VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPool.cpp@ 49966

Last change on this file since 49966 was 49482, checked in by vboxsync, 11 years ago

VMM: Warnings.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 210.6 KB
Line 
1/* $Id: PGMAllPool.cpp 49482 2013-11-14 15:43:58Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_POOL
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/mm.h>
25#include <VBox/vmm/em.h>
26#include <VBox/vmm/cpum.h>
27#ifdef IN_RC
28# include <VBox/vmm/patm.h>
29#endif
30#include "PGMInternal.h"
31#include <VBox/vmm/vm.h>
32#include "PGMInline.h"
33#include <VBox/disopcode.h>
34#include <VBox/vmm/hm_vmx.h>
35
36#include <VBox/log.h>
37#include <VBox/err.h>
38#include <iprt/asm.h>
39#include <iprt/asm-amd64-x86.h>
40#include <iprt/string.h>
41
42
43/*******************************************************************************
44* Internal Functions *
45*******************************************************************************/
46RT_C_DECLS_BEGIN
47DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind);
48DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind);
49static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
50static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
51static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
52#ifndef IN_RING3
53DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser);
54#endif
55#if defined(LOG_ENABLED) || defined(VBOX_STRICT)
56static const char *pgmPoolPoolKindToStr(uint8_t enmKind);
57#endif
58#if 0 /*defined(VBOX_STRICT) && defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT)*/
59static void pgmPoolTrackCheckPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT);
60#endif
61
62int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
63PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
64void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
65void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
66
67RT_C_DECLS_END
68
69
70/**
71 * Checks if the specified page pool kind is for a 4MB or 2MB guest page.
72 *
73 * @returns true if it's the shadow of a 4MB or 2MB guest page, otherwise false.
74 * @param enmKind The page kind.
75 */
76DECLINLINE(bool) pgmPoolIsBigPage(PGMPOOLKIND enmKind)
77{
78 switch (enmKind)
79 {
80 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
81 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
82 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
83 return true;
84 default:
85 return false;
86 }
87}
88
89
90/**
91 * Flushes a chain of pages sharing the same access monitor.
92 *
93 * @returns VBox status code suitable for scheduling.
94 * @param pPool The pool.
95 * @param pPage A page in the chain.
96 * @todo VBOXSTRICTRC
97 */
98int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
99{
100 LogFlow(("pgmPoolMonitorChainFlush: Flush page %RGp type=%d\n", pPage->GCPhys, pPage->enmKind));
101
102 /*
103 * Find the list head.
104 */
105 uint16_t idx = pPage->idx;
106 if (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
107 {
108 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
109 {
110 idx = pPage->iMonitoredPrev;
111 Assert(idx != pPage->idx);
112 pPage = &pPool->aPages[idx];
113 }
114 }
115
116 /*
117 * Iterate the list flushing each shadow page.
118 */
119 int rc = VINF_SUCCESS;
120 for (;;)
121 {
122 idx = pPage->iMonitoredNext;
123 Assert(idx != pPage->idx);
124 if (pPage->idx >= PGMPOOL_IDX_FIRST)
125 {
126 int rc2 = pgmPoolFlushPage(pPool, pPage);
127 AssertRC(rc2);
128 }
129 /* next */
130 if (idx == NIL_PGMPOOL_IDX)
131 break;
132 pPage = &pPool->aPages[idx];
133 }
134 return rc;
135}
136
137
138/**
139 * Wrapper for getting the current context pointer to the entry being modified.
140 *
141 * @returns VBox status code suitable for scheduling.
142 * @param pVM Pointer to the VM.
143 * @param pvDst Destination address
144 * @param pvSrc Source guest virtual address.
145 * @param GCPhysSrc The source guest physical address.
146 * @param cb Size of data to read
147 */
148DECLINLINE(int) pgmPoolPhysSimpleReadGCPhys(PVM pVM, void *pvDst, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvSrc,
149 RTGCPHYS GCPhysSrc, size_t cb)
150{
151#if defined(IN_RING3)
152 NOREF(pVM); NOREF(GCPhysSrc);
153 memcpy(pvDst, (RTHCPTR)((uintptr_t)pvSrc & ~(RTHCUINTPTR)(cb - 1)), cb);
154 return VINF_SUCCESS;
155#else
156 /* @todo in RC we could attempt to use the virtual address, although this can cause many faults (PAE Windows XP guest). */
157 NOREF(pvSrc);
158 return PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysSrc & ~(RTGCPHYS)(cb - 1), cb);
159#endif
160}
161
162
163/**
164 * Process shadow entries before they are changed by the guest.
165 *
166 * For PT entries we will clear them. For PD entries, we'll simply check
167 * for mapping conflicts and set the SyncCR3 FF if found.
168 *
169 * @param pVCpu Pointer to the VMCPU.
170 * @param pPool The pool.
171 * @param pPage The head page.
172 * @param GCPhysFault The guest physical fault address.
173 * @param uAddress In R0 and GC this is the guest context fault address (flat).
174 * In R3 this is the host context 'fault' address.
175 * @param cbWrite Write size; might be zero if the caller knows we're not crossing entry boundaries
176 */
177void pgmPoolMonitorChainChanging(PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault,
178 CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvAddress, unsigned cbWrite)
179{
180 AssertMsg(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX, ("%u (idx=%u)\n", pPage->iMonitoredPrev, pPage->idx));
181 const unsigned off = GCPhysFault & PAGE_OFFSET_MASK;
182 PVM pVM = pPool->CTX_SUFF(pVM);
183 NOREF(pVCpu);
184
185 LogFlow(("pgmPoolMonitorChainChanging: %RGv phys=%RGp cbWrite=%d\n", (RTGCPTR)(CTXTYPE(RTGCPTR, uintptr_t, RTGCPTR))pvAddress, GCPhysFault, cbWrite));
186
187 for (;;)
188 {
189 union
190 {
191 void *pv;
192 PX86PT pPT;
193 PPGMSHWPTPAE pPTPae;
194 PX86PD pPD;
195 PX86PDPAE pPDPae;
196 PX86PDPT pPDPT;
197 PX86PML4 pPML4;
198 } uShw;
199
200 LogFlow(("pgmPoolMonitorChainChanging: page idx=%d phys=%RGp (next=%d) kind=%s\n", pPage->idx, pPage->GCPhys, pPage->iMonitoredNext, pgmPoolPoolKindToStr(pPage->enmKind), cbWrite));
201
202 uShw.pv = NULL;
203 switch (pPage->enmKind)
204 {
205 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
206 {
207 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT));
208 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
209 const unsigned iShw = off / sizeof(X86PTE);
210 LogFlow(("PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT iShw=%x\n", iShw));
211 if (uShw.pPT->a[iShw].n.u1Present)
212 {
213 X86PTE GstPte;
214
215 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
216 AssertRC(rc);
217 Log4(("pgmPoolMonitorChainChanging 32_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
218 pgmPoolTracDerefGCPhysHint(pPool, pPage,
219 uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK,
220 GstPte.u & X86_PTE_PG_MASK,
221 iShw);
222 ASMAtomicWriteU32(&uShw.pPT->a[iShw].u, 0);
223 }
224 break;
225 }
226
227 /* page/2 sized */
228 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
229 {
230 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT));
231 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
232 if (!((off ^ pPage->GCPhys) & (PAGE_SIZE / 2)))
233 {
234 const unsigned iShw = (off / sizeof(X86PTE)) & (X86_PG_PAE_ENTRIES - 1);
235 LogFlow(("PGMPOOLKIND_PAE_PT_FOR_32BIT_PT iShw=%x\n", iShw));
236 if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw]))
237 {
238 X86PTE GstPte;
239 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
240 AssertRC(rc);
241
242 Log4(("pgmPoolMonitorChainChanging pae_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
243 pgmPoolTracDerefGCPhysHint(pPool, pPage,
244 PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw]),
245 GstPte.u & X86_PTE_PG_MASK,
246 iShw);
247 PGMSHWPTEPAE_ATOMIC_SET(uShw.pPTPae->a[iShw], 0);
248 }
249 }
250 break;
251 }
252
253 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
254 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
255 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
256 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
257 {
258 unsigned iGst = off / sizeof(X86PDE);
259 unsigned iShwPdpt = iGst / 256;
260 unsigned iShw = (iGst % 256) * 2;
261 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
262
263 LogFlow(("pgmPoolMonitorChainChanging PAE for 32 bits: iGst=%x iShw=%x idx = %d page idx=%d\n", iGst, iShw, iShwPdpt, pPage->enmKind - PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD));
264 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
265 if (iShwPdpt == pPage->enmKind - (unsigned)PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD)
266 {
267 for (unsigned i = 0; i < 2; i++)
268 {
269# ifdef VBOX_WITH_RAW_MODE_NOT_R0
270 if ((uShw.pPDPae->a[iShw + i].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
271 {
272 Assert(pgmMapAreMappingsEnabled(pVM));
273 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
274 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw=%#x!\n", iShwPdpt, iShw+i));
275 break;
276 }
277# endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
278 if (uShw.pPDPae->a[iShw+i].n.u1Present)
279 {
280 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw+i, uShw.pPDPae->a[iShw+i].u));
281 pgmPoolFree(pVM,
282 uShw.pPDPae->a[iShw+i].u & X86_PDE_PAE_PG_MASK,
283 pPage->idx,
284 iShw + i);
285 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw+i].u, 0);
286 }
287
288 /* paranoia / a bit assumptive. */
289 if ( (off & 3)
290 && (off & 3) + cbWrite > 4)
291 {
292 const unsigned iShw2 = iShw + 2 + i;
293 if (iShw2 < RT_ELEMENTS(uShw.pPDPae->a))
294 {
295# ifdef VBOX_WITH_RAW_MODE_NOT_R0
296 if ((uShw.pPDPae->a[iShw2].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
297 {
298 Assert(pgmMapAreMappingsEnabled(pVM));
299 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
300 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw2=%#x!\n", iShwPdpt, iShw2));
301 break;
302 }
303# endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
304 if (uShw.pPDPae->a[iShw2].n.u1Present)
305 {
306 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
307 pgmPoolFree(pVM,
308 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
309 pPage->idx,
310 iShw2);
311 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw2].u, 0);
312 }
313 }
314 }
315 }
316 }
317 break;
318 }
319
320 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
321 {
322 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
323 const unsigned iShw = off / sizeof(X86PTEPAE);
324 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT));
325 if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw]))
326 {
327 X86PTEPAE GstPte;
328 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
329 AssertRC(rc);
330
331 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw]), GstPte.u & X86_PTE_PAE_PG_MASK));
332 pgmPoolTracDerefGCPhysHint(pPool, pPage,
333 PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw]),
334 GstPte.u & X86_PTE_PAE_PG_MASK,
335 iShw);
336 PGMSHWPTEPAE_ATOMIC_SET(uShw.pPTPae->a[iShw], 0);
337 }
338
339 /* paranoia / a bit assumptive. */
340 if ( (off & 7)
341 && (off & 7) + cbWrite > sizeof(X86PTEPAE))
342 {
343 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTEPAE);
344 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPTPae->a));
345
346 if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw2]))
347 {
348 X86PTEPAE GstPte;
349# ifdef IN_RING3
350 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, (RTHCPTR)((RTHCUINTPTR)pvAddress + sizeof(GstPte)), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
351# else
352 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress + sizeof(GstPte), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
353# endif
354 AssertRC(rc);
355 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw2]), GstPte.u & X86_PTE_PAE_PG_MASK));
356 pgmPoolTracDerefGCPhysHint(pPool, pPage,
357 PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw2]),
358 GstPte.u & X86_PTE_PAE_PG_MASK,
359 iShw2);
360 PGMSHWPTEPAE_ATOMIC_SET(uShw.pPTPae->a[iShw2], 0);
361 }
362 }
363 break;
364 }
365
366 case PGMPOOLKIND_32BIT_PD:
367 {
368 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
369 const unsigned iShw = off / sizeof(X86PTE); // ASSUMING 32-bit guest paging!
370
371 LogFlow(("pgmPoolMonitorChainChanging: PGMPOOLKIND_32BIT_PD %x\n", iShw));
372 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
373# ifdef VBOX_WITH_RAW_MODE_NOT_R0
374 if (uShw.pPD->a[iShw].u & PGM_PDFLAGS_MAPPING)
375 {
376 Assert(pgmMapAreMappingsEnabled(pVM));
377 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
378 STAM_COUNTER_INC(&(pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestCR3WriteConflict));
379 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
380 break;
381 }
382 else
383# endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
384 {
385 if (uShw.pPD->a[iShw].n.u1Present)
386 {
387 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
388 pgmPoolFree(pVM,
389 uShw.pPD->a[iShw].u & X86_PDE_PAE_PG_MASK,
390 pPage->idx,
391 iShw);
392 ASMAtomicWriteU32(&uShw.pPD->a[iShw].u, 0);
393 }
394 }
395 /* paranoia / a bit assumptive. */
396 if ( (off & 3)
397 && (off & 3) + cbWrite > sizeof(X86PTE))
398 {
399 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTE);
400 if ( iShw2 != iShw
401 && iShw2 < RT_ELEMENTS(uShw.pPD->a))
402 {
403# ifdef VBOX_WITH_RAW_MODE_NOT_R0
404 if (uShw.pPD->a[iShw2].u & PGM_PDFLAGS_MAPPING)
405 {
406 Assert(pgmMapAreMappingsEnabled(pVM));
407 STAM_COUNTER_INC(&(pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestCR3WriteConflict));
408 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
409 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
410 break;
411 }
412# endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
413 if (uShw.pPD->a[iShw2].n.u1Present)
414 {
415 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPD->a[iShw2].u));
416 pgmPoolFree(pVM,
417 uShw.pPD->a[iShw2].u & X86_PDE_PAE_PG_MASK,
418 pPage->idx,
419 iShw2);
420 ASMAtomicWriteU32(&uShw.pPD->a[iShw2].u, 0);
421 }
422 }
423 }
424#if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). */
425 if ( uShw.pPD->a[iShw].n.u1Present
426 && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
427 {
428 LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX32 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
429# ifdef IN_RC /* TLB load - we're pushing things a bit... */
430 ASMProbeReadByte(pvAddress);
431# endif
432 pgmPoolFree(pVM, uShw.pPD->a[iShw].u & X86_PDE_PG_MASK, pPage->idx, iShw);
433 ASMAtomicWriteU32(&uShw.pPD->a[iShw].u, 0);
434 }
435#endif
436 break;
437 }
438
439 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
440 {
441 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
442 const unsigned iShw = off / sizeof(X86PDEPAE);
443 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
444#ifdef VBOX_WITH_RAW_MODE_NOT_R0
445 if (uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING)
446 {
447 Assert(pgmMapAreMappingsEnabled(pVM));
448 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
449 STAM_COUNTER_INC(&(pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestCR3WriteConflict));
450 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
451 break;
452 }
453#endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
454 /*
455 * Causes trouble when the guest uses a PDE to refer to the whole page table level
456 * structure. (Invalidate here; faults later on when it tries to change the page
457 * table entries -> recheck; probably only applies to the RC case.)
458 */
459#ifdef VBOX_WITH_RAW_MODE_NOT_R0
460 else
461#endif
462 {
463 if (uShw.pPDPae->a[iShw].n.u1Present)
464 {
465 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
466 pgmPoolFree(pVM,
467 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
468 pPage->idx,
469 iShw);
470 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw].u, 0);
471 }
472 }
473 /* paranoia / a bit assumptive. */
474 if ( (off & 7)
475 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
476 {
477 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
478 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
479
480#ifdef VBOX_WITH_RAW_MODE_NOT_R0
481 if ( iShw2 != iShw
482 && uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING)
483 {
484 Assert(pgmMapAreMappingsEnabled(pVM));
485 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
486 STAM_COUNTER_INC(&(pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestCR3WriteConflict));
487 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
488 break;
489 }
490 else
491#endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
492 if (uShw.pPDPae->a[iShw2].n.u1Present)
493 {
494 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
495 pgmPoolFree(pVM,
496 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
497 pPage->idx,
498 iShw2);
499 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw2].u, 0);
500 }
501 }
502 break;
503 }
504
505 case PGMPOOLKIND_PAE_PDPT:
506 {
507 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPDPT));
508 /*
509 * Hopefully this doesn't happen very often:
510 * - touching unused parts of the page
511 * - messing with the bits of pd pointers without changing the physical address
512 */
513 /* PDPT roots are not page aligned; 32 byte only! */
514 const unsigned offPdpt = GCPhysFault - pPage->GCPhys;
515
516 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
517 const unsigned iShw = offPdpt / sizeof(X86PDPE);
518 if (iShw < X86_PG_PAE_PDPE_ENTRIES) /* don't use RT_ELEMENTS(uShw.pPDPT->a), because that's for long mode only */
519 {
520# ifdef VBOX_WITH_RAW_MODE_NOT_R0
521 if (uShw.pPDPT->a[iShw].u & PGM_PLXFLAGS_MAPPING)
522 {
523 Assert(pgmMapAreMappingsEnabled(pVM));
524 STAM_COUNTER_INC(&(pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestCR3WriteConflict));
525 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
526 LogFlow(("pgmPoolMonitorChainChanging: Detected pdpt conflict at iShw=%#x!\n", iShw));
527 break;
528 }
529 else
530# endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
531 if (uShw.pPDPT->a[iShw].n.u1Present)
532 {
533 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
534 pgmPoolFree(pVM,
535 uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK,
536 pPage->idx,
537 iShw);
538 ASMAtomicWriteU64(&uShw.pPDPT->a[iShw].u, 0);
539 }
540
541 /* paranoia / a bit assumptive. */
542 if ( (offPdpt & 7)
543 && (offPdpt & 7) + cbWrite > sizeof(X86PDPE))
544 {
545 const unsigned iShw2 = (offPdpt + cbWrite - 1) / sizeof(X86PDPE);
546 if ( iShw2 != iShw
547 && iShw2 < X86_PG_PAE_PDPE_ENTRIES)
548 {
549# ifdef VBOX_WITH_RAW_MODE_NOT_R0
550 if (uShw.pPDPT->a[iShw2].u & PGM_PLXFLAGS_MAPPING)
551 {
552 Assert(pgmMapAreMappingsEnabled(pVM));
553 STAM_COUNTER_INC(&(pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestCR3WriteConflict));
554 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
555 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
556 break;
557 }
558 else
559# endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
560 if (uShw.pPDPT->a[iShw2].n.u1Present)
561 {
562 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
563 pgmPoolFree(pVM,
564 uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK,
565 pPage->idx,
566 iShw2);
567 ASMAtomicWriteU64(&uShw.pPDPT->a[iShw2].u, 0);
568 }
569 }
570 }
571 }
572 break;
573 }
574
575#ifndef IN_RC
576 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
577 {
578 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
579 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
580 const unsigned iShw = off / sizeof(X86PDEPAE);
581 Assert(!(uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING));
582 if (uShw.pPDPae->a[iShw].n.u1Present)
583 {
584 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
585 pgmPoolFree(pVM,
586 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
587 pPage->idx,
588 iShw);
589 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw].u, 0);
590 }
591 /* paranoia / a bit assumptive. */
592 if ( (off & 7)
593 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
594 {
595 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
596 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
597
598 Assert(!(uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING));
599 if (uShw.pPDPae->a[iShw2].n.u1Present)
600 {
601 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
602 pgmPoolFree(pVM,
603 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
604 pPage->idx,
605 iShw2);
606 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw2].u, 0);
607 }
608 }
609 break;
610 }
611
612 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
613 {
614 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPDPT));
615 /*
616 * Hopefully this doesn't happen very often:
617 * - messing with the bits of pd pointers without changing the physical address
618 */
619 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
620 const unsigned iShw = off / sizeof(X86PDPE);
621 if (uShw.pPDPT->a[iShw].n.u1Present)
622 {
623 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
624 pgmPoolFree(pVM, uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK, pPage->idx, iShw);
625 ASMAtomicWriteU64(&uShw.pPDPT->a[iShw].u, 0);
626 }
627 /* paranoia / a bit assumptive. */
628 if ( (off & 7)
629 && (off & 7) + cbWrite > sizeof(X86PDPE))
630 {
631 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDPE);
632 if (uShw.pPDPT->a[iShw2].n.u1Present)
633 {
634 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
635 pgmPoolFree(pVM, uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK, pPage->idx, iShw2);
636 ASMAtomicWriteU64(&uShw.pPDPT->a[iShw2].u, 0);
637 }
638 }
639 break;
640 }
641
642 case PGMPOOLKIND_64BIT_PML4:
643 {
644 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPML4));
645 /*
646 * Hopefully this doesn't happen very often:
647 * - messing with the bits of pd pointers without changing the physical address
648 */
649 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
650 const unsigned iShw = off / sizeof(X86PDPE);
651 if (uShw.pPML4->a[iShw].n.u1Present)
652 {
653 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPML4->a[iShw].u));
654 pgmPoolFree(pVM, uShw.pPML4->a[iShw].u & X86_PML4E_PG_MASK, pPage->idx, iShw);
655 ASMAtomicWriteU64(&uShw.pPML4->a[iShw].u, 0);
656 }
657 /* paranoia / a bit assumptive. */
658 if ( (off & 7)
659 && (off & 7) + cbWrite > sizeof(X86PDPE))
660 {
661 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PML4E);
662 if (uShw.pPML4->a[iShw2].n.u1Present)
663 {
664 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPML4->a[iShw2].u));
665 pgmPoolFree(pVM, uShw.pPML4->a[iShw2].u & X86_PML4E_PG_MASK, pPage->idx, iShw2);
666 ASMAtomicWriteU64(&uShw.pPML4->a[iShw2].u, 0);
667 }
668 }
669 break;
670 }
671#endif /* IN_RING0 */
672
673 default:
674 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
675 }
676 PGM_DYNMAP_UNUSED_HINT_VM(pVM, uShw.pv);
677
678 /* next */
679 if (pPage->iMonitoredNext == NIL_PGMPOOL_IDX)
680 return;
681 pPage = &pPool->aPages[pPage->iMonitoredNext];
682 }
683}
684
685# ifndef IN_RING3
686
687/**
688 * Checks if a access could be a fork operation in progress.
689 *
690 * Meaning, that the guest is setting up the parent process for Copy-On-Write.
691 *
692 * @returns true if it's likely that we're forking, otherwise false.
693 * @param pPool The pool.
694 * @param pDis The disassembled instruction.
695 * @param offFault The access offset.
696 */
697DECLINLINE(bool) pgmPoolMonitorIsForking(PPGMPOOL pPool, PDISCPUSTATE pDis, unsigned offFault)
698{
699 /*
700 * i386 linux is using btr to clear X86_PTE_RW.
701 * The functions involved are (2.6.16 source inspection):
702 * clear_bit
703 * ptep_set_wrprotect
704 * copy_one_pte
705 * copy_pte_range
706 * copy_pmd_range
707 * copy_pud_range
708 * copy_page_range
709 * dup_mmap
710 * dup_mm
711 * copy_mm
712 * copy_process
713 * do_fork
714 */
715 if ( pDis->pCurInstr->uOpcode == OP_BTR
716 && !(offFault & 4)
717 /** @todo Validate that the bit index is X86_PTE_RW. */
718 )
719 {
720 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,Fork));
721 return true;
722 }
723 return false;
724}
725
726
727/**
728 * Determine whether the page is likely to have been reused.
729 *
730 * @returns true if we consider the page as being reused for a different purpose.
731 * @returns false if we consider it to still be a paging page.
732 * @param pVM Pointer to the VM.
733 * @param pVCpu Pointer to the VMCPU.
734 * @param pRegFrame Trap register frame.
735 * @param pDis The disassembly info for the faulting instruction.
736 * @param pvFault The fault address.
737 *
738 * @remark The REP prefix check is left to the caller because of STOSD/W.
739 */
740DECLINLINE(bool) pgmPoolMonitorIsReused(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pDis, RTGCPTR pvFault)
741{
742#ifndef IN_RC
743 /** @todo could make this general, faulting close to rsp should be a safe reuse heuristic. */
744 if ( HMHasPendingIrq(pVM)
745 && (pRegFrame->rsp - pvFault) < 32)
746 {
747 /* Fault caused by stack writes while trying to inject an interrupt event. */
748 Log(("pgmPoolMonitorIsReused: reused %RGv for interrupt stack (rsp=%RGv).\n", pvFault, pRegFrame->rsp));
749 return true;
750 }
751#else
752 NOREF(pVM); NOREF(pvFault);
753#endif
754
755 LogFlow(("Reused instr %RGv %d at %RGv param1.fUse=%llx param1.reg=%d\n", pRegFrame->rip, pDis->pCurInstr->uOpcode, pvFault, pDis->Param1.fUse, pDis->Param1.Base.idxGenReg));
756
757 /* Non-supervisor mode write means it's used for something else. */
758 if (CPUMGetGuestCPL(pVCpu) == 3)
759 return true;
760
761 switch (pDis->pCurInstr->uOpcode)
762 {
763 /* call implies the actual push of the return address faulted */
764 case OP_CALL:
765 Log4(("pgmPoolMonitorIsReused: CALL\n"));
766 return true;
767 case OP_PUSH:
768 Log4(("pgmPoolMonitorIsReused: PUSH\n"));
769 return true;
770 case OP_PUSHF:
771 Log4(("pgmPoolMonitorIsReused: PUSHF\n"));
772 return true;
773 case OP_PUSHA:
774 Log4(("pgmPoolMonitorIsReused: PUSHA\n"));
775 return true;
776 case OP_FXSAVE:
777 Log4(("pgmPoolMonitorIsReused: FXSAVE\n"));
778 return true;
779 case OP_MOVNTI: /* solaris - block_zero_no_xmm */
780 Log4(("pgmPoolMonitorIsReused: MOVNTI\n"));
781 return true;
782 case OP_MOVNTDQ: /* solaris - hwblkclr & hwblkpagecopy */
783 Log4(("pgmPoolMonitorIsReused: MOVNTDQ\n"));
784 return true;
785 case OP_MOVSWD:
786 case OP_STOSWD:
787 if ( pDis->fPrefix == (DISPREFIX_REP|DISPREFIX_REX)
788 && pRegFrame->rcx >= 0x40
789 )
790 {
791 Assert(pDis->uCpuMode == DISCPUMODE_64BIT);
792
793 Log(("pgmPoolMonitorIsReused: OP_STOSQ\n"));
794 return true;
795 }
796 return false;
797 }
798 if ( ( (pDis->Param1.fUse & DISUSE_REG_GEN32)
799 || (pDis->Param1.fUse & DISUSE_REG_GEN64))
800 && (pDis->Param1.Base.idxGenReg == DISGREG_ESP))
801 {
802 Log4(("pgmPoolMonitorIsReused: ESP\n"));
803 return true;
804 }
805
806 return false;
807}
808
809
810/**
811 * Flushes the page being accessed.
812 *
813 * @returns VBox status code suitable for scheduling.
814 * @param pVM Pointer to the VM.
815 * @param pVCpu Pointer to the VMCPU.
816 * @param pPool The pool.
817 * @param pPage The pool page (head).
818 * @param pDis The disassembly of the write instruction.
819 * @param pRegFrame The trap register frame.
820 * @param GCPhysFault The fault address as guest physical address.
821 * @param pvFault The fault address.
822 * @todo VBOXSTRICTRC
823 */
824static int pgmPoolAccessHandlerFlush(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
825 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
826{
827 NOREF(pVM); NOREF(GCPhysFault);
828
829 /*
830 * First, do the flushing.
831 */
832 int rc = pgmPoolMonitorChainFlush(pPool, pPage);
833
834 /*
835 * Emulate the instruction (xp/w2k problem, requires pc/cr2/sp detection).
836 * Must do this in raw mode (!); XP boot will fail otherwise.
837 */
838 VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_ALL);
839 if (rc2 == VINF_SUCCESS)
840 { /* do nothing */ }
841#ifdef VBOX_WITH_IEM
842 else if (rc2 == VINF_EM_RESCHEDULE)
843 {
844 if (rc == VINF_SUCCESS)
845 rc = VBOXSTRICTRC_VAL(rc2);
846# ifndef IN_RING3
847 VMCPU_FF_SET(pVCpu, VMCPU_FF_TO_R3);
848# endif
849 }
850#endif
851 else if (rc2 == VERR_EM_INTERPRETER)
852 {
853#ifdef IN_RC
854 if (PATMIsPatchGCAddr(pVM, pRegFrame->eip))
855 {
856 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for patch code %04x:%RGv, ignoring.\n",
857 pRegFrame->cs.Sel, (RTGCPTR)pRegFrame->eip));
858 rc = VINF_SUCCESS;
859 STAM_COUNTER_INC(&pPool->StatMonitorRZIntrFailPatch2);
860 }
861 else
862#endif
863 {
864 rc = VINF_EM_RAW_EMULATE_INSTR;
865 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
866 }
867 }
868 else if (RT_FAILURE_NP(rc2))
869 rc = VBOXSTRICTRC_VAL(rc2);
870 else
871 AssertMsgFailed(("%Rrc\n", VBOXSTRICTRC_VAL(rc2))); /* ASSUMES no complicated stuff here. */
872
873 LogFlow(("pgmPoolAccessHandlerPT: returns %Rrc (flushed)\n", rc));
874 return rc;
875}
876
877
878/**
879 * Handles the STOSD write accesses.
880 *
881 * @returns VBox status code suitable for scheduling.
882 * @param pVM Pointer to the VM.
883 * @param pPool The pool.
884 * @param pPage The pool page (head).
885 * @param pDis The disassembly of the write instruction.
886 * @param pRegFrame The trap register frame.
887 * @param GCPhysFault The fault address as guest physical address.
888 * @param pvFault The fault address.
889 */
890DECLINLINE(int) pgmPoolAccessHandlerSTOSD(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
891 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
892{
893 unsigned uIncrement = pDis->Param1.cb;
894 NOREF(pVM);
895
896 Assert(pDis->uCpuMode == DISCPUMODE_32BIT || pDis->uCpuMode == DISCPUMODE_64BIT);
897 Assert(pRegFrame->rcx <= 0x20);
898
899#ifdef VBOX_STRICT
900 if (pDis->uOpMode == DISCPUMODE_32BIT)
901 Assert(uIncrement == 4);
902 else
903 Assert(uIncrement == 8);
904#endif
905
906 Log3(("pgmPoolAccessHandlerSTOSD\n"));
907
908 /*
909 * Increment the modification counter and insert it into the list
910 * of modified pages the first time.
911 */
912 if (!pPage->cModifications++)
913 pgmPoolMonitorModifiedInsert(pPool, pPage);
914
915 /*
916 * Execute REP STOSD.
917 *
918 * This ASSUMES that we're not invoked by Trap0e on in a out-of-sync
919 * write situation, meaning that it's safe to write here.
920 */
921 PVMCPU pVCpu = VMMGetCpu(pPool->CTX_SUFF(pVM));
922 RTGCUINTPTR pu32 = (RTGCUINTPTR)pvFault;
923 while (pRegFrame->rcx)
924 {
925#if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC)
926 uint32_t iPrevSubset = PGMRZDynMapPushAutoSubset(pVCpu);
927 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, uIncrement);
928 PGMRZDynMapPopAutoSubset(pVCpu, iPrevSubset);
929#else
930 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, uIncrement);
931#endif
932#ifdef IN_RC
933 *(uint32_t *)(uintptr_t)pu32 = pRegFrame->eax;
934#else
935 PGMPhysSimpleWriteGCPhys(pVM, GCPhysFault, &pRegFrame->rax, uIncrement);
936#endif
937 pu32 += uIncrement;
938 GCPhysFault += uIncrement;
939 pRegFrame->rdi += uIncrement;
940 pRegFrame->rcx--;
941 }
942 pRegFrame->rip += pDis->cbInstr;
943
944 LogFlow(("pgmPoolAccessHandlerSTOSD: returns\n"));
945 return VINF_SUCCESS;
946}
947
948
949/**
950 * Handles the simple write accesses.
951 *
952 * @returns VBox status code suitable for scheduling.
953 * @param pVM Pointer to the VM.
954 * @param pVCpu Pointer to the VMCPU.
955 * @param pPool The pool.
956 * @param pPage The pool page (head).
957 * @param pDis The disassembly of the write instruction.
958 * @param pRegFrame The trap register frame.
959 * @param GCPhysFault The fault address as guest physical address.
960 * @param pvFault The fault address.
961 * @param pfReused Reused state (in/out)
962 */
963DECLINLINE(int) pgmPoolAccessHandlerSimple(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
964 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault, bool *pfReused)
965{
966 Log3(("pgmPoolAccessHandlerSimple\n"));
967 NOREF(pVM);
968 NOREF(pfReused); /* initialized by caller */
969
970 /*
971 * Increment the modification counter and insert it into the list
972 * of modified pages the first time.
973 */
974 if (!pPage->cModifications++)
975 pgmPoolMonitorModifiedInsert(pPool, pPage);
976
977 /*
978 * Clear all the pages. ASSUMES that pvFault is readable.
979 */
980#if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC)
981 uint32_t iPrevSubset = PGMRZDynMapPushAutoSubset(pVCpu);
982#endif
983
984 uint32_t cbWrite = DISGetParamSize(pDis, &pDis->Param1);
985 if (cbWrite <= 8)
986 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, cbWrite);
987 else
988 {
989 Assert(cbWrite <= 16);
990 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, 8);
991 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault + 8, pvFault + 8, cbWrite - 8);
992 }
993
994#if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC)
995 PGMRZDynMapPopAutoSubset(pVCpu, iPrevSubset);
996#endif
997
998 /*
999 * Interpret the instruction.
1000 */
1001 VBOXSTRICTRC rc = EMInterpretInstructionDisasState(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_ALL);
1002 if (RT_SUCCESS(rc))
1003 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rc))); /* ASSUMES no complicated stuff here. */
1004 else if (rc == VERR_EM_INTERPRETER)
1005 {
1006 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for %04x:%RGv - opcode=%d\n",
1007 pRegFrame->cs.Sel, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->uOpcode));
1008 rc = VINF_EM_RAW_EMULATE_INSTR;
1009 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
1010 }
1011
1012#if 0 /* experimental code */
1013 if (rc == VINF_SUCCESS)
1014 {
1015 switch (pPage->enmKind)
1016 {
1017 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1018 {
1019 X86PTEPAE GstPte;
1020 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvFault, GCPhysFault, sizeof(GstPte));
1021 AssertRC(rc);
1022
1023 /* Check the new value written by the guest. If present and with a bogus physical address, then
1024 * it's fairly safe to assume the guest is reusing the PT.
1025 */
1026 if (GstPte.n.u1Present)
1027 {
1028 RTHCPHYS HCPhys = -1;
1029 int rc = PGMPhysGCPhys2HCPhys(pVM, GstPte.u & X86_PTE_PAE_PG_MASK, &HCPhys);
1030 if (rc != VINF_SUCCESS)
1031 {
1032 *pfReused = true;
1033 STAM_COUNTER_INC(&pPool->StatForceFlushReused);
1034 }
1035 }
1036 break;
1037 }
1038 }
1039 }
1040#endif
1041
1042 LogFlow(("pgmPoolAccessHandlerSimple: returns %Rrc\n", VBOXSTRICTRC_VAL(rc)));
1043 return VBOXSTRICTRC_VAL(rc);
1044}
1045
1046
1047/**
1048 * \#PF Handler callback for PT write accesses.
1049 *
1050 * @returns VBox status code (appropriate for GC return).
1051 * @param pVM Pointer to the VM.
1052 * @param uErrorCode CPU Error code.
1053 * @param pRegFrame Trap register frame.
1054 * NULL on DMA and other non CPU access.
1055 * @param pvFault The fault address (cr2).
1056 * @param GCPhysFault The GC physical address corresponding to pvFault.
1057 * @param pvUser User argument.
1058 */
1059DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault,
1060 RTGCPHYS GCPhysFault, void *pvUser)
1061{
1062 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), a);
1063 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1064 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
1065 PVMCPU pVCpu = VMMGetCpu(pVM);
1066 unsigned cMaxModifications;
1067 bool fForcedFlush = false;
1068 NOREF(uErrorCode);
1069
1070 LogFlow(("pgmPoolAccessHandler: pvFault=%RGv pPage=%p:{.idx=%d} GCPhysFault=%RGp\n", pvFault, pPage, pPage->idx, GCPhysFault));
1071
1072 pgmLock(pVM);
1073 if (PHYS_PAGE_ADDRESS(GCPhysFault) != PHYS_PAGE_ADDRESS(pPage->GCPhys))
1074 {
1075 /* Pool page changed while we were waiting for the lock; ignore. */
1076 Log(("CPU%d: pgmPoolAccessHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhysFault), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
1077 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a);
1078 pgmUnlock(pVM);
1079 return VINF_SUCCESS;
1080 }
1081#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1082 if (pPage->fDirty)
1083 {
1084 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH));
1085 pgmUnlock(pVM);
1086 return VINF_SUCCESS; /* SMP guest case where we were blocking on the pgm lock while the same page was being marked dirty. */
1087 }
1088#endif
1089
1090#if 0 /* test code defined(VBOX_STRICT) && defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) */
1091 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1092 {
1093 void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
1094 void *pvGst;
1095 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
1096 pgmPoolTrackCheckPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst);
1097 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
1098 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw);
1099 }
1100#endif
1101
1102 /*
1103 * Disassemble the faulting instruction.
1104 */
1105 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
1106 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
1107 if (RT_UNLIKELY(rc != VINF_SUCCESS))
1108 {
1109 AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("Unexpected rc %d\n", rc));
1110 pgmUnlock(pVM);
1111 return rc;
1112 }
1113
1114 Assert(pPage->enmKind != PGMPOOLKIND_FREE);
1115
1116 /*
1117 * We should ALWAYS have the list head as user parameter. This
1118 * is because we use that page to record the changes.
1119 */
1120 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1121
1122#ifdef IN_RING0
1123 /* Maximum nr of modifications depends on the page type. */
1124 if ( pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1125 || pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT)
1126 cMaxModifications = 4;
1127 else
1128 cMaxModifications = 24;
1129#else
1130 cMaxModifications = 48;
1131#endif
1132
1133 /*
1134 * Incremental page table updates should weigh more than random ones.
1135 * (Only applies when started from offset 0)
1136 */
1137 pVCpu->pgm.s.cPoolAccessHandler++;
1138 if ( pPage->GCPtrLastAccessHandlerRip >= pRegFrame->rip - 0x40 /* observed loops in Windows 7 x64 */
1139 && pPage->GCPtrLastAccessHandlerRip < pRegFrame->rip + 0x40
1140 && pvFault == (pPage->GCPtrLastAccessHandlerFault + pDis->Param1.cb)
1141 && pVCpu->pgm.s.cPoolAccessHandler == pPage->cLastAccessHandler + 1)
1142 {
1143 Log(("Possible page reuse cMods=%d -> %d (locked=%d type=%s)\n", pPage->cModifications, pPage->cModifications * 2, pgmPoolIsPageLocked(pPage), pgmPoolPoolKindToStr(pPage->enmKind)));
1144 Assert(pPage->cModifications < 32000);
1145 pPage->cModifications = pPage->cModifications * 2;
1146 pPage->GCPtrLastAccessHandlerFault = pvFault;
1147 pPage->cLastAccessHandler = pVCpu->pgm.s.cPoolAccessHandler;
1148 if (pPage->cModifications >= cMaxModifications)
1149 {
1150 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FlushReinit));
1151 fForcedFlush = true;
1152 }
1153 }
1154
1155 if (pPage->cModifications >= cMaxModifications)
1156 Log(("Mod overflow %RGv cMods=%d (locked=%d type=%s)\n", pvFault, pPage->cModifications, pgmPoolIsPageLocked(pPage), pgmPoolPoolKindToStr(pPage->enmKind)));
1157
1158 /*
1159 * Check if it's worth dealing with.
1160 */
1161 bool fReused = false;
1162 bool fNotReusedNotForking = false;
1163 if ( ( pPage->cModifications < cMaxModifications /** @todo #define */ /** @todo need to check that it's not mapping EIP. */ /** @todo adjust this! */
1164 || pgmPoolIsPageLocked(pPage)
1165 )
1166 && !(fReused = pgmPoolMonitorIsReused(pVM, pVCpu, pRegFrame, pDis, pvFault))
1167 && !pgmPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK))
1168 {
1169 /*
1170 * Simple instructions, no REP prefix.
1171 */
1172 if (!(pDis->fPrefix & (DISPREFIX_REP | DISPREFIX_REPNE)))
1173 {
1174 rc = pgmPoolAccessHandlerSimple(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault, &fReused);
1175 if (fReused)
1176 goto flushPage;
1177
1178 /* A mov instruction to change the first page table entry will be remembered so we can detect
1179 * full page table changes early on. This will reduce the amount of unnecessary traps we'll take.
1180 */
1181 if ( rc == VINF_SUCCESS
1182 && !pPage->cLocked /* only applies to unlocked pages as we can't free locked ones (e.g. cr3 root). */
1183 && pDis->pCurInstr->uOpcode == OP_MOV
1184 && (pvFault & PAGE_OFFSET_MASK) == 0)
1185 {
1186 pPage->GCPtrLastAccessHandlerFault = pvFault;
1187 pPage->cLastAccessHandler = pVCpu->pgm.s.cPoolAccessHandler;
1188 pPage->GCPtrLastAccessHandlerRip = pRegFrame->rip;
1189 /* Make sure we don't kick out a page too quickly. */
1190 if (pPage->cModifications > 8)
1191 pPage->cModifications = 2;
1192 }
1193 else if (pPage->GCPtrLastAccessHandlerFault == pvFault)
1194 {
1195 /* ignore the 2nd write to this page table entry. */
1196 pPage->cLastAccessHandler = pVCpu->pgm.s.cPoolAccessHandler;
1197 }
1198 else
1199 {
1200 pPage->GCPtrLastAccessHandlerFault = NIL_RTGCPTR;
1201 pPage->GCPtrLastAccessHandlerRip = 0;
1202 }
1203
1204 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a);
1205 pgmUnlock(pVM);
1206 return rc;
1207 }
1208
1209 /*
1210 * Windows is frequently doing small memset() operations (netio test 4k+).
1211 * We have to deal with these or we'll kill the cache and performance.
1212 */
1213 if ( pDis->pCurInstr->uOpcode == OP_STOSWD
1214 && !pRegFrame->eflags.Bits.u1DF
1215 && pDis->uOpMode == pDis->uCpuMode
1216 && pDis->uAddrMode == pDis->uCpuMode)
1217 {
1218 bool fValidStosd = false;
1219
1220 if ( pDis->uCpuMode == DISCPUMODE_32BIT
1221 && pDis->fPrefix == DISPREFIX_REP
1222 && pRegFrame->ecx <= 0x20
1223 && pRegFrame->ecx * 4 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1224 && !((uintptr_t)pvFault & 3)
1225 && (pRegFrame->eax == 0 || pRegFrame->eax == 0x80) /* the two values observed. */
1226 )
1227 {
1228 fValidStosd = true;
1229 pRegFrame->rcx &= 0xffffffff; /* paranoia */
1230 }
1231 else
1232 if ( pDis->uCpuMode == DISCPUMODE_64BIT
1233 && pDis->fPrefix == (DISPREFIX_REP | DISPREFIX_REX)
1234 && pRegFrame->rcx <= 0x20
1235 && pRegFrame->rcx * 8 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1236 && !((uintptr_t)pvFault & 7)
1237 && (pRegFrame->rax == 0 || pRegFrame->rax == 0x80) /* the two values observed. */
1238 )
1239 {
1240 fValidStosd = true;
1241 }
1242
1243 if (fValidStosd)
1244 {
1245 rc = pgmPoolAccessHandlerSTOSD(pVM, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault);
1246 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,RepStosd), a);
1247 pgmUnlock(pVM);
1248 return rc;
1249 }
1250 }
1251
1252 /* REP prefix, don't bother. */
1253 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,RepPrefix));
1254 Log4(("pgmPoolAccessHandler: eax=%#x ecx=%#x edi=%#x esi=%#x rip=%RGv opcode=%d prefix=%#x\n",
1255 pRegFrame->eax, pRegFrame->ecx, pRegFrame->edi, pRegFrame->esi, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->uOpcode, pDis->fPrefix));
1256 fNotReusedNotForking = true;
1257 }
1258
1259#if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) && defined(IN_RING0)
1260 /* E.g. Windows 7 x64 initializes page tables and touches some pages in the table during the process. This
1261 * leads to pgm pool trashing and an excessive amount of write faults due to page monitoring.
1262 */
1263 if ( pPage->cModifications >= cMaxModifications
1264 && !fForcedFlush
1265 && (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT || pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT)
1266 && ( fNotReusedNotForking
1267 || ( !pgmPoolMonitorIsReused(pVM, pVCpu, pRegFrame, pDis, pvFault)
1268 && !pgmPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK))
1269 )
1270 )
1271 {
1272 Assert(!pgmPoolIsPageLocked(pPage));
1273 Assert(pPage->fDirty == false);
1274
1275 /* Flush any monitored duplicates as we will disable write protection. */
1276 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
1277 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1278 {
1279 PPGMPOOLPAGE pPageHead = pPage;
1280
1281 /* Find the monitor head. */
1282 while (pPageHead->iMonitoredPrev != NIL_PGMPOOL_IDX)
1283 pPageHead = &pPool->aPages[pPageHead->iMonitoredPrev];
1284
1285 while (pPageHead)
1286 {
1287 unsigned idxNext = pPageHead->iMonitoredNext;
1288
1289 if (pPageHead != pPage)
1290 {
1291 STAM_COUNTER_INC(&pPool->StatDirtyPageDupFlush);
1292 Log(("Flush duplicate page idx=%d GCPhys=%RGp type=%s\n", pPageHead->idx, pPageHead->GCPhys, pgmPoolPoolKindToStr(pPageHead->enmKind)));
1293 int rc2 = pgmPoolFlushPage(pPool, pPageHead);
1294 AssertRC(rc2);
1295 }
1296
1297 if (idxNext == NIL_PGMPOOL_IDX)
1298 break;
1299
1300 pPageHead = &pPool->aPages[idxNext];
1301 }
1302 }
1303
1304 /* The flushing above might fail for locked pages, so double check. */
1305 if ( pPage->iMonitoredNext == NIL_PGMPOOL_IDX
1306 && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
1307 {
1308 pgmPoolAddDirtyPage(pVM, pPool, pPage);
1309
1310 /* Temporarily allow write access to the page table again. */
1311 rc = PGMHandlerPhysicalPageTempOff(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK, pPage->GCPhys & PAGE_BASE_GC_MASK);
1312 if (rc == VINF_SUCCESS)
1313 {
1314 rc = PGMShwMakePageWritable(pVCpu, pvFault, PGM_MK_PG_IS_WRITE_FAULT);
1315 AssertMsg(rc == VINF_SUCCESS
1316 /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */
1317 || rc == VERR_PAGE_TABLE_NOT_PRESENT
1318 || rc == VERR_PAGE_NOT_PRESENT,
1319 ("PGMShwModifyPage -> GCPtr=%RGv rc=%d\n", pvFault, rc));
1320# ifdef VBOX_STRICT
1321 pPage->GCPtrDirtyFault = pvFault;
1322# endif
1323
1324 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), a);
1325 pgmUnlock(pVM);
1326 return rc;
1327 }
1328 }
1329 }
1330#endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT */
1331
1332 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FlushModOverflow));
1333flushPage:
1334 /*
1335 * Not worth it, so flush it.
1336 *
1337 * If we considered it to be reused, don't go back to ring-3
1338 * to emulate failed instructions since we usually cannot
1339 * interpret then. This may be a bit risky, in which case
1340 * the reuse detection must be fixed.
1341 */
1342 rc = pgmPoolAccessHandlerFlush(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault);
1343 if ( rc == VINF_EM_RAW_EMULATE_INSTR
1344 && fReused)
1345 {
1346 /* Make sure that the current instruction still has shadow page backing, otherwise we'll end up in a loop. */
1347 if (PGMShwGetPage(pVCpu, pRegFrame->rip, NULL, NULL) == VINF_SUCCESS)
1348 rc = VINF_SUCCESS; /* safe to restart the instruction. */
1349 }
1350 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,FlushPage), a);
1351 pgmUnlock(pVM);
1352 return rc;
1353}
1354
1355# endif /* !IN_RING3 */
1356
1357# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1358
1359# if defined(VBOX_STRICT) && !defined(IN_RING3)
1360
1361/**
1362 * Check references to guest physical memory in a PAE / PAE page table.
1363 *
1364 * @param pPool The pool.
1365 * @param pPage The page.
1366 * @param pShwPT The shadow page table (mapping of the page).
1367 * @param pGstPT The guest page table.
1368 */
1369static void pgmPoolTrackCheckPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT)
1370{
1371 unsigned cErrors = 0;
1372 int LastRc = -1; /* initialized to shut up gcc */
1373 unsigned LastPTE = ~0U; /* initialized to shut up gcc */
1374 RTHCPHYS LastHCPhys = NIL_RTHCPHYS; /* initialized to shut up gcc */
1375 PVM pVM = pPool->CTX_SUFF(pVM);
1376
1377#ifdef VBOX_STRICT
1378 for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
1379 AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent));
1380#endif
1381 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1382 {
1383 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
1384 {
1385 RTHCPHYS HCPhys = NIL_RTHCPHYS;
1386 int rc = PGMPhysGCPhys2HCPhys(pVM, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys);
1387 if ( rc != VINF_SUCCESS
1388 || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) != HCPhys)
1389 {
1390 Log(("rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, i, pGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys));
1391 LastPTE = i;
1392 LastRc = rc;
1393 LastHCPhys = HCPhys;
1394 cErrors++;
1395
1396 RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
1397 rc = PGMPhysGCPhys2HCPhys(pVM, pPage->GCPhys, &HCPhysPT);
1398 AssertRC(rc);
1399
1400 for (unsigned iPage = 0; iPage < pPool->cCurPages; iPage++)
1401 {
1402 PPGMPOOLPAGE pTempPage = &pPool->aPages[iPage];
1403
1404 if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1405 {
1406 PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pTempPage);
1407
1408 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
1409 {
1410 if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[j])
1411 && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[j]) == HCPhysPT)
1412 {
1413 Log(("GCPhys=%RGp idx=%d %RX64 vs %RX64\n", pTempPage->GCPhys, j, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[j])));
1414 }
1415 }
1416
1417 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pShwPT2);
1418 }
1419 }
1420 }
1421 }
1422 }
1423 AssertMsg(!cErrors, ("cErrors=%d: last rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", cErrors, LastRc, LastPTE, pGstPT->a[LastPTE].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[LastPTE]), LastHCPhys));
1424}
1425
1426
1427/**
1428 * Check references to guest physical memory in a PAE / 32-bit page table.
1429 *
1430 * @param pPool The pool.
1431 * @param pPage The page.
1432 * @param pShwPT The shadow page table (mapping of the page).
1433 * @param pGstPT The guest page table.
1434 */
1435static void pgmPoolTrackCheckPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PT pGstPT)
1436{
1437 unsigned cErrors = 0;
1438 int LastRc = -1; /* initialized to shut up gcc */
1439 unsigned LastPTE = ~0U; /* initialized to shut up gcc */
1440 RTHCPHYS LastHCPhys = NIL_RTHCPHYS; /* initialized to shut up gcc */
1441 PVM pVM = pPool->CTX_SUFF(pVM);
1442
1443#ifdef VBOX_STRICT
1444 for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
1445 AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent));
1446#endif
1447 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1448 {
1449 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
1450 {
1451 RTHCPHYS HCPhys = NIL_RTHCPHYS;
1452 int rc = PGMPhysGCPhys2HCPhys(pVM, pGstPT->a[i].u & X86_PTE_PG_MASK, &HCPhys);
1453 if ( rc != VINF_SUCCESS
1454 || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) != HCPhys)
1455 {
1456 Log(("rc=%d idx=%d guest %x shw=%RX64 vs %RHp\n", rc, i, pGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys));
1457 LastPTE = i;
1458 LastRc = rc;
1459 LastHCPhys = HCPhys;
1460 cErrors++;
1461
1462 RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
1463 rc = PGMPhysGCPhys2HCPhys(pVM, pPage->GCPhys, &HCPhysPT);
1464 AssertRC(rc);
1465
1466 for (unsigned iPage = 0; iPage < pPool->cCurPages; iPage++)
1467 {
1468 PPGMPOOLPAGE pTempPage = &pPool->aPages[iPage];
1469
1470 if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT)
1471 {
1472 PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pTempPage);
1473
1474 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
1475 {
1476 if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[j])
1477 && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[j]) == HCPhysPT)
1478 {
1479 Log(("GCPhys=%RGp idx=%d %RX64 vs %RX64\n", pTempPage->GCPhys, j, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[j])));
1480 }
1481 }
1482
1483 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pShwPT2);
1484 }
1485 }
1486 }
1487 }
1488 }
1489 AssertMsg(!cErrors, ("cErrors=%d: last rc=%d idx=%d guest %x shw=%RX64 vs %RHp\n", cErrors, LastRc, LastPTE, pGstPT->a[LastPTE].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[LastPTE]), LastHCPhys));
1490}
1491
1492# endif /* VBOX_STRICT && !IN_RING3 */
1493
1494/**
1495 * Clear references to guest physical memory in a PAE / PAE page table.
1496 *
1497 * @returns nr of changed PTEs
1498 * @param pPool The pool.
1499 * @param pPage The page.
1500 * @param pShwPT The shadow page table (mapping of the page).
1501 * @param pGstPT The guest page table.
1502 * @param pOldGstPT The old cached guest page table.
1503 * @param fAllowRemoval Bail out as soon as we encounter an invalid PTE
1504 * @param pfFlush Flush reused page table (out)
1505 */
1506DECLINLINE(unsigned) pgmPoolTrackFlushPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT,
1507 PCX86PTPAE pOldGstPT, bool fAllowRemoval, bool *pfFlush)
1508{
1509 unsigned cChanged = 0;
1510
1511#ifdef VBOX_STRICT
1512 for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
1513 AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent));
1514#endif
1515 *pfFlush = false;
1516
1517 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1518 {
1519 /* Check the new value written by the guest. If present and with a bogus physical address, then
1520 * it's fairly safe to assume the guest is reusing the PT.
1521 */
1522 if ( fAllowRemoval
1523 && pGstPT->a[i].n.u1Present)
1524 {
1525 if (!PGMPhysIsGCPhysValid(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK))
1526 {
1527 *pfFlush = true;
1528 return ++cChanged;
1529 }
1530 }
1531 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
1532 {
1533 /* If the old cached PTE is identical, then there's no need to flush the shadow copy. */
1534 if ((pGstPT->a[i].u & X86_PTE_PAE_PG_MASK) == (pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK))
1535 {
1536#ifdef VBOX_STRICT
1537 RTHCPHYS HCPhys = NIL_RTGCPHYS;
1538 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys);
1539 AssertMsg(rc == VINF_SUCCESS && PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) == HCPhys, ("rc=%d guest %RX64 old %RX64 shw=%RX64 vs %RHp\n", rc, pGstPT->a[i].u, pOldGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys));
1540#endif
1541 uint64_t uHostAttr = PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX);
1542 bool fHostRW = !!(PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & X86_PTE_RW);
1543 uint64_t uGuestAttr = pGstPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX);
1544 bool fGuestRW = !!(pGstPT->a[i].u & X86_PTE_RW);
1545
1546 if ( uHostAttr == uGuestAttr
1547 && fHostRW <= fGuestRW)
1548 continue;
1549 }
1550 cChanged++;
1551 /* Something was changed, so flush it. */
1552 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX64 hint=%RX64\n",
1553 i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
1554 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK, i);
1555 PGMSHWPTEPAE_ATOMIC_SET(pShwPT->a[i], 0);
1556 }
1557 }
1558 return cChanged;
1559}
1560
1561
1562/**
1563 * Clear references to guest physical memory in a PAE / PAE page table.
1564 *
1565 * @returns nr of changed PTEs
1566 * @param pPool The pool.
1567 * @param pPage The page.
1568 * @param pShwPT The shadow page table (mapping of the page).
1569 * @param pGstPT The guest page table.
1570 * @param pOldGstPT The old cached guest page table.
1571 * @param fAllowRemoval Bail out as soon as we encounter an invalid PTE
1572 * @param pfFlush Flush reused page table (out)
1573 */
1574DECLINLINE(unsigned) pgmPoolTrackFlushPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PT pGstPT,
1575 PCX86PT pOldGstPT, bool fAllowRemoval, bool *pfFlush)
1576{
1577 unsigned cChanged = 0;
1578
1579#ifdef VBOX_STRICT
1580 for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
1581 AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent));
1582#endif
1583 *pfFlush = false;
1584
1585 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1586 {
1587 /* Check the new value written by the guest. If present and with a bogus physical address, then
1588 * it's fairly safe to assume the guest is reusing the PT.
1589 */
1590 if ( fAllowRemoval
1591 && pGstPT->a[i].n.u1Present)
1592 {
1593 if (!PGMPhysIsGCPhysValid(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PG_MASK))
1594 {
1595 *pfFlush = true;
1596 return ++cChanged;
1597 }
1598 }
1599 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
1600 {
1601 /* If the old cached PTE is identical, then there's no need to flush the shadow copy. */
1602 if ((pGstPT->a[i].u & X86_PTE_PG_MASK) == (pOldGstPT->a[i].u & X86_PTE_PG_MASK))
1603 {
1604#ifdef VBOX_STRICT
1605 RTHCPHYS HCPhys = NIL_RTGCPHYS;
1606 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PG_MASK, &HCPhys);
1607 AssertMsg(rc == VINF_SUCCESS && PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) == HCPhys, ("rc=%d guest %x old %x shw=%RX64 vs %RHp\n", rc, pGstPT->a[i].u, pOldGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys));
1608#endif
1609 uint64_t uHostAttr = PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G);
1610 bool fHostRW = !!(PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & X86_PTE_RW);
1611 uint64_t uGuestAttr = pGstPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G);
1612 bool fGuestRW = !!(pGstPT->a[i].u & X86_PTE_RW);
1613
1614 if ( uHostAttr == uGuestAttr
1615 && fHostRW <= fGuestRW)
1616 continue;
1617 }
1618 cChanged++;
1619 /* Something was changed, so flush it. */
1620 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX64 hint=%x\n",
1621 i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PG_MASK));
1622 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PG_MASK, i);
1623 PGMSHWPTEPAE_ATOMIC_SET(pShwPT->a[i], 0);
1624 }
1625 }
1626 return cChanged;
1627}
1628
1629
1630/**
1631 * Flush a dirty page
1632 *
1633 * @param pVM Pointer to the VM.
1634 * @param pPool The pool.
1635 * @param idxSlot Dirty array slot index
1636 * @param fAllowRemoval Allow a reused page table to be removed
1637 */
1638static void pgmPoolFlushDirtyPage(PVM pVM, PPGMPOOL pPool, unsigned idxSlot, bool fAllowRemoval = false)
1639{
1640 PPGMPOOLPAGE pPage;
1641 unsigned idxPage;
1642
1643 Assert(idxSlot < RT_ELEMENTS(pPool->aDirtyPages));
1644 if (pPool->aDirtyPages[idxSlot].uIdx == NIL_PGMPOOL_IDX)
1645 return;
1646
1647 idxPage = pPool->aDirtyPages[idxSlot].uIdx;
1648 AssertRelease(idxPage != NIL_PGMPOOL_IDX);
1649 pPage = &pPool->aPages[idxPage];
1650 Assert(pPage->idx == idxPage);
1651 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1652
1653 AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, idxSlot));
1654 Log(("Flush dirty page %RGp cMods=%d\n", pPage->GCPhys, pPage->cModifications));
1655
1656#if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC)
1657 PVMCPU pVCpu = VMMGetCpu(pVM);
1658 uint32_t iPrevSubset = PGMRZDynMapPushAutoSubset(pVCpu);
1659#endif
1660
1661 /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */
1662 int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK);
1663 Assert(rc == VINF_SUCCESS);
1664 pPage->fDirty = false;
1665
1666#ifdef VBOX_STRICT
1667 uint64_t fFlags = 0;
1668 RTHCPHYS HCPhys;
1669 rc = PGMShwGetPage(VMMGetCpu(pVM), pPage->GCPtrDirtyFault, &fFlags, &HCPhys);
1670 AssertMsg( ( rc == VINF_SUCCESS
1671 && (!(fFlags & X86_PTE_RW) || HCPhys != pPage->Core.Key))
1672 /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */
1673 || rc == VERR_PAGE_TABLE_NOT_PRESENT
1674 || rc == VERR_PAGE_NOT_PRESENT,
1675 ("PGMShwGetPage -> GCPtr=%RGv rc=%d flags=%RX64\n", pPage->GCPtrDirtyFault, rc, fFlags));
1676#endif
1677
1678 /* Flush those PTEs that have changed. */
1679 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
1680 void *pvShw = PGMPOOL_PAGE_2_PTR(pVM, pPage);
1681 void *pvGst;
1682 rc = PGM_GCPHYS_2_PTR_EX(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
1683 bool fFlush;
1684 unsigned cChanges;
1685
1686 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1687 cChanges = pgmPoolTrackFlushPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst,
1688 (PCX86PTPAE)&pPool->aDirtyPages[idxSlot].aPage[0], fAllowRemoval, &fFlush);
1689 else
1690 cChanges = pgmPoolTrackFlushPTPae32Bit(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PT)pvGst,
1691 (PCX86PT)&pPool->aDirtyPages[idxSlot].aPage[0], fAllowRemoval, &fFlush);
1692
1693 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
1694 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw);
1695 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
1696 /* Note: we might want to consider keeping the dirty page active in case there were many changes. */
1697
1698 /* This page is likely to be modified again, so reduce the nr of modifications just a bit here. */
1699 Assert(pPage->cModifications);
1700 if (cChanges < 4)
1701 pPage->cModifications = 1; /* must use > 0 here */
1702 else
1703 pPage->cModifications = RT_MAX(1, pPage->cModifications / 2);
1704
1705 STAM_COUNTER_INC(&pPool->StatResetDirtyPages);
1706 if (pPool->cDirtyPages == RT_ELEMENTS(pPool->aDirtyPages))
1707 pPool->idxFreeDirtyPage = idxSlot;
1708
1709 pPool->cDirtyPages--;
1710 pPool->aDirtyPages[idxSlot].uIdx = NIL_PGMPOOL_IDX;
1711 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages));
1712 if (fFlush)
1713 {
1714 Assert(fAllowRemoval);
1715 Log(("Flush reused page table!\n"));
1716 pgmPoolFlushPage(pPool, pPage);
1717 STAM_COUNTER_INC(&pPool->StatForceFlushReused);
1718 }
1719 else
1720 Log(("Removed dirty page %RGp cMods=%d cChanges=%d\n", pPage->GCPhys, pPage->cModifications, cChanges));
1721
1722#if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC)
1723 PGMRZDynMapPopAutoSubset(pVCpu, iPrevSubset);
1724#endif
1725}
1726
1727
1728# ifndef IN_RING3
1729/**
1730 * Add a new dirty page
1731 *
1732 * @param pVM Pointer to the VM.
1733 * @param pPool The pool.
1734 * @param pPage The page.
1735 */
1736void pgmPoolAddDirtyPage(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1737{
1738 unsigned idxFree;
1739
1740 PGM_LOCK_ASSERT_OWNER(pVM);
1741 AssertCompile(RT_ELEMENTS(pPool->aDirtyPages) == 8 || RT_ELEMENTS(pPool->aDirtyPages) == 16);
1742 Assert(!pPage->fDirty);
1743
1744 idxFree = pPool->idxFreeDirtyPage;
1745 Assert(idxFree < RT_ELEMENTS(pPool->aDirtyPages));
1746 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1747
1748 if (pPool->cDirtyPages >= RT_ELEMENTS(pPool->aDirtyPages))
1749 {
1750 STAM_COUNTER_INC(&pPool->StatDirtyPageOverFlowFlush);
1751 pgmPoolFlushDirtyPage(pVM, pPool, idxFree, true /* allow removal of reused page tables*/);
1752 }
1753 Assert(pPool->cDirtyPages < RT_ELEMENTS(pPool->aDirtyPages));
1754 AssertMsg(pPool->aDirtyPages[idxFree].uIdx == NIL_PGMPOOL_IDX, ("idxFree=%d cDirtyPages=%d\n", idxFree, pPool->cDirtyPages));
1755
1756 Log(("Add dirty page %RGp (slot=%d)\n", pPage->GCPhys, idxFree));
1757
1758 /*
1759 * Make a copy of the guest page table as we require valid GCPhys addresses
1760 * when removing references to physical pages.
1761 * (The HCPhys linear lookup is *extremely* expensive!)
1762 */
1763 void *pvGst;
1764 int rc = PGM_GCPHYS_2_PTR_EX(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
1765 memcpy(&pPool->aDirtyPages[idxFree].aPage[0], pvGst, (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) ? PAGE_SIZE : PAGE_SIZE/2);
1766# ifdef VBOX_STRICT
1767 void *pvShw = PGMPOOL_PAGE_2_PTR(pVM, pPage);
1768 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1769 pgmPoolTrackCheckPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst);
1770 else
1771 pgmPoolTrackCheckPTPae32Bit(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PT)pvGst);
1772 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw);
1773# endif
1774 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
1775
1776 STAM_COUNTER_INC(&pPool->StatDirtyPage);
1777 pPage->fDirty = true;
1778 pPage->idxDirtyEntry = (uint8_t)idxFree; Assert(pPage->idxDirtyEntry == idxFree);
1779 pPool->aDirtyPages[idxFree].uIdx = pPage->idx;
1780 pPool->cDirtyPages++;
1781
1782 pPool->idxFreeDirtyPage = (pPool->idxFreeDirtyPage + 1) & (RT_ELEMENTS(pPool->aDirtyPages) - 1);
1783 if ( pPool->cDirtyPages < RT_ELEMENTS(pPool->aDirtyPages)
1784 && pPool->aDirtyPages[pPool->idxFreeDirtyPage].uIdx != NIL_PGMPOOL_IDX)
1785 {
1786 unsigned i;
1787 for (i = 1; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1788 {
1789 idxFree = (pPool->idxFreeDirtyPage + i) & (RT_ELEMENTS(pPool->aDirtyPages) - 1);
1790 if (pPool->aDirtyPages[idxFree].uIdx == NIL_PGMPOOL_IDX)
1791 {
1792 pPool->idxFreeDirtyPage = idxFree;
1793 break;
1794 }
1795 }
1796 Assert(i != RT_ELEMENTS(pPool->aDirtyPages));
1797 }
1798
1799 Assert(pPool->cDirtyPages == RT_ELEMENTS(pPool->aDirtyPages) || pPool->aDirtyPages[pPool->idxFreeDirtyPage].uIdx == NIL_PGMPOOL_IDX);
1800 return;
1801}
1802# endif /* !IN_RING3 */
1803
1804
1805/**
1806 * Check if the specified page is dirty (not write monitored)
1807 *
1808 * @return dirty or not
1809 * @param pVM Pointer to the VM.
1810 * @param GCPhys Guest physical address
1811 */
1812bool pgmPoolIsDirtyPage(PVM pVM, RTGCPHYS GCPhys)
1813{
1814 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1815 PGM_LOCK_ASSERT_OWNER(pVM);
1816 if (!pPool->cDirtyPages)
1817 return false;
1818
1819 GCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
1820
1821 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1822 {
1823 if (pPool->aDirtyPages[i].uIdx != NIL_PGMPOOL_IDX)
1824 {
1825 PPGMPOOLPAGE pPage;
1826 unsigned idxPage = pPool->aDirtyPages[i].uIdx;
1827
1828 pPage = &pPool->aPages[idxPage];
1829 if (pPage->GCPhys == GCPhys)
1830 return true;
1831 }
1832 }
1833 return false;
1834}
1835
1836
1837/**
1838 * Reset all dirty pages by reinstating page monitoring.
1839 *
1840 * @param pVM Pointer to the VM.
1841 */
1842void pgmPoolResetDirtyPages(PVM pVM)
1843{
1844 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1845 PGM_LOCK_ASSERT_OWNER(pVM);
1846 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages));
1847
1848 if (!pPool->cDirtyPages)
1849 return;
1850
1851 Log(("pgmPoolResetDirtyPages\n"));
1852 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1853 pgmPoolFlushDirtyPage(pVM, pPool, i, true /* allow removal of reused page tables*/);
1854
1855 pPool->idxFreeDirtyPage = 0;
1856 if ( pPool->cDirtyPages != RT_ELEMENTS(pPool->aDirtyPages)
1857 && pPool->aDirtyPages[pPool->idxFreeDirtyPage].uIdx != NIL_PGMPOOL_IDX)
1858 {
1859 unsigned i;
1860 for (i = 1; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1861 {
1862 if (pPool->aDirtyPages[i].uIdx == NIL_PGMPOOL_IDX)
1863 {
1864 pPool->idxFreeDirtyPage = i;
1865 break;
1866 }
1867 }
1868 AssertMsg(i != RT_ELEMENTS(pPool->aDirtyPages), ("cDirtyPages %d", pPool->cDirtyPages));
1869 }
1870
1871 Assert(pPool->aDirtyPages[pPool->idxFreeDirtyPage].uIdx == NIL_PGMPOOL_IDX || pPool->cDirtyPages == RT_ELEMENTS(pPool->aDirtyPages));
1872 return;
1873}
1874
1875
1876/**
1877 * Invalidate the PT entry for the specified page
1878 *
1879 * @param pVM Pointer to the VM.
1880 * @param GCPtrPage Guest page to invalidate
1881 */
1882void pgmPoolResetDirtyPage(PVM pVM, RTGCPTR GCPtrPage)
1883{
1884 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1885 PGM_LOCK_ASSERT_OWNER(pVM);
1886 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages));
1887
1888 if (!pPool->cDirtyPages)
1889 return;
1890
1891 Log(("pgmPoolResetDirtyPage %RGv\n", GCPtrPage));
1892 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1893 {
1894 }
1895}
1896
1897
1898/**
1899 * Reset all dirty pages by reinstating page monitoring.
1900 *
1901 * @param pVM Pointer to the VM.
1902 * @param GCPhysPT Physical address of the page table
1903 */
1904void pgmPoolInvalidateDirtyPage(PVM pVM, RTGCPHYS GCPhysPT)
1905{
1906 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1907 PGM_LOCK_ASSERT_OWNER(pVM);
1908 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages));
1909 unsigned idxDirtyPage = RT_ELEMENTS(pPool->aDirtyPages);
1910
1911 if (!pPool->cDirtyPages)
1912 return;
1913
1914 GCPhysPT = GCPhysPT & ~(RTGCPHYS)PAGE_OFFSET_MASK;
1915
1916 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1917 {
1918 if (pPool->aDirtyPages[i].uIdx != NIL_PGMPOOL_IDX)
1919 {
1920 unsigned idxPage = pPool->aDirtyPages[i].uIdx;
1921
1922 PPGMPOOLPAGE pPage = &pPool->aPages[idxPage];
1923 if (pPage->GCPhys == GCPhysPT)
1924 {
1925 idxDirtyPage = i;
1926 break;
1927 }
1928 }
1929 }
1930
1931 if (idxDirtyPage != RT_ELEMENTS(pPool->aDirtyPages))
1932 {
1933 pgmPoolFlushDirtyPage(pVM, pPool, idxDirtyPage, true /* allow removal of reused page tables*/);
1934 if ( pPool->cDirtyPages != RT_ELEMENTS(pPool->aDirtyPages)
1935 && pPool->aDirtyPages[pPool->idxFreeDirtyPage].uIdx != NIL_PGMPOOL_IDX)
1936 {
1937 unsigned i;
1938 for (i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1939 {
1940 if (pPool->aDirtyPages[i].uIdx == NIL_PGMPOOL_IDX)
1941 {
1942 pPool->idxFreeDirtyPage = i;
1943 break;
1944 }
1945 }
1946 AssertMsg(i != RT_ELEMENTS(pPool->aDirtyPages), ("cDirtyPages %d", pPool->cDirtyPages));
1947 }
1948 }
1949}
1950
1951# endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT */
1952
1953/**
1954 * Inserts a page into the GCPhys hash table.
1955 *
1956 * @param pPool The pool.
1957 * @param pPage The page.
1958 */
1959DECLINLINE(void) pgmPoolHashInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1960{
1961 Log3(("pgmPoolHashInsert: %RGp\n", pPage->GCPhys));
1962 Assert(pPage->GCPhys != NIL_RTGCPHYS); Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1963 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1964 pPage->iNext = pPool->aiHash[iHash];
1965 pPool->aiHash[iHash] = pPage->idx;
1966}
1967
1968
1969/**
1970 * Removes a page from the GCPhys hash table.
1971 *
1972 * @param pPool The pool.
1973 * @param pPage The page.
1974 */
1975DECLINLINE(void) pgmPoolHashRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1976{
1977 Log3(("pgmPoolHashRemove: %RGp\n", pPage->GCPhys));
1978 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1979 if (pPool->aiHash[iHash] == pPage->idx)
1980 pPool->aiHash[iHash] = pPage->iNext;
1981 else
1982 {
1983 uint16_t iPrev = pPool->aiHash[iHash];
1984 for (;;)
1985 {
1986 const int16_t i = pPool->aPages[iPrev].iNext;
1987 if (i == pPage->idx)
1988 {
1989 pPool->aPages[iPrev].iNext = pPage->iNext;
1990 break;
1991 }
1992 if (i == NIL_PGMPOOL_IDX)
1993 {
1994 AssertReleaseMsgFailed(("GCPhys=%RGp idx=%d\n", pPage->GCPhys, pPage->idx));
1995 break;
1996 }
1997 iPrev = i;
1998 }
1999 }
2000 pPage->iNext = NIL_PGMPOOL_IDX;
2001}
2002
2003
2004/**
2005 * Frees up one cache page.
2006 *
2007 * @returns VBox status code.
2008 * @retval VINF_SUCCESS on success.
2009 * @param pPool The pool.
2010 * @param iUser The user index.
2011 */
2012static int pgmPoolCacheFreeOne(PPGMPOOL pPool, uint16_t iUser)
2013{
2014#ifndef IN_RC
2015 const PVM pVM = pPool->CTX_SUFF(pVM);
2016#endif
2017 Assert(pPool->iAgeHead != pPool->iAgeTail); /* We shouldn't be here if there < 2 cached entries! */
2018 STAM_COUNTER_INC(&pPool->StatCacheFreeUpOne);
2019
2020 /*
2021 * Select one page from the tail of the age list.
2022 */
2023 PPGMPOOLPAGE pPage;
2024 for (unsigned iLoop = 0; ; iLoop++)
2025 {
2026 uint16_t iToFree = pPool->iAgeTail;
2027 if (iToFree == iUser && iUser != NIL_PGMPOOL_IDX)
2028 iToFree = pPool->aPages[iToFree].iAgePrev;
2029/* This is the alternative to the SyncCR3 pgmPoolCacheUsed calls.
2030 if (pPool->aPages[iToFree].iUserHead != NIL_PGMPOOL_USER_INDEX)
2031 {
2032 uint16_t i = pPool->aPages[iToFree].iAgePrev;
2033 for (unsigned j = 0; j < 10 && i != NIL_PGMPOOL_USER_INDEX; j++, i = pPool->aPages[i].iAgePrev)
2034 {
2035 if (pPool->aPages[iToFree].iUserHead == NIL_PGMPOOL_USER_INDEX)
2036 continue;
2037 iToFree = i;
2038 break;
2039 }
2040 }
2041*/
2042 Assert(iToFree != iUser);
2043 AssertRelease(iToFree != NIL_PGMPOOL_IDX);
2044 pPage = &pPool->aPages[iToFree];
2045
2046 /*
2047 * Reject any attempts at flushing the currently active shadow CR3 mapping.
2048 * Call pgmPoolCacheUsed to move the page to the head of the age list.
2049 */
2050 if ( !pgmPoolIsPageLocked(pPage)
2051 && pPage->idx >= PGMPOOL_IDX_FIRST /* paranoia (#6349) */)
2052 break;
2053 LogFlow(("pgmPoolCacheFreeOne: refuse CR3 mapping\n"));
2054 pgmPoolCacheUsed(pPool, pPage);
2055 AssertLogRelReturn(iLoop < 8192, VERR_PGM_POOL_TOO_MANY_LOOPS);
2056 }
2057
2058 /*
2059 * Found a usable page, flush it and return.
2060 */
2061 int rc = pgmPoolFlushPage(pPool, pPage);
2062 /* This flush was initiated by us and not the guest, so explicitly flush the TLB. */
2063 /* todo: find out why this is necessary; pgmPoolFlushPage should trigger a flush if one is really needed. */
2064 if (rc == VINF_SUCCESS)
2065 PGM_INVL_ALL_VCPU_TLBS(pVM);
2066 return rc;
2067}
2068
2069
2070/**
2071 * Checks if a kind mismatch is really a page being reused
2072 * or if it's just normal remappings.
2073 *
2074 * @returns true if reused and the cached page (enmKind1) should be flushed
2075 * @returns false if not reused.
2076 * @param enmKind1 The kind of the cached page.
2077 * @param enmKind2 The kind of the requested page.
2078 */
2079static bool pgmPoolCacheReusedByKind(PGMPOOLKIND enmKind1, PGMPOOLKIND enmKind2)
2080{
2081 switch (enmKind1)
2082 {
2083 /*
2084 * Never reuse them. There is no remapping in non-paging mode.
2085 */
2086 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2087 case PGMPOOLKIND_32BIT_PD_PHYS:
2088 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2089 case PGMPOOLKIND_PAE_PD_PHYS:
2090 case PGMPOOLKIND_PAE_PDPT_PHYS:
2091 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2092 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2093 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2094 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2095 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2096 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: /* never reuse them for other types */
2097 return false;
2098
2099 /*
2100 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
2101 */
2102 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2103 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2104 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2105 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2106 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2107 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2108 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2109 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2110 case PGMPOOLKIND_32BIT_PD:
2111 case PGMPOOLKIND_PAE_PDPT:
2112 switch (enmKind2)
2113 {
2114 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2115 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2116 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2117 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2118 case PGMPOOLKIND_64BIT_PML4:
2119 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2120 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2121 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2122 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2123 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2124 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2125 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2126 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2127 return true;
2128 default:
2129 return false;
2130 }
2131
2132 /*
2133 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
2134 */
2135 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2136 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2137 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2138 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2139 case PGMPOOLKIND_64BIT_PML4:
2140 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2141 switch (enmKind2)
2142 {
2143 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2144 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2145 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2146 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2147 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2148 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2149 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2150 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2151 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2152 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2153 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2154 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2155 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2156 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2157 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2158 return true;
2159 default:
2160 return false;
2161 }
2162
2163 /*
2164 * These cannot be flushed, and it's common to reuse the PDs as PTs.
2165 */
2166 case PGMPOOLKIND_ROOT_NESTED:
2167 return false;
2168
2169 default:
2170 AssertFatalMsgFailed(("enmKind1=%d\n", enmKind1));
2171 }
2172}
2173
2174
2175/**
2176 * Attempts to satisfy a pgmPoolAlloc request from the cache.
2177 *
2178 * @returns VBox status code.
2179 * @retval VINF_PGM_CACHED_PAGE on success.
2180 * @retval VERR_FILE_NOT_FOUND if not found.
2181 * @param pPool The pool.
2182 * @param GCPhys The GC physical address of the page we're gonna shadow.
2183 * @param enmKind The kind of mapping.
2184 * @param enmAccess Access type for the mapping (only relevant for big pages)
2185 * @param fA20Enabled Whether the CPU has the A20 gate enabled.
2186 * @param iUser The shadow page pool index of the user table. This is
2187 * NIL_PGMPOOL_IDX for root pages.
2188 * @param iUserTable The index into the user table (shadowed). Ignored if
2189 * root page
2190 * @param ppPage Where to store the pointer to the page.
2191 */
2192static int pgmPoolCacheAlloc(PPGMPOOL pPool, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, bool fA20Enabled,
2193 uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
2194{
2195 /*
2196 * Look up the GCPhys in the hash.
2197 */
2198 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
2199 Log3(("pgmPoolCacheAlloc: %RGp kind %s iUser=%d iUserTable=%x SLOT=%d\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable, i));
2200 if (i != NIL_PGMPOOL_IDX)
2201 {
2202 do
2203 {
2204 PPGMPOOLPAGE pPage = &pPool->aPages[i];
2205 Log4(("pgmPoolCacheAlloc: slot %d found page %RGp\n", i, pPage->GCPhys));
2206 if (pPage->GCPhys == GCPhys)
2207 {
2208 if ( (PGMPOOLKIND)pPage->enmKind == enmKind
2209 && (PGMPOOLACCESS)pPage->enmAccess == enmAccess
2210 && pPage->fA20Enabled == fA20Enabled)
2211 {
2212 /* Put it at the start of the use list to make sure pgmPoolTrackAddUser
2213 * doesn't flush it in case there are no more free use records.
2214 */
2215 pgmPoolCacheUsed(pPool, pPage);
2216
2217 int rc = VINF_SUCCESS;
2218 if (iUser != NIL_PGMPOOL_IDX)
2219 rc = pgmPoolTrackAddUser(pPool, pPage, iUser, iUserTable);
2220 if (RT_SUCCESS(rc))
2221 {
2222 Assert((PGMPOOLKIND)pPage->enmKind == enmKind);
2223 *ppPage = pPage;
2224 if (pPage->cModifications)
2225 pPage->cModifications = 1; /* reset counter (can't use 0, or else it will be reinserted in the modified list) */
2226 STAM_COUNTER_INC(&pPool->StatCacheHits);
2227 return VINF_PGM_CACHED_PAGE;
2228 }
2229 return rc;
2230 }
2231
2232 if ((PGMPOOLKIND)pPage->enmKind != enmKind)
2233 {
2234 /*
2235 * The kind is different. In some cases we should now flush the page
2236 * as it has been reused, but in most cases this is normal remapping
2237 * of PDs as PT or big pages using the GCPhys field in a slightly
2238 * different way than the other kinds.
2239 */
2240 if (pgmPoolCacheReusedByKind((PGMPOOLKIND)pPage->enmKind, enmKind))
2241 {
2242 STAM_COUNTER_INC(&pPool->StatCacheKindMismatches);
2243 pgmPoolFlushPage(pPool, pPage);
2244 break;
2245 }
2246 }
2247 }
2248
2249 /* next */
2250 i = pPage->iNext;
2251 } while (i != NIL_PGMPOOL_IDX);
2252 }
2253
2254 Log3(("pgmPoolCacheAlloc: Missed GCPhys=%RGp enmKind=%s\n", GCPhys, pgmPoolPoolKindToStr(enmKind)));
2255 STAM_COUNTER_INC(&pPool->StatCacheMisses);
2256 return VERR_FILE_NOT_FOUND;
2257}
2258
2259
2260/**
2261 * Inserts a page into the cache.
2262 *
2263 * @param pPool The pool.
2264 * @param pPage The cached page.
2265 * @param fCanBeCached Set if the page is fit for caching from the caller's point of view.
2266 */
2267static void pgmPoolCacheInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCanBeCached)
2268{
2269 /*
2270 * Insert into the GCPhys hash if the page is fit for that.
2271 */
2272 Assert(!pPage->fCached);
2273 if (fCanBeCached)
2274 {
2275 pPage->fCached = true;
2276 pgmPoolHashInsert(pPool, pPage);
2277 Log3(("pgmPoolCacheInsert: Caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
2278 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
2279 STAM_COUNTER_INC(&pPool->StatCacheCacheable);
2280 }
2281 else
2282 {
2283 Log3(("pgmPoolCacheInsert: Not caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
2284 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
2285 STAM_COUNTER_INC(&pPool->StatCacheUncacheable);
2286 }
2287
2288 /*
2289 * Insert at the head of the age list.
2290 */
2291 pPage->iAgePrev = NIL_PGMPOOL_IDX;
2292 pPage->iAgeNext = pPool->iAgeHead;
2293 if (pPool->iAgeHead != NIL_PGMPOOL_IDX)
2294 pPool->aPages[pPool->iAgeHead].iAgePrev = pPage->idx;
2295 else
2296 pPool->iAgeTail = pPage->idx;
2297 pPool->iAgeHead = pPage->idx;
2298}
2299
2300
2301/**
2302 * Flushes a cached page.
2303 *
2304 * @param pPool The pool.
2305 * @param pPage The cached page.
2306 */
2307static void pgmPoolCacheFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2308{
2309 Log3(("pgmPoolCacheFlushPage: %RGp\n", pPage->GCPhys));
2310
2311 /*
2312 * Remove the page from the hash.
2313 */
2314 if (pPage->fCached)
2315 {
2316 pPage->fCached = false;
2317 pgmPoolHashRemove(pPool, pPage);
2318 }
2319 else
2320 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
2321
2322 /*
2323 * Remove it from the age list.
2324 */
2325 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
2326 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
2327 else
2328 pPool->iAgeTail = pPage->iAgePrev;
2329 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
2330 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
2331 else
2332 pPool->iAgeHead = pPage->iAgeNext;
2333 pPage->iAgeNext = NIL_PGMPOOL_IDX;
2334 pPage->iAgePrev = NIL_PGMPOOL_IDX;
2335}
2336
2337
2338/**
2339 * Looks for pages sharing the monitor.
2340 *
2341 * @returns Pointer to the head page.
2342 * @returns NULL if not found.
2343 * @param pPool The Pool
2344 * @param pNewPage The page which is going to be monitored.
2345 */
2346static PPGMPOOLPAGE pgmPoolMonitorGetPageByGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pNewPage)
2347{
2348 /*
2349 * Look up the GCPhys in the hash.
2350 */
2351 RTGCPHYS GCPhys = pNewPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
2352 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
2353 if (i == NIL_PGMPOOL_IDX)
2354 return NULL;
2355 do
2356 {
2357 PPGMPOOLPAGE pPage = &pPool->aPages[i];
2358 if ( pPage->GCPhys - GCPhys < PAGE_SIZE
2359 && pPage != pNewPage)
2360 {
2361 switch (pPage->enmKind)
2362 {
2363 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2364 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2365 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2366 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2367 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2368 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2369 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2370 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2371 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2372 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2373 case PGMPOOLKIND_64BIT_PML4:
2374 case PGMPOOLKIND_32BIT_PD:
2375 case PGMPOOLKIND_PAE_PDPT:
2376 {
2377 /* find the head */
2378 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
2379 {
2380 Assert(pPage->iMonitoredPrev != pPage->idx);
2381 pPage = &pPool->aPages[pPage->iMonitoredPrev];
2382 }
2383 return pPage;
2384 }
2385
2386 /* ignore, no monitoring. */
2387 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2388 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2389 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2390 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2391 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2392 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2393 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2394 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2395 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2396 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2397 case PGMPOOLKIND_ROOT_NESTED:
2398 case PGMPOOLKIND_PAE_PD_PHYS:
2399 case PGMPOOLKIND_PAE_PDPT_PHYS:
2400 case PGMPOOLKIND_32BIT_PD_PHYS:
2401 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2402 break;
2403 default:
2404 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
2405 }
2406 }
2407
2408 /* next */
2409 i = pPage->iNext;
2410 } while (i != NIL_PGMPOOL_IDX);
2411 return NULL;
2412}
2413
2414
2415/**
2416 * Enabled write monitoring of a guest page.
2417 *
2418 * @returns VBox status code.
2419 * @retval VINF_SUCCESS on success.
2420 * @param pPool The pool.
2421 * @param pPage The cached page.
2422 */
2423static int pgmPoolMonitorInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2424{
2425 LogFlow(("pgmPoolMonitorInsert %RGp\n", pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK));
2426
2427 /*
2428 * Filter out the relevant kinds.
2429 */
2430 switch (pPage->enmKind)
2431 {
2432 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2433 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2434 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2435 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2436 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2437 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2438 case PGMPOOLKIND_64BIT_PML4:
2439 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2440 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2441 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2442 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2443 case PGMPOOLKIND_32BIT_PD:
2444 case PGMPOOLKIND_PAE_PDPT:
2445 break;
2446
2447 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2448 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2449 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2450 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2451 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2452 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2453 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2454 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2455 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2456 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2457 case PGMPOOLKIND_ROOT_NESTED:
2458 /* Nothing to monitor here. */
2459 return VINF_SUCCESS;
2460
2461 case PGMPOOLKIND_32BIT_PD_PHYS:
2462 case PGMPOOLKIND_PAE_PDPT_PHYS:
2463 case PGMPOOLKIND_PAE_PD_PHYS:
2464 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2465 /* Nothing to monitor here. */
2466 return VINF_SUCCESS;
2467 default:
2468 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
2469 }
2470
2471 /*
2472 * Install handler.
2473 */
2474 int rc;
2475 PPGMPOOLPAGE pPageHead = pgmPoolMonitorGetPageByGCPhys(pPool, pPage);
2476 if (pPageHead)
2477 {
2478 Assert(pPageHead != pPage); Assert(pPageHead->iMonitoredNext != pPage->idx);
2479 Assert(pPageHead->iMonitoredPrev != pPage->idx);
2480
2481#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2482 if (pPageHead->fDirty)
2483 pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPageHead->idxDirtyEntry, false /* do not remove */);
2484#endif
2485
2486 pPage->iMonitoredPrev = pPageHead->idx;
2487 pPage->iMonitoredNext = pPageHead->iMonitoredNext;
2488 if (pPageHead->iMonitoredNext != NIL_PGMPOOL_IDX)
2489 pPool->aPages[pPageHead->iMonitoredNext].iMonitoredPrev = pPage->idx;
2490 pPageHead->iMonitoredNext = pPage->idx;
2491 rc = VINF_SUCCESS;
2492 }
2493 else
2494 {
2495 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX); Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
2496 PVM pVM = pPool->CTX_SUFF(pVM);
2497 const RTGCPHYS GCPhysPage = pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
2498 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2499 GCPhysPage, GCPhysPage + PAGE_OFFSET_MASK,
2500 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
2501 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
2502 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
2503 pPool->pszAccessHandler);
2504 /** @todo we should probably deal with out-of-memory conditions here, but for now increasing
2505 * the heap size should suffice. */
2506 AssertFatalMsgRC(rc, ("PGMHandlerPhysicalRegisterEx %RGp failed with %Rrc\n", GCPhysPage, rc));
2507 PVMCPU pVCpu = VMMGetCpu(pVM);
2508 AssertFatalMsg(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), ("fSyncFlags=%x syncff=%d\n", pVCpu->pgm.s.fSyncFlags, VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)));
2509 }
2510 pPage->fMonitored = true;
2511 return rc;
2512}
2513
2514
2515/**
2516 * Disables write monitoring of a guest page.
2517 *
2518 * @returns VBox status code.
2519 * @retval VINF_SUCCESS on success.
2520 * @param pPool The pool.
2521 * @param pPage The cached page.
2522 */
2523static int pgmPoolMonitorFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2524{
2525 /*
2526 * Filter out the relevant kinds.
2527 */
2528 switch (pPage->enmKind)
2529 {
2530 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2531 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2532 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2533 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2534 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2535 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2536 case PGMPOOLKIND_64BIT_PML4:
2537 case PGMPOOLKIND_32BIT_PD:
2538 case PGMPOOLKIND_PAE_PDPT:
2539 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2540 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2541 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2542 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2543 break;
2544
2545 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2546 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2547 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2548 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2549 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2550 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2551 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2552 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2553 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2554 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2555 case PGMPOOLKIND_ROOT_NESTED:
2556 case PGMPOOLKIND_PAE_PD_PHYS:
2557 case PGMPOOLKIND_PAE_PDPT_PHYS:
2558 case PGMPOOLKIND_32BIT_PD_PHYS:
2559 /* Nothing to monitor here. */
2560 Assert(!pPage->fMonitored);
2561 return VINF_SUCCESS;
2562
2563 default:
2564 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
2565 }
2566 Assert(pPage->fMonitored);
2567
2568 /*
2569 * Remove the page from the monitored list or uninstall it if last.
2570 */
2571 const PVM pVM = pPool->CTX_SUFF(pVM);
2572 int rc;
2573 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
2574 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
2575 {
2576 if (pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
2577 {
2578 PPGMPOOLPAGE pNewHead = &pPool->aPages[pPage->iMonitoredNext];
2579 pNewHead->iMonitoredPrev = NIL_PGMPOOL_IDX;
2580 rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK,
2581 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pNewHead),
2582 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pNewHead),
2583 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pNewHead),
2584 pPool->pszAccessHandler);
2585 AssertFatalRCSuccess(rc);
2586 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
2587 }
2588 else
2589 {
2590 pPool->aPages[pPage->iMonitoredPrev].iMonitoredNext = pPage->iMonitoredNext;
2591 if (pPage->iMonitoredNext != NIL_PGMPOOL_IDX)
2592 {
2593 pPool->aPages[pPage->iMonitoredNext].iMonitoredPrev = pPage->iMonitoredPrev;
2594 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
2595 }
2596 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
2597 rc = VINF_SUCCESS;
2598 }
2599 }
2600 else
2601 {
2602 rc = PGMHandlerPhysicalDeregister(pVM, pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
2603 AssertFatalRC(rc);
2604 PVMCPU pVCpu = VMMGetCpu(pVM);
2605 AssertFatalMsg(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3),
2606 ("%#x %#x\n", pVCpu->pgm.s.fSyncFlags, pVM->fGlobalForcedActions));
2607 }
2608 pPage->fMonitored = false;
2609
2610 /*
2611 * Remove it from the list of modified pages (if in it).
2612 */
2613 pgmPoolMonitorModifiedRemove(pPool, pPage);
2614
2615 return rc;
2616}
2617
2618
2619/**
2620 * Inserts the page into the list of modified pages.
2621 *
2622 * @param pPool The pool.
2623 * @param pPage The page.
2624 */
2625void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2626{
2627 Log3(("pgmPoolMonitorModifiedInsert: idx=%d\n", pPage->idx));
2628 AssertMsg( pPage->iModifiedNext == NIL_PGMPOOL_IDX
2629 && pPage->iModifiedPrev == NIL_PGMPOOL_IDX
2630 && pPool->iModifiedHead != pPage->idx,
2631 ("Next=%d Prev=%d idx=%d cModifications=%d Head=%d cModifiedPages=%d\n",
2632 pPage->iModifiedNext, pPage->iModifiedPrev, pPage->idx, pPage->cModifications,
2633 pPool->iModifiedHead, pPool->cModifiedPages));
2634
2635 pPage->iModifiedNext = pPool->iModifiedHead;
2636 if (pPool->iModifiedHead != NIL_PGMPOOL_IDX)
2637 pPool->aPages[pPool->iModifiedHead].iModifiedPrev = pPage->idx;
2638 pPool->iModifiedHead = pPage->idx;
2639 pPool->cModifiedPages++;
2640#ifdef VBOX_WITH_STATISTICS
2641 if (pPool->cModifiedPages > pPool->cModifiedPagesHigh)
2642 pPool->cModifiedPagesHigh = pPool->cModifiedPages;
2643#endif
2644}
2645
2646
2647/**
2648 * Removes the page from the list of modified pages and resets the
2649 * modification counter.
2650 *
2651 * @param pPool The pool.
2652 * @param pPage The page which is believed to be in the list of modified pages.
2653 */
2654static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2655{
2656 Log3(("pgmPoolMonitorModifiedRemove: idx=%d cModifications=%d\n", pPage->idx, pPage->cModifications));
2657 if (pPool->iModifiedHead == pPage->idx)
2658 {
2659 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
2660 pPool->iModifiedHead = pPage->iModifiedNext;
2661 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
2662 {
2663 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = NIL_PGMPOOL_IDX;
2664 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2665 }
2666 pPool->cModifiedPages--;
2667 }
2668 else if (pPage->iModifiedPrev != NIL_PGMPOOL_IDX)
2669 {
2670 pPool->aPages[pPage->iModifiedPrev].iModifiedNext = pPage->iModifiedNext;
2671 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
2672 {
2673 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = pPage->iModifiedPrev;
2674 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2675 }
2676 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2677 pPool->cModifiedPages--;
2678 }
2679 else
2680 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
2681 pPage->cModifications = 0;
2682}
2683
2684
2685/**
2686 * Zaps the list of modified pages, resetting their modification counters in the process.
2687 *
2688 * @param pVM Pointer to the VM.
2689 */
2690static void pgmPoolMonitorModifiedClearAll(PVM pVM)
2691{
2692 pgmLock(pVM);
2693 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2694 LogFlow(("pgmPoolMonitorModifiedClearAll: cModifiedPages=%d\n", pPool->cModifiedPages));
2695
2696 unsigned cPages = 0; NOREF(cPages);
2697
2698#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2699 pgmPoolResetDirtyPages(pVM);
2700#endif
2701
2702 uint16_t idx = pPool->iModifiedHead;
2703 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
2704 while (idx != NIL_PGMPOOL_IDX)
2705 {
2706 PPGMPOOLPAGE pPage = &pPool->aPages[idx];
2707 idx = pPage->iModifiedNext;
2708 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2709 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2710 pPage->cModifications = 0;
2711 Assert(++cPages);
2712 }
2713 AssertMsg(cPages == pPool->cModifiedPages, ("%d != %d\n", cPages, pPool->cModifiedPages));
2714 pPool->cModifiedPages = 0;
2715 pgmUnlock(pVM);
2716}
2717
2718
2719/**
2720 * Handle SyncCR3 pool tasks
2721 *
2722 * @returns VBox status code.
2723 * @retval VINF_SUCCESS if successfully added.
2724 * @retval VINF_PGM_SYNC_CR3 is it needs to be deferred to ring 3 (GC only)
2725 * @param pVCpu Pointer to the VMCPU.
2726 * @remark Should only be used when monitoring is available, thus placed in
2727 * the PGMPOOL_WITH_MONITORING #ifdef.
2728 */
2729int pgmPoolSyncCR3(PVMCPU pVCpu)
2730{
2731 PVM pVM = pVCpu->CTX_SUFF(pVM);
2732 LogFlow(("pgmPoolSyncCR3 fSyncFlags=%x\n", pVCpu->pgm.s.fSyncFlags));
2733
2734 /*
2735 * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
2736 * Occasionally we will have to clear all the shadow page tables because we wanted
2737 * to monitor a page which was mapped by too many shadowed page tables. This operation
2738 * sometimes referred to as a 'lightweight flush'.
2739 */
2740# ifdef IN_RING3 /* Don't flush in ring-0 or raw mode, it's taking too long. */
2741 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
2742 pgmR3PoolClearAll(pVM, false /*fFlushRemTlb*/);
2743# else /* !IN_RING3 */
2744 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
2745 {
2746 Log(("SyncCR3: PGM_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
2747 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
2748
2749 /* Make sure all other VCPUs return to ring 3. */
2750 if (pVM->cCpus > 1)
2751 {
2752 VM_FF_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING);
2753 PGM_INVL_ALL_VCPU_TLBS(pVM);
2754 }
2755 return VINF_PGM_SYNC_CR3;
2756 }
2757# endif /* !IN_RING3 */
2758 else
2759 {
2760 pgmPoolMonitorModifiedClearAll(pVM);
2761
2762 /* pgmPoolMonitorModifiedClearAll can cause a pgm pool flush (dirty page clearing), so make sure we handle this! */
2763 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
2764 {
2765 Log(("pgmPoolMonitorModifiedClearAll caused a pgm flush -> call pgmPoolSyncCR3 again!\n"));
2766 return pgmPoolSyncCR3(pVCpu);
2767 }
2768 }
2769 return VINF_SUCCESS;
2770}
2771
2772
2773/**
2774 * Frees up at least one user entry.
2775 *
2776 * @returns VBox status code.
2777 * @retval VINF_SUCCESS if successfully added.
2778 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2779 * @param pPool The pool.
2780 * @param iUser The user index.
2781 */
2782static int pgmPoolTrackFreeOneUser(PPGMPOOL pPool, uint16_t iUser)
2783{
2784 STAM_COUNTER_INC(&pPool->StatTrackFreeUpOneUser);
2785 /*
2786 * Just free cached pages in a braindead fashion.
2787 */
2788 /** @todo walk the age list backwards and free the first with usage. */
2789 int rc = VINF_SUCCESS;
2790 do
2791 {
2792 int rc2 = pgmPoolCacheFreeOne(pPool, iUser);
2793 if (RT_FAILURE(rc2) && rc == VINF_SUCCESS)
2794 rc = rc2;
2795 } while (pPool->iUserFreeHead == NIL_PGMPOOL_USER_INDEX);
2796 return rc;
2797}
2798
2799
2800/**
2801 * Inserts a page into the cache.
2802 *
2803 * This will create user node for the page, insert it into the GCPhys
2804 * hash, and insert it into the age list.
2805 *
2806 * @returns VBox status code.
2807 * @retval VINF_SUCCESS if successfully added.
2808 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2809 * @param pPool The pool.
2810 * @param pPage The cached page.
2811 * @param GCPhys The GC physical address of the page we're gonna shadow.
2812 * @param iUser The user index.
2813 * @param iUserTable The user table index.
2814 */
2815DECLINLINE(int) pgmPoolTrackInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhys, uint16_t iUser, uint32_t iUserTable)
2816{
2817 int rc = VINF_SUCCESS;
2818 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2819
2820 LogFlow(("pgmPoolTrackInsert GCPhys=%RGp iUser=%d iUserTable=%x\n", GCPhys, iUser, iUserTable));
2821
2822 if (iUser != NIL_PGMPOOL_IDX)
2823 {
2824#ifdef VBOX_STRICT
2825 /*
2826 * Check that the entry doesn't already exists.
2827 */
2828 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2829 {
2830 uint16_t i = pPage->iUserHead;
2831 do
2832 {
2833 Assert(i < pPool->cMaxUsers);
2834 AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2835 i = paUsers[i].iNext;
2836 } while (i != NIL_PGMPOOL_USER_INDEX);
2837 }
2838#endif
2839
2840 /*
2841 * Find free a user node.
2842 */
2843 uint16_t i = pPool->iUserFreeHead;
2844 if (i == NIL_PGMPOOL_USER_INDEX)
2845 {
2846 rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2847 if (RT_FAILURE(rc))
2848 return rc;
2849 i = pPool->iUserFreeHead;
2850 }
2851
2852 /*
2853 * Unlink the user node from the free list,
2854 * initialize and insert it into the user list.
2855 */
2856 pPool->iUserFreeHead = paUsers[i].iNext;
2857 paUsers[i].iNext = NIL_PGMPOOL_USER_INDEX;
2858 paUsers[i].iUser = iUser;
2859 paUsers[i].iUserTable = iUserTable;
2860 pPage->iUserHead = i;
2861 }
2862 else
2863 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
2864
2865
2866 /*
2867 * Insert into cache and enable monitoring of the guest page if enabled.
2868 *
2869 * Until we implement caching of all levels, including the CR3 one, we'll
2870 * have to make sure we don't try monitor & cache any recursive reuse of
2871 * a monitored CR3 page. Because all windows versions are doing this we'll
2872 * have to be able to do combined access monitoring, CR3 + PT and
2873 * PD + PT (guest PAE).
2874 *
2875 * Update:
2876 * We're now cooperating with the CR3 monitor if an uncachable page is found.
2877 */
2878 const bool fCanBeMonitored = true;
2879 pgmPoolCacheInsert(pPool, pPage, fCanBeMonitored); /* This can be expanded. */
2880 if (fCanBeMonitored)
2881 {
2882 rc = pgmPoolMonitorInsert(pPool, pPage);
2883 AssertRC(rc);
2884 }
2885 return rc;
2886}
2887
2888
2889/**
2890 * Adds a user reference to a page.
2891 *
2892 * This will move the page to the head of the
2893 *
2894 * @returns VBox status code.
2895 * @retval VINF_SUCCESS if successfully added.
2896 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2897 * @param pPool The pool.
2898 * @param pPage The cached page.
2899 * @param iUser The user index.
2900 * @param iUserTable The user table.
2901 */
2902static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2903{
2904 Log3(("pgmPoolTrackAddUser: GCPhys=%RGp iUser=%%x iUserTable=%x\n", pPage->GCPhys, iUser, iUserTable));
2905 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2906 Assert(iUser != NIL_PGMPOOL_IDX);
2907
2908# ifdef VBOX_STRICT
2909 /*
2910 * Check that the entry doesn't already exists. We only allow multiple
2911 * users of top-level paging structures (SHW_POOL_ROOT_IDX).
2912 */
2913 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2914 {
2915 uint16_t i = pPage->iUserHead;
2916 do
2917 {
2918 Assert(i < pPool->cMaxUsers);
2919 /** @todo this assertion looks odd... Shouldn't it be && here? */
2920 AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2921 i = paUsers[i].iNext;
2922 } while (i != NIL_PGMPOOL_USER_INDEX);
2923 }
2924# endif
2925
2926 /*
2927 * Allocate a user node.
2928 */
2929 uint16_t i = pPool->iUserFreeHead;
2930 if (i == NIL_PGMPOOL_USER_INDEX)
2931 {
2932 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2933 if (RT_FAILURE(rc))
2934 return rc;
2935 i = pPool->iUserFreeHead;
2936 }
2937 pPool->iUserFreeHead = paUsers[i].iNext;
2938
2939 /*
2940 * Initialize the user node and insert it.
2941 */
2942 paUsers[i].iNext = pPage->iUserHead;
2943 paUsers[i].iUser = iUser;
2944 paUsers[i].iUserTable = iUserTable;
2945 pPage->iUserHead = i;
2946
2947# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2948 if (pPage->fDirty)
2949 pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPage->idxDirtyEntry, false /* do not remove */);
2950# endif
2951
2952 /*
2953 * Tell the cache to update its replacement stats for this page.
2954 */
2955 pgmPoolCacheUsed(pPool, pPage);
2956 return VINF_SUCCESS;
2957}
2958
2959
2960/**
2961 * Frees a user record associated with a page.
2962 *
2963 * This does not clear the entry in the user table, it simply replaces the
2964 * user record to the chain of free records.
2965 *
2966 * @param pPool The pool.
2967 * @param HCPhys The HC physical address of the shadow page.
2968 * @param iUser The shadow page pool index of the user table.
2969 * @param iUserTable The index into the user table (shadowed).
2970 *
2971 * @remarks Don't call this for root pages.
2972 */
2973static void pgmPoolTrackFreeUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2974{
2975 Log3(("pgmPoolTrackFreeUser %RGp %x %x\n", pPage->GCPhys, iUser, iUserTable));
2976 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2977 Assert(iUser != NIL_PGMPOOL_IDX);
2978
2979 /*
2980 * Unlink and free the specified user entry.
2981 */
2982
2983 /* Special: For PAE and 32-bit paging, there is usually no more than one user. */
2984 uint16_t i = pPage->iUserHead;
2985 if ( i != NIL_PGMPOOL_USER_INDEX
2986 && paUsers[i].iUser == iUser
2987 && paUsers[i].iUserTable == iUserTable)
2988 {
2989 pPage->iUserHead = paUsers[i].iNext;
2990
2991 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2992 paUsers[i].iNext = pPool->iUserFreeHead;
2993 pPool->iUserFreeHead = i;
2994 return;
2995 }
2996
2997 /* General: Linear search. */
2998 uint16_t iPrev = NIL_PGMPOOL_USER_INDEX;
2999 while (i != NIL_PGMPOOL_USER_INDEX)
3000 {
3001 if ( paUsers[i].iUser == iUser
3002 && paUsers[i].iUserTable == iUserTable)
3003 {
3004 if (iPrev != NIL_PGMPOOL_USER_INDEX)
3005 paUsers[iPrev].iNext = paUsers[i].iNext;
3006 else
3007 pPage->iUserHead = paUsers[i].iNext;
3008
3009 paUsers[i].iUser = NIL_PGMPOOL_IDX;
3010 paUsers[i].iNext = pPool->iUserFreeHead;
3011 pPool->iUserFreeHead = i;
3012 return;
3013 }
3014 iPrev = i;
3015 i = paUsers[i].iNext;
3016 }
3017
3018 /* Fatal: didn't find it */
3019 AssertFatalMsgFailed(("Didn't find the user entry! iUser=%d iUserTable=%#x GCPhys=%RGp\n",
3020 iUser, iUserTable, pPage->GCPhys));
3021}
3022
3023
3024/**
3025 * Gets the entry size of a shadow table.
3026 *
3027 * @param enmKind The kind of page.
3028 *
3029 * @returns The size of the entry in bytes. That is, 4 or 8.
3030 * @returns If the kind is not for a table, an assertion is raised and 0 is
3031 * returned.
3032 */
3033DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind)
3034{
3035 switch (enmKind)
3036 {
3037 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3038 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3039 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3040 case PGMPOOLKIND_32BIT_PD:
3041 case PGMPOOLKIND_32BIT_PD_PHYS:
3042 return 4;
3043
3044 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3045 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3046 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3047 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3048 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3049 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3050 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3051 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3052 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3053 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3054 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3055 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3056 case PGMPOOLKIND_64BIT_PML4:
3057 case PGMPOOLKIND_PAE_PDPT:
3058 case PGMPOOLKIND_ROOT_NESTED:
3059 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3060 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3061 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3062 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3063 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3064 case PGMPOOLKIND_PAE_PD_PHYS:
3065 case PGMPOOLKIND_PAE_PDPT_PHYS:
3066 return 8;
3067
3068 default:
3069 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
3070 }
3071}
3072
3073
3074/**
3075 * Gets the entry size of a guest table.
3076 *
3077 * @param enmKind The kind of page.
3078 *
3079 * @returns The size of the entry in bytes. That is, 0, 4 or 8.
3080 * @returns If the kind is not for a table, an assertion is raised and 0 is
3081 * returned.
3082 */
3083DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind)
3084{
3085 switch (enmKind)
3086 {
3087 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3088 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3089 case PGMPOOLKIND_32BIT_PD:
3090 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3091 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3092 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3093 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3094 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3095 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3096 return 4;
3097
3098 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3099 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3100 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3101 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3102 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3103 case PGMPOOLKIND_64BIT_PML4:
3104 case PGMPOOLKIND_PAE_PDPT:
3105 return 8;
3106
3107 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3108 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3109 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3110 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3111 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3112 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3113 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3114 case PGMPOOLKIND_ROOT_NESTED:
3115 case PGMPOOLKIND_PAE_PD_PHYS:
3116 case PGMPOOLKIND_PAE_PDPT_PHYS:
3117 case PGMPOOLKIND_32BIT_PD_PHYS:
3118 /** @todo can we return 0? (nobody is calling this...) */
3119 AssertFailed();
3120 return 0;
3121
3122 default:
3123 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
3124 }
3125}
3126
3127
3128/**
3129 * Checks one shadow page table entry for a mapping of a physical page.
3130 *
3131 * @returns true / false indicating removal of all relevant PTEs
3132 *
3133 * @param pVM Pointer to the VM.
3134 * @param pPhysPage The guest page in question.
3135 * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
3136 * @param iShw The shadow page table.
3137 * @param iPte Page table entry or NIL_PGMPOOL_PHYSEXT_IDX_PTE if unknown
3138 */
3139static bool pgmPoolTrackFlushGCPhysPTInt(PVM pVM, PCPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iShw, uint16_t iPte)
3140{
3141 LogFlow(("pgmPoolTrackFlushGCPhysPTInt: pPhysPage=%RHp iShw=%d iPte=%d\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iShw, iPte));
3142 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3143 bool fRet = false;
3144
3145 /*
3146 * Assert sanity.
3147 */
3148 Assert(iPte != NIL_PGMPOOL_PHYSEXT_IDX_PTE);
3149 AssertFatalMsg(iShw < pPool->cCurPages && iShw != NIL_PGMPOOL_IDX, ("iShw=%d\n", iShw));
3150 PPGMPOOLPAGE pPage = &pPool->aPages[iShw];
3151
3152 /*
3153 * Then, clear the actual mappings to the page in the shadow PT.
3154 */
3155 switch (pPage->enmKind)
3156 {
3157 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3158 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3159 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3160 {
3161 const uint32_t u32 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
3162 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3163 uint32_t u32AndMask = 0;
3164 uint32_t u32OrMask = 0;
3165
3166 if (!fFlushPTEs)
3167 {
3168 switch (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage))
3169 {
3170 case PGM_PAGE_HNDL_PHYS_STATE_NONE: /** No handler installed. */
3171 case PGM_PAGE_HNDL_PHYS_STATE_DISABLED: /** Monitoring is temporarily disabled. */
3172 u32OrMask = X86_PTE_RW;
3173 u32AndMask = UINT32_MAX;
3174 fRet = true;
3175 STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
3176 break;
3177
3178 case PGM_PAGE_HNDL_PHYS_STATE_WRITE: /** Write access is monitored. */
3179 u32OrMask = 0;
3180 u32AndMask = ~X86_PTE_RW;
3181 fRet = true;
3182 STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
3183 break;
3184 default:
3185 /* (shouldn't be here, will assert below) */
3186 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3187 break;
3188 }
3189 }
3190 else
3191 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3192
3193 /* Update the counter if we're removing references. */
3194 if (!u32AndMask)
3195 {
3196 Assert(pPage->cPresent);
3197 Assert(pPool->cPresent);
3198 pPage->cPresent--;
3199 pPool->cPresent--;
3200 }
3201
3202 if ((pPT->a[iPte].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
3203 {
3204 X86PTE Pte;
3205
3206 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX32\n", iPte, pPT->a[iPte]));
3207 Pte.u = (pPT->a[iPte].u & u32AndMask) | u32OrMask;
3208 if (Pte.u & PGM_PTFLAGS_TRACK_DIRTY)
3209 Pte.n.u1Write = 0; /* need to disallow writes when dirty bit tracking is still active. */
3210
3211 ASMAtomicWriteU32(&pPT->a[iPte].u, Pte.u);
3212 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
3213 return fRet;
3214 }
3215#ifdef LOG_ENABLED
3216 Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3217 for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPT->a); i++)
3218 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
3219 {
3220 Log(("i=%d cFound=%d\n", i, ++cFound));
3221 }
3222#endif
3223 AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d u32=%RX32 poolkind=%x\n", pPage->iFirstPresent, pPage->cPresent, u32, pPage->enmKind));
3224 /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);*/
3225 break;
3226 }
3227
3228 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3229 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3230 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3231 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3232 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3233 case PGMPOOLKIND_EPT_PT_FOR_PHYS: /* physical mask the same as PAE; RW bit as well; be careful! */
3234 {
3235 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
3236 PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3237 uint64_t u64OrMask = 0;
3238 uint64_t u64AndMask = 0;
3239
3240 if (!fFlushPTEs)
3241 {
3242 switch (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage))
3243 {
3244 case PGM_PAGE_HNDL_PHYS_STATE_NONE: /* No handler installed. */
3245 case PGM_PAGE_HNDL_PHYS_STATE_DISABLED: /* Monitoring is temporarily disabled. */
3246 u64OrMask = X86_PTE_RW;
3247 u64AndMask = UINT64_MAX;
3248 fRet = true;
3249 STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
3250 break;
3251
3252 case PGM_PAGE_HNDL_PHYS_STATE_WRITE: /* Write access is monitored. */
3253 u64OrMask = 0;
3254 u64AndMask = ~(uint64_t)X86_PTE_RW;
3255 fRet = true;
3256 STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
3257 break;
3258
3259 default:
3260 /* (shouldn't be here, will assert below) */
3261 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3262 break;
3263 }
3264 }
3265 else
3266 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3267
3268 /* Update the counter if we're removing references. */
3269 if (!u64AndMask)
3270 {
3271 Assert(pPage->cPresent);
3272 Assert(pPool->cPresent);
3273 pPage->cPresent--;
3274 pPool->cPresent--;
3275 }
3276
3277 if ((PGMSHWPTEPAE_GET_U(pPT->a[iPte]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX)) == u64)
3278 {
3279 X86PTEPAE Pte;
3280
3281 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64\n", iPte, PGMSHWPTEPAE_GET_LOG(pPT->a[iPte])));
3282 Pte.u = (PGMSHWPTEPAE_GET_U(pPT->a[iPte]) & u64AndMask) | u64OrMask;
3283 if (Pte.u & PGM_PTFLAGS_TRACK_DIRTY)
3284 Pte.n.u1Write = 0; /* need to disallow writes when dirty bit tracking is still active. */
3285
3286 PGMSHWPTEPAE_ATOMIC_SET(pPT->a[iPte], Pte.u);
3287 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
3288 return fRet;
3289 }
3290#ifdef LOG_ENABLED
3291 Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3292 Log(("Found %RX64 expected %RX64\n", PGMSHWPTEPAE_GET_U(pPT->a[iPte]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX), u64));
3293 for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPT->a); i++)
3294 if ((PGMSHWPTEPAE_GET_U(pPT->a[i]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX)) == u64)
3295 Log(("i=%d cFound=%d\n", i, ++cFound));
3296#endif
3297 AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d u64=%RX64 poolkind=%x iPte=%d PT=%RX64\n", pPage->iFirstPresent, pPage->cPresent, u64, pPage->enmKind, iPte, PGMSHWPTEPAE_GET_LOG(pPT->a[iPte])));
3298 /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);*/
3299 break;
3300 }
3301
3302#ifdef PGM_WITH_LARGE_PAGES
3303 /* Large page case only. */
3304 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3305 {
3306 Assert(pVM->pgm.s.fNestedPaging);
3307
3308 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PDE4M_P | X86_PDE4M_PS;
3309 PEPTPD pPD = (PEPTPD)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3310
3311 if ((pPD->a[iPte].u & (EPT_PDE2M_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
3312 {
3313 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pde=%RX64\n", iPte, pPD->a[iPte]));
3314 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3315 pPD->a[iPte].u = 0;
3316 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);
3317
3318 /* Update the counter as we're removing references. */
3319 Assert(pPage->cPresent);
3320 Assert(pPool->cPresent);
3321 pPage->cPresent--;
3322 pPool->cPresent--;
3323
3324 return fRet;
3325 }
3326# ifdef LOG_ENABLED
3327 Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3328 for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPD->a); i++)
3329 if ((pPD->a[i].u & (EPT_PDE2M_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
3330 Log(("i=%d cFound=%d\n", i, ++cFound));
3331# endif
3332 AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3333 /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);*/
3334 break;
3335 }
3336
3337 /* AMD-V nested paging */ /** @todo merge with EPT as we only check the parts that are identical. */
3338 case PGMPOOLKIND_PAE_PD_PHYS:
3339 {
3340 Assert(pVM->pgm.s.fNestedPaging);
3341
3342 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PDE4M_P | X86_PDE4M_PS;
3343 PX86PD pPD = (PX86PD)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3344
3345 if ((pPD->a[iPte].u & (X86_PDE2M_PAE_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
3346 {
3347 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pde=%RX64\n", iPte, pPD->a[iPte]));
3348 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3349 pPD->a[iPte].u = 0;
3350 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);
3351
3352 /* Update the counter as we're removing references. */
3353 Assert(pPage->cPresent);
3354 Assert(pPool->cPresent);
3355 pPage->cPresent--;
3356 pPool->cPresent--;
3357 return fRet;
3358 }
3359# ifdef LOG_ENABLED
3360 Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3361 for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPD->a); i++)
3362 if ((pPD->a[i].u & (X86_PDE2M_PAE_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
3363 Log(("i=%d cFound=%d\n", i, ++cFound));
3364# endif
3365 AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3366 /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);*/
3367 break;
3368 }
3369#endif /* PGM_WITH_LARGE_PAGES */
3370
3371 default:
3372 AssertFatalMsgFailed(("enmKind=%d iShw=%d\n", pPage->enmKind, iShw));
3373 }
3374
3375 /* not reached. */
3376#ifndef _MSC_VER
3377 return fRet;
3378#endif
3379}
3380
3381
3382/**
3383 * Scans one shadow page table for mappings of a physical page.
3384 *
3385 * @param pVM Pointer to the VM.
3386 * @param pPhysPage The guest page in question.
3387 * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
3388 * @param iShw The shadow page table.
3389 */
3390static void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iShw)
3391{
3392 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
3393
3394 /* We should only come here with when there's only one reference to this physical page. */
3395 Assert(PGMPOOL_TD_GET_CREFS(PGM_PAGE_GET_TRACKING(pPhysPage)) == 1);
3396
3397 Log2(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%RHp iShw=%d\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iShw));
3398 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPT, f);
3399 bool fKeptPTEs = pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, fFlushPTEs, iShw, PGM_PAGE_GET_PTE_INDEX(pPhysPage));
3400 if (!fKeptPTEs)
3401 PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0);
3402 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPT, f);
3403}
3404
3405
3406/**
3407 * Flushes a list of shadow page tables mapping the same physical page.
3408 *
3409 * @param pVM Pointer to the VM.
3410 * @param pPhysPage The guest page in question.
3411 * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
3412 * @param iPhysExt The physical cross reference extent list to flush.
3413 */
3414static void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iPhysExt)
3415{
3416 PGM_LOCK_ASSERT_OWNER(pVM);
3417 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3418 bool fKeepList = false;
3419
3420 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTs, f);
3421 Log2(("pgmPoolTrackFlushGCPhysPTs: pPhysPage=%RHp iPhysExt\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iPhysExt));
3422
3423 const uint16_t iPhysExtStart = iPhysExt;
3424 PPGMPOOLPHYSEXT pPhysExt;
3425 do
3426 {
3427 Assert(iPhysExt < pPool->cMaxPhysExts);
3428 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3429 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3430 {
3431 if (pPhysExt->aidx[i] != NIL_PGMPOOL_IDX)
3432 {
3433 bool fKeptPTEs = pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, fFlushPTEs, pPhysExt->aidx[i], pPhysExt->apte[i]);
3434 if (!fKeptPTEs)
3435 {
3436 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3437 pPhysExt->apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
3438 }
3439 else
3440 fKeepList = true;
3441 }
3442 }
3443 /* next */
3444 iPhysExt = pPhysExt->iNext;
3445 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3446
3447 if (!fKeepList)
3448 {
3449 /* insert the list into the free list and clear the ram range entry. */
3450 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3451 pPool->iPhysExtFreeHead = iPhysExtStart;
3452 /* Invalidate the tracking data. */
3453 PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0);
3454 }
3455
3456 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTs, f);
3457}
3458
3459
3460/**
3461 * Flushes all shadow page table mappings of the given guest page.
3462 *
3463 * This is typically called when the host page backing the guest one has been
3464 * replaced or when the page protection was changed due to a guest access
3465 * caught by the monitoring.
3466 *
3467 * @returns VBox status code.
3468 * @retval VINF_SUCCESS if all references has been successfully cleared.
3469 * @retval VINF_PGM_SYNC_CR3 if we're better off with a CR3 sync and a page
3470 * pool cleaning. FF and sync flags are set.
3471 *
3472 * @param pVM Pointer to the VM.
3473 * @param GCPhysPage GC physical address of the page in question
3474 * @param pPhysPage The guest page in question.
3475 * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
3476 * @param pfFlushTLBs This is set to @a true if the shadow TLBs should be
3477 * flushed, it is NOT touched if this isn't necessary.
3478 * The caller MUST initialized this to @a false.
3479 */
3480int pgmPoolTrackUpdateGCPhys(PVM pVM, RTGCPHYS GCPhysPage, PPGMPAGE pPhysPage, bool fFlushPTEs, bool *pfFlushTLBs)
3481{
3482 PVMCPU pVCpu = VMMGetCpu(pVM);
3483 pgmLock(pVM);
3484 int rc = VINF_SUCCESS;
3485
3486#ifdef PGM_WITH_LARGE_PAGES
3487 /* Is this page part of a large page? */
3488 if (PGM_PAGE_GET_PDE_TYPE(pPhysPage) == PGM_PAGE_PDE_TYPE_PDE)
3489 {
3490 RTGCPHYS GCPhysBase = GCPhysPage & X86_PDE2M_PAE_PG_MASK;
3491 GCPhysPage &= X86_PDE_PAE_PG_MASK;
3492
3493 /* Fetch the large page base. */
3494 PPGMPAGE pLargePage;
3495 if (GCPhysBase != GCPhysPage)
3496 {
3497 pLargePage = pgmPhysGetPage(pVM, GCPhysBase);
3498 AssertFatal(pLargePage);
3499 }
3500 else
3501 pLargePage = pPhysPage;
3502
3503 Log(("pgmPoolTrackUpdateGCPhys: update large page PDE for %RGp (%RGp)\n", GCPhysBase, GCPhysPage));
3504
3505 if (PGM_PAGE_GET_PDE_TYPE(pLargePage) == PGM_PAGE_PDE_TYPE_PDE)
3506 {
3507 /* Mark the large page as disabled as we need to break it up to change a single page in the 2 MB range. */
3508 PGM_PAGE_SET_PDE_TYPE(pVM, pLargePage, PGM_PAGE_PDE_TYPE_PDE_DISABLED);
3509 pVM->pgm.s.cLargePagesDisabled++;
3510
3511 /* Update the base as that *only* that one has a reference and there's only one PDE to clear. */
3512 rc = pgmPoolTrackUpdateGCPhys(pVM, GCPhysBase, pLargePage, fFlushPTEs, pfFlushTLBs);
3513
3514 *pfFlushTLBs = true;
3515 pgmUnlock(pVM);
3516 return rc;
3517 }
3518 }
3519#else
3520 NOREF(GCPhysPage);
3521#endif /* PGM_WITH_LARGE_PAGES */
3522
3523 const uint16_t u16 = PGM_PAGE_GET_TRACKING(pPhysPage);
3524 if (u16)
3525 {
3526 /*
3527 * The zero page is currently screwing up the tracking and we'll
3528 * have to flush the whole shebang. Unless VBOX_WITH_NEW_LAZY_PAGE_ALLOC
3529 * is defined, zero pages won't normally be mapped. Some kind of solution
3530 * will be needed for this problem of course, but it will have to wait...
3531 */
3532 if ( PGM_PAGE_IS_ZERO(pPhysPage)
3533 || PGM_PAGE_IS_BALLOONED(pPhysPage))
3534 rc = VINF_PGM_GCPHYS_ALIASED;
3535 else
3536 {
3537# if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC) /** @todo we can drop this now. */
3538 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow and
3539 pgmPoolTrackFlushGCPhysPTs will/may kill the pool otherwise. */
3540 uint32_t iPrevSubset = PGMRZDynMapPushAutoSubset(pVCpu);
3541# endif
3542
3543 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
3544 {
3545 Assert(PGMPOOL_TD_GET_CREFS(u16) == 1);
3546 pgmPoolTrackFlushGCPhysPT(pVM,
3547 pPhysPage,
3548 fFlushPTEs,
3549 PGMPOOL_TD_GET_IDX(u16));
3550 }
3551 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
3552 pgmPoolTrackFlushGCPhysPTs(pVM, pPhysPage, fFlushPTEs, PGMPOOL_TD_GET_IDX(u16));
3553 else
3554 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
3555 *pfFlushTLBs = true;
3556
3557# if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC)
3558 PGMRZDynMapPopAutoSubset(pVCpu, iPrevSubset);
3559# endif
3560 }
3561 }
3562
3563 if (rc == VINF_PGM_GCPHYS_ALIASED)
3564 {
3565 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3566 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3567 rc = VINF_PGM_SYNC_CR3;
3568 }
3569 pgmUnlock(pVM);
3570 return rc;
3571}
3572
3573
3574/**
3575 * Scans all shadow page tables for mappings of a physical page.
3576 *
3577 * This may be slow, but it's most likely more efficient than cleaning
3578 * out the entire page pool / cache.
3579 *
3580 * @returns VBox status code.
3581 * @retval VINF_SUCCESS if all references has been successfully cleared.
3582 * @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and
3583 * a page pool cleaning.
3584 *
3585 * @param pVM Pointer to the VM.
3586 * @param pPhysPage The guest page in question.
3587 */
3588int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage)
3589{
3590 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3591 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTsSlow, s);
3592 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: cUsedPages=%d cPresent=%d pPhysPage=%R[pgmpage]\n",
3593 pPool->cUsedPages, pPool->cPresent, pPhysPage));
3594
3595 /*
3596 * There is a limit to what makes sense.
3597 */
3598 if ( pPool->cPresent > 1024
3599 && pVM->cCpus == 1)
3600 {
3601 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
3602 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
3603 return VINF_PGM_GCPHYS_ALIASED;
3604 }
3605
3606 /*
3607 * Iterate all the pages until we've encountered all that in use.
3608 * This is simple but not quite optimal solution.
3609 */
3610 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P; /** @todo drop X86_PTE_P here as we always test if present separately, anyway. */
3611 const uint32_t u32 = u64; /** @todo move into the 32BIT_PT_xx case */
3612 unsigned cLeft = pPool->cUsedPages;
3613 unsigned iPage = pPool->cCurPages;
3614 while (--iPage >= PGMPOOL_IDX_FIRST)
3615 {
3616 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
3617 if ( pPage->GCPhys != NIL_RTGCPHYS
3618 && pPage->cPresent)
3619 {
3620 switch (pPage->enmKind)
3621 {
3622 /*
3623 * We only care about shadow page tables.
3624 */
3625 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3626 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3627 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3628 {
3629 unsigned cPresent = pPage->cPresent;
3630 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3631 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3632 if (pPT->a[i].n.u1Present)
3633 {
3634 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
3635 {
3636 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX32\n", iPage, i, pPT->a[i]));
3637 pPT->a[i].u = 0;
3638
3639 /* Update the counter as we're removing references. */
3640 Assert(pPage->cPresent);
3641 Assert(pPool->cPresent);
3642 pPage->cPresent--;
3643 pPool->cPresent--;
3644 }
3645 if (!--cPresent)
3646 break;
3647 }
3648 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
3649 break;
3650 }
3651
3652 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3653 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3654 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3655 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3656 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3657 {
3658 unsigned cPresent = pPage->cPresent;
3659 PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3660 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3661 if (PGMSHWPTEPAE_IS_P(pPT->a[i]))
3662 {
3663 if ((PGMSHWPTEPAE_GET_U(pPT->a[i]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
3664 {
3665 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
3666 PGMSHWPTEPAE_SET(pPT->a[i], 0); /// @todo why not atomic?
3667
3668 /* Update the counter as we're removing references. */
3669 Assert(pPage->cPresent);
3670 Assert(pPool->cPresent);
3671 pPage->cPresent--;
3672 pPool->cPresent--;
3673 }
3674 if (!--cPresent)
3675 break;
3676 }
3677 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
3678 break;
3679 }
3680#ifndef IN_RC
3681 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3682 {
3683 unsigned cPresent = pPage->cPresent;
3684 PEPTPT pPT = (PEPTPT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3685 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3686 if (pPT->a[i].n.u1Present)
3687 {
3688 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
3689 {
3690 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
3691 pPT->a[i].u = 0;
3692
3693 /* Update the counter as we're removing references. */
3694 Assert(pPage->cPresent);
3695 Assert(pPool->cPresent);
3696 pPage->cPresent--;
3697 pPool->cPresent--;
3698 }
3699 if (!--cPresent)
3700 break;
3701 }
3702 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
3703 break;
3704 }
3705#endif
3706 }
3707 if (!--cLeft)
3708 break;
3709 }
3710 }
3711
3712 PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0);
3713 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
3714
3715 /*
3716 * There is a limit to what makes sense. The above search is very expensive, so force a pgm pool flush.
3717 */
3718 if (pPool->cPresent > 1024)
3719 {
3720 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
3721 return VINF_PGM_GCPHYS_ALIASED;
3722 }
3723
3724 return VINF_SUCCESS;
3725}
3726
3727
3728/**
3729 * Clears the user entry in a user table.
3730 *
3731 * This is used to remove all references to a page when flushing it.
3732 */
3733static void pgmPoolTrackClearPageUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PCPGMPOOLUSER pUser)
3734{
3735 Assert(pUser->iUser != NIL_PGMPOOL_IDX);
3736 Assert(pUser->iUser < pPool->cCurPages);
3737 uint32_t iUserTable = pUser->iUserTable;
3738
3739 /*
3740 * Map the user page. Ignore references made by fictitious pages.
3741 */
3742 PPGMPOOLPAGE pUserPage = &pPool->aPages[pUser->iUser];
3743 LogFlow(("pgmPoolTrackClearPageUser: clear %x in %s (%RGp) (flushing %s)\n", iUserTable, pgmPoolPoolKindToStr(pUserPage->enmKind), pUserPage->Core.Key, pgmPoolPoolKindToStr(pPage->enmKind)));
3744 union
3745 {
3746 uint64_t *pau64;
3747 uint32_t *pau32;
3748 } u;
3749 if (pUserPage->idx < PGMPOOL_IDX_FIRST)
3750 {
3751 Assert(!pUserPage->pvPageR3);
3752 return;
3753 }
3754 u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pUserPage);
3755
3756
3757 /* Safety precaution in case we change the paging for other modes too in the future. */
3758 Assert(!pgmPoolIsPageLocked(pPage));
3759
3760#ifdef VBOX_STRICT
3761 /*
3762 * Some sanity checks.
3763 */
3764 switch (pUserPage->enmKind)
3765 {
3766 case PGMPOOLKIND_32BIT_PD:
3767 case PGMPOOLKIND_32BIT_PD_PHYS:
3768 Assert(iUserTable < X86_PG_ENTRIES);
3769 break;
3770 case PGMPOOLKIND_PAE_PDPT:
3771 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3772 case PGMPOOLKIND_PAE_PDPT_PHYS:
3773 Assert(iUserTable < 4);
3774 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
3775 break;
3776 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3777 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3778 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3779 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3780 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3781 case PGMPOOLKIND_PAE_PD_PHYS:
3782 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3783 break;
3784 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3785 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3786 Assert(!(u.pau64[iUserTable] & PGM_PDFLAGS_MAPPING));
3787 break;
3788 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3789 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3790 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
3791 break;
3792 case PGMPOOLKIND_64BIT_PML4:
3793 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
3794 /* GCPhys >> PAGE_SHIFT is the index here */
3795 break;
3796 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3797 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3798 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3799 break;
3800
3801 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3802 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3803 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3804 break;
3805
3806 case PGMPOOLKIND_ROOT_NESTED:
3807 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3808 break;
3809
3810 default:
3811 AssertMsgFailed(("enmKind=%d\n", pUserPage->enmKind));
3812 break;
3813 }
3814#endif /* VBOX_STRICT */
3815
3816 /*
3817 * Clear the entry in the user page.
3818 */
3819 switch (pUserPage->enmKind)
3820 {
3821 /* 32-bit entries */
3822 case PGMPOOLKIND_32BIT_PD:
3823 case PGMPOOLKIND_32BIT_PD_PHYS:
3824 ASMAtomicWriteU32(&u.pau32[iUserTable], 0);
3825 break;
3826
3827 /* 64-bit entries */
3828 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3829 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3830 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3831 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3832 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3833#ifdef IN_RC
3834 /*
3835 * In 32 bits PAE mode we *must* invalidate the TLB when changing a
3836 * PDPT entry; the CPU fetches them only during cr3 load, so any
3837 * non-present PDPT will continue to cause page faults.
3838 */
3839 ASMReloadCR3();
3840 /* no break */
3841#endif
3842 case PGMPOOLKIND_PAE_PD_PHYS:
3843 case PGMPOOLKIND_PAE_PDPT_PHYS:
3844 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3845 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3846 case PGMPOOLKIND_64BIT_PML4:
3847 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3848 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3849 case PGMPOOLKIND_PAE_PDPT:
3850 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3851 case PGMPOOLKIND_ROOT_NESTED:
3852 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3853 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3854 ASMAtomicWriteU64(&u.pau64[iUserTable], 0);
3855 break;
3856
3857 default:
3858 AssertFatalMsgFailed(("enmKind=%d iUser=%d iUserTable=%#x\n", pUserPage->enmKind, pUser->iUser, pUser->iUserTable));
3859 }
3860 PGM_DYNMAP_UNUSED_HINT_VM(pPool->CTX_SUFF(pVM), u.pau64);
3861}
3862
3863
3864/**
3865 * Clears all users of a page.
3866 */
3867static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3868{
3869 /*
3870 * Free all the user records.
3871 */
3872 LogFlow(("pgmPoolTrackClearPageUsers %RGp\n", pPage->GCPhys));
3873
3874 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
3875 uint16_t i = pPage->iUserHead;
3876 while (i != NIL_PGMPOOL_USER_INDEX)
3877 {
3878 /* Clear enter in user table. */
3879 pgmPoolTrackClearPageUser(pPool, pPage, &paUsers[i]);
3880
3881 /* Free it. */
3882 const uint16_t iNext = paUsers[i].iNext;
3883 paUsers[i].iUser = NIL_PGMPOOL_IDX;
3884 paUsers[i].iNext = pPool->iUserFreeHead;
3885 pPool->iUserFreeHead = i;
3886
3887 /* Next. */
3888 i = iNext;
3889 }
3890 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
3891}
3892
3893
3894/**
3895 * Allocates a new physical cross reference extent.
3896 *
3897 * @returns Pointer to the allocated extent on success. NULL if we're out of them.
3898 * @param pVM Pointer to the VM.
3899 * @param piPhysExt Where to store the phys ext index.
3900 */
3901PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt)
3902{
3903 PGM_LOCK_ASSERT_OWNER(pVM);
3904 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3905 uint16_t iPhysExt = pPool->iPhysExtFreeHead;
3906 if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
3907 {
3908 STAM_COUNTER_INC(&pPool->StamTrackPhysExtAllocFailures);
3909 return NULL;
3910 }
3911 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3912 pPool->iPhysExtFreeHead = pPhysExt->iNext;
3913 pPhysExt->iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
3914 *piPhysExt = iPhysExt;
3915 return pPhysExt;
3916}
3917
3918
3919/**
3920 * Frees a physical cross reference extent.
3921 *
3922 * @param pVM Pointer to the VM.
3923 * @param iPhysExt The extent to free.
3924 */
3925void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt)
3926{
3927 PGM_LOCK_ASSERT_OWNER(pVM);
3928 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3929 Assert(iPhysExt < pPool->cMaxPhysExts);
3930 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3931 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3932 {
3933 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3934 pPhysExt->apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
3935 }
3936 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3937 pPool->iPhysExtFreeHead = iPhysExt;
3938}
3939
3940
3941/**
3942 * Frees a physical cross reference extent.
3943 *
3944 * @param pVM Pointer to the VM.
3945 * @param iPhysExt The extent to free.
3946 */
3947void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt)
3948{
3949 PGM_LOCK_ASSERT_OWNER(pVM);
3950 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3951
3952 const uint16_t iPhysExtStart = iPhysExt;
3953 PPGMPOOLPHYSEXT pPhysExt;
3954 do
3955 {
3956 Assert(iPhysExt < pPool->cMaxPhysExts);
3957 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3958 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3959 {
3960 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3961 pPhysExt->apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
3962 }
3963
3964 /* next */
3965 iPhysExt = pPhysExt->iNext;
3966 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3967
3968 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3969 pPool->iPhysExtFreeHead = iPhysExtStart;
3970}
3971
3972
3973/**
3974 * Insert a reference into a list of physical cross reference extents.
3975 *
3976 * @returns The new tracking data for PGMPAGE.
3977 *
3978 * @param pVM Pointer to the VM.
3979 * @param iPhysExt The physical extent index of the list head.
3980 * @param iShwPT The shadow page table index.
3981 * @param iPte Page table entry
3982 *
3983 */
3984static uint16_t pgmPoolTrackPhysExtInsert(PVM pVM, uint16_t iPhysExt, uint16_t iShwPT, uint16_t iPte)
3985{
3986 PGM_LOCK_ASSERT_OWNER(pVM);
3987 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3988 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3989
3990 /*
3991 * Special common cases.
3992 */
3993 if (paPhysExts[iPhysExt].aidx[1] == NIL_PGMPOOL_IDX)
3994 {
3995 paPhysExts[iPhysExt].aidx[1] = iShwPT;
3996 paPhysExts[iPhysExt].apte[1] = iPte;
3997 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackAliasedMany);
3998 LogFlow(("pgmPoolTrackPhysExtInsert: %d:{,%d pte %d,}\n", iPhysExt, iShwPT, iPte));
3999 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
4000 }
4001 if (paPhysExts[iPhysExt].aidx[2] == NIL_PGMPOOL_IDX)
4002 {
4003 paPhysExts[iPhysExt].aidx[2] = iShwPT;
4004 paPhysExts[iPhysExt].apte[2] = iPte;
4005 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackAliasedMany);
4006 LogFlow(("pgmPoolTrackPhysExtInsert: %d:{,,%d pte %d}\n", iPhysExt, iShwPT, iPte));
4007 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
4008 }
4009 AssertCompile(RT_ELEMENTS(paPhysExts[iPhysExt].aidx) == 3);
4010
4011 /*
4012 * General treatment.
4013 */
4014 const uint16_t iPhysExtStart = iPhysExt;
4015 unsigned cMax = 15;
4016 for (;;)
4017 {
4018 Assert(iPhysExt < pPool->cMaxPhysExts);
4019 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
4020 if (paPhysExts[iPhysExt].aidx[i] == NIL_PGMPOOL_IDX)
4021 {
4022 paPhysExts[iPhysExt].aidx[i] = iShwPT;
4023 paPhysExts[iPhysExt].apte[i] = iPte;
4024 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackAliasedMany);
4025 LogFlow(("pgmPoolTrackPhysExtInsert: %d:{%d pte %d} i=%d cMax=%d\n", iPhysExt, iShwPT, iPte, i, cMax));
4026 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtStart);
4027 }
4028 if (!--cMax)
4029 {
4030 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackOverflows);
4031 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
4032 LogFlow(("pgmPoolTrackPhysExtInsert: overflow (1) iShwPT=%d\n", iShwPT));
4033 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
4034 }
4035
4036 /* advance */
4037 iPhysExt = paPhysExts[iPhysExt].iNext;
4038 if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
4039 break;
4040 }
4041
4042 /*
4043 * Add another extent to the list.
4044 */
4045 PPGMPOOLPHYSEXT pNew = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
4046 if (!pNew)
4047 {
4048 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackNoExtentsLeft);
4049 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
4050 LogFlow(("pgmPoolTrackPhysExtInsert: pgmPoolTrackPhysExtAlloc failed iShwPT=%d\n", iShwPT));
4051 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
4052 }
4053 pNew->iNext = iPhysExtStart;
4054 pNew->aidx[0] = iShwPT;
4055 pNew->apte[0] = iPte;
4056 LogFlow(("pgmPoolTrackPhysExtInsert: added new extent %d:{%d pte %d}->%d\n", iPhysExt, iShwPT, iPte, iPhysExtStart));
4057 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
4058}
4059
4060
4061/**
4062 * Add a reference to guest physical page where extents are in use.
4063 *
4064 * @returns The new tracking data for PGMPAGE.
4065 *
4066 * @param pVM Pointer to the VM.
4067 * @param pPhysPage Pointer to the aPages entry in the ram range.
4068 * @param u16 The ram range flags (top 16-bits).
4069 * @param iShwPT The shadow page table index.
4070 * @param iPte Page table entry
4071 */
4072uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, PPGMPAGE pPhysPage, uint16_t u16, uint16_t iShwPT, uint16_t iPte)
4073{
4074 pgmLock(pVM);
4075 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
4076 {
4077 /*
4078 * Convert to extent list.
4079 */
4080 Assert(PGMPOOL_TD_GET_CREFS(u16) == 1);
4081 uint16_t iPhysExt;
4082 PPGMPOOLPHYSEXT pPhysExt = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
4083 if (pPhysExt)
4084 {
4085 LogFlow(("pgmPoolTrackPhysExtAddref: new extent: %d:{%d, %d}\n", iPhysExt, PGMPOOL_TD_GET_IDX(u16), iShwPT));
4086 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackAliased);
4087 pPhysExt->aidx[0] = PGMPOOL_TD_GET_IDX(u16);
4088 pPhysExt->apte[0] = PGM_PAGE_GET_PTE_INDEX(pPhysPage);
4089 pPhysExt->aidx[1] = iShwPT;
4090 pPhysExt->apte[1] = iPte;
4091 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
4092 }
4093 else
4094 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
4095 }
4096 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
4097 {
4098 /*
4099 * Insert into the extent list.
4100 */
4101 u16 = pgmPoolTrackPhysExtInsert(pVM, PGMPOOL_TD_GET_IDX(u16), iShwPT, iPte);
4102 }
4103 else
4104 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackAliasedLots);
4105 pgmUnlock(pVM);
4106 return u16;
4107}
4108
4109
4110/**
4111 * Clear references to guest physical memory.
4112 *
4113 * @param pPool The pool.
4114 * @param pPage The page.
4115 * @param pPhysPage Pointer to the aPages entry in the ram range.
4116 * @param iPte Shadow PTE index
4117 */
4118void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMPAGE pPhysPage, uint16_t iPte)
4119{
4120 PVM pVM = pPool->CTX_SUFF(pVM);
4121 const unsigned cRefs = PGM_PAGE_GET_TD_CREFS(pPhysPage);
4122 AssertFatalMsg(cRefs == PGMPOOL_TD_CREFS_PHYSEXT, ("cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
4123
4124 uint16_t iPhysExt = PGM_PAGE_GET_TD_IDX(pPhysPage);
4125 if (iPhysExt != PGMPOOL_TD_IDX_OVERFLOWED)
4126 {
4127 pgmLock(pVM);
4128
4129 uint16_t iPhysExtPrev = NIL_PGMPOOL_PHYSEXT_INDEX;
4130 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
4131 do
4132 {
4133 Assert(iPhysExt < pPool->cMaxPhysExts);
4134
4135 /*
4136 * Look for the shadow page and check if it's all freed.
4137 */
4138 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
4139 {
4140 if ( paPhysExts[iPhysExt].aidx[i] == pPage->idx
4141 && paPhysExts[iPhysExt].apte[i] == iPte)
4142 {
4143 paPhysExts[iPhysExt].aidx[i] = NIL_PGMPOOL_IDX;
4144 paPhysExts[iPhysExt].apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
4145
4146 for (i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
4147 if (paPhysExts[iPhysExt].aidx[i] != NIL_PGMPOOL_IDX)
4148 {
4149 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
4150 pgmUnlock(pVM);
4151 return;
4152 }
4153
4154 /* we can free the node. */
4155 const uint16_t iPhysExtNext = paPhysExts[iPhysExt].iNext;
4156 if ( iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX
4157 && iPhysExtNext == NIL_PGMPOOL_PHYSEXT_INDEX)
4158 {
4159 /* lonely node */
4160 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
4161 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d lonely\n", pPhysPage, pPage->idx));
4162 PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0);
4163 }
4164 else if (iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX)
4165 {
4166 /* head */
4167 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d head\n", pPhysPage, pPage->idx));
4168 PGM_PAGE_SET_TRACKING(pVM, pPhysPage, PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtNext));
4169 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
4170 }
4171 else
4172 {
4173 /* in list */
4174 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d in list\n", pPhysPage, pPage->idx));
4175 paPhysExts[iPhysExtPrev].iNext = iPhysExtNext;
4176 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
4177 }
4178 iPhysExt = iPhysExtNext;
4179 pgmUnlock(pVM);
4180 return;
4181 }
4182 }
4183
4184 /* next */
4185 iPhysExtPrev = iPhysExt;
4186 iPhysExt = paPhysExts[iPhysExt].iNext;
4187 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
4188
4189 pgmUnlock(pVM);
4190 AssertFatalMsgFailed(("not-found! cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
4191 }
4192 else /* nothing to do */
4193 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage]\n", pPhysPage));
4194}
4195
4196/**
4197 * Clear references to guest physical memory.
4198 *
4199 * This is the same as pgmPoolTracDerefGCPhysHint except that the guest
4200 * physical address is assumed to be correct, so the linear search can be
4201 * skipped and we can assert at an earlier point.
4202 *
4203 * @param pPool The pool.
4204 * @param pPage The page.
4205 * @param HCPhys The host physical address corresponding to the guest page.
4206 * @param GCPhys The guest physical address corresponding to HCPhys.
4207 * @param iPte Shadow PTE index
4208 */
4209static void pgmPoolTracDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhys, uint16_t iPte)
4210{
4211 /*
4212 * Lookup the page and check if it checks out before derefing it.
4213 */
4214 PVM pVM = pPool->CTX_SUFF(pVM);
4215 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhys);
4216 if (pPhysPage)
4217 {
4218 Assert(PGM_PAGE_GET_HCPHYS(pPhysPage));
4219#ifdef LOG_ENABLED
4220 RTHCPHYS HCPhysPage = PGM_PAGE_GET_HCPHYS(pPhysPage);
4221 Log2(("pgmPoolTracDerefGCPhys %RHp vs %RHp\n", HCPhysPage, HCPhys));
4222#endif
4223 if (PGM_PAGE_GET_HCPHYS(pPhysPage) == HCPhys)
4224 {
4225 Assert(pPage->cPresent);
4226 Assert(pPool->cPresent);
4227 pPage->cPresent--;
4228 pPool->cPresent--;
4229 pgmTrackDerefGCPhys(pPool, pPage, pPhysPage, iPte);
4230 return;
4231 }
4232
4233 AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp; found page has HCPhys=%RHp\n",
4234 HCPhys, GCPhys, PGM_PAGE_GET_HCPHYS(pPhysPage)));
4235 }
4236 AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp\n", HCPhys, GCPhys));
4237}
4238
4239
4240/**
4241 * Clear references to guest physical memory.
4242 *
4243 * @param pPool The pool.
4244 * @param pPage The page.
4245 * @param HCPhys The host physical address corresponding to the guest page.
4246 * @param GCPhysHint The guest physical address which may corresponding to HCPhys.
4247 * @param iPte Shadow pte index
4248 */
4249void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint, uint16_t iPte)
4250{
4251 Log4(("pgmPoolTracDerefGCPhysHint %RHp %RGp\n", HCPhys, GCPhysHint));
4252
4253 /*
4254 * Try the hint first.
4255 */
4256 RTHCPHYS HCPhysHinted;
4257 PVM pVM = pPool->CTX_SUFF(pVM);
4258 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysHint);
4259 if (pPhysPage)
4260 {
4261 HCPhysHinted = PGM_PAGE_GET_HCPHYS(pPhysPage);
4262 Assert(HCPhysHinted);
4263 if (HCPhysHinted == HCPhys)
4264 {
4265 Assert(pPage->cPresent);
4266 Assert(pPool->cPresent);
4267 pPage->cPresent--;
4268 pPool->cPresent--;
4269 pgmTrackDerefGCPhys(pPool, pPage, pPhysPage, iPte);
4270 return;
4271 }
4272 }
4273 else
4274 HCPhysHinted = UINT64_C(0xdeadbeefdeadbeef);
4275
4276 /*
4277 * Damn, the hint didn't work. We'll have to do an expensive linear search.
4278 */
4279 STAM_COUNTER_INC(&pPool->StatTrackLinearRamSearches);
4280 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRangesX);
4281 while (pRam)
4282 {
4283 unsigned iPage = pRam->cb >> PAGE_SHIFT;
4284 while (iPage-- > 0)
4285 {
4286 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
4287 {
4288 Log4(("pgmPoolTracDerefGCPhysHint: Linear HCPhys=%RHp GCPhysHint=%RGp GCPhysReal=%RGp\n",
4289 HCPhys, GCPhysHint, pRam->GCPhys + (iPage << PAGE_SHIFT)));
4290 Assert(pPage->cPresent);
4291 Assert(pPool->cPresent);
4292 pPage->cPresent--;
4293 pPool->cPresent--;
4294 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage], iPte);
4295 return;
4296 }
4297 }
4298 pRam = pRam->CTX_SUFF(pNext);
4299 }
4300
4301 AssertFatalMsgFailed(("HCPhys=%RHp GCPhysHint=%RGp (Hinted page has HCPhys = %RHp)\n", HCPhys, GCPhysHint, HCPhysHinted));
4302}
4303
4304
4305/**
4306 * Clear references to guest physical memory in a 32-bit / 32-bit page table.
4307 *
4308 * @param pPool The pool.
4309 * @param pPage The page.
4310 * @param pShwPT The shadow page table (mapping of the page).
4311 * @param pGstPT The guest page table.
4312 */
4313DECLINLINE(void) pgmPoolTrackDerefPT32Bit32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT, PCX86PT pGstPT)
4314{
4315 RTGCPHYS32 const fPgMask = pPage->fA20Enabled ? X86_PTE_PG_MASK : X86_PTE_PG_MASK & ~RT_BIT_32(20);
4316 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
4317 {
4318 Assert(!(pShwPT->a[i].u & RT_BIT_32(10)));
4319 if (pShwPT->a[i].n.u1Present)
4320 {
4321 Log4(("pgmPoolTrackDerefPT32Bit32Bit: i=%d pte=%RX32 hint=%RX32\n",
4322 i, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
4323 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & fPgMask, i);
4324 if (!pPage->cPresent)
4325 break;
4326 }
4327 }
4328}
4329
4330
4331/**
4332 * Clear references to guest physical memory in a PAE / 32-bit page table.
4333 *
4334 * @param pPool The pool.
4335 * @param pPage The page.
4336 * @param pShwPT The shadow page table (mapping of the page).
4337 * @param pGstPT The guest page table (just a half one).
4338 */
4339DECLINLINE(void) pgmPoolTrackDerefPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PT pGstPT)
4340{
4341 RTGCPHYS32 const fPgMask = pPage->fA20Enabled ? X86_PTE_PG_MASK : X86_PTE_PG_MASK & ~RT_BIT_32(20);
4342 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
4343 {
4344 Assert( (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == 0
4345 || (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == UINT64_C(0x7ff0000000000000));
4346 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
4347 {
4348 Log4(("pgmPoolTrackDerefPTPae32Bit: i=%d pte=%RX64 hint=%RX32\n",
4349 i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & X86_PTE_PG_MASK));
4350 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & fPgMask, i);
4351 if (!pPage->cPresent)
4352 break;
4353 }
4354 }
4355}
4356
4357
4358/**
4359 * Clear references to guest physical memory in a PAE / PAE page table.
4360 *
4361 * @param pPool The pool.
4362 * @param pPage The page.
4363 * @param pShwPT The shadow page table (mapping of the page).
4364 * @param pGstPT The guest page table.
4365 */
4366DECLINLINE(void) pgmPoolTrackDerefPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT)
4367{
4368 RTGCPHYS const fPgMask = pPage->fA20Enabled ? X86_PTE_PAE_PG_MASK : X86_PTE_PAE_PG_MASK & ~RT_BIT_64(20);
4369 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
4370 {
4371 Assert( (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == 0
4372 || (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == UINT64_C(0x7ff0000000000000));
4373 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
4374 {
4375 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX32 hint=%RX32\n",
4376 i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
4377 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & fPgMask, i);
4378 if (!pPage->cPresent)
4379 break;
4380 }
4381 }
4382}
4383
4384
4385/**
4386 * Clear references to guest physical memory in a 32-bit / 4MB page table.
4387 *
4388 * @param pPool The pool.
4389 * @param pPage The page.
4390 * @param pShwPT The shadow page table (mapping of the page).
4391 */
4392DECLINLINE(void) pgmPoolTrackDerefPT32Bit4MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT)
4393{
4394 RTGCPHYS const GCPhysA20Mask = pPage->fA20Enabled ? UINT64_MAX : ~RT_BIT_64(20);
4395 RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent;
4396 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
4397 {
4398 Assert(!(pShwPT->a[i].u & RT_BIT_32(10)));
4399 if (pShwPT->a[i].n.u1Present)
4400 {
4401 Log4(("pgmPoolTrackDerefPT32Bit4MB: i=%d pte=%RX32 GCPhys=%RGp\n",
4402 i, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys));
4403 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys & GCPhysA20Mask, i);
4404 if (!pPage->cPresent)
4405 break;
4406 }
4407 }
4408}
4409
4410
4411/**
4412 * Clear references to guest physical memory in a PAE / 2/4MB page table.
4413 *
4414 * @param pPool The pool.
4415 * @param pPage The page.
4416 * @param pShwPT The shadow page table (mapping of the page).
4417 */
4418DECLINLINE(void) pgmPoolTrackDerefPTPaeBig(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT)
4419{
4420 RTGCPHYS const GCPhysA20Mask = pPage->fA20Enabled ? UINT64_MAX : ~RT_BIT_64(20);
4421 RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent;
4422 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
4423 {
4424 Assert( (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == 0
4425 || (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == UINT64_C(0x7ff0000000000000));
4426 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
4427 {
4428 Log4(("pgmPoolTrackDerefPTPaeBig: i=%d pte=%RX64 hint=%RGp\n",
4429 i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), GCPhys));
4430 pgmPoolTracDerefGCPhys(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), GCPhys & GCPhysA20Mask, i);
4431 if (!pPage->cPresent)
4432 break;
4433 }
4434 }
4435}
4436
4437
4438/**
4439 * Clear references to shadowed pages in an EPT page table.
4440 *
4441 * @param pPool The pool.
4442 * @param pPage The page.
4443 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
4444 */
4445DECLINLINE(void) pgmPoolTrackDerefPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPT pShwPT)
4446{
4447 RTGCPHYS const GCPhysA20Mask = pPage->fA20Enabled ? UINT64_MAX : ~RT_BIT_64(20);
4448 RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent;
4449 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
4450 {
4451 Assert((pShwPT->a[i].u & UINT64_C(0xfff0000000000f80)) == 0);
4452 if (pShwPT->a[i].n.u1Present)
4453 {
4454 Log4(("pgmPoolTrackDerefPTEPT: i=%d pte=%RX64 GCPhys=%RX64\n",
4455 i, pShwPT->a[i].u & EPT_PTE_PG_MASK, pPage->GCPhys));
4456 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & EPT_PTE_PG_MASK, GCPhys & GCPhysA20Mask, i);
4457 if (!pPage->cPresent)
4458 break;
4459 }
4460 }
4461}
4462
4463
4464/**
4465 * Clear references to shadowed pages in a 32 bits page directory.
4466 *
4467 * @param pPool The pool.
4468 * @param pPage The page.
4469 * @param pShwPD The shadow page directory (mapping of the page).
4470 */
4471DECLINLINE(void) pgmPoolTrackDerefPD(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PD pShwPD)
4472{
4473 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
4474 {
4475 Assert(!(pShwPD->a[i].u & RT_BIT_32(9)));
4476 if ( pShwPD->a[i].n.u1Present
4477 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
4478 )
4479 {
4480 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PG_MASK);
4481 if (pSubPage)
4482 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4483 else
4484 AssertFatalMsgFailed(("%x\n", pShwPD->a[i].u & X86_PDE_PG_MASK));
4485 }
4486 }
4487}
4488
4489
4490/**
4491 * Clear references to shadowed pages in a PAE (legacy or 64 bits) page directory.
4492 *
4493 * @param pPool The pool.
4494 * @param pPage The page.
4495 * @param pShwPD The shadow page directory (mapping of the page).
4496 */
4497DECLINLINE(void) pgmPoolTrackDerefPDPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPAE pShwPD)
4498{
4499 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
4500 {
4501 if ( pShwPD->a[i].n.u1Present
4502 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING))
4503 {
4504#ifdef PGM_WITH_LARGE_PAGES
4505 if (pShwPD->a[i].b.u1Size)
4506 {
4507 Log4(("pgmPoolTrackDerefPDPae: i=%d pde=%RX64 GCPhys=%RX64\n",
4508 i, pShwPD->a[i].u & X86_PDE2M_PAE_PG_MASK, pPage->GCPhys));
4509 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPD->a[i].u & X86_PDE2M_PAE_PG_MASK,
4510 pPage->GCPhys + i * 2 * _1M /* pPage->GCPhys = base address of the memory described by the PD */,
4511 i);
4512 }
4513 else
4514#endif
4515 {
4516 Assert((pShwPD->a[i].u & (X86_PDE_PAE_MBZ_MASK_NX | UINT64_C(0x7ff0000000000200))) == 0);
4517 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PAE_PG_MASK);
4518 if (pSubPage)
4519 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4520 else
4521 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & X86_PDE_PAE_PG_MASK));
4522 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4523 }
4524 }
4525 }
4526}
4527
4528
4529/**
4530 * Clear references to shadowed pages in a PAE page directory pointer table.
4531 *
4532 * @param pPool The pool.
4533 * @param pPage The page.
4534 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
4535 */
4536DECLINLINE(void) pgmPoolTrackDerefPDPTPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
4537{
4538 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4539 {
4540 Assert((pShwPDPT->a[i].u & (X86_PDPE_PAE_MBZ_MASK | UINT64_C(0x7ff0000000000200))) == 0);
4541 if ( pShwPDPT->a[i].n.u1Present
4542 && !(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING)
4543 )
4544 {
4545 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
4546 if (pSubPage)
4547 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4548 else
4549 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
4550 }
4551 }
4552}
4553
4554
4555/**
4556 * Clear references to shadowed pages in a 64-bit page directory pointer table.
4557 *
4558 * @param pPool The pool.
4559 * @param pPage The page.
4560 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
4561 */
4562DECLINLINE(void) pgmPoolTrackDerefPDPT64Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
4563{
4564 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
4565 {
4566 Assert((pShwPDPT->a[i].u & (X86_PDPE_LM_MBZ_MASK_NX | UINT64_C(0x7ff0000000000200))) == 0);
4567 if (pShwPDPT->a[i].n.u1Present)
4568 {
4569 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
4570 if (pSubPage)
4571 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4572 else
4573 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
4574 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4575 }
4576 }
4577}
4578
4579
4580/**
4581 * Clear references to shadowed pages in a 64-bit level 4 page table.
4582 *
4583 * @param pPool The pool.
4584 * @param pPage The page.
4585 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
4586 */
4587DECLINLINE(void) pgmPoolTrackDerefPML464Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PML4 pShwPML4)
4588{
4589 for (unsigned i = 0; i < RT_ELEMENTS(pShwPML4->a); i++)
4590 {
4591 Assert((pShwPML4->a[i].u & (X86_PML4E_MBZ_MASK_NX | UINT64_C(0x7ff0000000000200))) == 0);
4592 if (pShwPML4->a[i].n.u1Present)
4593 {
4594 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPML4->a[i].u & X86_PDPE_PG_MASK);
4595 if (pSubPage)
4596 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4597 else
4598 AssertFatalMsgFailed(("%RX64\n", pShwPML4->a[i].u & X86_PML4E_PG_MASK));
4599 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4600 }
4601 }
4602}
4603
4604
4605/**
4606 * Clear references to shadowed pages in an EPT page directory.
4607 *
4608 * @param pPool The pool.
4609 * @param pPage The page.
4610 * @param pShwPD The shadow page directory (mapping of the page).
4611 */
4612DECLINLINE(void) pgmPoolTrackDerefPDEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPD pShwPD)
4613{
4614 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
4615 {
4616 Assert((pShwPD->a[i].u & UINT64_C(0xfff0000000000f80)) == 0);
4617 if (pShwPD->a[i].n.u1Present)
4618 {
4619#ifdef PGM_WITH_LARGE_PAGES
4620 if (pShwPD->a[i].b.u1Size)
4621 {
4622 Log4(("pgmPoolTrackDerefPDEPT: i=%d pde=%RX64 GCPhys=%RX64\n",
4623 i, pShwPD->a[i].u & X86_PDE2M_PAE_PG_MASK, pPage->GCPhys));
4624 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPD->a[i].u & X86_PDE2M_PAE_PG_MASK,
4625 pPage->GCPhys + i * 2 * _1M /* pPage->GCPhys = base address of the memory described by the PD */,
4626 i);
4627 }
4628 else
4629#endif
4630 {
4631 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & EPT_PDE_PG_MASK);
4632 if (pSubPage)
4633 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4634 else
4635 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & EPT_PDE_PG_MASK));
4636 }
4637 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4638 }
4639 }
4640}
4641
4642
4643/**
4644 * Clear references to shadowed pages in an EPT page directory pointer table.
4645 *
4646 * @param pPool The pool.
4647 * @param pPage The page.
4648 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
4649 */
4650DECLINLINE(void) pgmPoolTrackDerefPDPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPDPT pShwPDPT)
4651{
4652 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
4653 {
4654 Assert((pShwPDPT->a[i].u & UINT64_C(0xfff0000000000f80)) == 0);
4655 if (pShwPDPT->a[i].n.u1Present)
4656 {
4657 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK);
4658 if (pSubPage)
4659 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4660 else
4661 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK));
4662 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4663 }
4664 }
4665}
4666
4667
4668/**
4669 * Clears all references made by this page.
4670 *
4671 * This includes other shadow pages and GC physical addresses.
4672 *
4673 * @param pPool The pool.
4674 * @param pPage The page.
4675 */
4676static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
4677{
4678 /*
4679 * Map the shadow page and take action according to the page kind.
4680 */
4681 PVM pVM = pPool->CTX_SUFF(pVM);
4682 void *pvShw = PGMPOOL_PAGE_2_PTR(pVM, pPage);
4683 switch (pPage->enmKind)
4684 {
4685 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
4686 {
4687 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4688 void *pvGst;
4689 int rc = PGM_GCPHYS_2_PTR(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
4690 pgmPoolTrackDerefPT32Bit32Bit(pPool, pPage, (PX86PT)pvShw, (PCX86PT)pvGst);
4691 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
4692 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4693 break;
4694 }
4695
4696 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
4697 {
4698 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4699 void *pvGst;
4700 int rc = PGM_GCPHYS_2_PTR_EX(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
4701 pgmPoolTrackDerefPTPae32Bit(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PT)pvGst);
4702 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
4703 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4704 break;
4705 }
4706
4707 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
4708 {
4709 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4710 void *pvGst;
4711 int rc = PGM_GCPHYS_2_PTR(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
4712 pgmPoolTrackDerefPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst);
4713 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
4714 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4715 break;
4716 }
4717
4718 case PGMPOOLKIND_32BIT_PT_FOR_PHYS: /* treat it like a 4 MB page */
4719 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
4720 {
4721 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4722 pgmPoolTrackDerefPT32Bit4MB(pPool, pPage, (PX86PT)pvShw);
4723 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4724 break;
4725 }
4726
4727 case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* treat it like a 2 MB page */
4728 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
4729 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
4730 {
4731 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4732 pgmPoolTrackDerefPTPaeBig(pPool, pPage, (PPGMSHWPTPAE)pvShw);
4733 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4734 break;
4735 }
4736
4737 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
4738 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
4739 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
4740 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
4741 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
4742 case PGMPOOLKIND_PAE_PD_PHYS:
4743 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
4744 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
4745 pgmPoolTrackDerefPDPae(pPool, pPage, (PX86PDPAE)pvShw);
4746 break;
4747
4748 case PGMPOOLKIND_32BIT_PD_PHYS:
4749 case PGMPOOLKIND_32BIT_PD:
4750 pgmPoolTrackDerefPD(pPool, pPage, (PX86PD)pvShw);
4751 break;
4752
4753 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
4754 case PGMPOOLKIND_PAE_PDPT:
4755 case PGMPOOLKIND_PAE_PDPT_PHYS:
4756 pgmPoolTrackDerefPDPTPae(pPool, pPage, (PX86PDPT)pvShw);
4757 break;
4758
4759 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
4760 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
4761 pgmPoolTrackDerefPDPT64Bit(pPool, pPage, (PX86PDPT)pvShw);
4762 break;
4763
4764 case PGMPOOLKIND_64BIT_PML4:
4765 pgmPoolTrackDerefPML464Bit(pPool, pPage, (PX86PML4)pvShw);
4766 break;
4767
4768 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
4769 pgmPoolTrackDerefPTEPT(pPool, pPage, (PEPTPT)pvShw);
4770 break;
4771
4772 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
4773 pgmPoolTrackDerefPDEPT(pPool, pPage, (PEPTPD)pvShw);
4774 break;
4775
4776 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
4777 pgmPoolTrackDerefPDPTEPT(pPool, pPage, (PEPTPDPT)pvShw);
4778 break;
4779
4780 default:
4781 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
4782 }
4783
4784 /* paranoia, clear the shadow page. Remove this laser (i.e. let Alloc and ClearAll do it). */
4785 STAM_PROFILE_START(&pPool->StatZeroPage, z);
4786 ASMMemZeroPage(pvShw);
4787 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
4788 pPage->fZeroed = true;
4789 Assert(!pPage->cPresent);
4790 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw);
4791}
4792
4793
4794/**
4795 * Flushes a pool page.
4796 *
4797 * This moves the page to the free list after removing all user references to it.
4798 *
4799 * @returns VBox status code.
4800 * @retval VINF_SUCCESS on success.
4801 * @param pPool The pool.
4802 * @param HCPhys The HC physical address of the shadow page.
4803 * @param fFlush Flush the TLBS when required (should only be false in very specific use cases!!)
4804 */
4805int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fFlush)
4806{
4807 PVM pVM = pPool->CTX_SUFF(pVM);
4808 bool fFlushRequired = false;
4809
4810 int rc = VINF_SUCCESS;
4811 STAM_PROFILE_START(&pPool->StatFlushPage, f);
4812 LogFlow(("pgmPoolFlushPage: pPage=%p:{.Key=%RHp, .idx=%d, .enmKind=%s, .GCPhys=%RGp}\n",
4813 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
4814
4815 /*
4816 * Reject any attempts at flushing any of the special root pages (shall
4817 * not happen).
4818 */
4819 AssertMsgReturn(pPage->idx >= PGMPOOL_IDX_FIRST,
4820 ("pgmPoolFlushPage: special root page, rejected. enmKind=%s idx=%d\n",
4821 pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx),
4822 VINF_SUCCESS);
4823
4824 pgmLock(pVM);
4825
4826 /*
4827 * Quietly reject any attempts at flushing the currently active shadow CR3 mapping
4828 */
4829 if (pgmPoolIsPageLocked(pPage))
4830 {
4831 AssertMsg( pPage->enmKind == PGMPOOLKIND_64BIT_PML4
4832 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT
4833 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT_FOR_32BIT
4834 || pPage->enmKind == PGMPOOLKIND_32BIT_PD
4835 || pPage->enmKind == PGMPOOLKIND_PAE_PD_FOR_PAE_PD
4836 || pPage->enmKind == PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD
4837 || pPage->enmKind == PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD
4838 || pPage->enmKind == PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD
4839 || pPage->enmKind == PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD
4840 || pPage->enmKind == PGMPOOLKIND_ROOT_NESTED,
4841 ("Can't free the shadow CR3! (%RHp vs %RHp kind=%d\n", PGMGetHyperCR3(VMMGetCpu(pVM)), pPage->Core.Key, pPage->enmKind));
4842 Log(("pgmPoolFlushPage: current active shadow CR3, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
4843 pgmUnlock(pVM);
4844 return VINF_SUCCESS;
4845 }
4846
4847#if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC)
4848 /* Start a subset so we won't run out of mapping space. */
4849 PVMCPU pVCpu = VMMGetCpu(pVM);
4850 uint32_t iPrevSubset = PGMRZDynMapPushAutoSubset(pVCpu);
4851#endif
4852
4853 /*
4854 * Mark the page as being in need of an ASMMemZeroPage().
4855 */
4856 pPage->fZeroed = false;
4857
4858#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4859 if (pPage->fDirty)
4860 pgmPoolFlushDirtyPage(pVM, pPool, pPage->idxDirtyEntry, false /* do not remove */);
4861#endif
4862
4863 /* If there are any users of this table, then we *must* issue a tlb flush on all VCPUs. */
4864 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
4865 fFlushRequired = true;
4866
4867 /*
4868 * Clear the page.
4869 */
4870 pgmPoolTrackClearPageUsers(pPool, pPage);
4871 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
4872 pgmPoolTrackDeref(pPool, pPage);
4873 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
4874
4875 /*
4876 * Flush it from the cache.
4877 */
4878 pgmPoolCacheFlushPage(pPool, pPage);
4879
4880#if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC)
4881 /* Heavy stuff done. */
4882 PGMRZDynMapPopAutoSubset(pVCpu, iPrevSubset);
4883#endif
4884
4885 /*
4886 * Deregistering the monitoring.
4887 */
4888 if (pPage->fMonitored)
4889 rc = pgmPoolMonitorFlush(pPool, pPage);
4890
4891 /*
4892 * Free the page.
4893 */
4894 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
4895 pPage->iNext = pPool->iFreeHead;
4896 pPool->iFreeHead = pPage->idx;
4897 pPage->enmKind = PGMPOOLKIND_FREE;
4898 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
4899 pPage->GCPhys = NIL_RTGCPHYS;
4900 pPage->fReusedFlushPending = false;
4901
4902 pPool->cUsedPages--;
4903
4904 /* Flush the TLBs of all VCPUs if required. */
4905 if ( fFlushRequired
4906 && fFlush)
4907 {
4908 PGM_INVL_ALL_VCPU_TLBS(pVM);
4909 }
4910
4911 pgmUnlock(pVM);
4912 STAM_PROFILE_STOP(&pPool->StatFlushPage, f);
4913 return rc;
4914}
4915
4916
4917/**
4918 * Frees a usage of a pool page.
4919 *
4920 * The caller is responsible to updating the user table so that it no longer
4921 * references the shadow page.
4922 *
4923 * @param pPool The pool.
4924 * @param HCPhys The HC physical address of the shadow page.
4925 * @param iUser The shadow page pool index of the user table.
4926 * NIL_PGMPOOL_IDX for root pages.
4927 * @param iUserTable The index into the user table (shadowed). Ignored if
4928 * root page.
4929 */
4930void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
4931{
4932 PVM pVM = pPool->CTX_SUFF(pVM);
4933
4934 STAM_PROFILE_START(&pPool->StatFree, a);
4935 LogFlow(("pgmPoolFreeByPage: pPage=%p:{.Key=%RHp, .idx=%d, enmKind=%s} iUser=%d iUserTable=%#x\n",
4936 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), iUser, iUserTable));
4937 AssertReturnVoid(pPage->idx >= PGMPOOL_IDX_FIRST); /* paranoia (#6349) */
4938
4939 pgmLock(pVM);
4940 if (iUser != NIL_PGMPOOL_IDX)
4941 pgmPoolTrackFreeUser(pPool, pPage, iUser, iUserTable);
4942 if (!pPage->fCached)
4943 pgmPoolFlushPage(pPool, pPage);
4944 pgmUnlock(pVM);
4945 STAM_PROFILE_STOP(&pPool->StatFree, a);
4946}
4947
4948
4949/**
4950 * Makes one or more free page free.
4951 *
4952 * @returns VBox status code.
4953 * @retval VINF_SUCCESS on success.
4954 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
4955 *
4956 * @param pPool The pool.
4957 * @param enmKind Page table kind
4958 * @param iUser The user of the page.
4959 */
4960static int pgmPoolMakeMoreFreePages(PPGMPOOL pPool, PGMPOOLKIND enmKind, uint16_t iUser)
4961{
4962 PVM pVM = pPool->CTX_SUFF(pVM);
4963 LogFlow(("pgmPoolMakeMoreFreePages: enmKind=%d iUser=%d\n", enmKind, iUser));
4964 NOREF(enmKind);
4965
4966 /*
4967 * If the pool isn't full grown yet, expand it.
4968 */
4969 if ( pPool->cCurPages < pPool->cMaxPages
4970#if defined(IN_RC)
4971 /* Hack alert: we can't deal with jumps to ring 3 when called from MapCR3 and allocating pages for PAE PDs. */
4972 && enmKind != PGMPOOLKIND_PAE_PD_FOR_PAE_PD
4973 && (enmKind < PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD || enmKind > PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD)
4974#endif
4975 )
4976 {
4977 STAM_PROFILE_ADV_SUSPEND(&pPool->StatAlloc, a);
4978#ifdef IN_RING3
4979 int rc = PGMR3PoolGrow(pVM);
4980#else
4981 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_POOL_GROW, 0);
4982#endif
4983 if (RT_FAILURE(rc))
4984 return rc;
4985 STAM_PROFILE_ADV_RESUME(&pPool->StatAlloc, a);
4986 if (pPool->iFreeHead != NIL_PGMPOOL_IDX)
4987 return VINF_SUCCESS;
4988 }
4989
4990 /*
4991 * Free one cached page.
4992 */
4993 return pgmPoolCacheFreeOne(pPool, iUser);
4994}
4995
4996
4997/**
4998 * Allocates a page from the pool.
4999 *
5000 * This page may actually be a cached page and not in need of any processing
5001 * on the callers part.
5002 *
5003 * @returns VBox status code.
5004 * @retval VINF_SUCCESS if a NEW page was allocated.
5005 * @retval VINF_PGM_CACHED_PAGE if a CACHED page was returned.
5006 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
5007 *
5008 * @param pVM Pointer to the VM.
5009 * @param GCPhys The GC physical address of the page we're gonna shadow.
5010 * For 4MB and 2MB PD entries, it's the first address the
5011 * shadow PT is covering.
5012 * @param enmKind The kind of mapping.
5013 * @param enmAccess Access type for the mapping (only relevant for big pages)
5014 * @param fA20Enabled Whether the A20 gate is enabled or not.
5015 * @param iUser The shadow page pool index of the user table. Root
5016 * pages should pass NIL_PGMPOOL_IDX.
5017 * @param iUserTable The index into the user table (shadowed). Ignored for
5018 * root pages (iUser == NIL_PGMPOOL_IDX).
5019 * @param fLockPage Lock the page
5020 * @param ppPage Where to store the pointer to the page. NULL is stored here on failure.
5021 */
5022int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, bool fA20Enabled,
5023 uint16_t iUser, uint32_t iUserTable, bool fLockPage, PPPGMPOOLPAGE ppPage)
5024{
5025 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
5026 STAM_PROFILE_ADV_START(&pPool->StatAlloc, a);
5027 LogFlow(("pgmPoolAlloc: GCPhys=%RGp enmKind=%s iUser=%d iUserTable=%#x\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable));
5028 *ppPage = NULL;
5029 /** @todo CSAM/PGMPrefetchPage messes up here during CSAMR3CheckGates
5030 * (TRPMR3SyncIDT) because of FF priority. Try fix that?
5031 * Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)); */
5032
5033 pgmLock(pVM);
5034
5035 if (pPool->fCacheEnabled)
5036 {
5037 int rc2 = pgmPoolCacheAlloc(pPool, GCPhys, enmKind, enmAccess, fA20Enabled, iUser, iUserTable, ppPage);
5038 if (RT_SUCCESS(rc2))
5039 {
5040 if (fLockPage)
5041 pgmPoolLockPage(pPool, *ppPage);
5042 pgmUnlock(pVM);
5043 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
5044 LogFlow(("pgmPoolAlloc: cached returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d}\n", rc2, *ppPage, (*ppPage)->Core.Key, (*ppPage)->idx));
5045 return rc2;
5046 }
5047 }
5048
5049 /*
5050 * Allocate a new one.
5051 */
5052 int rc = VINF_SUCCESS;
5053 uint16_t iNew = pPool->iFreeHead;
5054 if (iNew == NIL_PGMPOOL_IDX)
5055 {
5056 rc = pgmPoolMakeMoreFreePages(pPool, enmKind, iUser);
5057 if (RT_FAILURE(rc))
5058 {
5059 pgmUnlock(pVM);
5060 Log(("pgmPoolAlloc: returns %Rrc (Free)\n", rc));
5061 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
5062 return rc;
5063 }
5064 iNew = pPool->iFreeHead;
5065 AssertReleaseReturn(iNew != NIL_PGMPOOL_IDX, VERR_PGM_POOL_IPE);
5066 }
5067
5068 /* unlink the free head */
5069 PPGMPOOLPAGE pPage = &pPool->aPages[iNew];
5070 pPool->iFreeHead = pPage->iNext;
5071 pPage->iNext = NIL_PGMPOOL_IDX;
5072
5073 /*
5074 * Initialize it.
5075 */
5076 pPool->cUsedPages++; /* physical handler registration / pgmPoolTrackFlushGCPhysPTsSlow requirement. */
5077 pPage->enmKind = enmKind;
5078 pPage->enmAccess = enmAccess;
5079 pPage->GCPhys = GCPhys;
5080 pPage->fA20Enabled = fA20Enabled;
5081 pPage->fSeenNonGlobal = false; /* Set this to 'true' to disable this feature. */
5082 pPage->fMonitored = false;
5083 pPage->fCached = false;
5084 pPage->fDirty = false;
5085 pPage->fReusedFlushPending = false;
5086 pPage->cModifications = 0;
5087 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
5088 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
5089 pPage->cPresent = 0;
5090 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
5091 pPage->idxDirtyEntry = 0;
5092 pPage->GCPtrLastAccessHandlerFault = NIL_RTGCPTR;
5093 pPage->GCPtrLastAccessHandlerRip = NIL_RTGCPTR;
5094 pPage->cLastAccessHandler = 0;
5095 pPage->cLocked = 0;
5096# ifdef VBOX_STRICT
5097 pPage->GCPtrDirtyFault = NIL_RTGCPTR;
5098# endif
5099
5100 /*
5101 * Insert into the tracking and cache. If this fails, free the page.
5102 */
5103 int rc3 = pgmPoolTrackInsert(pPool, pPage, GCPhys, iUser, iUserTable);
5104 if (RT_FAILURE(rc3))
5105 {
5106 pPool->cUsedPages--;
5107 pPage->enmKind = PGMPOOLKIND_FREE;
5108 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
5109 pPage->GCPhys = NIL_RTGCPHYS;
5110 pPage->iNext = pPool->iFreeHead;
5111 pPool->iFreeHead = pPage->idx;
5112 pgmUnlock(pVM);
5113 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
5114 Log(("pgmPoolAlloc: returns %Rrc (Insert)\n", rc3));
5115 return rc3;
5116 }
5117
5118 /*
5119 * Commit the allocation, clear the page and return.
5120 */
5121#ifdef VBOX_WITH_STATISTICS
5122 if (pPool->cUsedPages > pPool->cUsedPagesHigh)
5123 pPool->cUsedPagesHigh = pPool->cUsedPages;
5124#endif
5125
5126 if (!pPage->fZeroed)
5127 {
5128 STAM_PROFILE_START(&pPool->StatZeroPage, z);
5129 void *pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
5130 ASMMemZeroPage(pv);
5131 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
5132 }
5133
5134 *ppPage = pPage;
5135 if (fLockPage)
5136 pgmPoolLockPage(pPool, pPage);
5137 pgmUnlock(pVM);
5138 LogFlow(("pgmPoolAlloc: returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d, .fCached=%RTbool, .fMonitored=%RTbool}\n",
5139 rc, pPage, pPage->Core.Key, pPage->idx, pPage->fCached, pPage->fMonitored));
5140 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
5141 return rc;
5142}
5143
5144
5145/**
5146 * Frees a usage of a pool page.
5147 *
5148 * @param pVM Pointer to the VM.
5149 * @param HCPhys The HC physical address of the shadow page.
5150 * @param iUser The shadow page pool index of the user table.
5151 * NIL_PGMPOOL_IDX if root page.
5152 * @param iUserTable The index into the user table (shadowed). Ignored if
5153 * root page.
5154 */
5155void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable)
5156{
5157 LogFlow(("pgmPoolFree: HCPhys=%RHp iUser=%d iUserTable=%#x\n", HCPhys, iUser, iUserTable));
5158 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
5159 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, HCPhys), iUser, iUserTable);
5160}
5161
5162
5163/**
5164 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
5165 *
5166 * @returns Pointer to the shadow page structure.
5167 * @param pPool The pool.
5168 * @param HCPhys The HC physical address of the shadow page.
5169 */
5170PPGMPOOLPAGE pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
5171{
5172 PGM_LOCK_ASSERT_OWNER(pPool->CTX_SUFF(pVM));
5173
5174 /*
5175 * Look up the page.
5176 */
5177 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
5178
5179 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0));
5180 return pPage;
5181}
5182
5183
5184/**
5185 * Internal worker for finding a page for debugging purposes, no assertions.
5186 *
5187 * @returns Pointer to the shadow page structure. NULL on if not found.
5188 * @param pPool The pool.
5189 * @param HCPhys The HC physical address of the shadow page.
5190 */
5191PPGMPOOLPAGE pgmPoolQueryPageForDbg(PPGMPOOL pPool, RTHCPHYS HCPhys)
5192{
5193 PGM_LOCK_ASSERT_OWNER(pPool->CTX_SUFF(pVM));
5194 return (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
5195}
5196
5197#ifdef IN_RING3 /* currently only used in ring 3; save some space in the R0 & GC modules (left it here as we might need it elsewhere later on) */
5198
5199/**
5200 * Flush the specified page if present
5201 *
5202 * @param pVM Pointer to the VM.
5203 * @param GCPhys Guest physical address of the page to flush
5204 */
5205void pgmPoolFlushPageByGCPhys(PVM pVM, RTGCPHYS GCPhys)
5206{
5207 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
5208
5209 VM_ASSERT_EMT(pVM);
5210
5211 /*
5212 * Look up the GCPhys in the hash.
5213 */
5214 GCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
5215 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
5216 if (i == NIL_PGMPOOL_IDX)
5217 return;
5218
5219 do
5220 {
5221 PPGMPOOLPAGE pPage = &pPool->aPages[i];
5222 if (pPage->GCPhys - GCPhys < PAGE_SIZE)
5223 {
5224 switch (pPage->enmKind)
5225 {
5226 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
5227 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
5228 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
5229 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
5230 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
5231 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
5232 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
5233 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
5234 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
5235 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
5236 case PGMPOOLKIND_64BIT_PML4:
5237 case PGMPOOLKIND_32BIT_PD:
5238 case PGMPOOLKIND_PAE_PDPT:
5239 {
5240 Log(("PGMPoolFlushPage: found pgm pool pages for %RGp\n", GCPhys));
5241#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
5242 if (pPage->fDirty)
5243 STAM_COUNTER_INC(&pPool->StatForceFlushDirtyPage);
5244 else
5245#endif
5246 STAM_COUNTER_INC(&pPool->StatForceFlushPage);
5247 Assert(!pgmPoolIsPageLocked(pPage));
5248 pgmPoolMonitorChainFlush(pPool, pPage);
5249 return;
5250 }
5251
5252 /* ignore, no monitoring. */
5253 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
5254 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
5255 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
5256 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
5257 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
5258 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
5259 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
5260 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
5261 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
5262 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
5263 case PGMPOOLKIND_ROOT_NESTED:
5264 case PGMPOOLKIND_PAE_PD_PHYS:
5265 case PGMPOOLKIND_PAE_PDPT_PHYS:
5266 case PGMPOOLKIND_32BIT_PD_PHYS:
5267 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
5268 break;
5269
5270 default:
5271 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
5272 }
5273 }
5274
5275 /* next */
5276 i = pPage->iNext;
5277 } while (i != NIL_PGMPOOL_IDX);
5278 return;
5279}
5280
5281#endif /* IN_RING3 */
5282#ifdef IN_RING3
5283
5284/**
5285 * Reset CPU on hot plugging.
5286 *
5287 * @param pVM Pointer to the VM.
5288 * @param pVCpu The virtual CPU.
5289 */
5290void pgmR3PoolResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu)
5291{
5292 pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
5293
5294 pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu);
5295 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
5296 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
5297}
5298
5299
5300/**
5301 * Flushes the entire cache.
5302 *
5303 * It will assert a global CR3 flush (FF) and assumes the caller is aware of
5304 * this and execute this CR3 flush.
5305 *
5306 * @param pPool The pool.
5307 */
5308void pgmR3PoolReset(PVM pVM)
5309{
5310 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
5311
5312 PGM_LOCK_ASSERT_OWNER(pVM);
5313 STAM_PROFILE_START(&pPool->StatR3Reset, a);
5314 LogFlow(("pgmR3PoolReset:\n"));
5315
5316 /*
5317 * If there are no pages in the pool, there is nothing to do.
5318 */
5319 if (pPool->cCurPages <= PGMPOOL_IDX_FIRST)
5320 {
5321 STAM_PROFILE_STOP(&pPool->StatR3Reset, a);
5322 return;
5323 }
5324
5325 /*
5326 * Exit the shadow mode since we're going to clear everything,
5327 * including the root page.
5328 */
5329 for (VMCPUID i = 0; i < pVM->cCpus; i++)
5330 pgmR3ExitShadowModeBeforePoolFlush(&pVM->aCpus[i]);
5331
5332 /*
5333 * Nuke the free list and reinsert all pages into it.
5334 */
5335 for (unsigned i = pPool->cCurPages - 1; i >= PGMPOOL_IDX_FIRST; i--)
5336 {
5337 PPGMPOOLPAGE pPage = &pPool->aPages[i];
5338
5339 Assert(pPage->Core.Key == MMPage2Phys(pVM, pPage->pvPageR3));
5340 if (pPage->fMonitored)
5341 pgmPoolMonitorFlush(pPool, pPage);
5342 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
5343 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
5344 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
5345 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
5346 pPage->cModifications = 0;
5347 pPage->GCPhys = NIL_RTGCPHYS;
5348 pPage->enmKind = PGMPOOLKIND_FREE;
5349 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
5350 Assert(pPage->idx == i);
5351 pPage->iNext = i + 1;
5352 pPage->fA20Enabled = true;
5353 pPage->fZeroed = false; /* This could probably be optimized, but better safe than sorry. */
5354 pPage->fSeenNonGlobal = false;
5355 pPage->fMonitored = false;
5356 pPage->fDirty = false;
5357 pPage->fCached = false;
5358 pPage->fReusedFlushPending = false;
5359 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
5360 pPage->iAgeNext = NIL_PGMPOOL_IDX;
5361 pPage->iAgePrev = NIL_PGMPOOL_IDX;
5362 pPage->GCPtrLastAccessHandlerRip = NIL_RTGCPTR;
5363 pPage->GCPtrLastAccessHandlerFault = NIL_RTGCPTR;
5364 pPage->cLastAccessHandler = 0;
5365 pPage->cLocked = 0;
5366#ifdef VBOX_STRICT
5367 pPage->GCPtrDirtyFault = NIL_RTGCPTR;
5368#endif
5369 }
5370 pPool->aPages[pPool->cCurPages - 1].iNext = NIL_PGMPOOL_IDX;
5371 pPool->iFreeHead = PGMPOOL_IDX_FIRST;
5372 pPool->cUsedPages = 0;
5373
5374 /*
5375 * Zap and reinitialize the user records.
5376 */
5377 pPool->cPresent = 0;
5378 pPool->iUserFreeHead = 0;
5379 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
5380 const unsigned cMaxUsers = pPool->cMaxUsers;
5381 for (unsigned i = 0; i < cMaxUsers; i++)
5382 {
5383 paUsers[i].iNext = i + 1;
5384 paUsers[i].iUser = NIL_PGMPOOL_IDX;
5385 paUsers[i].iUserTable = 0xfffffffe;
5386 }
5387 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
5388
5389 /*
5390 * Clear all the GCPhys links and rebuild the phys ext free list.
5391 */
5392 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
5393 pRam;
5394 pRam = pRam->CTX_SUFF(pNext))
5395 {
5396 unsigned iPage = pRam->cb >> PAGE_SHIFT;
5397 while (iPage-- > 0)
5398 PGM_PAGE_SET_TRACKING(pVM, &pRam->aPages[iPage], 0);
5399 }
5400
5401 pPool->iPhysExtFreeHead = 0;
5402 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
5403 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
5404 for (unsigned i = 0; i < cMaxPhysExts; i++)
5405 {
5406 paPhysExts[i].iNext = i + 1;
5407 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
5408 paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
5409 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
5410 paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
5411 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
5412 paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
5413 }
5414 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
5415
5416 /*
5417 * Just zap the modified list.
5418 */
5419 pPool->cModifiedPages = 0;
5420 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
5421
5422 /*
5423 * Clear the GCPhys hash and the age list.
5424 */
5425 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
5426 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
5427 pPool->iAgeHead = NIL_PGMPOOL_IDX;
5428 pPool->iAgeTail = NIL_PGMPOOL_IDX;
5429
5430#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
5431 /* Clear all dirty pages. */
5432 pPool->idxFreeDirtyPage = 0;
5433 pPool->cDirtyPages = 0;
5434 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
5435 pPool->aDirtyPages[i].uIdx = NIL_PGMPOOL_IDX;
5436#endif
5437
5438 /*
5439 * Reinsert active pages into the hash and ensure monitoring chains are correct.
5440 */
5441 for (VMCPUID i = 0; i < pVM->cCpus; i++)
5442 {
5443 /*
5444 * Re-enter the shadowing mode and assert Sync CR3 FF.
5445 */
5446 PVMCPU pVCpu = &pVM->aCpus[i];
5447 pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu);
5448 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
5449 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
5450 }
5451
5452 STAM_PROFILE_STOP(&pPool->StatR3Reset, a);
5453}
5454
5455#endif /* IN_RING3 */
5456
5457#if defined(LOG_ENABLED) || defined(VBOX_STRICT)
5458/**
5459 * Stringifies a PGMPOOLKIND value.
5460 */
5461static const char *pgmPoolPoolKindToStr(uint8_t enmKind)
5462{
5463 switch ((PGMPOOLKIND)enmKind)
5464 {
5465 case PGMPOOLKIND_INVALID:
5466 return "PGMPOOLKIND_INVALID";
5467 case PGMPOOLKIND_FREE:
5468 return "PGMPOOLKIND_FREE";
5469 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
5470 return "PGMPOOLKIND_32BIT_PT_FOR_PHYS";
5471 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
5472 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT";
5473 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
5474 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB";
5475 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
5476 return "PGMPOOLKIND_PAE_PT_FOR_PHYS";
5477 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
5478 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_PT";
5479 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
5480 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB";
5481 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
5482 return "PGMPOOLKIND_PAE_PT_FOR_PAE_PT";
5483 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
5484 return "PGMPOOLKIND_PAE_PT_FOR_PAE_2MB";
5485 case PGMPOOLKIND_32BIT_PD:
5486 return "PGMPOOLKIND_32BIT_PD";
5487 case PGMPOOLKIND_32BIT_PD_PHYS:
5488 return "PGMPOOLKIND_32BIT_PD_PHYS";
5489 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
5490 return "PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD";
5491 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
5492 return "PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD";
5493 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
5494 return "PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD";
5495 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
5496 return "PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD";
5497 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
5498 return "PGMPOOLKIND_PAE_PD_FOR_PAE_PD";
5499 case PGMPOOLKIND_PAE_PD_PHYS:
5500 return "PGMPOOLKIND_PAE_PD_PHYS";
5501 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
5502 return "PGMPOOLKIND_PAE_PDPT_FOR_32BIT";
5503 case PGMPOOLKIND_PAE_PDPT:
5504 return "PGMPOOLKIND_PAE_PDPT";
5505 case PGMPOOLKIND_PAE_PDPT_PHYS:
5506 return "PGMPOOLKIND_PAE_PDPT_PHYS";
5507 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
5508 return "PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT";
5509 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
5510 return "PGMPOOLKIND_64BIT_PDPT_FOR_PHYS";
5511 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
5512 return "PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD";
5513 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
5514 return "PGMPOOLKIND_64BIT_PD_FOR_PHYS";
5515 case PGMPOOLKIND_64BIT_PML4:
5516 return "PGMPOOLKIND_64BIT_PML4";
5517 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
5518 return "PGMPOOLKIND_EPT_PDPT_FOR_PHYS";
5519 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
5520 return "PGMPOOLKIND_EPT_PD_FOR_PHYS";
5521 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
5522 return "PGMPOOLKIND_EPT_PT_FOR_PHYS";
5523 case PGMPOOLKIND_ROOT_NESTED:
5524 return "PGMPOOLKIND_ROOT_NESTED";
5525 }
5526 return "Unknown kind!";
5527}
5528#endif /* LOG_ENABLED || VBOX_STRICT */
5529
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette