | else
|
---|
10021 | {
|
---|
10022 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
10023 | pu32CodeBuf[off++] = Armv8A64MkInstrLslImm(idxRegRet, idxRegIndex, cShiftIndex, false /*f64Bit*/);
|
---|
10024 | }
|
---|
10025 | }
|
---|
10026 | else
|
---|
10027 | {
|
---|
10028 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
10029 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubReg(false /*fSub*/, idxRegRet, idxRegBase, idxRegIndex,
|
---|
10030 | false /*f64Bit*/, false /*fSetFlags*/, cShiftIndex);
|
---|
10031 | }
|
---|
10032 | }
|
---|
10033 | else
|
---|
10034 | {
|
---|
10035 | if ((int32_t)u32EffAddr < 4096 && (int32_t)u32EffAddr >= 0 && idxRegBase != UINT8_MAX)
|
---|
10036 | {
|
---|
10037 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
10038 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(false /*fSub*/, idxRegRet, idxRegBase, u32EffAddr, false /*f64Bit*/);
|
---|
10039 | }
|
---|
10040 | else if ((int32_t)u32EffAddr > -4096 && (int32_t)u32EffAddr < 0 && idxRegBase != UINT8_MAX)
|
---|
10041 | {
|
---|
10042 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
10043 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(true /*fSub*/, idxRegRet, idxRegBase,
|
---|
10044 | (uint32_t)-(int32_t)u32EffAddr, false /*f64Bit*/);
|
---|
10045 | }
|
---|
10046 | else
|
---|
10047 | {
|
---|
10048 | off = iemNativeEmitLoadGprImm64(pReNative, off, idxRegRet, u32EffAddr);
|
---|
10049 | if (idxRegBase != UINT8_MAX)
|
---|
10050 | {
|
---|
10051 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
10052 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubReg(false /*fSub*/, idxRegRet, idxRegRet, idxRegBase, false /*f64Bit*/);
|
---|
10053 | }
|
---|
10054 | }
|
---|
10055 | if (idxRegIndex != UINT8_MAX)
|
---|
10056 | {
|
---|
10057 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
10058 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubReg(false /*fSub*/, idxRegRet, idxRegRet, idxRegIndex,
|
---|
10059 | false /*f64Bit*/, false /*fSetFlags*/, cShiftIndex);
|
---|
10060 | }
|
---|
10061 | }
|
---|
10062 |
|
---|
10063 | #else
|
---|
10064 | # error "port me"
|
---|
10065 | #endif
|
---|
10066 |
|
---|
10067 | if (idxRegIndex != UINT8_MAX)
|
---|
10068 | iemNativeRegFreeTmp(pReNative, idxRegIndex);
|
---|
10069 | if (idxRegBase != UINT8_MAX)
|
---|
10070 | iemNativeRegFreeTmp(pReNative, idxRegBase);
|
---|
10071 | iemNativeVarRegisterRelease(pReNative, idxVarRet);
|
---|
10072 | return off;
|
---|
10073 | }
|
---|
10074 |
|
---|
10075 |
|
---|
10076 | #define IEM_MC_CALC_RM_EFF_ADDR_THREADED_64(a_GCPtrEff, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm) \
|
---|
10077 | off = iemNativeEmitCalcRmEffAddrThreadedAddr64(pReNative, off, a_bRmEx, a_uSibAndRspOffset, \
|
---|
10078 | a_u32Disp, a_cbImm, a_GCPtrEff, true /*f64Bit*/)
|
---|
10079 |
|
---|
10080 | #define IEM_MC_CALC_RM_EFF_ADDR_THREADED_64_FSGS(a_GCPtrEff, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm) \
|
---|
10081 | off = iemNativeEmitCalcRmEffAddrThreadedAddr64(pReNative, off, a_bRmEx, a_uSibAndRspOffset, \
|
---|
10082 | a_u32Disp, a_cbImm, a_GCPtrEff, true /*f64Bit*/)
|
---|
10083 |
|
---|
10084 | #define IEM_MC_CALC_RM_EFF_ADDR_THREADED_64_ADDR32(a_GCPtrEff, a_bRmEx, a_uSibAndRspOffset, a_u32Disp, a_cbImm) \
|
---|
10085 | off = iemNativeEmitCalcRmEffAddrThreadedAddr64(pReNative, off, a_bRmEx, a_uSibAndRspOffset, \
|
---|
10086 | a_u32Disp, a_cbImm, a_GCPtrEff, false /*f64Bit*/)
|
---|
10087 |
|
---|
10088 | /**
|
---|
10089 | * Emit code for IEM_MC_CALC_RM_EFF_ADDR_THREADED_64*.
|
---|
10090 | *
|
---|
10091 | * @returns New off.
|
---|
10092 | * @param pReNative .
|
---|
10093 | * @param off .
|
---|
10094 | * @param bRmEx The ModRM byte but with bit 3 set to REX.B and
|
---|
10095 | * bit 4 to REX.X. The two bits are part of the
|
---|
10096 | * REG sub-field, which isn't needed in this
|
---|
10097 | * function.
|
---|
10098 | * @param uSibAndRspOffset Two parts:
|
---|
10099 | * - The first 8 bits make up the SIB byte.
|
---|
10100 | * - The next 8 bits are the fixed RSP/ESP offset
|
---|
10101 | * in case of a pop [xSP].
|
---|
10102 | * @param u32Disp The displacement byte/word/dword, if any.
|
---|
10103 | * @param cbInstr The size of the fully decoded instruction. Used
|
---|
10104 | * for RIP relative addressing.
|
---|
10105 | * @param idxVarRet The result variable number.
|
---|
10106 | * @param f64Bit Whether to use a 64-bit or 32-bit address size
|
---|
10107 | * when calculating the address.
|
---|
10108 | *
|
---|
10109 | * @see iemOpHlpCalcRmEffAddrThreadedAddr64
|
---|
10110 | */
|
---|
10111 | DECL_INLINE_THROW(uint32_t)
|
---|
10112 | iemNativeEmitCalcRmEffAddrThreadedAddr64(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t bRmEx, uint32_t uSibAndRspOffset,
|
---|
10113 | uint32_t u32Disp, uint8_t cbInstr, uint8_t idxVarRet, bool f64Bit)
|
---|
10114 | {
|
---|
10115 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVarRet);
|
---|
10116 |
|
---|
10117 | /*
|
---|
10118 | * Special case the rip + disp32 form first.
|
---|
10119 | */
|
---|
10120 | if ((bRmEx & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
|
---|
10121 | {
|
---|
10122 | uint8_t const idxRegRet = iemNativeVarRegisterAcquire(pReNative, idxVarRet, &off);
|
---|
10123 | uint8_t const idxRegPc = iemNativeRegAllocTmpForGuestReg(pReNative, &off, kIemNativeGstReg_Pc,
|
---|
10124 | kIemNativeGstRegUse_ReadOnly);
|
---|
10125 | #ifdef RT_ARCH_AMD64
|
---|
10126 | if (f64Bit)
|
---|
10127 | {
|
---|
10128 | int64_t const offFinalDisp = (int64_t)(int32_t)u32Disp + cbInstr;
|
---|
10129 | if ((int32_t)offFinalDisp == offFinalDisp)
|
---|
10130 | off = iemNativeEmitLoadGprFromGprWithAddendMaybeZero(pReNative, off, idxRegRet, idxRegPc, (int32_t)offFinalDisp);
|
---|
10131 | else
|
---|
10132 | {
|
---|
10133 | off = iemNativeEmitLoadGprFromGprWithAddend(pReNative, off, idxRegRet, idxRegPc, (int32_t)u32Disp);
|
---|
10134 | off = iemNativeEmitAddGprImm8(pReNative, off, idxRegRet, cbInstr);
|
---|
10135 | }
|
---|
10136 | }
|
---|
10137 | else
|
---|
10138 | off = iemNativeEmitLoadGprFromGpr32WithAddendMaybeZero(pReNative, off, idxRegRet, idxRegPc, (int32_t)u32Disp + cbInstr);
|
---|
10139 |
|
---|
10140 | #elif defined(RT_ARCH_ARM64)
|
---|
10141 | if (f64Bit)
|
---|
10142 | off = iemNativeEmitLoadGprFromGprWithAddendMaybeZero(pReNative, off, idxRegRet, idxRegPc,
|
---|
10143 | (int64_t)(int32_t)u32Disp + cbInstr);
|
---|
10144 | else
|
---|
10145 | off = iemNativeEmitLoadGprFromGpr32WithAddendMaybeZero(pReNative, off, idxRegRet, idxRegPc,
|
---|
10146 | (int32_t)u32Disp + cbInstr);
|
---|
10147 |
|
---|
10148 | #else
|
---|
10149 | # error "Port me!"
|
---|
10150 | #endif
|
---|
10151 | iemNativeRegFreeTmp(pReNative, idxRegPc);
|
---|
10152 | iemNativeVarRegisterRelease(pReNative, idxVarRet);
|
---|
10153 | return off;
|
---|
10154 | }
|
---|
10155 |
|
---|
10156 | /* Calculate the fixed displacement (more down in SIB.B=4 and SIB.B=5 on this). */
|
---|
10157 | int64_t i64EffAddr = 0;
|
---|
10158 | switch ((bRmEx >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
|
---|
10159 | {
|
---|
10160 | case 0: break;
|
---|
10161 | case 1: i64EffAddr = (int8_t)u32Disp; break;
|
---|
10162 | case 2: i64EffAddr = (int32_t)u32Disp; break;
|
---|
10163 | default: AssertFailed();
|
---|
10164 | }
|
---|
10165 |
|
---|
10166 | /* Get the register (or SIB) value. */
|
---|
10167 | uint8_t idxGstRegBase = UINT8_MAX;
|
---|
10168 | uint8_t idxGstRegIndex = UINT8_MAX;
|
---|
10169 | uint8_t cShiftIndex = 0;
|
---|
10170 | if ((bRmEx & X86_MODRM_RM_MASK) != 4)
|
---|
10171 | idxGstRegBase = bRmEx & (X86_MODRM_RM_MASK | 0x8); /* bRmEx[bit 3] = REX.B */
|
---|
10172 | else /* SIB: */
|
---|
10173 | {
|
---|
10174 | /* index /w scaling . */
|
---|
10175 | cShiftIndex = (uSibAndRspOffset >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
|
---|
10176 | idxGstRegIndex = ((uSibAndRspOffset >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK)
|
---|
10177 | | ((bRmEx & 0x10) >> 1); /* bRmEx[bit 4] = REX.X */
|
---|
10178 | if (idxGstRegIndex == 4)
|
---|
10179 | {
|
---|
10180 | /* no index */
|
---|
10181 | cShiftIndex = 0;
|
---|
10182 | idxGstRegIndex = UINT8_MAX;
|
---|
10183 | }
|
---|
10184 |
|
---|
10185 | /* base */
|
---|
10186 | idxGstRegBase = (uSibAndRspOffset & X86_SIB_BASE_MASK) | (bRmEx & 0x8); /* bRmEx[bit 3] = REX.B */
|
---|
10187 | if (idxGstRegBase == 4)
|
---|
10188 | {
|
---|
10189 | /* pop [rsp] hack */
|
---|
10190 | i64EffAddr += uSibAndRspOffset >> 8; /* (this is why i64EffAddr must be 64-bit) */
|
---|
10191 | }
|
---|
10192 | else if ( (idxGstRegBase & X86_SIB_BASE_MASK) == 5
|
---|
10193 | && (bRmEx & X86_MODRM_MOD_MASK) == 0)
|
---|
10194 | {
|
---|
10195 | /* mod=0 and base=5 -> disp32, no base reg. */
|
---|
10196 | Assert(i64EffAddr == 0);
|
---|
10197 | i64EffAddr = (int32_t)u32Disp;
|
---|
10198 | idxGstRegBase = UINT8_MAX;
|
---|
10199 | }
|
---|
10200 | }
|
---|
10201 |
|
---|
10202 | /*
|
---|
10203 | * If no registers are involved (SIB.B=5, SIB.X=4) repeat what we did at
|
---|
10204 | * the start of the function.
|
---|
10205 | */
|
---|
10206 | if (idxGstRegBase == UINT8_MAX && idxGstRegIndex == UINT8_MAX)
|
---|
10207 | {
|
---|
10208 | if (f64Bit)
|
---|
10209 | iemNativeVarSetKindToConst(pReNative, idxVarRet, (uint64_t)i64EffAddr);
|
---|
10210 | else
|
---|
10211 | iemNativeVarSetKindToConst(pReNative, idxVarRet, (uint32_t)i64EffAddr);
|
---|
10212 | return off;
|
---|
10213 | }
|
---|
10214 |
|
---|
10215 | /*
|
---|
10216 | * Now emit code that calculates:
|
---|
10217 | * idxRegRet = (uint64_t)(i64EffAddr [+ idxGstRegBase] [+ (idxGstRegIndex << cShiftIndex)])
|
---|
10218 | * or if !f64Bit:
|
---|
10219 | * idxRegRet = (uint32_t)(i64EffAddr [+ idxGstRegBase] [+ (idxGstRegIndex << cShiftIndex)])
|
---|
10220 | */
|
---|
10221 | uint8_t const idxRegRet = iemNativeVarRegisterAcquire(pReNative, idxVarRet, &off);
|
---|
10222 | uint8_t idxRegBase = idxGstRegBase == UINT8_MAX ? UINT8_MAX
|
---|
10223 | : iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(idxGstRegBase),
|
---|
10224 | kIemNativeGstRegUse_ReadOnly);
|
---|
10225 | uint8_t idxRegIndex = idxGstRegIndex == UINT8_MAX ? UINT8_MAX
|
---|
10226 | : iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(idxGstRegIndex),
|
---|
10227 | kIemNativeGstRegUse_ReadOnly);
|
---|
10228 |
|
---|
10229 | /* If base is not given and there is no shifting, swap the registers to avoid code duplication. */
|
---|
10230 | if (idxRegBase == UINT8_MAX && cShiftIndex == 0)
|
---|
10231 | {
|
---|
10232 | idxRegBase = idxRegIndex;
|
---|
10233 | idxRegIndex = UINT8_MAX;
|
---|
10234 | }
|
---|
10235 |
|
---|
10236 | #ifdef RT_ARCH_AMD64
|
---|
10237 | uint8_t bFinalAdj;
|
---|
10238 | if (!f64Bit || (int32_t)i64EffAddr == i64EffAddr)
|
---|
10239 | bFinalAdj = 0; /* likely */
|
---|
10240 | else
|
---|
10241 | {
|
---|
10242 | /* pop [rsp] with a problematic disp32 value. Split out the
|
---|
10243 | RSP offset and add it separately afterwards (bFinalAdj). */
|
---|
10244 | /** @todo testcase: pop [rsp] with problematic disp32 (mod4). */
|
---|
10245 | Assert(idxGstRegBase == X86_GREG_xSP);
|
---|
10246 | Assert(((bRmEx >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK) == X86_MOD_MEM4);
|
---|
10247 | bFinalAdj = (uint8_t)(uSibAndRspOffset >> 8);
|
---|
10248 | Assert(bFinalAdj != 0);
|
---|
10249 | i64EffAddr -= bFinalAdj;
|
---|
10250 | Assert((int32_t)i64EffAddr == i64EffAddr);
|
---|
10251 | }
|
---|
10252 | uint32_t const u32EffAddr = (uint32_t)i64EffAddr;
|
---|
10253 | //pReNative->pInstrBuf[off++] = 0xcc;
|
---|
10254 |
|
---|
10255 | if (idxRegIndex == UINT8_MAX)
|
---|
10256 | {
|
---|
10257 | if (u32EffAddr == 0)
|
---|
10258 | {
|
---|
10259 | /* mov ret, base */
|
---|
10260 | if (f64Bit)
|
---|
10261 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, idxRegRet, idxRegBase);
|
---|
10262 | else
|
---|
10263 | off = iemNativeEmitLoadGprFromGpr32(pReNative, off, idxRegRet, idxRegBase);
|
---|
10264 | }
|
---|
10265 | else
|
---|
10266 | {
|
---|
10267 | /* lea ret, [base + disp32] */
|
---|
10268 | Assert(idxRegBase != X86_GREG_xSP /*SIB*/);
|
---|
10269 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 8);
|
---|
10270 | if (f64Bit || idxRegRet >= 8 || idxRegBase >= 8)
|
---|
10271 | pbCodeBuf[off++] = (idxRegRet >= 8 ? X86_OP_REX_R : 0)
|
---|
10272 | | (idxRegBase >= 8 ? X86_OP_REX_B : 0)
|
---|
10273 | | (f64Bit ? X86_OP_REX_W : 0);
|
---|
10274 | pbCodeBuf[off++] = 0x8d;
|
---|
10275 | uint8_t const bMod = (int8_t)u32EffAddr == (int32_t)u32EffAddr ? X86_MOD_MEM1 : X86_MOD_MEM4;
|
---|
10276 | if (idxRegBase != X86_GREG_x12 /*SIB*/)
|
---|
10277 | pbCodeBuf[off++] = X86_MODRM_MAKE(bMod, idxRegRet & 7, idxRegBase & 7);
|
---|
10278 | else
|
---|
10279 | {
|
---|
10280 | pbCodeBuf[off++] = X86_MODRM_MAKE(bMod, idxRegRet & 7, 4 /*SIB*/);
|
---|
10281 | pbCodeBuf[off++] = X86_SIB_MAKE(X86_GREG_x12 & 7, 4 /*no index*/, 0);
|
---|
10282 | }
|
---|
10283 | pbCodeBuf[off++] = RT_BYTE1(u32EffAddr);
|
---|
10284 | if (bMod == X86_MOD_MEM4)
|
---|
10285 | {
|
---|
10286 | pbCodeBuf[off++] = RT_BYTE2(u32EffAddr);
|
---|
10287 | pbCodeBuf[off++] = RT_BYTE3(u32EffAddr);
|
---|
10288 | pbCodeBuf[off++] = RT_BYTE4(u32EffAddr);
|
---|
10289 | }
|
---|
10290 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
10291 | }
|
---|
10292 | }
|
---|
10293 | else
|
---|
10294 | {
|
---|
10295 | Assert(idxRegIndex != X86_GREG_xSP /*no-index*/);
|
---|
10296 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 8);
|
---|
10297 | if (idxRegBase == UINT8_MAX)
|
---|
10298 | {
|
---|
10299 | /* lea ret, [(index64 << cShiftIndex) + disp32] */
|
---|
10300 | if (f64Bit || idxRegRet >= 8 || idxRegIndex >= 8)
|
---|
10301 | pbCodeBuf[off++] = (idxRegRet >= 8 ? X86_OP_REX_R : 0)
|
---|
10302 | | (idxRegIndex >= 8 ? X86_OP_REX_X : 0)
|
---|
10303 | | (f64Bit ? X86_OP_REX_W : 0);
|
---|
10304 | pbCodeBuf[off++] = 0x8d;
|
---|
10305 | pbCodeBuf[off++] = X86_MODRM_MAKE(X86_MOD_MEM0, idxRegRet & 7, 4 /*SIB*/);
|
---|
10306 | pbCodeBuf[off++] = X86_SIB_MAKE(5 /*nobase/bp*/, idxRegIndex & 7, cShiftIndex);
|
---|
10307 | pbCodeBuf[off++] = RT_BYTE1(u32EffAddr);
|
---|
10308 | pbCodeBuf[off++] = RT_BYTE2(u32EffAddr);
|
---|
10309 | pbCodeBuf[off++] = RT_BYTE3(u32EffAddr);
|
---|
10310 | pbCodeBuf[off++] = RT_BYTE4(u32EffAddr);
|
---|
10311 | }
|
---|
10312 | else
|
---|
10313 | {
|
---|
10314 | /* lea ret, [(index64 << cShiftIndex) + base64 (+ disp32)] */
|
---|
10315 | if (f64Bit || idxRegRet >= 8 || idxRegBase >= 8 || idxRegIndex >= 8)
|
---|
10316 | pbCodeBuf[off++] = (idxRegRet >= 8 ? X86_OP_REX_R : 0)
|
---|
10317 | | (idxRegBase >= 8 ? X86_OP_REX_B : 0)
|
---|
10318 | | (idxRegIndex >= 8 ? X86_OP_REX_X : 0)
|
---|
10319 | | (f64Bit ? X86_OP_REX_W : 0);
|
---|
10320 | pbCodeBuf[off++] = 0x8d;
|
---|
10321 | uint8_t const bMod = u32EffAddr == 0 && (idxRegBase & 7) != X86_GREG_xBP ? X86_MOD_MEM0
|
---|
10322 | : (int8_t)u32EffAddr == (int32_t)u32EffAddr ? X86_MOD_MEM1 : X86_MOD_MEM4;
|
---|
10323 | pbCodeBuf[off++] = X86_MODRM_MAKE(bMod, idxRegRet & 7, 4 /*SIB*/);
|
---|
10324 | pbCodeBuf[off++] = X86_SIB_MAKE(idxRegBase & 7, idxRegIndex & 7, cShiftIndex);
|
---|
10325 | if (bMod != X86_MOD_MEM0)
|
---|
10326 | {
|
---|
10327 | pbCodeBuf[off++] = RT_BYTE1(u32EffAddr);
|
---|
10328 | if (bMod == X86_MOD_MEM4)
|
---|
10329 | {
|
---|
10330 | pbCodeBuf[off++] = RT_BYTE2(u32EffAddr);
|
---|
10331 | pbCodeBuf[off++] = RT_BYTE3(u32EffAddr);
|
---|
10332 | pbCodeBuf[off++] = RT_BYTE4(u32EffAddr);
|
---|
10333 | }
|
---|
10334 | }
|
---|
10335 | }
|
---|
10336 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
10337 | }
|
---|
10338 |
|
---|
10339 | if (!bFinalAdj)
|
---|
10340 | { /* likely */ }
|
---|
10341 | else
|
---|
10342 | {
|
---|
10343 | Assert(f64Bit);
|
---|
10344 | off = iemNativeEmitAddGprImm8(pReNative, off, idxRegRet, bFinalAdj);
|
---|
10345 | }
|
---|
10346 |
|
---|
10347 | #elif defined(RT_ARCH_ARM64)
|
---|
10348 | if (i64EffAddr == 0)
|
---|
10349 | {
|
---|
10350 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
10351 | if (idxRegIndex == UINT8_MAX)
|
---|
10352 | pu32CodeBuf[off++] = Armv8A64MkInstrMov(idxRegRet, idxRegBase, f64Bit);
|
---|
10353 | else if (idxRegBase != UINT8_MAX)
|
---|
10354 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubReg(false /*fSub*/, idxRegRet, idxRegBase, idxRegIndex,
|
---|
10355 | f64Bit, false /*fSetFlags*/, cShiftIndex);
|
---|
10356 | else
|
---|
10357 | {
|
---|
10358 | Assert(cShiftIndex != 0); /* See base = index swap above when shift is 0 and we have no base reg. */
|
---|
10359 | pu32CodeBuf[off++] = Armv8A64MkInstrLslImm(idxRegRet, idxRegIndex, cShiftIndex, f64Bit);
|
---|
10360 | }
|
---|
10361 | }
|
---|
10362 | else
|
---|
10363 | {
|
---|
10364 | if (f64Bit)
|
---|
10365 | { /* likely */ }
|
---|
10366 | else
|
---|
10367 | i64EffAddr = (int32_t)i64EffAddr;
|
---|
10368 |
|
---|
10369 | if (i64EffAddr < 4096 && i64EffAddr >= 0 && idxRegBase != UINT8_MAX)
|
---|
10370 | {
|
---|
10371 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
10372 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(false /*fSub*/, idxRegRet, idxRegBase, i64EffAddr, f64Bit);
|
---|
10373 | }
|
---|
10374 | else if (i64EffAddr > -4096 && i64EffAddr < 0 && idxRegBase != UINT8_MAX)
|
---|
10375 | {
|
---|
10376 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
10377 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubUImm12(true /*fSub*/, idxRegRet, idxRegBase, (uint32_t)-i64EffAddr, f64Bit);
|
---|
10378 | }
|
---|
10379 | else
|
---|
10380 | {
|
---|
10381 | if (f64Bit)
|
---|
10382 | off = iemNativeEmitLoadGprImm64(pReNative, off, idxRegRet, i64EffAddr);
|
---|
10383 | else
|
---|
10384 | off = iemNativeEmitLoadGprImm64(pReNative, off, idxRegRet, (uint32_t)i64EffAddr);
|
---|
10385 | if (idxRegBase != UINT8_MAX)
|
---|
10386 | {
|
---|
10387 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
10388 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubReg(false /*fSub*/, idxRegRet, idxRegRet, idxRegBase, f64Bit);
|
---|
10389 | }
|
---|
10390 | }
|
---|
10391 | if (idxRegIndex != UINT8_MAX)
|
---|
10392 | {
|
---|
10393 | uint32_t * const pu32CodeBuf = iemNativeInstrBufEnsure(pReNative, off, 1);
|
---|
10394 | pu32CodeBuf[off++] = Armv8A64MkInstrAddSubReg(false /*fSub*/, idxRegRet, idxRegRet, idxRegIndex,
|
---|
10395 | f64Bit, false /*fSetFlags*/, cShiftIndex);
|
---|
10396 | }
|
---|
10397 | }
|
---|
10398 |
|
---|
10399 | #else
|
---|
10400 | # error "port me"
|
---|
10401 | #endif
|
---|
10402 |
|
---|
10403 | if (idxRegIndex != UINT8_MAX)
|
---|
10404 | iemNativeRegFreeTmp(pReNative, idxRegIndex);
|
---|
10405 | if (idxRegBase != UINT8_MAX)
|
---|
10406 | iemNativeRegFreeTmp(pReNative, idxRegBase);
|
---|
10407 | iemNativeVarRegisterRelease(pReNative, idxVarRet);
|
---|
10408 | return off;
|
---|
10409 | }
|
---|
10410 |
|
---|
10411 |
|
---|
10412 | /*********************************************************************************************************************************
|
---|
10413 | * TLB Lookup. *
|
---|
10414 | *********************************************************************************************************************************/
|
---|
10415 |
|
---|
10416 | /**
|
---|
10417 | * This is called via iemNativeHlpAsmSafeWrapCheckTlbLookup.
|
---|
10418 | */
|
---|
10419 | DECLASM(void) iemNativeHlpCheckTlbLookup(PVMCPU pVCpu, uintptr_t uResult, uint64_t GCPtr, uint32_t uSegAndSizeAndAccess)
|
---|
10420 | {
|
---|
10421 | uint8_t const iSegReg = RT_BYTE1(uSegAndSizeAndAccess);
|
---|
10422 | uint8_t const cbMem = RT_BYTE2(uSegAndSizeAndAccess);
|
---|
10423 | uint32_t const fAccess = uSegAndSizeAndAccess >> 16;
|
---|
10424 | Log(("iemNativeHlpCheckTlbLookup: %x:%#RX64 LB %#x fAccess=%#x -> %#RX64\n", iSegReg, GCPtr, cbMem, fAccess, uResult));
|
---|
10425 |
|
---|
10426 | /* Do the lookup manually. */
|
---|
10427 | RTGCPTR const GCPtrFlat = iSegReg == UINT8_MAX ? GCPtr : GCPtr + pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
|
---|
10428 | uint64_t const uTag = IEMTLB_CALC_TAG( &pVCpu->iem.s.DataTlb, GCPtrFlat);
|
---|
10429 | PIEMTLBENTRY const pTlbe = IEMTLB_TAG_TO_ENTRY(&pVCpu->iem.s.DataTlb, uTag);
|
---|
10430 | if (RT_LIKELY(pTlbe->uTag == uTag))
|
---|
10431 | {
|
---|
10432 | /*
|
---|
10433 | * Check TLB page table level access flags.
|
---|
10434 | */
|
---|
10435 | AssertCompile(IEMTLBE_F_PT_NO_USER == 4);
|
---|
10436 | uint64_t const fNoUser = (IEM_GET_CPL(pVCpu) + 1) & IEMTLBE_F_PT_NO_USER;
|
---|
10437 | uint64_t const fNoWriteNoDirty = !(fAccess & IEM_ACCESS_TYPE_WRITE) ? 0
|
---|
10438 | : IEMTLBE_F_PT_NO_WRITE | IEMTLBE_F_PT_NO_DIRTY | IEMTLBE_F_PG_NO_WRITE;
|
---|
10439 | uint64_t const fFlagsAndPhysRev = pTlbe->fFlagsAndPhysRev & ( IEMTLBE_F_PHYS_REV | IEMTLBE_F_NO_MAPPINGR3
|
---|
10440 | | IEMTLBE_F_PG_UNASSIGNED
|
---|
10441 | | IEMTLBE_F_PT_NO_ACCESSED
|
---|
10442 | | fNoWriteNoDirty | fNoUser);
|
---|
10443 | uint64_t const uTlbPhysRev = pVCpu->iem.s.DataTlb.uTlbPhysRev;
|
---|
10444 | if (RT_LIKELY(fFlagsAndPhysRev == uTlbPhysRev))
|
---|
10445 | {
|
---|
10446 | /*
|
---|
10447 | * Return the address.
|
---|
10448 | */
|
---|
10449 | uint8_t const * const pbAddr = &pTlbe->pbMappingR3[GCPtrFlat & GUEST_PAGE_OFFSET_MASK];
|
---|
10450 | if ((uintptr_t)pbAddr == uResult)
|
---|
10451 | return;
|
---|
10452 | RT_NOREF(cbMem);
|
---|
10453 | AssertFailed();
|
---|
10454 | }
|
---|
10455 | else
|
---|
10456 | AssertMsgFailed(("fFlagsAndPhysRev=%#RX64 vs uTlbPhysRev=%#RX64: %#RX64\n",
|
---|
10457 | fFlagsAndPhysRev, uTlbPhysRev, fFlagsAndPhysRev ^ uTlbPhysRev));
|
---|
10458 | }
|
---|
10459 | else
|
---|
10460 | AssertFailed();
|
---|
10461 | RT_BREAKPOINT();
|
---|
10462 | }
|
---|
10463 |
|
---|
10464 | /* The rest of the code is in IEMN8veRecompilerTlbLookup.h. */
|
---|
10465 |
|
---|
10466 |
|
---|
10467 | /*********************************************************************************************************************************
|
---|
10468 | * Memory fetches and stores common *
|
---|
10469 | *********************************************************************************************************************************/
|
---|
10470 |
|
---|
10471 | typedef enum IEMNATIVEMITMEMOP
|
---|
10472 | {
|
---|
10473 | kIemNativeEmitMemOp_Store = 0,
|
---|
10474 | kIemNativeEmitMemOp_Fetch,
|
---|
10475 | kIemNativeEmitMemOp_Fetch_Zx_U16,
|
---|
10476 | kIemNativeEmitMemOp_Fetch_Zx_U32,
|
---|
10477 | kIemNativeEmitMemOp_Fetch_Zx_U64,
|
---|
10478 | kIemNativeEmitMemOp_Fetch_Sx_U16,
|
---|
10479 | kIemNativeEmitMemOp_Fetch_Sx_U32,
|
---|
10480 | kIemNativeEmitMemOp_Fetch_Sx_U64
|
---|
10481 | } IEMNATIVEMITMEMOP;
|
---|
10482 |
|
---|
10483 | /** Emits code for IEM_MC_FETCH_MEM_U8/16/32/64 and IEM_MC_STORE_MEM_U8/16/32/64,
|
---|
10484 | * and IEM_MC_FETCH_MEM_FLAT_U8/16/32/64 and IEM_MC_STORE_MEM_FLAT_U8/16/32/64
|
---|
10485 | * (with iSegReg = UINT8_MAX). */
|
---|
10486 | DECL_INLINE_THROW(uint32_t)
|
---|
10487 | iemNativeEmitMemFetchStoreDataCommon(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVarValue, uint8_t iSegReg,
|
---|
10488 | uint8_t idxVarGCPtrMem, uint8_t cbMem, uint8_t fAlignMask, IEMNATIVEMITMEMOP enmOp,
|
---|
10489 | uintptr_t pfnFunction, uint8_t idxInstr, uint8_t offDisp = 0)
|
---|
10490 | {
|
---|
10491 | /*
|
---|
10492 | * Assert sanity.
|
---|
10493 | */
|
---|
10494 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVarValue);
|
---|
10495 | Assert( enmOp != kIemNativeEmitMemOp_Store
|
---|
10496 | || pReNative->Core.aVars[idxVarValue].enmKind == kIemNativeVarKind_Immediate
|
---|
10497 | || pReNative->Core.aVars[idxVarValue].enmKind == kIemNativeVarKind_Stack);
|
---|
10498 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVarGCPtrMem);
|
---|
10499 | AssertStmt( pReNative->Core.aVars[idxVarGCPtrMem].enmKind == kIemNativeVarKind_Immediate
|
---|
10500 | || pReNative->Core.aVars[idxVarGCPtrMem].enmKind == kIemNativeVarKind_Stack,
|
---|
10501 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_UNEXPECTED_KIND));
|
---|
10502 | Assert(iSegReg < 6 || iSegReg == UINT8_MAX);
|
---|
10503 | Assert(cbMem == 1 || cbMem == 2 || cbMem == 4 || cbMem == 8);
|
---|
10504 | AssertCompile(IEMNATIVE_CALL_ARG_GREG_COUNT >= 4);
|
---|
10505 | #ifdef VBOX_STRICT
|
---|
10506 | if (iSegReg == UINT8_MAX)
|
---|
10507 | {
|
---|
10508 | Assert( (pReNative->fExec & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT
|
---|
10509 | || (pReNative->fExec & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_PROT_FLAT
|
---|
10510 | || (pReNative->fExec & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_FLAT);
|
---|
10511 | switch (cbMem)
|
---|
10512 | {
|
---|
10513 | case 1:
|
---|
10514 | Assert( pfnFunction
|
---|
10515 | == ( enmOp == kIemNativeEmitMemOp_Store ? (uintptr_t)iemNativeHlpMemFlatStoreDataU8
|
---|
10516 | : enmOp == kIemNativeEmitMemOp_Fetch ? (uintptr_t)iemNativeHlpMemFlatFetchDataU8
|
---|
10517 | : enmOp == kIemNativeEmitMemOp_Fetch_Zx_U16 ? (uintptr_t)iemNativeHlpMemFlatFetchDataU8
|
---|
10518 | : enmOp == kIemNativeEmitMemOp_Fetch_Zx_U32 ? (uintptr_t)iemNativeHlpMemFlatFetchDataU8
|
---|
10519 | : enmOp == kIemNativeEmitMemOp_Fetch_Zx_U64 ? (uintptr_t)iemNativeHlpMemFlatFetchDataU8
|
---|
10520 | : enmOp == kIemNativeEmitMemOp_Fetch_Sx_U16 ? (uintptr_t)iemNativeHlpMemFlatFetchDataU8_Sx_U16
|
---|
10521 | : enmOp == kIemNativeEmitMemOp_Fetch_Sx_U32 ? (uintptr_t)iemNativeHlpMemFlatFetchDataU8_Sx_U32
|
---|
10522 | : enmOp == kIemNativeEmitMemOp_Fetch_Sx_U64 ? (uintptr_t)iemNativeHlpMemFlatFetchDataU8_Sx_U64
|
---|
10523 | : UINT64_C(0xc000b000a0009000) ));
|
---|
10524 | break;
|
---|
10525 | case 2:
|
---|
10526 | Assert( pfnFunction
|
---|
10527 | == ( enmOp == kIemNativeEmitMemOp_Store ? (uintptr_t)iemNativeHlpMemFlatStoreDataU16
|
---|
10528 | : enmOp == kIemNativeEmitMemOp_Fetch ? (uintptr_t)iemNativeHlpMemFlatFetchDataU16
|
---|
10529 | : enmOp == kIemNativeEmitMemOp_Fetch_Zx_U32 ? (uintptr_t)iemNativeHlpMemFlatFetchDataU16
|
---|
10530 | : enmOp == kIemNativeEmitMemOp_Fetch_Zx_U64 ? (uintptr_t)iemNativeHlpMemFlatFetchDataU16
|
---|
10531 | : enmOp == kIemNativeEmitMemOp_Fetch_Sx_U32 ? (uintptr_t)iemNativeHlpMemFlatFetchDataU16_Sx_U32
|
---|
10532 | : enmOp == kIemNativeEmitMemOp_Fetch_Sx_U64 ? (uintptr_t)iemNativeHlpMemFlatFetchDataU16_Sx_U64
|
---|
10533 | : UINT64_C(0xc000b000a0009000) ));
|
---|
10534 | break;
|
---|
10535 | case 4:
|
---|
10536 | Assert( pfnFunction
|
---|
10537 | == ( enmOp == kIemNativeEmitMemOp_Store ? (uintptr_t)iemNativeHlpMemFlatStoreDataU32
|
---|
10538 | : enmOp == kIemNativeEmitMemOp_Fetch ? (uintptr_t)iemNativeHlpMemFlatFetchDataU32
|
---|
10539 | : enmOp == kIemNativeEmitMemOp_Fetch_Zx_U64 ? (uintptr_t)iemNativeHlpMemFlatFetchDataU32
|
---|
10540 | : enmOp == kIemNativeEmitMemOp_Fetch_Sx_U64 ? (uintptr_t)iemNativeHlpMemFlatFetchDataU32_Sx_U64
|
---|
10541 | : UINT64_C(0xc000b000a0009000) ));
|
---|
10542 | break;
|
---|
10543 | case 8:
|
---|
10544 | Assert( pfnFunction
|
---|
10545 | == ( enmOp == kIemNativeEmitMemOp_Store ? (uintptr_t)iemNativeHlpMemFlatStoreDataU64
|
---|
10546 | : enmOp == kIemNativeEmitMemOp_Fetch ? (uintptr_t)iemNativeHlpMemFlatFetchDataU64
|
---|
10547 | : UINT64_C(0xc000b000a0009000) ));
|
---|
10548 | break;
|
---|
10549 | }
|
---|
10550 | }
|
---|
10551 | else
|
---|
10552 | {
|
---|
10553 | Assert(iSegReg < 6);
|
---|
10554 | switch (cbMem)
|
---|
10555 | {
|
---|
10556 | case 1:
|
---|
10557 | Assert( pfnFunction
|
---|
10558 | == ( enmOp == kIemNativeEmitMemOp_Store ? (uintptr_t)iemNativeHlpMemStoreDataU8
|
---|
10559 | : enmOp == kIemNativeEmitMemOp_Fetch ? (uintptr_t)iemNativeHlpMemFetchDataU8
|
---|
10560 | : enmOp == kIemNativeEmitMemOp_Fetch_Zx_U16 ? (uintptr_t)iemNativeHlpMemFetchDataU8
|
---|
10561 | : enmOp == kIemNativeEmitMemOp_Fetch_Zx_U32 ? (uintptr_t)iemNativeHlpMemFetchDataU8
|
---|
10562 | : enmOp == kIemNativeEmitMemOp_Fetch_Zx_U64 ? (uintptr_t)iemNativeHlpMemFetchDataU8
|
---|
10563 | : enmOp == kIemNativeEmitMemOp_Fetch_Sx_U16 ? (uintptr_t)iemNativeHlpMemFetchDataU8_Sx_U16
|
---|
10564 | : enmOp == kIemNativeEmitMemOp_Fetch_Sx_U32 ? (uintptr_t)iemNativeHlpMemFetchDataU8_Sx_U32
|
---|
10565 | : enmOp == kIemNativeEmitMemOp_Fetch_Sx_U64 ? (uintptr_t)iemNativeHlpMemFetchDataU8_Sx_U64
|
---|
10566 | : UINT64_C(0xc000b000a0009000) ));
|
---|
10567 | break;
|
---|
10568 | case 2:
|
---|
10569 | Assert( pfnFunction
|
---|
10570 | == ( enmOp == kIemNativeEmitMemOp_Store ? (uintptr_t)iemNativeHlpMemStoreDataU16
|
---|
10571 | : enmOp == kIemNativeEmitMemOp_Fetch ? (uintptr_t)iemNativeHlpMemFetchDataU16
|
---|
10572 | : enmOp == kIemNativeEmitMemOp_Fetch_Zx_U32 ? (uintptr_t)iemNativeHlpMemFetchDataU16
|
---|
10573 | : enmOp == kIemNativeEmitMemOp_Fetch_Zx_U64 ? (uintptr_t)iemNativeHlpMemFetchDataU16
|
---|
10574 | : enmOp == kIemNativeEmitMemOp_Fetch_Sx_U32 ? (uintptr_t)iemNativeHlpMemFetchDataU16_Sx_U32
|
---|
10575 | : enmOp == kIemNativeEmitMemOp_Fetch_Sx_U64 ? (uintptr_t)iemNativeHlpMemFetchDataU16_Sx_U64
|
---|
10576 | : UINT64_C(0xc000b000a0009000) ));
|
---|
10577 | break;
|
---|
10578 | case 4:
|
---|
10579 | Assert( pfnFunction
|
---|
10580 | == ( enmOp == kIemNativeEmitMemOp_Store ? (uintptr_t)iemNativeHlpMemStoreDataU32
|
---|
10581 | : enmOp == kIemNativeEmitMemOp_Fetch ? (uintptr_t)iemNativeHlpMemFetchDataU32
|
---|
10582 | : enmOp == kIemNativeEmitMemOp_Fetch_Zx_U64 ? (uintptr_t)iemNativeHlpMemFetchDataU32
|
---|
10583 | : enmOp == kIemNativeEmitMemOp_Fetch_Sx_U64 ? (uintptr_t)iemNativeHlpMemFetchDataU32_Sx_U64
|
---|
10584 | : UINT64_C(0xc000b000a0009000) ));
|
---|
10585 | break;
|
---|
10586 | case 8:
|
---|
10587 | Assert( pfnFunction
|
---|
10588 | == ( enmOp == kIemNativeEmitMemOp_Store ? (uintptr_t)iemNativeHlpMemStoreDataU64
|
---|
10589 | : enmOp == kIemNativeEmitMemOp_Fetch ? (uintptr_t)iemNativeHlpMemFetchDataU64
|
---|
10590 | : UINT64_C(0xc000b000a0009000) ));
|
---|
10591 | break;
|
---|
10592 | }
|
---|
10593 | }
|
---|
10594 | #endif
|
---|
10595 |
|
---|
10596 | #ifdef VBOX_STRICT
|
---|
10597 | /*
|
---|
10598 | * Check that the fExec flags we've got make sense.
|
---|
10599 | */
|
---|
10600 | off = iemNativeEmitExecFlagsCheck(pReNative, off, pReNative->fExec);
|
---|
10601 | #endif
|
---|
10602 |
|
---|
10603 | /*
|
---|
10604 | * To keep things simple we have to commit any pending writes first as we
|
---|
10605 | * may end up making calls.
|
---|
10606 | */
|
---|
10607 | /** @todo we could postpone this till we make the call and reload the
|
---|
10608 | * registers after returning from the call. Not sure if that's sensible or
|
---|
10609 | * not, though. */
|
---|
10610 | off = iemNativeRegFlushPendingWrites(pReNative, off);
|
---|
10611 |
|
---|
10612 | #ifdef IEMNATIVE_WITH_FREE_AND_FLUSH_VOLATILE_REGS_AT_TLB_LOOKUP
|
---|
10613 | /*
|
---|
10614 | * Move/spill/flush stuff out of call-volatile registers.
|
---|
10615 | * This is the easy way out. We could contain this to the tlb-miss branch
|
---|
10616 | * by saving and restoring active stuff here.
|
---|
10617 | */
|
---|
10618 | off = iemNativeRegMoveAndFreeAndFlushAtCall(pReNative, off, 0 /* vacate all non-volatile regs */);
|
---|
10619 | #endif
|
---|
10620 |
|
---|
10621 | /*
|
---|
10622 | * Define labels and allocate the result register (trying for the return
|
---|
10623 | * register if we can).
|
---|
10624 | */
|
---|
10625 | uint16_t const uTlbSeqNo = pReNative->uTlbSeqNo++;
|
---|
10626 | uint8_t const idxRegValueFetch = enmOp == kIemNativeEmitMemOp_Store ? UINT8_MAX
|
---|
10627 | : !(pReNative->Core.bmHstRegs & RT_BIT_32(IEMNATIVE_CALL_RET_GREG))
|
---|
10628 | ? iemNativeVarRegisterSetAndAcquire(pReNative, idxVarValue, IEMNATIVE_CALL_RET_GREG, &off)
|
---|
10629 | : iemNativeVarRegisterAcquire(pReNative, idxVarValue, &off);
|
---|
10630 | IEMNATIVEEMITTLBSTATE const TlbState(pReNative, &off, idxVarGCPtrMem, iSegReg, cbMem, offDisp);
|
---|
10631 | uint8_t const idxRegValueStore = !TlbState.fSkip
|
---|
10632 | && enmOp == kIemNativeEmitMemOp_Store
|
---|
10633 | && pReNative->Core.aVars[idxVarValue].enmKind != kIemNativeVarKind_Immediate
|
---|
10634 | ? iemNativeVarRegisterAcquire(pReNative, idxVarValue, &off)
|
---|
10635 | : UINT8_MAX;
|
---|
10636 | uint32_t const idxRegMemResult = !TlbState.fSkip ? iemNativeRegAllocTmp(pReNative, &off) : UINT8_MAX;
|
---|
10637 | uint32_t const idxLabelTlbLookup = !TlbState.fSkip
|
---|
10638 | ? iemNativeLabelCreate(pReNative, kIemNativeLabelType_TlbLookup, UINT32_MAX, uTlbSeqNo)
|
---|
10639 | : UINT32_MAX;
|
---|
10640 |
|
---|
10641 | /*
|
---|
10642 | * Jump to the TLB lookup code.
|
---|
10643 | */
|
---|
10644 | if (!TlbState.fSkip)
|
---|
10645 | off = iemNativeEmitJmpToLabel(pReNative, off, idxLabelTlbLookup); /** @todo short jump */
|
---|
10646 |
|
---|
10647 | /*
|
---|
10648 | * TlbMiss:
|
---|
10649 | *
|
---|
10650 | * Call helper to do the fetching.
|
---|
10651 | * We flush all guest register shadow copies here.
|
---|
10652 | */
|
---|
10653 | uint32_t const idxLabelTlbMiss = iemNativeLabelCreate(pReNative, kIemNativeLabelType_TlbMiss, off, uTlbSeqNo);
|
---|
10654 |
|
---|
10655 | #ifdef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
10656 | off = iemNativeEmitStoreImmToVCpuU8(pReNative, off, idxInstr, RT_UOFFSETOF(VMCPUCC, iem.s.idxTbCurInstr));
|
---|
10657 | #else
|
---|
10658 | RT_NOREF(idxInstr);
|
---|
10659 | #endif
|
---|
10660 |
|
---|
10661 | #ifndef IEMNATIVE_WITH_FREE_AND_FLUSH_VOLATILE_REGS_AT_TLB_LOOKUP
|
---|
10662 | /* Save variables in volatile registers. */
|
---|
10663 | uint32_t const fHstRegsNotToSave = TlbState.getRegsNotToSave()
|
---|
10664 | | (idxRegMemResult != UINT8_MAX ? RT_BIT_32(idxRegMemResult) : 0)
|
---|
10665 | | (idxRegValueFetch != UINT8_MAX ? RT_BIT_32(idxRegValueFetch) : 0);
|
---|
10666 | off = iemNativeVarSaveVolatileRegsPreHlpCall(pReNative, off, fHstRegsNotToSave);
|
---|
10667 | #endif
|
---|
10668 |
|
---|
10669 | /* IEMNATIVE_CALL_ARG2/3_GREG = uValue (idxVarValue) - if store */
|
---|
10670 | uint32_t fVolGregMask = IEMNATIVE_CALL_VOLATILE_GREG_MASK;
|
---|
10671 | if (enmOp == kIemNativeEmitMemOp_Store)
|
---|
10672 | {
|
---|
10673 | uint8_t const idxRegArgValue = iSegReg == UINT8_MAX ? IEMNATIVE_CALL_ARG2_GREG : IEMNATIVE_CALL_ARG3_GREG;
|
---|
10674 | off = iemNativeEmitLoadArgGregFromImmOrStackVar(pReNative, off, idxRegArgValue, idxVarValue, 0 /*cbAppend*/,
|
---|
10675 | #ifdef IEMNATIVE_WITH_FREE_AND_FLUSH_VOLATILE_REGS_AT_TLB_LOOKUP
|
---|
10676 | IEMNATIVE_CALL_VOLATILE_GREG_MASK);
|
---|
10677 | #else
|
---|
10678 | IEMNATIVE_CALL_VOLATILE_GREG_MASK, true /*fSpilledVarsInvolatileRegs*/);
|
---|
10679 | fVolGregMask &= ~RT_BIT_32(idxRegArgValue);
|
---|
10680 | #endif
|
---|
10681 | }
|
---|
10682 |
|
---|
10683 | /* IEMNATIVE_CALL_ARG1_GREG = GCPtrMem */
|
---|
10684 | off = iemNativeEmitLoadArgGregFromImmOrStackVar(pReNative, off, IEMNATIVE_CALL_ARG1_GREG, idxVarGCPtrMem, offDisp /*cbAppend*/,
|
---|
10685 | #ifdef IEMNATIVE_WITH_FREE_AND_FLUSH_VOLATILE_REGS_AT_TLB_LOOKUP
|
---|
10686 | fVolGregMask);
|
---|
10687 | #else
|
---|
10688 | fVolGregMask, true /*fSpilledVarsInvolatileRegs*/);
|
---|
10689 | #endif
|
---|
10690 |
|
---|
10691 | if (iSegReg != UINT8_MAX)
|
---|
10692 | {
|
---|
10693 | /* IEMNATIVE_CALL_ARG2_GREG = iSegReg */
|
---|
10694 | AssertStmt(iSegReg < 6, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_EMIT_BAD_SEG_REG_NO));
|
---|
10695 | off = iemNativeEmitLoadGpr8Imm(pReNative, off, IEMNATIVE_CALL_ARG2_GREG, iSegReg);
|
---|
10696 | }
|
---|
10697 |
|
---|
10698 | /* IEMNATIVE_CALL_ARG0_GREG = pVCpu */
|
---|
10699 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG0_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
10700 |
|
---|
10701 | /* Done setting up parameters, make the call. */
|
---|
10702 | off = iemNativeEmitCallImm(pReNative, off, pfnFunction);
|
---|
10703 |
|
---|
10704 | /*
|
---|
10705 | * Put the result in the right register if this is a fetch.
|
---|
10706 | */
|
---|
10707 | if (enmOp != kIemNativeEmitMemOp_Store)
|
---|
10708 | {
|
---|
10709 | Assert(idxRegValueFetch == pReNative->Core.aVars[idxVarValue].idxReg);
|
---|
10710 | if (idxRegValueFetch != IEMNATIVE_CALL_RET_GREG)
|
---|
10711 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, idxRegValueFetch, IEMNATIVE_CALL_RET_GREG);
|
---|
10712 | }
|
---|
10713 |
|
---|
10714 | #ifndef IEMNATIVE_WITH_FREE_AND_FLUSH_VOLATILE_REGS_AT_TLB_LOOKUP
|
---|
10715 | /* Restore variables and guest shadow registers to volatile registers. */
|
---|
10716 | off = iemNativeVarRestoreVolatileRegsPostHlpCall(pReNative, off, fHstRegsNotToSave);
|
---|
10717 | off = iemNativeRegRestoreGuestShadowsInVolatileRegs(pReNative, off, TlbState.getActiveRegsWithShadows());
|
---|
10718 | #endif
|
---|
10719 |
|
---|
10720 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP
|
---|
10721 | if (!TlbState.fSkip)
|
---|
10722 | {
|
---|
10723 | /* end of TlbMiss - Jump to the done label. */
|
---|
10724 | uint32_t const idxLabelTlbDone = iemNativeLabelCreate(pReNative, kIemNativeLabelType_TlbDone, UINT32_MAX, uTlbSeqNo);
|
---|
10725 | off = iemNativeEmitJmpToLabel(pReNative, off, idxLabelTlbDone);
|
---|
10726 |
|
---|
10727 | /*
|
---|
10728 | * TlbLookup:
|
---|
10729 | */
|
---|
10730 | off = iemNativeEmitTlbLookup<true>(pReNative, off, &TlbState, iSegReg, cbMem, fAlignMask,
|
---|
10731 | enmOp == kIemNativeEmitMemOp_Store ? IEM_ACCESS_TYPE_WRITE : IEM_ACCESS_TYPE_READ,
|
---|
10732 | idxLabelTlbLookup, idxLabelTlbMiss, idxRegMemResult, offDisp);
|
---|
10733 |
|
---|
10734 | /*
|
---|
10735 | * Emit code to do the actual storing / fetching.
|
---|
10736 | */
|
---|
10737 | PIEMNATIVEINSTR pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 64);
|
---|
10738 | # ifdef VBOX_WITH_STATISTICS
|
---|
10739 | off = iemNativeEmitIncStamCounterInVCpuEx(pCodeBuf, off, TlbState.idxReg1, TlbState.idxReg2,
|
---|
10740 | enmOp == kIemNativeEmitMemOp_Store
|
---|
10741 | ? RT_UOFFSETOF(VMCPUCC, iem.s.StatNativeTlbHitsForFetch)
|
---|
10742 | : RT_UOFFSETOF(VMCPUCC, iem.s.StatNativeTlbHitsForStore));
|
---|
10743 | # endif
|
---|
10744 | switch (enmOp)
|
---|
10745 | {
|
---|
10746 | case kIemNativeEmitMemOp_Store:
|
---|
10747 | if (pReNative->Core.aVars[idxVarValue].enmKind != kIemNativeVarKind_Immediate)
|
---|
10748 | {
|
---|
10749 | switch (cbMem)
|
---|
10750 | {
|
---|
10751 | case 1:
|
---|
10752 | off = iemNativeEmitStoreGpr8ByGprEx(pCodeBuf, off, idxRegValueStore, idxRegMemResult);
|
---|
10753 | break;
|
---|
10754 | case 2:
|
---|
10755 | off = iemNativeEmitStoreGpr16ByGprEx(pCodeBuf, off, idxRegValueStore, idxRegMemResult);
|
---|
10756 | break;
|
---|
10757 | case 4:
|
---|
10758 | off = iemNativeEmitStoreGpr32ByGprEx(pCodeBuf, off, idxRegValueStore, idxRegMemResult);
|
---|
10759 | break;
|
---|
10760 | case 8:
|
---|
10761 | off = iemNativeEmitStoreGpr64ByGprEx(pCodeBuf, off, idxRegValueStore, idxRegMemResult);
|
---|
10762 | break;
|
---|
10763 | default:
|
---|
10764 | AssertFailed();
|
---|
10765 | }
|
---|
10766 | }
|
---|
10767 | else
|
---|
10768 | {
|
---|
10769 | switch (cbMem)
|
---|
10770 | {
|
---|
10771 | case 1:
|
---|
10772 | off = iemNativeEmitStoreImm8ByGprEx(pCodeBuf, off,
|
---|
10773 | (uint8_t)pReNative->Core.aVars[idxVarValue].u.uValue,
|
---|
10774 | idxRegMemResult, TlbState.idxReg1);
|
---|
10775 | break;
|
---|
10776 | case 2:
|
---|
10777 | off = iemNativeEmitStoreImm16ByGprEx(pCodeBuf, off,
|
---|
10778 | (uint16_t)pReNative->Core.aVars[idxVarValue].u.uValue,
|
---|
10779 | idxRegMemResult, TlbState.idxReg1);
|
---|
10780 | break;
|
---|
10781 | case 4:
|
---|
10782 | off = iemNativeEmitStoreImm32ByGprEx(pCodeBuf, off,
|
---|
10783 | (uint32_t)pReNative->Core.aVars[idxVarValue].u.uValue,
|
---|
10784 | idxRegMemResult, TlbState.idxReg1);
|
---|
10785 | break;
|
---|
10786 | case 8:
|
---|
10787 | off = iemNativeEmitStoreImm64ByGprEx(pCodeBuf, off, pReNative->Core.aVars[idxVarValue].u.uValue,
|
---|
10788 | idxRegMemResult, TlbState.idxReg1);
|
---|
10789 | break;
|
---|
10790 | default:
|
---|
10791 | AssertFailed();
|
---|
10792 | }
|
---|
10793 | }
|
---|
10794 | break;
|
---|
10795 |
|
---|
10796 | case kIemNativeEmitMemOp_Fetch:
|
---|
10797 | case kIemNativeEmitMemOp_Fetch_Zx_U16:
|
---|
10798 | case kIemNativeEmitMemOp_Fetch_Zx_U32:
|
---|
10799 | case kIemNativeEmitMemOp_Fetch_Zx_U64:
|
---|
10800 | switch (cbMem)
|
---|
10801 | {
|
---|
10802 | case 1:
|
---|
10803 | off = iemNativeEmitLoadGprByGprU8Ex(pCodeBuf, off, idxRegValueFetch, idxRegMemResult);
|
---|
10804 | break;
|
---|
10805 | case 2:
|
---|
10806 | off = iemNativeEmitLoadGprByGprU16Ex(pCodeBuf, off, idxRegValueFetch, idxRegMemResult);
|
---|
10807 | break;
|
---|
10808 | case 4:
|
---|
10809 | off = iemNativeEmitLoadGprByGprU32Ex(pCodeBuf, off, idxRegValueFetch, idxRegMemResult);
|
---|
10810 | break;
|
---|
10811 | case 8:
|
---|
10812 | off = iemNativeEmitLoadGprByGprU64Ex(pCodeBuf, off, idxRegValueFetch, idxRegMemResult);
|
---|
10813 | break;
|
---|
10814 | default:
|
---|
10815 | AssertFailed();
|
---|
10816 | }
|
---|
10817 | break;
|
---|
10818 |
|
---|
10819 | case kIemNativeEmitMemOp_Fetch_Sx_U16:
|
---|
10820 | Assert(cbMem == 1);
|
---|
10821 | off = iemNativeEmitLoadGprByGprU16SignExtendedFromS8Ex(pCodeBuf, off, idxRegValueFetch, idxRegMemResult);
|
---|
10822 | break;
|
---|
10823 |
|
---|
10824 | case kIemNativeEmitMemOp_Fetch_Sx_U32:
|
---|
10825 | Assert(cbMem == 1 || cbMem == 2);
|
---|
10826 | if (cbMem == 1)
|
---|
10827 | off = iemNativeEmitLoadGprByGprU32SignExtendedFromS8Ex(pCodeBuf, off, idxRegValueFetch, idxRegMemResult);
|
---|
10828 | else
|
---|
10829 | off = iemNativeEmitLoadGprByGprU32SignExtendedFromS16Ex(pCodeBuf, off, idxRegValueFetch, idxRegMemResult);
|
---|
10830 | break;
|
---|
10831 |
|
---|
10832 | case kIemNativeEmitMemOp_Fetch_Sx_U64:
|
---|
10833 | switch (cbMem)
|
---|
10834 | {
|
---|
10835 | case 1:
|
---|
10836 | off = iemNativeEmitLoadGprByGprU64SignExtendedFromS8Ex(pCodeBuf, off, idxRegValueFetch, idxRegMemResult);
|
---|
10837 | break;
|
---|
10838 | case 2:
|
---|
10839 | off = iemNativeEmitLoadGprByGprU64SignExtendedFromS16Ex(pCodeBuf, off, idxRegValueFetch, idxRegMemResult);
|
---|
10840 | break;
|
---|
10841 | case 4:
|
---|
10842 | off = iemNativeEmitLoadGprByGprU64SignExtendedFromS32Ex(pCodeBuf, off, idxRegValueFetch, idxRegMemResult);
|
---|
10843 | break;
|
---|
10844 | default:
|
---|
10845 | AssertFailed();
|
---|
10846 | }
|
---|
10847 | break;
|
---|
10848 |
|
---|
10849 | default:
|
---|
10850 | AssertFailed();
|
---|
10851 | }
|
---|
10852 |
|
---|
10853 | iemNativeRegFreeTmp(pReNative, idxRegMemResult);
|
---|
10854 |
|
---|
10855 | /*
|
---|
10856 | * TlbDone:
|
---|
10857 | */
|
---|
10858 | iemNativeLabelDefine(pReNative, idxLabelTlbDone, off);
|
---|
10859 |
|
---|
10860 | TlbState.freeRegsAndReleaseVars(pReNative, idxVarGCPtrMem);
|
---|
10861 |
|
---|
10862 | # ifndef IEMNATIVE_WITH_FREE_AND_FLUSH_VOLATILE_REGS_AT_TLB_LOOKUP
|
---|
10863 | /* Temp Hack: Flush all guest shadows in volatile registers in case of TLB miss. */
|
---|
10864 | iemNativeRegFlushGuestShadowsByHostMask(pReNative, IEMNATIVE_CALL_VOLATILE_GREG_MASK);
|
---|
10865 | # endif
|
---|
10866 | }
|
---|
10867 | #else
|
---|
10868 | RT_NOREF(fAlignMask, idxLabelTlbMiss);
|
---|
10869 | #endif
|
---|
10870 |
|
---|
10871 | if (idxRegValueFetch != UINT8_MAX || idxRegValueStore != UINT8_MAX)
|
---|
10872 | iemNativeVarRegisterRelease(pReNative, idxVarValue);
|
---|
10873 | return off;
|
---|
10874 | }
|
---|
10875 |
|
---|
10876 |
|
---|
10877 |
|
---|
10878 | /*********************************************************************************************************************************
|
---|
10879 | * Memory fetches (IEM_MEM_FETCH_XXX). *
|
---|
10880 | *********************************************************************************************************************************/
|
---|
10881 |
|
---|
10882 | /* 8-bit segmented: */
|
---|
10883 | #define IEM_MC_FETCH_MEM_U8(a_u8Dst, a_iSeg, a_GCPtrMem) \
|
---|
10884 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u8Dst, a_iSeg, a_GCPtrMem, \
|
---|
10885 | sizeof(uint8_t), 0 /*fAlignMask*/, kIemNativeEmitMemOp_Fetch, \
|
---|
10886 | (uintptr_t)iemNativeHlpMemFetchDataU8, pCallEntry->idxInstr)
|
---|
10887 |
|
---|
10888 | #define IEM_MC_FETCH_MEM_U8_ZX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
|
---|
10889 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u16Dst, a_iSeg, a_GCPtrMem, \
|
---|
10890 | sizeof(uint8_t), 0 /*fAlignMask*/, kIemNativeEmitMemOp_Fetch_Zx_U16, \
|
---|
10891 | (uintptr_t)iemNativeHlpMemFetchDataU8, pCallEntry->idxInstr)
|
---|
10892 |
|
---|
10893 | #define IEM_MC_FETCH_MEM_U8_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
|
---|
10894 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u32Dst, a_iSeg, a_GCPtrMem, \
|
---|
10895 | sizeof(uint8_t), 0 /*fAlignMask*/, kIemNativeEmitMemOp_Fetch_Zx_U32, \
|
---|
10896 | (uintptr_t)iemNativeHlpMemFetchDataU8, pCallEntry->idxInstr)
|
---|
10897 |
|
---|
10898 | #define IEM_MC_FETCH_MEM_U8_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10899 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u64Dst, a_iSeg, a_GCPtrMem, \
|
---|
10900 | sizeof(uint8_t), 0 /*fAlignMask*/, kIemNativeEmitMemOp_Fetch_Zx_U64, \
|
---|
10901 | (uintptr_t)iemNativeHlpMemFetchDataU8, pCallEntry->idxInstr)
|
---|
10902 |
|
---|
10903 | #define IEM_MC_FETCH_MEM_U8_SX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
|
---|
10904 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u16Dst, a_iSeg, a_GCPtrMem, \
|
---|
10905 | sizeof(uint8_t), 0 /*fAlignMask*/, kIemNativeEmitMemOp_Fetch_Sx_U16, \
|
---|
10906 | (uintptr_t)iemNativeHlpMemFetchDataU8_Sx_U16, pCallEntry->idxInstr)
|
---|
10907 |
|
---|
10908 | #define IEM_MC_FETCH_MEM_U8_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
|
---|
10909 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u32Dst, a_iSeg, a_GCPtrMem, \
|
---|
10910 | sizeof(uint8_t), 0 /*fAlignMask*/, kIemNativeEmitMemOp_Fetch_Sx_U32, \
|
---|
10911 | (uintptr_t)iemNativeHlpMemFetchDataU8_Sx_U32, pCallEntry->idxInstr)
|
---|
10912 |
|
---|
10913 | #define IEM_MC_FETCH_MEM_U8_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10914 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u64Dst, a_iSeg, a_GCPtrMem, \
|
---|
10915 | sizeof(uint8_t), 0 /*fAlignMask*/, kIemNativeEmitMemOp_Fetch_Sx_U64, \
|
---|
10916 | (uintptr_t)iemNativeHlpMemFetchDataU8_Sx_U64, pCallEntry->idxInstr)
|
---|
10917 |
|
---|
10918 | /* 16-bit segmented: */
|
---|
10919 | #define IEM_MC_FETCH_MEM_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
|
---|
10920 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u16Dst, a_iSeg, a_GCPtrMem, \
|
---|
10921 | sizeof(uint16_t), sizeof(uint16_t) - 1, kIemNativeEmitMemOp_Fetch, \
|
---|
10922 | (uintptr_t)iemNativeHlpMemFetchDataU16, pCallEntry->idxInstr)
|
---|
10923 |
|
---|
10924 | #define IEM_MC_FETCH_MEM_U16_DISP(a_u16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
|
---|
10925 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u16Dst, a_iSeg, a_GCPtrMem, \
|
---|
10926 | sizeof(uint16_t), sizeof(uint16_t) - 1, kIemNativeEmitMemOp_Fetch, \
|
---|
10927 | (uintptr_t)iemNativeHlpMemFetchDataU16, pCallEntry->idxInstr, a_offDisp)
|
---|
10928 |
|
---|
10929 | #define IEM_MC_FETCH_MEM_U16_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
|
---|
10930 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u32Dst, a_iSeg, a_GCPtrMem, \
|
---|
10931 | sizeof(uint16_t), sizeof(uint16_t) - 1, kIemNativeEmitMemOp_Fetch_Zx_U32, \
|
---|
10932 | (uintptr_t)iemNativeHlpMemFetchDataU16, pCallEntry->idxInstr)
|
---|
10933 |
|
---|
10934 | #define IEM_MC_FETCH_MEM_U16_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10935 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u64Dst, a_iSeg, a_GCPtrMem, \
|
---|
10936 | sizeof(uint16_t), sizeof(uint16_t) - 1, kIemNativeEmitMemOp_Fetch_Zx_U64, \
|
---|
10937 | (uintptr_t)iemNativeHlpMemFetchDataU16, pCallEntry->idxInstr)
|
---|
10938 |
|
---|
10939 | #define IEM_MC_FETCH_MEM_U16_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
|
---|
10940 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u32Dst, a_iSeg, a_GCPtrMem, \
|
---|
10941 | sizeof(uint16_t), sizeof(uint16_t) - 1, kIemNativeEmitMemOp_Fetch_Sx_U32, \
|
---|
10942 | (uintptr_t)iemNativeHlpMemFetchDataU16_Sx_U32, pCallEntry->idxInstr)
|
---|
10943 |
|
---|
10944 | #define IEM_MC_FETCH_MEM_U16_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10945 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u64Dst, a_iSeg, a_GCPtrMem, \
|
---|
10946 | sizeof(uint16_t), sizeof(uint16_t) - 1, kIemNativeEmitMemOp_Fetch_Sx_U64, \
|
---|
10947 | (uintptr_t)iemNativeHlpMemFetchDataU16_Sx_U64, pCallEntry->idxInstr)
|
---|
10948 |
|
---|
10949 |
|
---|
10950 | /* 32-bit segmented: */
|
---|
10951 | #define IEM_MC_FETCH_MEM_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
|
---|
10952 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u32Dst, a_iSeg, a_GCPtrMem, \
|
---|
10953 | sizeof(uint32_t), sizeof(uint32_t) - 1, kIemNativeEmitMemOp_Fetch, \
|
---|
10954 | (uintptr_t)iemNativeHlpMemFetchDataU32, pCallEntry->idxInstr)
|
---|
10955 |
|
---|
10956 | #define IEM_MC_FETCH_MEM_U32_DISP(a_u32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
|
---|
10957 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u32Dst, a_iSeg, a_GCPtrMem, \
|
---|
10958 | sizeof(uint32_t), sizeof(uint32_t) - 1, kIemNativeEmitMemOp_Fetch, \
|
---|
10959 | (uintptr_t)iemNativeHlpMemFetchDataU32, pCallEntry->idxInstr, a_offDisp)
|
---|
10960 |
|
---|
10961 | #define IEM_MC_FETCH_MEM_U32_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10962 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u64Dst, a_iSeg, a_GCPtrMem, \
|
---|
10963 | sizeof(uint32_t), sizeof(uint32_t) - 1, kIemNativeEmitMemOp_Fetch_Zx_U64, \
|
---|
10964 | (uintptr_t)iemNativeHlpMemFetchDataU32, pCallEntry->idxInstr)
|
---|
10965 |
|
---|
10966 | #define IEM_MC_FETCH_MEM_U32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10967 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u64Dst, a_iSeg, a_GCPtrMem, \
|
---|
10968 | sizeof(uint32_t), sizeof(uint32_t) - 1, kIemNativeEmitMemOp_Fetch_Sx_U64, \
|
---|
10969 | (uintptr_t)iemNativeHlpMemFetchDataU32_Sx_U64, pCallEntry->idxInstr)
|
---|
10970 |
|
---|
10971 |
|
---|
10972 | /* 64-bit segmented: */
|
---|
10973 | #define IEM_MC_FETCH_MEM_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
|
---|
10974 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u64Dst, a_iSeg, a_GCPtrMem, \
|
---|
10975 | sizeof(uint64_t), sizeof(uint64_t) - 1, kIemNativeEmitMemOp_Fetch, \
|
---|
10976 | (uintptr_t)iemNativeHlpMemFetchDataU64, pCallEntry->idxInstr)
|
---|
10977 |
|
---|
10978 |
|
---|
10979 |
|
---|
10980 | /* 8-bit flat: */
|
---|
10981 | #define IEM_MC_FETCH_MEM_FLAT_U8(a_u8Dst, a_GCPtrMem) \
|
---|
10982 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u8Dst, UINT8_MAX, a_GCPtrMem, \
|
---|
10983 | sizeof(uint8_t), 0 /*fAlignMask*/, kIemNativeEmitMemOp_Fetch, \
|
---|
10984 | (uintptr_t)iemNativeHlpMemFlatFetchDataU8, pCallEntry->idxInstr)
|
---|
10985 |
|
---|
10986 | #define IEM_MC_FETCH_MEM_FLAT_U8_ZX_U16(a_u16Dst, a_GCPtrMem) \
|
---|
10987 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u16Dst, UINT8_MAX, a_GCPtrMem, \
|
---|
10988 | sizeof(uint8_t), 0 /*fAlignMask*/, kIemNativeEmitMemOp_Fetch_Zx_U16, \
|
---|
10989 | (uintptr_t)iemNativeHlpMemFlatFetchDataU8, pCallEntry->idxInstr)
|
---|
10990 |
|
---|
10991 | #define IEM_MC_FETCH_MEM_FLAT_U8_ZX_U32(a_u32Dst, a_GCPtrMem) \
|
---|
10992 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u32Dst, UINT8_MAX, a_GCPtrMem, \
|
---|
10993 | sizeof(uint8_t), 0 /*fAlignMask*/, kIemNativeEmitMemOp_Fetch_Zx_U32, \
|
---|
10994 | (uintptr_t)iemNativeHlpMemFlatFetchDataU8, pCallEntry->idxInstr)
|
---|
10995 |
|
---|
10996 | #define IEM_MC_FETCH_MEM_FLAT_U8_ZX_U64(a_u64Dst, a_GCPtrMem) \
|
---|
10997 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u64Dst, UINT8_MAX, a_GCPtrMem, \
|
---|
10998 | sizeof(uint8_t), 0 /*fAlignMask*/, kIemNativeEmitMemOp_Fetch_Zx_U64, \
|
---|
10999 | (uintptr_t)iemNativeHlpMemFlatFetchDataU8, pCallEntry->idxInstr)
|
---|
11000 |
|
---|
11001 | #define IEM_MC_FETCH_MEM_FLAT_U8_SX_U16(a_u16Dst, a_GCPtrMem) \
|
---|
11002 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u16Dst, UINT8_MAX, a_GCPtrMem, \
|
---|
11003 | sizeof(uint8_t), 0 /*fAlignMask*/, kIemNativeEmitMemOp_Fetch_Sx_U16, \
|
---|
11004 | (uintptr_t)iemNativeHlpMemFlatFetchDataU8_Sx_U16, pCallEntry->idxInstr)
|
---|
11005 |
|
---|
11006 | #define IEM_MC_FETCH_MEM_FLAT_U8_SX_U32(a_u32Dst, a_GCPtrMem) \
|
---|
11007 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u32Dst, UINT8_MAX, a_GCPtrMem, \
|
---|
11008 | sizeof(uint8_t), 0 /*fAlignMask*/, kIemNativeEmitMemOp_Fetch_Sx_U32, \
|
---|
11009 | (uintptr_t)iemNativeHlpMemFlatFetchDataU8_Sx_U32, pCallEntry->idxInstr)
|
---|
11010 |
|
---|
11011 | #define IEM_MC_FETCH_MEM_FLAT_U8_SX_U64(a_u64Dst, a_GCPtrMem) \
|
---|
11012 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u64Dst, UINT8_MAX, a_GCPtrMem, \
|
---|
11013 | sizeof(uint8_t), 0 /*fAlignMask*/, kIemNativeEmitMemOp_Fetch_Sx_U64, \
|
---|
11014 | (uintptr_t)iemNativeHlpMemFlatFetchDataU8_Sx_U64, pCallEntry->idxInstr)
|
---|
11015 |
|
---|
11016 |
|
---|
11017 | /* 16-bit flat: */
|
---|
11018 | #define IEM_MC_FETCH_MEM_FLAT_U16(a_u16Dst, a_GCPtrMem) \
|
---|
11019 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u16Dst, UINT8_MAX, a_GCPtrMem, \
|
---|
11020 | sizeof(uint16_t), sizeof(uint16_t) - 1, kIemNativeEmitMemOp_Fetch, \
|
---|
11021 | (uintptr_t)iemNativeHlpMemFlatFetchDataU16, pCallEntry->idxInstr)
|
---|
11022 |
|
---|
11023 | #define IEM_MC_FETCH_MEM_FLAT_U16_DISP(a_u16Dst, a_GCPtrMem, a_offDisp) \
|
---|
11024 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u16Dst, UINT8_MAX, a_GCPtrMem, \
|
---|
11025 | sizeof(uint16_t), sizeof(uint16_t) - 1, kIemNativeEmitMemOp_Fetch, \
|
---|
11026 | (uintptr_t)iemNativeHlpMemFlatFetchDataU16, pCallEntry->idxInstr, a_offDisp)
|
---|
11027 |
|
---|
11028 | #define IEM_MC_FETCH_MEM_FLAT_U16_ZX_U32(a_u32Dst, a_GCPtrMem) \
|
---|
11029 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u32Dst, UINT8_MAX, a_GCPtrMem, \
|
---|
11030 | sizeof(uint16_t), sizeof(uint16_t) - 1, kIemNativeEmitMemOp_Fetch_Zx_U32, \
|
---|
11031 | (uintptr_t)iemNativeHlpMemFlatFetchDataU16, pCallEntry->idxInstr)
|
---|
11032 |
|
---|
11033 | #define IEM_MC_FETCH_MEM_FLAT_U16_ZX_U64(a_u64Dst, a_GCPtrMem) \
|
---|
11034 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u64Dst, UINT8_MAX, a_GCPtrMem, \
|
---|
11035 | sizeof(uint16_t), sizeof(uint16_t) - 1, kIemNativeEmitMemOp_Fetch_Zx_U64, \
|
---|
11036 | (uintptr_t)iemNativeHlpMemFlatFetchDataU16, pCallEntry->idxInstr)
|
---|
11037 |
|
---|
11038 | #define IEM_MC_FETCH_MEM_FLAT_U16_SX_U32(a_u32Dst, a_GCPtrMem) \
|
---|
11039 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u32Dst, UINT8_MAX, a_GCPtrMem, \
|
---|
11040 | sizeof(uint16_t), sizeof(uint16_t) - 1, kIemNativeEmitMemOp_Fetch_Sx_U32, \
|
---|
11041 | (uintptr_t)iemNativeHlpMemFlatFetchDataU16_Sx_U32, pCallEntry->idxInstr)
|
---|
11042 |
|
---|
11043 | #define IEM_MC_FETCH_MEM_FLAT_U16_SX_U64(a_u64Dst, a_GCPtrMem) \
|
---|
11044 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u64Dst, UINT8_MAX, a_GCPtrMem, \
|
---|
11045 | sizeof(uint16_t), sizeof(uint16_t) - 1, kIemNativeEmitMemOp_Fetch_Sx_U64, \
|
---|
11046 | (uintptr_t)iemNativeHlpMemFlatFetchDataU16_Sx_U64, pCallEntry->idxInstr)
|
---|
11047 |
|
---|
11048 | /* 32-bit flat: */
|
---|
11049 | #define IEM_MC_FETCH_MEM_FLAT_U32(a_u32Dst, a_GCPtrMem) \
|
---|
11050 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u32Dst, UINT8_MAX, a_GCPtrMem, \
|
---|
11051 | sizeof(uint32_t), sizeof(uint32_t) - 1, kIemNativeEmitMemOp_Fetch, \
|
---|
11052 | (uintptr_t)iemNativeHlpMemFlatFetchDataU32, pCallEntry->idxInstr)
|
---|
11053 |
|
---|
11054 | #define IEM_MC_FETCH_MEM_FLAT_U32_DISP(a_u32Dst, a_GCPtrMem, a_offDisp) \
|
---|
11055 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u32Dst, UINT8_MAX, a_GCPtrMem, \
|
---|
11056 | sizeof(uint32_t), sizeof(uint32_t) - 1, kIemNativeEmitMemOp_Fetch, \
|
---|
11057 | (uintptr_t)iemNativeHlpMemFlatFetchDataU32, pCallEntry->idxInstr, a_offDisp)
|
---|
11058 |
|
---|
11059 | #define IEM_MC_FETCH_MEM_FLAT_U32_ZX_U64(a_u64Dst, a_GCPtrMem) \
|
---|
11060 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u64Dst, UINT8_MAX, a_GCPtrMem, \
|
---|
11061 | sizeof(uint32_t), sizeof(uint32_t) - 1, kIemNativeEmitMemOp_Fetch_Zx_U64, \
|
---|
11062 | (uintptr_t)iemNativeHlpMemFlatFetchDataU32, pCallEntry->idxInstr)
|
---|
11063 |
|
---|
11064 | #define IEM_MC_FETCH_MEM_FLAT_U32_SX_U64(a_u64Dst, a_GCPtrMem) \
|
---|
11065 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u64Dst, UINT8_MAX, a_GCPtrMem, \
|
---|
11066 | sizeof(uint32_t), sizeof(uint32_t) - 1, kIemNativeEmitMemOp_Fetch_Sx_U64, \
|
---|
11067 | (uintptr_t)iemNativeHlpMemFlatFetchDataU32_Sx_U64, pCallEntry->idxInstr)
|
---|
11068 |
|
---|
11069 | /* 64-bit flat: */
|
---|
11070 | #define IEM_MC_FETCH_MEM_FLAT_U64(a_u64Dst, a_GCPtrMem) \
|
---|
11071 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u64Dst, UINT8_MAX, a_GCPtrMem, \
|
---|
11072 | sizeof(uint64_t), sizeof(uint64_t) - 1, kIemNativeEmitMemOp_Fetch, \
|
---|
11073 | (uintptr_t)iemNativeHlpMemFlatFetchDataU64, pCallEntry->idxInstr)
|
---|
11074 |
|
---|
11075 |
|
---|
11076 |
|
---|
11077 | /*********************************************************************************************************************************
|
---|
11078 | * Memory stores (IEM_MEM_STORE_XXX). *
|
---|
11079 | *********************************************************************************************************************************/
|
---|
11080 |
|
---|
11081 | #define IEM_MC_STORE_MEM_U8(a_iSeg, a_GCPtrMem, a_u8Value) \
|
---|
11082 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u8Value, a_iSeg, a_GCPtrMem, \
|
---|
11083 | sizeof(uint8_t), 0 /*fAlignMask*/, kIemNativeEmitMemOp_Store, \
|
---|
11084 | (uintptr_t)iemNativeHlpMemStoreDataU8, pCallEntry->idxInstr)
|
---|
11085 |
|
---|
11086 | #define IEM_MC_STORE_MEM_U16(a_iSeg, a_GCPtrMem, a_u16Value) \
|
---|
11087 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u16Value, a_iSeg, a_GCPtrMem, \
|
---|
11088 | sizeof(uint16_t), sizeof(uint16_t) - 1, kIemNativeEmitMemOp_Store, \
|
---|
11089 | (uintptr_t)iemNativeHlpMemStoreDataU16, pCallEntry->idxInstr)
|
---|
11090 |
|
---|
11091 | #define IEM_MC_STORE_MEM_U32(a_iSeg, a_GCPtrMem, a_u32Value) \
|
---|
11092 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u32Value, a_iSeg, a_GCPtrMem, \
|
---|
11093 | sizeof(uint32_t), sizeof(uint32_t) - 1, kIemNativeEmitMemOp_Store, \
|
---|
11094 | (uintptr_t)iemNativeHlpMemStoreDataU32, pCallEntry->idxInstr)
|
---|
11095 |
|
---|
11096 | #define IEM_MC_STORE_MEM_U64(a_iSeg, a_GCPtrMem, a_u64Value) \
|
---|
11097 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u64Value, a_iSeg, a_GCPtrMem, \
|
---|
11098 | sizeof(uint64_t), sizeof(uint64_t) - 1, kIemNativeEmitMemOp_Store, \
|
---|
11099 | (uintptr_t)iemNativeHlpMemStoreDataU64, pCallEntry->idxInstr)
|
---|
11100 |
|
---|
11101 |
|
---|
11102 | #define IEM_MC_STORE_MEM_FLAT_U8(a_GCPtrMem, a_u8Value) \
|
---|
11103 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u8Value, UINT8_MAX, a_GCPtrMem, \
|
---|
11104 | sizeof(uint8_t), 0 /*fAlignMask*/, kIemNativeEmitMemOp_Store, \
|
---|
11105 | (uintptr_t)iemNativeHlpMemFlatStoreDataU8, pCallEntry->idxInstr)
|
---|
11106 |
|
---|
11107 | #define IEM_MC_STORE_MEM_FLAT_U16(a_GCPtrMem, a_u16Value) \
|
---|
11108 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u16Value, UINT8_MAX, a_GCPtrMem, \
|
---|
11109 | sizeof(uint16_t), sizeof(uint16_t) - 1, kIemNativeEmitMemOp_Store, \
|
---|
11110 | (uintptr_t)iemNativeHlpMemFlatStoreDataU16, pCallEntry->idxInstr)
|
---|
11111 |
|
---|
11112 | #define IEM_MC_STORE_MEM_FLAT_U32(a_GCPtrMem, a_u32Value) \
|
---|
11113 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u32Value, UINT8_MAX, a_GCPtrMem, \
|
---|
11114 | sizeof(uint32_t), sizeof(uint32_t) - 1, kIemNativeEmitMemOp_Store, \
|
---|
11115 | (uintptr_t)iemNativeHlpMemFlatStoreDataU32, pCallEntry->idxInstr)
|
---|
11116 |
|
---|
11117 | #define IEM_MC_STORE_MEM_FLAT_U64(a_GCPtrMem, a_u64Value) \
|
---|
11118 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, a_u64Value, UINT8_MAX, a_GCPtrMem, \
|
---|
11119 | sizeof(uint64_t), sizeof(uint64_t) - 1, kIemNativeEmitMemOp_Store, \
|
---|
11120 | (uintptr_t)iemNativeHlpMemFlatStoreDataU64, pCallEntry->idxInstr)
|
---|
11121 |
|
---|
11122 |
|
---|
11123 | #define IEM_MC_STORE_MEM_U8_CONST(a_iSeg, a_GCPtrMem, a_u8ConstValue) \
|
---|
11124 | off = iemNativeEmitMemStoreConstDataCommon(pReNative, off, a_u8ConstValue, a_iSeg, a_GCPtrMem, sizeof(uint8_t), \
|
---|
11125 | (uintptr_t)iemNativeHlpMemStoreDataU8, pCallEntry->idxInstr)
|
---|
11126 |
|
---|
11127 | #define IEM_MC_STORE_MEM_U16_CONST(a_iSeg, a_GCPtrMem, a_u16ConstValue) \
|
---|
11128 | off = iemNativeEmitMemStoreConstDataCommon(pReNative, off, a_u16ConstValue, a_iSeg, a_GCPtrMem, sizeof(uint16_t), \
|
---|
11129 | (uintptr_t)iemNativeHlpMemStoreDataU16, pCallEntry->idxInstr)
|
---|
11130 |
|
---|
11131 | #define IEM_MC_STORE_MEM_U32_CONST(a_iSeg, a_GCPtrMem, a_u32ConstValue) \
|
---|
11132 | off = iemNativeEmitMemStoreConstDataCommon(pReNative, off, a_u32ConstValue, a_iSeg, a_GCPtrMem, sizeof(uint32_t), \
|
---|
11133 | (uintptr_t)iemNativeHlpMemStoreDataU32, pCallEntry->idxInstr)
|
---|
11134 |
|
---|
11135 | #define IEM_MC_STORE_MEM_U64_CONST(a_iSeg, a_GCPtrMem, a_u64ConstValue) \
|
---|
11136 | off = iemNativeEmitMemStoreConstDataCommon(pReNative, off, a_u64ConstValue, a_iSeg, a_GCPtrMem, sizeof(uint64_t), \
|
---|
11137 | (uintptr_t)iemNativeHlpMemStoreDataU64, pCallEntry->idxInstr)
|
---|
11138 |
|
---|
11139 |
|
---|
11140 | #define IEM_MC_STORE_MEM_FLAT_U8_CONST(a_GCPtrMem, a_u8ConstValue) \
|
---|
11141 | off = iemNativeEmitMemStoreConstDataCommon(pReNative, off, a_u8ConstValue, UINT8_MAX, a_GCPtrMem, sizeof(uint8_t), \
|
---|
11142 | (uintptr_t)iemNativeHlpMemFlatStoreDataU8, pCallEntry->idxInstr)
|
---|
11143 |
|
---|
11144 | #define IEM_MC_STORE_MEM_FLAT_U16_CONST(a_GCPtrMem, a_u16ConstValue) \
|
---|
11145 | off = iemNativeEmitMemStoreConstDataCommon(pReNative, off, a_u16ConstValue, UINT8_MAX, a_GCPtrMem, sizeof(uint16_t), \
|
---|
11146 | (uintptr_t)iemNativeHlpMemFlatStoreDataU16, pCallEntry->idxInstr)
|
---|
11147 |
|
---|
11148 | #define IEM_MC_STORE_MEM_FLAT_U32_CONST(a_GCPtrMem, a_u32ConstValue) \
|
---|
11149 | off = iemNativeEmitMemStoreConstDataCommon(pReNative, off, a_u32ConstValue, UINT8_MAX, a_GCPtrMem, sizeof(uint32_t), \
|
---|
11150 | (uintptr_t)iemNativeHlpMemFlatStoreDataU32, pCallEntry->idxInstr)
|
---|
11151 |
|
---|
11152 | #define IEM_MC_STORE_MEM_FLAT_U64_CONST(a_GCPtrMem, a_u64ConstValue) \
|
---|
11153 | off = iemNativeEmitMemStoreConstDataCommon(pReNative, off, a_u64ConstValue, UINT8_MAX, a_GCPtrMem, sizeof(uint64_t), \
|
---|
11154 | (uintptr_t)iemNativeHlpMemFlatStoreDataU64, pCallEntry->idxInstr)
|
---|
11155 |
|
---|
11156 | /** Emits code for IEM_MC_STORE_MEM_U8/16/32/64_CONST and
|
---|
11157 | * IEM_MC_STORE_MEM_FLAT_U8/16/32/64_CONST (with iSegReg = UINT8_MAX). */
|
---|
11158 | DECL_INLINE_THROW(uint32_t)
|
---|
11159 | iemNativeEmitMemStoreConstDataCommon(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint64_t uValueConst, uint8_t iSegReg,
|
---|
11160 | uint8_t idxVarGCPtrMem, uint8_t cbMem, uintptr_t pfnFunction, uint8_t idxInstr)
|
---|
11161 | {
|
---|
11162 | /*
|
---|
11163 | * Create a temporary const variable and call iemNativeEmitMemFetchStoreDataCommon
|
---|
11164 | * to do the grunt work.
|
---|
11165 | */
|
---|
11166 | uint8_t const idxVarConstValue = iemNativeVarAllocConst(pReNative, cbMem, uValueConst);
|
---|
11167 | off = iemNativeEmitMemFetchStoreDataCommon(pReNative, off, idxVarConstValue, iSegReg, idxVarGCPtrMem,
|
---|
11168 | cbMem, cbMem - 1, kIemNativeEmitMemOp_Store,
|
---|
11169 | pfnFunction, idxInstr);
|
---|
11170 | iemNativeVarFreeLocal(pReNative, idxVarConstValue);
|
---|
11171 | return off;
|
---|
11172 | }
|
---|
11173 |
|
---|
11174 |
|
---|
11175 |
|
---|
11176 | /*********************************************************************************************************************************
|
---|
11177 | * Stack Accesses. *
|
---|
11178 | *********************************************************************************************************************************/
|
---|
11179 | /* RT_MAKE_U32_FROM_U8(cBitsVar, cBitsFlat, fSReg, 0) */
|
---|
11180 | #define IEM_MC_PUSH_U16(a_u16Value) \
|
---|
11181 | off = iemNativeEmitStackPush(pReNative, off, a_u16Value, RT_MAKE_U32_FROM_U8(16, 0, 0, 0), \
|
---|
11182 | (uintptr_t)iemNativeHlpStackStoreU16, pCallEntry->idxInstr)
|
---|
11183 | #define IEM_MC_PUSH_U32(a_u32Value) \
|
---|
11184 | off = iemNativeEmitStackPush(pReNative, off, a_u32Value, RT_MAKE_U32_FROM_U8(32, 0, 0, 0), \
|
---|
11185 | (uintptr_t)iemNativeHlpStackStoreU32, pCallEntry->idxInstr)
|
---|
11186 | #define IEM_MC_PUSH_U32_SREG(a_uSegVal) \
|
---|
11187 | off = iemNativeEmitStackPush(pReNative, off, a_uSegVal, RT_MAKE_U32_FROM_U8(32, 0, 1, 0), \
|
---|
11188 | (uintptr_t)iemNativeHlpStackStoreU32SReg, pCallEntry->idxInstr)
|
---|
11189 | #define IEM_MC_PUSH_U64(a_u64Value) \
|
---|
11190 | off = iemNativeEmitStackPush(pReNative, off, a_u64Value, RT_MAKE_U32_FROM_U8(64, 0, 0, 0), \
|
---|
11191 | (uintptr_t)iemNativeHlpStackStoreU64, pCallEntry->idxInstr)
|
---|
11192 |
|
---|
11193 | #define IEM_MC_FLAT32_PUSH_U16(a_u16Value) \
|
---|
11194 | off = iemNativeEmitStackPush(pReNative, off, a_u16Value, RT_MAKE_U32_FROM_U8(16, 32, 0, 0), \
|
---|
11195 | (uintptr_t)iemNativeHlpStackFlatStoreU16, pCallEntry->idxInstr)
|
---|
11196 | #define IEM_MC_FLAT32_PUSH_U32(a_u32Value) \
|
---|
11197 | off = iemNativeEmitStackPush(pReNative, off, a_u32Value, RT_MAKE_U32_FROM_U8(32, 32, 0, 0), \
|
---|
11198 | (uintptr_t)iemNativeHlpStackFlatStoreU32, pCallEntry->idxInstr)
|
---|
11199 | #define IEM_MC_FLAT32_PUSH_U32_SREG(a_u32Value) \
|
---|
11200 | off = iemNativeEmitStackPush(pReNative, off, a_u32Value, RT_MAKE_U32_FROM_U8(32, 32, 1, 0), \
|
---|
11201 | (uintptr_t)iemNativeHlpStackFlatStoreU32SReg, pCallEntry->idxInstr)
|
---|
11202 |
|
---|
11203 | #define IEM_MC_FLAT64_PUSH_U16(a_u16Value) \
|
---|
11204 | off = iemNativeEmitStackPush(pReNative, off, a_u16Value, RT_MAKE_U32_FROM_U8(16, 64, 0, 0), \
|
---|
11205 | (uintptr_t)iemNativeHlpStackFlatStoreU16, pCallEntry->idxInstr)
|
---|
11206 | #define IEM_MC_FLAT64_PUSH_U64(a_u64Value) \
|
---|
11207 | off = iemNativeEmitStackPush(pReNative, off, a_u64Value, RT_MAKE_U32_FROM_U8(64, 64, 0, 0), \
|
---|
11208 | (uintptr_t)iemNativeHlpStackFlatStoreU64, pCallEntry->idxInstr)
|
---|
11209 |
|
---|
11210 |
|
---|
11211 | DECL_FORCE_INLINE_THROW(uint32_t)
|
---|
11212 | iemNativeEmitStackPushUse16Sp(PIEMNATIVEINSTR pCodeBuf, uint32_t off, uint8_t idxRegRsp, uint8_t idxRegEffSp, uint8_t cbMem)
|
---|
11213 | {
|
---|
11214 | /* Use16BitSp: */
|
---|
11215 | #ifdef RT_ARCH_AMD64
|
---|
11216 | off = iemNativeEmitSubGpr16ImmEx(pCodeBuf, off, idxRegRsp, cbMem); /* ASSUMES this does NOT modify bits [63:16]! */
|
---|
11217 | off = iemNativeEmitLoadGprFromGpr16Ex(pCodeBuf, off, idxRegEffSp, idxRegRsp);
|
---|
11218 | #else
|
---|
11219 | /* sub regeff, regrsp, #cbMem */
|
---|
11220 | pCodeBuf[off++] = Armv8A64MkInstrSubUImm12(idxRegEffSp, idxRegRsp, cbMem, false /*f64Bit*/);
|
---|
11221 | /* and regeff, regeff, #0xffff */
|
---|
11222 | Assert(Armv8A64ConvertImmRImmS2Mask32(15, 0) == 0xffff);
|
---|
11223 | pCodeBuf[off++] = Armv8A64MkInstrAndImm(idxRegEffSp, idxRegEffSp, 15, 0, false /*f64Bit*/);
|
---|
11224 | /* bfi regrsp, regeff, #0, #16 - moves bits 15:0 from idxVarReg to idxGstTmpReg bits 15:0. */
|
---|
11225 | pCodeBuf[off++] = Armv8A64MkInstrBfi(idxRegRsp, idxRegEffSp, 0, 16, false /*f64Bit*/);
|
---|
11226 | #endif
|
---|
11227 | return off;
|
---|
11228 | }
|
---|
11229 |
|
---|
11230 |
|
---|
11231 | DECL_FORCE_INLINE(uint32_t)
|
---|
11232 | iemNativeEmitStackPushUse32Sp(PIEMNATIVEINSTR pCodeBuf, uint32_t off, uint8_t idxRegRsp, uint8_t idxRegEffSp, uint8_t cbMem)
|
---|
11233 | {
|
---|
11234 | /* Use32BitSp: */
|
---|
11235 | off = iemNativeEmitSubGpr32ImmEx(pCodeBuf, off, idxRegRsp, cbMem);
|
---|
11236 | off = iemNativeEmitLoadGprFromGpr32Ex(pCodeBuf, off, idxRegEffSp, idxRegRsp);
|
---|
11237 | return off;
|
---|
11238 | }
|
---|
11239 |
|
---|
11240 |
|
---|
11241 | /** IEM_MC[|_FLAT32|_FLAT64]_PUSH_U16/32/32_SREG/64 */
|
---|
11242 | DECL_INLINE_THROW(uint32_t)
|
---|
11243 | iemNativeEmitStackPush(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVarValue,
|
---|
11244 | uint32_t cBitsVarAndFlat, uintptr_t pfnFunction, uint8_t idxInstr)
|
---|
11245 | {
|
---|
11246 | /*
|
---|
11247 | * Assert sanity.
|
---|
11248 | */
|
---|
11249 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVarValue);
|
---|
11250 | #ifdef VBOX_STRICT
|
---|
11251 | if (RT_BYTE2(cBitsVarAndFlat) != 0)
|
---|
11252 | {
|
---|
11253 | Assert( (pReNative->fExec & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT
|
---|
11254 | || (pReNative->fExec & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_PROT_FLAT
|
---|
11255 | || (pReNative->fExec & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_FLAT);
|
---|
11256 | Assert( pfnFunction
|
---|
11257 | == ( cBitsVarAndFlat == RT_MAKE_U32_FROM_U8(16, 32, 0, 0) ? (uintptr_t)iemNativeHlpStackFlatStoreU16
|
---|
11258 | : cBitsVarAndFlat == RT_MAKE_U32_FROM_U8(32, 32, 0, 0) ? (uintptr_t)iemNativeHlpStackFlatStoreU32
|
---|
11259 | : cBitsVarAndFlat == RT_MAKE_U32_FROM_U8(32, 32, 1, 0) ? (uintptr_t)iemNativeHlpStackFlatStoreU32SReg
|
---|
11260 | : cBitsVarAndFlat == RT_MAKE_U32_FROM_U8(16, 64, 0, 0) ? (uintptr_t)iemNativeHlpStackFlatStoreU16
|
---|
11261 | : cBitsVarAndFlat == RT_MAKE_U32_FROM_U8(64, 64, 0, 0) ? (uintptr_t)iemNativeHlpStackFlatStoreU64
|
---|
11262 | : UINT64_C(0xc000b000a0009000) ));
|
---|
11263 | }
|
---|
11264 | else
|
---|
11265 | Assert( pfnFunction
|
---|
11266 | == ( cBitsVarAndFlat == RT_MAKE_U32_FROM_U8(16, 0, 0, 0) ? (uintptr_t)iemNativeHlpStackStoreU16
|
---|
11267 | : cBitsVarAndFlat == RT_MAKE_U32_FROM_U8(32, 0, 0, 0) ? (uintptr_t)iemNativeHlpStackStoreU32
|
---|
11268 | : cBitsVarAndFlat == RT_MAKE_U32_FROM_U8(32, 0, 1, 0) ? (uintptr_t)iemNativeHlpStackStoreU32SReg
|
---|
11269 | : cBitsVarAndFlat == RT_MAKE_U32_FROM_U8(64, 0, 0, 0) ? (uintptr_t)iemNativeHlpStackStoreU64
|
---|
11270 | : UINT64_C(0xc000b000a0009000) ));
|
---|
11271 | #endif
|
---|
11272 |
|
---|
11273 | #ifdef VBOX_STRICT
|
---|
11274 | /*
|
---|
11275 | * Check that the fExec flags we've got make sense.
|
---|
11276 | */
|
---|
11277 | off = iemNativeEmitExecFlagsCheck(pReNative, off, pReNative->fExec);
|
---|
11278 | #endif
|
---|
11279 |
|
---|
11280 | /*
|
---|
11281 | * To keep things simple we have to commit any pending writes first as we
|
---|
11282 | * may end up making calls.
|
---|
11283 | */
|
---|
11284 | /** @todo we could postpone this till we make the call and reload the
|
---|
11285 | * registers after returning from the call. Not sure if that's sensible or
|
---|
11286 | * not, though. */
|
---|
11287 | off = iemNativeRegFlushPendingWrites(pReNative, off);
|
---|
11288 |
|
---|
11289 | /*
|
---|
11290 | * First we calculate the new RSP and the effective stack pointer value.
|
---|
11291 | * For 64-bit mode and flat 32-bit these two are the same.
|
---|
11292 | * (Code structure is very similar to that of PUSH)
|
---|
11293 | */
|
---|
11294 | uint8_t const cbMem = RT_BYTE1(cBitsVarAndFlat) / 8;
|
---|
11295 | bool const fIsSegReg = RT_BYTE3(cBitsVarAndFlat) != 0;
|
---|
11296 | bool const fIsIntelSeg = fIsSegReg && IEM_IS_GUEST_CPU_INTEL(pReNative->pVCpu);
|
---|
11297 | uint8_t const cbMemAccess = !fIsIntelSeg || (pReNative->fExec & IEM_F_MODE_MASK) == IEM_F_MODE_X86_16BIT
|
---|
11298 | ? cbMem : sizeof(uint16_t);
|
---|
11299 | uint8_t const cBitsFlat = RT_BYTE2(cBitsVarAndFlat); RT_NOREF(cBitsFlat);
|
---|
11300 | uint8_t const idxRegRsp = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(X86_GREG_xSP),
|
---|
11301 | kIemNativeGstRegUse_ForUpdate, true /*fNoVolatileRegs*/);
|
---|
11302 | uint8_t const idxRegEffSp = cBitsFlat != 0 ? idxRegRsp : iemNativeRegAllocTmp(pReNative, &off);
|
---|
11303 | uint32_t offFixupJumpToUseOtherBitSp = UINT32_MAX;
|
---|
11304 | if (cBitsFlat != 0)
|
---|
11305 | {
|
---|
11306 | Assert(idxRegEffSp == idxRegRsp);
|
---|
11307 | Assert(cBitsFlat == 32 || cBitsFlat == 64);
|
---|
11308 | Assert(IEM_F_MODE_X86_IS_FLAT(pReNative->fExec));
|
---|
11309 | if (cBitsFlat == 64)
|
---|
11310 | off = iemNativeEmitSubGprImm(pReNative, off, idxRegRsp, cbMem);
|
---|
11311 | else
|
---|
11312 | off = iemNativeEmitSubGpr32Imm(pReNative, off, idxRegRsp, cbMem);
|
---|
11313 | }
|
---|
11314 | else /** @todo We can skip the test if we're targeting pre-386 CPUs. */
|
---|
11315 | {
|
---|
11316 | Assert(idxRegEffSp != idxRegRsp);
|
---|
11317 | uint8_t const idxRegSsAttr = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_SEG_ATTRIB(X86_SREG_SS),
|
---|
11318 | kIemNativeGstRegUse_ReadOnly);
|
---|
11319 | #ifdef RT_ARCH_AMD64
|
---|
11320 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 32);
|
---|
11321 | #else
|
---|
11322 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 10);
|
---|
11323 | #endif
|
---|
11324 | off = iemNativeEmitTestAnyBitsInGpr32Ex(pCodeBuf, off, idxRegSsAttr, X86DESCATTR_D);
|
---|
11325 | iemNativeRegFreeTmp(pReNative, idxRegSsAttr);
|
---|
11326 | offFixupJumpToUseOtherBitSp = off;
|
---|
11327 | if ((pReNative->fExec & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT)
|
---|
11328 | {
|
---|
11329 | off = iemNativeEmitJccToFixedEx(pCodeBuf, off, off /*8-bit suffices*/, kIemNativeInstrCond_e); /* jump if zero */
|
---|
11330 | off = iemNativeEmitStackPushUse32Sp(pCodeBuf, off, idxRegRsp, idxRegEffSp, cbMem);
|
---|
11331 | }
|
---|
11332 | else
|
---|
11333 | {
|
---|
11334 | off = iemNativeEmitJccToFixedEx(pCodeBuf, off, off /*8-bit suffices*/, kIemNativeInstrCond_ne); /* jump if not zero */
|
---|
11335 | off = iemNativeEmitStackPushUse16Sp(pCodeBuf, off, idxRegRsp, idxRegEffSp, cbMem);
|
---|
11336 | }
|
---|
11337 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
11338 | }
|
---|
11339 | /* SpUpdateEnd: */
|
---|
11340 | uint32_t const offLabelSpUpdateEnd = off;
|
---|
11341 |
|
---|
11342 | /*
|
---|
11343 | * Okay, now prepare for TLB lookup and jump to code (or the TlbMiss if
|
---|
11344 | * we're skipping lookup).
|
---|
11345 | */
|
---|
11346 | uint8_t const iSegReg = cBitsFlat != 0 ? UINT8_MAX : X86_SREG_SS;
|
---|
11347 | IEMNATIVEEMITTLBSTATE const TlbState(pReNative, idxRegEffSp, &off, iSegReg, cbMemAccess);
|
---|
11348 | uint16_t const uTlbSeqNo = pReNative->uTlbSeqNo++;
|
---|
11349 | uint32_t const idxLabelTlbMiss = iemNativeLabelCreate(pReNative, kIemNativeLabelType_TlbMiss, UINT32_MAX, uTlbSeqNo);
|
---|
11350 | uint32_t const idxLabelTlbLookup = !TlbState.fSkip
|
---|
11351 | ? iemNativeLabelCreate(pReNative, kIemNativeLabelType_TlbLookup, UINT32_MAX, uTlbSeqNo)
|
---|
11352 | : UINT32_MAX;
|
---|
11353 | uint8_t const idxRegValue = !TlbState.fSkip
|
---|
11354 | && pReNative->Core.aVars[idxVarValue].enmKind != kIemNativeVarKind_Immediate
|
---|
11355 | ? iemNativeVarRegisterAcquire(pReNative, idxVarValue, &off, true /*fInitialized*/,
|
---|
11356 | IEMNATIVE_CALL_ARG2_GREG /*idxRegPref*/)
|
---|
11357 | : UINT8_MAX;
|
---|
11358 | uint8_t const idxRegMemResult = !TlbState.fSkip ? iemNativeRegAllocTmp(pReNative, &off) : UINT8_MAX;
|
---|
11359 |
|
---|
11360 |
|
---|
11361 | if (!TlbState.fSkip)
|
---|
11362 | off = iemNativeEmitJmpToLabel(pReNative, off, idxLabelTlbLookup); /** @todo short jump */
|
---|
11363 | else
|
---|
11364 | off = iemNativeEmitJmpToLabel(pReNative, off, idxLabelTlbMiss); /** @todo short jump */
|
---|
11365 |
|
---|
11366 | /*
|
---|
11367 | * Use16BitSp:
|
---|
11368 | */
|
---|
11369 | if (cBitsFlat == 0)
|
---|
11370 | {
|
---|
11371 | #ifdef RT_ARCH_AMD64
|
---|
11372 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 32);
|
---|
11373 | #else
|
---|
11374 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 10);
|
---|
11375 | #endif
|
---|
11376 | iemNativeFixupFixedJump(pReNative, offFixupJumpToUseOtherBitSp, off);
|
---|
11377 | if ((pReNative->fExec & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT)
|
---|
11378 | off = iemNativeEmitStackPushUse16Sp(pCodeBuf, off, idxRegRsp, idxRegEffSp, cbMem);
|
---|
11379 | else
|
---|
11380 | off = iemNativeEmitStackPushUse32Sp(pCodeBuf, off, idxRegRsp, idxRegEffSp, cbMem);
|
---|
11381 | off = iemNativeEmitJmpToFixedEx(pCodeBuf, off, offLabelSpUpdateEnd);
|
---|
11382 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
11383 | }
|
---|
11384 |
|
---|
11385 | /*
|
---|
11386 | * TlbMiss:
|
---|
11387 | *
|
---|
11388 | * Call helper to do the pushing.
|
---|
11389 | */
|
---|
11390 | iemNativeLabelDefine(pReNative, idxLabelTlbMiss, off);
|
---|
11391 |
|
---|
11392 | #ifdef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
11393 | off = iemNativeEmitStoreImmToVCpuU8(pReNative, off, idxInstr, RT_UOFFSETOF(VMCPUCC, iem.s.idxTbCurInstr));
|
---|
11394 | #else
|
---|
11395 | RT_NOREF(idxInstr);
|
---|
11396 | #endif
|
---|
11397 |
|
---|
11398 | /* Save variables in volatile registers. */
|
---|
11399 | uint32_t const fHstRegsNotToSave = TlbState.getRegsNotToSave()
|
---|
11400 | | (idxRegMemResult < RT_ELEMENTS(pReNative->Core.aHstRegs) ? RT_BIT_32(idxRegMemResult) : 0)
|
---|
11401 | | (idxRegEffSp != idxRegRsp ? RT_BIT_32(idxRegEffSp) : 0)
|
---|
11402 | | (idxRegValue < RT_ELEMENTS(pReNative->Core.aHstRegs) ? RT_BIT_32(idxRegValue) : 0);
|
---|
11403 | off = iemNativeVarSaveVolatileRegsPreHlpCall(pReNative, off, fHstRegsNotToSave);
|
---|
11404 |
|
---|
11405 | if ( idxRegValue == IEMNATIVE_CALL_ARG1_GREG
|
---|
11406 | && idxRegEffSp == IEMNATIVE_CALL_ARG2_GREG)
|
---|
11407 | {
|
---|
11408 | /* Swap them using ARG0 as temp register: */
|
---|
11409 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG0_GREG, IEMNATIVE_CALL_ARG1_GREG);
|
---|
11410 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG1_GREG, IEMNATIVE_CALL_ARG2_GREG);
|
---|
11411 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG2_GREG, IEMNATIVE_CALL_ARG0_GREG);
|
---|
11412 | }
|
---|
11413 | else if (idxRegEffSp != IEMNATIVE_CALL_ARG2_GREG)
|
---|
11414 | {
|
---|
11415 | /* IEMNATIVE_CALL_ARG2_GREG = idxVarValue (first!) */
|
---|
11416 | off = iemNativeEmitLoadArgGregFromImmOrStackVar(pReNative, off, IEMNATIVE_CALL_ARG2_GREG, idxVarValue,
|
---|
11417 | 0 /*offAddend*/, IEMNATIVE_CALL_VOLATILE_GREG_MASK);
|
---|
11418 |
|
---|
11419 | /* IEMNATIVE_CALL_ARG1_GREG = idxRegEffSp */
|
---|
11420 | if (idxRegEffSp != IEMNATIVE_CALL_ARG1_GREG)
|
---|
11421 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG1_GREG, idxRegEffSp);
|
---|
11422 | }
|
---|
11423 | else
|
---|
11424 | {
|
---|
11425 | /* IEMNATIVE_CALL_ARG1_GREG = idxRegEffSp (first!) */
|
---|
11426 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG1_GREG, idxRegEffSp);
|
---|
11427 |
|
---|
11428 | /* IEMNATIVE_CALL_ARG2_GREG = idxVarValue */
|
---|
11429 | off = iemNativeEmitLoadArgGregFromImmOrStackVar(pReNative, off, IEMNATIVE_CALL_ARG2_GREG, idxVarValue, 0 /*offAddend*/,
|
---|
11430 | IEMNATIVE_CALL_VOLATILE_GREG_MASK & ~IEMNATIVE_CALL_ARG1_GREG);
|
---|
11431 | }
|
---|
11432 |
|
---|
11433 | /* IEMNATIVE_CALL_ARG0_GREG = pVCpu */
|
---|
11434 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG0_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
11435 |
|
---|
11436 | /* Done setting up parameters, make the call. */
|
---|
11437 | off = iemNativeEmitCallImm(pReNative, off, pfnFunction);
|
---|
11438 |
|
---|
11439 | /* Restore variables and guest shadow registers to volatile registers. */
|
---|
11440 | off = iemNativeVarRestoreVolatileRegsPostHlpCall(pReNative, off, fHstRegsNotToSave);
|
---|
11441 | off = iemNativeRegRestoreGuestShadowsInVolatileRegs(pReNative, off, TlbState.getActiveRegsWithShadows());
|
---|
11442 |
|
---|
11443 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP
|
---|
11444 | if (!TlbState.fSkip)
|
---|
11445 | {
|
---|
11446 | /* end of TlbMiss - Jump to the done label. */
|
---|
11447 | uint32_t const idxLabelTlbDone = iemNativeLabelCreate(pReNative, kIemNativeLabelType_TlbDone, UINT32_MAX, uTlbSeqNo);
|
---|
11448 | off = iemNativeEmitJmpToLabel(pReNative, off, idxLabelTlbDone);
|
---|
11449 |
|
---|
11450 | /*
|
---|
11451 | * TlbLookup:
|
---|
11452 | */
|
---|
11453 | off = iemNativeEmitTlbLookup<true>(pReNative, off, &TlbState, iSegReg, cbMemAccess, cbMemAccess - 1,
|
---|
11454 | IEM_ACCESS_TYPE_WRITE, idxLabelTlbLookup, idxLabelTlbMiss, idxRegMemResult);
|
---|
11455 |
|
---|
11456 | /*
|
---|
11457 | * Emit code to do the actual storing / fetching.
|
---|
11458 | */
|
---|
11459 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 64);
|
---|
11460 | # ifdef VBOX_WITH_STATISTICS
|
---|
11461 | off = iemNativeEmitIncStamCounterInVCpuEx(pCodeBuf, off, TlbState.idxReg1, TlbState.idxReg2,
|
---|
11462 | RT_UOFFSETOF(VMCPUCC, iem.s.StatNativeTlbHitsForStack));
|
---|
11463 | # endif
|
---|
11464 | if (idxRegValue != UINT8_MAX)
|
---|
11465 | {
|
---|
11466 | switch (cbMemAccess)
|
---|
11467 | {
|
---|
11468 | case 2:
|
---|
11469 | off = iemNativeEmitStoreGpr16ByGprEx(pCodeBuf, off, idxRegValue, idxRegMemResult);
|
---|
11470 | break;
|
---|
11471 | case 4:
|
---|
11472 | if (!fIsIntelSeg)
|
---|
11473 | off = iemNativeEmitStoreGpr32ByGprEx(pCodeBuf, off, idxRegValue, idxRegMemResult);
|
---|
11474 | else
|
---|
11475 | {
|
---|
11476 | /* intel real mode segment push. 10890XE adds the 2nd of half EFLAGS to a
|
---|
11477 | PUSH FS in real mode, so we have to try emulate that here.
|
---|
11478 | We borrow the now unused idxReg1 from the TLB lookup code here. */
|
---|
11479 | uint8_t idxRegEfl = iemNativeRegAllocTmpForGuestRegIfAlreadyPresent(pReNative, &off,
|
---|
11480 | kIemNativeGstReg_EFlags);
|
---|
11481 | if (idxRegEfl != UINT8_MAX)
|
---|
11482 | {
|
---|
11483 | #ifdef ARCH_AMD64
|
---|
11484 | off = iemNativeEmitLoadGprFromGpr32(pReNative, off, TlbState.idxReg1, idxRegEfl);
|
---|
11485 | off = iemNativeEmitAndGpr32ByImm(pReNative, off, TlbState.idxReg1,
|
---|
11486 | UINT32_C(0xffff0000) & ~X86_EFL_RAZ_MASK);
|
---|
11487 | #else
|
---|
11488 | off = iemNativeEmitGpr32EqGprAndImmEx(iemNativeInstrBufEnsure(pReNative, off, 3),
|
---|
11489 | off, TlbState.idxReg1, idxRegEfl,
|
---|
11490 | UINT32_C(0xffff0000) & ~X86_EFL_RAZ_MASK);
|
---|
11491 | #endif
|
---|
11492 | iemNativeRegFreeTmp(pReNative, idxRegEfl);
|
---|
11493 | }
|
---|
11494 | else
|
---|
11495 | {
|
---|
11496 | off = iemNativeEmitLoadGprFromVCpuU32(pReNative, off, TlbState.idxReg1,
|
---|
11497 | RT_UOFFSETOF(VMCPUCC, cpum.GstCtx.eflags));
|
---|
11498 | off = iemNativeEmitAndGpr32ByImm(pReNative, off, TlbState.idxReg1,
|
---|
11499 | UINT32_C(0xffff0000) & ~X86_EFL_RAZ_MASK);
|
---|
11500 | }
|
---|
11501 | /* ASSUMES the upper half of idxRegValue is ZERO. */
|
---|
11502 | off = iemNativeEmitOrGpr32ByGpr(pReNative, off, TlbState.idxReg1, idxRegValue);
|
---|
11503 | off = iemNativeEmitStoreGpr32ByGprEx(pCodeBuf, off, TlbState.idxReg1, idxRegMemResult);
|
---|
11504 | }
|
---|
11505 | break;
|
---|
11506 | case 8:
|
---|
11507 | off = iemNativeEmitStoreGpr64ByGprEx(pCodeBuf, off, idxRegValue, idxRegMemResult);
|
---|
11508 | break;
|
---|
11509 | default:
|
---|
11510 | AssertFailed();
|
---|
11511 | }
|
---|
11512 | }
|
---|
11513 | else
|
---|
11514 | {
|
---|
11515 | switch (cbMemAccess)
|
---|
11516 | {
|
---|
11517 | case 2:
|
---|
11518 | off = iemNativeEmitStoreImm16ByGprEx(pCodeBuf, off,
|
---|
11519 | (uint16_t)pReNative->Core.aVars[idxVarValue].u.uValue,
|
---|
11520 | idxRegMemResult, TlbState.idxReg1);
|
---|
11521 | break;
|
---|
11522 | case 4:
|
---|
11523 | Assert(!fIsSegReg);
|
---|
11524 | off = iemNativeEmitStoreImm32ByGprEx(pCodeBuf, off,
|
---|
11525 | (uint32_t)pReNative->Core.aVars[idxVarValue].u.uValue,
|
---|
11526 | idxRegMemResult, TlbState.idxReg1);
|
---|
11527 | break;
|
---|
11528 | case 8:
|
---|
11529 | off = iemNativeEmitStoreImm64ByGprEx(pCodeBuf, off, pReNative->Core.aVars[idxVarValue].u.uValue,
|
---|
11530 | idxRegMemResult, TlbState.idxReg1);
|
---|
11531 | break;
|
---|
11532 | default:
|
---|
11533 | AssertFailed();
|
---|
11534 | }
|
---|
11535 | }
|
---|
11536 |
|
---|
11537 | iemNativeRegFreeTmp(pReNative, idxRegMemResult);
|
---|
11538 | TlbState.freeRegsAndReleaseVars(pReNative);
|
---|
11539 |
|
---|
11540 | /*
|
---|
11541 | * TlbDone:
|
---|
11542 | *
|
---|
11543 | * Commit the new RSP value.
|
---|
11544 | */
|
---|
11545 | iemNativeLabelDefine(pReNative, idxLabelTlbDone, off);
|
---|
11546 | }
|
---|
11547 | #endif /* IEMNATIVE_WITH_TLB_LOOKUP */
|
---|
11548 |
|
---|
11549 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxRegRsp, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.rsp));
|
---|
11550 | iemNativeRegFreeTmp(pReNative, idxRegRsp);
|
---|
11551 | if (idxRegEffSp != idxRegRsp)
|
---|
11552 | iemNativeRegFreeTmp(pReNative, idxRegEffSp);
|
---|
11553 |
|
---|
11554 | /* The value variable is implictly flushed. */
|
---|
11555 | if (idxRegValue != UINT8_MAX)
|
---|
11556 | iemNativeVarRegisterRelease(pReNative, idxVarValue);
|
---|
11557 | iemNativeVarFreeLocal(pReNative, idxVarValue);
|
---|
11558 |
|
---|
11559 | return off;
|
---|
11560 | }
|
---|
11561 |
|
---|
11562 |
|
---|
11563 |
|
---|
11564 | /* RT_MAKE_U32_FROM_U8(cBitsVar, cBitsFlat, 0, 0) */
|
---|
11565 | #define IEM_MC_POP_GREG_U16(a_iGReg) \
|
---|
11566 | off = iemNativeEmitStackPopGReg(pReNative, off, a_iGReg, RT_MAKE_U32_FROM_U8(16, 0, 0, 0), \
|
---|
11567 | (uintptr_t)iemNativeHlpStackFetchU16, pCallEntry->idxInstr)
|
---|
11568 | #define IEM_MC_POP_GREG_U32(a_iGReg) \
|
---|
11569 | off = iemNativeEmitStackPopGReg(pReNative, off, a_iGReg, RT_MAKE_U32_FROM_U8(32, 0, 0, 0), \
|
---|
11570 | (uintptr_t)iemNativeHlpStackFetchU32, pCallEntry->idxInstr)
|
---|
11571 | #define IEM_MC_POP_GREG_U64(a_iGReg) \
|
---|
11572 | off = iemNativeEmitStackPopGReg(pReNative, off, a_iGReg, RT_MAKE_U32_FROM_U8(64, 0, 0, 0), \
|
---|
11573 | (uintptr_t)iemNativeHlpStackFetchU64, pCallEntry->idxInstr)
|
---|
11574 |
|
---|
11575 | #define IEM_MC_FLAT32_POP_GREG_U16(a_iGReg) \
|
---|
11576 | off = iemNativeEmitStackPopGReg(pReNative, off, a_iGReg, RT_MAKE_U32_FROM_U8(16, 32, 0, 0), \
|
---|
11577 | (uintptr_t)iemNativeHlpStackFlatFetchU16, pCallEntry->idxInstr)
|
---|
11578 | #define IEM_MC_FLAT32_POP_GREG_U32(a_iGReg) \
|
---|
11579 | off = iemNativeEmitStackPopGReg(pReNative, off, a_iGReg, RT_MAKE_U32_FROM_U8(32, 32, 0, 0), \
|
---|
11580 | (uintptr_t)iemNativeHlpStackFlatFetchU32, pCallEntry->idxInstr)
|
---|
11581 |
|
---|
11582 | #define IEM_MC_FLAT64_POP_GREG_U16(a_iGReg) \
|
---|
11583 | off = iemNativeEmitStackPopGReg(pReNative, off, a_iGReg, RT_MAKE_U32_FROM_U8(16, 64, 0, 0), \
|
---|
11584 | (uintptr_t)iemNativeHlpStackFlatFetchU16, pCallEntry->idxInstr)
|
---|
11585 | #define IEM_MC_FLAT64_POP_GREG_U64(a_iGReg) \
|
---|
11586 | off = iemNativeEmitStackPopGReg(pReNative, off, a_iGReg, RT_MAKE_U32_FROM_U8(64, 64, 0, 0), \
|
---|
11587 | (uintptr_t)iemNativeHlpStackFlatFetchU64, pCallEntry->idxInstr)
|
---|
11588 |
|
---|
11589 |
|
---|
11590 | DECL_FORCE_INLINE_THROW(uint32_t)
|
---|
11591 | iemNativeEmitStackPopUse16Sp(PIEMNATIVEINSTR pCodeBuf, uint32_t off, uint8_t idxRegRsp, uint8_t idxRegEffSp, uint8_t cbMem,
|
---|
11592 | uint8_t idxRegTmp)
|
---|
11593 | {
|
---|
11594 | /* Use16BitSp: */
|
---|
11595 | #ifdef RT_ARCH_AMD64
|
---|
11596 | off = iemNativeEmitLoadGprFromGpr16Ex(pCodeBuf, off, idxRegEffSp, idxRegRsp);
|
---|
11597 | off = iemNativeEmitAddGpr16ImmEx(pCodeBuf, off, idxRegRsp, cbMem); /* ASSUMES this does NOT modify bits [63:16]! */
|
---|
11598 | RT_NOREF(idxRegTmp);
|
---|
11599 | #else
|
---|
11600 | /* ubfiz regeff, regrsp, #0, #16 - copies bits 15:0 from RSP to EffSp bits 15:0, zeroing bits 63:16. */
|
---|
11601 | pCodeBuf[off++] = Armv8A64MkInstrUbfiz(idxRegEffSp, idxRegRsp, 0, 16, false /*f64Bit*/);
|
---|
11602 | /* add tmp, regrsp, #cbMem */
|
---|
11603 | pCodeBuf[off++] = Armv8A64MkInstrAddUImm12(idxRegTmp, idxRegRsp, cbMem, false /*f64Bit*/);
|
---|
11604 | /* and tmp, tmp, #0xffff */
|
---|
11605 | Assert(Armv8A64ConvertImmRImmS2Mask32(15, 0) == 0xffff);
|
---|
11606 | pCodeBuf[off++] = Armv8A64MkInstrAndImm(idxRegTmp, idxRegTmp, 15, 0, false /*f64Bit*/);
|
---|
11607 | /* bfi regrsp, regeff, #0, #16 - moves bits 15:0 from tmp to RSP bits 15:0, keeping the other RSP bits as is. */
|
---|
11608 | pCodeBuf[off++] = Armv8A64MkInstrBfi(idxRegRsp, idxRegTmp, 0, 16, false /*f64Bit*/);
|
---|
11609 | #endif
|
---|
11610 | return off;
|
---|
11611 | }
|
---|
11612 |
|
---|
11613 |
|
---|
11614 | DECL_FORCE_INLINE(uint32_t)
|
---|
11615 | iemNativeEmitStackPopUse32Sp(PIEMNATIVEINSTR pCodeBuf, uint32_t off, uint8_t idxRegRsp, uint8_t idxRegEffSp, uint8_t cbMem)
|
---|
11616 | {
|
---|
11617 | /* Use32BitSp: */
|
---|
11618 | off = iemNativeEmitLoadGprFromGpr32Ex(pCodeBuf, off, idxRegEffSp, idxRegRsp);
|
---|
11619 | off = iemNativeEmitAddGpr32ImmEx(pCodeBuf, off, idxRegRsp, cbMem);
|
---|
11620 | return off;
|
---|
11621 | }
|
---|
11622 |
|
---|
11623 |
|
---|
11624 | /** IEM_MC[|_FLAT32|_FLAT64]_POP_GREG_U16/32/64 */
|
---|
11625 | DECL_INLINE_THROW(uint32_t)
|
---|
11626 | iemNativeEmitStackPopGReg(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxGReg,
|
---|
11627 | uint32_t cBitsVarAndFlat, uintptr_t pfnFunction, uint8_t idxInstr)
|
---|
11628 | {
|
---|
11629 | /*
|
---|
11630 | * Assert sanity.
|
---|
11631 | */
|
---|
11632 | Assert(idxGReg < 16);
|
---|
11633 | #ifdef VBOX_STRICT
|
---|
11634 | if (RT_BYTE2(cBitsVarAndFlat) != 0)
|
---|
11635 | {
|
---|
11636 | Assert( (pReNative->fExec & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT
|
---|
11637 | || (pReNative->fExec & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_PROT_FLAT
|
---|
11638 | || (pReNative->fExec & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_FLAT);
|
---|
11639 | Assert( pfnFunction
|
---|
11640 | == ( cBitsVarAndFlat == RT_MAKE_U32_FROM_U8(16, 32, 0, 0) ? (uintptr_t)iemNativeHlpStackFlatFetchU16
|
---|
11641 | : cBitsVarAndFlat == RT_MAKE_U32_FROM_U8(32, 32, 0, 0) ? (uintptr_t)iemNativeHlpStackFlatFetchU32
|
---|
11642 | : cBitsVarAndFlat == RT_MAKE_U32_FROM_U8(16, 64, 0, 0) ? (uintptr_t)iemNativeHlpStackFlatFetchU16
|
---|
11643 | : cBitsVarAndFlat == RT_MAKE_U32_FROM_U8(64, 64, 0, 0) ? (uintptr_t)iemNativeHlpStackFlatFetchU64
|
---|
11644 | : UINT64_C(0xc000b000a0009000) ));
|
---|
11645 | }
|
---|
11646 | else
|
---|
11647 | Assert( pfnFunction
|
---|
11648 | == ( cBitsVarAndFlat == RT_MAKE_U32_FROM_U8(16, 0, 0, 0) ? (uintptr_t)iemNativeHlpStackFetchU16
|
---|
11649 | : cBitsVarAndFlat == RT_MAKE_U32_FROM_U8(32, 0, 0, 0) ? (uintptr_t)iemNativeHlpStackFetchU32
|
---|
11650 | : cBitsVarAndFlat == RT_MAKE_U32_FROM_U8(64, 0, 0, 0) ? (uintptr_t)iemNativeHlpStackFetchU64
|
---|
11651 | : UINT64_C(0xc000b000a0009000) ));
|
---|
11652 | #endif
|
---|
11653 |
|
---|
11654 | #ifdef VBOX_STRICT
|
---|
11655 | /*
|
---|
11656 | * Check that the fExec flags we've got make sense.
|
---|
11657 | */
|
---|
11658 | off = iemNativeEmitExecFlagsCheck(pReNative, off, pReNative->fExec);
|
---|
11659 | #endif
|
---|
11660 |
|
---|
11661 | /*
|
---|
11662 | * To keep things simple we have to commit any pending writes first as we
|
---|
11663 | * may end up making calls.
|
---|
11664 | */
|
---|
11665 | off = iemNativeRegFlushPendingWrites(pReNative, off);
|
---|
11666 |
|
---|
11667 | /*
|
---|
11668 | * Determine the effective stack pointer, for non-FLAT modes we also update RSP.
|
---|
11669 | * For FLAT modes we'll do this in TlbDone as we'll be using the incoming RSP
|
---|
11670 | * directly as the effective stack pointer.
|
---|
11671 | * (Code structure is very similar to that of PUSH)
|
---|
11672 | */
|
---|
11673 | uint8_t const cbMem = RT_BYTE1(cBitsVarAndFlat) / 8;
|
---|
11674 | uint8_t const cBitsFlat = RT_BYTE2(cBitsVarAndFlat); RT_NOREF(cBitsFlat);
|
---|
11675 | uint8_t const idxRegRsp = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(X86_GREG_xSP),
|
---|
11676 | kIemNativeGstRegUse_ForUpdate, true /*fNoVolatileRegs*/);
|
---|
11677 | uint8_t const idxRegEffSp = cBitsFlat != 0 ? idxRegRsp : iemNativeRegAllocTmp(pReNative, &off);
|
---|
11678 | /** @todo can do a better job picking the register here. For cbMem >= 4 this
|
---|
11679 | * will be the resulting register value. */
|
---|
11680 | uint8_t const idxRegMemResult = iemNativeRegAllocTmp(pReNative, &off); /* pointer then value; arm64 SP += 2/4 helper too. */
|
---|
11681 |
|
---|
11682 | uint32_t offFixupJumpToUseOtherBitSp = UINT32_MAX;
|
---|
11683 | if (cBitsFlat != 0)
|
---|
11684 | {
|
---|
11685 | Assert(idxRegEffSp == idxRegRsp);
|
---|
11686 | Assert(cBitsFlat == 32 || cBitsFlat == 64);
|
---|
11687 | Assert(IEM_F_MODE_X86_IS_FLAT(pReNative->fExec));
|
---|
11688 | }
|
---|
11689 | else /** @todo We can skip the test if we're targeting pre-386 CPUs. */
|
---|
11690 | {
|
---|
11691 | Assert(idxRegEffSp != idxRegRsp);
|
---|
11692 | uint8_t const idxRegSsAttr = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_SEG_ATTRIB(X86_SREG_SS),
|
---|
11693 | kIemNativeGstRegUse_ReadOnly);
|
---|
11694 | #ifdef RT_ARCH_AMD64
|
---|
11695 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 32);
|
---|
11696 | #else
|
---|
11697 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 10);
|
---|
11698 | #endif
|
---|
11699 | off = iemNativeEmitTestAnyBitsInGpr32Ex(pCodeBuf, off, idxRegSsAttr, X86DESCATTR_D);
|
---|
11700 | iemNativeRegFreeTmp(pReNative, idxRegSsAttr);
|
---|
11701 | offFixupJumpToUseOtherBitSp = off;
|
---|
11702 | if ((pReNative->fExec & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT)
|
---|
11703 | {
|
---|
11704 | /** @todo can skip idxRegRsp updating when popping ESP. */
|
---|
11705 | off = iemNativeEmitJccToFixedEx(pCodeBuf, off, off /*8-bit suffices*/, kIemNativeInstrCond_e); /* jump if zero */
|
---|
11706 | off = iemNativeEmitStackPopUse32Sp(pCodeBuf, off, idxRegRsp, idxRegEffSp, cbMem);
|
---|
11707 | }
|
---|
11708 | else
|
---|
11709 | {
|
---|
11710 | off = iemNativeEmitJccToFixedEx(pCodeBuf, off, off /*8-bit suffices*/, kIemNativeInstrCond_ne); /* jump if not zero */
|
---|
11711 | off = iemNativeEmitStackPopUse16Sp(pCodeBuf, off, idxRegRsp, idxRegEffSp, cbMem, idxRegMemResult);
|
---|
11712 | }
|
---|
11713 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
11714 | }
|
---|
11715 | /* SpUpdateEnd: */
|
---|
11716 | uint32_t const offLabelSpUpdateEnd = off;
|
---|
11717 |
|
---|
11718 | /*
|
---|
11719 | * Okay, now prepare for TLB lookup and jump to code (or the TlbMiss if
|
---|
11720 | * we're skipping lookup).
|
---|
11721 | */
|
---|
11722 | uint8_t const iSegReg = cBitsFlat != 0 ? UINT8_MAX : X86_SREG_SS;
|
---|
11723 | IEMNATIVEEMITTLBSTATE const TlbState(pReNative, idxRegEffSp, &off, iSegReg, cbMem);
|
---|
11724 | uint16_t const uTlbSeqNo = pReNative->uTlbSeqNo++;
|
---|
11725 | uint32_t const idxLabelTlbMiss = iemNativeLabelCreate(pReNative, kIemNativeLabelType_TlbMiss, UINT32_MAX, uTlbSeqNo);
|
---|
11726 | uint32_t const idxLabelTlbLookup = !TlbState.fSkip
|
---|
11727 | ? iemNativeLabelCreate(pReNative, kIemNativeLabelType_TlbLookup, UINT32_MAX, uTlbSeqNo)
|
---|
11728 | : UINT32_MAX;
|
---|
11729 |
|
---|
11730 | if (!TlbState.fSkip)
|
---|
11731 | off = iemNativeEmitJmpToLabel(pReNative, off, idxLabelTlbLookup); /** @todo short jump */
|
---|
11732 | else
|
---|
11733 | off = iemNativeEmitJmpToLabel(pReNative, off, idxLabelTlbMiss); /** @todo short jump */
|
---|
11734 |
|
---|
11735 | /*
|
---|
11736 | * Use16BitSp:
|
---|
11737 | */
|
---|
11738 | if (cBitsFlat == 0)
|
---|
11739 | {
|
---|
11740 | #ifdef RT_ARCH_AMD64
|
---|
11741 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 32);
|
---|
11742 | #else
|
---|
11743 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 10);
|
---|
11744 | #endif
|
---|
11745 | iemNativeFixupFixedJump(pReNative, offFixupJumpToUseOtherBitSp, off);
|
---|
11746 | if ((pReNative->fExec & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT)
|
---|
11747 | off = iemNativeEmitStackPopUse16Sp(pCodeBuf, off, idxRegRsp, idxRegEffSp, cbMem, idxRegMemResult);
|
---|
11748 | else
|
---|
11749 | off = iemNativeEmitStackPopUse32Sp(pCodeBuf, off, idxRegRsp, idxRegEffSp, cbMem);
|
---|
11750 | off = iemNativeEmitJmpToFixedEx(pCodeBuf, off, offLabelSpUpdateEnd);
|
---|
11751 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
11752 | }
|
---|
11753 |
|
---|
11754 | /*
|
---|
11755 | * TlbMiss:
|
---|
11756 | *
|
---|
11757 | * Call helper to do the pushing.
|
---|
11758 | */
|
---|
11759 | iemNativeLabelDefine(pReNative, idxLabelTlbMiss, off);
|
---|
11760 |
|
---|
11761 | #ifdef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
11762 | off = iemNativeEmitStoreImmToVCpuU8(pReNative, off, idxInstr, RT_UOFFSETOF(VMCPUCC, iem.s.idxTbCurInstr));
|
---|
11763 | #else
|
---|
11764 | RT_NOREF(idxInstr);
|
---|
11765 | #endif
|
---|
11766 |
|
---|
11767 | uint32_t const fHstRegsNotToSave = TlbState.getRegsNotToSave()
|
---|
11768 | | (idxRegMemResult < RT_ELEMENTS(pReNative->Core.aHstRegs) ? RT_BIT_32(idxRegMemResult) : 0)
|
---|
11769 | | (idxRegEffSp != idxRegRsp ? RT_BIT_32(idxRegEffSp) : 0);
|
---|
11770 | off = iemNativeVarSaveVolatileRegsPreHlpCall(pReNative, off, fHstRegsNotToSave);
|
---|
11771 |
|
---|
11772 |
|
---|
11773 | /* IEMNATIVE_CALL_ARG1_GREG = EffSp/RSP */
|
---|
11774 | if (idxRegEffSp != IEMNATIVE_CALL_ARG1_GREG)
|
---|
11775 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG1_GREG, idxRegEffSp);
|
---|
11776 |
|
---|
11777 | /* IEMNATIVE_CALL_ARG0_GREG = pVCpu */
|
---|
11778 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG0_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
11779 |
|
---|
11780 | /* Done setting up parameters, make the call. */
|
---|
11781 | off = iemNativeEmitCallImm(pReNative, off, pfnFunction);
|
---|
11782 |
|
---|
11783 | /* Move the return register content to idxRegMemResult. */
|
---|
11784 | if (idxRegMemResult != IEMNATIVE_CALL_RET_GREG)
|
---|
11785 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, idxRegMemResult, IEMNATIVE_CALL_RET_GREG);
|
---|
11786 |
|
---|
11787 | /* Restore variables and guest shadow registers to volatile registers. */
|
---|
11788 | off = iemNativeVarRestoreVolatileRegsPostHlpCall(pReNative, off, fHstRegsNotToSave);
|
---|
11789 | off = iemNativeRegRestoreGuestShadowsInVolatileRegs(pReNative, off, TlbState.getActiveRegsWithShadows());
|
---|
11790 |
|
---|
11791 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP
|
---|
11792 | if (!TlbState.fSkip)
|
---|
11793 | {
|
---|
11794 | /* end of TlbMiss - Jump to the done label. */
|
---|
11795 | uint32_t const idxLabelTlbDone = iemNativeLabelCreate(pReNative, kIemNativeLabelType_TlbDone, UINT32_MAX, uTlbSeqNo);
|
---|
11796 | off = iemNativeEmitJmpToLabel(pReNative, off, idxLabelTlbDone);
|
---|
11797 |
|
---|
11798 | /*
|
---|
11799 | * TlbLookup:
|
---|
11800 | */
|
---|
11801 | off = iemNativeEmitTlbLookup<true>(pReNative, off, &TlbState, iSegReg, cbMem, cbMem - 1, IEM_ACCESS_TYPE_READ,
|
---|
11802 | idxLabelTlbLookup, idxLabelTlbMiss, idxRegMemResult);
|
---|
11803 |
|
---|
11804 | /*
|
---|
11805 | * Emit code to load the value (from idxRegMemResult into idxRegMemResult).
|
---|
11806 | */
|
---|
11807 | PIEMNATIVEINSTR const pCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 32);
|
---|
11808 | # ifdef VBOX_WITH_STATISTICS
|
---|
11809 | off = iemNativeEmitIncStamCounterInVCpuEx(pCodeBuf, off, TlbState.idxReg1, TlbState.idxReg2,
|
---|
11810 | RT_UOFFSETOF(VMCPUCC, iem.s.StatNativeTlbHitsForStack));
|
---|
11811 | # endif
|
---|
11812 | switch (cbMem)
|
---|
11813 | {
|
---|
11814 | case 2:
|
---|
11815 | off = iemNativeEmitLoadGprByGprU16Ex(pCodeBuf, off, idxRegMemResult, idxRegMemResult);
|
---|
11816 | break;
|
---|
11817 | case 4:
|
---|
11818 | off = iemNativeEmitLoadGprByGprU32Ex(pCodeBuf, off, idxRegMemResult, idxRegMemResult);
|
---|
11819 | break;
|
---|
11820 | case 8:
|
---|
11821 | off = iemNativeEmitLoadGprByGprU64Ex(pCodeBuf, off, idxRegMemResult, idxRegMemResult);
|
---|
11822 | break;
|
---|
11823 | default:
|
---|
11824 | AssertFailed();
|
---|
11825 | }
|
---|
11826 |
|
---|
11827 | TlbState.freeRegsAndReleaseVars(pReNative);
|
---|
11828 |
|
---|
11829 | /*
|
---|
11830 | * TlbDone:
|
---|
11831 | *
|
---|
11832 | * Set the new RSP value (FLAT accesses needs to calculate it first) and
|
---|
11833 | * commit the popped register value.
|
---|
11834 | */
|
---|
11835 | iemNativeLabelDefine(pReNative, idxLabelTlbDone, off);
|
---|
11836 | }
|
---|
11837 | #endif /* IEMNATIVE_WITH_TLB_LOOKUP */
|
---|
11838 |
|
---|
11839 | if (idxGReg != X86_GREG_xSP)
|
---|
11840 | {
|
---|
11841 | /* Set the register. */
|
---|
11842 | if (cbMem >= sizeof(uint32_t))
|
---|
11843 | {
|
---|
11844 | iemNativeRegClearAndMarkAsGstRegShadow(pReNative, idxRegMemResult, IEMNATIVEGSTREG_GPR(idxGReg), off);
|
---|
11845 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxRegMemResult,
|
---|
11846 | RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[idxGReg]));
|
---|
11847 | }
|
---|
11848 | else
|
---|
11849 | {
|
---|
11850 | Assert(cbMem == sizeof(uint16_t));
|
---|
11851 | uint8_t const idxRegDst = iemNativeRegAllocTmpForGuestReg(pReNative, &off, IEMNATIVEGSTREG_GPR(idxGReg),
|
---|
11852 | kIemNativeGstRegUse_ForUpdate);
|
---|
11853 | off = iemNativeEmitGprMergeInGpr16(pReNative, off, idxRegDst, idxRegMemResult);
|
---|
11854 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxRegDst, RT_UOFFSETOF_DYN(VMCPU, cpum.GstCtx.aGRegs[idxGReg]));
|
---|
11855 | iemNativeRegFreeTmp(pReNative, idxRegDst);
|
---|
11856 | }
|
---|
11857 |
|
---|
11858 | /* Complete RSP calculation for FLAT mode. */
|
---|
11859 | if (idxRegEffSp == idxRegRsp)
|
---|
11860 | {
|
---|
11861 | if (cBitsFlat == 64)
|
---|
11862 | off = iemNativeEmitAddGprImm8(pReNative, off, idxRegRsp, sizeof(uint64_t));
|
---|
11863 | else
|
---|
11864 | off = iemNativeEmitAddGpr32Imm8(pReNative, off, idxRegRsp, sizeof(uint32_t));
|
---|
11865 | }
|
---|
11866 | }
|
---|
11867 | else
|
---|
11868 | {
|
---|
11869 | /* We're popping RSP, ESP or SP. Only the is a bit extra work, of course. */
|
---|
11870 | if (cbMem == sizeof(uint64_t))
|
---|
11871 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, idxRegRsp, idxRegMemResult);
|
---|
11872 | else if (cbMem == sizeof(uint32_t))
|
---|
11873 | off = iemNativeEmitLoadGprFromGpr32(pReNative, off, idxRegRsp, idxRegMemResult);
|
---|
11874 | else
|
---|
11875 | {
|
---|
11876 | if (idxRegEffSp == idxRegRsp)
|
---|
11877 | {
|
---|
11878 | if (cBitsFlat == 64)
|
---|
11879 | off = iemNativeEmitAddGprImm8(pReNative, off, idxRegRsp, sizeof(uint64_t));
|
---|
11880 | else
|
---|
11881 | off = iemNativeEmitAddGpr32Imm8(pReNative, off, idxRegRsp, sizeof(uint32_t));
|
---|
11882 | }
|
---|
11883 | off = iemNativeEmitGprMergeInGpr16(pReNative, off, idxRegRsp, idxRegMemResult);
|
---|
11884 | }
|
---|
11885 | }
|
---|
11886 | off = iemNativeEmitStoreGprToVCpuU64(pReNative, off, idxRegRsp, RT_UOFFSETOF(VMCPU, cpum.GstCtx.rsp));
|
---|
11887 |
|
---|
11888 | iemNativeRegFreeTmp(pReNative, idxRegRsp);
|
---|
11889 | if (idxRegEffSp != idxRegRsp)
|
---|
11890 | iemNativeRegFreeTmp(pReNative, idxRegEffSp);
|
---|
11891 | iemNativeRegFreeTmp(pReNative, idxRegMemResult);
|
---|
11892 |
|
---|
11893 | return off;
|
---|
11894 | }
|
---|
11895 |
|
---|
11896 |
|
---|
11897 |
|
---|
11898 | /*********************************************************************************************************************************
|
---|
11899 | * Memory mapping (IEM_MEM_MAP_XXX, IEM_MEM_FLAT_MAP_XXX). *
|
---|
11900 | *********************************************************************************************************************************/
|
---|
11901 |
|
---|
11902 | #define IEM_MC_MEM_MAP_U8_RW(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
|
---|
11903 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem, sizeof(uint8_t), \
|
---|
11904 | IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE, 0 /*fAlignMask*/, \
|
---|
11905 | (uintptr_t)iemNativeHlpMemMapDataU8Rw, pCallEntry->idxInstr)
|
---|
11906 |
|
---|
11907 | #define IEM_MC_MEM_MAP_U8_WO(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
|
---|
11908 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem, sizeof(uint8_t), \
|
---|
11909 | IEM_ACCESS_TYPE_WRITE, 0 /*fAlignMask*/, \
|
---|
11910 | (uintptr_t)iemNativeHlpMemMapDataU8Wo, pCallEntry->idxInstr) \
|
---|
11911 |
|
---|
11912 | #define IEM_MC_MEM_MAP_U8_RO(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
|
---|
11913 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem, sizeof(uint8_t), \
|
---|
11914 | IEM_ACCESS_TYPE_READ, 0 /*fAlignMask*/, \
|
---|
11915 | (uintptr_t)iemNativeHlpMemMapDataU8Ro, pCallEntry->idxInstr)
|
---|
11916 |
|
---|
11917 |
|
---|
11918 | #define IEM_MC_MEM_MAP_U16_RW(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
|
---|
11919 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem, sizeof(uint16_t), \
|
---|
11920 | IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE, sizeof(uint16_t) - 1 /*fAlignMask*/, \
|
---|
11921 | (uintptr_t)iemNativeHlpMemMapDataU16Rw, pCallEntry->idxInstr)
|
---|
11922 |
|
---|
11923 | #define IEM_MC_MEM_MAP_U16_WO(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
|
---|
11924 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem, sizeof(uint16_t), \
|
---|
11925 | IEM_ACCESS_TYPE_WRITE, sizeof(uint16_t) - 1 /*fAlignMask*/, \
|
---|
11926 | (uintptr_t)iemNativeHlpMemMapDataU16Wo, pCallEntry->idxInstr) \
|
---|
11927 |
|
---|
11928 | #define IEM_MC_MEM_MAP_U16_RO(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
|
---|
11929 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem, sizeof(uint16_t), \
|
---|
11930 | IEM_ACCESS_TYPE_READ, sizeof(uint16_t) - 1 /*fAlignMask*/, \
|
---|
11931 | (uintptr_t)iemNativeHlpMemMapDataU16Ro, pCallEntry->idxInstr)
|
---|
11932 |
|
---|
11933 | #define IEM_MC_MEM_MAP_I16_WO(a_pi16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
|
---|
11934 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pi16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem, sizeof(int16_t), \
|
---|
11935 | IEM_ACCESS_TYPE_WRITE, sizeof(uint16_t) - 1 /*fAlignMask*/, \
|
---|
11936 | (uintptr_t)iemNativeHlpMemMapDataU16Wo, pCallEntry->idxInstr) \
|
---|
11937 |
|
---|
11938 |
|
---|
11939 | #define IEM_MC_MEM_MAP_U32_RW(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
|
---|
11940 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem, sizeof(uint32_t), \
|
---|
11941 | IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE, sizeof(uint32_t) - 1 /*fAlignMask*/, \
|
---|
11942 | (uintptr_t)iemNativeHlpMemMapDataU32Rw, pCallEntry->idxInstr)
|
---|
11943 |
|
---|
11944 | #define IEM_MC_MEM_MAP_U32_WO(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
|
---|
11945 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem, sizeof(uint32_t), \
|
---|
11946 | IEM_ACCESS_TYPE_WRITE, sizeof(uint32_t) - 1 /*fAlignMask*/, \
|
---|
11947 | (uintptr_t)iemNativeHlpMemMapDataU32Wo, pCallEntry->idxInstr) \
|
---|
11948 |
|
---|
11949 | #define IEM_MC_MEM_MAP_U32_RO(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
|
---|
11950 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem, sizeof(uint32_t), \
|
---|
11951 | IEM_ACCESS_TYPE_READ, sizeof(uint32_t) - 1 /*fAlignMask*/, \
|
---|
11952 | (uintptr_t)iemNativeHlpMemMapDataU32Ro, pCallEntry->idxInstr)
|
---|
11953 |
|
---|
11954 | #define IEM_MC_MEM_MAP_I32_WO(a_pi32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
|
---|
11955 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pi32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem, sizeof(int32_t), \
|
---|
11956 | IEM_ACCESS_TYPE_WRITE, sizeof(uint32_t) - 1 /*fAlignMask*/, \
|
---|
11957 | (uintptr_t)iemNativeHlpMemMapDataU32Wo, pCallEntry->idxInstr) \
|
---|
11958 |
|
---|
11959 |
|
---|
11960 | #define IEM_MC_MEM_MAP_U64_RW(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
|
---|
11961 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem, sizeof(uint64_t), \
|
---|
11962 | IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE, sizeof(uint64_t) - 1 /*fAlignMask*/, \
|
---|
11963 | (uintptr_t)iemNativeHlpMemMapDataU64Rw, pCallEntry->idxInstr)
|
---|
11964 |
|
---|
11965 | #define IEM_MC_MEM_MAP_U64_WO(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
|
---|
11966 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem, sizeof(uint64_t), \
|
---|
11967 | IEM_ACCESS_TYPE_WRITE, sizeof(uint64_t) - 1 /*fAlignMask*/, \
|
---|
11968 | (uintptr_t)iemNativeHlpMemMapDataU64Wo, pCallEntry->idxInstr) \
|
---|
11969 |
|
---|
11970 | #define IEM_MC_MEM_MAP_U64_RO(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
|
---|
11971 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem, sizeof(uint64_t), \
|
---|
11972 | IEM_ACCESS_TYPE_READ, sizeof(uint64_t) - 1 /*fAlignMask*/, \
|
---|
11973 | (uintptr_t)iemNativeHlpMemMapDataU64Ro, pCallEntry->idxInstr)
|
---|
11974 |
|
---|
11975 | #define IEM_MC_MEM_MAP_I64_WO(a_pi64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
|
---|
11976 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pi64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem, sizeof(int64_t), \
|
---|
11977 | IEM_ACCESS_TYPE_WRITE, sizeof(uint64_t) - 1 /*fAlignMask*/, \
|
---|
11978 | (uintptr_t)iemNativeHlpMemMapDataU64Wo, pCallEntry->idxInstr) \
|
---|
11979 |
|
---|
11980 |
|
---|
11981 | #define IEM_MC_MEM_MAP_R80_WO(a_pr80Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
|
---|
11982 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pr80Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem, sizeof(RTFLOAT80U), \
|
---|
11983 | IEM_ACCESS_TYPE_WRITE, sizeof(uint64_t) - 1 /*fAlignMask*/, \
|
---|
11984 | (uintptr_t)iemNativeHlpMemMapDataR80Wo, pCallEntry->idxInstr) \
|
---|
11985 |
|
---|
11986 | #define IEM_MC_MEM_MAP_D80_WO(a_pd80Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
|
---|
11987 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pd80Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem, sizeof(RTFLOAT80U), \
|
---|
11988 | IEM_ACCESS_TYPE_WRITE, sizeof(uint64_t) - 1 /*fAlignMask*/, /** @todo check BCD align */ \
|
---|
11989 | (uintptr_t)iemNativeHlpMemMapDataD80Wo, pCallEntry->idxInstr) \
|
---|
11990 |
|
---|
11991 |
|
---|
11992 | #define IEM_MC_MEM_MAP_U128_RW(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
|
---|
11993 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem, sizeof(RTUINT128U), \
|
---|
11994 | IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE, sizeof(RTUINT128U) - 1 /*fAlignMask*/, \
|
---|
11995 | (uintptr_t)iemNativeHlpMemMapDataU128Rw, pCallEntry->idxInstr)
|
---|
11996 |
|
---|
11997 | #define IEM_MC_MEM_MAP_U128_WO(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
|
---|
11998 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem, sizeof(RTUINT128U), \
|
---|
11999 | IEM_ACCESS_TYPE_WRITE, sizeof(RTUINT128U) - 1 /*fAlignMask*/, \
|
---|
12000 | (uintptr_t)iemNativeHlpMemMapDataU128Wo, pCallEntry->idxInstr) \
|
---|
12001 |
|
---|
12002 | #define IEM_MC_MEM_MAP_U128_RO(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
|
---|
12003 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem, sizeof(RTUINT128U), \
|
---|
12004 | IEM_ACCESS_TYPE_READ, sizeof(RTUINT128U) - 1 /*fAlignMask*/, \
|
---|
12005 | (uintptr_t)iemNativeHlpMemMapDataU128Ro, pCallEntry->idxInstr)
|
---|
12006 |
|
---|
12007 |
|
---|
12008 |
|
---|
12009 | #define IEM_MC_MEM_FLAT_MAP_U8_RW(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
|
---|
12010 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu8Mem, a_bUnmapInfo, UINT8_MAX, a_GCPtrMem, sizeof(uint8_t), \
|
---|
12011 | IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE, 0 /*fAlignMask*/, \
|
---|
12012 | (uintptr_t)iemNativeHlpMemFlatMapDataU8Rw, pCallEntry->idxInstr)
|
---|
12013 |
|
---|
12014 | #define IEM_MC_MEM_FLAT_MAP_U8_WO(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
|
---|
12015 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu8Mem, a_bUnmapInfo, UINT8_MAX, a_GCPtrMem, sizeof(uint8_t), \
|
---|
12016 | IEM_ACCESS_TYPE_WRITE, 0 /*fAlignMask*/, \
|
---|
12017 | (uintptr_t)iemNativeHlpMemFlatMapDataU8Wo, pCallEntry->idxInstr) \
|
---|
12018 |
|
---|
12019 | #define IEM_MC_MEM_FLAT_MAP_U8_RO(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
|
---|
12020 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu8Mem, a_bUnmapInfo, UINT8_MAX, a_GCPtrMem, sizeof(uint8_t), \
|
---|
12021 | IEM_ACCESS_TYPE_READ, 0 /*fAlignMask*/, \
|
---|
12022 | (uintptr_t)iemNativeHlpMemFlatMapDataU8Ro, pCallEntry->idxInstr)
|
---|
12023 |
|
---|
12024 |
|
---|
12025 | #define IEM_MC_MEM_FLAT_MAP_U16_RW(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
|
---|
12026 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu16Mem, a_bUnmapInfo, UINT8_MAX, a_GCPtrMem, sizeof(uint16_t), \
|
---|
12027 | IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE, sizeof(uint16_t) - 1 /*fAlignMask*/, \
|
---|
12028 | (uintptr_t)iemNativeHlpMemFlatMapDataU16Rw, pCallEntry->idxInstr)
|
---|
12029 |
|
---|
12030 | #define IEM_MC_MEM_FLAT_MAP_U16_WO(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
|
---|
12031 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu16Mem, a_bUnmapInfo, UINT8_MAX, a_GCPtrMem, sizeof(uint16_t), \
|
---|
12032 | IEM_ACCESS_TYPE_WRITE, sizeof(uint16_t) - 1 /*fAlignMask*/, \
|
---|
12033 | (uintptr_t)iemNativeHlpMemFlatMapDataU16Wo, pCallEntry->idxInstr) \
|
---|
12034 |
|
---|
12035 | #define IEM_MC_MEM_FLAT_MAP_U16_RO(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
|
---|
12036 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu16Mem, a_bUnmapInfo, UINT8_MAX, a_GCPtrMem, sizeof(uint16_t), \
|
---|
12037 | IEM_ACCESS_TYPE_READ, sizeof(uint16_t) - 1 /*fAlignMask*/, \
|
---|
12038 | (uintptr_t)iemNativeHlpMemFlatMapDataU16Ro, pCallEntry->idxInstr)
|
---|
12039 |
|
---|
12040 | #define IEM_MC_MEM_FLAT_MAP_I16_WO(a_pi16Mem, a_bUnmapInfo, a_GCPtrMem) \
|
---|
12041 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pi16Mem, a_bUnmapInfo, UINT8_MAX, a_GCPtrMem, sizeof(int16_t), \
|
---|
12042 | IEM_ACCESS_TYPE_WRITE, sizeof(uint16_t) - 1 /*fAlignMask*/, \
|
---|
12043 | (uintptr_t)iemNativeHlpMemFlatMapDataU16Wo, pCallEntry->idxInstr) \
|
---|
12044 |
|
---|
12045 |
|
---|
12046 | #define IEM_MC_MEM_FLAT_MAP_U32_RW(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
|
---|
12047 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu32Mem, a_bUnmapInfo, UINT8_MAX, a_GCPtrMem, sizeof(uint32_t), \
|
---|
12048 | IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE, sizeof(uint32_t) - 1 /*fAlignMask*/, \
|
---|
12049 | (uintptr_t)iemNativeHlpMemFlatMapDataU32Rw, pCallEntry->idxInstr)
|
---|
12050 |
|
---|
12051 | #define IEM_MC_MEM_FLAT_MAP_U32_WO(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
|
---|
12052 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu32Mem, a_bUnmapInfo, UINT8_MAX, a_GCPtrMem, sizeof(uint32_t), \
|
---|
12053 | IEM_ACCESS_TYPE_WRITE, sizeof(uint32_t) - 1 /*fAlignMask*/, \
|
---|
12054 | (uintptr_t)iemNativeHlpMemFlatMapDataU32Wo, pCallEntry->idxInstr) \
|
---|
12055 |
|
---|
12056 | #define IEM_MC_MEM_FLAT_MAP_U32_RO(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
|
---|
12057 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu32Mem, a_bUnmapInfo, UINT8_MAX, a_GCPtrMem, sizeof(uint32_t), \
|
---|
12058 | IEM_ACCESS_TYPE_READ, sizeof(uint32_t) - 1 /*fAlignMask*/, \
|
---|
12059 | (uintptr_t)iemNativeHlpMemFlatMapDataU32Ro, pCallEntry->idxInstr)
|
---|
12060 |
|
---|
12061 | #define IEM_MC_MEM_FLAT_MAP_I32_WO(a_pi32Mem, a_bUnmapInfo, a_GCPtrMem) \
|
---|
12062 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pi32Mem, a_bUnmapInfo, UINT8_MAX, a_GCPtrMem, sizeof(int32_t), \
|
---|
12063 | IEM_ACCESS_TYPE_WRITE, sizeof(uint32_t) - 1 /*fAlignMask*/, \
|
---|
12064 | (uintptr_t)iemNativeHlpMemFlatMapDataU32Wo, pCallEntry->idxInstr) \
|
---|
12065 |
|
---|
12066 |
|
---|
12067 | #define IEM_MC_MEM_FLAT_MAP_U64_RW(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
|
---|
12068 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu64Mem, a_bUnmapInfo, UINT8_MAX, a_GCPtrMem, sizeof(uint64_t), \
|
---|
12069 | IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE, sizeof(uint64_t) - 1 /*fAlignMask*/, \
|
---|
12070 | (uintptr_t)iemNativeHlpMemFlatMapDataU64Rw, pCallEntry->idxInstr)
|
---|
12071 |
|
---|
12072 | #define IEM_MC_MEM_FLAT_MAP_U64_WO(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
|
---|
12073 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu64Mem, a_bUnmapInfo, UINT8_MAX, a_GCPtrMem, sizeof(uint64_t), \
|
---|
12074 | IEM_ACCESS_TYPE_WRITE, sizeof(uint64_t) - 1 /*fAlignMask*/, \
|
---|
12075 | (uintptr_t)iemNativeHlpMemFlatMapDataU64Wo, pCallEntry->idxInstr) \
|
---|
12076 |
|
---|
12077 | #define IEM_MC_MEM_FLAT_MAP_U64_RO(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
|
---|
12078 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu64Mem, a_bUnmapInfo, UINT8_MAX, a_GCPtrMem, sizeof(uint64_t), \
|
---|
12079 | IEM_ACCESS_TYPE_READ, sizeof(uint64_t) - 1 /*fAlignMask*/, \
|
---|
12080 | (uintptr_t)iemNativeHlpMemFlatMapDataU64Ro, pCallEntry->idxInstr)
|
---|
12081 |
|
---|
12082 | #define IEM_MC_MEM_FLAT_MAP_I64_WO(a_pi64Mem, a_bUnmapInfo, a_GCPtrMem) \
|
---|
12083 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pi64Mem, a_bUnmapInfo, UINT8_MAX, a_GCPtrMem, sizeof(int64_t), \
|
---|
12084 | IEM_ACCESS_TYPE_WRITE, sizeof(uint64_t) - 1 /*fAlignMask*/, \
|
---|
12085 | (uintptr_t)iemNativeHlpMemFlatMapDataU64Wo, pCallEntry->idxInstr) \
|
---|
12086 |
|
---|
12087 |
|
---|
12088 | #define IEM_MC_MEM_FLAT_MAP_R80_WO(a_pr80Mem, a_bUnmapInfo, a_GCPtrMem) \
|
---|
12089 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pr80Mem, a_bUnmapInfo, UINT8_MAX, a_GCPtrMem, sizeof(RTFLOAT80U), \
|
---|
12090 | IEM_ACCESS_TYPE_WRITE, sizeof(uint64_t) - 1 /*fAlignMask*/, \
|
---|
12091 | (uintptr_t)iemNativeHlpMemFlatMapDataR80Wo, pCallEntry->idxInstr) \
|
---|
12092 |
|
---|
12093 | #define IEM_MC_MEM_FLAT_MAP_D80_WO(a_pd80Mem, a_bUnmapInfo, a_GCPtrMem) \
|
---|
12094 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pd80Mem, a_bUnmapInfo, UINT8_MAX, a_GCPtrMem, sizeof(RTFLOAT80U), \
|
---|
12095 | IEM_ACCESS_TYPE_WRITE, sizeof(uint64_t) - 1 /*fAlignMask*/, /** @todo check BCD align */ \
|
---|
12096 | (uintptr_t)iemNativeHlpMemFlatMapDataD80Wo, pCallEntry->idxInstr) \
|
---|
12097 |
|
---|
12098 |
|
---|
12099 | #define IEM_MC_MEM_FLAT_MAP_U128_RW(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
|
---|
12100 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu128Mem, a_bUnmapInfo, UINT8_MAX, a_GCPtrMem, sizeof(RTUINT128U), \
|
---|
12101 | IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE, sizeof(RTUINT128U) - 1 /*fAlignMask*/, \
|
---|
12102 | (uintptr_t)iemNativeHlpMemFlatMapDataU128Rw, pCallEntry->idxInstr)
|
---|
12103 |
|
---|
12104 | #define IEM_MC_MEM_FLAT_MAP_U128_WO(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
|
---|
12105 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu128Mem, a_bUnmapInfo, UINT8_MAX, a_GCPtrMem, sizeof(RTUINT128U), \
|
---|
12106 | IEM_ACCESS_TYPE_WRITE, sizeof(RTUINT128U) - 1 /*fAlignMask*/, \
|
---|
12107 | (uintptr_t)iemNativeHlpMemFlatMapDataU128Wo, pCallEntry->idxInstr) \
|
---|
12108 |
|
---|
12109 | #define IEM_MC_MEM_FLAT_MAP_U128_RO(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
|
---|
12110 | off = iemNativeEmitMemMapCommon(pReNative, off, a_pu128Mem, a_bUnmapInfo, UINT8_MAX, a_GCPtrMem, sizeof(RTUINT128U), \
|
---|
12111 | IEM_ACCESS_TYPE_READ, sizeof(RTUINT128U) - 1 /*fAlignMask*/, \
|
---|
12112 | (uintptr_t)iemNativeHlpMemFlatMapDataU128Ro, pCallEntry->idxInstr)
|
---|
12113 |
|
---|
12114 |
|
---|
12115 | DECL_INLINE_THROW(uint32_t)
|
---|
12116 | iemNativeEmitMemMapCommon(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVarMem, uint8_t idxVarUnmapInfo,
|
---|
12117 | uint8_t iSegReg, uint8_t idxVarGCPtrMem, uint8_t cbMem, uint32_t fAccess, uint8_t fAlignMask,
|
---|
12118 | uintptr_t pfnFunction, uint8_t idxInstr)
|
---|
12119 | {
|
---|
12120 | /*
|
---|
12121 | * Assert sanity.
|
---|
12122 | */
|
---|
12123 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVarMem);
|
---|
12124 | AssertStmt( pReNative->Core.aVars[idxVarMem].enmKind == kIemNativeVarKind_Invalid
|
---|
12125 | && pReNative->Core.aVars[idxVarMem].cbVar == sizeof(void *),
|
---|
12126 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_UNEXPECTED_KIND));
|
---|
12127 |
|
---|
12128 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVarUnmapInfo);
|
---|
12129 | AssertStmt( pReNative->Core.aVars[idxVarUnmapInfo].enmKind == kIemNativeVarKind_Invalid
|
---|
12130 | && pReNative->Core.aVars[idxVarUnmapInfo].cbVar == sizeof(uint8_t),
|
---|
12131 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_UNEXPECTED_KIND));
|
---|
12132 |
|
---|
12133 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVarGCPtrMem);
|
---|
12134 | AssertStmt( pReNative->Core.aVars[idxVarGCPtrMem].enmKind == kIemNativeVarKind_Immediate
|
---|
12135 | || pReNative->Core.aVars[idxVarGCPtrMem].enmKind == kIemNativeVarKind_Stack,
|
---|
12136 | IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_VAR_UNEXPECTED_KIND));
|
---|
12137 |
|
---|
12138 | Assert(iSegReg < 6 || iSegReg == UINT8_MAX);
|
---|
12139 |
|
---|
12140 | AssertCompile(IEMNATIVE_CALL_ARG_GREG_COUNT >= 4);
|
---|
12141 |
|
---|
12142 | #ifdef VBOX_STRICT
|
---|
12143 | # define IEM_MAP_HLP_FN(a_fAccess, a_fnBase) \
|
---|
12144 | ( ((a_fAccess) & IEM_ACCESS_TYPE_MASK) == (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_TYPE_READ) \
|
---|
12145 | ? (uintptr_t)RT_CONCAT(a_fnBase,Rw) \
|
---|
12146 | : ((a_fAccess) & IEM_ACCESS_TYPE_MASK) == IEM_ACCESS_TYPE_READ \
|
---|
12147 | ? (uintptr_t)RT_CONCAT(a_fnBase,Ro) : (uintptr_t)RT_CONCAT(a_fnBase,Wo) )
|
---|
12148 |
|
---|
12149 | if (iSegReg == UINT8_MAX)
|
---|
12150 | {
|
---|
12151 | Assert( (pReNative->fExec & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT
|
---|
12152 | || (pReNative->fExec & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_PROT_FLAT
|
---|
12153 | || (pReNative->fExec & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_FLAT);
|
---|
12154 | switch (cbMem)
|
---|
12155 | {
|
---|
12156 | case 1: Assert(pfnFunction == IEM_MAP_HLP_FN(fAccess, iemNativeHlpMemFlatMapDataU8)); break;
|
---|
12157 | case 2: Assert(pfnFunction == IEM_MAP_HLP_FN(fAccess, iemNativeHlpMemFlatMapDataU16)); break;
|
---|
12158 | case 4: Assert(pfnFunction == IEM_MAP_HLP_FN(fAccess, iemNativeHlpMemFlatMapDataU32)); break;
|
---|
12159 | case 8: Assert(pfnFunction == IEM_MAP_HLP_FN(fAccess, iemNativeHlpMemFlatMapDataU64)); break;
|
---|
12160 | case 10:
|
---|
12161 | Assert( pfnFunction == (uintptr_t)iemNativeHlpMemFlatMapDataR80Wo
|
---|
12162 | || pfnFunction == (uintptr_t)iemNativeHlpMemFlatMapDataD80Wo);
|
---|
12163 | Assert((fAccess & IEM_ACCESS_TYPE_MASK) == IEM_ACCESS_TYPE_WRITE);
|
---|
12164 | break;
|
---|
12165 | case 16: Assert(pfnFunction == IEM_MAP_HLP_FN(fAccess, iemNativeHlpMemFlatMapDataU128)); break;
|
---|
12166 | # if 0
|
---|
12167 | case 32: Assert(pfnFunction == IEM_MAP_HLP_FN(fAccess, iemNativeHlpMemFlatMapDataU256)); break;
|
---|
12168 | case 64: Assert(pfnFunction == IEM_MAP_HLP_FN(fAccess, iemNativeHlpMemFlatMapDataU512)); break;
|
---|
12169 | # endif
|
---|
12170 | default: AssertFailed(); break;
|
---|
12171 | }
|
---|
12172 | }
|
---|
12173 | else
|
---|
12174 | {
|
---|
12175 | Assert(iSegReg < 6);
|
---|
12176 | switch (cbMem)
|
---|
12177 | {
|
---|
12178 | case 1: Assert(pfnFunction == IEM_MAP_HLP_FN(fAccess, iemNativeHlpMemMapDataU8)); break;
|
---|
12179 | case 2: Assert(pfnFunction == IEM_MAP_HLP_FN(fAccess, iemNativeHlpMemMapDataU16)); break;
|
---|
12180 | case 4: Assert(pfnFunction == IEM_MAP_HLP_FN(fAccess, iemNativeHlpMemMapDataU32)); break;
|
---|
12181 | case 8: Assert(pfnFunction == IEM_MAP_HLP_FN(fAccess, iemNativeHlpMemMapDataU64)); break;
|
---|
12182 | case 10:
|
---|
12183 | Assert( pfnFunction == (uintptr_t)iemNativeHlpMemMapDataR80Wo
|
---|
12184 | || pfnFunction == (uintptr_t)iemNativeHlpMemMapDataD80Wo);
|
---|
12185 | Assert((fAccess & IEM_ACCESS_TYPE_MASK) == IEM_ACCESS_TYPE_WRITE);
|
---|
12186 | break;
|
---|
12187 | case 16: Assert(pfnFunction == IEM_MAP_HLP_FN(fAccess, iemNativeHlpMemMapDataU128)); break;
|
---|
12188 | # if 0
|
---|
12189 | case 32: Assert(pfnFunction == IEM_MAP_HLP_FN(fAccess, iemNativeHlpMemMapDataU256)); break;
|
---|
12190 | case 64: Assert(pfnFunction == IEM_MAP_HLP_FN(fAccess, iemNativeHlpMemMapDataU512)); break;
|
---|
12191 | # endif
|
---|
12192 | default: AssertFailed(); break;
|
---|
12193 | }
|
---|
12194 | }
|
---|
12195 | # undef IEM_MAP_HLP_FN
|
---|
12196 | #endif
|
---|
12197 |
|
---|
12198 | #ifdef VBOX_STRICT
|
---|
12199 | /*
|
---|
12200 | * Check that the fExec flags we've got make sense.
|
---|
12201 | */
|
---|
12202 | off = iemNativeEmitExecFlagsCheck(pReNative, off, pReNative->fExec);
|
---|
12203 | #endif
|
---|
12204 |
|
---|
12205 | /*
|
---|
12206 | * To keep things simple we have to commit any pending writes first as we
|
---|
12207 | * may end up making calls.
|
---|
12208 | */
|
---|
12209 | off = iemNativeRegFlushPendingWrites(pReNative, off);
|
---|
12210 |
|
---|
12211 | #ifdef IEMNATIVE_WITH_FREE_AND_FLUSH_VOLATILE_REGS_AT_TLB_LOOKUP
|
---|
12212 | /*
|
---|
12213 | * Move/spill/flush stuff out of call-volatile registers.
|
---|
12214 | * This is the easy way out. We could contain this to the tlb-miss branch
|
---|
12215 | * by saving and restoring active stuff here.
|
---|
12216 | */
|
---|
12217 | /** @todo save+restore active registers and maybe guest shadows in tlb-miss. */
|
---|
12218 | off = iemNativeRegMoveAndFreeAndFlushAtCall(pReNative, off, 0 /* vacate all non-volatile regs */);
|
---|
12219 | #endif
|
---|
12220 |
|
---|
12221 | /* The bUnmapInfo variable will get a register in the tlb-hit code path,
|
---|
12222 | while the tlb-miss codepath will temporarily put it on the stack.
|
---|
12223 | Set the the type to stack here so we don't need to do it twice below. */
|
---|
12224 | iemNativeVarSetKindToStack(pReNative, idxVarUnmapInfo);
|
---|
12225 | uint8_t const idxRegUnmapInfo = iemNativeVarRegisterAcquire(pReNative, idxVarUnmapInfo, &off);
|
---|
12226 | /** @todo use a tmp register from TlbState, since they'll be free after tlb
|
---|
12227 | * lookup is done. */
|
---|
12228 |
|
---|
12229 | /*
|
---|
12230 | * Define labels and allocate the result register (trying for the return
|
---|
12231 | * register if we can).
|
---|
12232 | */
|
---|
12233 | uint16_t const uTlbSeqNo = pReNative->uTlbSeqNo++;
|
---|
12234 | uint8_t const idxRegMemResult = !(pReNative->Core.bmHstRegs & RT_BIT_32(IEMNATIVE_CALL_RET_GREG))
|
---|
12235 | ? iemNativeVarRegisterSetAndAcquire(pReNative, idxVarMem, IEMNATIVE_CALL_RET_GREG, &off)
|
---|
12236 | : iemNativeVarRegisterAcquire(pReNative, idxVarMem, &off);
|
---|
12237 | IEMNATIVEEMITTLBSTATE const TlbState(pReNative, &off, idxVarGCPtrMem, iSegReg, cbMem);
|
---|
12238 | uint32_t const idxLabelTlbLookup = !TlbState.fSkip
|
---|
12239 | ? iemNativeLabelCreate(pReNative, kIemNativeLabelType_TlbLookup, UINT32_MAX, uTlbSeqNo)
|
---|
12240 | : UINT32_MAX;
|
---|
12241 | //off=iemNativeEmitBrk(pReNative, off, 0);
|
---|
12242 | /*
|
---|
12243 | * Jump to the TLB lookup code.
|
---|
12244 | */
|
---|
12245 | if (!TlbState.fSkip)
|
---|
12246 | off = iemNativeEmitJmpToLabel(pReNative, off, idxLabelTlbLookup); /** @todo short jump */
|
---|
12247 |
|
---|
12248 | /*
|
---|
12249 | * TlbMiss:
|
---|
12250 | *
|
---|
12251 | * Call helper to do the fetching.
|
---|
12252 | * We flush all guest register shadow copies here.
|
---|
12253 | */
|
---|
12254 | uint32_t const idxLabelTlbMiss = iemNativeLabelCreate(pReNative, kIemNativeLabelType_TlbMiss, off, uTlbSeqNo);
|
---|
12255 |
|
---|
12256 | #ifdef IEMNATIVE_WITH_INSTRUCTION_COUNTING
|
---|
12257 | off = iemNativeEmitStoreImmToVCpuU8(pReNative, off, idxInstr, RT_UOFFSETOF(VMCPUCC, iem.s.idxTbCurInstr));
|
---|
12258 | #else
|
---|
12259 | RT_NOREF(idxInstr);
|
---|
12260 | #endif
|
---|
12261 |
|
---|
12262 | #ifndef IEMNATIVE_WITH_FREE_AND_FLUSH_VOLATILE_REGS_AT_TLB_LOOKUP
|
---|
12263 | /* Save variables in volatile registers. */
|
---|
12264 | uint32_t const fHstRegsNotToSave = TlbState.getRegsNotToSave() | RT_BIT_32(idxRegMemResult) | RT_BIT_32(idxRegUnmapInfo);
|
---|
12265 | off = iemNativeVarSaveVolatileRegsPreHlpCall(pReNative, off, fHstRegsNotToSave);
|
---|
12266 | #endif
|
---|
12267 |
|
---|
12268 | /* IEMNATIVE_CALL_ARG2_GREG = GCPtrMem - load first as it is from a variable. */
|
---|
12269 | off = iemNativeEmitLoadArgGregFromImmOrStackVar(pReNative, off, IEMNATIVE_CALL_ARG2_GREG, idxVarGCPtrMem, 0 /*cbAppend*/,
|
---|
12270 | #ifndef IEMNATIVE_WITH_FREE_AND_FLUSH_VOLATILE_REGS_AT_TLB_LOOKUP
|
---|
12271 | IEMNATIVE_CALL_VOLATILE_GREG_MASK, true /*fSpilledVarsInvolatileRegs*/);
|
---|
12272 | #else
|
---|
12273 | IEMNATIVE_CALL_VOLATILE_GREG_MASK);
|
---|
12274 | #endif
|
---|
12275 |
|
---|
12276 | /* IEMNATIVE_CALL_ARG3_GREG = iSegReg */
|
---|
12277 | if (iSegReg != UINT8_MAX)
|
---|
12278 | {
|
---|
12279 | AssertStmt(iSegReg < 6, IEMNATIVE_DO_LONGJMP(pReNative, VERR_IEM_EMIT_BAD_SEG_REG_NO));
|
---|
12280 | off = iemNativeEmitLoadGpr8Imm(pReNative, off, IEMNATIVE_CALL_ARG3_GREG, iSegReg);
|
---|
12281 | }
|
---|
12282 |
|
---|
12283 | /* IEMNATIVE_CALL_ARG1_GREG = &idxVarUnmapInfo; stackslot address, load any register with result after the call. */
|
---|
12284 | int32_t const offBpDispVarUnmapInfo = iemNativeStackCalcBpDisp(iemNativeVarGetStackSlot(pReNative, idxVarUnmapInfo));
|
---|
12285 | off = iemNativeEmitLeaGprByBp(pReNative, off, IEMNATIVE_CALL_ARG1_GREG, offBpDispVarUnmapInfo);
|
---|
12286 |
|
---|
12287 | /* IEMNATIVE_CALL_ARG0_GREG = pVCpu */
|
---|
12288 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG0_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
12289 |
|
---|
12290 | /* Done setting up parameters, make the call. */
|
---|
12291 | off = iemNativeEmitCallImm(pReNative, off, pfnFunction);
|
---|
12292 |
|
---|
12293 | /*
|
---|
12294 | * Put the output in the right registers.
|
---|
12295 | */
|
---|
12296 | Assert(idxRegMemResult == pReNative->Core.aVars[idxVarMem].idxReg);
|
---|
12297 | if (idxRegMemResult != IEMNATIVE_CALL_RET_GREG)
|
---|
12298 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, idxRegMemResult, IEMNATIVE_CALL_RET_GREG);
|
---|
12299 |
|
---|
12300 | #ifndef IEMNATIVE_WITH_FREE_AND_FLUSH_VOLATILE_REGS_AT_TLB_LOOKUP
|
---|
12301 | /* Restore variables and guest shadow registers to volatile registers. */
|
---|
12302 | off = iemNativeVarRestoreVolatileRegsPostHlpCall(pReNative, off, fHstRegsNotToSave);
|
---|
12303 | off = iemNativeRegRestoreGuestShadowsInVolatileRegs(pReNative, off, TlbState.getActiveRegsWithShadows());
|
---|
12304 | #endif
|
---|
12305 |
|
---|
12306 | Assert(pReNative->Core.aVars[idxVarUnmapInfo].idxReg == idxRegUnmapInfo);
|
---|
12307 | off = iemNativeEmitLoadGprByBpU8(pReNative, off, idxRegUnmapInfo, offBpDispVarUnmapInfo);
|
---|
12308 |
|
---|
12309 | #ifdef IEMNATIVE_WITH_TLB_LOOKUP
|
---|
12310 | if (!TlbState.fSkip)
|
---|
12311 | {
|
---|
12312 | /* end of tlbsmiss - Jump to the done label. */
|
---|
12313 | uint32_t const idxLabelTlbDone = iemNativeLabelCreate(pReNative, kIemNativeLabelType_TlbDone, UINT32_MAX, uTlbSeqNo);
|
---|
12314 | off = iemNativeEmitJmpToLabel(pReNative, off, idxLabelTlbDone);
|
---|
12315 |
|
---|
12316 | /*
|
---|
12317 | * TlbLookup:
|
---|
12318 | */
|
---|
12319 | off = iemNativeEmitTlbLookup<true>(pReNative, off, &TlbState, iSegReg, cbMem, fAlignMask, fAccess,
|
---|
12320 | idxLabelTlbLookup, idxLabelTlbMiss, idxRegMemResult);
|
---|
12321 | # ifdef VBOX_WITH_STATISTICS
|
---|
12322 | off = iemNativeEmitIncStamCounterInVCpu(pReNative, off, TlbState.idxReg1, TlbState.idxReg2,
|
---|
12323 | RT_UOFFSETOF(VMCPUCC, iem.s.StatNativeTlbHitsForMapped));
|
---|
12324 | # endif
|
---|
12325 |
|
---|
12326 | /* [idxVarUnmapInfo] = 0; */
|
---|
12327 | off = iemNativeEmitLoadGprImm32(pReNative, off, idxRegUnmapInfo, 0);
|
---|
12328 |
|
---|
12329 | /*
|
---|
12330 | * TlbDone:
|
---|
12331 | */
|
---|
12332 | iemNativeLabelDefine(pReNative, idxLabelTlbDone, off);
|
---|
12333 |
|
---|
12334 | TlbState.freeRegsAndReleaseVars(pReNative, idxVarGCPtrMem);
|
---|
12335 |
|
---|
12336 | # ifndef IEMNATIVE_WITH_FREE_AND_FLUSH_VOLATILE_REGS_AT_TLB_LOOKUP
|
---|
12337 | /* Temp Hack: Flush all guest shadows in volatile registers in case of TLB miss. */
|
---|
12338 | iemNativeRegFlushGuestShadowsByHostMask(pReNative, IEMNATIVE_CALL_VOLATILE_GREG_MASK);
|
---|
12339 | # endif
|
---|
12340 | }
|
---|
12341 | #else
|
---|
12342 | RT_NOREF(fAccess, fAlignMask, idxLabelTlbMiss);
|
---|
12343 | #endif
|
---|
12344 |
|
---|
12345 | iemNativeVarRegisterRelease(pReNative, idxVarUnmapInfo);
|
---|
12346 | iemNativeVarRegisterRelease(pReNative, idxVarMem);
|
---|
12347 |
|
---|
12348 | return off;
|
---|
12349 | }
|
---|
12350 |
|
---|
12351 |
|
---|
12352 | #define IEM_MC_MEM_COMMIT_AND_UNMAP_RW(a_bMapInfo) \
|
---|
12353 | off = iemNativeEmitMemCommitAndUnmap(pReNative, off, (a_bMapInfo), IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE, \
|
---|
12354 | (uintptr_t)iemNativeHlpMemCommitAndUnmapRw, pCallEntry->idxInstr)
|
---|
12355 |
|
---|
12356 | #define IEM_MC_MEM_COMMIT_AND_UNMAP_WO(a_bMapInfo) \
|
---|
12357 | off = iemNativeEmitMemCommitAndUnmap(pReNative, off, (a_bMapInfo), IEM_ACCESS_TYPE_WRITE, \
|
---|
12358 | (uintptr_t)iemNativeHlpMemCommitAndUnmapWo, pCallEntry->idxInstr)
|
---|
12359 |
|
---|
12360 | #define IEM_MC_MEM_COMMIT_AND_UNMAP_RO(a_bMapInfo) \
|
---|
12361 | off = iemNativeEmitMemCommitAndUnmap(pReNative, off, (a_bMapInfo), IEM_ACCESS_TYPE_READ, \
|
---|
12362 | (uintptr_t)iemNativeHlpMemCommitAndUnmapRo, pCallEntry->idxInstr)
|
---|
12363 |
|
---|
12364 | DECL_INLINE_THROW(uint32_t)
|
---|
12365 | iemNativeEmitMemCommitAndUnmap(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVarUnmapInfo,
|
---|
12366 | uint32_t fAccess, uintptr_t pfnFunction, uint8_t idxInstr)
|
---|
12367 | {
|
---|
12368 | /*
|
---|
12369 | * Assert sanity.
|
---|
12370 | */
|
---|
12371 | IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVarUnmapInfo);
|
---|
12372 | Assert(pReNative->Core.aVars[idxVarUnmapInfo].enmKind == kIemNativeVarKind_Stack);
|
---|
12373 | Assert( pReNative->Core.aVars[idxVarUnmapInfo].idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs)
|
---|
12374 | || pReNative->Core.aVars[idxVarUnmapInfo].idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS); /* must be initialized */
|
---|
12375 | #ifdef VBOX_STRICT
|
---|
12376 | switch (fAccess & IEM_ACCESS_TYPE_MASK)
|
---|
12377 | {
|
---|
12378 | case IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE: Assert(pfnFunction == (uintptr_t)iemNativeHlpMemCommitAndUnmapRw); break;
|
---|
12379 | case IEM_ACCESS_TYPE_WRITE: Assert(pfnFunction == (uintptr_t)iemNativeHlpMemCommitAndUnmapWo); break;
|
---|
12380 | case IEM_ACCESS_TYPE_READ: Assert(pfnFunction == (uintptr_t)iemNativeHlpMemCommitAndUnmapRo); break;
|
---|
12381 | default: AssertFailed();
|
---|
12382 | }
|
---|
12383 | #else
|
---|
12384 | RT_NOREF(fAccess);
|
---|
12385 | #endif
|
---|
12386 |
|
---|
12387 | /*
|
---|
12388 | * To keep things simple we have to commit any pending writes first as we
|
---|
12389 | * may end up making calls (there shouldn't be any at this point, so this
|
---|
12390 | * is just for consistency).
|
---|
12391 | */
|
---|
12392 | /** @todo we could postpone this till we make the call and reload the
|
---|
12393 | * registers after returning from the call. Not sure if that's sensible or
|
---|
12394 | * not, though. */
|
---|
12395 | off = iemNativeRegFlushPendingWrites(pReNative, off);
|
---|
12396 |
|
---|
12397 | /*
|
---|
12398 | * Move/spill/flush stuff out of call-volatile registers.
|
---|
12399 | *
|
---|
12400 | * We exclude any register holding the bUnmapInfo variable, as we'll be
|
---|
12401 | * checking it after returning from the call and will free it afterwards.
|
---|
12402 | */
|
---|
12403 | /** @todo save+restore active registers and maybe guest shadows in miss
|
---|
12404 | * scenario. */
|
---|
12405 | off = iemNativeRegMoveAndFreeAndFlushAtCall(pReNative, off, 0 /* vacate all non-volatile regs */, RT_BIT_32(idxVarUnmapInfo));
|
---|
12406 |
|
---|
12407 | /*
|
---|
12408 | * If idxVarUnmapInfo is zero, we can skip all this. Otherwise we'll have
|
---|
12409 | * to call the unmap helper function.
|
---|
12410 | *
|
---|
12411 | * The likelyhood of it being zero is higher than for the TLB hit when doing
|
---|
12412 | * the mapping, as a TLB miss for an well aligned and unproblematic memory
|
---|
12413 | * access should also end up with a mapping that won't need special unmapping.
|
---|
12414 | */
|
---|
12415 | /** @todo Go over iemMemMapJmp and implement the no-unmap-needed case! That
|
---|
12416 | * should speed up things for the pure interpreter as well when TLBs
|
---|
12417 | * are enabled. */
|
---|
12418 | #ifdef RT_ARCH_AMD64
|
---|
12419 | if (pReNative->Core.aVars[idxVarUnmapInfo].idxReg == UINT8_MAX)
|
---|
12420 | {
|
---|
12421 | /* test byte [rbp - xxx], 0ffh */
|
---|
12422 | uint8_t * const pbCodeBuf = iemNativeInstrBufEnsure(pReNative, off, 7);
|
---|
12423 | pbCodeBuf[off++] = 0xf6;
|
---|
12424 | uint8_t const idxStackSlot = pReNative->Core.aVars[idxVarUnmapInfo].idxStackSlot;
|
---|
12425 | off = iemNativeEmitGprByBpDisp(pbCodeBuf, off, 0, iemNativeStackCalcBpDisp(idxStackSlot), pReNative);
|
---|
12426 | pbCodeBuf[off++] = 0xff;
|
---|
12427 | IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(pReNative, off);
|
---|
12428 | }
|
---|
12429 | else
|
---|
12430 | #endif
|
---|
12431 | {
|
---|
12432 | uint8_t const idxVarReg = iemNativeVarRegisterAcquire(pReNative, idxVarUnmapInfo, &off,
|
---|
12433 | true /*fInitialized*/, IEMNATIVE_CALL_ARG1_GREG /*idxRegPref*/);
|
---|
12434 | off = iemNativeEmitTestAnyBitsInGpr8(pReNative, off, idxVarReg, 0xff);
|
---|
12435 | iemNativeVarRegisterRelease(pReNative, idxVarUnmapInfo);
|
---|
12436 | }
|
---|
12437 | uint32_t const offJmpFixup = off;
|
---|
12438 | off = iemNativeEmitJzToFixed(pReNative, off, off /* ASSUME jz rel8 suffices*/);
|
---|
12439 |
|
---|
12440 | /*
|
---|
12441 | * Call the unmap helper function.
|
---|
12442 | */
|
---|
12443 | #ifdef IEMNATIVE_WITH_INSTRUCTION_COUNTING /** @todo This should be unnecessary, the mapping call will already have set it! */
|
---|
12444 | off = iemNativeEmitStoreImmToVCpuU8(pReNative, off, idxInstr, RT_UOFFSETOF(VMCPUCC, iem.s.idxTbCurInstr));
|
---|
12445 | #else
|
---|
12446 | RT_NOREF(idxInstr);
|
---|
12447 | #endif
|
---|
12448 |
|
---|
12449 | /* IEMNATIVE_CALL_ARG1_GREG = idxVarUnmapInfo (first!) */
|
---|
12450 | off = iemNativeEmitLoadArgGregFromStackVar(pReNative, off, IEMNATIVE_CALL_ARG1_GREG, idxVarUnmapInfo,
|
---|
12451 | 0 /*offAddend*/, IEMNATIVE_CALL_VOLATILE_GREG_MASK);
|
---|
12452 |
|
---|
12453 | /* IEMNATIVE_CALL_ARG0_GREG = pVCpu */
|
---|
12454 | off = iemNativeEmitLoadGprFromGpr(pReNative, off, IEMNATIVE_CALL_ARG0_GREG, IEMNATIVE_REG_FIXED_PVMCPU);
|
---|
12455 |
|
---|
12456 | /* Done setting up parameters, make the call. */
|
---|
12457 | off = iemNativeEmitCallImm(pReNative, off, pfnFunction);
|
---|
12458 |
|
---|
12459 | /* The bUnmapInfo variable is implictly free by these MCs. */
|
---|
12460 | iemNativeVarFreeLocal(pReNative, idxVarUnmapInfo);
|
---|
12461 |
|
---|
12462 | /*
|
---|
12463 | * Done, just fixup the jump for the non-call case.
|
---|
12464 | */
|
---|
12465 | iemNativeFixupFixedJump(pReNative, offJmpFixup, off);
|
---|
12466 |
|
---|
12467 | return off;
|
---|
12468 | }
|
---|
12469 |
|
---|
12470 |
|
---|
12471 |
|
---|
12472 | /*********************************************************************************************************************************
|
---|
12473 | * State and Exceptions *
|
---|
12474 | *********************************************************************************************************************************/
|
---|
12475 |
|
---|
12476 | #define IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE() off = iemNativeEmitPrepareFpuForUse(pReNative, off, true /*fForChange*/)
|
---|
12477 | #define IEM_MC_ACTUALIZE_FPU_STATE_FOR_READ() off = iemNativeEmitPrepareFpuForUse(pReNative, off, false /*fForChange*/)
|
---|
12478 |
|
---|
12479 | #define IEM_MC_PREPARE_SSE_USAGE() off = iemNativeEmitPrepareFpuForUse(pReNative, off, true /*fForChange*/)
|
---|
12480 | #define IEM_MC_ACTUALIZE_SSE_STATE_FOR_CHANGE() off = iemNativeEmitPrepareFpuForUse(pReNative, off, true /*fForChange*/)
|
---|
12481 | #define IEM_MC_ACTUALIZE_SSE_STATE_FOR_READ() off = iemNativeEmitPrepareFpuForUse(pReNative, off, false /*fForChange*/)
|
---|
12482 |
|
---|
12483 | #define IEM_MC_PREPARE_AVX_USAGE() off = iemNativeEmitPrepareFpuForUse(pReNative, off, true /*fForChange*/)
|
---|
12484 | #define IEM_MC_ACTUALIZE_AVX_STATE_FOR_CHANGE() off = iemNativeEmitPrepareFpuForUse(pReNative, off, true /*fForChange*/)
|
---|
12485 | #define IEM_MC_ACTUALIZE_AVX_STATE_FOR_READ() off = iemNativeEmitPrepareFpuForUse(pReNative, off, false /*fForChange*/)
|
---|
12486 |
|
---|
12487 |
|
---|
12488 | DECL_INLINE_THROW(uint32_t) iemNativeEmitPrepareFpuForUse(PIEMRECOMPILERSTATE pReNative, uint32_t off, bool fForChange)
|
---|
12489 | {
|
---|
12490 | /** @todo this needs a lot more work later. */
|
---|
12491 | RT_NOREF(pReNative, fForChange);
|
---|
12492 | return off;
|
---|
12493 | }
|
---|
12494 |
|
---|
12495 |
|
---|
12496 | /*********************************************************************************************************************************
|
---|
12497 | * The native code generator functions for each MC block. *
|
---|
12498 | *********************************************************************************************************************************/
|
---|
12499 |
|
---|
12500 |
|
---|
12501 | /*
|
---|
12502 | * Include g_apfnIemNativeRecompileFunctions and associated functions.
|
---|
12503 | *
|
---|
12504 | * This should probably live in it's own file later, but lets see what the
|
---|
12505 | * compile times turn out to be first.
|
---|
12506 | */
|
---|
12507 | #include "IEMNativeFunctions.cpp.h"
|
---|
12508 |
|
---|
12509 |
|
---|
12510 |
|
---|
12511 | /*********************************************************************************************************************************
|
---|
12512 | * Recompiler Core. *
|
---|
12513 | *********************************************************************************************************************************/
|
---|
12514 |
|
---|
12515 |
|
---|
12516 | /** @callback_method_impl{FNDISREADBYTES, Dummy.} */
|
---|
12517 | static DECLCALLBACK(int) iemNativeDisasReadBytesDummy(PDISSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
|
---|
12518 | {
|
---|
12519 | RT_BZERO(&pDis->Instr.ab[offInstr], cbMaxRead);
|
---|
12520 | pDis->cbCachedInstr += cbMaxRead;
|
---|
12521 | RT_NOREF(cbMinRead);
|
---|
12522 | return VERR_NO_DATA;
|
---|
12523 | }
|
---|
12524 |
|
---|
12525 |
|
---|
12526 | /**
|
---|
12527 | * Formats TB flags (IEM_F_XXX and IEMTB_F_XXX) to string.
|
---|
12528 | * @returns pszBuf.
|
---|
12529 | * @param fFlags The flags.
|
---|
12530 | * @param pszBuf The output buffer.
|
---|
12531 | * @param cbBuf The output buffer size. At least 32 bytes.
|
---|
12532 | */
|
---|
12533 | DECLHIDDEN(const char *) iemTbFlagsToString(uint32_t fFlags, char *pszBuf, size_t cbBuf) RT_NOEXCEPT
|
---|
12534 | {
|
---|
12535 | Assert(cbBuf >= 32);
|
---|
12536 | static RTSTRTUPLE const s_aModes[] =
|
---|
12537 | {
|
---|
12538 | /* [00] = */ { RT_STR_TUPLE("16BIT") },
|
---|
12539 | /* [01] = */ { RT_STR_TUPLE("32BIT") },
|
---|
12540 | /* [02] = */ { RT_STR_TUPLE("!2!") },
|
---|
12541 | /* [03] = */ { RT_STR_TUPLE("!3!") },
|
---|
12542 | /* [04] = */ { RT_STR_TUPLE("16BIT_PRE_386") },
|
---|
12543 | /* [05] = */ { RT_STR_TUPLE("32BIT_FLAT") },
|
---|
12544 | /* [06] = */ { RT_STR_TUPLE("!6!") },
|
---|
12545 | /* [07] = */ { RT_STR_TUPLE("!7!") },
|
---|
12546 | /* [08] = */ { RT_STR_TUPLE("16BIT_PROT") },
|
---|
12547 | /* [09] = */ { RT_STR_TUPLE("32BIT_PROT") },
|
---|
12548 | /* [0a] = */ { RT_STR_TUPLE("64BIT") },
|
---|
12549 | /* [0b] = */ { RT_STR_TUPLE("!b!") },
|
---|
12550 | /* [0c] = */ { RT_STR_TUPLE("16BIT_PROT_PRE_386") },
|
---|
12551 | /* [0d] = */ { RT_STR_TUPLE("32BIT_PROT_FLAT") },
|
---|
12552 | /* [0e] = */ { RT_STR_TUPLE("!e!") },
|
---|
12553 | /* [0f] = */ { RT_STR_TUPLE("!f!") },
|
---|
12554 | /* [10] = */ { RT_STR_TUPLE("!10!") },
|
---|
12555 | /* [11] = */ { RT_STR_TUPLE("!11!") },
|
---|
12556 | /* [12] = */ { RT_STR_TUPLE("!12!") },
|
---|
12557 | /* [13] = */ { RT_STR_TUPLE("!13!") },
|
---|
12558 | /* [14] = */ { RT_STR_TUPLE("!14!") },
|
---|
12559 | /* [15] = */ { RT_STR_TUPLE("!15!") },
|
---|
12560 | /* [16] = */ { RT_STR_TUPLE("!16!") },
|
---|
12561 | /* [17] = */ { RT_STR_TUPLE("!17!") },
|
---|
12562 | /* [18] = */ { RT_STR_TUPLE("16BIT_PROT_V86") },
|
---|
12563 | /* [19] = */ { RT_STR_TUPLE("32BIT_PROT_V86") },
|
---|
12564 | /* [1a] = */ { RT_STR_TUPLE("!1a!") },
|
---|
12565 | /* [1b] = */ { RT_STR_TUPLE("!1b!") },
|
---|
12566 | /* [1c] = */ { RT_STR_TUPLE("!1c!") },
|
---|
12567 | /* [1d] = */ { RT_STR_TUPLE("!1d!") },
|
---|
12568 | /* [1e] = */ { RT_STR_TUPLE("!1e!") },
|
---|
12569 | /* [1f] = */ { RT_STR_TUPLE("!1f!") },
|
---|
12570 | };
|
---|
12571 | AssertCompile(RT_ELEMENTS(s_aModes) == IEM_F_MODE_MASK + 1);
|
---|
12572 | memcpy(pszBuf, s_aModes[fFlags & IEM_F_MODE_MASK].psz, s_aModes[fFlags & IEM_F_MODE_MASK].cch);
|
---|
12573 | size_t off = s_aModes[fFlags & IEM_F_MODE_MASK].cch;
|
---|
12574 |
|
---|
12575 | pszBuf[off++] = ' ';
|
---|
12576 | pszBuf[off++] = 'C';
|
---|
12577 | pszBuf[off++] = 'P';
|
---|
12578 | pszBuf[off++] = 'L';
|
---|
12579 | pszBuf[off++] = '0' + ((fFlags >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK);
|
---|
12580 | Assert(off < 32);
|
---|
12581 |
|
---|
12582 | fFlags &= ~(IEM_F_MODE_MASK | IEM_F_X86_CPL_SMASK);
|
---|
12583 |
|
---|
12584 | static struct { const char *pszName; uint32_t cchName; uint32_t fFlag; } const s_aFlags[] =
|
---|
12585 | {
|
---|
12586 | { RT_STR_TUPLE("BYPASS_HANDLERS"), IEM_F_BYPASS_HANDLERS },
|
---|
12587 | { RT_STR_TUPLE("PENDING_BRK_INSTR"), IEM_F_PENDING_BRK_INSTR },
|
---|
12588 | { RT_STR_TUPLE("PENDING_BRK_DATA"), IEM_F_PENDING_BRK_DATA },
|
---|
12589 | { RT_STR_TUPLE("PENDING_BRK_X86_IO"), IEM_F_PENDING_BRK_X86_IO },
|
---|
12590 | { RT_STR_TUPLE("X86_DISREGARD_LOCK"), IEM_F_X86_DISREGARD_LOCK },
|
---|
12591 | { RT_STR_TUPLE("X86_CTX_VMX"), IEM_F_X86_CTX_VMX },
|
---|
12592 | { RT_STR_TUPLE("X86_CTX_SVM"), IEM_F_X86_CTX_SVM },
|
---|
12593 | { RT_STR_TUPLE("X86_CTX_IN_GUEST"), IEM_F_X86_CTX_IN_GUEST },
|
---|
12594 | { RT_STR_TUPLE("X86_CTX_SMM"), IEM_F_X86_CTX_SMM },
|
---|
12595 | { RT_STR_TUPLE("INHIBIT_SHADOW"), IEMTB_F_INHIBIT_SHADOW },
|
---|
12596 | { RT_STR_TUPLE("INHIBIT_NMI"), IEMTB_F_INHIBIT_NMI },
|
---|
12597 | { RT_STR_TUPLE("CS_LIM_CHECKS"), IEMTB_F_CS_LIM_CHECKS },
|
---|
12598 | { RT_STR_TUPLE("TYPE_THREADED"), IEMTB_F_TYPE_THREADED },
|
---|
12599 | { RT_STR_TUPLE("TYPE_NATIVE"), IEMTB_F_TYPE_NATIVE },
|
---|
12600 | };
|
---|
12601 | if (fFlags)
|
---|
12602 | for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
|
---|
12603 | if (s_aFlags[i].fFlag & fFlags)
|
---|
12604 | {
|
---|
12605 | AssertReturnStmt(off + 1 + s_aFlags[i].cchName + 1 <= cbBuf, pszBuf[off] = '\0', pszBuf);
|
---|
12606 | pszBuf[off++] = ' ';
|
---|
12607 | memcpy(&pszBuf[off], s_aFlags[i].pszName, s_aFlags[i].cchName);
|
---|
12608 | off += s_aFlags[i].cchName;
|
---|
12609 | fFlags &= ~s_aFlags[i].fFlag;
|
---|
12610 | if (!fFlags)
|
---|
12611 | break;
|
---|
12612 | }
|
---|
12613 | pszBuf[off] = '\0';
|
---|
12614 |
|
---|
12615 | return pszBuf;
|
---|
12616 | }
|
---|
12617 |
|
---|
12618 |
|
---|
12619 | DECLHIDDEN(void) iemNativeDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT
|
---|
12620 | {
|
---|
12621 | AssertReturnVoid((pTb->fFlags & IEMTB_F_TYPE_MASK) == IEMTB_F_TYPE_NATIVE);
|
---|
12622 | #if defined(RT_ARCH_AMD64)
|
---|
12623 | static const char * const a_apszMarkers[] =
|
---|
12624 | {
|
---|
12625 | /*[0]=*/ "unknown0", "CheckCsLim", "ConsiderLimChecking", "CheckOpcodes",
|
---|
12626 | /*[4]=*/ "PcAfterBranch", "LoadTlbForNewPage", "LoadTlbAfterBranch"
|
---|
12627 | };
|
---|
12628 | #endif
|
---|
12629 |
|
---|
12630 | char szDisBuf[512];
|
---|
12631 | DISSTATE Dis;
|
---|
12632 | PCIEMNATIVEINSTR const paNative = pTb->Native.paInstructions;
|
---|
12633 | uint32_t const cNative = pTb->Native.cInstructions;
|
---|
12634 | uint32_t offNative = 0;
|
---|
12635 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
12636 | PCIEMTBDBG const pDbgInfo = pTb->pDbgInfo;
|
---|
12637 | #endif
|
---|
12638 | DISCPUMODE enmGstCpuMode = (pTb->fFlags & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT ? DISCPUMODE_16BIT
|
---|
12639 | : (pTb->fFlags & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT ? DISCPUMODE_32BIT
|
---|
12640 | : DISCPUMODE_64BIT;
|
---|
12641 | #if defined(RT_ARCH_AMD64) && !defined(VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER)
|
---|
12642 | DISCPUMODE const enmHstCpuMode = DISCPUMODE_64BIT;
|
---|
12643 | #elif defined(RT_ARCH_ARM64) && !defined(VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER)
|
---|
12644 | DISCPUMODE const enmHstCpuMode = DISCPUMODE_ARMV8_A64;
|
---|
12645 | #elif !defined(VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER)
|
---|
12646 | # error "Port me"
|
---|
12647 | #else
|
---|
12648 | csh hDisasm = ~(size_t)0;
|
---|
12649 | # if defined(RT_ARCH_AMD64)
|
---|
12650 | cs_err rcCs = cs_open(CS_ARCH_X86, CS_MODE_LITTLE_ENDIAN | CS_MODE_64, &hDisasm);
|
---|
12651 | # elif defined(RT_ARCH_ARM64)
|
---|
12652 | cs_err rcCs = cs_open(CS_ARCH_ARM64, CS_MODE_LITTLE_ENDIAN, &hDisasm);
|
---|
12653 | # else
|
---|
12654 | # error "Port me"
|
---|
12655 | # endif
|
---|
12656 | AssertMsgReturnVoid(rcCs == CS_ERR_OK, ("%d (%#x)\n", rcCs, rcCs));
|
---|
12657 | #endif
|
---|
12658 |
|
---|
12659 | /*
|
---|
12660 | * Print TB info.
|
---|
12661 | */
|
---|
12662 | pHlp->pfnPrintf(pHlp,
|
---|
12663 | "pTb=%p: GCPhysPc=%RGp cInstructions=%u LB %#x cRanges=%u\n"
|
---|
12664 | "pTb=%p: cUsed=%u msLastUsed=%u fFlags=%#010x %s\n",
|
---|
12665 | pTb, pTb->GCPhysPc, pTb->cInstructions, pTb->cbOpcodes, pTb->cRanges,
|
---|
12666 | pTb, pTb->cUsed, pTb->msLastUsed, pTb->fFlags, iemTbFlagsToString(pTb->fFlags, szDisBuf, sizeof(szDisBuf)));
|
---|
12667 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
12668 | if (pDbgInfo && pDbgInfo->cEntries > 1)
|
---|
12669 | {
|
---|
12670 | Assert(pDbgInfo->aEntries[0].Gen.uType == kIemTbDbgEntryType_NativeOffset);
|
---|
12671 |
|
---|
12672 | /*
|
---|
12673 | * This disassembly is driven by the debug info which follows the native
|
---|
12674 | * code and indicates when it starts with the next guest instructions,
|
---|
12675 | * where labels are and such things.
|
---|
12676 | */
|
---|
12677 | uint32_t idxThreadedCall = 0;
|
---|
12678 | uint32_t fExec = pTb->fFlags & UINT32_C(0x00ffffff);
|
---|
12679 | uint8_t idxRange = UINT8_MAX;
|
---|
12680 | uint8_t const cRanges = RT_MIN(pTb->cRanges, RT_ELEMENTS(pTb->aRanges));
|
---|
12681 | uint32_t offRange = 0;
|
---|
12682 | uint32_t offOpcodes = 0;
|
---|
12683 | uint32_t const cbOpcodes = pTb->cbOpcodes;
|
---|
12684 | RTGCPHYS GCPhysPc = pTb->GCPhysPc;
|
---|
12685 | uint32_t const cDbgEntries = pDbgInfo->cEntries;
|
---|
12686 | uint32_t iDbgEntry = 1;
|
---|
12687 | uint32_t offDbgNativeNext = pDbgInfo->aEntries[0].NativeOffset.offNative;
|
---|
12688 |
|
---|
12689 | while (offNative < cNative)
|
---|
12690 | {
|
---|
12691 | /* If we're at or have passed the point where the next chunk of debug
|
---|
12692 | info starts, process it. */
|
---|
12693 | if (offDbgNativeNext <= offNative)
|
---|
12694 | {
|
---|
12695 | offDbgNativeNext = UINT32_MAX;
|
---|
12696 | for (; iDbgEntry < cDbgEntries; iDbgEntry++)
|
---|
12697 | {
|
---|
12698 | switch (pDbgInfo->aEntries[iDbgEntry].Gen.uType)
|
---|
12699 | {
|
---|
12700 | case kIemTbDbgEntryType_GuestInstruction:
|
---|
12701 | {
|
---|
12702 | /* Did the exec flag change? */
|
---|
12703 | if (fExec != pDbgInfo->aEntries[iDbgEntry].GuestInstruction.fExec)
|
---|
12704 | {
|
---|
12705 | pHlp->pfnPrintf(pHlp,
|
---|
12706 | " fExec change %#08x -> %#08x %s\n",
|
---|
12707 | fExec, pDbgInfo->aEntries[iDbgEntry].GuestInstruction.fExec,
|
---|
12708 | iemTbFlagsToString(pDbgInfo->aEntries[iDbgEntry].GuestInstruction.fExec,
|
---|
12709 | szDisBuf, sizeof(szDisBuf)));
|
---|
12710 | fExec = pDbgInfo->aEntries[iDbgEntry].GuestInstruction.fExec;
|
---|
12711 | enmGstCpuMode = (fExec & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT ? DISCPUMODE_16BIT
|
---|
12712 | : (fExec & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT ? DISCPUMODE_32BIT
|
---|
12713 | : DISCPUMODE_64BIT;
|
---|
12714 | }
|
---|
12715 |
|
---|
12716 | /* New opcode range? We need to fend up a spurious debug info entry here for cases
|
---|
12717 | where the compilation was aborted before the opcode was recorded and the actual
|
---|
12718 | instruction was translated to a threaded call. This may happen when we run out
|
---|
12719 | of ranges, or when some complicated interrupts/FFs are found to be pending or
|
---|
12720 | similar. So, we just deal with it here rather than in the compiler code as it
|
---|
12721 | is a lot simpler to do here. */
|
---|
12722 | if ( idxRange == UINT8_MAX
|
---|
12723 | || idxRange >= cRanges
|
---|
12724 | || offRange >= pTb->aRanges[idxRange].cbOpcodes)
|
---|
12725 | {
|
---|
12726 | idxRange += 1;
|
---|
12727 | if (idxRange < cRanges)
|
---|
12728 | offRange = !idxRange ? 0 : offRange - pTb->aRanges[idxRange - 1].cbOpcodes;
|
---|
12729 | else
|
---|
12730 | continue;
|
---|
12731 | Assert(offOpcodes == pTb->aRanges[idxRange].offOpcodes + offRange);
|
---|
12732 | GCPhysPc = pTb->aRanges[idxRange].offPhysPage
|
---|
12733 | + (pTb->aRanges[idxRange].idxPhysPage == 0
|
---|
12734 | ? pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK
|
---|
12735 | : pTb->aGCPhysPages[pTb->aRanges[idxRange].idxPhysPage - 1]);
|
---|
12736 | pHlp->pfnPrintf(pHlp, " Range #%u: GCPhysPc=%RGp LB %#x [idxPg=%d]\n",
|
---|
12737 | idxRange, GCPhysPc, pTb->aRanges[idxRange].cbOpcodes,
|
---|
12738 | pTb->aRanges[idxRange].idxPhysPage);
|
---|
12739 | GCPhysPc += offRange;
|
---|
12740 | }
|
---|
12741 |
|
---|
12742 | /* Disassemble the instruction. */
|
---|
12743 | //uint8_t const cbInstrMax = RT_MIN(pTb->aRanges[idxRange].cbOpcodes - offRange, 15);
|
---|
12744 | uint8_t const cbInstrMax = RT_MIN(cbOpcodes - offOpcodes, 15);
|
---|
12745 | uint32_t cbInstr = 1;
|
---|
12746 | int rc = DISInstrWithPrefetchedBytes(GCPhysPc, enmGstCpuMode, DISOPTYPE_ALL,
|
---|
12747 | &pTb->pabOpcodes[offOpcodes], cbInstrMax,
|
---|
12748 | iemNativeDisasReadBytesDummy, NULL, &Dis, &cbInstr);
|
---|
12749 | if (RT_SUCCESS(rc))
|
---|
12750 | {
|
---|
12751 | size_t cch = DISFormatYasmEx(&Dis, szDisBuf, sizeof(szDisBuf),
|
---|
12752 | DIS_FMT_FLAGS_BYTES_WIDTH_MAKE(10) | DIS_FMT_FLAGS_BYTES_LEFT
|
---|
12753 | | DIS_FMT_FLAGS_RELATIVE_BRANCH | DIS_FMT_FLAGS_C_HEX,
|
---|
12754 | NULL /*pfnGetSymbol*/, NULL /*pvUser*/);
|
---|
12755 |
|
---|
12756 | static unsigned const s_offMarker = 55;
|
---|
12757 | static char const s_szMarker[] = " ; <--- guest";
|
---|
12758 | if (cch < s_offMarker)
|
---|
12759 | {
|
---|
12760 | memset(&szDisBuf[cch], ' ', s_offMarker - cch);
|
---|
12761 | cch = s_offMarker;
|
---|
12762 | }
|
---|
12763 | if (cch + sizeof(s_szMarker) <= sizeof(szDisBuf))
|
---|
12764 | memcpy(&szDisBuf[cch], s_szMarker, sizeof(s_szMarker));
|
---|
12765 |
|
---|
12766 | pHlp->pfnPrintf(pHlp, " %%%%%RGp: %s\n", GCPhysPc, szDisBuf);
|
---|
12767 | }
|
---|
12768 | else
|
---|
12769 | {
|
---|
12770 | pHlp->pfnPrintf(pHlp, " %%%%%RGp: %.*Rhxs - guest disassembly failure %Rrc\n",
|
---|
12771 | GCPhysPc, cbInstrMax, &pTb->pabOpcodes[offOpcodes], rc);
|
---|
12772 | cbInstr = 1;
|
---|
12773 | }
|
---|
12774 | GCPhysPc += cbInstr;
|
---|
12775 | offOpcodes += cbInstr;
|
---|
12776 | offRange += cbInstr;
|
---|
12777 | continue;
|
---|
12778 | }
|
---|
12779 |
|
---|
12780 | case kIemTbDbgEntryType_ThreadedCall:
|
---|
12781 | pHlp->pfnPrintf(pHlp,
|
---|
12782 | " Call #%u to %s (%u args) - %s\n",
|
---|
12783 | idxThreadedCall,
|
---|
12784 | g_apszIemThreadedFunctions[pDbgInfo->aEntries[iDbgEntry].ThreadedCall.enmCall],
|
---|
12785 | g_acIemThreadedFunctionUsedArgs[pDbgInfo->aEntries[iDbgEntry].ThreadedCall.enmCall],
|
---|
12786 | pDbgInfo->aEntries[iDbgEntry].ThreadedCall.fRecompiled ? "recompiled" : "todo");
|
---|
12787 | idxThreadedCall++;
|
---|
12788 | continue;
|
---|
12789 |
|
---|
12790 | case kIemTbDbgEntryType_GuestRegShadowing:
|
---|
12791 | {
|
---|
12792 | PCIEMTBDBGENTRY const pEntry = &pDbgInfo->aEntries[iDbgEntry];
|
---|
12793 | const char * const pszGstReg = g_aGstShadowInfo[pEntry->GuestRegShadowing.idxGstReg].pszName;
|
---|
12794 | if (pEntry->GuestRegShadowing.idxHstReg == UINT8_MAX)
|
---|
12795 | pHlp->pfnPrintf(pHlp, " Guest register %s != host register %s\n", pszGstReg,
|
---|
12796 | g_apszIemNativeHstRegNames[pEntry->GuestRegShadowing.idxHstRegPrev]);
|
---|
12797 | else if (pEntry->GuestRegShadowing.idxHstRegPrev == UINT8_MAX)
|
---|
12798 | pHlp->pfnPrintf(pHlp, " Guest register %s == host register %s\n", pszGstReg,
|
---|
12799 | g_apszIemNativeHstRegNames[pEntry->GuestRegShadowing.idxHstReg]);
|
---|
12800 | else
|
---|
12801 | pHlp->pfnPrintf(pHlp, " Guest register %s == host register %s (previously in %s)\n", pszGstReg,
|
---|
12802 | g_apszIemNativeHstRegNames[pEntry->GuestRegShadowing.idxHstReg],
|
---|
12803 | g_apszIemNativeHstRegNames[pEntry->GuestRegShadowing.idxHstRegPrev]);
|
---|
12804 | continue;
|
---|
12805 | }
|
---|
12806 |
|
---|
12807 | case kIemTbDbgEntryType_Label:
|
---|
12808 | {
|
---|
12809 | const char *pszName = "what_the_fudge";
|
---|
12810 | const char *pszComment = "";
|
---|
12811 | bool fNumbered = pDbgInfo->aEntries[iDbgEntry].Label.uData != 0;
|
---|
12812 | switch ((IEMNATIVELABELTYPE)pDbgInfo->aEntries[iDbgEntry].Label.enmLabel)
|
---|
12813 | {
|
---|
12814 | case kIemNativeLabelType_Return:
|
---|
12815 | pszName = "Return";
|
---|
12816 | break;
|
---|
12817 | case kIemNativeLabelType_ReturnBreak:
|
---|
12818 | pszName = "ReturnBreak";
|
---|
12819 | break;
|
---|
12820 | case kIemNativeLabelType_ReturnWithFlags:
|
---|
12821 | pszName = "ReturnWithFlags";
|
---|
12822 | break;
|
---|
12823 | case kIemNativeLabelType_NonZeroRetOrPassUp:
|
---|
12824 | pszName = "NonZeroRetOrPassUp";
|
---|
12825 | break;
|
---|
12826 | case kIemNativeLabelType_RaiseGp0:
|
---|
12827 | pszName = "RaiseGp0";
|
---|
12828 | break;
|
---|
12829 | case kIemNativeLabelType_ObsoleteTb:
|
---|
12830 | pszName = "ObsoleteTb";
|
---|
12831 | break;
|
---|
12832 | case kIemNativeLabelType_NeedCsLimChecking:
|
---|
12833 | pszName = "NeedCsLimChecking";
|
---|
12834 | break;
|
---|
12835 | case kIemNativeLabelType_CheckBranchMiss:
|
---|
12836 | pszName = "CheckBranchMiss";
|
---|
12837 | break;
|
---|
12838 | case kIemNativeLabelType_If:
|
---|
12839 | pszName = "If";
|
---|
12840 | fNumbered = true;
|
---|
12841 | break;
|
---|
12842 | case kIemNativeLabelType_Else:
|
---|
12843 | pszName = "Else";
|
---|
12844 | fNumbered = true;
|
---|
12845 | pszComment = " ; regs state restored pre-if-block";
|
---|
12846 | break;
|
---|
12847 | case kIemNativeLabelType_Endif:
|
---|
12848 | pszName = "Endif";
|
---|
12849 | fNumbered = true;
|
---|
12850 | break;
|
---|
12851 | case kIemNativeLabelType_CheckIrq:
|
---|
12852 | pszName = "CheckIrq_CheckVM";
|
---|
12853 | fNumbered = true;
|
---|
12854 | break;
|
---|
12855 | case kIemNativeLabelType_TlbLookup:
|
---|
12856 | pszName = "TlbLookup";
|
---|
12857 | fNumbered = true;
|
---|
12858 | break;
|
---|
12859 | case kIemNativeLabelType_TlbMiss:
|
---|
12860 | pszName = "TlbMiss";
|
---|
12861 | fNumbered = true;
|
---|
12862 | break;
|
---|
12863 | case kIemNativeLabelType_TlbDone:
|
---|
12864 | pszName = "TlbDone";
|
---|
12865 | fNumbered = true;
|
---|
12866 | break;
|
---|
12867 | case kIemNativeLabelType_Invalid:
|
---|
12868 | case kIemNativeLabelType_End:
|
---|
12869 | break;
|
---|
12870 | }
|
---|
12871 | if (fNumbered)
|
---|
12872 | pHlp->pfnPrintf(pHlp, " %s_%u:%s\n", pszName, pDbgInfo->aEntries[iDbgEntry].Label.uData, pszComment);
|
---|
12873 | else
|
---|
12874 | pHlp->pfnPrintf(pHlp, " %s:\n", pszName);
|
---|
12875 | continue;
|
---|
12876 | }
|
---|
12877 |
|
---|
12878 | case kIemTbDbgEntryType_NativeOffset:
|
---|
12879 | offDbgNativeNext = pDbgInfo->aEntries[iDbgEntry].NativeOffset.offNative;
|
---|
12880 | Assert(offDbgNativeNext > offNative);
|
---|
12881 | break;
|
---|
12882 |
|
---|
12883 | default:
|
---|
12884 | AssertFailed();
|
---|
12885 | }
|
---|
12886 | iDbgEntry++;
|
---|
12887 | break;
|
---|
12888 | }
|
---|
12889 | }
|
---|
12890 |
|
---|
12891 | /*
|
---|
12892 | * Disassemble the next native instruction.
|
---|
12893 | */
|
---|
12894 | PCIEMNATIVEINSTR const pNativeCur = &paNative[offNative];
|
---|
12895 | # ifndef VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER
|
---|
12896 | uint32_t cbInstr = sizeof(paNative[0]);
|
---|
12897 | int const rc = DISInstr(pNativeCur, enmHstCpuMode, &Dis, &cbInstr);
|
---|
12898 | if (RT_SUCCESS(rc))
|
---|
12899 | {
|
---|
12900 | # if defined(RT_ARCH_AMD64)
|
---|
12901 | if (Dis.pCurInstr->uOpcode == OP_NOP && cbInstr == 7) /* iemNativeEmitMarker */
|
---|
12902 | {
|
---|
12903 | uint32_t const uInfo = *(uint32_t const *)&Dis.Instr.ab[3];
|
---|
12904 | if (RT_HIWORD(uInfo) < kIemThreadedFunc_End)
|
---|
12905 | pHlp->pfnPrintf(pHlp, " %p: nop ; marker: call #%u to %s (%u args) - %s\n",
|
---|
12906 | pNativeCur, uInfo & 0x7fff, g_apszIemThreadedFunctions[RT_HIWORD(uInfo)],
|
---|
12907 | g_acIemThreadedFunctionUsedArgs[RT_HIWORD(uInfo)],
|
---|
12908 | uInfo & 0x8000 ? "recompiled" : "todo");
|
---|
12909 | else if ((uInfo & ~RT_BIT_32(31)) < RT_ELEMENTS(a_apszMarkers))
|
---|
12910 | pHlp->pfnPrintf(pHlp, " %p: nop ; marker: %s\n", pNativeCur, a_apszMarkers[uInfo & ~RT_BIT_32(31)]);
|
---|
12911 | else
|
---|
12912 | pHlp->pfnPrintf(pHlp, " %p: nop ; unknown marker: %#x (%d)\n", pNativeCur, uInfo, uInfo);
|
---|
12913 | }
|
---|
12914 | else
|
---|
12915 | # endif
|
---|
12916 | {
|
---|
12917 | # ifdef RT_ARCH_AMD64
|
---|
12918 | DISFormatYasmEx(&Dis, szDisBuf, sizeof(szDisBuf),
|
---|
12919 | DIS_FMT_FLAGS_BYTES_WIDTH_MAKE(10) | DIS_FMT_FLAGS_BYTES_LEFT
|
---|
12920 | | DIS_FMT_FLAGS_RELATIVE_BRANCH | DIS_FMT_FLAGS_C_HEX,
|
---|
12921 | NULL /*pfnGetSymbol*/, NULL /*pvUser*/);
|
---|
12922 | # elif defined(RT_ARCH_ARM64)
|
---|
12923 | DISFormatArmV8Ex(&Dis, szDisBuf, sizeof(szDisBuf),
|
---|
12924 | DIS_FMT_FLAGS_BYTES_LEFT | DIS_FMT_FLAGS_RELATIVE_BRANCH | DIS_FMT_FLAGS_C_HEX,
|
---|
12925 | NULL /*pfnGetSymbol*/, NULL /*pvUser*/);
|
---|
12926 | # else
|
---|
12927 | # error "Port me"
|
---|
12928 | # endif
|
---|
12929 | pHlp->pfnPrintf(pHlp, " %p: %s\n", pNativeCur, szDisBuf);
|
---|
12930 | }
|
---|
12931 | }
|
---|
12932 | else
|
---|
12933 | {
|
---|
12934 | # if defined(RT_ARCH_AMD64)
|
---|
12935 | pHlp->pfnPrintf(pHlp, " %p: %.*Rhxs - disassembly failure %Rrc\n",
|
---|
12936 | pNativeCur, RT_MIN(cNative - offNative, 16), pNativeCur, rc);
|
---|
12937 | # elif defined(RT_ARCH_ARM64)
|
---|
12938 | pHlp->pfnPrintf(pHlp, " %p: %#010RX32 - disassembly failure %Rrc\n", pNativeCur, *pNativeCur, rc);
|
---|
12939 | # else
|
---|
12940 | # error "Port me"
|
---|
12941 | # endif
|
---|
12942 | cbInstr = sizeof(paNative[0]);
|
---|
12943 | }
|
---|
12944 | offNative += cbInstr / sizeof(paNative[0]);
|
---|
12945 |
|
---|
12946 | # else /* VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER */
|
---|
12947 | cs_insn *pInstr;
|
---|
12948 | size_t cInstrs = cs_disasm(hDisasm, (const uint8_t *)pNativeCur, (cNative - offNative) * sizeof(*pNativeCur),
|
---|
12949 | (uintptr_t)pNativeCur, 1, &pInstr);
|
---|
12950 | if (cInstrs > 0)
|
---|
12951 | {
|
---|
12952 | Assert(cInstrs == 1);
|
---|
12953 | # if defined(RT_ARCH_AMD64)
|
---|
12954 | pHlp->pfnPrintf(pHlp, " %p: %.*Rhxs %-7s %s\n",
|
---|
12955 | pNativeCur, pInstr->size, pNativeCur, pInstr->mnemonic, pInstr->op_str);
|
---|
12956 | # else
|
---|
12957 | pHlp->pfnPrintf(pHlp, " %p: %#010RX32 %-7s %s\n",
|
---|
12958 | pNativeCur, *pNativeCur, pInstr->mnemonic, pInstr->op_str);
|
---|
12959 | # endif
|
---|
12960 | offNative += pInstr->size / sizeof(*pNativeCur);
|
---|
12961 | cs_free(pInstr, cInstrs);
|
---|
12962 | }
|
---|
12963 | else
|
---|
12964 | {
|
---|
12965 | # if defined(RT_ARCH_AMD64)
|
---|
12966 | pHlp->pfnPrintf(pHlp, " %p: %.*Rhxs - disassembly failure %d\n",
|
---|
12967 | pNativeCur, RT_MIN(cNative - offNative, 16), pNativeCur, cs_errno(hDisasm)));
|
---|
12968 | # else
|
---|
12969 | pHlp->pfnPrintf(pHlp, " %p: %#010RX32 - disassembly failure %d\n", pNativeCur, *pNativeCur, cs_errno(hDisasm));
|
---|
12970 | # endif
|
---|
12971 | offNative++;
|
---|
12972 | }
|
---|
12973 | # endif /* VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER */
|
---|
12974 | }
|
---|
12975 | }
|
---|
12976 | else
|
---|
12977 | #endif /* IEMNATIVE_WITH_TB_DEBUG_INFO */
|
---|
12978 | {
|
---|
12979 | /*
|
---|
12980 | * No debug info, just disassemble the x86 code and then the native code.
|
---|
12981 | *
|
---|
12982 | * First the guest code:
|
---|
12983 | */
|
---|
12984 | for (unsigned i = 0; i < pTb->cRanges; i++)
|
---|
12985 | {
|
---|
12986 | RTGCPHYS GCPhysPc = pTb->aRanges[i].offPhysPage
|
---|
12987 | + (pTb->aRanges[i].idxPhysPage == 0
|
---|
12988 | ? pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK
|
---|
12989 | : pTb->aGCPhysPages[pTb->aRanges[i].idxPhysPage - 1]);
|
---|
12990 | pHlp->pfnPrintf(pHlp, " Range #%u: GCPhysPc=%RGp LB %#x [idxPg=%d]\n",
|
---|
12991 | i, GCPhysPc, pTb->aRanges[i].cbOpcodes, pTb->aRanges[i].idxPhysPage);
|
---|
12992 | unsigned off = pTb->aRanges[i].offOpcodes;
|
---|
12993 | /** @todo this ain't working when crossing pages! */
|
---|
12994 | unsigned const cbOpcodes = pTb->aRanges[i].cbOpcodes + off;
|
---|
12995 | while (off < cbOpcodes)
|
---|
12996 | {
|
---|
12997 | uint32_t cbInstr = 1;
|
---|
12998 | int rc = DISInstrWithPrefetchedBytes(GCPhysPc, enmGstCpuMode, DISOPTYPE_ALL,
|
---|
12999 | &pTb->pabOpcodes[off], cbOpcodes - off,
|
---|
13000 | iemNativeDisasReadBytesDummy, NULL, &Dis, &cbInstr);
|
---|
13001 | if (RT_SUCCESS(rc))
|
---|
13002 | {
|
---|
13003 | DISFormatYasmEx(&Dis, szDisBuf, sizeof(szDisBuf),
|
---|
13004 | DIS_FMT_FLAGS_BYTES_WIDTH_MAKE(10) | DIS_FMT_FLAGS_BYTES_LEFT
|
---|
13005 | | DIS_FMT_FLAGS_RELATIVE_BRANCH | DIS_FMT_FLAGS_C_HEX,
|
---|
13006 | NULL /*pfnGetSymbol*/, NULL /*pvUser*/);
|
---|
13007 | pHlp->pfnPrintf(pHlp, " %RGp: %s\n", GCPhysPc, szDisBuf);
|
---|
13008 | GCPhysPc += cbInstr;
|
---|
13009 | off += cbInstr;
|
---|
13010 | }
|
---|
13011 | else
|
---|
13012 | {
|
---|
13013 | pHlp->pfnPrintf(pHlp, " %RGp: %.*Rhxs - disassembly failure %Rrc\n",
|
---|
13014 | GCPhysPc, cbOpcodes - off, &pTb->pabOpcodes[off], rc);
|
---|
13015 | break;
|
---|
13016 | }
|
---|
13017 | }
|
---|
13018 | }
|
---|
13019 |
|
---|
13020 | /*
|
---|
13021 | * Then the native code:
|
---|
13022 | */
|
---|
13023 | pHlp->pfnPrintf(pHlp, " Native code %p L %#x\n", paNative, cNative);
|
---|
13024 | while (offNative < cNative)
|
---|
13025 | {
|
---|
13026 | PCIEMNATIVEINSTR const pNativeCur = &paNative[offNative];
|
---|
13027 | # ifndef VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER
|
---|
13028 | uint32_t cbInstr = sizeof(paNative[0]);
|
---|
13029 | int const rc = DISInstr(pNativeCur, enmHstCpuMode, &Dis, &cbInstr);
|
---|
13030 | if (RT_SUCCESS(rc))
|
---|
13031 | {
|
---|
13032 | # if defined(RT_ARCH_AMD64)
|
---|
13033 | if (Dis.pCurInstr->uOpcode == OP_NOP && cbInstr == 7) /* iemNativeEmitMarker */
|
---|
13034 | {
|
---|
13035 | uint32_t const uInfo = *(uint32_t const *)&Dis.Instr.ab[3];
|
---|
13036 | if (RT_HIWORD(uInfo) < kIemThreadedFunc_End)
|
---|
13037 | pHlp->pfnPrintf(pHlp, "\n %p: nop ; marker: call #%u to %s (%u args) - %s\n",
|
---|
13038 | pNativeCur, uInfo & 0x7fff, g_apszIemThreadedFunctions[RT_HIWORD(uInfo)],
|
---|
13039 | g_acIemThreadedFunctionUsedArgs[RT_HIWORD(uInfo)],
|
---|
13040 | uInfo & 0x8000 ? "recompiled" : "todo");
|
---|
13041 | else if ((uInfo & ~RT_BIT_32(31)) < RT_ELEMENTS(a_apszMarkers))
|
---|
13042 | pHlp->pfnPrintf(pHlp, " %p: nop ; marker: %s\n", pNativeCur, a_apszMarkers[uInfo & ~RT_BIT_32(31)]);
|
---|
13043 | else
|
---|
13044 | pHlp->pfnPrintf(pHlp, " %p: nop ; unknown marker: %#x (%d)\n", pNativeCur, uInfo, uInfo);
|
---|
13045 | }
|
---|
13046 | else
|
---|
13047 | # endif
|
---|
13048 | {
|
---|
13049 | # ifdef RT_ARCH_AMD64
|
---|
13050 | DISFormatYasmEx(&Dis, szDisBuf, sizeof(szDisBuf),
|
---|
13051 | DIS_FMT_FLAGS_BYTES_WIDTH_MAKE(10) | DIS_FMT_FLAGS_BYTES_LEFT
|
---|
13052 | | DIS_FMT_FLAGS_RELATIVE_BRANCH | DIS_FMT_FLAGS_C_HEX,
|
---|
13053 | NULL /*pfnGetSymbol*/, NULL /*pvUser*/);
|
---|
13054 | # elif defined(RT_ARCH_ARM64)
|
---|
13055 | DISFormatArmV8Ex(&Dis, szDisBuf, sizeof(szDisBuf),
|
---|
13056 | DIS_FMT_FLAGS_BYTES_LEFT | DIS_FMT_FLAGS_RELATIVE_BRANCH | DIS_FMT_FLAGS_C_HEX,
|
---|
13057 | NULL /*pfnGetSymbol*/, NULL /*pvUser*/);
|
---|
13058 | # else
|
---|
13059 | # error "Port me"
|
---|
13060 | # endif
|
---|
13061 | pHlp->pfnPrintf(pHlp, " %p: %s\n", pNativeCur, szDisBuf);
|
---|
13062 | }
|
---|
13063 | }
|
---|
13064 | else
|
---|
13065 | {
|
---|
13066 | # if defined(RT_ARCH_AMD64)
|
---|
13067 | pHlp->pfnPrintf(pHlp, " %p: %.*Rhxs - disassembly failure %Rrc\n",
|
---|
13068 | pNativeCur, RT_MIN(cNative - offNative, 16), pNativeCur, rc);
|
---|
13069 | # else
|
---|
13070 | pHlp->pfnPrintf(pHlp, " %p: %#010RX32 - disassembly failure %Rrc\n", pNativeCur, *pNativeCur, rc);
|
---|
13071 | # endif
|
---|
13072 | cbInstr = sizeof(paNative[0]);
|
---|
13073 | }
|
---|
13074 | offNative += cbInstr / sizeof(paNative[0]);
|
---|
13075 |
|
---|
13076 | # else /* VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER */
|
---|
13077 | cs_insn *pInstr;
|
---|
13078 | size_t cInstrs = cs_disasm(hDisasm, (const uint8_t *)pNativeCur, (cNative - offNative) * sizeof(*pNativeCur),
|
---|
13079 | (uintptr_t)pNativeCur, 1, &pInstr);
|
---|
13080 | if (cInstrs > 0)
|
---|
13081 | {
|
---|
13082 | Assert(cInstrs == 1);
|
---|
13083 | # if defined(RT_ARCH_AMD64)
|
---|
13084 | pHlp->pfnPrintf(pHlp, " %p: %.*Rhxs %-7s %s\n",
|
---|
13085 | pNativeCur, pInstr->size, pNativeCur, pInstr->mnemonic, pInstr->op_str);
|
---|
13086 | # else
|
---|
13087 | pHlp->pfnPrintf(pHlp, " %p: %#010RX32 %-7s %s\n",
|
---|
13088 | pNativeCur, *pNativeCur, pInstr->mnemonic, pInstr->op_str);
|
---|
13089 | # endif
|
---|
13090 | offNative += pInstr->size / sizeof(*pNativeCur);
|
---|
13091 | cs_free(pInstr, cInstrs);
|
---|
13092 | }
|
---|
13093 | else
|
---|
13094 | {
|
---|
13095 | # if defined(RT_ARCH_AMD64)
|
---|
13096 | pHlp->pfnPrintf(pHlp, " %p: %.*Rhxs - disassembly failure %d\n",
|
---|
13097 | pNativeCur, RT_MIN(cNative - offNative, 16), pNativeCur, cs_errno(hDisasm)));
|
---|
13098 | # else
|
---|
13099 | pHlp->pfnPrintf(pHlp, " %p: %#010RX32 - disassembly failure %d\n", pNativeCur, *pNativeCur, cs_errno(hDisasm));
|
---|
13100 | # endif
|
---|
13101 | offNative++;
|
---|
13102 | }
|
---|
13103 | # endif /* VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER */
|
---|
13104 | }
|
---|
13105 | }
|
---|
13106 |
|
---|
13107 | #ifdef VBOX_WITH_IEM_USING_CAPSTONE_DISASSEMBLER
|
---|
13108 | /* Cleanup. */
|
---|
13109 | cs_close(&hDisasm);
|
---|
13110 | #endif
|
---|
13111 | }
|
---|
13112 |
|
---|
13113 |
|
---|
13114 | /**
|
---|
13115 | * Recompiles the given threaded TB into a native one.
|
---|
13116 | *
|
---|
13117 | * In case of failure the translation block will be returned as-is.
|
---|
13118 | *
|
---|
13119 | * @returns pTb.
|
---|
13120 | * @param pVCpu The cross context virtual CPU structure of the calling
|
---|
13121 | * thread.
|
---|
13122 | * @param pTb The threaded translation to recompile to native.
|
---|
13123 | */
|
---|
13124 | DECLHIDDEN(PIEMTB) iemNativeRecompile(PVMCPUCC pVCpu, PIEMTB pTb) RT_NOEXCEPT
|
---|
13125 | {
|
---|
13126 | STAM_REL_PROFILE_START(&pVCpu->iem.s.StatNativeRecompilation, a);
|
---|
13127 |
|
---|
13128 | /*
|
---|
13129 | * The first time thru, we allocate the recompiler state, the other times
|
---|
13130 | * we just need to reset it before using it again.
|
---|
13131 | */
|
---|
13132 | PIEMRECOMPILERSTATE pReNative = pVCpu->iem.s.pNativeRecompilerStateR3;
|
---|
13133 | if (RT_LIKELY(pReNative))
|
---|
13134 | iemNativeReInit(pReNative, pTb);
|
---|
13135 | else
|
---|
13136 | {
|
---|
13137 | pReNative = iemNativeInit(pVCpu, pTb);
|
---|
13138 | AssertReturn(pReNative, pTb);
|
---|
13139 | }
|
---|
13140 |
|
---|
13141 | /*
|
---|
13142 | * Recompiling and emitting code is done using try/throw/catch or setjmp/longjmp
|
---|
13143 | * for aborting if an error happens.
|
---|
13144 | */
|
---|
13145 | uint32_t cCallsLeft = pTb->Thrd.cCalls;
|
---|
13146 | #ifdef LOG_ENABLED
|
---|
13147 | uint32_t const cCallsOrg = cCallsLeft;
|
---|
13148 | #endif
|
---|
13149 | uint32_t off = 0;
|
---|
13150 | int rc = VINF_SUCCESS;
|
---|
13151 | IEMNATIVE_TRY_SETJMP(pReNative, rc)
|
---|
13152 | {
|
---|
13153 | /*
|
---|
13154 | * Emit prolog code (fixed).
|
---|
13155 | */
|
---|
13156 | off = iemNativeEmitProlog(pReNative, off);
|
---|
13157 |
|
---|
13158 | /*
|
---|
13159 | * Convert the calls to native code.
|
---|
13160 | */
|
---|
13161 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
13162 | int32_t iGstInstr = -1;
|
---|
13163 | #endif
|
---|
13164 | #ifndef VBOX_WITHOUT_RELEASE_STATISTICS
|
---|
13165 | uint32_t cThreadedCalls = 0;
|
---|
13166 | uint32_t cRecompiledCalls = 0;
|
---|
13167 | #endif
|
---|
13168 | PCIEMTHRDEDCALLENTRY pCallEntry = pTb->Thrd.paCalls;
|
---|
13169 | pReNative->fExec = pTb->fFlags & IEMTB_F_IEM_F_MASK;
|
---|
13170 | while (cCallsLeft-- > 0)
|
---|
13171 | {
|
---|
13172 | PFNIEMNATIVERECOMPFUNC const pfnRecom = g_apfnIemNativeRecompileFunctions[pCallEntry->enmFunction];
|
---|
13173 |
|
---|
13174 | /*
|
---|
13175 | * Debug info and assembly markup.
|
---|
13176 | */
|
---|
13177 | if (pCallEntry->enmFunction == kIemThreadedFunc_BltIn_CheckMode)
|
---|
13178 | pReNative->fExec = pCallEntry->auParams[0] & IEMTB_F_IEM_F_MASK;
|
---|
13179 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
13180 | iemNativeDbgInfoAddNativeOffset(pReNative, off);
|
---|
13181 | if (iGstInstr < (int32_t)pCallEntry->idxInstr)
|
---|
13182 | {
|
---|
13183 | if (iGstInstr < (int32_t)pTb->cInstructions)
|
---|
13184 | iemNativeDbgInfoAddGuestInstruction(pReNative, pReNative->fExec);
|
---|
13185 | else
|
---|
13186 | Assert(iGstInstr == pTb->cInstructions);
|
---|
13187 | iGstInstr = pCallEntry->idxInstr;
|
---|
13188 | }
|
---|
13189 | iemNativeDbgInfoAddThreadedCall(pReNative, (IEMTHREADEDFUNCS)pCallEntry->enmFunction, pfnRecom != NULL);
|
---|
13190 | #endif
|
---|
13191 | #if defined(VBOX_STRICT)
|
---|
13192 | off = iemNativeEmitMarker(pReNative, off,
|
---|
13193 | RT_MAKE_U32((pTb->Thrd.cCalls - cCallsLeft - 1) | (pfnRecom ? 0x8000 : 0),
|
---|
13194 | pCallEntry->enmFunction));
|
---|
13195 | #endif
|
---|
13196 | #if defined(VBOX_STRICT)
|
---|
13197 | iemNativeRegAssertSanity(pReNative);
|
---|
13198 | #endif
|
---|
13199 |
|
---|
13200 | /*
|
---|
13201 | * Actual work.
|
---|
13202 | */
|
---|
13203 | Log2(("%u[%u]: %s%s\n", pTb->Thrd.cCalls - cCallsLeft - 1, pCallEntry->idxInstr,
|
---|
13204 | g_apszIemThreadedFunctions[pCallEntry->enmFunction], pfnRecom ? "(recompiled)" : "(todo)"));
|
---|
13205 | if (pfnRecom) /** @todo stats on this. */
|
---|
13206 | {
|
---|
13207 | off = pfnRecom(pReNative, off, pCallEntry);
|
---|
13208 | STAM_REL_STATS({cRecompiledCalls++;});
|
---|
13209 | }
|
---|
13210 | else
|
---|
13211 | {
|
---|
13212 | off = iemNativeEmitThreadedCall(pReNative, off, pCallEntry);
|
---|
13213 | STAM_REL_STATS({cThreadedCalls++;});
|
---|
13214 | }
|
---|
13215 | Assert(off <= pReNative->cInstrBufAlloc);
|
---|
13216 | Assert(pReNative->cCondDepth == 0);
|
---|
13217 |
|
---|
13218 | /*
|
---|
13219 | * Advance.
|
---|
13220 | */
|
---|
13221 | pCallEntry++;
|
---|
13222 | }
|
---|
13223 |
|
---|
13224 | STAM_REL_PROFILE_ADD_PERIOD(&pVCpu->iem.s.StatNativeCallsRecompiled, cRecompiledCalls);
|
---|
13225 | STAM_REL_PROFILE_ADD_PERIOD(&pVCpu->iem.s.StatNativeCallsThreaded, cThreadedCalls);
|
---|
13226 | if (!cThreadedCalls)
|
---|
13227 | STAM_REL_COUNTER_INC(&pVCpu->iem.s.StatNativeFullyRecompiledTbs);
|
---|
13228 |
|
---|
13229 | /*
|
---|
13230 | * Emit the epilog code.
|
---|
13231 | */
|
---|
13232 | uint32_t idxReturnLabel;
|
---|
13233 | off = iemNativeEmitEpilog(pReNative, off, &idxReturnLabel);
|
---|
13234 |
|
---|
13235 | /*
|
---|
13236 | * Generate special jump labels.
|
---|
13237 | */
|
---|
13238 | if (pReNative->bmLabelTypes & RT_BIT_64(kIemNativeLabelType_ReturnBreak))
|
---|
13239 | off = iemNativeEmitReturnBreak(pReNative, off, idxReturnLabel);
|
---|
13240 | if (pReNative->bmLabelTypes & RT_BIT_64(kIemNativeLabelType_ReturnWithFlags))
|
---|
13241 | off = iemNativeEmitReturnWithFlags(pReNative, off, idxReturnLabel);
|
---|
13242 | if (pReNative->bmLabelTypes & RT_BIT_64(kIemNativeLabelType_RaiseGp0))
|
---|
13243 | off = iemNativeEmitRaiseGp0(pReNative, off, idxReturnLabel);
|
---|
13244 | if (pReNative->bmLabelTypes & RT_BIT_64(kIemNativeLabelType_ObsoleteTb))
|
---|
13245 | off = iemNativeEmitObsoleteTb(pReNative, off, idxReturnLabel);
|
---|
13246 | if (pReNative->bmLabelTypes & RT_BIT_64(kIemNativeLabelType_NeedCsLimChecking))
|
---|
13247 | off = iemNativeEmitNeedCsLimChecking(pReNative, off, idxReturnLabel);
|
---|
13248 | if (pReNative->bmLabelTypes & RT_BIT_64(kIemNativeLabelType_CheckBranchMiss))
|
---|
13249 | off = iemNativeEmitCheckBranchMiss(pReNative, off, idxReturnLabel);
|
---|
13250 | }
|
---|
13251 | IEMNATIVE_CATCH_LONGJMP_BEGIN(pReNative, rc);
|
---|
13252 | {
|
---|
13253 | Log(("iemNativeRecompile: Caught %Rrc while recompiling!\n", rc));
|
---|
13254 | return pTb;
|
---|
13255 | }
|
---|
13256 | IEMNATIVE_CATCH_LONGJMP_END(pReNative);
|
---|
13257 | Assert(off <= pReNative->cInstrBufAlloc);
|
---|
13258 |
|
---|
13259 | /*
|
---|
13260 | * Make sure all labels has been defined.
|
---|
13261 | */
|
---|
13262 | PIEMNATIVELABEL const paLabels = pReNative->paLabels;
|
---|
13263 | #ifdef VBOX_STRICT
|
---|
13264 | uint32_t const cLabels = pReNative->cLabels;
|
---|
13265 | for (uint32_t i = 0; i < cLabels; i++)
|
---|
13266 | AssertMsgReturn(paLabels[i].off < off, ("i=%d enmType=%d\n", i, paLabels[i].enmType), pTb);
|
---|
13267 | #endif
|
---|
13268 |
|
---|
13269 | /*
|
---|
13270 | * Allocate executable memory, copy over the code we've generated.
|
---|
13271 | */
|
---|
13272 | PIEMTBALLOCATOR const pTbAllocator = pVCpu->iem.s.pTbAllocatorR3;
|
---|
13273 | if (pTbAllocator->pDelayedFreeHead)
|
---|
13274 | iemTbAllocatorProcessDelayedFrees(pVCpu, pVCpu->iem.s.pTbAllocatorR3);
|
---|
13275 |
|
---|
13276 | PIEMNATIVEINSTR const paFinalInstrBuf = (PIEMNATIVEINSTR)iemExecMemAllocatorAlloc(pVCpu, off * sizeof(IEMNATIVEINSTR));
|
---|
13277 | AssertReturn(paFinalInstrBuf, pTb);
|
---|
13278 | memcpy(paFinalInstrBuf, pReNative->pInstrBuf, off * sizeof(paFinalInstrBuf[0]));
|
---|
13279 |
|
---|
13280 | /*
|
---|
13281 | * Apply fixups.
|
---|
13282 | */
|
---|
13283 | PIEMNATIVEFIXUP const paFixups = pReNative->paFixups;
|
---|
13284 | uint32_t const cFixups = pReNative->cFixups;
|
---|
13285 | for (uint32_t i = 0; i < cFixups; i++)
|
---|
13286 | {
|
---|
13287 | Assert(paFixups[i].off < off);
|
---|
13288 | Assert(paFixups[i].idxLabel < cLabels);
|
---|
13289 | AssertMsg(paLabels[paFixups[i].idxLabel].off < off,
|
---|
13290 | ("idxLabel=%d enmType=%d off=%#x (max %#x)\n", paFixups[i].idxLabel,
|
---|
13291 | paLabels[paFixups[i].idxLabel].enmType, paLabels[paFixups[i].idxLabel].off, off));
|
---|
13292 | RTPTRUNION const Ptr = { &paFinalInstrBuf[paFixups[i].off] };
|
---|
13293 | switch (paFixups[i].enmType)
|
---|
13294 | {
|
---|
13295 | #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
|
---|
13296 | case kIemNativeFixupType_Rel32:
|
---|
13297 | Assert(paFixups[i].off + 4 <= off);
|
---|
13298 | *Ptr.pi32 = paLabels[paFixups[i].idxLabel].off - paFixups[i].off + paFixups[i].offAddend;
|
---|
13299 | continue;
|
---|
13300 |
|
---|
13301 | #elif defined(RT_ARCH_ARM64)
|
---|
13302 | case kIemNativeFixupType_RelImm26At0:
|
---|
13303 | {
|
---|
13304 | Assert(paFixups[i].off < off);
|
---|
13305 | int32_t const offDisp = paLabels[paFixups[i].idxLabel].off - paFixups[i].off + paFixups[i].offAddend;
|
---|
13306 | Assert(offDisp >= -262144 && offDisp < 262144);
|
---|
13307 | *Ptr.pu32 = (*Ptr.pu32 & UINT32_C(0xfc000000)) | ((uint32_t)offDisp & UINT32_C(0x03ffffff));
|
---|
13308 | continue;
|
---|
13309 | }
|
---|
13310 |
|
---|
13311 | case kIemNativeFixupType_RelImm19At5:
|
---|
13312 | {
|
---|
13313 | Assert(paFixups[i].off < off);
|
---|
13314 | int32_t const offDisp = paLabels[paFixups[i].idxLabel].off - paFixups[i].off + paFixups[i].offAddend;
|
---|
13315 | Assert(offDisp >= -262144 && offDisp < 262144);
|
---|
13316 | *Ptr.pu32 = (*Ptr.pu32 & UINT32_C(0xff00001f)) | (((uint32_t)offDisp & UINT32_C(0x0007ffff)) << 5);
|
---|
13317 | continue;
|
---|
13318 | }
|
---|
13319 |
|
---|
13320 | case kIemNativeFixupType_RelImm14At5:
|
---|
13321 | {
|
---|
13322 | Assert(paFixups[i].off < off);
|
---|
13323 | int32_t const offDisp = paLabels[paFixups[i].idxLabel].off - paFixups[i].off + paFixups[i].offAddend;
|
---|
13324 | Assert(offDisp >= -8192 && offDisp < 8192);
|
---|
13325 | *Ptr.pu32 = (*Ptr.pu32 & UINT32_C(0xfff8001f)) | (((uint32_t)offDisp & UINT32_C(0x00003fff)) << 5);
|
---|
13326 | continue;
|
---|
13327 | }
|
---|
13328 |
|
---|
13329 | #endif
|
---|
13330 | case kIemNativeFixupType_Invalid:
|
---|
13331 | case kIemNativeFixupType_End:
|
---|
13332 | break;
|
---|
13333 | }
|
---|
13334 | AssertFailed();
|
---|
13335 | }
|
---|
13336 |
|
---|
13337 | iemExecMemAllocatorReadyForUse(pVCpu, paFinalInstrBuf, off * sizeof(IEMNATIVEINSTR));
|
---|
13338 | STAM_REL_PROFILE_ADD_PERIOD(&pVCpu->iem.s.StatTbNativeCode, off * sizeof(IEMNATIVEINSTR));
|
---|
13339 |
|
---|
13340 | /*
|
---|
13341 | * Convert the translation block.
|
---|
13342 | */
|
---|
13343 | RTMemFree(pTb->Thrd.paCalls);
|
---|
13344 | pTb->Native.paInstructions = paFinalInstrBuf;
|
---|
13345 | pTb->Native.cInstructions = off;
|
---|
13346 | pTb->fFlags = (pTb->fFlags & ~IEMTB_F_TYPE_MASK) | IEMTB_F_TYPE_NATIVE;
|
---|
13347 | #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
|
---|
13348 | pTb->pDbgInfo = (PIEMTBDBG)RTMemDup(pReNative->pDbgInfo, /* non-fatal, so not return check. */
|
---|
13349 | RT_UOFFSETOF_DYN(IEMTBDBG, aEntries[pReNative->pDbgInfo->cEntries]));
|
---|
13350 | #endif
|
---|
13351 |
|
---|
13352 | Assert(pTbAllocator->cThreadedTbs > 0);
|
---|
13353 | pTbAllocator->cThreadedTbs -= 1;
|
---|
13354 | pTbAllocator->cNativeTbs += 1;
|
---|
13355 | Assert(pTbAllocator->cNativeTbs <= pTbAllocator->cTotalTbs);
|
---|
13356 |
|
---|
13357 | #ifdef LOG_ENABLED
|
---|
13358 | /*
|
---|
13359 | * Disassemble to the log if enabled.
|
---|
13360 | */
|
---|
13361 | if (LogIs3Enabled())
|
---|
13362 | {
|
---|
13363 | Log3(("----------------------------------------- %d calls ---------------------------------------\n", cCallsOrg));
|
---|
13364 | iemNativeDisassembleTb(pTb, DBGFR3InfoLogHlp());
|
---|
13365 | # ifdef DEBUG_bird
|
---|
13366 | RTLogFlush(NULL);
|
---|
13367 | # endif
|
---|
13368 | }
|
---|
13369 | #endif
|
---|
13370 | /*iemNativeDisassembleTb(pTb, DBGFR3InfoLogRelHlp());*/
|
---|
13371 |
|
---|
13372 | STAM_REL_PROFILE_STOP(&pVCpu->iem.s.StatNativeRecompilation, a);
|
---|
13373 | return pTb;
|
---|
13374 | }
|
---|
13375 |
|
---|