1 | /* $Id: HMSVMR0.cpp 72178 2018-05-09 16:18:56Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * HM SVM (AMD-V) - Host Context Ring-0.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2013-2017 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*********************************************************************************************************************************
|
---|
20 | * Header Files *
|
---|
21 | *********************************************************************************************************************************/
|
---|
22 | #define LOG_GROUP LOG_GROUP_HM
|
---|
23 | #define VMCPU_INCL_CPUM_GST_CTX
|
---|
24 | #include <iprt/asm-amd64-x86.h>
|
---|
25 | #include <iprt/thread.h>
|
---|
26 |
|
---|
27 | #include <VBox/vmm/pdmapi.h>
|
---|
28 | #include <VBox/vmm/dbgf.h>
|
---|
29 | #include <VBox/vmm/iem.h>
|
---|
30 | #include <VBox/vmm/iom.h>
|
---|
31 | #include <VBox/vmm/tm.h>
|
---|
32 | #include <VBox/vmm/gim.h>
|
---|
33 | #include <VBox/vmm/apic.h>
|
---|
34 | #include "HMInternal.h"
|
---|
35 | #include <VBox/vmm/vm.h>
|
---|
36 | #include "HMSVMR0.h"
|
---|
37 | #include "dtrace/VBoxVMM.h"
|
---|
38 |
|
---|
39 | #define HMSVM_USE_IEM_EVENT_REFLECTION
|
---|
40 | #ifdef DEBUG_ramshankar
|
---|
41 | # define HMSVM_SYNC_FULL_GUEST_STATE
|
---|
42 | # define HMSVM_SYNC_FULL_NESTED_GUEST_STATE
|
---|
43 | # define HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
44 | # define HMSVM_ALWAYS_TRAP_PF
|
---|
45 | # define HMSVM_ALWAYS_TRAP_TASK_SWITCH
|
---|
46 | #endif
|
---|
47 |
|
---|
48 |
|
---|
49 | /*********************************************************************************************************************************
|
---|
50 | * Defined Constants And Macros *
|
---|
51 | *********************************************************************************************************************************/
|
---|
52 | #ifdef VBOX_WITH_STATISTICS
|
---|
53 | # define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
|
---|
54 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
|
---|
55 | if ((u64ExitCode) == SVM_EXIT_NPF) \
|
---|
56 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
|
---|
57 | else \
|
---|
58 | STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
|
---|
59 | } while (0)
|
---|
60 |
|
---|
61 | # ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
62 | # define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
|
---|
63 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
|
---|
64 | if ((u64ExitCode) == SVM_EXIT_NPF) \
|
---|
65 | STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitReasonNpf); \
|
---|
66 | else \
|
---|
67 | STAM_COUNTER_INC(&pVCpu->hm.s.paStatNestedExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
|
---|
68 | } while (0)
|
---|
69 | # endif
|
---|
70 | #else
|
---|
71 | # define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
|
---|
72 | # ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
73 | # define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
|
---|
74 | # endif
|
---|
75 | #endif /* !VBOX_WITH_STATISTICS */
|
---|
76 |
|
---|
77 |
|
---|
78 | /** If we decide to use a function table approach this can be useful to
|
---|
79 | * switch to a "static DECLCALLBACK(int)". */
|
---|
80 | #define HMSVM_EXIT_DECL static int
|
---|
81 |
|
---|
82 | /** Macro for checking and returning from the using function for
|
---|
83 | * \#VMEXIT intercepts that maybe caused during delivering of another
|
---|
84 | * event in the guest. */
|
---|
85 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
86 | # define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY() \
|
---|
87 | do \
|
---|
88 | { \
|
---|
89 | int rc = hmR0SvmCheckExitDueToEventDelivery(pVCpu, pCtx, pSvmTransient); \
|
---|
90 | if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
|
---|
91 | else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
|
---|
92 | else if ( rc == VINF_EM_RESET \
|
---|
93 | && HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SHUTDOWN)) \
|
---|
94 | return VBOXSTRICTRC_TODO(IEMExecSvmVmexit(pVCpu, SVM_EXIT_SHUTDOWN, 0, 0)); \
|
---|
95 | else \
|
---|
96 | return rc; \
|
---|
97 | } while (0)
|
---|
98 | #else
|
---|
99 | # define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY() \
|
---|
100 | do \
|
---|
101 | { \
|
---|
102 | int rc = hmR0SvmCheckExitDueToEventDelivery(pVCpu, pCtx, pSvmTransient); \
|
---|
103 | if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
|
---|
104 | else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
|
---|
105 | else \
|
---|
106 | return rc; \
|
---|
107 | } while (0)
|
---|
108 | #endif
|
---|
109 |
|
---|
110 | /**
|
---|
111 | * Updates interrupt shadow for the current RIP.
|
---|
112 | */
|
---|
113 | #define HMSVM_UPDATE_INTR_SHADOW(pVCpu, pCtx) \
|
---|
114 | do { \
|
---|
115 | /* Update interrupt shadow. */ \
|
---|
116 | if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) \
|
---|
117 | && pCtx->rip != EMGetInhibitInterruptsPC(pVCpu)) \
|
---|
118 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); \
|
---|
119 | } while (0)
|
---|
120 |
|
---|
121 | /** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
|
---|
122 | * instruction that exited. */
|
---|
123 | #define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
|
---|
124 | do { \
|
---|
125 | if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
|
---|
126 | (a_rc) = VINF_EM_DBG_STEPPED; \
|
---|
127 | } while (0)
|
---|
128 |
|
---|
129 | /** Assert that preemption is disabled or covered by thread-context hooks. */
|
---|
130 | #define HMSVM_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
|
---|
131 | || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
132 |
|
---|
133 | /** Assert that we haven't migrated CPUs when thread-context hooks are not
|
---|
134 | * used. */
|
---|
135 | #define HMSVM_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
|
---|
136 | || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
|
---|
137 | ("Illegal migration! Entered on CPU %u Current %u\n", \
|
---|
138 | pVCpu->hm.s.idEnteredCpu, RTMpCpuId()));
|
---|
139 |
|
---|
140 | /** Assert that we're not executing a nested-guest. */
|
---|
141 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
142 | # define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) Assert(!CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
|
---|
143 | #else
|
---|
144 | # define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
|
---|
145 | #endif
|
---|
146 |
|
---|
147 | /** Assert that we're executing a nested-guest. */
|
---|
148 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
149 | # define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) Assert(CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
|
---|
150 | #else
|
---|
151 | # define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
|
---|
152 | #endif
|
---|
153 |
|
---|
154 | /** Validate segment descriptor granularity bit. */
|
---|
155 | #ifdef VBOX_STRICT
|
---|
156 | # define HMSVM_ASSERT_SEG_GRANULARITY(reg) \
|
---|
157 | AssertMsg( !pMixedCtx->reg.Attr.n.u1Present \
|
---|
158 | || ( pMixedCtx->reg.Attr.n.u1Granularity \
|
---|
159 | ? (pMixedCtx->reg.u32Limit & 0xfff) == 0xfff \
|
---|
160 | : pMixedCtx->reg.u32Limit <= UINT32_C(0xfffff)), \
|
---|
161 | ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", pMixedCtx->reg.u32Limit, \
|
---|
162 | pMixedCtx->reg.Attr.u, pMixedCtx->reg.u64Base))
|
---|
163 | #else
|
---|
164 | # define HMSVM_ASSERT_SEG_GRANULARITY(reg) do { } while (0)
|
---|
165 | #endif
|
---|
166 |
|
---|
167 | /**
|
---|
168 | * Exception bitmap mask for all contributory exceptions.
|
---|
169 | *
|
---|
170 | * Page fault is deliberately excluded here as it's conditional as to whether
|
---|
171 | * it's contributory or benign. Page faults are handled separately.
|
---|
172 | */
|
---|
173 | #define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
|
---|
174 | | RT_BIT(X86_XCPT_DE))
|
---|
175 |
|
---|
176 | /**
|
---|
177 | * Mandatory/unconditional guest control intercepts.
|
---|
178 | *
|
---|
179 | * SMIs can and do happen in normal operation. We need not intercept them
|
---|
180 | * while executing the guest (or nested-guest).
|
---|
181 | */
|
---|
182 | #define HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS ( SVM_CTRL_INTERCEPT_INTR \
|
---|
183 | | SVM_CTRL_INTERCEPT_NMI \
|
---|
184 | | SVM_CTRL_INTERCEPT_INIT \
|
---|
185 | | SVM_CTRL_INTERCEPT_RDPMC \
|
---|
186 | | SVM_CTRL_INTERCEPT_CPUID \
|
---|
187 | | SVM_CTRL_INTERCEPT_RSM \
|
---|
188 | | SVM_CTRL_INTERCEPT_HLT \
|
---|
189 | | SVM_CTRL_INTERCEPT_IOIO_PROT \
|
---|
190 | | SVM_CTRL_INTERCEPT_MSR_PROT \
|
---|
191 | | SVM_CTRL_INTERCEPT_INVLPGA \
|
---|
192 | | SVM_CTRL_INTERCEPT_SHUTDOWN \
|
---|
193 | | SVM_CTRL_INTERCEPT_FERR_FREEZE \
|
---|
194 | | SVM_CTRL_INTERCEPT_VMRUN \
|
---|
195 | | SVM_CTRL_INTERCEPT_SKINIT \
|
---|
196 | | SVM_CTRL_INTERCEPT_WBINVD \
|
---|
197 | | SVM_CTRL_INTERCEPT_MONITOR \
|
---|
198 | | SVM_CTRL_INTERCEPT_MWAIT \
|
---|
199 | | SVM_CTRL_INTERCEPT_CR0_SEL_WRITE \
|
---|
200 | | SVM_CTRL_INTERCEPT_XSETBV)
|
---|
201 |
|
---|
202 | /** @name VMCB Clean Bits.
|
---|
203 | *
|
---|
204 | * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
|
---|
205 | * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
|
---|
206 | * memory.
|
---|
207 | *
|
---|
208 | * @{ */
|
---|
209 | /** All intercepts vectors, TSC offset, PAUSE filter counter. */
|
---|
210 | #define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
|
---|
211 | /** I/O permission bitmap, MSR permission bitmap. */
|
---|
212 | #define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
|
---|
213 | /** ASID. */
|
---|
214 | #define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
|
---|
215 | /** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
|
---|
216 | V_INTR_VECTOR. */
|
---|
217 | #define HMSVM_VMCB_CLEAN_INT_CTRL RT_BIT(3)
|
---|
218 | /** Nested Paging: Nested CR3 (nCR3), PAT. */
|
---|
219 | #define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
|
---|
220 | /** Control registers (CR0, CR3, CR4, EFER). */
|
---|
221 | #define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
|
---|
222 | /** Debug registers (DR6, DR7). */
|
---|
223 | #define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
|
---|
224 | /** GDT, IDT limit and base. */
|
---|
225 | #define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
|
---|
226 | /** Segment register: CS, SS, DS, ES limit and base. */
|
---|
227 | #define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
|
---|
228 | /** CR2.*/
|
---|
229 | #define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
|
---|
230 | /** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
|
---|
231 | #define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
|
---|
232 | /** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
|
---|
233 | PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
|
---|
234 | #define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
|
---|
235 | /** Mask of all valid VMCB Clean bits. */
|
---|
236 | #define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
|
---|
237 | | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
|
---|
238 | | HMSVM_VMCB_CLEAN_ASID \
|
---|
239 | | HMSVM_VMCB_CLEAN_INT_CTRL \
|
---|
240 | | HMSVM_VMCB_CLEAN_NP \
|
---|
241 | | HMSVM_VMCB_CLEAN_CRX_EFER \
|
---|
242 | | HMSVM_VMCB_CLEAN_DRX \
|
---|
243 | | HMSVM_VMCB_CLEAN_DT \
|
---|
244 | | HMSVM_VMCB_CLEAN_SEG \
|
---|
245 | | HMSVM_VMCB_CLEAN_CR2 \
|
---|
246 | | HMSVM_VMCB_CLEAN_LBR \
|
---|
247 | | HMSVM_VMCB_CLEAN_AVIC)
|
---|
248 | /** @} */
|
---|
249 |
|
---|
250 | /** @name SVM transient.
|
---|
251 | *
|
---|
252 | * A state structure for holding miscellaneous information across AMD-V
|
---|
253 | * VMRUN/\#VMEXIT operation, restored after the transition.
|
---|
254 | *
|
---|
255 | * @{ */
|
---|
256 | typedef struct SVMTRANSIENT
|
---|
257 | {
|
---|
258 | /** The host's rflags/eflags. */
|
---|
259 | RTCCUINTREG fEFlags;
|
---|
260 | #if HC_ARCH_BITS == 32
|
---|
261 | uint32_t u32Alignment0;
|
---|
262 | #endif
|
---|
263 |
|
---|
264 | /** The \#VMEXIT exit code (the EXITCODE field in the VMCB). */
|
---|
265 | uint64_t u64ExitCode;
|
---|
266 | /** The guest's TPR value used for TPR shadowing. */
|
---|
267 | uint8_t u8GuestTpr;
|
---|
268 | /** Alignment. */
|
---|
269 | uint8_t abAlignment0[7];
|
---|
270 |
|
---|
271 | /** Pointer to the currently executing VMCB. */
|
---|
272 | PSVMVMCB pVmcb;
|
---|
273 | /** Whether we are currently executing a nested-guest. */
|
---|
274 | bool fIsNestedGuest;
|
---|
275 |
|
---|
276 | /** Whether the guest debug state was active at the time of \#VMEXIT. */
|
---|
277 | bool fWasGuestDebugStateActive;
|
---|
278 | /** Whether the hyper debug state was active at the time of \#VMEXIT. */
|
---|
279 | bool fWasHyperDebugStateActive;
|
---|
280 | /** Whether the TSC offset mode needs to be updated. */
|
---|
281 | bool fUpdateTscOffsetting;
|
---|
282 | /** Whether the TSC_AUX MSR needs restoring on \#VMEXIT. */
|
---|
283 | bool fRestoreTscAuxMsr;
|
---|
284 | /** Whether the \#VMEXIT was caused by a page-fault during delivery of a
|
---|
285 | * contributary exception or a page-fault. */
|
---|
286 | bool fVectoringDoublePF;
|
---|
287 | /** Whether the \#VMEXIT was caused by a page-fault during delivery of an
|
---|
288 | * external interrupt or NMI. */
|
---|
289 | bool fVectoringPF;
|
---|
290 | } SVMTRANSIENT, *PSVMTRANSIENT;
|
---|
291 | AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
|
---|
292 | AssertCompileMemberAlignment(SVMTRANSIENT, pVmcb, sizeof(uint64_t));
|
---|
293 | /** @} */
|
---|
294 |
|
---|
295 | /**
|
---|
296 | * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
|
---|
297 | */
|
---|
298 | typedef enum SVMMSREXITREAD
|
---|
299 | {
|
---|
300 | /** Reading this MSR causes a \#VMEXIT. */
|
---|
301 | SVMMSREXIT_INTERCEPT_READ = 0xb,
|
---|
302 | /** Reading this MSR does not cause a \#VMEXIT. */
|
---|
303 | SVMMSREXIT_PASSTHRU_READ
|
---|
304 | } SVMMSREXITREAD;
|
---|
305 |
|
---|
306 | /**
|
---|
307 | * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
|
---|
308 | */
|
---|
309 | typedef enum SVMMSREXITWRITE
|
---|
310 | {
|
---|
311 | /** Writing to this MSR causes a \#VMEXIT. */
|
---|
312 | SVMMSREXIT_INTERCEPT_WRITE = 0xd,
|
---|
313 | /** Writing to this MSR does not cause a \#VMEXIT. */
|
---|
314 | SVMMSREXIT_PASSTHRU_WRITE
|
---|
315 | } SVMMSREXITWRITE;
|
---|
316 |
|
---|
317 | /**
|
---|
318 | * SVM \#VMEXIT handler.
|
---|
319 | *
|
---|
320 | * @returns VBox status code.
|
---|
321 | * @param pVCpu The cross context virtual CPU structure.
|
---|
322 | * @param pMixedCtx Pointer to the guest-CPU context.
|
---|
323 | * @param pSvmTransient Pointer to the SVM-transient structure.
|
---|
324 | */
|
---|
325 | typedef int FNSVMEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
|
---|
326 |
|
---|
327 |
|
---|
328 | /*********************************************************************************************************************************
|
---|
329 | * Internal Functions *
|
---|
330 | *********************************************************************************************************************************/
|
---|
331 | static void hmR0SvmSetMsrPermission(PCPUMCTX pCtx, uint8_t *pbMsrBitmap, unsigned uMsr, SVMMSREXITREAD enmRead,
|
---|
332 | SVMMSREXITWRITE enmWrite);
|
---|
333 | static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
|
---|
334 | static void hmR0SvmLeave(PVMCPU pVCpu);
|
---|
335 |
|
---|
336 | /** @name \#VMEXIT handlers.
|
---|
337 | * @{
|
---|
338 | */
|
---|
339 | static FNSVMEXITHANDLER hmR0SvmExitIntr;
|
---|
340 | static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
|
---|
341 | static FNSVMEXITHANDLER hmR0SvmExitInvd;
|
---|
342 | static FNSVMEXITHANDLER hmR0SvmExitCpuid;
|
---|
343 | static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
|
---|
344 | static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
|
---|
345 | static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
|
---|
346 | static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
|
---|
347 | static FNSVMEXITHANDLER hmR0SvmExitHlt;
|
---|
348 | static FNSVMEXITHANDLER hmR0SvmExitMonitor;
|
---|
349 | static FNSVMEXITHANDLER hmR0SvmExitMwait;
|
---|
350 | static FNSVMEXITHANDLER hmR0SvmExitShutdown;
|
---|
351 | static FNSVMEXITHANDLER hmR0SvmExitUnexpected;
|
---|
352 | static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
|
---|
353 | static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
|
---|
354 | static FNSVMEXITHANDLER hmR0SvmExitMsr;
|
---|
355 | static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
|
---|
356 | static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
|
---|
357 | static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
|
---|
358 | static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
|
---|
359 | static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
|
---|
360 | static FNSVMEXITHANDLER hmR0SvmExitVIntr;
|
---|
361 | static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
|
---|
362 | static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
|
---|
363 | static FNSVMEXITHANDLER hmR0SvmExitPause;
|
---|
364 | static FNSVMEXITHANDLER hmR0SvmExitFerrFreeze;
|
---|
365 | static FNSVMEXITHANDLER hmR0SvmExitIret;
|
---|
366 | static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
|
---|
367 | static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
|
---|
368 | static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
|
---|
369 | static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
|
---|
370 | static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
|
---|
371 | static FNSVMEXITHANDLER hmR0SvmExitXcptBP;
|
---|
372 | #if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT)
|
---|
373 | static FNSVMEXITHANDLER hmR0SvmExitXcptGeneric;
|
---|
374 | #endif
|
---|
375 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
376 | static FNSVMEXITHANDLER hmR0SvmExitXcptPFNested;
|
---|
377 | static FNSVMEXITHANDLER hmR0SvmExitClgi;
|
---|
378 | static FNSVMEXITHANDLER hmR0SvmExitStgi;
|
---|
379 | static FNSVMEXITHANDLER hmR0SvmExitVmload;
|
---|
380 | static FNSVMEXITHANDLER hmR0SvmExitVmsave;
|
---|
381 | static FNSVMEXITHANDLER hmR0SvmExitInvlpga;
|
---|
382 | static FNSVMEXITHANDLER hmR0SvmExitVmrun;
|
---|
383 | static FNSVMEXITHANDLER hmR0SvmNestedExitXcptDB;
|
---|
384 | static FNSVMEXITHANDLER hmR0SvmNestedExitXcptBP;
|
---|
385 | #endif
|
---|
386 | /** @} */
|
---|
387 |
|
---|
388 | static int hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient);
|
---|
389 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
390 | static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
|
---|
391 | #endif
|
---|
392 |
|
---|
393 |
|
---|
394 | /*********************************************************************************************************************************
|
---|
395 | * Global Variables *
|
---|
396 | *********************************************************************************************************************************/
|
---|
397 | /** Ring-0 memory object for the IO bitmap. */
|
---|
398 | static RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
|
---|
399 | /** Physical address of the IO bitmap. */
|
---|
400 | static RTHCPHYS g_HCPhysIOBitmap;
|
---|
401 | /** Pointer to the IO bitmap. */
|
---|
402 | static R0PTRTYPE(void *) g_pvIOBitmap;
|
---|
403 |
|
---|
404 | #ifdef VBOX_STRICT
|
---|
405 | # define HMSVM_LOG_CS RT_BIT_32(0)
|
---|
406 | # define HMSVM_LOG_SS RT_BIT_32(1)
|
---|
407 | # define HMSVM_LOG_FS RT_BIT_32(2)
|
---|
408 | # define HMSVM_LOG_GS RT_BIT_32(3)
|
---|
409 | # define HMSVM_LOG_LBR RT_BIT_32(4)
|
---|
410 | # define HMSVM_LOG_ALL ( HMSVM_LOG_CS \
|
---|
411 | | HMSVM_LOG_SS \
|
---|
412 | | HMSVM_LOG_FS \
|
---|
413 | | HMSVM_LOG_GS \
|
---|
414 | | HMSVM_LOG_LBR)
|
---|
415 |
|
---|
416 | /**
|
---|
417 | * Dumps virtual CPU state and additional info. to the logger for diagnostics.
|
---|
418 | *
|
---|
419 | * @param pVCpu The cross context virtual CPU structure.
|
---|
420 | * @param pVmcb Pointer to the VM control block.
|
---|
421 | * @param pCtx Pointer to the guest-CPU context.
|
---|
422 | * @param pszPrefix Log prefix.
|
---|
423 | * @param fFlags Log flags, see HMSVM_LOG_XXX.
|
---|
424 | * @param uVerbose The verbosity level, currently unused.
|
---|
425 | */
|
---|
426 | static void hmR0SvmLogState(PVMCPU pVCpu, PCSVMVMCB pVmcb, PCPUMCTX pCtx, const char *pszPrefix, uint32_t fFlags,
|
---|
427 | uint8_t uVerbose)
|
---|
428 | {
|
---|
429 | RT_NOREF2(pVCpu, uVerbose);
|
---|
430 |
|
---|
431 | Log4(("%s: cs:rip=%04x:%RX64 efl=%#RX64 cr0=%#RX64 cr3=%#RX64 cr4=%#RX64\n", pszPrefix, pCtx->cs.Sel, pCtx->rip,
|
---|
432 | pCtx->rflags.u, pCtx->cr0, pCtx->cr3, pCtx->cr4));
|
---|
433 | Log4(("%s: rsp=%#RX64 rbp=%#RX64 rdi=%#RX64\n", pszPrefix, pCtx->rsp, pCtx->rbp, pCtx->rdi));
|
---|
434 | if (fFlags & HMSVM_LOG_CS)
|
---|
435 | {
|
---|
436 | Log4(("%s: cs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base,
|
---|
437 | pCtx->cs.u32Limit, pCtx->cs.Attr.u));
|
---|
438 | }
|
---|
439 | if (fFlags & HMSVM_LOG_SS)
|
---|
440 | {
|
---|
441 | Log4(("%s: ss={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base,
|
---|
442 | pCtx->ss.u32Limit, pCtx->ss.Attr.u));
|
---|
443 | }
|
---|
444 | if (fFlags & HMSVM_LOG_FS)
|
---|
445 | {
|
---|
446 | Log4(("%s: fs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base,
|
---|
447 | pCtx->fs.u32Limit, pCtx->fs.Attr.u));
|
---|
448 | }
|
---|
449 | if (fFlags & HMSVM_LOG_GS)
|
---|
450 | {
|
---|
451 | Log4(("%s: gs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base,
|
---|
452 | pCtx->gs.u32Limit, pCtx->gs.Attr.u));
|
---|
453 | }
|
---|
454 |
|
---|
455 | PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
|
---|
456 | if (fFlags & HMSVM_LOG_LBR)
|
---|
457 | {
|
---|
458 | Log4(("%s: br_from=%#RX64 br_to=%#RX64 lastxcpt_from=%#RX64 lastxcpt_to=%#RX64\n", pszPrefix, pVmcbGuest->u64BR_FROM,
|
---|
459 | pVmcbGuest->u64BR_TO, pVmcbGuest->u64LASTEXCPFROM, pVmcbGuest->u64LASTEXCPTO));
|
---|
460 | }
|
---|
461 | NOREF(pVmcbGuest);
|
---|
462 | }
|
---|
463 | #endif /* VBOX_STRICT */
|
---|
464 |
|
---|
465 |
|
---|
466 | /**
|
---|
467 | * Sets up and activates AMD-V on the current CPU.
|
---|
468 | *
|
---|
469 | * @returns VBox status code.
|
---|
470 | * @param pCpu Pointer to the CPU info struct.
|
---|
471 | * @param pVM The cross context VM structure. Can be
|
---|
472 | * NULL after a resume!
|
---|
473 | * @param pvCpuPage Pointer to the global CPU page.
|
---|
474 | * @param HCPhysCpuPage Physical address of the global CPU page.
|
---|
475 | * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
|
---|
476 | * @param pvArg Unused on AMD-V.
|
---|
477 | */
|
---|
478 | VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
|
---|
479 | void *pvArg)
|
---|
480 | {
|
---|
481 | Assert(!fEnabledByHost);
|
---|
482 | Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
|
---|
483 | Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
|
---|
484 | Assert(pvCpuPage); NOREF(pvCpuPage);
|
---|
485 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
486 |
|
---|
487 | NOREF(pvArg);
|
---|
488 | NOREF(fEnabledByHost);
|
---|
489 |
|
---|
490 | /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
|
---|
491 | RTCCUINTREG fEFlags = ASMIntDisableFlags();
|
---|
492 |
|
---|
493 | /*
|
---|
494 | * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
|
---|
495 | */
|
---|
496 | uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
|
---|
497 | if (u64HostEfer & MSR_K6_EFER_SVME)
|
---|
498 | {
|
---|
499 | /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
|
---|
500 | if ( pVM
|
---|
501 | && pVM->hm.s.svm.fIgnoreInUseError)
|
---|
502 | {
|
---|
503 | pCpu->fIgnoreAMDVInUseError = true;
|
---|
504 | }
|
---|
505 |
|
---|
506 | if (!pCpu->fIgnoreAMDVInUseError)
|
---|
507 | {
|
---|
508 | ASMSetFlags(fEFlags);
|
---|
509 | return VERR_SVM_IN_USE;
|
---|
510 | }
|
---|
511 | }
|
---|
512 |
|
---|
513 | /* Turn on AMD-V in the EFER MSR. */
|
---|
514 | ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
|
---|
515 |
|
---|
516 | /* Write the physical page address where the CPU will store the host state while executing the VM. */
|
---|
517 | ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
|
---|
518 |
|
---|
519 | /* Restore interrupts. */
|
---|
520 | ASMSetFlags(fEFlags);
|
---|
521 |
|
---|
522 | /*
|
---|
523 | * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
|
---|
524 | * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
|
---|
525 | * upon VMRUN). Therefore, flag that we need to flush the TLB entirely with before executing any
|
---|
526 | * guest code.
|
---|
527 | */
|
---|
528 | pCpu->fFlushAsidBeforeUse = true;
|
---|
529 |
|
---|
530 | /*
|
---|
531 | * Ensure each VCPU scheduled on this CPU gets a new ASID on resume. See @bugref{6255}.
|
---|
532 | */
|
---|
533 | ++pCpu->cTlbFlushes;
|
---|
534 |
|
---|
535 | return VINF_SUCCESS;
|
---|
536 | }
|
---|
537 |
|
---|
538 |
|
---|
539 | /**
|
---|
540 | * Deactivates AMD-V on the current CPU.
|
---|
541 | *
|
---|
542 | * @returns VBox status code.
|
---|
543 | * @param pCpu Pointer to the CPU info struct.
|
---|
544 | * @param pvCpuPage Pointer to the global CPU page.
|
---|
545 | * @param HCPhysCpuPage Physical address of the global CPU page.
|
---|
546 | */
|
---|
547 | VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
|
---|
548 | {
|
---|
549 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
550 | AssertReturn( HCPhysCpuPage
|
---|
551 | && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
|
---|
552 | AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
|
---|
553 | NOREF(pCpu);
|
---|
554 |
|
---|
555 | /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
|
---|
556 | RTCCUINTREG fEFlags = ASMIntDisableFlags();
|
---|
557 |
|
---|
558 | /* Turn off AMD-V in the EFER MSR. */
|
---|
559 | uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
|
---|
560 | ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
|
---|
561 |
|
---|
562 | /* Invalidate host state physical address. */
|
---|
563 | ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
|
---|
564 |
|
---|
565 | /* Restore interrupts. */
|
---|
566 | ASMSetFlags(fEFlags);
|
---|
567 |
|
---|
568 | return VINF_SUCCESS;
|
---|
569 | }
|
---|
570 |
|
---|
571 |
|
---|
572 | /**
|
---|
573 | * Does global AMD-V initialization (called during module initialization).
|
---|
574 | *
|
---|
575 | * @returns VBox status code.
|
---|
576 | */
|
---|
577 | VMMR0DECL(int) SVMR0GlobalInit(void)
|
---|
578 | {
|
---|
579 | /*
|
---|
580 | * Allocate 12 KB (3 pages) for the IO bitmap. Since this is non-optional and we always
|
---|
581 | * intercept all IO accesses, it's done once globally here instead of per-VM.
|
---|
582 | */
|
---|
583 | Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
|
---|
584 | int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
|
---|
585 | if (RT_FAILURE(rc))
|
---|
586 | return rc;
|
---|
587 |
|
---|
588 | g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
|
---|
589 | g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
|
---|
590 |
|
---|
591 | /* Set all bits to intercept all IO accesses. */
|
---|
592 | ASMMemFill32(g_pvIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
|
---|
593 |
|
---|
594 | return VINF_SUCCESS;
|
---|
595 | }
|
---|
596 |
|
---|
597 |
|
---|
598 | /**
|
---|
599 | * Does global AMD-V termination (called during module termination).
|
---|
600 | */
|
---|
601 | VMMR0DECL(void) SVMR0GlobalTerm(void)
|
---|
602 | {
|
---|
603 | if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
|
---|
604 | {
|
---|
605 | RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
|
---|
606 | g_pvIOBitmap = NULL;
|
---|
607 | g_HCPhysIOBitmap = 0;
|
---|
608 | g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
|
---|
609 | }
|
---|
610 | }
|
---|
611 |
|
---|
612 |
|
---|
613 | /**
|
---|
614 | * Frees any allocated per-VCPU structures for a VM.
|
---|
615 | *
|
---|
616 | * @param pVM The cross context VM structure.
|
---|
617 | */
|
---|
618 | DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
|
---|
619 | {
|
---|
620 | for (uint32_t i = 0; i < pVM->cCpus; i++)
|
---|
621 | {
|
---|
622 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
623 | AssertPtr(pVCpu);
|
---|
624 |
|
---|
625 | if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
|
---|
626 | {
|
---|
627 | RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
|
---|
628 | pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
|
---|
629 | pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
|
---|
630 | }
|
---|
631 |
|
---|
632 | if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
|
---|
633 | {
|
---|
634 | RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
|
---|
635 | pVCpu->hm.s.svm.pVmcb = NULL;
|
---|
636 | pVCpu->hm.s.svm.HCPhysVmcb = 0;
|
---|
637 | pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
|
---|
638 | }
|
---|
639 |
|
---|
640 | if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
|
---|
641 | {
|
---|
642 | RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
|
---|
643 | pVCpu->hm.s.svm.pvMsrBitmap = NULL;
|
---|
644 | pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
|
---|
645 | pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
|
---|
646 | }
|
---|
647 | }
|
---|
648 | }
|
---|
649 |
|
---|
650 |
|
---|
651 | /**
|
---|
652 | * Does per-VM AMD-V initialization.
|
---|
653 | *
|
---|
654 | * @returns VBox status code.
|
---|
655 | * @param pVM The cross context VM structure.
|
---|
656 | */
|
---|
657 | VMMR0DECL(int) SVMR0InitVM(PVM pVM)
|
---|
658 | {
|
---|
659 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
660 |
|
---|
661 | /*
|
---|
662 | * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
|
---|
663 | */
|
---|
664 | uint32_t u32Family;
|
---|
665 | uint32_t u32Model;
|
---|
666 | uint32_t u32Stepping;
|
---|
667 | if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
|
---|
668 | {
|
---|
669 | Log4(("SVMR0InitVM: AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
|
---|
670 | pVM->hm.s.svm.fAlwaysFlushTLB = true;
|
---|
671 | }
|
---|
672 |
|
---|
673 | /*
|
---|
674 | * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
|
---|
675 | */
|
---|
676 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
677 | {
|
---|
678 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
679 | pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
|
---|
680 | pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
|
---|
681 | pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
|
---|
682 | }
|
---|
683 |
|
---|
684 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
685 | {
|
---|
686 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
687 |
|
---|
688 | /*
|
---|
689 | * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
|
---|
690 | * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
|
---|
691 | */
|
---|
692 | rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
|
---|
693 | if (RT_FAILURE(rc))
|
---|
694 | goto failure_cleanup;
|
---|
695 |
|
---|
696 | void *pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
|
---|
697 | pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
|
---|
698 | Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
|
---|
699 | ASMMemZeroPage(pvVmcbHost);
|
---|
700 |
|
---|
701 | /*
|
---|
702 | * Allocate one page for the guest-state VMCB.
|
---|
703 | */
|
---|
704 | rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
|
---|
705 | if (RT_FAILURE(rc))
|
---|
706 | goto failure_cleanup;
|
---|
707 |
|
---|
708 | pVCpu->hm.s.svm.pVmcb = (PSVMVMCB)RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
|
---|
709 | pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
|
---|
710 | Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
|
---|
711 | ASMMemZeroPage(pVCpu->hm.s.svm.pVmcb);
|
---|
712 |
|
---|
713 | /*
|
---|
714 | * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
|
---|
715 | * SVM to not require one.
|
---|
716 | */
|
---|
717 | rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
|
---|
718 | false /* fExecutable */);
|
---|
719 | if (RT_FAILURE(rc))
|
---|
720 | goto failure_cleanup;
|
---|
721 |
|
---|
722 | pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
|
---|
723 | pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
|
---|
724 | /* Set all bits to intercept all MSR accesses (changed later on). */
|
---|
725 | ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
|
---|
726 | }
|
---|
727 |
|
---|
728 | return VINF_SUCCESS;
|
---|
729 |
|
---|
730 | failure_cleanup:
|
---|
731 | hmR0SvmFreeStructs(pVM);
|
---|
732 | return rc;
|
---|
733 | }
|
---|
734 |
|
---|
735 |
|
---|
736 | /**
|
---|
737 | * Does per-VM AMD-V termination.
|
---|
738 | *
|
---|
739 | * @returns VBox status code.
|
---|
740 | * @param pVM The cross context VM structure.
|
---|
741 | */
|
---|
742 | VMMR0DECL(int) SVMR0TermVM(PVM pVM)
|
---|
743 | {
|
---|
744 | hmR0SvmFreeStructs(pVM);
|
---|
745 | return VINF_SUCCESS;
|
---|
746 | }
|
---|
747 |
|
---|
748 |
|
---|
749 | /**
|
---|
750 | * Returns whether the VMCB Clean Bits feature is supported.
|
---|
751 | *
|
---|
752 | * @return @c true if supported, @c false otherwise.
|
---|
753 | * @param pVCpu The cross context virtual CPU structure.
|
---|
754 | * @param pCtx Pointer to the guest-CPU context.
|
---|
755 | */
|
---|
756 | DECLINLINE(bool) hmR0SvmSupportsVmcbCleanBits(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
757 | {
|
---|
758 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
759 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
760 | if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
761 | {
|
---|
762 | return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN)
|
---|
763 | && pVM->cpum.ro.GuestFeatures.fSvmVmcbClean;
|
---|
764 | }
|
---|
765 | #else
|
---|
766 | RT_NOREF(pCtx);
|
---|
767 | #endif
|
---|
768 | return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN);
|
---|
769 | }
|
---|
770 |
|
---|
771 |
|
---|
772 | /**
|
---|
773 | * Returns whether the decode assists feature is supported.
|
---|
774 | *
|
---|
775 | * @return @c true if supported, @c false otherwise.
|
---|
776 | * @param pVCpu The cross context virtual CPU structure.
|
---|
777 | * @param pCtx Pointer to the guest-CPU context.
|
---|
778 | */
|
---|
779 | DECLINLINE(bool) hmR0SvmSupportsDecodeAssists(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
780 | {
|
---|
781 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
782 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
783 | if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
784 | {
|
---|
785 | return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS)
|
---|
786 | && pVM->cpum.ro.GuestFeatures.fSvmDecodeAssists;
|
---|
787 | }
|
---|
788 | #else
|
---|
789 | RT_NOREF(pCtx);
|
---|
790 | #endif
|
---|
791 | return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS);
|
---|
792 | }
|
---|
793 |
|
---|
794 |
|
---|
795 | /**
|
---|
796 | * Returns whether the NRIP_SAVE feature is supported.
|
---|
797 | *
|
---|
798 | * @return @c true if supported, @c false otherwise.
|
---|
799 | * @param pVCpu The cross context virtual CPU structure.
|
---|
800 | * @param pCtx Pointer to the guest-CPU context.
|
---|
801 | */
|
---|
802 | DECLINLINE(bool) hmR0SvmSupportsNextRipSave(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
803 | {
|
---|
804 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
805 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
806 | if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
807 | {
|
---|
808 | return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
|
---|
809 | && pVM->cpum.ro.GuestFeatures.fSvmNextRipSave;
|
---|
810 | }
|
---|
811 | #else
|
---|
812 | RT_NOREF(pCtx);
|
---|
813 | #endif
|
---|
814 | return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
|
---|
815 | }
|
---|
816 |
|
---|
817 |
|
---|
818 | /**
|
---|
819 | * Sets the permission bits for the specified MSR in the MSRPM bitmap.
|
---|
820 | *
|
---|
821 | * @param pCtx Pointer to the guest-CPU or nested-guest-CPU context.
|
---|
822 | * @param pbMsrBitmap Pointer to the MSR bitmap.
|
---|
823 | * @param idMsr The MSR for which the permissions are being set.
|
---|
824 | * @param enmRead MSR read permissions.
|
---|
825 | * @param enmWrite MSR write permissions.
|
---|
826 | *
|
---|
827 | * @remarks This function does -not- clear the VMCB clean bits for MSRPM. The
|
---|
828 | * caller needs to take care of this.
|
---|
829 | */
|
---|
830 | static void hmR0SvmSetMsrPermission(PCPUMCTX pCtx, uint8_t *pbMsrBitmap, uint32_t idMsr, SVMMSREXITREAD enmRead,
|
---|
831 | SVMMSREXITWRITE enmWrite)
|
---|
832 | {
|
---|
833 | bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(pCtx);
|
---|
834 | uint16_t offMsrpm;
|
---|
835 | uint8_t uMsrpmBit;
|
---|
836 | int rc = HMSvmGetMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
|
---|
837 | AssertRC(rc);
|
---|
838 |
|
---|
839 | Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
|
---|
840 | Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
|
---|
841 |
|
---|
842 | pbMsrBitmap += offMsrpm;
|
---|
843 | if (enmRead == SVMMSREXIT_INTERCEPT_READ)
|
---|
844 | *pbMsrBitmap |= RT_BIT(uMsrpmBit);
|
---|
845 | else
|
---|
846 | {
|
---|
847 | if (!fInNestedGuestMode)
|
---|
848 | *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
|
---|
849 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
850 | else
|
---|
851 | {
|
---|
852 | /* Only clear the bit if the nested-guest is also not intercepting the MSR read.*/
|
---|
853 | uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap);
|
---|
854 | pbNstGstMsrBitmap += offMsrpm;
|
---|
855 | if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit)))
|
---|
856 | *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
|
---|
857 | else
|
---|
858 | Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit));
|
---|
859 | }
|
---|
860 | #endif
|
---|
861 | }
|
---|
862 |
|
---|
863 | if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
|
---|
864 | *pbMsrBitmap |= RT_BIT(uMsrpmBit + 1);
|
---|
865 | else
|
---|
866 | {
|
---|
867 | if (!fInNestedGuestMode)
|
---|
868 | *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
|
---|
869 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
870 | else
|
---|
871 | {
|
---|
872 | /* Only clear the bit if the nested-guest is also not intercepting the MSR write.*/
|
---|
873 | uint8_t const *pbNstGstMsrBitmap = (uint8_t *)pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap);
|
---|
874 | pbNstGstMsrBitmap += offMsrpm;
|
---|
875 | if (!(*pbNstGstMsrBitmap & RT_BIT(uMsrpmBit + 1)))
|
---|
876 | *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
|
---|
877 | else
|
---|
878 | Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
|
---|
879 | }
|
---|
880 | #endif
|
---|
881 | }
|
---|
882 | }
|
---|
883 |
|
---|
884 |
|
---|
885 | /**
|
---|
886 | * Sets up AMD-V for the specified VM.
|
---|
887 | * This function is only called once per-VM during initalization.
|
---|
888 | *
|
---|
889 | * @returns VBox status code.
|
---|
890 | * @param pVM The cross context VM structure.
|
---|
891 | */
|
---|
892 | VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
|
---|
893 | {
|
---|
894 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
895 | AssertReturn(pVM, VERR_INVALID_PARAMETER);
|
---|
896 | Assert(pVM->hm.s.svm.fSupported);
|
---|
897 |
|
---|
898 | bool const fPauseFilter = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
|
---|
899 | bool const fPauseFilterThreshold = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
|
---|
900 | bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter;
|
---|
901 |
|
---|
902 | bool const fLbrVirt = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT);
|
---|
903 | bool const fUseLbrVirt = fLbrVirt; /** @todo CFGM, IEM implementation etc. */
|
---|
904 |
|
---|
905 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
906 | bool const fVirtVmsaveVmload = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD);
|
---|
907 | bool const fUseVirtVmsaveVmload = fVirtVmsaveVmload && pVM->hm.s.svm.fVirtVmsaveVmload && pVM->hm.s.fNestedPaging;
|
---|
908 |
|
---|
909 | bool const fVGif = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VGIF);
|
---|
910 | bool const fUseVGif = fVGif && pVM->hm.s.svm.fVGif;
|
---|
911 | #endif
|
---|
912 |
|
---|
913 | PVMCPU pVCpu = &pVM->aCpus[0];
|
---|
914 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
915 | AssertMsgReturn(pVmcb, ("Invalid pVmcb for vcpu[0]\n"), VERR_SVM_INVALID_PVMCB);
|
---|
916 | PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
|
---|
917 |
|
---|
918 | /* Always trap #AC for reasons of security. */
|
---|
919 | pVmcbCtrl->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_AC);
|
---|
920 |
|
---|
921 | /* Always trap #DB for reasons of security. */
|
---|
922 | pVmcbCtrl->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_DB);
|
---|
923 |
|
---|
924 | /* Trap exceptions unconditionally (debug purposes). */
|
---|
925 | #ifdef HMSVM_ALWAYS_TRAP_PF
|
---|
926 | pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
|
---|
927 | #endif
|
---|
928 | #ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
929 | /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
|
---|
930 | pVmcbCtrl->u32InterceptXcpt |= 0
|
---|
931 | | RT_BIT(X86_XCPT_BP)
|
---|
932 | | RT_BIT(X86_XCPT_DE)
|
---|
933 | | RT_BIT(X86_XCPT_NM)
|
---|
934 | | RT_BIT(X86_XCPT_UD)
|
---|
935 | | RT_BIT(X86_XCPT_NP)
|
---|
936 | | RT_BIT(X86_XCPT_SS)
|
---|
937 | | RT_BIT(X86_XCPT_GP)
|
---|
938 | | RT_BIT(X86_XCPT_PF)
|
---|
939 | | RT_BIT(X86_XCPT_MF)
|
---|
940 | ;
|
---|
941 | #endif
|
---|
942 |
|
---|
943 | /* Apply the exceptions intercepts needed by the GIM provider. */
|
---|
944 | if (pVCpu->hm.s.fGIMTrapXcptUD)
|
---|
945 | pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_UD);
|
---|
946 |
|
---|
947 | /* Set up unconditional intercepts and conditions. */
|
---|
948 | pVmcbCtrl->u64InterceptCtrl = HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS
|
---|
949 | | SVM_CTRL_INTERCEPT_VMMCALL;
|
---|
950 |
|
---|
951 | #ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
|
---|
952 | pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH;
|
---|
953 | #endif
|
---|
954 |
|
---|
955 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
956 | /* Virtualized VMSAVE/VMLOAD. */
|
---|
957 | pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload = fUseVirtVmsaveVmload;
|
---|
958 | if (!fUseVirtVmsaveVmload)
|
---|
959 | {
|
---|
960 | pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
|
---|
961 | | SVM_CTRL_INTERCEPT_VMLOAD;
|
---|
962 | }
|
---|
963 |
|
---|
964 | /* Virtual GIF. */
|
---|
965 | pVmcbCtrl->IntCtrl.n.u1VGifEnable = fUseVGif;
|
---|
966 | if (!fUseVGif)
|
---|
967 | {
|
---|
968 | pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
|
---|
969 | | SVM_CTRL_INTERCEPT_STGI;
|
---|
970 | }
|
---|
971 | #endif
|
---|
972 |
|
---|
973 | /* CR4 writes must always be intercepted for tracking PGM mode changes. */
|
---|
974 | pVmcbCtrl->u16InterceptWrCRx = RT_BIT(4);
|
---|
975 |
|
---|
976 | /* Intercept all DRx reads and writes by default. Changed later on. */
|
---|
977 | pVmcbCtrl->u16InterceptRdDRx = 0xffff;
|
---|
978 | pVmcbCtrl->u16InterceptWrDRx = 0xffff;
|
---|
979 |
|
---|
980 | /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
|
---|
981 | pVmcbCtrl->IntCtrl.n.u1VIntrMasking = 1;
|
---|
982 |
|
---|
983 | /* Ignore the priority in the virtual TPR. This is necessary for delivering PIC style (ExtInt) interrupts
|
---|
984 | and we currently deliver both PIC and APIC interrupts alike, see hmR0SvmEvaluatePendingEvent() */
|
---|
985 | pVmcbCtrl->IntCtrl.n.u1IgnoreTPR = 1;
|
---|
986 |
|
---|
987 | /* Set the IO permission bitmap physical addresses. */
|
---|
988 | pVmcbCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
|
---|
989 |
|
---|
990 | /* LBR virtualization. */
|
---|
991 | pVmcbCtrl->LbrVirt.n.u1LbrVirt = fUseLbrVirt;
|
---|
992 |
|
---|
993 | /* The host ASID MBZ, for the guest start with 1. */
|
---|
994 | pVmcbCtrl->TLBCtrl.n.u32ASID = 1;
|
---|
995 |
|
---|
996 | /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
|
---|
997 | pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
|
---|
998 |
|
---|
999 | /* Without Nested Paging, we need additionally intercepts. */
|
---|
1000 | if (!pVM->hm.s.fNestedPaging)
|
---|
1001 | {
|
---|
1002 | /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
|
---|
1003 | pVmcbCtrl->u16InterceptRdCRx |= RT_BIT(3);
|
---|
1004 | pVmcbCtrl->u16InterceptWrCRx |= RT_BIT(3);
|
---|
1005 |
|
---|
1006 | /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
|
---|
1007 | pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG
|
---|
1008 | | SVM_CTRL_INTERCEPT_TASK_SWITCH;
|
---|
1009 |
|
---|
1010 | /* Page faults must be intercepted to implement shadow paging. */
|
---|
1011 | pVmcbCtrl->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
|
---|
1012 | }
|
---|
1013 |
|
---|
1014 | /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
|
---|
1015 | if (fUsePauseFilter)
|
---|
1016 | {
|
---|
1017 | Assert(pVM->hm.s.svm.cPauseFilter > 0);
|
---|
1018 | pVmcbCtrl->u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
|
---|
1019 | if (fPauseFilterThreshold)
|
---|
1020 | pVmcbCtrl->u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
|
---|
1021 | pVmcbCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_PAUSE;
|
---|
1022 | }
|
---|
1023 |
|
---|
1024 | /*
|
---|
1025 | * Setup the MSR permission bitmap.
|
---|
1026 | * The following MSRs are saved/restored automatically during the world-switch.
|
---|
1027 | * Don't intercept guest read/write accesses to these MSRs.
|
---|
1028 | */
|
---|
1029 | uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
|
---|
1030 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
1031 | hmR0SvmSetMsrPermission(pCtx, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1032 | hmR0SvmSetMsrPermission(pCtx, pbMsrBitmap, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1033 | hmR0SvmSetMsrPermission(pCtx, pbMsrBitmap, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1034 | hmR0SvmSetMsrPermission(pCtx, pbMsrBitmap, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1035 | hmR0SvmSetMsrPermission(pCtx, pbMsrBitmap, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1036 | hmR0SvmSetMsrPermission(pCtx, pbMsrBitmap, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1037 | hmR0SvmSetMsrPermission(pCtx, pbMsrBitmap, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1038 | hmR0SvmSetMsrPermission(pCtx, pbMsrBitmap, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1039 | hmR0SvmSetMsrPermission(pCtx, pbMsrBitmap, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1040 | hmR0SvmSetMsrPermission(pCtx, pbMsrBitmap, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1041 | pVmcbCtrl->u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
|
---|
1042 |
|
---|
1043 | /* Initialize the #VMEXIT history array with end-of-array markers (UINT16_MAX). */
|
---|
1044 | Assert(!pVCpu->hm.s.idxExitHistoryFree);
|
---|
1045 | HMCPU_EXIT_HISTORY_RESET(pVCpu);
|
---|
1046 |
|
---|
1047 | /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
|
---|
1048 | Assert(pVmcbCtrl->u32VmcbCleanBits == 0);
|
---|
1049 |
|
---|
1050 | for (VMCPUID i = 1; i < pVM->cCpus; i++)
|
---|
1051 | {
|
---|
1052 | PVMCPU pVCpuCur = &pVM->aCpus[i];
|
---|
1053 | PSVMVMCB pVmcbCur = pVM->aCpus[i].hm.s.svm.pVmcb;
|
---|
1054 | AssertMsgReturn(pVmcbCur, ("Invalid pVmcb for vcpu[%u]\n", i), VERR_SVM_INVALID_PVMCB);
|
---|
1055 | PSVMVMCBCTRL pVmcbCtrlCur = &pVmcbCur->ctrl;
|
---|
1056 |
|
---|
1057 | /* Copy the VMCB control area. */
|
---|
1058 | memcpy(pVmcbCtrlCur, pVmcbCtrl, sizeof(*pVmcbCtrlCur));
|
---|
1059 |
|
---|
1060 | /* Copy the MSR bitmap and setup the VCPU-specific host physical address. */
|
---|
1061 | uint8_t *pbMsrBitmapCur = (uint8_t *)pVCpuCur->hm.s.svm.pvMsrBitmap;
|
---|
1062 | memcpy(pbMsrBitmapCur, pbMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
|
---|
1063 | pVmcbCtrlCur->u64MSRPMPhysAddr = pVCpuCur->hm.s.svm.HCPhysMsrBitmap;
|
---|
1064 |
|
---|
1065 | /* Initialize the #VMEXIT history array with end-of-array markers (UINT16_MAX). */
|
---|
1066 | Assert(!pVCpuCur->hm.s.idxExitHistoryFree);
|
---|
1067 | HMCPU_EXIT_HISTORY_RESET(pVCpuCur);
|
---|
1068 |
|
---|
1069 | /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
|
---|
1070 | Assert(pVmcbCtrlCur->u32VmcbCleanBits == 0);
|
---|
1071 |
|
---|
1072 | /* Verify our assumption that GIM providers trap #UD uniformly across VCPUs initially. */
|
---|
1073 | Assert(pVCpuCur->hm.s.fGIMTrapXcptUD == pVCpu->hm.s.fGIMTrapXcptUD);
|
---|
1074 | }
|
---|
1075 |
|
---|
1076 | return VINF_SUCCESS;
|
---|
1077 | }
|
---|
1078 |
|
---|
1079 |
|
---|
1080 | /**
|
---|
1081 | * Gets a pointer to the currently active guest (or nested-guest) VMCB.
|
---|
1082 | *
|
---|
1083 | * @returns Pointer to the current context VMCB.
|
---|
1084 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1085 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1086 | */
|
---|
1087 | DECLINLINE(PSVMVMCB) hmR0SvmGetCurrentVmcb(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
1088 | {
|
---|
1089 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
1090 | if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
1091 | return pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
|
---|
1092 | #else
|
---|
1093 | RT_NOREF(pCtx);
|
---|
1094 | #endif
|
---|
1095 | return pVCpu->hm.s.svm.pVmcb;
|
---|
1096 | }
|
---|
1097 |
|
---|
1098 |
|
---|
1099 | /**
|
---|
1100 | * Gets a pointer to the nested-guest VMCB cache.
|
---|
1101 | *
|
---|
1102 | * @returns Pointer to the nested-guest VMCB cache.
|
---|
1103 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1104 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1105 | */
|
---|
1106 | DECLINLINE(PSVMNESTEDVMCBCACHE) hmR0SvmGetNestedVmcbCache(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
1107 | {
|
---|
1108 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
1109 | Assert(pCtx->hwvirt.svm.fHMCachedVmcb); RT_NOREF(pCtx);
|
---|
1110 | return &pVCpu->hm.s.svm.NstGstVmcbCache;
|
---|
1111 | #else
|
---|
1112 | RT_NOREF2(pVCpu, pCtx);
|
---|
1113 | return NULL;
|
---|
1114 | #endif
|
---|
1115 | }
|
---|
1116 |
|
---|
1117 |
|
---|
1118 | /**
|
---|
1119 | * Invalidates a guest page by guest virtual address.
|
---|
1120 | *
|
---|
1121 | * @returns VBox status code.
|
---|
1122 | * @param pVM The cross context VM structure.
|
---|
1123 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1124 | * @param GCVirt Guest virtual address of the page to invalidate.
|
---|
1125 | */
|
---|
1126 | VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
|
---|
1127 | {
|
---|
1128 | AssertReturn(pVM, VERR_INVALID_PARAMETER);
|
---|
1129 | Assert(pVM->hm.s.svm.fSupported);
|
---|
1130 |
|
---|
1131 | bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
1132 |
|
---|
1133 | /* Skip it if a TLB flush is already pending. */
|
---|
1134 | if (!fFlushPending)
|
---|
1135 | {
|
---|
1136 | Log4(("SVMR0InvalidatePage %RGv\n", GCVirt));
|
---|
1137 |
|
---|
1138 | PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
|
---|
1139 | PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
1140 | AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
|
---|
1141 |
|
---|
1142 | #if HC_ARCH_BITS == 32
|
---|
1143 | /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
|
---|
1144 | if (CPUMIsGuestInLongMode(pVCpu))
|
---|
1145 | VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
1146 | else
|
---|
1147 | #endif
|
---|
1148 | {
|
---|
1149 | SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
|
---|
1150 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
|
---|
1151 | }
|
---|
1152 | }
|
---|
1153 | return VINF_SUCCESS;
|
---|
1154 | }
|
---|
1155 |
|
---|
1156 |
|
---|
1157 | /**
|
---|
1158 | * Flushes the appropriate tagged-TLB entries.
|
---|
1159 | *
|
---|
1160 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1161 | * @param pCtx Pointer to the guest-CPU or nested-guest-CPU context.
|
---|
1162 | * @param pVmcb Pointer to the VM control block.
|
---|
1163 | * @param pHostCpu Pointer to the HM host-CPU info.
|
---|
1164 | */
|
---|
1165 | static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMVMCB pVmcb, PHMGLOBALCPUINFO pHostCpu)
|
---|
1166 | {
|
---|
1167 | #ifndef VBOX_WITH_NESTED_HWVIRT
|
---|
1168 | RT_NOREF(pCtx);
|
---|
1169 | #endif
|
---|
1170 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1171 |
|
---|
1172 | /*
|
---|
1173 | * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
|
---|
1174 | * This can happen both for start & resume due to long jumps back to ring-3.
|
---|
1175 | *
|
---|
1176 | * We also force a TLB flush every time when executing a nested-guest VCPU as there is no correlation
|
---|
1177 | * between it and the physical CPU.
|
---|
1178 | *
|
---|
1179 | * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
|
---|
1180 | * so we cannot reuse the ASIDs without flushing.
|
---|
1181 | */
|
---|
1182 | bool fNewAsid = false;
|
---|
1183 | Assert(pHostCpu->idCpu != NIL_RTCPUID);
|
---|
1184 | if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
|
---|
1185 | || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes
|
---|
1186 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
1187 | || CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
|
---|
1188 | #endif
|
---|
1189 | )
|
---|
1190 | {
|
---|
1191 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
|
---|
1192 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
1193 | fNewAsid = true;
|
---|
1194 | }
|
---|
1195 |
|
---|
1196 | /* Set TLB flush state as checked until we return from the world switch. */
|
---|
1197 | ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
|
---|
1198 |
|
---|
1199 | /* Check for explicit TLB flushes. */
|
---|
1200 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
|
---|
1201 | {
|
---|
1202 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
1203 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
|
---|
1204 | }
|
---|
1205 |
|
---|
1206 | /*
|
---|
1207 | * If the AMD CPU erratum 170, We need to flush the entire TLB for each world switch. Sad.
|
---|
1208 | * This Host CPU requirement takes precedence.
|
---|
1209 | */
|
---|
1210 | if (pVM->hm.s.svm.fAlwaysFlushTLB)
|
---|
1211 | {
|
---|
1212 | pHostCpu->uCurrentAsid = 1;
|
---|
1213 | pVCpu->hm.s.uCurrentAsid = 1;
|
---|
1214 | pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
|
---|
1215 | pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
|
---|
1216 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
1217 |
|
---|
1218 | /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
|
---|
1219 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
|
---|
1220 | }
|
---|
1221 | else
|
---|
1222 | {
|
---|
1223 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
|
---|
1224 | if (pVCpu->hm.s.fForceTLBFlush)
|
---|
1225 | {
|
---|
1226 | /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
|
---|
1227 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
|
---|
1228 |
|
---|
1229 | if (fNewAsid)
|
---|
1230 | {
|
---|
1231 | ++pHostCpu->uCurrentAsid;
|
---|
1232 |
|
---|
1233 | bool fHitASIDLimit = false;
|
---|
1234 | if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
|
---|
1235 | {
|
---|
1236 | pHostCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
|
---|
1237 | pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new ASID. */
|
---|
1238 | fHitASIDLimit = true;
|
---|
1239 | }
|
---|
1240 |
|
---|
1241 | if ( fHitASIDLimit
|
---|
1242 | || pHostCpu->fFlushAsidBeforeUse)
|
---|
1243 | {
|
---|
1244 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
1245 | pHostCpu->fFlushAsidBeforeUse = false;
|
---|
1246 | }
|
---|
1247 |
|
---|
1248 | pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
|
---|
1249 | pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
|
---|
1250 | pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
|
---|
1251 | }
|
---|
1252 | else
|
---|
1253 | {
|
---|
1254 | if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
|
---|
1255 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
|
---|
1256 | else
|
---|
1257 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
1258 | }
|
---|
1259 |
|
---|
1260 | pVCpu->hm.s.fForceTLBFlush = false;
|
---|
1261 | }
|
---|
1262 | }
|
---|
1263 |
|
---|
1264 | /* Update VMCB with the ASID. */
|
---|
1265 | if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
|
---|
1266 | {
|
---|
1267 | pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
|
---|
1268 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
|
---|
1269 | }
|
---|
1270 |
|
---|
1271 | AssertMsg(pVCpu->hm.s.idLastCpu == pHostCpu->idCpu,
|
---|
1272 | ("vcpu idLastCpu=%u hostcpu idCpu=%u\n", pVCpu->hm.s.idLastCpu, pHostCpu->idCpu));
|
---|
1273 | AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
|
---|
1274 | ("Flush count mismatch for cpu %u (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
|
---|
1275 | AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
1276 | ("cpu%d uCurrentAsid = %x\n", pHostCpu->idCpu, pHostCpu->uCurrentAsid));
|
---|
1277 | AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
1278 | ("cpu%d VM uCurrentAsid = %x\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
|
---|
1279 |
|
---|
1280 | #ifdef VBOX_WITH_STATISTICS
|
---|
1281 | if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
|
---|
1282 | STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
|
---|
1283 | else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
|
---|
1284 | || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
|
---|
1285 | {
|
---|
1286 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
|
---|
1287 | }
|
---|
1288 | else
|
---|
1289 | {
|
---|
1290 | Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
|
---|
1291 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
|
---|
1292 | }
|
---|
1293 | #endif
|
---|
1294 | }
|
---|
1295 |
|
---|
1296 |
|
---|
1297 | /** @name 64-bit guest on 32-bit host OS helper functions.
|
---|
1298 | *
|
---|
1299 | * The host CPU is still 64-bit capable but the host OS is running in 32-bit
|
---|
1300 | * mode (code segment, paging). These wrappers/helpers perform the necessary
|
---|
1301 | * bits for the 32->64 switcher.
|
---|
1302 | *
|
---|
1303 | * @{ */
|
---|
1304 | #if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
|
---|
1305 | /**
|
---|
1306 | * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
|
---|
1307 | *
|
---|
1308 | * @returns VBox status code.
|
---|
1309 | * @param HCPhysVmcbHost Physical address of host VMCB.
|
---|
1310 | * @param HCPhysVmcb Physical address of the VMCB.
|
---|
1311 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1312 | * @param pVM The cross context VM structure.
|
---|
1313 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1314 | */
|
---|
1315 | DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
|
---|
1316 | {
|
---|
1317 | uint32_t aParam[8];
|
---|
1318 | aParam[0] = RT_LO_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
|
---|
1319 | aParam[1] = RT_HI_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Hi. */
|
---|
1320 | aParam[2] = RT_LO_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
|
---|
1321 | aParam[3] = RT_HI_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Hi. */
|
---|
1322 | aParam[4] = VM_RC_ADDR(pVM, pVM);
|
---|
1323 | aParam[5] = 0;
|
---|
1324 | aParam[6] = VM_RC_ADDR(pVM, pVCpu);
|
---|
1325 | aParam[7] = 0;
|
---|
1326 |
|
---|
1327 | return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, RT_ELEMENTS(aParam), &aParam[0]);
|
---|
1328 | }
|
---|
1329 |
|
---|
1330 |
|
---|
1331 | /**
|
---|
1332 | * Executes the specified VMRUN handler in 64-bit mode.
|
---|
1333 | *
|
---|
1334 | * @returns VBox status code.
|
---|
1335 | * @param pVM The cross context VM structure.
|
---|
1336 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1337 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1338 | * @param enmOp The operation to perform.
|
---|
1339 | * @param cParams Number of parameters.
|
---|
1340 | * @param paParam Array of 32-bit parameters.
|
---|
1341 | */
|
---|
1342 | VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp,
|
---|
1343 | uint32_t cParams, uint32_t *paParam)
|
---|
1344 | {
|
---|
1345 | AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
|
---|
1346 | Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
|
---|
1347 |
|
---|
1348 | NOREF(pCtx);
|
---|
1349 |
|
---|
1350 | /* Disable interrupts. */
|
---|
1351 | RTHCUINTREG uOldEFlags = ASMIntDisableFlags();
|
---|
1352 |
|
---|
1353 | #ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
|
---|
1354 | RTCPUID idHostCpu = RTMpCpuId();
|
---|
1355 | CPUMR0SetLApic(pVCpu, idHostCpu);
|
---|
1356 | #endif
|
---|
1357 |
|
---|
1358 | CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
|
---|
1359 | CPUMSetHyperEIP(pVCpu, enmOp);
|
---|
1360 | for (int i = (int)cParams - 1; i >= 0; i--)
|
---|
1361 | CPUMPushHyper(pVCpu, paParam[i]);
|
---|
1362 |
|
---|
1363 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
|
---|
1364 | /* Call the switcher. */
|
---|
1365 | int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
|
---|
1366 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
|
---|
1367 |
|
---|
1368 | /* Restore interrupts. */
|
---|
1369 | ASMSetFlags(uOldEFlags);
|
---|
1370 | return rc;
|
---|
1371 | }
|
---|
1372 |
|
---|
1373 | #endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
|
---|
1374 | /** @} */
|
---|
1375 |
|
---|
1376 |
|
---|
1377 | /**
|
---|
1378 | * Sets an exception intercept in the specified VMCB.
|
---|
1379 | *
|
---|
1380 | * @param pVmcb Pointer to the VM control block.
|
---|
1381 | * @param uXcpt The exception (X86_XCPT_*).
|
---|
1382 | */
|
---|
1383 | DECLINLINE(void) hmR0SvmSetXcptIntercept(PSVMVMCB pVmcb, uint8_t uXcpt)
|
---|
1384 | {
|
---|
1385 | if (!(pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt)))
|
---|
1386 | {
|
---|
1387 | pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(uXcpt);
|
---|
1388 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1389 | }
|
---|
1390 | }
|
---|
1391 |
|
---|
1392 |
|
---|
1393 | /**
|
---|
1394 | * Clears an exception intercept in the specified VMCB.
|
---|
1395 | *
|
---|
1396 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1397 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1398 | * @param pVmcb Pointer to the VM control block.
|
---|
1399 | * @param uXcpt The exception (X86_XCPT_*).
|
---|
1400 | *
|
---|
1401 | * @remarks This takes into account if we're executing a nested-guest and only
|
---|
1402 | * removes the exception intercept if both the guest -and- nested-guest
|
---|
1403 | * are not intercepting it.
|
---|
1404 | */
|
---|
1405 | DECLINLINE(void) hmR0SvmClearXcptIntercept(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMVMCB pVmcb, uint8_t uXcpt)
|
---|
1406 | {
|
---|
1407 | Assert(uXcpt != X86_XCPT_DB);
|
---|
1408 | Assert(uXcpt != X86_XCPT_AC);
|
---|
1409 | #ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
1410 | if (pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt))
|
---|
1411 | {
|
---|
1412 | bool fRemove = true;
|
---|
1413 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
1414 | /* Only remove the intercept if the nested-guest is also not intercepting it! */
|
---|
1415 | if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
1416 | {
|
---|
1417 | PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu, pCtx);
|
---|
1418 | fRemove = !(pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(uXcpt));
|
---|
1419 | }
|
---|
1420 | #else
|
---|
1421 | RT_NOREF2(pVCpu, pCtx);
|
---|
1422 | #endif
|
---|
1423 | if (fRemove)
|
---|
1424 | {
|
---|
1425 | pVmcb->ctrl.u32InterceptXcpt &= ~RT_BIT(uXcpt);
|
---|
1426 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1427 | }
|
---|
1428 | }
|
---|
1429 | #else
|
---|
1430 | RT_NOREF3(pVCpu, pCtx, pVmcb);
|
---|
1431 | #endif
|
---|
1432 | }
|
---|
1433 |
|
---|
1434 |
|
---|
1435 | /**
|
---|
1436 | * Sets a control intercept in the specified VMCB.
|
---|
1437 | *
|
---|
1438 | * @param pVmcb Pointer to the VM control block.
|
---|
1439 | * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
|
---|
1440 | */
|
---|
1441 | DECLINLINE(void) hmR0SvmSetCtrlIntercept(PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
|
---|
1442 | {
|
---|
1443 | if (!(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept))
|
---|
1444 | {
|
---|
1445 | pVmcb->ctrl.u64InterceptCtrl |= fCtrlIntercept;
|
---|
1446 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1447 | }
|
---|
1448 | }
|
---|
1449 |
|
---|
1450 |
|
---|
1451 | /**
|
---|
1452 | * Clears a control intercept in the specified VMCB.
|
---|
1453 | *
|
---|
1454 | * @returns @c true if the intercept is still set, @c false otherwise.
|
---|
1455 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1456 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1457 | * @param pVmcb Pointer to the VM control block.
|
---|
1458 | * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
|
---|
1459 | *
|
---|
1460 | * @remarks This takes into account if we're executing a nested-guest and only
|
---|
1461 | * removes the control intercept if both the guest -and- nested-guest
|
---|
1462 | * are not intercepting it.
|
---|
1463 | */
|
---|
1464 | DECLINLINE(bool) hmR0SvmClearCtrlIntercept(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
|
---|
1465 | {
|
---|
1466 | if (pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept)
|
---|
1467 | {
|
---|
1468 | bool fRemove = true;
|
---|
1469 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
1470 | /* Only remove the control intercept if the nested-guest is also not intercepting it! */
|
---|
1471 | if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
1472 | {
|
---|
1473 | PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu, pCtx);
|
---|
1474 | fRemove = !(pVmcbNstGstCache->u64InterceptCtrl & fCtrlIntercept);
|
---|
1475 | }
|
---|
1476 | #else
|
---|
1477 | RT_NOREF2(pVCpu, pCtx);
|
---|
1478 | #endif
|
---|
1479 | if (fRemove)
|
---|
1480 | {
|
---|
1481 | pVmcb->ctrl.u64InterceptCtrl &= ~fCtrlIntercept;
|
---|
1482 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1483 | }
|
---|
1484 | }
|
---|
1485 |
|
---|
1486 | return RT_BOOL(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept);
|
---|
1487 | }
|
---|
1488 |
|
---|
1489 |
|
---|
1490 | /**
|
---|
1491 | * Loads the guest (or nested-guest) CR0 control register into the guest-state
|
---|
1492 | * area in the VMCB.
|
---|
1493 | *
|
---|
1494 | * Although the guest CR0 is a separate field in the VMCB we have to consider
|
---|
1495 | * the FPU state itself which is shared between the host and the guest.
|
---|
1496 | *
|
---|
1497 | * @returns VBox status code.
|
---|
1498 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1499 | * @param pVmcb Pointer to the VM control block.
|
---|
1500 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1501 | *
|
---|
1502 | * @remarks No-long-jump zone!!!
|
---|
1503 | */
|
---|
1504 | static void hmR0SvmLoadSharedCR0(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1505 | {
|
---|
1506 | /* The guest FPU is now always pre-loaded before executing guest code, see @bugref{7243#c101}. */
|
---|
1507 | Assert(CPUMIsGuestFPUStateActive(pVCpu));
|
---|
1508 |
|
---|
1509 | uint64_t const uGuestCr0 = pCtx->cr0;
|
---|
1510 | uint64_t uShadowCr0 = uGuestCr0;
|
---|
1511 |
|
---|
1512 | /* Always enable caching. */
|
---|
1513 | uShadowCr0 &= ~(X86_CR0_CD | X86_CR0_NW);
|
---|
1514 |
|
---|
1515 | /* When Nested Paging is not available use shadow page tables and intercept #PFs (the latter done in SVMR0SetupVM()). */
|
---|
1516 | if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
|
---|
1517 | {
|
---|
1518 | uShadowCr0 |= X86_CR0_PG /* Use shadow page tables. */
|
---|
1519 | | X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
|
---|
1520 | }
|
---|
1521 |
|
---|
1522 | /*
|
---|
1523 | * Use the #MF style of legacy-FPU error reporting for now. Although AMD-V has MSRs that lets us
|
---|
1524 | * isolate the host from it, IEM/REM still needs work to emulate it properly. see @bugref{7243#c103}.
|
---|
1525 | */
|
---|
1526 | if (!(uGuestCr0 & X86_CR0_NE))
|
---|
1527 | {
|
---|
1528 | uShadowCr0 |= X86_CR0_NE;
|
---|
1529 | hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_MF);
|
---|
1530 | }
|
---|
1531 | else
|
---|
1532 | hmR0SvmClearXcptIntercept(pVCpu, pCtx, pVmcb, X86_XCPT_MF);
|
---|
1533 |
|
---|
1534 | /*
|
---|
1535 | * If the shadow and guest CR0 are identical we can avoid intercepting CR0 reads.
|
---|
1536 | *
|
---|
1537 | * CR0 writes still needs interception as PGM requires tracking paging mode changes, see @bugref{6944}.
|
---|
1538 | * We also don't ever want to honor weird things like cache disable from the guest. However, we can
|
---|
1539 | * avoid intercepting changes to the TS & MP bits by clearing the CR0 write intercept below and keeping
|
---|
1540 | * SVM_CTRL_INTERCEPT_CR0_SEL_WRITE instead.
|
---|
1541 | */
|
---|
1542 | if (uShadowCr0 == uGuestCr0)
|
---|
1543 | {
|
---|
1544 | if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
1545 | {
|
---|
1546 | pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(0);
|
---|
1547 | pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(0);
|
---|
1548 | Assert(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_CR0_SEL_WRITE);
|
---|
1549 | }
|
---|
1550 | else
|
---|
1551 | {
|
---|
1552 | /* If the nested-hypervisor intercepts CR0 reads/writes, we need to continue intercepting them. */
|
---|
1553 | PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu, pCtx);
|
---|
1554 | pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(0))
|
---|
1555 | | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(0));
|
---|
1556 | pVmcb->ctrl.u16InterceptWrCRx = (pVmcb->ctrl.u16InterceptWrCRx & ~RT_BIT(0))
|
---|
1557 | | (pVmcbNstGstCache->u16InterceptWrCRx & RT_BIT(0));
|
---|
1558 | }
|
---|
1559 | }
|
---|
1560 | else
|
---|
1561 | {
|
---|
1562 | pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(0);
|
---|
1563 | pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(0);
|
---|
1564 | }
|
---|
1565 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1566 |
|
---|
1567 | Assert(RT_HI_U32(uShadowCr0) == 0);
|
---|
1568 | if (pVmcb->guest.u64CR0 != uShadowCr0)
|
---|
1569 | {
|
---|
1570 | pVmcb->guest.u64CR0 = uShadowCr0;
|
---|
1571 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
|
---|
1572 | }
|
---|
1573 | }
|
---|
1574 |
|
---|
1575 |
|
---|
1576 | /**
|
---|
1577 | * Loads the guest/nested-guest control registers (CR2, CR3, CR4) into the VMCB.
|
---|
1578 | *
|
---|
1579 | * @returns VBox status code.
|
---|
1580 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1581 | * @param pVmcb Pointer to the VM control block.
|
---|
1582 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1583 | *
|
---|
1584 | * @remarks No-long-jump zone!!!
|
---|
1585 | */
|
---|
1586 | static int hmR0SvmLoadGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1587 | {
|
---|
1588 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1589 |
|
---|
1590 | /*
|
---|
1591 | * Guest CR2.
|
---|
1592 | */
|
---|
1593 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR2))
|
---|
1594 | {
|
---|
1595 | pVmcb->guest.u64CR2 = pCtx->cr2;
|
---|
1596 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
|
---|
1597 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
|
---|
1598 | }
|
---|
1599 |
|
---|
1600 | /*
|
---|
1601 | * Guest CR3.
|
---|
1602 | */
|
---|
1603 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
|
---|
1604 | {
|
---|
1605 | if (pVM->hm.s.fNestedPaging)
|
---|
1606 | {
|
---|
1607 | PGMMODE enmShwPagingMode;
|
---|
1608 | #if HC_ARCH_BITS == 32
|
---|
1609 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
1610 | enmShwPagingMode = PGMMODE_AMD64_NX;
|
---|
1611 | else
|
---|
1612 | #endif
|
---|
1613 | enmShwPagingMode = PGMGetHostMode(pVM);
|
---|
1614 |
|
---|
1615 | pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
|
---|
1616 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
|
---|
1617 | Assert(pVmcb->ctrl.u64NestedPagingCR3);
|
---|
1618 | pVmcb->guest.u64CR3 = pCtx->cr3;
|
---|
1619 | }
|
---|
1620 | else
|
---|
1621 | {
|
---|
1622 | pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
|
---|
1623 | Log4(("hmR0SvmLoadGuestControlRegs: CR3=%#RX64 (HyperCR3=%#RX64)\n", pCtx->cr3, pVmcb->guest.u64CR3));
|
---|
1624 | }
|
---|
1625 |
|
---|
1626 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
|
---|
1627 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
|
---|
1628 | }
|
---|
1629 |
|
---|
1630 | /*
|
---|
1631 | * Guest CR4.
|
---|
1632 | * ASSUMES this is done everytime we get in from ring-3! (XCR0)
|
---|
1633 | */
|
---|
1634 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
|
---|
1635 | {
|
---|
1636 | uint64_t uShadowCr4 = pCtx->cr4;
|
---|
1637 | if (!pVM->hm.s.fNestedPaging)
|
---|
1638 | {
|
---|
1639 | switch (pVCpu->hm.s.enmShadowMode)
|
---|
1640 | {
|
---|
1641 | case PGMMODE_REAL:
|
---|
1642 | case PGMMODE_PROTECTED: /* Protected mode, no paging. */
|
---|
1643 | AssertFailed();
|
---|
1644 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
1645 |
|
---|
1646 | case PGMMODE_32_BIT: /* 32-bit paging. */
|
---|
1647 | uShadowCr4 &= ~X86_CR4_PAE;
|
---|
1648 | break;
|
---|
1649 |
|
---|
1650 | case PGMMODE_PAE: /* PAE paging. */
|
---|
1651 | case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
|
---|
1652 | /** Must use PAE paging as we could use physical memory > 4 GB */
|
---|
1653 | uShadowCr4 |= X86_CR4_PAE;
|
---|
1654 | break;
|
---|
1655 |
|
---|
1656 | case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
|
---|
1657 | case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
|
---|
1658 | #ifdef VBOX_ENABLE_64_BITS_GUESTS
|
---|
1659 | break;
|
---|
1660 | #else
|
---|
1661 | AssertFailed();
|
---|
1662 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
1663 | #endif
|
---|
1664 |
|
---|
1665 | default: /* shut up gcc */
|
---|
1666 | AssertFailed();
|
---|
1667 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
1668 | }
|
---|
1669 | }
|
---|
1670 |
|
---|
1671 | /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
|
---|
1672 | pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
|
---|
1673 |
|
---|
1674 | /* Avoid intercepting CR4 reads if the guest and shadow CR4 values are identical. */
|
---|
1675 | if (uShadowCr4 == pCtx->cr4)
|
---|
1676 | {
|
---|
1677 | if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
1678 | pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(4);
|
---|
1679 | else
|
---|
1680 | {
|
---|
1681 | /* If the nested-hypervisor intercepts CR4 reads, we need to continue intercepting them. */
|
---|
1682 | PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu, pCtx);
|
---|
1683 | pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(4))
|
---|
1684 | | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(4));
|
---|
1685 | }
|
---|
1686 | }
|
---|
1687 | else
|
---|
1688 | pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(4);
|
---|
1689 |
|
---|
1690 | /* CR4 writes are always intercepted (both guest, nested-guest) from tracking PGM mode changes. */
|
---|
1691 | Assert(pVmcb->ctrl.u16InterceptWrCRx & RT_BIT(4));
|
---|
1692 |
|
---|
1693 | /* Update VMCB with the shadow CR4 the appropriate VMCB clean bits. */
|
---|
1694 | Assert(RT_HI_U32(uShadowCr4) == 0);
|
---|
1695 | pVmcb->guest.u64CR4 = uShadowCr4;
|
---|
1696 | pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_CRX_EFER | HMSVM_VMCB_CLEAN_INTERCEPTS);
|
---|
1697 |
|
---|
1698 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
|
---|
1699 | }
|
---|
1700 |
|
---|
1701 | return VINF_SUCCESS;
|
---|
1702 | }
|
---|
1703 |
|
---|
1704 |
|
---|
1705 | /**
|
---|
1706 | * Loads the guest (or nested-guest) segment registers into the VMCB.
|
---|
1707 | *
|
---|
1708 | * @returns VBox status code.
|
---|
1709 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1710 | * @param pVmcb Pointer to the VM control block.
|
---|
1711 | * @param pCtx Pointer to the guest-CPU or nested-guest-CPU context.
|
---|
1712 | *
|
---|
1713 | * @remarks No-long-jump zone!!!
|
---|
1714 | */
|
---|
1715 | static void hmR0SvmLoadGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1716 | {
|
---|
1717 | /* Guest Segment registers: CS, SS, DS, ES, FS, GS. */
|
---|
1718 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
|
---|
1719 | {
|
---|
1720 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, CS, cs);
|
---|
1721 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, SS, ss);
|
---|
1722 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, DS, ds);
|
---|
1723 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, ES, es);
|
---|
1724 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs);
|
---|
1725 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs);
|
---|
1726 |
|
---|
1727 | pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
|
---|
1728 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
|
---|
1729 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
|
---|
1730 | }
|
---|
1731 |
|
---|
1732 | /* Guest TR. */
|
---|
1733 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
|
---|
1734 | {
|
---|
1735 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr);
|
---|
1736 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
|
---|
1737 | }
|
---|
1738 |
|
---|
1739 | /* Guest LDTR. */
|
---|
1740 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
|
---|
1741 | {
|
---|
1742 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
|
---|
1743 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
|
---|
1744 | }
|
---|
1745 |
|
---|
1746 | /* Guest GDTR. */
|
---|
1747 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
|
---|
1748 | {
|
---|
1749 | pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
|
---|
1750 | pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
|
---|
1751 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
|
---|
1752 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
|
---|
1753 | }
|
---|
1754 |
|
---|
1755 | /* Guest IDTR. */
|
---|
1756 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
|
---|
1757 | {
|
---|
1758 | pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
|
---|
1759 | pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
|
---|
1760 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
|
---|
1761 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
|
---|
1762 | }
|
---|
1763 | }
|
---|
1764 |
|
---|
1765 |
|
---|
1766 | /**
|
---|
1767 | * Loads the guest (or nested-guest) MSRs into the VMCB.
|
---|
1768 | *
|
---|
1769 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1770 | * @param pVmcb Pointer to the VM control block.
|
---|
1771 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1772 | *
|
---|
1773 | * @remarks No-long-jump zone!!!
|
---|
1774 | */
|
---|
1775 | static void hmR0SvmLoadGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1776 | {
|
---|
1777 | /* Guest Sysenter MSRs. */
|
---|
1778 | pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
|
---|
1779 | pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
|
---|
1780 | pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
|
---|
1781 |
|
---|
1782 | /*
|
---|
1783 | * Guest EFER MSR.
|
---|
1784 | * AMD-V requires guest EFER.SVME to be set. Weird.
|
---|
1785 | * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
|
---|
1786 | */
|
---|
1787 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_EFER_MSR))
|
---|
1788 | {
|
---|
1789 | pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
|
---|
1790 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
|
---|
1791 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
|
---|
1792 | }
|
---|
1793 |
|
---|
1794 | /* 64-bit MSRs. */
|
---|
1795 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
1796 | {
|
---|
1797 | /* Load these always as the guest may modify FS/GS base using MSRs in 64-bit mode which we don't intercept. */
|
---|
1798 | pVmcb->guest.FS.u64Base = pCtx->fs.u64Base;
|
---|
1799 | pVmcb->guest.GS.u64Base = pCtx->gs.u64Base;
|
---|
1800 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
|
---|
1801 | }
|
---|
1802 | else
|
---|
1803 | {
|
---|
1804 | /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit from guest EFER otherwise AMD-V expects amd64 shadow paging. */
|
---|
1805 | if (pCtx->msrEFER & MSR_K6_EFER_LME)
|
---|
1806 | {
|
---|
1807 | pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
|
---|
1808 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
|
---|
1809 | }
|
---|
1810 | }
|
---|
1811 |
|
---|
1812 | /** @todo The following are used in 64-bit only (SYSCALL/SYSRET) but they might
|
---|
1813 | * be writable in 32-bit mode. Clarify with AMD spec. */
|
---|
1814 | pVmcb->guest.u64STAR = pCtx->msrSTAR;
|
---|
1815 | pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
|
---|
1816 | pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
|
---|
1817 | pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
|
---|
1818 | pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
|
---|
1819 |
|
---|
1820 | /*
|
---|
1821 | * Setup the PAT MSR (applicable for Nested Paging only).
|
---|
1822 | *
|
---|
1823 | * While guests can modify and see the modified values throug the shadow values,
|
---|
1824 | * we shall not honor any guest modifications of this MSR to ensure caching is always
|
---|
1825 | * enabled similar to how we always run with CR0.CD and NW bits cleared.
|
---|
1826 | *
|
---|
1827 | * For nested-guests this needs to always be set as well, see @bugref{7243#c109}.
|
---|
1828 | */
|
---|
1829 | pVmcb->guest.u64PAT = MSR_IA32_CR_PAT_INIT_VAL;
|
---|
1830 |
|
---|
1831 | /* Enable the last branch record bit if LBR virtualization is enabled. */
|
---|
1832 | if (pVmcb->ctrl.LbrVirt.n.u1LbrVirt)
|
---|
1833 | pVmcb->guest.u64DBGCTL = MSR_IA32_DEBUGCTL_LBR;
|
---|
1834 | }
|
---|
1835 |
|
---|
1836 |
|
---|
1837 | /**
|
---|
1838 | * Loads the guest (or nested-guest) debug state into the VMCB and programs the
|
---|
1839 | * necessary intercepts accordingly.
|
---|
1840 | *
|
---|
1841 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1842 | * @param pVmcb Pointer to the VM control block.
|
---|
1843 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1844 | *
|
---|
1845 | * @remarks No-long-jump zone!!!
|
---|
1846 | * @remarks Requires EFLAGS to be up-to-date in the VMCB!
|
---|
1847 | */
|
---|
1848 | static void hmR0SvmLoadSharedDebugState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1849 | {
|
---|
1850 | bool fInterceptMovDRx = false;
|
---|
1851 |
|
---|
1852 | /*
|
---|
1853 | * Anyone single stepping on the host side? If so, we'll have to use the
|
---|
1854 | * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
|
---|
1855 | * the VMM level like the VT-x implementations does.
|
---|
1856 | */
|
---|
1857 | bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
|
---|
1858 | if (fStepping)
|
---|
1859 | {
|
---|
1860 | pVCpu->hm.s.fClearTrapFlag = true;
|
---|
1861 | pVmcb->guest.u64RFlags |= X86_EFL_TF;
|
---|
1862 | fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
|
---|
1863 | }
|
---|
1864 |
|
---|
1865 | if ( fStepping
|
---|
1866 | || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
|
---|
1867 | {
|
---|
1868 | /*
|
---|
1869 | * Use the combined guest and host DRx values found in the hypervisor
|
---|
1870 | * register set because the debugger has breakpoints active or someone
|
---|
1871 | * is single stepping on the host side.
|
---|
1872 | *
|
---|
1873 | * Note! DBGF expects a clean DR6 state before executing guest code.
|
---|
1874 | */
|
---|
1875 | #if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
1876 | if ( CPUMIsGuestInLongModeEx(pCtx)
|
---|
1877 | && !CPUMIsHyperDebugStateActivePending(pVCpu))
|
---|
1878 | {
|
---|
1879 | CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
|
---|
1880 | Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
|
---|
1881 | Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
|
---|
1882 | }
|
---|
1883 | else
|
---|
1884 | #endif
|
---|
1885 | if (!CPUMIsHyperDebugStateActive(pVCpu))
|
---|
1886 | {
|
---|
1887 | CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
|
---|
1888 | Assert(!CPUMIsGuestDebugStateActive(pVCpu));
|
---|
1889 | Assert(CPUMIsHyperDebugStateActive(pVCpu));
|
---|
1890 | }
|
---|
1891 |
|
---|
1892 | /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
|
---|
1893 | if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
|
---|
1894 | || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
|
---|
1895 | {
|
---|
1896 | pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
|
---|
1897 | pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
|
---|
1898 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
|
---|
1899 | pVCpu->hm.s.fUsingHyperDR7 = true;
|
---|
1900 | }
|
---|
1901 |
|
---|
1902 | /** @todo If we cared, we could optimize to allow the guest to read registers
|
---|
1903 | * with the same values. */
|
---|
1904 | fInterceptMovDRx = true;
|
---|
1905 | Log5(("hmR0SvmLoadSharedDebugState: Loaded hyper DRx\n"));
|
---|
1906 | }
|
---|
1907 | else
|
---|
1908 | {
|
---|
1909 | /*
|
---|
1910 | * Update DR6, DR7 with the guest values if necessary.
|
---|
1911 | */
|
---|
1912 | if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
|
---|
1913 | || pVmcb->guest.u64DR6 != pCtx->dr[6])
|
---|
1914 | {
|
---|
1915 | pVmcb->guest.u64DR7 = pCtx->dr[7];
|
---|
1916 | pVmcb->guest.u64DR6 = pCtx->dr[6];
|
---|
1917 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
|
---|
1918 | pVCpu->hm.s.fUsingHyperDR7 = false;
|
---|
1919 | }
|
---|
1920 |
|
---|
1921 | /*
|
---|
1922 | * If the guest has enabled debug registers, we need to load them prior to
|
---|
1923 | * executing guest code so they'll trigger at the right time.
|
---|
1924 | */
|
---|
1925 | if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
|
---|
1926 | {
|
---|
1927 | #if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
1928 | if ( CPUMIsGuestInLongModeEx(pCtx)
|
---|
1929 | && !CPUMIsGuestDebugStateActivePending(pVCpu))
|
---|
1930 | {
|
---|
1931 | CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
|
---|
1932 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
|
---|
1933 | Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
|
---|
1934 | Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
|
---|
1935 | }
|
---|
1936 | else
|
---|
1937 | #endif
|
---|
1938 | if (!CPUMIsGuestDebugStateActive(pVCpu))
|
---|
1939 | {
|
---|
1940 | CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
|
---|
1941 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
|
---|
1942 | Assert(!CPUMIsHyperDebugStateActive(pVCpu));
|
---|
1943 | Assert(CPUMIsGuestDebugStateActive(pVCpu));
|
---|
1944 | }
|
---|
1945 | Log5(("hmR0SvmLoadSharedDebugState: Loaded guest DRx\n"));
|
---|
1946 | }
|
---|
1947 | /*
|
---|
1948 | * If no debugging enabled, we'll lazy load DR0-3. We don't need to
|
---|
1949 | * intercept #DB as DR6 is updated in the VMCB.
|
---|
1950 | *
|
---|
1951 | * Note! If we cared and dared, we could skip intercepting \#DB here.
|
---|
1952 | * However, \#DB shouldn't be performance critical, so we'll play safe
|
---|
1953 | * and keep the code similar to the VT-x code and always intercept it.
|
---|
1954 | */
|
---|
1955 | #if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
1956 | else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
|
---|
1957 | && !CPUMIsGuestDebugStateActive(pVCpu))
|
---|
1958 | #else
|
---|
1959 | else if (!CPUMIsGuestDebugStateActive(pVCpu))
|
---|
1960 | #endif
|
---|
1961 | {
|
---|
1962 | fInterceptMovDRx = true;
|
---|
1963 | }
|
---|
1964 | }
|
---|
1965 |
|
---|
1966 | Assert(pVmcb->ctrl.u32InterceptXcpt & RT_BIT_32(X86_XCPT_DB));
|
---|
1967 | if (fInterceptMovDRx)
|
---|
1968 | {
|
---|
1969 | if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
|
---|
1970 | || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
|
---|
1971 | {
|
---|
1972 | pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
|
---|
1973 | pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
|
---|
1974 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1975 | }
|
---|
1976 | }
|
---|
1977 | else
|
---|
1978 | {
|
---|
1979 | if ( pVmcb->ctrl.u16InterceptRdDRx
|
---|
1980 | || pVmcb->ctrl.u16InterceptWrDRx)
|
---|
1981 | {
|
---|
1982 | pVmcb->ctrl.u16InterceptRdDRx = 0;
|
---|
1983 | pVmcb->ctrl.u16InterceptWrDRx = 0;
|
---|
1984 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1985 | }
|
---|
1986 | }
|
---|
1987 | Log4(("hmR0SvmLoadSharedDebugState: DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
|
---|
1988 | }
|
---|
1989 |
|
---|
1990 |
|
---|
1991 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
1992 | /**
|
---|
1993 | * Loads the nested-guest APIC state (currently just the TPR).
|
---|
1994 | *
|
---|
1995 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1996 | * @param pVmcbNstGst Pointer to the nested-guest VM control block.
|
---|
1997 | */
|
---|
1998 | static void hmR0SvmLoadGuestApicStateNested(PVMCPU pVCpu, PSVMVMCB pVmcbNstGst)
|
---|
1999 | {
|
---|
2000 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_APIC_STATE))
|
---|
2001 | {
|
---|
2002 | Assert(pVmcbNstGst->ctrl.IntCtrl.n.u1VIntrMasking == 1); RT_NOREF(pVmcbNstGst);
|
---|
2003 | pVCpu->hm.s.svm.fSyncVTpr = false;
|
---|
2004 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_APIC_STATE);
|
---|
2005 | }
|
---|
2006 | }
|
---|
2007 |
|
---|
2008 |
|
---|
2009 | /**
|
---|
2010 | * Loads the nested-guest hardware virtualization state.
|
---|
2011 | *
|
---|
2012 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2013 | * @param pVmcbNstGst Pointer to the nested-guest VM control block.
|
---|
2014 | * @param pCtx Pointer to the guest-CPU or nested-guest-CPU context.
|
---|
2015 | */
|
---|
2016 | static void hmR0SvmLoadGuestHwvirtStateNested(PVMCPU pVCpu, PSVMVMCB pVmcbNstGst, PCPUMCTX pCtx)
|
---|
2017 | {
|
---|
2018 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_HWVIRT))
|
---|
2019 | {
|
---|
2020 | /*
|
---|
2021 | * Ensure the nested-guest pause-filter counters don't exceed the outer guest values esp.
|
---|
2022 | * since SVM doesn't have a preemption timer.
|
---|
2023 | *
|
---|
2024 | * We do this here rather than in hmR0SvmSetupVmcbNested() as we may have been executing the
|
---|
2025 | * nested-guest in IEM incl. PAUSE instructions which would update the pause-filter counters
|
---|
2026 | * and may continue execution in SVM R0 without a nested-guest #VMEXIT in between.
|
---|
2027 | */
|
---|
2028 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2029 | PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
|
---|
2030 | uint16_t const uGuestPauseFilterCount = pVM->hm.s.svm.cPauseFilter;
|
---|
2031 | uint16_t const uGuestPauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
|
---|
2032 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_PAUSE))
|
---|
2033 | {
|
---|
2034 | pVmcbNstGstCtrl->u16PauseFilterCount = RT_MIN(pCtx->hwvirt.svm.cPauseFilter, uGuestPauseFilterCount);
|
---|
2035 | pVmcbNstGstCtrl->u16PauseFilterThreshold = RT_MIN(pCtx->hwvirt.svm.cPauseFilterThreshold, uGuestPauseFilterThreshold);
|
---|
2036 | pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
2037 | }
|
---|
2038 | else
|
---|
2039 | {
|
---|
2040 | pVmcbNstGstCtrl->u16PauseFilterCount = uGuestPauseFilterCount;
|
---|
2041 | pVmcbNstGstCtrl->u16PauseFilterThreshold = uGuestPauseFilterThreshold;
|
---|
2042 | }
|
---|
2043 |
|
---|
2044 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_HWVIRT);
|
---|
2045 | }
|
---|
2046 | }
|
---|
2047 | #endif
|
---|
2048 |
|
---|
2049 | /**
|
---|
2050 | * Loads the guest APIC state (currently just the TPR).
|
---|
2051 | *
|
---|
2052 | * @returns VBox status code.
|
---|
2053 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2054 | * @param pVmcb Pointer to the VM control block.
|
---|
2055 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2056 | */
|
---|
2057 | static int hmR0SvmLoadGuestApicState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
2058 | {
|
---|
2059 | if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_APIC_STATE))
|
---|
2060 | return VINF_SUCCESS;
|
---|
2061 |
|
---|
2062 | int rc = VINF_SUCCESS;
|
---|
2063 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2064 | if ( PDMHasApic(pVM)
|
---|
2065 | && APICIsEnabled(pVCpu))
|
---|
2066 | {
|
---|
2067 | bool fPendingIntr;
|
---|
2068 | uint8_t u8Tpr;
|
---|
2069 | rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
|
---|
2070 | AssertRCReturn(rc, rc);
|
---|
2071 |
|
---|
2072 | /* Assume that we need to trap all TPR accesses and thus need not check on
|
---|
2073 | every #VMEXIT if we should update the TPR. */
|
---|
2074 | Assert(pVmcb->ctrl.IntCtrl.n.u1VIntrMasking);
|
---|
2075 | pVCpu->hm.s.svm.fSyncVTpr = false;
|
---|
2076 |
|
---|
2077 | /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
|
---|
2078 | if (pVM->hm.s.fTPRPatchingActive)
|
---|
2079 | {
|
---|
2080 | pCtx->msrLSTAR = u8Tpr;
|
---|
2081 | uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
|
---|
2082 |
|
---|
2083 | /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
|
---|
2084 | if (fPendingIntr)
|
---|
2085 | hmR0SvmSetMsrPermission(pCtx, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
|
---|
2086 | else
|
---|
2087 | {
|
---|
2088 | hmR0SvmSetMsrPermission(pCtx, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
2089 | pVCpu->hm.s.svm.fSyncVTpr = true;
|
---|
2090 | }
|
---|
2091 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
|
---|
2092 | }
|
---|
2093 | else
|
---|
2094 | {
|
---|
2095 | /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
|
---|
2096 | pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
|
---|
2097 |
|
---|
2098 | /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we can deliver the interrupt to the guest. */
|
---|
2099 | if (fPendingIntr)
|
---|
2100 | pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
|
---|
2101 | else
|
---|
2102 | {
|
---|
2103 | pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
|
---|
2104 | pVCpu->hm.s.svm.fSyncVTpr = true;
|
---|
2105 | }
|
---|
2106 |
|
---|
2107 | pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_INT_CTRL);
|
---|
2108 | }
|
---|
2109 | }
|
---|
2110 |
|
---|
2111 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_APIC_STATE);
|
---|
2112 | return rc;
|
---|
2113 | }
|
---|
2114 |
|
---|
2115 |
|
---|
2116 | /**
|
---|
2117 | * Loads the exception interrupts required for guest (or nested-guest) execution in
|
---|
2118 | * the VMCB.
|
---|
2119 | *
|
---|
2120 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2121 | * @param pVmcb Pointer to the VM control block.
|
---|
2122 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2123 | */
|
---|
2124 | static void hmR0SvmLoadGuestXcptIntercepts(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
2125 | {
|
---|
2126 | /* If we modify intercepts from here, please check & adjust hmR0SvmLoadGuestXcptInterceptsNested()
|
---|
2127 | if required. */
|
---|
2128 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMM_GUEST_XCPT_INTERCEPTS))
|
---|
2129 | {
|
---|
2130 | /* Trap #UD for GIM provider (e.g. for hypercalls). */
|
---|
2131 | if (pVCpu->hm.s.fGIMTrapXcptUD)
|
---|
2132 | hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_UD);
|
---|
2133 | else
|
---|
2134 | hmR0SvmClearXcptIntercept(pVCpu, pCtx, pVmcb, X86_XCPT_UD);
|
---|
2135 |
|
---|
2136 | /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */
|
---|
2137 | if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
|
---|
2138 | hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_BP);
|
---|
2139 | else
|
---|
2140 | hmR0SvmClearXcptIntercept(pVCpu, pCtx, pVmcb, X86_XCPT_BP);
|
---|
2141 |
|
---|
2142 | /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmLoadSharedCR0(). */
|
---|
2143 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMM_GUEST_XCPT_INTERCEPTS);
|
---|
2144 | }
|
---|
2145 | }
|
---|
2146 |
|
---|
2147 |
|
---|
2148 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
2149 | /**
|
---|
2150 | * Merges guest and nested-guest intercepts for executing the nested-guest using
|
---|
2151 | * hardware-assisted SVM.
|
---|
2152 | *
|
---|
2153 | * This merges the guest and nested-guest intercepts in a way that if the outer
|
---|
2154 | * guest intercept is set we need to intercept it in the nested-guest as
|
---|
2155 | * well.
|
---|
2156 | *
|
---|
2157 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2158 | * @param pVmcbNstGst Pointer to the nested-guest VM control block.
|
---|
2159 | * @param pCtx Pointer to the nested-guest-CPU context.
|
---|
2160 | */
|
---|
2161 | static void hmR0SvmMergeVmcbCtrlsNested(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
2162 | {
|
---|
2163 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2164 | PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
2165 | PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
|
---|
2166 | PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
|
---|
2167 |
|
---|
2168 | /* Merge the guest's CR intercepts into the nested-guest VMCB. */
|
---|
2169 | pVmcbNstGstCtrl->u16InterceptRdCRx |= pVmcb->ctrl.u16InterceptRdCRx;
|
---|
2170 | pVmcbNstGstCtrl->u16InterceptWrCRx |= pVmcb->ctrl.u16InterceptWrCRx;
|
---|
2171 |
|
---|
2172 | /* Always intercept CR4 writes for tracking PGM mode changes. */
|
---|
2173 | pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(4);
|
---|
2174 |
|
---|
2175 | /* Without nested paging, intercept CR3 reads and writes as we load shadow page tables. */
|
---|
2176 | if (!pVM->hm.s.fNestedPaging)
|
---|
2177 | {
|
---|
2178 | pVmcbNstGstCtrl->u16InterceptRdCRx |= RT_BIT(3);
|
---|
2179 | pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(3);
|
---|
2180 | }
|
---|
2181 |
|
---|
2182 | /** @todo Figure out debugging with nested-guests, till then just intercept
|
---|
2183 | * all DR[0-15] accesses. */
|
---|
2184 | pVmcbNstGstCtrl->u16InterceptRdDRx |= 0xffff;
|
---|
2185 | pVmcbNstGstCtrl->u16InterceptWrDRx |= 0xffff;
|
---|
2186 |
|
---|
2187 | /*
|
---|
2188 | * Merge the guest's exception intercepts into the nested-guest VMCB.
|
---|
2189 | *
|
---|
2190 | * - \#UD: Exclude these as the outer guest's GIM hypercalls are not applicable
|
---|
2191 | * while executing the nested-guest.
|
---|
2192 | *
|
---|
2193 | * - \#BP: Exclude breakpoints set by the VM debugger for the outer guest. This can
|
---|
2194 | * be tweaked later depending on how we wish to implement breakpoints.
|
---|
2195 | *
|
---|
2196 | * Warning!! This ASSUMES we only intercept \#UD for hypercall purposes and \#BP
|
---|
2197 | * for VM debugger breakpoints, see hmR0SvmLoadGuestXcptIntercepts.
|
---|
2198 | */
|
---|
2199 | #ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
2200 | pVmcbNstGstCtrl->u32InterceptXcpt |= (pVmcb->ctrl.u32InterceptXcpt & ~( RT_BIT(X86_XCPT_UD)
|
---|
2201 | | RT_BIT(X86_XCPT_BP)));
|
---|
2202 | #else
|
---|
2203 | pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt;
|
---|
2204 | #endif
|
---|
2205 |
|
---|
2206 | /*
|
---|
2207 | * Adjust intercepts while executing the nested-guest that differ from the
|
---|
2208 | * outer guest intercepts.
|
---|
2209 | *
|
---|
2210 | * - VINTR: Exclude the outer guest intercept as we don't need to cause VINTR #VMEXITs
|
---|
2211 | * that belong to the nested-guest to the outer guest.
|
---|
2212 | *
|
---|
2213 | * - VMMCALL: Exclude the outer guest intercept as when it's also not intercepted by
|
---|
2214 | * the nested-guest, the physical CPU raises a \#UD exception as expected.
|
---|
2215 | */
|
---|
2216 | pVmcbNstGstCtrl->u64InterceptCtrl |= (pVmcb->ctrl.u64InterceptCtrl & ~( SVM_CTRL_INTERCEPT_VINTR
|
---|
2217 | | SVM_CTRL_INTERCEPT_VMMCALL))
|
---|
2218 | | HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS;
|
---|
2219 |
|
---|
2220 | Assert( (pVmcbNstGstCtrl->u64InterceptCtrl & HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS)
|
---|
2221 | == HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS);
|
---|
2222 |
|
---|
2223 | /* Finally, update the VMCB clean bits. */
|
---|
2224 | pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
2225 | }
|
---|
2226 | #endif
|
---|
2227 |
|
---|
2228 |
|
---|
2229 | /**
|
---|
2230 | * Sets up the appropriate function to run guest code.
|
---|
2231 | *
|
---|
2232 | * @returns VBox status code.
|
---|
2233 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2234 | *
|
---|
2235 | * @remarks No-long-jump zone!!!
|
---|
2236 | */
|
---|
2237 | static int hmR0SvmSetupVMRunHandler(PVMCPU pVCpu)
|
---|
2238 | {
|
---|
2239 | if (CPUMIsGuestInLongMode(pVCpu))
|
---|
2240 | {
|
---|
2241 | #ifndef VBOX_ENABLE_64_BITS_GUESTS
|
---|
2242 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
2243 | #endif
|
---|
2244 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
|
---|
2245 | #if HC_ARCH_BITS == 32
|
---|
2246 | /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
|
---|
2247 | pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
|
---|
2248 | #else
|
---|
2249 | /* 64-bit host or hybrid host. */
|
---|
2250 | pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
|
---|
2251 | #endif
|
---|
2252 | }
|
---|
2253 | else
|
---|
2254 | {
|
---|
2255 | /* Guest is not in long mode, use the 32-bit handler. */
|
---|
2256 | pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
|
---|
2257 | }
|
---|
2258 | return VINF_SUCCESS;
|
---|
2259 | }
|
---|
2260 |
|
---|
2261 |
|
---|
2262 | /**
|
---|
2263 | * Enters the AMD-V session.
|
---|
2264 | *
|
---|
2265 | * @returns VBox status code.
|
---|
2266 | * @param pVM The cross context VM structure.
|
---|
2267 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2268 | * @param pCpu Pointer to the CPU info struct.
|
---|
2269 | */
|
---|
2270 | VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
|
---|
2271 | {
|
---|
2272 | AssertPtr(pVM);
|
---|
2273 | AssertPtr(pVCpu);
|
---|
2274 | Assert(pVM->hm.s.svm.fSupported);
|
---|
2275 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2276 | NOREF(pVM); NOREF(pCpu);
|
---|
2277 |
|
---|
2278 | LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
|
---|
2279 | Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
|
---|
2280 |
|
---|
2281 | pVCpu->hm.s.fLeaveDone = false;
|
---|
2282 | return VINF_SUCCESS;
|
---|
2283 | }
|
---|
2284 |
|
---|
2285 |
|
---|
2286 | /**
|
---|
2287 | * Thread-context callback for AMD-V.
|
---|
2288 | *
|
---|
2289 | * @param enmEvent The thread-context event.
|
---|
2290 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2291 | * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
|
---|
2292 | * @thread EMT(pVCpu)
|
---|
2293 | */
|
---|
2294 | VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
|
---|
2295 | {
|
---|
2296 | NOREF(fGlobalInit);
|
---|
2297 |
|
---|
2298 | switch (enmEvent)
|
---|
2299 | {
|
---|
2300 | case RTTHREADCTXEVENT_OUT:
|
---|
2301 | {
|
---|
2302 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2303 | Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
|
---|
2304 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
2305 |
|
---|
2306 | /* No longjmps (log-flush, locks) in this fragile context. */
|
---|
2307 | VMMRZCallRing3Disable(pVCpu);
|
---|
2308 |
|
---|
2309 | if (!pVCpu->hm.s.fLeaveDone)
|
---|
2310 | {
|
---|
2311 | hmR0SvmLeave(pVCpu);
|
---|
2312 | pVCpu->hm.s.fLeaveDone = true;
|
---|
2313 | }
|
---|
2314 |
|
---|
2315 | /* Leave HM context, takes care of local init (term). */
|
---|
2316 | int rc = HMR0LeaveCpu(pVCpu);
|
---|
2317 | AssertRC(rc); NOREF(rc);
|
---|
2318 |
|
---|
2319 | /* Restore longjmp state. */
|
---|
2320 | VMMRZCallRing3Enable(pVCpu);
|
---|
2321 | STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
|
---|
2322 | break;
|
---|
2323 | }
|
---|
2324 |
|
---|
2325 | case RTTHREADCTXEVENT_IN:
|
---|
2326 | {
|
---|
2327 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2328 | Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
|
---|
2329 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
2330 |
|
---|
2331 | /* No longjmps (log-flush, locks) in this fragile context. */
|
---|
2332 | VMMRZCallRing3Disable(pVCpu);
|
---|
2333 |
|
---|
2334 | /*
|
---|
2335 | * Initialize the bare minimum state required for HM. This takes care of
|
---|
2336 | * initializing AMD-V if necessary (onlined CPUs, local init etc.)
|
---|
2337 | */
|
---|
2338 | int rc = HMR0EnterCpu(pVCpu);
|
---|
2339 | AssertRC(rc); NOREF(rc);
|
---|
2340 | Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
|
---|
2341 |
|
---|
2342 | pVCpu->hm.s.fLeaveDone = false;
|
---|
2343 |
|
---|
2344 | /* Restore longjmp state. */
|
---|
2345 | VMMRZCallRing3Enable(pVCpu);
|
---|
2346 | break;
|
---|
2347 | }
|
---|
2348 |
|
---|
2349 | default:
|
---|
2350 | break;
|
---|
2351 | }
|
---|
2352 | }
|
---|
2353 |
|
---|
2354 |
|
---|
2355 | /**
|
---|
2356 | * Saves the host state.
|
---|
2357 | *
|
---|
2358 | * @returns VBox status code.
|
---|
2359 | * @param pVM The cross context VM structure.
|
---|
2360 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2361 | *
|
---|
2362 | * @remarks No-long-jump zone!!!
|
---|
2363 | */
|
---|
2364 | VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
|
---|
2365 | {
|
---|
2366 | NOREF(pVM);
|
---|
2367 | NOREF(pVCpu);
|
---|
2368 | /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
|
---|
2369 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
|
---|
2370 | return VINF_SUCCESS;
|
---|
2371 | }
|
---|
2372 |
|
---|
2373 |
|
---|
2374 | /**
|
---|
2375 | * Loads the guest state into the VMCB.
|
---|
2376 | *
|
---|
2377 | * The CPU state will be loaded from these fields on every successful VM-entry.
|
---|
2378 | * Also sets up the appropriate VMRUN function to execute guest code based on
|
---|
2379 | * the guest CPU mode.
|
---|
2380 | *
|
---|
2381 | * @returns VBox status code.
|
---|
2382 | * @param pVM The cross context VM structure.
|
---|
2383 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2384 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2385 | *
|
---|
2386 | * @remarks No-long-jump zone!!!
|
---|
2387 | */
|
---|
2388 | static int hmR0SvmLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
2389 | {
|
---|
2390 | HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
|
---|
2391 |
|
---|
2392 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
2393 | AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
|
---|
2394 |
|
---|
2395 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
|
---|
2396 |
|
---|
2397 | int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcb, pCtx);
|
---|
2398 | AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestControlRegs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
2399 |
|
---|
2400 | hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcb, pCtx);
|
---|
2401 | hmR0SvmLoadGuestMsrs(pVCpu, pVmcb, pCtx);
|
---|
2402 |
|
---|
2403 | pVmcb->guest.u64RIP = pCtx->rip;
|
---|
2404 | pVmcb->guest.u64RSP = pCtx->rsp;
|
---|
2405 | pVmcb->guest.u64RFlags = pCtx->eflags.u32;
|
---|
2406 | pVmcb->guest.u64RAX = pCtx->rax;
|
---|
2407 |
|
---|
2408 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
2409 | if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
|
---|
2410 | {
|
---|
2411 | Assert(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VGIF);
|
---|
2412 | pVmcb->ctrl.IntCtrl.n.u1VGif = pCtx->hwvirt.fGif;
|
---|
2413 | }
|
---|
2414 | #endif
|
---|
2415 |
|
---|
2416 | rc = hmR0SvmLoadGuestApicState(pVCpu, pVmcb, pCtx);
|
---|
2417 | AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
2418 |
|
---|
2419 | hmR0SvmLoadGuestXcptIntercepts(pVCpu, pVmcb, pCtx);
|
---|
2420 |
|
---|
2421 | rc = hmR0SvmSetupVMRunHandler(pVCpu);
|
---|
2422 | AssertLogRelMsgRCReturn(rc, ("hmR0SvmSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
2423 |
|
---|
2424 | /* Clear any unused and reserved bits. */
|
---|
2425 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
|
---|
2426 | | HM_CHANGED_GUEST_RSP
|
---|
2427 | | HM_CHANGED_GUEST_RFLAGS
|
---|
2428 | | HM_CHANGED_GUEST_SYSENTER_CS_MSR
|
---|
2429 | | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
|
---|
2430 | | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
|
---|
2431 | | HM_CHANGED_GUEST_HWVIRT /* Unused. */
|
---|
2432 | | HM_CHANGED_VMM_GUEST_LAZY_MSRS
|
---|
2433 | | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
|
---|
2434 | | HM_CHANGED_SVM_RESERVED2
|
---|
2435 | | HM_CHANGED_SVM_RESERVED3
|
---|
2436 | | HM_CHANGED_SVM_RESERVED4);
|
---|
2437 |
|
---|
2438 | /* All the guest state bits should be loaded except maybe the host context and/or shared host/guest bits. */
|
---|
2439 | AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
|
---|
2440 | || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
|
---|
2441 | ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
|
---|
2442 |
|
---|
2443 | #ifdef VBOX_STRICT
|
---|
2444 | hmR0SvmLogState(pVCpu, pVmcb, pCtx, "hmR0SvmLoadGuestState", 0 /* fFlags */, 0 /* uVerbose */);
|
---|
2445 | #endif
|
---|
2446 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
|
---|
2447 | return rc;
|
---|
2448 | }
|
---|
2449 |
|
---|
2450 |
|
---|
2451 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
2452 | /**
|
---|
2453 | * Merges the guest and nested-guest MSR permission bitmap.
|
---|
2454 | *
|
---|
2455 | * If the guest is intercepting an MSR we need to intercept it regardless of
|
---|
2456 | * whether the nested-guest is intercepting it or not.
|
---|
2457 | *
|
---|
2458 | * @param pHostCpu Pointer to the physical CPU HM info. struct.
|
---|
2459 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2460 | * @param pCtx Pointer to the nested-guest-CPU context.
|
---|
2461 | */
|
---|
2462 | static void hmR0SvmMergeMsrpmNested(PHMGLOBALCPUINFO pHostCpu, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
2463 | {
|
---|
2464 | uint64_t const *pu64GstMsrpm = (uint64_t const *)pVCpu->hm.s.svm.pvMsrBitmap;
|
---|
2465 | uint64_t const *pu64NstGstMsrpm = (uint64_t const *)pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap);
|
---|
2466 | uint64_t *pu64DstMsrpm = (uint64_t *)pHostCpu->n.svm.pvNstGstMsrpm;
|
---|
2467 |
|
---|
2468 | /* MSRPM bytes from offset 0x1800 are reserved, so we stop merging there. */
|
---|
2469 | uint32_t const offRsvdQwords = 0x1800 >> 3;
|
---|
2470 | for (uint32_t i = 0; i < offRsvdQwords; i++)
|
---|
2471 | pu64DstMsrpm[i] = pu64NstGstMsrpm[i] | pu64GstMsrpm[i];
|
---|
2472 | }
|
---|
2473 |
|
---|
2474 |
|
---|
2475 | /**
|
---|
2476 | * Caches the nested-guest VMCB fields before we modify them for execution using
|
---|
2477 | * hardware-assisted SVM.
|
---|
2478 | *
|
---|
2479 | * @returns true if the VMCB was previously already cached, false otherwise.
|
---|
2480 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2481 | *
|
---|
2482 | * @sa HMSvmNstGstVmExitNotify.
|
---|
2483 | */
|
---|
2484 | static bool hmR0SvmCacheVmcbNested(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
2485 | {
|
---|
2486 | /*
|
---|
2487 | * Cache the nested-guest programmed VMCB fields if we have not cached it yet.
|
---|
2488 | * Otherwise we risk re-caching the values we may have modified, see @bugref{7243#c44}.
|
---|
2489 | *
|
---|
2490 | * Nested-paging CR3 is not saved back into the VMCB on #VMEXIT, hence no need to
|
---|
2491 | * cache and restore it, see AMD spec. 15.25.4 "Nested Paging and VMRUN/#VMEXIT".
|
---|
2492 | */
|
---|
2493 | bool const fWasCached = pCtx->hwvirt.svm.fHMCachedVmcb;
|
---|
2494 | if (!fWasCached)
|
---|
2495 | {
|
---|
2496 | PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
|
---|
2497 | PCSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
|
---|
2498 | PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
|
---|
2499 |
|
---|
2500 | pVmcbNstGstCache->u16InterceptRdCRx = pVmcbNstGstCtrl->u16InterceptRdCRx;
|
---|
2501 | pVmcbNstGstCache->u16InterceptWrCRx = pVmcbNstGstCtrl->u16InterceptWrCRx;
|
---|
2502 | pVmcbNstGstCache->u16InterceptRdDRx = pVmcbNstGstCtrl->u16InterceptRdDRx;
|
---|
2503 | pVmcbNstGstCache->u16InterceptWrDRx = pVmcbNstGstCtrl->u16InterceptWrDRx;
|
---|
2504 | pVmcbNstGstCache->u16PauseFilterThreshold = pVmcbNstGstCtrl->u16PauseFilterThreshold;
|
---|
2505 | pVmcbNstGstCache->u16PauseFilterCount = pVmcbNstGstCtrl->u16PauseFilterCount;
|
---|
2506 | pVmcbNstGstCache->u32InterceptXcpt = pVmcbNstGstCtrl->u32InterceptXcpt;
|
---|
2507 | pVmcbNstGstCache->u64InterceptCtrl = pVmcbNstGstCtrl->u64InterceptCtrl;
|
---|
2508 | pVmcbNstGstCache->u64TSCOffset = pVmcbNstGstCtrl->u64TSCOffset;
|
---|
2509 | pVmcbNstGstCache->fVIntrMasking = pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking;
|
---|
2510 | pVmcbNstGstCache->fNestedPaging = pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging;
|
---|
2511 | pVmcbNstGstCache->fLbrVirt = pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt;
|
---|
2512 | pCtx->hwvirt.svm.fHMCachedVmcb = true;
|
---|
2513 | Log4(("hmR0SvmCacheVmcbNested: Cached VMCB fields\n"));
|
---|
2514 | }
|
---|
2515 |
|
---|
2516 | return fWasCached;
|
---|
2517 | }
|
---|
2518 |
|
---|
2519 |
|
---|
2520 | /**
|
---|
2521 | * Sets up the nested-guest VMCB for execution using hardware-assisted SVM.
|
---|
2522 | *
|
---|
2523 | * This is done the first time we enter nested-guest execution using SVM R0
|
---|
2524 | * until the nested-guest \#VMEXIT (not to be confused with physical CPU
|
---|
2525 | * \#VMEXITs which may or may not cause a corresponding nested-guest \#VMEXIT).
|
---|
2526 | *
|
---|
2527 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2528 | * @param pCtx Pointer to the nested-guest-CPU context.
|
---|
2529 | */
|
---|
2530 | static void hmR0SvmSetupVmcbNested(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
2531 | {
|
---|
2532 | PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
|
---|
2533 | PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
|
---|
2534 |
|
---|
2535 | /*
|
---|
2536 | * First cache the nested-guest VMCB fields we may potentially modify.
|
---|
2537 | */
|
---|
2538 | bool const fVmcbCached = hmR0SvmCacheVmcbNested(pVCpu, pCtx);
|
---|
2539 | if (!fVmcbCached)
|
---|
2540 | {
|
---|
2541 | /*
|
---|
2542 | * The IOPM of the nested-guest can be ignored because the the guest always
|
---|
2543 | * intercepts all IO port accesses. Thus, we'll swap to the guest IOPM rather
|
---|
2544 | * than the nested-guest IOPM and swap the field back on the #VMEXIT.
|
---|
2545 | */
|
---|
2546 | pVmcbNstGstCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
|
---|
2547 |
|
---|
2548 | /*
|
---|
2549 | * Use the same nested-paging as the outer guest. We can't dynamically switch off
|
---|
2550 | * nested-paging suddenly while executing a VM (see assertion at the end of
|
---|
2551 | * Trap0eHandler() in PGMAllBth.h).
|
---|
2552 | */
|
---|
2553 | pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging = pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging;
|
---|
2554 |
|
---|
2555 | /* Always enable V_INTR_MASKING as we do not want to allow access to the physical APIC TPR. */
|
---|
2556 | pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking = 1;
|
---|
2557 |
|
---|
2558 | #ifdef DEBUG_ramshankar
|
---|
2559 | /* For debugging purposes - copy the LBR info. from outer guest VMCB. */
|
---|
2560 | pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt = pVmcb->ctrl.LbrVirt.n.u1LbrVirt;
|
---|
2561 | #endif
|
---|
2562 |
|
---|
2563 | /*
|
---|
2564 | * If we don't expose Virtualized-VMSAVE/VMLOAD feature to the outer guest, we
|
---|
2565 | * need to intercept VMSAVE/VMLOAD instructions executed by the nested-guest.
|
---|
2566 | */
|
---|
2567 | if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
|
---|
2568 | pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
|
---|
2569 | | SVM_CTRL_INTERCEPT_VMLOAD;
|
---|
2570 |
|
---|
2571 | /*
|
---|
2572 | * If we don't expose Virtual GIF feature to the outer guest, we need to intercept
|
---|
2573 | * CLGI/STGI instructions executed by the nested-guest.
|
---|
2574 | */
|
---|
2575 | if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVGif)
|
---|
2576 | pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
|
---|
2577 | | SVM_CTRL_INTERCEPT_STGI;
|
---|
2578 |
|
---|
2579 | /* Merge the guest and nested-guest intercepts. */
|
---|
2580 | hmR0SvmMergeVmcbCtrlsNested(pVCpu, pCtx);
|
---|
2581 |
|
---|
2582 | /* Update the VMCB clean bits. */
|
---|
2583 | pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
2584 | }
|
---|
2585 | else
|
---|
2586 | {
|
---|
2587 | Assert(pVmcbNstGstCtrl->u64IOPMPhysAddr == g_HCPhysIOBitmap);
|
---|
2588 | Assert(RT_BOOL(pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging) == pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
|
---|
2589 | }
|
---|
2590 | }
|
---|
2591 |
|
---|
2592 |
|
---|
2593 | /**
|
---|
2594 | * Loads the nested-guest state into the VMCB.
|
---|
2595 | *
|
---|
2596 | * @returns VBox status code.
|
---|
2597 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2598 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2599 | *
|
---|
2600 | * @remarks No-long-jump zone!!!
|
---|
2601 | */
|
---|
2602 | static int hmR0SvmLoadGuestStateNested(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
2603 | {
|
---|
2604 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
|
---|
2605 |
|
---|
2606 | PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
|
---|
2607 | Assert(pVmcbNstGst);
|
---|
2608 |
|
---|
2609 | hmR0SvmSetupVmcbNested(pVCpu, pCtx);
|
---|
2610 |
|
---|
2611 | int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcbNstGst, pCtx);
|
---|
2612 | AssertRCReturn(rc, rc);
|
---|
2613 |
|
---|
2614 | /*
|
---|
2615 | * We need to load the entire state (including FS, GS etc.) as we could be continuing
|
---|
2616 | * to execute the nested-guest at any point (not just immediately after VMRUN) and thus
|
---|
2617 | * the VMCB can possibly be out-of-sync with the actual nested-guest state if it was
|
---|
2618 | * executed in IEM.
|
---|
2619 | */
|
---|
2620 | hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcbNstGst, pCtx);
|
---|
2621 | hmR0SvmLoadGuestMsrs(pVCpu, pVmcbNstGst, pCtx);
|
---|
2622 | hmR0SvmLoadGuestApicStateNested(pVCpu, pVmcbNstGst);
|
---|
2623 | hmR0SvmLoadGuestHwvirtStateNested(pVCpu, pVmcbNstGst, pCtx);
|
---|
2624 |
|
---|
2625 | pVmcbNstGst->guest.u64RIP = pCtx->rip;
|
---|
2626 | pVmcbNstGst->guest.u64RSP = pCtx->rsp;
|
---|
2627 | pVmcbNstGst->guest.u64RFlags = pCtx->eflags.u32;
|
---|
2628 | pVmcbNstGst->guest.u64RAX = pCtx->rax;
|
---|
2629 |
|
---|
2630 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
2631 | Assert(!pVmcbNstGst->ctrl.IntCtrl.n.u1VGifEnable); /* Nested VGIF not supported yet. */
|
---|
2632 | #endif
|
---|
2633 |
|
---|
2634 | rc = hmR0SvmSetupVMRunHandler(pVCpu);
|
---|
2635 | AssertRCReturn(rc, rc);
|
---|
2636 |
|
---|
2637 | /* Clear any unused and reserved bits. */
|
---|
2638 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
|
---|
2639 | | HM_CHANGED_GUEST_RSP
|
---|
2640 | | HM_CHANGED_GUEST_RFLAGS
|
---|
2641 | | HM_CHANGED_GUEST_SYSENTER_CS_MSR
|
---|
2642 | | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
|
---|
2643 | | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
|
---|
2644 | | HM_CHANGED_VMM_GUEST_XCPT_INTERCEPTS /* Unused. */
|
---|
2645 | | HM_CHANGED_VMM_GUEST_LAZY_MSRS
|
---|
2646 | | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
|
---|
2647 | | HM_CHANGED_SVM_RESERVED2
|
---|
2648 | | HM_CHANGED_SVM_RESERVED3
|
---|
2649 | | HM_CHANGED_SVM_RESERVED4);
|
---|
2650 |
|
---|
2651 | /* All the guest state bits should be loaded except maybe the host context and/or shared host/guest bits. */
|
---|
2652 | AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
|
---|
2653 | || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
|
---|
2654 | ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
|
---|
2655 |
|
---|
2656 | #ifdef VBOX_STRICT
|
---|
2657 | hmR0SvmLogState(pVCpu, pVmcbNstGst, pCtx, "hmR0SvmLoadGuestStateNested", HMSVM_LOG_ALL, 0 /* uVerbose */);
|
---|
2658 | #endif
|
---|
2659 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
|
---|
2660 | return rc;
|
---|
2661 | }
|
---|
2662 | #endif /* VBOX_WITH_NESTED_HWVIRT */
|
---|
2663 |
|
---|
2664 |
|
---|
2665 | /**
|
---|
2666 | * Loads the state shared between the host and guest (or nested-guest) into the
|
---|
2667 | * VMCB.
|
---|
2668 | *
|
---|
2669 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2670 | * @param pVmcb Pointer to the VM control block.
|
---|
2671 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2672 | *
|
---|
2673 | * @remarks No-long-jump zone!!!
|
---|
2674 | */
|
---|
2675 | static void hmR0SvmLoadSharedState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
2676 | {
|
---|
2677 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2678 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
2679 |
|
---|
2680 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
|
---|
2681 | {
|
---|
2682 | hmR0SvmLoadSharedCR0(pVCpu, pVmcb, pCtx);
|
---|
2683 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
2684 | }
|
---|
2685 |
|
---|
2686 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
|
---|
2687 | {
|
---|
2688 | /** @todo Figure out stepping with nested-guest. */
|
---|
2689 | if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
2690 | hmR0SvmLoadSharedDebugState(pVCpu, pVmcb, pCtx);
|
---|
2691 | else
|
---|
2692 | {
|
---|
2693 | pVmcb->guest.u64DR6 = pCtx->dr[6];
|
---|
2694 | pVmcb->guest.u64DR7 = pCtx->dr[7];
|
---|
2695 | Log4(("hmR0SvmLoadSharedState: DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
|
---|
2696 | }
|
---|
2697 |
|
---|
2698 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
|
---|
2699 | }
|
---|
2700 |
|
---|
2701 | /* Unused on AMD-V (no lazy MSRs). */
|
---|
2702 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMM_GUEST_LAZY_MSRS);
|
---|
2703 |
|
---|
2704 | AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
|
---|
2705 | ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
|
---|
2706 | }
|
---|
2707 |
|
---|
2708 |
|
---|
2709 | /**
|
---|
2710 | * Saves the guest (or nested-guest) state from the VMCB into the guest-CPU
|
---|
2711 | * context.
|
---|
2712 | *
|
---|
2713 | * Currently there is no residual state left in the CPU that is not updated in the
|
---|
2714 | * VMCB.
|
---|
2715 | *
|
---|
2716 | * @returns VBox status code.
|
---|
2717 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2718 | * @param pMixedCtx Pointer to the guest-CPU or nested-guest-CPU
|
---|
2719 | * context. The data may be out-of-sync. Make sure to
|
---|
2720 | * update the required fields before using them.
|
---|
2721 | * @param pVmcb Pointer to the VM control block.
|
---|
2722 | */
|
---|
2723 | static void hmR0SvmSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PCSVMVMCB pVmcb)
|
---|
2724 | {
|
---|
2725 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
2726 |
|
---|
2727 | pMixedCtx->rip = pVmcb->guest.u64RIP;
|
---|
2728 | pMixedCtx->rsp = pVmcb->guest.u64RSP;
|
---|
2729 | pMixedCtx->eflags.u32 = pVmcb->guest.u64RFlags;
|
---|
2730 | pMixedCtx->rax = pVmcb->guest.u64RAX;
|
---|
2731 |
|
---|
2732 | PCSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
|
---|
2733 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
2734 | if (!CPUMIsGuestInSvmNestedHwVirtMode(pMixedCtx))
|
---|
2735 | {
|
---|
2736 | if (pVmcbCtrl->IntCtrl.n.u1VGifEnable)
|
---|
2737 | {
|
---|
2738 | /*
|
---|
2739 | * Guest Virtual GIF (Global Interrupt Flag).
|
---|
2740 | * We don't yet support passing VGIF feature to the guest.
|
---|
2741 | */
|
---|
2742 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fVGif);
|
---|
2743 | pMixedCtx->hwvirt.fGif = pVmcbCtrl->IntCtrl.n.u1VGif;
|
---|
2744 | }
|
---|
2745 | }
|
---|
2746 | else
|
---|
2747 | {
|
---|
2748 | /*
|
---|
2749 | * Nested-guest interrupt pending.
|
---|
2750 | * Sync nested-guest's V_IRQ and its force-flag.
|
---|
2751 | */
|
---|
2752 | if ( !pVmcbCtrl->IntCtrl.n.u1VIrqPending
|
---|
2753 | && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
|
---|
2754 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
|
---|
2755 | }
|
---|
2756 | #endif
|
---|
2757 |
|
---|
2758 | /*
|
---|
2759 | * Guest interrupt shadow.
|
---|
2760 | */
|
---|
2761 | if (pVmcbCtrl->IntShadow.n.u1IntShadow)
|
---|
2762 | EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
|
---|
2763 | else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
2764 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
2765 |
|
---|
2766 | /*
|
---|
2767 | * Guest control registers: CR0, CR2, CR3 (handled at the end).
|
---|
2768 | * Accesses to other control registers are always intercepted.
|
---|
2769 | */
|
---|
2770 | pMixedCtx->cr2 = pVmcb->guest.u64CR2;
|
---|
2771 |
|
---|
2772 | /* If we're not intercepting changes to CR0 TS & MP bits, sync those bits here. */
|
---|
2773 | if (!(pVmcbCtrl->u16InterceptWrCRx & RT_BIT(0)))
|
---|
2774 | {
|
---|
2775 | pMixedCtx->cr0 = (pMixedCtx->cr0 & ~(X86_CR0_TS | X86_CR0_MP))
|
---|
2776 | | (pVmcb->guest.u64CR0 & (X86_CR0_TS | X86_CR0_MP));
|
---|
2777 | }
|
---|
2778 |
|
---|
2779 | /*
|
---|
2780 | * Guest MSRs.
|
---|
2781 | */
|
---|
2782 | pMixedCtx->msrSTAR = pVmcb->guest.u64STAR; /* legacy syscall eip, cs & ss */
|
---|
2783 | pMixedCtx->msrLSTAR = pVmcb->guest.u64LSTAR; /* 64-bit mode syscall rip */
|
---|
2784 | pMixedCtx->msrCSTAR = pVmcb->guest.u64CSTAR; /* compatibility mode syscall rip */
|
---|
2785 | pMixedCtx->msrSFMASK = pVmcb->guest.u64SFMASK; /* syscall flag mask */
|
---|
2786 | pMixedCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase; /* swapgs exchange value */
|
---|
2787 | pMixedCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS;
|
---|
2788 | pMixedCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP;
|
---|
2789 | pMixedCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP;
|
---|
2790 |
|
---|
2791 | /*
|
---|
2792 | * Guest segment registers (includes FS, GS base MSRs for 64-bit guests).
|
---|
2793 | */
|
---|
2794 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, CS, cs);
|
---|
2795 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, SS, ss);
|
---|
2796 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, DS, ds);
|
---|
2797 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, ES, es);
|
---|
2798 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, FS, fs);
|
---|
2799 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, GS, gs);
|
---|
2800 |
|
---|
2801 | /*
|
---|
2802 | * Correct the hidden CS granularity bit. Haven't seen it being wrong in any other
|
---|
2803 | * register (yet).
|
---|
2804 | */
|
---|
2805 | /** @todo SELM might need to be fixed as it too should not care about the
|
---|
2806 | * granularity bit. See @bugref{6785}. */
|
---|
2807 | if ( !pMixedCtx->cs.Attr.n.u1Granularity
|
---|
2808 | && pMixedCtx->cs.Attr.n.u1Present
|
---|
2809 | && pMixedCtx->cs.u32Limit > UINT32_C(0xfffff))
|
---|
2810 | {
|
---|
2811 | Assert((pMixedCtx->cs.u32Limit & 0xfff) == 0xfff);
|
---|
2812 | pMixedCtx->cs.Attr.n.u1Granularity = 1;
|
---|
2813 | }
|
---|
2814 |
|
---|
2815 | HMSVM_ASSERT_SEG_GRANULARITY(cs);
|
---|
2816 | HMSVM_ASSERT_SEG_GRANULARITY(ss);
|
---|
2817 | HMSVM_ASSERT_SEG_GRANULARITY(ds);
|
---|
2818 | HMSVM_ASSERT_SEG_GRANULARITY(es);
|
---|
2819 | HMSVM_ASSERT_SEG_GRANULARITY(fs);
|
---|
2820 | HMSVM_ASSERT_SEG_GRANULARITY(gs);
|
---|
2821 |
|
---|
2822 | /*
|
---|
2823 | * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the VMCB and uses that
|
---|
2824 | * and thus it's possible that when the CPL changes during guest execution that the SS DPL
|
---|
2825 | * isn't updated by AMD-V. Observed on some AMD Fusion CPUs with 64-bit guests.
|
---|
2826 | * See AMD spec. 15.5.1 "Basic operation".
|
---|
2827 | */
|
---|
2828 | Assert(!(pVmcb->guest.u8CPL & ~0x3));
|
---|
2829 | uint8_t const uCpl = pVmcb->guest.u8CPL;
|
---|
2830 | if (pMixedCtx->ss.Attr.n.u2Dpl != uCpl)
|
---|
2831 | {
|
---|
2832 | Log4(("hmR0SvmSaveGuestState: CPL differs. SS.DPL=%u, CPL=%u, overwriting SS.DPL!\n", pMixedCtx->ss.Attr.n.u2Dpl, uCpl));
|
---|
2833 | pMixedCtx->ss.Attr.n.u2Dpl = pVmcb->guest.u8CPL & 0x3;
|
---|
2834 | }
|
---|
2835 |
|
---|
2836 | /*
|
---|
2837 | * Guest TR.
|
---|
2838 | * Fixup TR attributes so it's compatible with Intel. Important when saved-states are used
|
---|
2839 | * between Intel and AMD. See @bugref{6208#c39}.
|
---|
2840 | * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
|
---|
2841 | */
|
---|
2842 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, TR, tr);
|
---|
2843 | if (pMixedCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
|
---|
2844 | {
|
---|
2845 | if ( pMixedCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
|
---|
2846 | || CPUMIsGuestInLongModeEx(pMixedCtx))
|
---|
2847 | pMixedCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
|
---|
2848 | else if (pMixedCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
|
---|
2849 | pMixedCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
|
---|
2850 | }
|
---|
2851 |
|
---|
2852 | /*
|
---|
2853 | * Guest Descriptor-Table registers (GDTR, IDTR, LDTR).
|
---|
2854 | */
|
---|
2855 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, LDTR, ldtr);
|
---|
2856 | pMixedCtx->gdtr.cbGdt = pVmcb->guest.GDTR.u32Limit;
|
---|
2857 | pMixedCtx->gdtr.pGdt = pVmcb->guest.GDTR.u64Base;
|
---|
2858 |
|
---|
2859 | pMixedCtx->idtr.cbIdt = pVmcb->guest.IDTR.u32Limit;
|
---|
2860 | pMixedCtx->idtr.pIdt = pVmcb->guest.IDTR.u64Base;
|
---|
2861 |
|
---|
2862 | /*
|
---|
2863 | * Guest Debug registers.
|
---|
2864 | */
|
---|
2865 | if (!pVCpu->hm.s.fUsingHyperDR7)
|
---|
2866 | {
|
---|
2867 | pMixedCtx->dr[6] = pVmcb->guest.u64DR6;
|
---|
2868 | pMixedCtx->dr[7] = pVmcb->guest.u64DR7;
|
---|
2869 | }
|
---|
2870 | else
|
---|
2871 | {
|
---|
2872 | Assert(pVmcb->guest.u64DR7 == CPUMGetHyperDR7(pVCpu));
|
---|
2873 | CPUMSetHyperDR6(pVCpu, pVmcb->guest.u64DR6);
|
---|
2874 | }
|
---|
2875 |
|
---|
2876 | /*
|
---|
2877 | * With Nested Paging, CR3 changes are not intercepted. Therefore, sync. it now.
|
---|
2878 | * This is done as the very last step of syncing the guest state, as PGMUpdateCR3() may cause longjmp's to ring-3.
|
---|
2879 | */
|
---|
2880 | if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
|
---|
2881 | && pMixedCtx->cr3 != pVmcb->guest.u64CR3)
|
---|
2882 | {
|
---|
2883 | CPUMSetGuestCR3(pVCpu, pVmcb->guest.u64CR3);
|
---|
2884 | PGMUpdateCR3(pVCpu, pVmcb->guest.u64CR3);
|
---|
2885 | }
|
---|
2886 |
|
---|
2887 | #ifdef VBOX_STRICT
|
---|
2888 | if (CPUMIsGuestInSvmNestedHwVirtMode(pMixedCtx))
|
---|
2889 | hmR0SvmLogState(pVCpu, pVmcb, pMixedCtx, "hmR0SvmSaveGuestStateNested", HMSVM_LOG_ALL & ~HMSVM_LOG_LBR, 0 /* uVerbose */);
|
---|
2890 | #endif
|
---|
2891 | }
|
---|
2892 |
|
---|
2893 |
|
---|
2894 | /**
|
---|
2895 | * Does the necessary state syncing before returning to ring-3 for any reason
|
---|
2896 | * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
|
---|
2897 | *
|
---|
2898 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2899 | *
|
---|
2900 | * @remarks No-long-jmp zone!!!
|
---|
2901 | */
|
---|
2902 | static void hmR0SvmLeave(PVMCPU pVCpu)
|
---|
2903 | {
|
---|
2904 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2905 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
2906 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
2907 |
|
---|
2908 | /*
|
---|
2909 | * !!! IMPORTANT !!!
|
---|
2910 | * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
|
---|
2911 | */
|
---|
2912 |
|
---|
2913 | /* Restore host FPU state if necessary and resync on next R0 reentry .*/
|
---|
2914 | if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu))
|
---|
2915 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0); /** @todo r=ramshankar: This shouldn't be necessary, it's set in HMR0EnterCpu. */
|
---|
2916 |
|
---|
2917 | /*
|
---|
2918 | * Restore host debug registers if necessary and resync on next R0 reentry.
|
---|
2919 | */
|
---|
2920 | #ifdef VBOX_STRICT
|
---|
2921 | if (CPUMIsHyperDebugStateActive(pVCpu))
|
---|
2922 | {
|
---|
2923 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb; /** @todo nested-guest. */
|
---|
2924 | Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
|
---|
2925 | Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
|
---|
2926 | }
|
---|
2927 | #endif
|
---|
2928 | if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */))
|
---|
2929 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);/** @todo r=ramshankar: This shouldn't be necessary, it's set in HMR0EnterCpu. */
|
---|
2930 |
|
---|
2931 | Assert(!CPUMIsHyperDebugStateActive(pVCpu));
|
---|
2932 | Assert(!CPUMIsGuestDebugStateActive(pVCpu));
|
---|
2933 |
|
---|
2934 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
|
---|
2935 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
|
---|
2936 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
|
---|
2937 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
|
---|
2938 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
|
---|
2939 |
|
---|
2940 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
|
---|
2941 | }
|
---|
2942 |
|
---|
2943 |
|
---|
2944 | /**
|
---|
2945 | * Leaves the AMD-V session.
|
---|
2946 | *
|
---|
2947 | * @returns VBox status code.
|
---|
2948 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2949 | */
|
---|
2950 | static int hmR0SvmLeaveSession(PVMCPU pVCpu)
|
---|
2951 | {
|
---|
2952 | HM_DISABLE_PREEMPT();
|
---|
2953 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
2954 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2955 |
|
---|
2956 | /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
|
---|
2957 | and done this from the SVMR0ThreadCtxCallback(). */
|
---|
2958 | if (!pVCpu->hm.s.fLeaveDone)
|
---|
2959 | {
|
---|
2960 | hmR0SvmLeave(pVCpu);
|
---|
2961 | pVCpu->hm.s.fLeaveDone = true;
|
---|
2962 | }
|
---|
2963 |
|
---|
2964 | /*
|
---|
2965 | * !!! IMPORTANT !!!
|
---|
2966 | * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
|
---|
2967 | */
|
---|
2968 |
|
---|
2969 | /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
|
---|
2970 | /* Deregister hook now that we've left HM context before re-enabling preemption. */
|
---|
2971 | VMMR0ThreadCtxHookDisable(pVCpu);
|
---|
2972 |
|
---|
2973 | /* Leave HM context. This takes care of local init (term). */
|
---|
2974 | int rc = HMR0LeaveCpu(pVCpu);
|
---|
2975 |
|
---|
2976 | HM_RESTORE_PREEMPT();
|
---|
2977 | return rc;
|
---|
2978 | }
|
---|
2979 |
|
---|
2980 |
|
---|
2981 | /**
|
---|
2982 | * Does the necessary state syncing before doing a longjmp to ring-3.
|
---|
2983 | *
|
---|
2984 | * @returns VBox status code.
|
---|
2985 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2986 | *
|
---|
2987 | * @remarks No-long-jmp zone!!!
|
---|
2988 | */
|
---|
2989 | static int hmR0SvmLongJmpToRing3(PVMCPU pVCpu)
|
---|
2990 | {
|
---|
2991 | return hmR0SvmLeaveSession(pVCpu);
|
---|
2992 | }
|
---|
2993 |
|
---|
2994 |
|
---|
2995 | /**
|
---|
2996 | * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
|
---|
2997 | * any remaining host state) before we longjump to ring-3 and possibly get
|
---|
2998 | * preempted.
|
---|
2999 | *
|
---|
3000 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3001 | * @param enmOperation The operation causing the ring-3 longjump.
|
---|
3002 | * @param pvUser The user argument (pointer to the possibly
|
---|
3003 | * out-of-date guest-CPU context).
|
---|
3004 | */
|
---|
3005 | static DECLCALLBACK(int) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
|
---|
3006 | {
|
---|
3007 | RT_NOREF_PV(pvUser);
|
---|
3008 |
|
---|
3009 | if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
|
---|
3010 | {
|
---|
3011 | /*
|
---|
3012 | * !!! IMPORTANT !!!
|
---|
3013 | * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
|
---|
3014 | * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
|
---|
3015 | */
|
---|
3016 | VMMRZCallRing3RemoveNotification(pVCpu);
|
---|
3017 | VMMRZCallRing3Disable(pVCpu);
|
---|
3018 | HM_DISABLE_PREEMPT();
|
---|
3019 |
|
---|
3020 | /* Restore host FPU state if necessary and resync on next R0 reentry. */
|
---|
3021 | CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
|
---|
3022 |
|
---|
3023 | /* Restore host debug registers if necessary and resync on next R0 reentry. */
|
---|
3024 | CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
|
---|
3025 |
|
---|
3026 | /* Deregister the hook now that we've left HM context before re-enabling preemption. */
|
---|
3027 | /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
|
---|
3028 | VMMR0ThreadCtxHookDisable(pVCpu);
|
---|
3029 |
|
---|
3030 | /* Leave HM context. This takes care of local init (term). */
|
---|
3031 | HMR0LeaveCpu(pVCpu);
|
---|
3032 |
|
---|
3033 | HM_RESTORE_PREEMPT();
|
---|
3034 | return VINF_SUCCESS;
|
---|
3035 | }
|
---|
3036 |
|
---|
3037 | Assert(pVCpu);
|
---|
3038 | Assert(pvUser);
|
---|
3039 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
3040 | HMSVM_ASSERT_PREEMPT_SAFE();
|
---|
3041 |
|
---|
3042 | VMMRZCallRing3Disable(pVCpu);
|
---|
3043 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
3044 |
|
---|
3045 | Log4(("hmR0SvmCallRing3Callback->hmR0SvmLongJmpToRing3\n"));
|
---|
3046 | int rc = hmR0SvmLongJmpToRing3(pVCpu);
|
---|
3047 | AssertRCReturn(rc, rc);
|
---|
3048 |
|
---|
3049 | VMMRZCallRing3Enable(pVCpu);
|
---|
3050 | return VINF_SUCCESS;
|
---|
3051 | }
|
---|
3052 |
|
---|
3053 |
|
---|
3054 | /**
|
---|
3055 | * Take necessary actions before going back to ring-3.
|
---|
3056 | *
|
---|
3057 | * An action requires us to go back to ring-3. This function does the necessary
|
---|
3058 | * steps before we can safely return to ring-3. This is not the same as longjmps
|
---|
3059 | * to ring-3, this is voluntary.
|
---|
3060 | *
|
---|
3061 | * @returns VBox status code.
|
---|
3062 | * @param pVM The cross context VM structure.
|
---|
3063 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3064 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3065 | * @param rcExit The reason for exiting to ring-3. Can be
|
---|
3066 | * VINF_VMM_UNKNOWN_RING3_CALL.
|
---|
3067 | */
|
---|
3068 | static int hmR0SvmExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
|
---|
3069 | {
|
---|
3070 | Assert(pVM);
|
---|
3071 | Assert(pVCpu);
|
---|
3072 | Assert(pCtx);
|
---|
3073 | HMSVM_ASSERT_PREEMPT_SAFE();
|
---|
3074 |
|
---|
3075 | /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
|
---|
3076 | VMMRZCallRing3Disable(pVCpu);
|
---|
3077 | Log4(("hmR0SvmExitToRing3: VCPU[%u]: rcExit=%d LocalFF=%#RX32 GlobalFF=%#RX32\n", pVCpu->idCpu, rcExit,
|
---|
3078 | pVCpu->fLocalForcedActions, pVM->fGlobalForcedActions));
|
---|
3079 |
|
---|
3080 | /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
|
---|
3081 | if (pVCpu->hm.s.Event.fPending)
|
---|
3082 | {
|
---|
3083 | hmR0SvmPendingEventToTrpmTrap(pVCpu);
|
---|
3084 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
3085 | }
|
---|
3086 |
|
---|
3087 | /* Sync. the necessary state for going back to ring-3. */
|
---|
3088 | hmR0SvmLeaveSession(pVCpu);
|
---|
3089 | STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
|
---|
3090 |
|
---|
3091 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
|
---|
3092 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
|
---|
3093 | | CPUM_CHANGED_LDTR
|
---|
3094 | | CPUM_CHANGED_GDTR
|
---|
3095 | | CPUM_CHANGED_IDTR
|
---|
3096 | | CPUM_CHANGED_TR
|
---|
3097 | | CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
3098 | if ( pVM->hm.s.fNestedPaging
|
---|
3099 | && CPUMIsGuestPagingEnabledEx(pCtx))
|
---|
3100 | {
|
---|
3101 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
|
---|
3102 | }
|
---|
3103 |
|
---|
3104 | /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
|
---|
3105 | if (rcExit != VINF_EM_RAW_INTERRUPT)
|
---|
3106 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
3107 |
|
---|
3108 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
|
---|
3109 |
|
---|
3110 | /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
|
---|
3111 | VMMRZCallRing3RemoveNotification(pVCpu);
|
---|
3112 | VMMRZCallRing3Enable(pVCpu);
|
---|
3113 |
|
---|
3114 | /*
|
---|
3115 | * If we're emulating an instruction, we shouldn't have any TRPM traps pending
|
---|
3116 | * and if we're injecting an event we should have a TRPM trap pending.
|
---|
3117 | */
|
---|
3118 | AssertReturnStmt(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu),
|
---|
3119 | pVCpu->hm.s.u32HMError = rcExit,
|
---|
3120 | VERR_SVM_IPE_5);
|
---|
3121 | AssertReturnStmt(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu),
|
---|
3122 | pVCpu->hm.s.u32HMError = rcExit,
|
---|
3123 | VERR_SVM_IPE_4);
|
---|
3124 |
|
---|
3125 | return rcExit;
|
---|
3126 | }
|
---|
3127 |
|
---|
3128 |
|
---|
3129 | /**
|
---|
3130 | * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
|
---|
3131 | * intercepts.
|
---|
3132 | *
|
---|
3133 | * @param pVM The cross context VM structure.
|
---|
3134 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3135 | * @param pCtx Pointer to the guest-CPU or nested-guest-CPU context.
|
---|
3136 | * @param pVmcb Pointer to the VM control block.
|
---|
3137 | *
|
---|
3138 | * @remarks No-long-jump zone!!!
|
---|
3139 | */
|
---|
3140 | static void hmR0SvmUpdateTscOffsetting(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMVMCB pVmcb)
|
---|
3141 | {
|
---|
3142 | /*
|
---|
3143 | * Avoid intercepting RDTSC/RDTSCP if we determined the host TSC (++) is stable
|
---|
3144 | * and in case of a nested-guest, if the nested-VMCB specifies it is not intercepting
|
---|
3145 | * RDTSC/RDTSCP as well.
|
---|
3146 | */
|
---|
3147 | bool fParavirtTsc;
|
---|
3148 | uint64_t uTscOffset;
|
---|
3149 | bool const fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
|
---|
3150 |
|
---|
3151 | bool fIntercept;
|
---|
3152 | if (fCanUseRealTsc)
|
---|
3153 | fIntercept = hmR0SvmClearCtrlIntercept(pVCpu, pCtx, pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
|
---|
3154 | else
|
---|
3155 | {
|
---|
3156 | hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
|
---|
3157 | fIntercept = true;
|
---|
3158 | }
|
---|
3159 |
|
---|
3160 | if (!fIntercept)
|
---|
3161 | {
|
---|
3162 | /* Apply the nested-guest VMCB's TSC offset over the guest TSC offset. */
|
---|
3163 | if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
3164 | uTscOffset = HMSvmNstGstApplyTscOffset(pVCpu, uTscOffset);
|
---|
3165 |
|
---|
3166 | /* Update the TSC offset in the VMCB and the relevant clean bits. */
|
---|
3167 | pVmcb->ctrl.u64TSCOffset = uTscOffset;
|
---|
3168 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
3169 |
|
---|
3170 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
|
---|
3171 | }
|
---|
3172 | else
|
---|
3173 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
|
---|
3174 |
|
---|
3175 | /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
|
---|
3176 | information before every VM-entry, hence we have nothing to do here at the moment. */
|
---|
3177 | if (fParavirtTsc)
|
---|
3178 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
|
---|
3179 | }
|
---|
3180 |
|
---|
3181 |
|
---|
3182 | /**
|
---|
3183 | * Sets an event as a pending event to be injected into the guest.
|
---|
3184 | *
|
---|
3185 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3186 | * @param pEvent Pointer to the SVM event.
|
---|
3187 | * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
|
---|
3188 | * page-fault.
|
---|
3189 | *
|
---|
3190 | * @remarks Statistics counter assumes this is a guest event being reflected to
|
---|
3191 | * the guest i.e. 'StatInjectPendingReflect' is incremented always.
|
---|
3192 | */
|
---|
3193 | DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
|
---|
3194 | {
|
---|
3195 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
3196 | Assert(pEvent->n.u1Valid);
|
---|
3197 |
|
---|
3198 | pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
|
---|
3199 | pVCpu->hm.s.Event.fPending = true;
|
---|
3200 | pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
|
---|
3201 |
|
---|
3202 | Log4(("hmR0SvmSetPendingEvent: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
|
---|
3203 | pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
|
---|
3204 | }
|
---|
3205 |
|
---|
3206 |
|
---|
3207 | /**
|
---|
3208 | * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
|
---|
3209 | *
|
---|
3210 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3211 | */
|
---|
3212 | DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
|
---|
3213 | {
|
---|
3214 | SVMEVENT Event;
|
---|
3215 | Event.u = 0;
|
---|
3216 | Event.n.u1Valid = 1;
|
---|
3217 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
3218 | Event.n.u8Vector = X86_XCPT_UD;
|
---|
3219 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3220 | }
|
---|
3221 |
|
---|
3222 |
|
---|
3223 | /**
|
---|
3224 | * Sets a debug (\#DB) exception as pending-for-injection into the VM.
|
---|
3225 | *
|
---|
3226 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3227 | */
|
---|
3228 | DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
|
---|
3229 | {
|
---|
3230 | SVMEVENT Event;
|
---|
3231 | Event.u = 0;
|
---|
3232 | Event.n.u1Valid = 1;
|
---|
3233 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
3234 | Event.n.u8Vector = X86_XCPT_DB;
|
---|
3235 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3236 | }
|
---|
3237 |
|
---|
3238 |
|
---|
3239 | /**
|
---|
3240 | * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
|
---|
3241 | *
|
---|
3242 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3243 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3244 | * @param u32ErrCode The error-code for the page-fault.
|
---|
3245 | * @param uFaultAddress The page fault address (CR2).
|
---|
3246 | *
|
---|
3247 | * @remarks This updates the guest CR2 with @a uFaultAddress!
|
---|
3248 | */
|
---|
3249 | DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
|
---|
3250 | {
|
---|
3251 | SVMEVENT Event;
|
---|
3252 | Event.u = 0;
|
---|
3253 | Event.n.u1Valid = 1;
|
---|
3254 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
3255 | Event.n.u8Vector = X86_XCPT_PF;
|
---|
3256 | Event.n.u1ErrorCodeValid = 1;
|
---|
3257 | Event.n.u32ErrorCode = u32ErrCode;
|
---|
3258 |
|
---|
3259 | /* Update CR2 of the guest. */
|
---|
3260 | if (pCtx->cr2 != uFaultAddress)
|
---|
3261 | {
|
---|
3262 | pCtx->cr2 = uFaultAddress;
|
---|
3263 | /* The VMCB clean bit for CR2 will be updated while re-loading the guest state. */
|
---|
3264 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR2);
|
---|
3265 | }
|
---|
3266 |
|
---|
3267 | hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
|
---|
3268 | }
|
---|
3269 |
|
---|
3270 |
|
---|
3271 | /**
|
---|
3272 | * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
|
---|
3273 | *
|
---|
3274 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3275 | */
|
---|
3276 | DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
|
---|
3277 | {
|
---|
3278 | SVMEVENT Event;
|
---|
3279 | Event.u = 0;
|
---|
3280 | Event.n.u1Valid = 1;
|
---|
3281 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
3282 | Event.n.u8Vector = X86_XCPT_MF;
|
---|
3283 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3284 | }
|
---|
3285 |
|
---|
3286 |
|
---|
3287 | /**
|
---|
3288 | * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
|
---|
3289 | *
|
---|
3290 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3291 | */
|
---|
3292 | DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
|
---|
3293 | {
|
---|
3294 | SVMEVENT Event;
|
---|
3295 | Event.u = 0;
|
---|
3296 | Event.n.u1Valid = 1;
|
---|
3297 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
3298 | Event.n.u8Vector = X86_XCPT_DF;
|
---|
3299 | Event.n.u1ErrorCodeValid = 1;
|
---|
3300 | Event.n.u32ErrorCode = 0;
|
---|
3301 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3302 | }
|
---|
3303 |
|
---|
3304 |
|
---|
3305 | /**
|
---|
3306 | * Injects an event into the guest upon VMRUN by updating the relevant field
|
---|
3307 | * in the VMCB.
|
---|
3308 | *
|
---|
3309 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3310 | * @param pVmcb Pointer to the guest VM control block.
|
---|
3311 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3312 | * @param pEvent Pointer to the event.
|
---|
3313 | *
|
---|
3314 | * @remarks No-long-jump zone!!!
|
---|
3315 | * @remarks Requires CR0!
|
---|
3316 | */
|
---|
3317 | DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx, PSVMEVENT pEvent)
|
---|
3318 | {
|
---|
3319 | NOREF(pVCpu); NOREF(pCtx);
|
---|
3320 |
|
---|
3321 | Assert(!pVmcb->ctrl.EventInject.n.u1Valid);
|
---|
3322 | pVmcb->ctrl.EventInject.u = pEvent->u;
|
---|
3323 | STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
|
---|
3324 |
|
---|
3325 | Log4(("hmR0SvmInjectEventVmcb: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
|
---|
3326 | pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
|
---|
3327 | }
|
---|
3328 |
|
---|
3329 |
|
---|
3330 |
|
---|
3331 | /**
|
---|
3332 | * Converts any TRPM trap into a pending HM event. This is typically used when
|
---|
3333 | * entering from ring-3 (not longjmp returns).
|
---|
3334 | *
|
---|
3335 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3336 | */
|
---|
3337 | static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
|
---|
3338 | {
|
---|
3339 | Assert(TRPMHasTrap(pVCpu));
|
---|
3340 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
3341 |
|
---|
3342 | uint8_t uVector;
|
---|
3343 | TRPMEVENT enmTrpmEvent;
|
---|
3344 | RTGCUINT uErrCode;
|
---|
3345 | RTGCUINTPTR GCPtrFaultAddress;
|
---|
3346 | uint8_t cbInstr;
|
---|
3347 |
|
---|
3348 | int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
|
---|
3349 | AssertRC(rc);
|
---|
3350 |
|
---|
3351 | SVMEVENT Event;
|
---|
3352 | Event.u = 0;
|
---|
3353 | Event.n.u1Valid = 1;
|
---|
3354 | Event.n.u8Vector = uVector;
|
---|
3355 |
|
---|
3356 | /* Refer AMD spec. 15.20 "Event Injection" for the format. */
|
---|
3357 | if (enmTrpmEvent == TRPM_TRAP)
|
---|
3358 | {
|
---|
3359 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
3360 | switch (uVector)
|
---|
3361 | {
|
---|
3362 | case X86_XCPT_NMI:
|
---|
3363 | {
|
---|
3364 | Event.n.u3Type = SVM_EVENT_NMI;
|
---|
3365 | break;
|
---|
3366 | }
|
---|
3367 |
|
---|
3368 | case X86_XCPT_PF:
|
---|
3369 | case X86_XCPT_DF:
|
---|
3370 | case X86_XCPT_TS:
|
---|
3371 | case X86_XCPT_NP:
|
---|
3372 | case X86_XCPT_SS:
|
---|
3373 | case X86_XCPT_GP:
|
---|
3374 | case X86_XCPT_AC:
|
---|
3375 | {
|
---|
3376 | Event.n.u1ErrorCodeValid = 1;
|
---|
3377 | Event.n.u32ErrorCode = uErrCode;
|
---|
3378 | break;
|
---|
3379 | }
|
---|
3380 | }
|
---|
3381 | }
|
---|
3382 | else if (enmTrpmEvent == TRPM_HARDWARE_INT)
|
---|
3383 | Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
|
---|
3384 | else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
|
---|
3385 | Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
|
---|
3386 | else
|
---|
3387 | AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
|
---|
3388 |
|
---|
3389 | rc = TRPMResetTrap(pVCpu);
|
---|
3390 | AssertRC(rc);
|
---|
3391 |
|
---|
3392 | Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
|
---|
3393 | !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
|
---|
3394 |
|
---|
3395 | hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
|
---|
3396 | }
|
---|
3397 |
|
---|
3398 |
|
---|
3399 | /**
|
---|
3400 | * Converts any pending SVM event into a TRPM trap. Typically used when leaving
|
---|
3401 | * AMD-V to execute any instruction.
|
---|
3402 | *
|
---|
3403 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3404 | */
|
---|
3405 | static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
|
---|
3406 | {
|
---|
3407 | Assert(pVCpu->hm.s.Event.fPending);
|
---|
3408 | Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
|
---|
3409 |
|
---|
3410 | SVMEVENT Event;
|
---|
3411 | Event.u = pVCpu->hm.s.Event.u64IntInfo;
|
---|
3412 |
|
---|
3413 | uint8_t uVector = Event.n.u8Vector;
|
---|
3414 | uint8_t uVectorType = Event.n.u3Type;
|
---|
3415 | TRPMEVENT enmTrapType = HMSvmEventToTrpmEventType(&Event);
|
---|
3416 |
|
---|
3417 | Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
|
---|
3418 |
|
---|
3419 | int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
|
---|
3420 | AssertRC(rc);
|
---|
3421 |
|
---|
3422 | if (Event.n.u1ErrorCodeValid)
|
---|
3423 | TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
|
---|
3424 |
|
---|
3425 | if ( uVectorType == SVM_EVENT_EXCEPTION
|
---|
3426 | && uVector == X86_XCPT_PF)
|
---|
3427 | {
|
---|
3428 | TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
|
---|
3429 | Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
|
---|
3430 | }
|
---|
3431 | else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
|
---|
3432 | {
|
---|
3433 | AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
|
---|
3434 | || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
|
---|
3435 | ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
|
---|
3436 | TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
|
---|
3437 | }
|
---|
3438 | pVCpu->hm.s.Event.fPending = false;
|
---|
3439 | }
|
---|
3440 |
|
---|
3441 |
|
---|
3442 | /**
|
---|
3443 | * Checks if the guest (or nested-guest) has an interrupt shadow active right
|
---|
3444 | * now.
|
---|
3445 | *
|
---|
3446 | * @returns @c true if the interrupt shadow is active, @c false otherwise.
|
---|
3447 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3448 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3449 | *
|
---|
3450 | * @remarks No-long-jump zone!!!
|
---|
3451 | * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
|
---|
3452 | */
|
---|
3453 | DECLINLINE(bool) hmR0SvmIsIntrShadowActive(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
3454 | {
|
---|
3455 | /*
|
---|
3456 | * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
|
---|
3457 | * inhibit interrupts or clear any existing interrupt-inhibition.
|
---|
3458 | */
|
---|
3459 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
3460 | {
|
---|
3461 | if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
|
---|
3462 | {
|
---|
3463 | /*
|
---|
3464 | * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
|
---|
3465 | * AMD-V, the flag's condition to be cleared is met and thus the cleared state is correct.
|
---|
3466 | */
|
---|
3467 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
3468 | return false;
|
---|
3469 | }
|
---|
3470 | return true;
|
---|
3471 | }
|
---|
3472 | return false;
|
---|
3473 | }
|
---|
3474 |
|
---|
3475 |
|
---|
3476 | /**
|
---|
3477 | * Sets the virtual interrupt intercept control in the VMCB.
|
---|
3478 | *
|
---|
3479 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3480 | * @param pVmcb Pointer to the VM control block.
|
---|
3481 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3482 | */
|
---|
3483 | DECLINLINE(void) hmR0SvmSetIntWindowExiting(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
3484 | {
|
---|
3485 | /*
|
---|
3486 | * When AVIC isn't supported, set up an interrupt window to cause a #VMEXIT when
|
---|
3487 | * the guest is ready to accept interrupts. At #VMEXIT, we then get the interrupt
|
---|
3488 | * from the APIC (updating ISR at the right time) and inject the interrupt.
|
---|
3489 | *
|
---|
3490 | * With AVIC is supported, we could make use of the asynchronously delivery without
|
---|
3491 | * #VMEXIT and we would be passing the AVIC page to SVM.
|
---|
3492 | *
|
---|
3493 | * In AMD-V, an interrupt window is achieved using a combination of
|
---|
3494 | * V_IRQ (an interrupt is pending), V_IGN_TPR (ignore TPR priorities) and the
|
---|
3495 | * VINTR intercept all being set.
|
---|
3496 | */
|
---|
3497 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
3498 | /*
|
---|
3499 | * Currently we don't overlay interupt windows and if there's any V_IRQ pending
|
---|
3500 | * in the nested-guest VMCB, we avoid setting up any interrupt window on behalf
|
---|
3501 | * of the outer guest.
|
---|
3502 | */
|
---|
3503 | /** @todo Does this mean we end up prioritizing virtual interrupt
|
---|
3504 | * delivery/window over a physical interrupt (from the outer guest)
|
---|
3505 | * might be pending? */
|
---|
3506 | bool const fEnableIntWindow = !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
|
---|
3507 | if (!fEnableIntWindow)
|
---|
3508 | {
|
---|
3509 | Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); RT_NOREF(pCtx);
|
---|
3510 | Log4(("Nested-guest V_IRQ already pending\n"));
|
---|
3511 | }
|
---|
3512 | #else
|
---|
3513 | RT_NOREF2(pVCpu, pCtx);
|
---|
3514 | bool const fEnableIntWindow = true;
|
---|
3515 | #endif
|
---|
3516 | if (fEnableIntWindow)
|
---|
3517 | {
|
---|
3518 | Assert(pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR);
|
---|
3519 | pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 1;
|
---|
3520 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
|
---|
3521 | hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_VINTR);
|
---|
3522 | Log4(("Set VINTR intercept\n"));
|
---|
3523 | }
|
---|
3524 | }
|
---|
3525 |
|
---|
3526 |
|
---|
3527 | /**
|
---|
3528 | * Clears the virtual interrupt intercept control in the VMCB as
|
---|
3529 | * we are figured the guest is unable process any interrupts
|
---|
3530 | * at this point of time.
|
---|
3531 | *
|
---|
3532 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3533 | * @param pVmcb Pointer to the VM control block.
|
---|
3534 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3535 | */
|
---|
3536 | DECLINLINE(void) hmR0SvmClearIntWindowExiting(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
3537 | {
|
---|
3538 | PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
|
---|
3539 | if ( pVmcbCtrl->IntCtrl.n.u1VIrqPending
|
---|
3540 | || (pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR))
|
---|
3541 | {
|
---|
3542 | pVmcbCtrl->IntCtrl.n.u1VIrqPending = 0;
|
---|
3543 | pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
|
---|
3544 | hmR0SvmClearCtrlIntercept(pVCpu, pCtx, pVmcb, SVM_CTRL_INTERCEPT_VINTR);
|
---|
3545 | Log4(("Cleared VINTR intercept\n"));
|
---|
3546 | }
|
---|
3547 | }
|
---|
3548 |
|
---|
3549 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
3550 | /**
|
---|
3551 | * Evaluates the event to be delivered to the nested-guest and sets it as the
|
---|
3552 | * pending event.
|
---|
3553 | *
|
---|
3554 | * @returns VBox strict status code.
|
---|
3555 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3556 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3557 | */
|
---|
3558 | static VBOXSTRICTRC hmR0SvmEvaluatePendingEventNested(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
3559 | {
|
---|
3560 | HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
|
---|
3561 |
|
---|
3562 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
3563 | Assert(pCtx->hwvirt.fGif);
|
---|
3564 | PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
3565 | Assert(pVmcb);
|
---|
3566 |
|
---|
3567 | bool const fVirtualGif = CPUMGetSvmNstGstVGif(pCtx);
|
---|
3568 | bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu, pCtx);
|
---|
3569 | bool const fBlockNmi = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
3570 |
|
---|
3571 | Log4Func(("fVirtualGif=%RTbool fBlockNmi=%RTbool fIntShadow=%RTbool Intr. pending=%RTbool NMI pending=%RTbool\n",
|
---|
3572 | fVirtualGif, fBlockNmi, fIntShadow, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
|
---|
3573 | VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
|
---|
3574 |
|
---|
3575 | /** @todo SMI. SMIs take priority over NMIs. */
|
---|
3576 |
|
---|
3577 | /*
|
---|
3578 | * Check if the guest can receive NMIs.
|
---|
3579 | * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
|
---|
3580 | * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
|
---|
3581 | */
|
---|
3582 | if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)
|
---|
3583 | && !fBlockNmi)
|
---|
3584 | {
|
---|
3585 | if ( fVirtualGif
|
---|
3586 | && !fIntShadow)
|
---|
3587 | {
|
---|
3588 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_NMI))
|
---|
3589 | {
|
---|
3590 | Log4(("Intercepting NMI -> #VMEXIT\n"));
|
---|
3591 | return IEMExecSvmVmexit(pVCpu, SVM_EXIT_NMI, 0, 0);
|
---|
3592 | }
|
---|
3593 |
|
---|
3594 | Log4(("Setting NMI pending for injection\n"));
|
---|
3595 | SVMEVENT Event;
|
---|
3596 | Event.u = 0;
|
---|
3597 | Event.n.u1Valid = 1;
|
---|
3598 | Event.n.u8Vector = X86_XCPT_NMI;
|
---|
3599 | Event.n.u3Type = SVM_EVENT_NMI;
|
---|
3600 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3601 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
|
---|
3602 | }
|
---|
3603 | else if (!fVirtualGif)
|
---|
3604 | hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
|
---|
3605 | else
|
---|
3606 | hmR0SvmSetIntWindowExiting(pVCpu, pVmcb, pCtx);
|
---|
3607 | }
|
---|
3608 | /*
|
---|
3609 | * Check if the nested-guest can receive external interrupts (generated by
|
---|
3610 | * the guest's PIC/APIC).
|
---|
3611 | *
|
---|
3612 | * External intercepts, NMI, SMI etc. from the physical CPU are -always- intercepted
|
---|
3613 | * when executing using hardware-assisted SVM, see HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS.
|
---|
3614 | *
|
---|
3615 | * External interrupts that are generated for the outer guest may be intercepted
|
---|
3616 | * depending on how the nested-guest VMCB was programmed by guest software.
|
---|
3617 | *
|
---|
3618 | * Physical interrupts always take priority over virtual interrupts,
|
---|
3619 | * see AMD spec. 15.21.4 "Injecting Virtual (INTR) Interrupts".
|
---|
3620 | */
|
---|
3621 | else if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
|
---|
3622 | && !pVCpu->hm.s.fSingleInstruction)
|
---|
3623 | {
|
---|
3624 | if ( fVirtualGif
|
---|
3625 | && !fIntShadow
|
---|
3626 | && CPUMCanSvmNstGstTakePhysIntr(pVCpu, pCtx))
|
---|
3627 | {
|
---|
3628 | if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INTR))
|
---|
3629 | {
|
---|
3630 | Log4(("Intercepting INTR -> #VMEXIT\n"));
|
---|
3631 | return IEMExecSvmVmexit(pVCpu, SVM_EXIT_INTR, 0, 0);
|
---|
3632 | }
|
---|
3633 |
|
---|
3634 | uint8_t u8Interrupt;
|
---|
3635 | int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
|
---|
3636 | if (RT_SUCCESS(rc))
|
---|
3637 | {
|
---|
3638 | Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
|
---|
3639 | SVMEVENT Event;
|
---|
3640 | Event.u = 0;
|
---|
3641 | Event.n.u1Valid = 1;
|
---|
3642 | Event.n.u8Vector = u8Interrupt;
|
---|
3643 | Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
|
---|
3644 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3645 | }
|
---|
3646 | else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
|
---|
3647 | {
|
---|
3648 | /*
|
---|
3649 | * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
|
---|
3650 | * updated eventually when the TPR is written by the guest.
|
---|
3651 | */
|
---|
3652 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
|
---|
3653 | }
|
---|
3654 | else
|
---|
3655 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
|
---|
3656 | }
|
---|
3657 | else if (!fVirtualGif)
|
---|
3658 | hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
|
---|
3659 | else
|
---|
3660 | hmR0SvmSetIntWindowExiting(pVCpu, pVmcb, pCtx);
|
---|
3661 | }
|
---|
3662 |
|
---|
3663 | return VINF_SUCCESS;
|
---|
3664 | }
|
---|
3665 | #endif
|
---|
3666 |
|
---|
3667 | /**
|
---|
3668 | * Evaluates the event to be delivered to the guest and sets it as the pending
|
---|
3669 | * event.
|
---|
3670 | *
|
---|
3671 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3672 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3673 | */
|
---|
3674 | static void hmR0SvmEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
3675 | {
|
---|
3676 | HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
|
---|
3677 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
3678 | PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
3679 | Assert(pVmcb);
|
---|
3680 |
|
---|
3681 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
3682 | bool const fGif = pCtx->hwvirt.fGif;
|
---|
3683 | #else
|
---|
3684 | bool const fGif = true;
|
---|
3685 | #endif
|
---|
3686 | bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu, pCtx);
|
---|
3687 | bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
|
---|
3688 | bool const fBlockNmi = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
3689 |
|
---|
3690 | Log4Func(("fGif=%RTbool fBlockNmi=%RTbool fBlockInt=%RTbool fIntShadow=%RTbool Intr. pending=%RTbool NMI pending=%RTbool\n",
|
---|
3691 | fGif, fBlockNmi, fBlockInt, fIntShadow,
|
---|
3692 | VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
|
---|
3693 | VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
|
---|
3694 |
|
---|
3695 | /** @todo SMI. SMIs take priority over NMIs. */
|
---|
3696 |
|
---|
3697 | /*
|
---|
3698 | * Check if the guest can receive NMIs.
|
---|
3699 | * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
|
---|
3700 | * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
|
---|
3701 | */
|
---|
3702 | if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)
|
---|
3703 | && !fBlockNmi)
|
---|
3704 | {
|
---|
3705 | if ( fGif
|
---|
3706 | && !fIntShadow)
|
---|
3707 | {
|
---|
3708 | Log4(("Setting NMI pending for injection\n"));
|
---|
3709 | SVMEVENT Event;
|
---|
3710 | Event.u = 0;
|
---|
3711 | Event.n.u1Valid = 1;
|
---|
3712 | Event.n.u8Vector = X86_XCPT_NMI;
|
---|
3713 | Event.n.u3Type = SVM_EVENT_NMI;
|
---|
3714 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3715 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
|
---|
3716 | }
|
---|
3717 | else if (!fGif)
|
---|
3718 | hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
|
---|
3719 | else
|
---|
3720 | hmR0SvmSetIntWindowExiting(pVCpu, pVmcb, pCtx);
|
---|
3721 | }
|
---|
3722 | /*
|
---|
3723 | * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
|
---|
3724 | * a valid interrupt we -must- deliver the interrupt. We can no longer re-request it from the APIC.
|
---|
3725 | */
|
---|
3726 | else if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
|
---|
3727 | && !pVCpu->hm.s.fSingleInstruction)
|
---|
3728 | {
|
---|
3729 | if ( fGif
|
---|
3730 | && !fBlockInt
|
---|
3731 | && !fIntShadow)
|
---|
3732 | {
|
---|
3733 | uint8_t u8Interrupt;
|
---|
3734 | int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
|
---|
3735 | if (RT_SUCCESS(rc))
|
---|
3736 | {
|
---|
3737 | Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
|
---|
3738 | SVMEVENT Event;
|
---|
3739 | Event.u = 0;
|
---|
3740 | Event.n.u1Valid = 1;
|
---|
3741 | Event.n.u8Vector = u8Interrupt;
|
---|
3742 | Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
|
---|
3743 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3744 | }
|
---|
3745 | else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
|
---|
3746 | {
|
---|
3747 | /*
|
---|
3748 | * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
|
---|
3749 | * updated eventually when the TPR is written by the guest.
|
---|
3750 | */
|
---|
3751 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
|
---|
3752 | }
|
---|
3753 | else
|
---|
3754 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
|
---|
3755 | }
|
---|
3756 | else if (!fGif)
|
---|
3757 | hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
|
---|
3758 | else
|
---|
3759 | hmR0SvmSetIntWindowExiting(pVCpu, pVmcb, pCtx);
|
---|
3760 | }
|
---|
3761 | }
|
---|
3762 |
|
---|
3763 |
|
---|
3764 | /**
|
---|
3765 | * Injects any pending events into the guest (or nested-guest).
|
---|
3766 | *
|
---|
3767 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3768 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3769 | * @param pVmcb Pointer to the VM control block.
|
---|
3770 | *
|
---|
3771 | * @remarks Must only be called when we are guaranteed to enter
|
---|
3772 | * hardware-assisted SVM execution and not return to ring-3
|
---|
3773 | * prematurely.
|
---|
3774 | */
|
---|
3775 | static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMVMCB pVmcb)
|
---|
3776 | {
|
---|
3777 | Assert(!TRPMHasTrap(pVCpu));
|
---|
3778 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
3779 |
|
---|
3780 | bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu, pCtx);
|
---|
3781 | #ifdef VBOX_STRICT
|
---|
3782 | bool const fGif = pCtx->hwvirt.fGif;
|
---|
3783 | bool fAllowInt = fGif;
|
---|
3784 | if (fGif)
|
---|
3785 | {
|
---|
3786 | /*
|
---|
3787 | * For nested-guests we have no way to determine if we're injecting a physical or virtual
|
---|
3788 | * interrupt at this point. Hence the partial verification below.
|
---|
3789 | */
|
---|
3790 | if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
3791 | fAllowInt = CPUMCanSvmNstGstTakePhysIntr(pVCpu, pCtx) || CPUMCanSvmNstGstTakeVirtIntr(pVCpu, pCtx);
|
---|
3792 | else
|
---|
3793 | fAllowInt = RT_BOOL(pCtx->eflags.u32 & X86_EFL_IF);
|
---|
3794 | }
|
---|
3795 | #endif
|
---|
3796 |
|
---|
3797 | if (pVCpu->hm.s.Event.fPending)
|
---|
3798 | {
|
---|
3799 | SVMEVENT Event;
|
---|
3800 | Event.u = pVCpu->hm.s.Event.u64IntInfo;
|
---|
3801 | Assert(Event.n.u1Valid);
|
---|
3802 |
|
---|
3803 | /*
|
---|
3804 | * Validate event injection pre-conditions.
|
---|
3805 | */
|
---|
3806 | if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
|
---|
3807 | {
|
---|
3808 | Assert(fAllowInt);
|
---|
3809 | Assert(!fIntShadow);
|
---|
3810 | }
|
---|
3811 | else if (Event.n.u3Type == SVM_EVENT_NMI)
|
---|
3812 | {
|
---|
3813 | Assert(fGif);
|
---|
3814 | Assert(!fIntShadow);
|
---|
3815 | }
|
---|
3816 |
|
---|
3817 | /*
|
---|
3818 | * Before injecting an NMI we must set VMCPU_FF_BLOCK_NMIS to prevent nested NMIs. We do this only
|
---|
3819 | * when we are surely going to inject the NMI as otherwise if we return to ring-3 prematurely we
|
---|
3820 | * could leave NMIs blocked indefinitely upon re-entry into SVM R0.
|
---|
3821 | *
|
---|
3822 | * With VT-x, this is handled by the Guest interruptibility information VMCS field which will set
|
---|
3823 | * the VMCS field after actually delivering the NMI which we read on VM-exit to determine the state.
|
---|
3824 | */
|
---|
3825 | if ( Event.n.u3Type == SVM_EVENT_NMI
|
---|
3826 | && Event.n.u8Vector == X86_XCPT_NMI
|
---|
3827 | && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
3828 | {
|
---|
3829 | VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
3830 | }
|
---|
3831 |
|
---|
3832 | /*
|
---|
3833 | * Inject it (update VMCB for injection by the hardware).
|
---|
3834 | */
|
---|
3835 | Log4(("Injecting pending HM event\n"));
|
---|
3836 | hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
|
---|
3837 | pVCpu->hm.s.Event.fPending = false;
|
---|
3838 |
|
---|
3839 | if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
|
---|
3840 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
|
---|
3841 | else
|
---|
3842 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
|
---|
3843 | }
|
---|
3844 | else
|
---|
3845 | Assert(pVmcb->ctrl.EventInject.n.u1Valid == 0);
|
---|
3846 |
|
---|
3847 | /*
|
---|
3848 | * We could have injected an NMI through IEM and continue guest execution using
|
---|
3849 | * hardware-assisted SVM. In which case, we would not have any events pending (above)
|
---|
3850 | * but we still need to intercept IRET in order to eventually clear NMI inhibition.
|
---|
3851 | */
|
---|
3852 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
3853 | hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_IRET);
|
---|
3854 |
|
---|
3855 | /*
|
---|
3856 | * Update the guest interrupt shadow in the guest (or nested-guest) VMCB.
|
---|
3857 | *
|
---|
3858 | * For nested-guests: We need to update it too for the scenario where IEM executes
|
---|
3859 | * the nested-guest but execution later continues here with an interrupt shadow active.
|
---|
3860 | */
|
---|
3861 | pVmcb->ctrl.IntShadow.n.u1IntShadow = fIntShadow;
|
---|
3862 | }
|
---|
3863 |
|
---|
3864 |
|
---|
3865 | /**
|
---|
3866 | * Reports world-switch error and dumps some useful debug info.
|
---|
3867 | *
|
---|
3868 | * @param pVM The cross context VM structure.
|
---|
3869 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3870 | * @param rcVMRun The return code from VMRUN (or
|
---|
3871 | * VERR_SVM_INVALID_GUEST_STATE for invalid
|
---|
3872 | * guest-state).
|
---|
3873 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3874 | */
|
---|
3875 | static void hmR0SvmReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx)
|
---|
3876 | {
|
---|
3877 | NOREF(pCtx);
|
---|
3878 | HMSVM_ASSERT_PREEMPT_SAFE();
|
---|
3879 | HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
|
---|
3880 | PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
3881 |
|
---|
3882 | if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
|
---|
3883 | {
|
---|
3884 | hmR0DumpRegs(pVM, pVCpu, pCtx); NOREF(pVM);
|
---|
3885 | #ifdef VBOX_STRICT
|
---|
3886 | Log4(("ctrl.u32VmcbCleanBits %#RX32\n", pVmcb->ctrl.u32VmcbCleanBits));
|
---|
3887 | Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
|
---|
3888 | Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
|
---|
3889 | Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
|
---|
3890 | Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
|
---|
3891 | Log4(("ctrl.u32InterceptXcpt %#x\n", pVmcb->ctrl.u32InterceptXcpt));
|
---|
3892 | Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl));
|
---|
3893 | Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
|
---|
3894 | Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
|
---|
3895 | Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
|
---|
3896 |
|
---|
3897 | Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
|
---|
3898 | Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
|
---|
3899 | Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
|
---|
3900 |
|
---|
3901 | Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
|
---|
3902 | Log4(("ctrl.IntCtrl.u1VIrqPending %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqPending));
|
---|
3903 | Log4(("ctrl.IntCtrl.u1VGif %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGif));
|
---|
3904 | Log4(("ctrl.IntCtrl.u6Reserved0 %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
|
---|
3905 | Log4(("ctrl.IntCtrl.u4VIntrPrio %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIntrPrio));
|
---|
3906 | Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
|
---|
3907 | Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
|
---|
3908 | Log4(("ctrl.IntCtrl.u1VIntrMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIntrMasking));
|
---|
3909 | Log4(("ctrl.IntCtrl.u1VGifEnable %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGifEnable));
|
---|
3910 | Log4(("ctrl.IntCtrl.u5Reserved1 %#x\n", pVmcb->ctrl.IntCtrl.n.u5Reserved));
|
---|
3911 | Log4(("ctrl.IntCtrl.u8VIntrVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIntrVector));
|
---|
3912 | Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
|
---|
3913 |
|
---|
3914 | Log4(("ctrl.IntShadow.u1IntShadow %#x\n", pVmcb->ctrl.IntShadow.n.u1IntShadow));
|
---|
3915 | Log4(("ctrl.IntShadow.u1GuestIntMask %#x\n", pVmcb->ctrl.IntShadow.n.u1GuestIntMask));
|
---|
3916 | Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
|
---|
3917 | Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
|
---|
3918 | Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
|
---|
3919 | Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
|
---|
3920 | Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
|
---|
3921 | Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
|
---|
3922 | Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
|
---|
3923 | Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
|
---|
3924 | Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
|
---|
3925 | Log4(("ctrl.NestedPagingCtrl.u1NestedPaging %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1NestedPaging));
|
---|
3926 | Log4(("ctrl.NestedPagingCtrl.u1Sev %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1Sev));
|
---|
3927 | Log4(("ctrl.NestedPagingCtrl.u1SevEs %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1SevEs));
|
---|
3928 | Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
|
---|
3929 | Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
|
---|
3930 | Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
|
---|
3931 | Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
|
---|
3932 | Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
|
---|
3933 | Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
|
---|
3934 |
|
---|
3935 | Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
|
---|
3936 |
|
---|
3937 | Log4(("ctrl.LbrVirt.u1LbrVirt %#x\n", pVmcb->ctrl.LbrVirt.n.u1LbrVirt));
|
---|
3938 | Log4(("ctrl.LbrVirt.u1VirtVmsaveVmload %#x\n", pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload));
|
---|
3939 |
|
---|
3940 | Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
|
---|
3941 | Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
|
---|
3942 | Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
|
---|
3943 | Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
|
---|
3944 | Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
|
---|
3945 | Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
|
---|
3946 | Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
|
---|
3947 | Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
|
---|
3948 | Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
|
---|
3949 | Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
|
---|
3950 | Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
|
---|
3951 | Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
|
---|
3952 | Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
|
---|
3953 | Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
|
---|
3954 | Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
|
---|
3955 | Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
|
---|
3956 | Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
|
---|
3957 | Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
|
---|
3958 | Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
|
---|
3959 | Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
|
---|
3960 |
|
---|
3961 | Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
|
---|
3962 | Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
|
---|
3963 |
|
---|
3964 | Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
|
---|
3965 | Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
|
---|
3966 | Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
|
---|
3967 | Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
|
---|
3968 |
|
---|
3969 | Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
|
---|
3970 | Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
|
---|
3971 |
|
---|
3972 | Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
|
---|
3973 | Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
|
---|
3974 | Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
|
---|
3975 | Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
|
---|
3976 |
|
---|
3977 | Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
|
---|
3978 | Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
|
---|
3979 | Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
|
---|
3980 | Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
|
---|
3981 | Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
|
---|
3982 | Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
|
---|
3983 | Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
|
---|
3984 |
|
---|
3985 | Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
|
---|
3986 | Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
|
---|
3987 | Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
|
---|
3988 | Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
|
---|
3989 |
|
---|
3990 | Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
|
---|
3991 | Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
|
---|
3992 | Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
|
---|
3993 |
|
---|
3994 | Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
|
---|
3995 | Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
|
---|
3996 | Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
|
---|
3997 | Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
|
---|
3998 | Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
|
---|
3999 | Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
|
---|
4000 | Log4(("guest.u64PAT %#RX64\n", pVmcb->guest.u64PAT));
|
---|
4001 | Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
|
---|
4002 | Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
|
---|
4003 | Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
|
---|
4004 | Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
|
---|
4005 | Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
|
---|
4006 | #endif /* VBOX_STRICT */
|
---|
4007 | }
|
---|
4008 | else
|
---|
4009 | Log4(("hmR0SvmReportWorldSwitchError: rcVMRun=%d\n", rcVMRun));
|
---|
4010 |
|
---|
4011 | NOREF(pVmcb);
|
---|
4012 | }
|
---|
4013 |
|
---|
4014 |
|
---|
4015 | /**
|
---|
4016 | * Check per-VM and per-VCPU force flag actions that require us to go back to
|
---|
4017 | * ring-3 for one reason or another.
|
---|
4018 | *
|
---|
4019 | * @returns VBox status code (information status code included).
|
---|
4020 | * @retval VINF_SUCCESS if we don't have any actions that require going back to
|
---|
4021 | * ring-3.
|
---|
4022 | * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
|
---|
4023 | * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
|
---|
4024 | * interrupts)
|
---|
4025 | * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
|
---|
4026 | * all EMTs to be in ring-3.
|
---|
4027 | * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
|
---|
4028 | * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
|
---|
4029 | * to the EM loop.
|
---|
4030 | *
|
---|
4031 | * @param pVM The cross context VM structure.
|
---|
4032 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4033 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4034 | */
|
---|
4035 | static int hmR0SvmCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
4036 | {
|
---|
4037 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
4038 |
|
---|
4039 | /* On AMD-V we don't need to update CR3, PAE PDPES lazily. See hmR0SvmSaveGuestState(). */
|
---|
4040 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
|
---|
4041 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
|
---|
4042 |
|
---|
4043 | /* Update pending interrupts into the APIC's IRR. */
|
---|
4044 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
|
---|
4045 | APICUpdatePendingInterrupts(pVCpu);
|
---|
4046 |
|
---|
4047 | if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
|
---|
4048 | ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
|
---|
4049 | || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
|
---|
4050 | ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
|
---|
4051 | {
|
---|
4052 | /* Pending PGM C3 sync. */
|
---|
4053 | if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
|
---|
4054 | {
|
---|
4055 | int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
|
---|
4056 | if (rc != VINF_SUCCESS)
|
---|
4057 | {
|
---|
4058 | Log4(("hmR0SvmCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
|
---|
4059 | return rc;
|
---|
4060 | }
|
---|
4061 | }
|
---|
4062 |
|
---|
4063 | /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
|
---|
4064 | /* -XXX- what was that about single stepping? */
|
---|
4065 | if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
|
---|
4066 | || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
4067 | {
|
---|
4068 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
|
---|
4069 | int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
|
---|
4070 | Log4(("hmR0SvmCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
|
---|
4071 | return rc;
|
---|
4072 | }
|
---|
4073 |
|
---|
4074 | /* Pending VM request packets, such as hardware interrupts. */
|
---|
4075 | if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
|
---|
4076 | || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
|
---|
4077 | {
|
---|
4078 | Log4(("hmR0SvmCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
|
---|
4079 | return VINF_EM_PENDING_REQUEST;
|
---|
4080 | }
|
---|
4081 |
|
---|
4082 | /* Pending PGM pool flushes. */
|
---|
4083 | if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
|
---|
4084 | {
|
---|
4085 | Log4(("hmR0SvmCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
|
---|
4086 | return VINF_PGM_POOL_FLUSH_PENDING;
|
---|
4087 | }
|
---|
4088 |
|
---|
4089 | /* Pending DMA requests. */
|
---|
4090 | if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
|
---|
4091 | {
|
---|
4092 | Log4(("hmR0SvmCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
|
---|
4093 | return VINF_EM_RAW_TO_R3;
|
---|
4094 | }
|
---|
4095 | }
|
---|
4096 |
|
---|
4097 | return VINF_SUCCESS;
|
---|
4098 | }
|
---|
4099 |
|
---|
4100 |
|
---|
4101 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
4102 | /**
|
---|
4103 | * Does the preparations before executing nested-guest code in AMD-V.
|
---|
4104 | *
|
---|
4105 | * @returns VBox status code (informational status codes included).
|
---|
4106 | * @retval VINF_SUCCESS if we can proceed with running the guest.
|
---|
4107 | * @retval VINF_* scheduling changes, we have to go back to ring-3.
|
---|
4108 | *
|
---|
4109 | * @param pVM The cross context VM structure.
|
---|
4110 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4111 | * @param pCtx Pointer to the nested-guest-CPU context.
|
---|
4112 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
4113 | *
|
---|
4114 | * @remarks Same caveats regarding longjumps as hmR0SvmPreRunGuest applies.
|
---|
4115 | * @sa hmR0SvmPreRunGuest.
|
---|
4116 | */
|
---|
4117 | static int hmR0SvmPreRunGuestNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4118 | {
|
---|
4119 | HMSVM_ASSERT_PREEMPT_SAFE();
|
---|
4120 | HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
|
---|
4121 |
|
---|
4122 | #ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
|
---|
4123 | Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
|
---|
4124 | return VINF_EM_RESCHEDULE_REM;
|
---|
4125 | #endif
|
---|
4126 |
|
---|
4127 | /* Check force flag actions that might require us to go back to ring-3. */
|
---|
4128 | int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
|
---|
4129 | if (rc != VINF_SUCCESS)
|
---|
4130 | return rc;
|
---|
4131 |
|
---|
4132 | if (TRPMHasTrap(pVCpu))
|
---|
4133 | hmR0SvmTrpmTrapToPendingEvent(pVCpu);
|
---|
4134 | else if (!pVCpu->hm.s.Event.fPending)
|
---|
4135 | {
|
---|
4136 | VBOXSTRICTRC rcStrict = hmR0SvmEvaluatePendingEventNested(pVCpu, pCtx);
|
---|
4137 | if ( rcStrict != VINF_SUCCESS
|
---|
4138 | || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
4139 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
4140 | }
|
---|
4141 |
|
---|
4142 | HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
|
---|
4143 |
|
---|
4144 | /*
|
---|
4145 | * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
|
---|
4146 | * Just do it in software, see @bugref{8411}.
|
---|
4147 | * NB: If we could continue a task switch exit we wouldn't need to do this.
|
---|
4148 | */
|
---|
4149 | if (RT_UNLIKELY( !pVM->hm.s.svm.u32Features
|
---|
4150 | && pVCpu->hm.s.Event.fPending
|
---|
4151 | && SVM_EVENT_GET_TYPE(pVCpu->hm.s.Event.u64IntInfo) == SVM_EVENT_NMI))
|
---|
4152 | {
|
---|
4153 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
4154 | }
|
---|
4155 |
|
---|
4156 | #ifdef HMSVM_SYNC_FULL_NESTED_GUEST_STATE
|
---|
4157 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
4158 | #endif
|
---|
4159 |
|
---|
4160 | /*
|
---|
4161 | * Load the nested-guest state.
|
---|
4162 | */
|
---|
4163 | rc = hmR0SvmLoadGuestStateNested(pVCpu, pCtx);
|
---|
4164 | AssertRCReturn(rc, rc);
|
---|
4165 | STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull); /** @todo Get new STAM counter for this? */
|
---|
4166 |
|
---|
4167 | /* Ensure we've cached (and hopefully modified) the VMCB for execution using hardware-assisted SVM. */
|
---|
4168 | Assert(pCtx->hwvirt.svm.fHMCachedVmcb);
|
---|
4169 |
|
---|
4170 | /*
|
---|
4171 | * No longjmps to ring-3 from this point on!!!
|
---|
4172 | * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
|
---|
4173 | * This also disables flushing of the R0-logger instance (if any).
|
---|
4174 | */
|
---|
4175 | VMMRZCallRing3Disable(pVCpu);
|
---|
4176 |
|
---|
4177 | /*
|
---|
4178 | * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
|
---|
4179 | * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
|
---|
4180 | *
|
---|
4181 | * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
|
---|
4182 | * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
|
---|
4183 | *
|
---|
4184 | * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
|
---|
4185 | * executing guest code.
|
---|
4186 | */
|
---|
4187 | pSvmTransient->fEFlags = ASMIntDisableFlags();
|
---|
4188 | if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
|
---|
4189 | || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
4190 | {
|
---|
4191 | ASMSetFlags(pSvmTransient->fEFlags);
|
---|
4192 | VMMRZCallRing3Enable(pVCpu);
|
---|
4193 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
|
---|
4194 | return VINF_EM_RAW_TO_R3;
|
---|
4195 | }
|
---|
4196 | if (RTThreadPreemptIsPending(NIL_RTTHREAD))
|
---|
4197 | {
|
---|
4198 | ASMSetFlags(pSvmTransient->fEFlags);
|
---|
4199 | VMMRZCallRing3Enable(pVCpu);
|
---|
4200 | STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
|
---|
4201 | return VINF_EM_RAW_INTERRUPT;
|
---|
4202 | }
|
---|
4203 | return VINF_SUCCESS;
|
---|
4204 | }
|
---|
4205 | #endif
|
---|
4206 |
|
---|
4207 |
|
---|
4208 | /**
|
---|
4209 | * Does the preparations before executing guest code in AMD-V.
|
---|
4210 | *
|
---|
4211 | * This may cause longjmps to ring-3 and may even result in rescheduling to the
|
---|
4212 | * recompiler. We must be cautious what we do here regarding committing
|
---|
4213 | * guest-state information into the VMCB assuming we assuredly execute the guest
|
---|
4214 | * in AMD-V. If we fall back to the recompiler after updating the VMCB and
|
---|
4215 | * clearing the common-state (TRPM/forceflags), we must undo those changes so
|
---|
4216 | * that the recompiler can (and should) use them when it resumes guest
|
---|
4217 | * execution. Otherwise such operations must be done when we can no longer
|
---|
4218 | * exit to ring-3.
|
---|
4219 | *
|
---|
4220 | * @returns VBox status code (informational status codes included).
|
---|
4221 | * @retval VINF_SUCCESS if we can proceed with running the guest.
|
---|
4222 | * @retval VINF_* scheduling changes, we have to go back to ring-3.
|
---|
4223 | *
|
---|
4224 | * @param pVM The cross context VM structure.
|
---|
4225 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4226 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4227 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
4228 | */
|
---|
4229 | static int hmR0SvmPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4230 | {
|
---|
4231 | HMSVM_ASSERT_PREEMPT_SAFE();
|
---|
4232 | HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
|
---|
4233 |
|
---|
4234 | /* Check force flag actions that might require us to go back to ring-3. */
|
---|
4235 | int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
|
---|
4236 | if (rc != VINF_SUCCESS)
|
---|
4237 | return rc;
|
---|
4238 |
|
---|
4239 | if (TRPMHasTrap(pVCpu))
|
---|
4240 | hmR0SvmTrpmTrapToPendingEvent(pVCpu);
|
---|
4241 | else if (!pVCpu->hm.s.Event.fPending)
|
---|
4242 | hmR0SvmEvaluatePendingEvent(pVCpu, pCtx);
|
---|
4243 |
|
---|
4244 | /*
|
---|
4245 | * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
|
---|
4246 | * Just do it in software, see @bugref{8411}.
|
---|
4247 | * NB: If we could continue a task switch exit we wouldn't need to do this.
|
---|
4248 | */
|
---|
4249 | if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending && (((pVCpu->hm.s.Event.u64IntInfo >> 8) & 7) == SVM_EVENT_NMI)))
|
---|
4250 | if (RT_UNLIKELY(!pVM->hm.s.svm.u32Features))
|
---|
4251 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
4252 |
|
---|
4253 | #ifdef HMSVM_SYNC_FULL_GUEST_STATE
|
---|
4254 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
4255 | #endif
|
---|
4256 |
|
---|
4257 | /* Load the guest bits that are not shared with the host in any way since we can longjmp or get preempted. */
|
---|
4258 | rc = hmR0SvmLoadGuestState(pVM, pVCpu, pCtx);
|
---|
4259 | AssertRCReturn(rc, rc);
|
---|
4260 | STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
|
---|
4261 |
|
---|
4262 | /*
|
---|
4263 | * If we're not intercepting TPR changes in the guest, save the guest TPR before the world-switch
|
---|
4264 | * so we can update it on the way back if the guest changed the TPR.
|
---|
4265 | */
|
---|
4266 | if (pVCpu->hm.s.svm.fSyncVTpr)
|
---|
4267 | {
|
---|
4268 | if (pVM->hm.s.fTPRPatchingActive)
|
---|
4269 | pSvmTransient->u8GuestTpr = pCtx->msrLSTAR;
|
---|
4270 | else
|
---|
4271 | {
|
---|
4272 | PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
4273 | pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
|
---|
4274 | }
|
---|
4275 | }
|
---|
4276 |
|
---|
4277 | /*
|
---|
4278 | * No longjmps to ring-3 from this point on!!!
|
---|
4279 | * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
|
---|
4280 | * This also disables flushing of the R0-logger instance (if any).
|
---|
4281 | */
|
---|
4282 | VMMRZCallRing3Disable(pVCpu);
|
---|
4283 |
|
---|
4284 | /*
|
---|
4285 | * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
|
---|
4286 | * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
|
---|
4287 | *
|
---|
4288 | * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
|
---|
4289 | * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
|
---|
4290 | *
|
---|
4291 | * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
|
---|
4292 | * executing guest code.
|
---|
4293 | */
|
---|
4294 | pSvmTransient->fEFlags = ASMIntDisableFlags();
|
---|
4295 | if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
|
---|
4296 | || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
4297 | {
|
---|
4298 | ASMSetFlags(pSvmTransient->fEFlags);
|
---|
4299 | VMMRZCallRing3Enable(pVCpu);
|
---|
4300 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
|
---|
4301 | return VINF_EM_RAW_TO_R3;
|
---|
4302 | }
|
---|
4303 | if (RTThreadPreemptIsPending(NIL_RTTHREAD))
|
---|
4304 | {
|
---|
4305 | ASMSetFlags(pSvmTransient->fEFlags);
|
---|
4306 | VMMRZCallRing3Enable(pVCpu);
|
---|
4307 | STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
|
---|
4308 | return VINF_EM_RAW_INTERRUPT;
|
---|
4309 | }
|
---|
4310 |
|
---|
4311 | return VINF_SUCCESS;
|
---|
4312 | }
|
---|
4313 |
|
---|
4314 |
|
---|
4315 | /**
|
---|
4316 | * Prepares to run guest (or nested-guest) code in AMD-V and we've committed to
|
---|
4317 | * doing so.
|
---|
4318 | *
|
---|
4319 | * This means there is no backing out to ring-3 or anywhere else at this point.
|
---|
4320 | *
|
---|
4321 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4322 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4323 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
4324 | *
|
---|
4325 | * @remarks Called with preemption disabled.
|
---|
4326 | * @remarks No-long-jump zone!!!
|
---|
4327 | */
|
---|
4328 | static void hmR0SvmPreRunGuestCommitted(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4329 | {
|
---|
4330 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
4331 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
4332 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
4333 |
|
---|
4334 | VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
|
---|
4335 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
|
---|
4336 |
|
---|
4337 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4338 | PSVMVMCB pVmcb = pSvmTransient->pVmcb;
|
---|
4339 |
|
---|
4340 | hmR0SvmInjectPendingEvent(pVCpu, pCtx, pVmcb);
|
---|
4341 |
|
---|
4342 | if (!CPUMIsGuestFPUStateActive(pVCpu))
|
---|
4343 | {
|
---|
4344 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
|
---|
4345 | CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
|
---|
4346 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
|
---|
4347 | STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
|
---|
4348 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
4349 | }
|
---|
4350 |
|
---|
4351 | /* Load the state shared between host and guest (FPU, debug). */
|
---|
4352 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
|
---|
4353 | hmR0SvmLoadSharedState(pVCpu, pVmcb, pCtx);
|
---|
4354 |
|
---|
4355 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT); /* Preemption might set this, nothing to do on AMD-V. */
|
---|
4356 | AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
|
---|
4357 |
|
---|
4358 | PHMGLOBALCPUINFO pHostCpu = hmR0GetCurrentCpu();
|
---|
4359 | RTCPUID const idHostCpu = pHostCpu->idCpu;
|
---|
4360 | bool const fMigratedHostCpu = idHostCpu != pVCpu->hm.s.idLastCpu;
|
---|
4361 |
|
---|
4362 | /* Setup TSC offsetting. */
|
---|
4363 | if ( pSvmTransient->fUpdateTscOffsetting
|
---|
4364 | || fMigratedHostCpu)
|
---|
4365 | {
|
---|
4366 | hmR0SvmUpdateTscOffsetting(pVM, pVCpu, pCtx, pVmcb);
|
---|
4367 | pSvmTransient->fUpdateTscOffsetting = false;
|
---|
4368 | }
|
---|
4369 |
|
---|
4370 | /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
|
---|
4371 | if (fMigratedHostCpu)
|
---|
4372 | pVmcb->ctrl.u32VmcbCleanBits = 0;
|
---|
4373 |
|
---|
4374 | /* Store status of the shared guest-host state at the time of VMRUN. */
|
---|
4375 | #if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
4376 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
4377 | {
|
---|
4378 | pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
|
---|
4379 | pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
|
---|
4380 | }
|
---|
4381 | else
|
---|
4382 | #endif
|
---|
4383 | {
|
---|
4384 | pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
|
---|
4385 | pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
|
---|
4386 | }
|
---|
4387 |
|
---|
4388 | uint8_t *pbMsrBitmap;
|
---|
4389 | if (!pSvmTransient->fIsNestedGuest)
|
---|
4390 | pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
|
---|
4391 | else
|
---|
4392 | {
|
---|
4393 | hmR0SvmMergeMsrpmNested(pHostCpu, pVCpu, pCtx);
|
---|
4394 |
|
---|
4395 | /* Update the nested-guest VMCB with the newly merged MSRPM (clean bits updated below). */
|
---|
4396 | pVmcb->ctrl.u64MSRPMPhysAddr = pHostCpu->n.svm.HCPhysNstGstMsrpm;
|
---|
4397 | pbMsrBitmap = (uint8_t *)pHostCpu->n.svm.pvNstGstMsrpm;
|
---|
4398 | }
|
---|
4399 |
|
---|
4400 | ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
|
---|
4401 | /* Flush the appropriate tagged-TLB entries. */
|
---|
4402 | hmR0SvmFlushTaggedTlb(pVCpu, pCtx, pVmcb, pHostCpu);
|
---|
4403 | Assert(pVCpu->hm.s.idLastCpu == idHostCpu);
|
---|
4404 |
|
---|
4405 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
|
---|
4406 |
|
---|
4407 | TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
|
---|
4408 | to start executing. */
|
---|
4409 |
|
---|
4410 | /*
|
---|
4411 | * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
|
---|
4412 | * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
|
---|
4413 | *
|
---|
4414 | * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
|
---|
4415 | */
|
---|
4416 | if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
|
---|
4417 | && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
|
---|
4418 | {
|
---|
4419 | uint64_t const uGuestTscAux = CPUMR0GetGuestTscAux(pVCpu);
|
---|
4420 | pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
|
---|
4421 | if (uGuestTscAux != pVCpu->hm.s.u64HostTscAux)
|
---|
4422 | ASMWrMsr(MSR_K8_TSC_AUX, uGuestTscAux);
|
---|
4423 | hmR0SvmSetMsrPermission(pCtx, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
4424 | pSvmTransient->fRestoreTscAuxMsr = true;
|
---|
4425 | }
|
---|
4426 | else
|
---|
4427 | {
|
---|
4428 | hmR0SvmSetMsrPermission(pCtx, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
|
---|
4429 | pSvmTransient->fRestoreTscAuxMsr = false;
|
---|
4430 | }
|
---|
4431 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
|
---|
4432 |
|
---|
4433 | /*
|
---|
4434 | * If VMCB Clean bits isn't supported by the CPU or exposed to the guest in the
|
---|
4435 | * nested virtualization case, mark all state-bits as dirty indicating to the
|
---|
4436 | * CPU to re-load from VMCB.
|
---|
4437 | */
|
---|
4438 | bool const fSupportsVmcbCleanBits = hmR0SvmSupportsVmcbCleanBits(pVCpu, pCtx);
|
---|
4439 | if (!fSupportsVmcbCleanBits)
|
---|
4440 | pVmcb->ctrl.u32VmcbCleanBits = 0;
|
---|
4441 | }
|
---|
4442 |
|
---|
4443 |
|
---|
4444 | /**
|
---|
4445 | * Wrapper for running the guest code in AMD-V.
|
---|
4446 | *
|
---|
4447 | * @returns VBox strict status code.
|
---|
4448 | * @param pVM The cross context VM structure.
|
---|
4449 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4450 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4451 | *
|
---|
4452 | * @remarks No-long-jump zone!!!
|
---|
4453 | */
|
---|
4454 | DECLINLINE(int) hmR0SvmRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
4455 | {
|
---|
4456 | /*
|
---|
4457 | * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
|
---|
4458 | * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
|
---|
4459 | * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
|
---|
4460 | */
|
---|
4461 | #ifdef VBOX_WITH_KERNEL_USING_XMM
|
---|
4462 | return hmR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
|
---|
4463 | pVCpu->hm.s.svm.pfnVMRun);
|
---|
4464 | #else
|
---|
4465 | return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
|
---|
4466 | #endif
|
---|
4467 | }
|
---|
4468 |
|
---|
4469 |
|
---|
4470 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
4471 | /**
|
---|
4472 | * Undoes the TSC offset applied for an SVM nested-guest and returns the TSC
|
---|
4473 | * value for the guest.
|
---|
4474 | *
|
---|
4475 | * @returns The TSC offset after undoing any nested-guest TSC offset.
|
---|
4476 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
4477 | * @param uTicks The nested-guest TSC.
|
---|
4478 | *
|
---|
4479 | * @note If you make any changes to this function, please check if
|
---|
4480 | * hmR0SvmNstGstUndoTscOffset() needs adjusting.
|
---|
4481 | *
|
---|
4482 | * @sa HMSvmNstGstApplyTscOffset().
|
---|
4483 | */
|
---|
4484 | DECLINLINE(uint64_t) hmR0SvmNstGstUndoTscOffset(PVMCPU pVCpu, PCPUMCTX pCtx, uint64_t uTicks)
|
---|
4485 | {
|
---|
4486 | Assert(pCtx->hwvirt.svm.fHMCachedVmcb); RT_NOREF(pCtx);
|
---|
4487 | PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
|
---|
4488 | return uTicks - pVmcbNstGstCache->u64TSCOffset;
|
---|
4489 | }
|
---|
4490 |
|
---|
4491 |
|
---|
4492 | /**
|
---|
4493 | * Wrapper for running the nested-guest code in AMD-V.
|
---|
4494 | *
|
---|
4495 | * @returns VBox strict status code.
|
---|
4496 | * @param pVM The cross context VM structure.
|
---|
4497 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4498 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4499 | *
|
---|
4500 | * @remarks No-long-jump zone!!!
|
---|
4501 | */
|
---|
4502 | DECLINLINE(int) hmR0SvmRunGuestNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
4503 | {
|
---|
4504 | /*
|
---|
4505 | * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
|
---|
4506 | * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
|
---|
4507 | * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
|
---|
4508 | */
|
---|
4509 | #ifdef VBOX_WITH_KERNEL_USING_XMM
|
---|
4510 | return hmR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pCtx->hwvirt.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
|
---|
4511 | pVCpu->hm.s.svm.pfnVMRun);
|
---|
4512 | #else
|
---|
4513 | return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pCtx->hwvirt.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
|
---|
4514 | #endif
|
---|
4515 | }
|
---|
4516 | #endif
|
---|
4517 |
|
---|
4518 | /**
|
---|
4519 | * Performs some essential restoration of state after running guest (or
|
---|
4520 | * nested-guest) code in AMD-V.
|
---|
4521 | *
|
---|
4522 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4523 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
4524 | * out-of-sync. Make sure to update the required fields
|
---|
4525 | * before using them.
|
---|
4526 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
4527 | * @param rcVMRun Return code of VMRUN.
|
---|
4528 | *
|
---|
4529 | * @remarks Called with interrupts disabled.
|
---|
4530 | * @remarks No-long-jump zone!!! This function will however re-enable longjmps
|
---|
4531 | * unconditionally when it is safe to do so.
|
---|
4532 | */
|
---|
4533 | static void hmR0SvmPostRunGuest(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
|
---|
4534 | {
|
---|
4535 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
4536 |
|
---|
4537 | uint64_t const uHostTsc = ASMReadTSC(); /* Read the TSC as soon as possible. */
|
---|
4538 | ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
|
---|
4539 | ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
|
---|
4540 |
|
---|
4541 | PSVMVMCB pVmcb = pSvmTransient->pVmcb;
|
---|
4542 | PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
|
---|
4543 |
|
---|
4544 | /* TSC read must be done early for maximum accuracy. */
|
---|
4545 | if (!(pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
|
---|
4546 | {
|
---|
4547 | if (!pSvmTransient->fIsNestedGuest)
|
---|
4548 | TMCpuTickSetLastSeen(pVCpu, uHostTsc + pVmcbCtrl->u64TSCOffset);
|
---|
4549 | else
|
---|
4550 | {
|
---|
4551 | /* The nested-guest VMCB TSC offset shall eventually be restored on #VMEXIT via HMSvmNstGstVmExitNotify(). */
|
---|
4552 | uint64_t const uGstTsc = hmR0SvmNstGstUndoTscOffset(pVCpu, pMixedCtx, uHostTsc + pVmcbCtrl->u64TSCOffset);
|
---|
4553 | TMCpuTickSetLastSeen(pVCpu, uGstTsc);
|
---|
4554 | }
|
---|
4555 | }
|
---|
4556 |
|
---|
4557 | if (pSvmTransient->fRestoreTscAuxMsr)
|
---|
4558 | {
|
---|
4559 | uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
|
---|
4560 | CPUMR0SetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
|
---|
4561 | if (u64GuestTscAuxMsr != pVCpu->hm.s.u64HostTscAux)
|
---|
4562 | ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
|
---|
4563 | }
|
---|
4564 |
|
---|
4565 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
|
---|
4566 | TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
|
---|
4567 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
|
---|
4568 |
|
---|
4569 | Assert(!(ASMGetFlags() & X86_EFL_IF));
|
---|
4570 | ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
|
---|
4571 | VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
|
---|
4572 |
|
---|
4573 | /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
|
---|
4574 | if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
|
---|
4575 | {
|
---|
4576 | Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
|
---|
4577 | return;
|
---|
4578 | }
|
---|
4579 |
|
---|
4580 | pSvmTransient->u64ExitCode = pVmcbCtrl->u64ExitCode; /* Save the #VMEXIT reason. */
|
---|
4581 | HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmcbCtrl->u64ExitCode); /* Update the #VMEXIT history array. */
|
---|
4582 | pVmcbCtrl->u32VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
|
---|
4583 | pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
|
---|
4584 | pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
|
---|
4585 |
|
---|
4586 | hmR0SvmSaveGuestState(pVCpu, pMixedCtx, pVmcb); /* Save the guest state from the VMCB to the guest-CPU context. */
|
---|
4587 |
|
---|
4588 | if ( pSvmTransient->u64ExitCode != SVM_EXIT_INVALID
|
---|
4589 | && pVCpu->hm.s.svm.fSyncVTpr)
|
---|
4590 | {
|
---|
4591 | Assert(!pSvmTransient->fIsNestedGuest);
|
---|
4592 | /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
|
---|
4593 | if ( pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive
|
---|
4594 | && (pMixedCtx->msrLSTAR & 0xff) != pSvmTransient->u8GuestTpr)
|
---|
4595 | {
|
---|
4596 | int rc = APICSetTpr(pVCpu, pMixedCtx->msrLSTAR & 0xff);
|
---|
4597 | AssertRC(rc);
|
---|
4598 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_APIC_STATE);
|
---|
4599 | }
|
---|
4600 | /* Sync TPR when we aren't intercepting CR8 writes. */
|
---|
4601 | else if (pSvmTransient->u8GuestTpr != pVmcbCtrl->IntCtrl.n.u8VTPR)
|
---|
4602 | {
|
---|
4603 | int rc = APICSetTpr(pVCpu, pVmcbCtrl->IntCtrl.n.u8VTPR << 4);
|
---|
4604 | AssertRC(rc);
|
---|
4605 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_APIC_STATE);
|
---|
4606 | }
|
---|
4607 | }
|
---|
4608 | }
|
---|
4609 |
|
---|
4610 |
|
---|
4611 | /**
|
---|
4612 | * Runs the guest code using AMD-V.
|
---|
4613 | *
|
---|
4614 | * @returns VBox status code.
|
---|
4615 | * @param pVM The cross context VM structure.
|
---|
4616 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4617 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4618 | * @param pcLoops Pointer to the number of executed loops.
|
---|
4619 | */
|
---|
4620 | static int hmR0SvmRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t *pcLoops)
|
---|
4621 | {
|
---|
4622 | uint32_t const cMaxResumeLoops = pVM->hm.s.cMaxResumeLoops;
|
---|
4623 | Assert(pcLoops);
|
---|
4624 | Assert(*pcLoops <= cMaxResumeLoops);
|
---|
4625 |
|
---|
4626 | SVMTRANSIENT SvmTransient;
|
---|
4627 | RT_ZERO(SvmTransient);
|
---|
4628 | SvmTransient.fUpdateTscOffsetting = true;
|
---|
4629 | SvmTransient.pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
4630 |
|
---|
4631 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
4632 | for (;;)
|
---|
4633 | {
|
---|
4634 | Assert(!HMR0SuspendPending());
|
---|
4635 | HMSVM_ASSERT_CPU_SAFE();
|
---|
4636 |
|
---|
4637 | /* Preparatory work for running guest code, this may force us to return
|
---|
4638 | to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
|
---|
4639 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
|
---|
4640 | rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
|
---|
4641 | if (rc != VINF_SUCCESS)
|
---|
4642 | break;
|
---|
4643 |
|
---|
4644 | /*
|
---|
4645 | * No longjmps to ring-3 from this point on!!!
|
---|
4646 | * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
|
---|
4647 | * This also disables flushing of the R0-logger instance (if any).
|
---|
4648 | */
|
---|
4649 | hmR0SvmPreRunGuestCommitted(pVCpu, pCtx, &SvmTransient);
|
---|
4650 | rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
|
---|
4651 |
|
---|
4652 | /* Restore any residual host-state and save any bits shared between host
|
---|
4653 | and guest into the guest-CPU state. Re-enables interrupts! */
|
---|
4654 | hmR0SvmPostRunGuest(pVCpu, pCtx, &SvmTransient, rc);
|
---|
4655 |
|
---|
4656 | if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
|
---|
4657 | || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
|
---|
4658 | {
|
---|
4659 | if (rc == VINF_SUCCESS)
|
---|
4660 | rc = VERR_SVM_INVALID_GUEST_STATE;
|
---|
4661 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
|
---|
4662 | hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
|
---|
4663 | break;
|
---|
4664 | }
|
---|
4665 |
|
---|
4666 | /* Handle the #VMEXIT. */
|
---|
4667 | HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
|
---|
4668 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
|
---|
4669 | VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
|
---|
4670 | rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
|
---|
4671 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
|
---|
4672 | if (rc != VINF_SUCCESS)
|
---|
4673 | break;
|
---|
4674 | if (++(*pcLoops) >= cMaxResumeLoops)
|
---|
4675 | {
|
---|
4676 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
|
---|
4677 | rc = VINF_EM_RAW_INTERRUPT;
|
---|
4678 | break;
|
---|
4679 | }
|
---|
4680 | }
|
---|
4681 |
|
---|
4682 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
|
---|
4683 | return rc;
|
---|
4684 | }
|
---|
4685 |
|
---|
4686 |
|
---|
4687 | /**
|
---|
4688 | * Runs the guest code using AMD-V in single step mode.
|
---|
4689 | *
|
---|
4690 | * @returns VBox status code.
|
---|
4691 | * @param pVM The cross context VM structure.
|
---|
4692 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4693 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4694 | * @param pcLoops Pointer to the number of executed loops.
|
---|
4695 | */
|
---|
4696 | static int hmR0SvmRunGuestCodeStep(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t *pcLoops)
|
---|
4697 | {
|
---|
4698 | uint32_t const cMaxResumeLoops = pVM->hm.s.cMaxResumeLoops;
|
---|
4699 | Assert(pcLoops);
|
---|
4700 | Assert(*pcLoops <= cMaxResumeLoops);
|
---|
4701 |
|
---|
4702 | SVMTRANSIENT SvmTransient;
|
---|
4703 | RT_ZERO(SvmTransient);
|
---|
4704 | SvmTransient.fUpdateTscOffsetting = true;
|
---|
4705 | SvmTransient.pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
4706 |
|
---|
4707 | uint16_t uCsStart = pCtx->cs.Sel;
|
---|
4708 | uint64_t uRipStart = pCtx->rip;
|
---|
4709 |
|
---|
4710 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
4711 | for (;;)
|
---|
4712 | {
|
---|
4713 | Assert(!HMR0SuspendPending());
|
---|
4714 | AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
|
---|
4715 | ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
|
---|
4716 | (unsigned)RTMpCpuId(), *pcLoops));
|
---|
4717 |
|
---|
4718 | /* Preparatory work for running guest code, this may force us to return
|
---|
4719 | to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
|
---|
4720 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
|
---|
4721 | rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
|
---|
4722 | if (rc != VINF_SUCCESS)
|
---|
4723 | break;
|
---|
4724 |
|
---|
4725 | /*
|
---|
4726 | * No longjmps to ring-3 from this point on!!!
|
---|
4727 | * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
|
---|
4728 | * This also disables flushing of the R0-logger instance (if any).
|
---|
4729 | */
|
---|
4730 | VMMRZCallRing3Disable(pVCpu);
|
---|
4731 | VMMRZCallRing3RemoveNotification(pVCpu);
|
---|
4732 | hmR0SvmPreRunGuestCommitted(pVCpu, pCtx, &SvmTransient);
|
---|
4733 |
|
---|
4734 | rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
|
---|
4735 |
|
---|
4736 | /*
|
---|
4737 | * Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state.
|
---|
4738 | * This will also re-enable longjmps to ring-3 when it has reached a safe point!!!
|
---|
4739 | */
|
---|
4740 | hmR0SvmPostRunGuest(pVCpu, pCtx, &SvmTransient, rc);
|
---|
4741 | if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
|
---|
4742 | || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
|
---|
4743 | {
|
---|
4744 | if (rc == VINF_SUCCESS)
|
---|
4745 | rc = VERR_SVM_INVALID_GUEST_STATE;
|
---|
4746 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
|
---|
4747 | hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
|
---|
4748 | return rc;
|
---|
4749 | }
|
---|
4750 |
|
---|
4751 | /* Handle the #VMEXIT. */
|
---|
4752 | HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
|
---|
4753 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
|
---|
4754 | VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
|
---|
4755 | rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
|
---|
4756 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
|
---|
4757 | if (rc != VINF_SUCCESS)
|
---|
4758 | break;
|
---|
4759 | if (++(*pcLoops) >= cMaxResumeLoops)
|
---|
4760 | {
|
---|
4761 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
|
---|
4762 | rc = VINF_EM_RAW_INTERRUPT;
|
---|
4763 | break;
|
---|
4764 | }
|
---|
4765 |
|
---|
4766 | /*
|
---|
4767 | * Did the RIP change, if so, consider it a single step.
|
---|
4768 | * Otherwise, make sure one of the TFs gets set.
|
---|
4769 | */
|
---|
4770 | if ( pCtx->rip != uRipStart
|
---|
4771 | || pCtx->cs.Sel != uCsStart)
|
---|
4772 | {
|
---|
4773 | rc = VINF_EM_DBG_STEPPED;
|
---|
4774 | break;
|
---|
4775 | }
|
---|
4776 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
|
---|
4777 | }
|
---|
4778 |
|
---|
4779 | /*
|
---|
4780 | * Clear the X86_EFL_TF if necessary.
|
---|
4781 | */
|
---|
4782 | if (pVCpu->hm.s.fClearTrapFlag)
|
---|
4783 | {
|
---|
4784 | pVCpu->hm.s.fClearTrapFlag = false;
|
---|
4785 | pCtx->eflags.Bits.u1TF = 0;
|
---|
4786 | }
|
---|
4787 |
|
---|
4788 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
|
---|
4789 | return rc;
|
---|
4790 | }
|
---|
4791 |
|
---|
4792 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
4793 | /**
|
---|
4794 | * Runs the nested-guest code using AMD-V.
|
---|
4795 | *
|
---|
4796 | * @returns VBox status code.
|
---|
4797 | * @param pVM The cross context VM structure.
|
---|
4798 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4799 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4800 | * @param pcLoops Pointer to the number of executed loops. If we're switching
|
---|
4801 | * from the guest-code execution loop to this nested-guest
|
---|
4802 | * execution loop pass the remainder value, else pass 0.
|
---|
4803 | */
|
---|
4804 | static int hmR0SvmRunGuestCodeNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t *pcLoops)
|
---|
4805 | {
|
---|
4806 | HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
|
---|
4807 | Assert(pcLoops);
|
---|
4808 | Assert(*pcLoops <= pVM->hm.s.cMaxResumeLoops);
|
---|
4809 |
|
---|
4810 | SVMTRANSIENT SvmTransient;
|
---|
4811 | RT_ZERO(SvmTransient);
|
---|
4812 | SvmTransient.fUpdateTscOffsetting = true;
|
---|
4813 | SvmTransient.pVmcb = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
|
---|
4814 | SvmTransient.fIsNestedGuest = true;
|
---|
4815 |
|
---|
4816 | int rc = VERR_INTERNAL_ERROR_4;
|
---|
4817 | for (;;)
|
---|
4818 | {
|
---|
4819 | Assert(!HMR0SuspendPending());
|
---|
4820 | HMSVM_ASSERT_CPU_SAFE();
|
---|
4821 |
|
---|
4822 | /* Preparatory work for running nested-guest code, this may force us to return
|
---|
4823 | to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
|
---|
4824 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
|
---|
4825 | rc = hmR0SvmPreRunGuestNested(pVM, pVCpu, pCtx, &SvmTransient);
|
---|
4826 | if ( rc != VINF_SUCCESS
|
---|
4827 | || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
4828 | {
|
---|
4829 | break;
|
---|
4830 | }
|
---|
4831 |
|
---|
4832 | /*
|
---|
4833 | * No longjmps to ring-3 from this point on!!!
|
---|
4834 | * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
|
---|
4835 | * This also disables flushing of the R0-logger instance (if any).
|
---|
4836 | */
|
---|
4837 | hmR0SvmPreRunGuestCommitted(pVCpu, pCtx, &SvmTransient);
|
---|
4838 |
|
---|
4839 | rc = hmR0SvmRunGuestNested(pVM, pVCpu, pCtx);
|
---|
4840 |
|
---|
4841 | /* Restore any residual host-state and save any bits shared between host
|
---|
4842 | and guest into the guest-CPU state. Re-enables interrupts! */
|
---|
4843 | hmR0SvmPostRunGuest(pVCpu, pCtx, &SvmTransient, rc);
|
---|
4844 |
|
---|
4845 | if (RT_LIKELY( rc == VINF_SUCCESS
|
---|
4846 | && SvmTransient.u64ExitCode != SVM_EXIT_INVALID))
|
---|
4847 | { /* extremely likely */ }
|
---|
4848 | else
|
---|
4849 | {
|
---|
4850 | /* VMRUN failed, shouldn't really happen, Guru. */
|
---|
4851 | if (rc != VINF_SUCCESS)
|
---|
4852 | break;
|
---|
4853 |
|
---|
4854 | /* Invalid nested-guest state. Cause a #VMEXIT but assert on strict builds. */
|
---|
4855 | AssertMsgFailed(("Invalid nested-guest state. rc=%Rrc u64ExitCode=%#RX64\n", rc, SvmTransient.u64ExitCode));
|
---|
4856 | rc = VBOXSTRICTRC_TODO(IEMExecSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0, 0));
|
---|
4857 | break;
|
---|
4858 | }
|
---|
4859 |
|
---|
4860 | /* Handle the #VMEXIT. */
|
---|
4861 | HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
|
---|
4862 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
|
---|
4863 | VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
|
---|
4864 | rc = hmR0SvmHandleExitNested(pVCpu, pCtx, &SvmTransient);
|
---|
4865 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
|
---|
4866 | if ( rc != VINF_SUCCESS
|
---|
4867 | || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
4868 | break;
|
---|
4869 | if (++(*pcLoops) >= pVM->hm.s.cMaxResumeLoops)
|
---|
4870 | {
|
---|
4871 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
|
---|
4872 | rc = VINF_EM_RAW_INTERRUPT;
|
---|
4873 | break;
|
---|
4874 | }
|
---|
4875 |
|
---|
4876 | /** @todo handle single-stepping */
|
---|
4877 | }
|
---|
4878 |
|
---|
4879 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
|
---|
4880 | return rc;
|
---|
4881 | }
|
---|
4882 | #endif
|
---|
4883 |
|
---|
4884 |
|
---|
4885 | /**
|
---|
4886 | * Runs the guest code using AMD-V.
|
---|
4887 | *
|
---|
4888 | * @returns Strict VBox status code.
|
---|
4889 | * @param pVM The cross context VM structure.
|
---|
4890 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4891 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4892 | */
|
---|
4893 | VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
4894 | {
|
---|
4895 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
4896 | HMSVM_ASSERT_PREEMPT_SAFE();
|
---|
4897 | VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, pCtx);
|
---|
4898 |
|
---|
4899 | uint32_t cLoops = 0;
|
---|
4900 | int rc;
|
---|
4901 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
4902 | if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
4903 | #endif
|
---|
4904 | {
|
---|
4905 | if (!pVCpu->hm.s.fSingleInstruction)
|
---|
4906 | rc = hmR0SvmRunGuestCodeNormal(pVM, pVCpu, pCtx, &cLoops);
|
---|
4907 | else
|
---|
4908 | rc = hmR0SvmRunGuestCodeStep(pVM, pVCpu, pCtx, &cLoops);
|
---|
4909 | }
|
---|
4910 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
4911 | else
|
---|
4912 | {
|
---|
4913 | rc = VINF_SVM_VMRUN;
|
---|
4914 | }
|
---|
4915 |
|
---|
4916 | /* Re-check the nested-guest condition here as we may be transitioning from the normal
|
---|
4917 | execution loop into the nested-guest, hence this is not placed in the 'else' part above. */
|
---|
4918 | if (rc == VINF_SVM_VMRUN)
|
---|
4919 | {
|
---|
4920 | rc = hmR0SvmRunGuestCodeNested(pVM, pVCpu, pCtx, &cLoops);
|
---|
4921 | if (rc == VINF_SVM_VMEXIT)
|
---|
4922 | rc = VINF_SUCCESS;
|
---|
4923 | }
|
---|
4924 | #endif
|
---|
4925 |
|
---|
4926 | /* Fixup error codes. */
|
---|
4927 | if (rc == VERR_EM_INTERPRETER)
|
---|
4928 | rc = VINF_EM_RAW_EMULATE_INSTR;
|
---|
4929 | else if (rc == VINF_EM_RESET)
|
---|
4930 | rc = VINF_EM_TRIPLE_FAULT;
|
---|
4931 |
|
---|
4932 | /* Prepare to return to ring-3. This will remove longjmp notifications. */
|
---|
4933 | rc = hmR0SvmExitToRing3(pVM, pVCpu, pCtx, rc);
|
---|
4934 | Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
|
---|
4935 | return rc;
|
---|
4936 | }
|
---|
4937 |
|
---|
4938 |
|
---|
4939 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
4940 | /**
|
---|
4941 | * Determines whether an IOIO intercept is active for the nested-guest or not.
|
---|
4942 | *
|
---|
4943 | * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
|
---|
4944 | * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO.
|
---|
4945 | */
|
---|
4946 | static bool hmR0SvmIsIoInterceptActive(void *pvIoBitmap, PSVMIOIOEXITINFO pIoExitInfo)
|
---|
4947 | {
|
---|
4948 | const uint16_t u16Port = pIoExitInfo->n.u16Port;
|
---|
4949 | const SVMIOIOTYPE enmIoType = (SVMIOIOTYPE)pIoExitInfo->n.u1Type;
|
---|
4950 | const uint8_t cbReg = (pIoExitInfo->u >> SVM_IOIO_OP_SIZE_SHIFT) & 7;
|
---|
4951 | const uint8_t cAddrSizeBits = ((pIoExitInfo->u >> SVM_IOIO_ADDR_SIZE_SHIFT) & 7) << 4;
|
---|
4952 | const uint8_t iEffSeg = pIoExitInfo->n.u3Seg;
|
---|
4953 | const bool fRep = pIoExitInfo->n.u1Rep;
|
---|
4954 | const bool fStrIo = pIoExitInfo->n.u1Str;
|
---|
4955 |
|
---|
4956 | return HMSvmIsIOInterceptActive(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
|
---|
4957 | NULL /* pIoExitInfo */);
|
---|
4958 | }
|
---|
4959 |
|
---|
4960 |
|
---|
4961 | /**
|
---|
4962 | * Handles a nested-guest \#VMEXIT (for all EXITCODE values except
|
---|
4963 | * SVM_EXIT_INVALID).
|
---|
4964 | *
|
---|
4965 | * @returns VBox status code (informational status codes included).
|
---|
4966 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4967 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4968 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
4969 | */
|
---|
4970 | static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4971 | {
|
---|
4972 | HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
|
---|
4973 | Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
|
---|
4974 | Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
|
---|
4975 |
|
---|
4976 | #define HM_SVM_VMEXIT_NESTED(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
|
---|
4977 | VBOXSTRICTRC_TODO(IEMExecSvmVmexit(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2))
|
---|
4978 |
|
---|
4979 | /*
|
---|
4980 | * For all the #VMEXITs here we primarily figure out if the #VMEXIT is expected
|
---|
4981 | * by the nested-guest. If it isn't, it should be handled by the (outer) guest.
|
---|
4982 | */
|
---|
4983 | PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
|
---|
4984 | PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
|
---|
4985 | uint64_t const uExitCode = pVmcbNstGstCtrl->u64ExitCode;
|
---|
4986 | uint64_t const uExitInfo1 = pVmcbNstGstCtrl->u64ExitInfo1;
|
---|
4987 | uint64_t const uExitInfo2 = pVmcbNstGstCtrl->u64ExitInfo2;
|
---|
4988 |
|
---|
4989 | Assert(uExitCode == pVmcbNstGstCtrl->u64ExitCode);
|
---|
4990 | switch (uExitCode)
|
---|
4991 | {
|
---|
4992 | case SVM_EXIT_CPUID:
|
---|
4993 | {
|
---|
4994 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CPUID))
|
---|
4995 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
4996 | return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
|
---|
4997 | }
|
---|
4998 |
|
---|
4999 | case SVM_EXIT_RDTSC:
|
---|
5000 | {
|
---|
5001 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSC))
|
---|
5002 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5003 | return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
|
---|
5004 | }
|
---|
5005 |
|
---|
5006 | case SVM_EXIT_RDTSCP:
|
---|
5007 | {
|
---|
5008 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSCP))
|
---|
5009 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5010 | return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
|
---|
5011 | }
|
---|
5012 |
|
---|
5013 | case SVM_EXIT_MONITOR:
|
---|
5014 | {
|
---|
5015 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MONITOR))
|
---|
5016 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5017 | return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
|
---|
5018 | }
|
---|
5019 |
|
---|
5020 | case SVM_EXIT_MWAIT:
|
---|
5021 | {
|
---|
5022 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MWAIT))
|
---|
5023 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5024 | return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
|
---|
5025 | }
|
---|
5026 |
|
---|
5027 | case SVM_EXIT_HLT:
|
---|
5028 | {
|
---|
5029 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_HLT))
|
---|
5030 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5031 | return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
|
---|
5032 | }
|
---|
5033 |
|
---|
5034 | case SVM_EXIT_MSR:
|
---|
5035 | {
|
---|
5036 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MSR_PROT))
|
---|
5037 | {
|
---|
5038 | uint32_t const idMsr = pCtx->ecx;
|
---|
5039 | uint16_t offMsrpm;
|
---|
5040 | uint8_t uMsrpmBit;
|
---|
5041 | int rc = HMSvmGetMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
|
---|
5042 | if (RT_SUCCESS(rc))
|
---|
5043 | {
|
---|
5044 | Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
|
---|
5045 | Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
|
---|
5046 |
|
---|
5047 | uint8_t const *pbMsrBitmap = (uint8_t const *)pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap);
|
---|
5048 | pbMsrBitmap += offMsrpm;
|
---|
5049 | bool const fInterceptRead = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit));
|
---|
5050 | bool const fInterceptWrite = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
|
---|
5051 |
|
---|
5052 | if ( (fInterceptWrite && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
|
---|
5053 | || (fInterceptRead && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_READ))
|
---|
5054 | {
|
---|
5055 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5056 | }
|
---|
5057 | }
|
---|
5058 | else
|
---|
5059 | {
|
---|
5060 | /*
|
---|
5061 | * MSRs not covered by the MSRPM automatically cause an #VMEXIT.
|
---|
5062 | * See AMD-V spec. "15.11 MSR Intercepts".
|
---|
5063 | */
|
---|
5064 | Assert(rc == VERR_OUT_OF_RANGE);
|
---|
5065 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5066 | }
|
---|
5067 | }
|
---|
5068 | return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
|
---|
5069 | }
|
---|
5070 |
|
---|
5071 | case SVM_EXIT_IOIO:
|
---|
5072 | {
|
---|
5073 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IOIO_PROT))
|
---|
5074 | {
|
---|
5075 | void *pvIoBitmap = pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap);
|
---|
5076 | SVMIOIOEXITINFO IoExitInfo;
|
---|
5077 | IoExitInfo.u = pVmcbNstGst->ctrl.u64ExitInfo1;
|
---|
5078 | bool const fIntercept = hmR0SvmIsIoInterceptActive(pvIoBitmap, &IoExitInfo);
|
---|
5079 | if (fIntercept)
|
---|
5080 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5081 | }
|
---|
5082 | return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
|
---|
5083 | }
|
---|
5084 |
|
---|
5085 | case SVM_EXIT_XCPT_PF:
|
---|
5086 | {
|
---|
5087 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
5088 | if (pVM->hm.s.fNestedPaging)
|
---|
5089 | {
|
---|
5090 | uint32_t const u32ErrCode = pVmcbNstGstCtrl->u64ExitInfo1;
|
---|
5091 | uint64_t const uFaultAddress = pVmcbNstGstCtrl->u64ExitInfo2;
|
---|
5092 |
|
---|
5093 | /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
|
---|
5094 | if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_PF))
|
---|
5095 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, u32ErrCode, uFaultAddress);
|
---|
5096 |
|
---|
5097 | /* If the nested-guest is not intercepting #PFs, forward the #PF to the nested-guest. */
|
---|
5098 | hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
|
---|
5099 | return VINF_SUCCESS;
|
---|
5100 | }
|
---|
5101 | return hmR0SvmExitXcptPFNested(pVCpu, pCtx,pSvmTransient);
|
---|
5102 | }
|
---|
5103 |
|
---|
5104 | case SVM_EXIT_XCPT_UD:
|
---|
5105 | {
|
---|
5106 | if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_UD))
|
---|
5107 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5108 | hmR0SvmSetPendingXcptUD(pVCpu);
|
---|
5109 | return VINF_SUCCESS;
|
---|
5110 | }
|
---|
5111 |
|
---|
5112 | case SVM_EXIT_XCPT_MF:
|
---|
5113 | {
|
---|
5114 | if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_MF))
|
---|
5115 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5116 | return hmR0SvmExitXcptMF(pVCpu, pCtx, pSvmTransient);
|
---|
5117 | }
|
---|
5118 |
|
---|
5119 | case SVM_EXIT_XCPT_DB:
|
---|
5120 | {
|
---|
5121 | if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_DB))
|
---|
5122 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5123 | return hmR0SvmNestedExitXcptDB(pVCpu, pCtx, pSvmTransient);
|
---|
5124 | }
|
---|
5125 |
|
---|
5126 | case SVM_EXIT_XCPT_AC:
|
---|
5127 | {
|
---|
5128 | if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_AC))
|
---|
5129 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5130 | return hmR0SvmExitXcptAC(pVCpu, pCtx, pSvmTransient);
|
---|
5131 | }
|
---|
5132 |
|
---|
5133 | case SVM_EXIT_XCPT_BP:
|
---|
5134 | {
|
---|
5135 | if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_BP))
|
---|
5136 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5137 | return hmR0SvmNestedExitXcptBP(pVCpu, pCtx, pSvmTransient);
|
---|
5138 | }
|
---|
5139 |
|
---|
5140 | case SVM_EXIT_READ_CR0:
|
---|
5141 | case SVM_EXIT_READ_CR3:
|
---|
5142 | case SVM_EXIT_READ_CR4:
|
---|
5143 | {
|
---|
5144 | uint8_t const uCr = uExitCode - SVM_EXIT_READ_CR0;
|
---|
5145 | if (HMIsGuestSvmReadCRxInterceptSet(pVCpu, pCtx, uCr))
|
---|
5146 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5147 | return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
|
---|
5148 | }
|
---|
5149 |
|
---|
5150 | case SVM_EXIT_CR0_SEL_WRITE:
|
---|
5151 | {
|
---|
5152 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
|
---|
5153 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5154 | return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
|
---|
5155 | }
|
---|
5156 |
|
---|
5157 | case SVM_EXIT_WRITE_CR0:
|
---|
5158 | case SVM_EXIT_WRITE_CR3:
|
---|
5159 | case SVM_EXIT_WRITE_CR4:
|
---|
5160 | case SVM_EXIT_WRITE_CR8: /** @todo Shouldn't writes to CR8 go to V_TPR instead since we run with V_INTR_MASKING set? */
|
---|
5161 | {
|
---|
5162 | uint8_t const uCr = uExitCode - SVM_EXIT_WRITE_CR0;
|
---|
5163 | Log4(("hmR0SvmHandleExitNested: Write CR%u: uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uCr, uExitInfo1, uExitInfo2));
|
---|
5164 |
|
---|
5165 | if (HMIsGuestSvmWriteCRxInterceptSet(pVCpu, pCtx, uCr))
|
---|
5166 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5167 | return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
|
---|
5168 | }
|
---|
5169 |
|
---|
5170 | case SVM_EXIT_PAUSE:
|
---|
5171 | {
|
---|
5172 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_PAUSE))
|
---|
5173 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5174 | return hmR0SvmExitPause(pVCpu, pCtx, pSvmTransient);
|
---|
5175 | }
|
---|
5176 |
|
---|
5177 | case SVM_EXIT_VINTR:
|
---|
5178 | {
|
---|
5179 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VINTR))
|
---|
5180 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5181 | return hmR0SvmExitUnexpected(pVCpu, pCtx, pSvmTransient);
|
---|
5182 | }
|
---|
5183 |
|
---|
5184 | case SVM_EXIT_INTR:
|
---|
5185 | case SVM_EXIT_NMI:
|
---|
5186 | case SVM_EXIT_XCPT_NMI: /* Shouldn't ever happen, SVM_EXIT_NMI is used instead. */
|
---|
5187 | case SVM_EXIT_SMI:
|
---|
5188 | {
|
---|
5189 | /*
|
---|
5190 | * We shouldn't direct physical interrupts, NMIs, SMIs to the nested-guest.
|
---|
5191 | *
|
---|
5192 | * Although we don't intercept SMIs, the nested-guest might. Therefore, we
|
---|
5193 | * might get an SMI #VMEXIT here so simply ignore rather than causing a
|
---|
5194 | * corresponding nested-guest #VMEXIT.
|
---|
5195 | */
|
---|
5196 | return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
|
---|
5197 | }
|
---|
5198 |
|
---|
5199 | case SVM_EXIT_FERR_FREEZE:
|
---|
5200 | {
|
---|
5201 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_FERR_FREEZE))
|
---|
5202 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5203 | return hmR0SvmExitFerrFreeze(pVCpu, pCtx, pSvmTransient);
|
---|
5204 | }
|
---|
5205 |
|
---|
5206 | case SVM_EXIT_INVLPG:
|
---|
5207 | {
|
---|
5208 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPG))
|
---|
5209 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5210 | return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
|
---|
5211 | }
|
---|
5212 |
|
---|
5213 | case SVM_EXIT_WBINVD:
|
---|
5214 | {
|
---|
5215 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_WBINVD))
|
---|
5216 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5217 | return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
|
---|
5218 | }
|
---|
5219 |
|
---|
5220 | case SVM_EXIT_INVD:
|
---|
5221 | {
|
---|
5222 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVD))
|
---|
5223 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5224 | return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
|
---|
5225 | }
|
---|
5226 |
|
---|
5227 | case SVM_EXIT_RDPMC:
|
---|
5228 | {
|
---|
5229 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDPMC))
|
---|
5230 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5231 | return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
|
---|
5232 | }
|
---|
5233 |
|
---|
5234 | default:
|
---|
5235 | {
|
---|
5236 | switch (uExitCode)
|
---|
5237 | {
|
---|
5238 | case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
|
---|
5239 | case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
|
---|
5240 | case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
|
---|
5241 | case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
|
---|
5242 | {
|
---|
5243 | uint8_t const uDr = uExitCode - SVM_EXIT_READ_DR0;
|
---|
5244 | if (HMIsGuestSvmReadDRxInterceptSet(pVCpu, pCtx, uDr))
|
---|
5245 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5246 | return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
|
---|
5247 | }
|
---|
5248 |
|
---|
5249 | case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
|
---|
5250 | case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
|
---|
5251 | case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
|
---|
5252 | case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
|
---|
5253 | {
|
---|
5254 | uint8_t const uDr = uExitCode - SVM_EXIT_WRITE_DR0;
|
---|
5255 | if (HMIsGuestSvmWriteDRxInterceptSet(pVCpu, pCtx, uDr))
|
---|
5256 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5257 | return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
|
---|
5258 | }
|
---|
5259 |
|
---|
5260 | case SVM_EXIT_XCPT_0: /* #DE */
|
---|
5261 | /* SVM_EXIT_XCPT_1: */ /* #DB - Handled above. */
|
---|
5262 | /* SVM_EXIT_XCPT_2: */ /* #NMI - Handled above. */
|
---|
5263 | /* SVM_EXIT_XCPT_3: */ /* #BP - Handled above. */
|
---|
5264 | case SVM_EXIT_XCPT_4: /* #OF */
|
---|
5265 | case SVM_EXIT_XCPT_5: /* #BR */
|
---|
5266 | /* SVM_EXIT_XCPT_6: */ /* #UD - Handled above. */
|
---|
5267 | case SVM_EXIT_XCPT_7: /* #NM */
|
---|
5268 | case SVM_EXIT_XCPT_8: /* #DF */
|
---|
5269 | case SVM_EXIT_XCPT_9: /* #CO_SEG_OVERRUN */
|
---|
5270 | case SVM_EXIT_XCPT_10: /* #TS */
|
---|
5271 | case SVM_EXIT_XCPT_11: /* #NP */
|
---|
5272 | case SVM_EXIT_XCPT_12: /* #SS */
|
---|
5273 | case SVM_EXIT_XCPT_13: /* #GP */
|
---|
5274 | /* SVM_EXIT_XCPT_14: */ /* #PF - Handled above. */
|
---|
5275 | case SVM_EXIT_XCPT_15: /* Reserved. */
|
---|
5276 | /* SVM_EXIT_XCPT_16: */ /* #MF - Handled above. */
|
---|
5277 | /* SVM_EXIT_XCPT_17: */ /* #AC - Handled above. */
|
---|
5278 | case SVM_EXIT_XCPT_18: /* #MC */
|
---|
5279 | case SVM_EXIT_XCPT_19: /* #XF */
|
---|
5280 | case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
|
---|
5281 | case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
|
---|
5282 | case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
|
---|
5283 | {
|
---|
5284 | uint8_t const uVector = uExitCode - SVM_EXIT_XCPT_0;
|
---|
5285 | if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, uVector))
|
---|
5286 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5287 | return hmR0SvmExitXcptGeneric(pVCpu, pCtx, pSvmTransient);
|
---|
5288 | }
|
---|
5289 |
|
---|
5290 | case SVM_EXIT_XSETBV:
|
---|
5291 | {
|
---|
5292 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_XSETBV))
|
---|
5293 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5294 | return hmR0SvmExitXsetbv(pVCpu, pCtx, pSvmTransient);
|
---|
5295 | }
|
---|
5296 |
|
---|
5297 | case SVM_EXIT_TASK_SWITCH:
|
---|
5298 | {
|
---|
5299 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_TASK_SWITCH))
|
---|
5300 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5301 | return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
|
---|
5302 | }
|
---|
5303 |
|
---|
5304 | case SVM_EXIT_IRET:
|
---|
5305 | {
|
---|
5306 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IRET))
|
---|
5307 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5308 | return hmR0SvmExitIret(pVCpu, pCtx, pSvmTransient);
|
---|
5309 | }
|
---|
5310 |
|
---|
5311 | case SVM_EXIT_SHUTDOWN:
|
---|
5312 | {
|
---|
5313 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SHUTDOWN))
|
---|
5314 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5315 | return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
|
---|
5316 | }
|
---|
5317 |
|
---|
5318 | case SVM_EXIT_VMMCALL:
|
---|
5319 | {
|
---|
5320 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMMCALL))
|
---|
5321 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5322 | return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
|
---|
5323 | }
|
---|
5324 |
|
---|
5325 | case SVM_EXIT_CLGI:
|
---|
5326 | {
|
---|
5327 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CLGI))
|
---|
5328 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5329 | return hmR0SvmExitClgi(pVCpu, pCtx, pSvmTransient);
|
---|
5330 | }
|
---|
5331 |
|
---|
5332 | case SVM_EXIT_STGI:
|
---|
5333 | {
|
---|
5334 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_STGI))
|
---|
5335 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5336 | return hmR0SvmExitStgi(pVCpu, pCtx, pSvmTransient);
|
---|
5337 | }
|
---|
5338 |
|
---|
5339 | case SVM_EXIT_VMLOAD:
|
---|
5340 | {
|
---|
5341 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMLOAD))
|
---|
5342 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5343 | return hmR0SvmExitVmload(pVCpu, pCtx, pSvmTransient);
|
---|
5344 | }
|
---|
5345 |
|
---|
5346 | case SVM_EXIT_VMSAVE:
|
---|
5347 | {
|
---|
5348 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMSAVE))
|
---|
5349 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5350 | return hmR0SvmExitVmsave(pVCpu, pCtx, pSvmTransient);
|
---|
5351 | }
|
---|
5352 |
|
---|
5353 | case SVM_EXIT_INVLPGA:
|
---|
5354 | {
|
---|
5355 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPGA))
|
---|
5356 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5357 | return hmR0SvmExitInvlpga(pVCpu, pCtx, pSvmTransient);
|
---|
5358 | }
|
---|
5359 |
|
---|
5360 | case SVM_EXIT_VMRUN:
|
---|
5361 | {
|
---|
5362 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMRUN))
|
---|
5363 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5364 | return hmR0SvmExitVmrun(pVCpu, pCtx, pSvmTransient);
|
---|
5365 | }
|
---|
5366 |
|
---|
5367 | case SVM_EXIT_RSM:
|
---|
5368 | {
|
---|
5369 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RSM))
|
---|
5370 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5371 | hmR0SvmSetPendingXcptUD(pVCpu);
|
---|
5372 | return VINF_SUCCESS;
|
---|
5373 | }
|
---|
5374 |
|
---|
5375 | case SVM_EXIT_SKINIT:
|
---|
5376 | {
|
---|
5377 | if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SKINIT))
|
---|
5378 | return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
|
---|
5379 | hmR0SvmSetPendingXcptUD(pVCpu);
|
---|
5380 | return VINF_SUCCESS;
|
---|
5381 | }
|
---|
5382 |
|
---|
5383 | case SVM_EXIT_NPF:
|
---|
5384 | {
|
---|
5385 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
|
---|
5386 | return hmR0SvmExitNestedPF(pVCpu, pCtx, pSvmTransient);
|
---|
5387 | }
|
---|
5388 |
|
---|
5389 | case SVM_EXIT_INIT: /* We shouldn't get INIT signals while executing a nested-guest. */
|
---|
5390 | return hmR0SvmExitUnexpected(pVCpu, pCtx, pSvmTransient);
|
---|
5391 |
|
---|
5392 | default:
|
---|
5393 | {
|
---|
5394 | AssertMsgFailed(("hmR0SvmHandleExitNested: Unknown exit code %#x\n", pSvmTransient->u64ExitCode));
|
---|
5395 | pVCpu->hm.s.u32HMError = pSvmTransient->u64ExitCode;
|
---|
5396 | return VERR_SVM_UNKNOWN_EXIT;
|
---|
5397 | }
|
---|
5398 | }
|
---|
5399 | }
|
---|
5400 | }
|
---|
5401 | /* not reached */
|
---|
5402 |
|
---|
5403 | #undef HM_SVM_VMEXIT_NESTED
|
---|
5404 | }
|
---|
5405 | #endif
|
---|
5406 |
|
---|
5407 |
|
---|
5408 | /**
|
---|
5409 | * Handles a guest \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
|
---|
5410 | *
|
---|
5411 | * @returns VBox status code (informational status codes included).
|
---|
5412 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5413 | * @param pCtx Pointer to the guest-CPU context.
|
---|
5414 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
5415 | */
|
---|
5416 | static int hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
5417 | {
|
---|
5418 | Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
|
---|
5419 | Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
|
---|
5420 |
|
---|
5421 | /*
|
---|
5422 | * The ordering of the case labels is based on most-frequently-occurring #VMEXITs for most guests under
|
---|
5423 | * normal workloads (for some definition of "normal").
|
---|
5424 | */
|
---|
5425 | uint64_t const uExitCode = pSvmTransient->u64ExitCode;
|
---|
5426 | switch (uExitCode)
|
---|
5427 | {
|
---|
5428 | case SVM_EXIT_NPF:
|
---|
5429 | return hmR0SvmExitNestedPF(pVCpu, pCtx, pSvmTransient);
|
---|
5430 |
|
---|
5431 | case SVM_EXIT_IOIO:
|
---|
5432 | return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
|
---|
5433 |
|
---|
5434 | case SVM_EXIT_RDTSC:
|
---|
5435 | return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
|
---|
5436 |
|
---|
5437 | case SVM_EXIT_RDTSCP:
|
---|
5438 | return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
|
---|
5439 |
|
---|
5440 | case SVM_EXIT_CPUID:
|
---|
5441 | return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
|
---|
5442 |
|
---|
5443 | case SVM_EXIT_XCPT_14: /* X86_XCPT_PF */
|
---|
5444 | return hmR0SvmExitXcptPF(pVCpu, pCtx, pSvmTransient);
|
---|
5445 |
|
---|
5446 | case SVM_EXIT_XCPT_6: /* X86_XCPT_UD */
|
---|
5447 | return hmR0SvmExitXcptUD(pVCpu, pCtx, pSvmTransient);
|
---|
5448 |
|
---|
5449 | case SVM_EXIT_XCPT_16: /* X86_XCPT_MF */
|
---|
5450 | return hmR0SvmExitXcptMF(pVCpu, pCtx, pSvmTransient);
|
---|
5451 |
|
---|
5452 | case SVM_EXIT_XCPT_1: /* X86_XCPT_DB */
|
---|
5453 | return hmR0SvmExitXcptDB(pVCpu, pCtx, pSvmTransient);
|
---|
5454 |
|
---|
5455 | case SVM_EXIT_XCPT_17: /* X86_XCPT_AC */
|
---|
5456 | return hmR0SvmExitXcptAC(pVCpu, pCtx, pSvmTransient);
|
---|
5457 |
|
---|
5458 | case SVM_EXIT_XCPT_3: /* X86_XCPT_BP */
|
---|
5459 | return hmR0SvmExitXcptBP(pVCpu, pCtx, pSvmTransient);
|
---|
5460 |
|
---|
5461 | case SVM_EXIT_MONITOR:
|
---|
5462 | return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
|
---|
5463 |
|
---|
5464 | case SVM_EXIT_MWAIT:
|
---|
5465 | return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
|
---|
5466 |
|
---|
5467 | case SVM_EXIT_HLT:
|
---|
5468 | return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
|
---|
5469 |
|
---|
5470 | case SVM_EXIT_READ_CR0:
|
---|
5471 | case SVM_EXIT_READ_CR3:
|
---|
5472 | case SVM_EXIT_READ_CR4:
|
---|
5473 | return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
|
---|
5474 |
|
---|
5475 | case SVM_EXIT_CR0_SEL_WRITE:
|
---|
5476 | case SVM_EXIT_WRITE_CR0:
|
---|
5477 | case SVM_EXIT_WRITE_CR3:
|
---|
5478 | case SVM_EXIT_WRITE_CR4:
|
---|
5479 | case SVM_EXIT_WRITE_CR8:
|
---|
5480 | {
|
---|
5481 | uint8_t const uCr = uExitCode == SVM_EXIT_CR0_SEL_WRITE ? 0 : uExitCode - SVM_EXIT_WRITE_CR0;
|
---|
5482 | Log4(("hmR0SvmHandleExit: Write CR%u\n", uCr)); NOREF(uCr);
|
---|
5483 | return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
|
---|
5484 | }
|
---|
5485 |
|
---|
5486 | case SVM_EXIT_PAUSE:
|
---|
5487 | return hmR0SvmExitPause(pVCpu, pCtx, pSvmTransient);
|
---|
5488 |
|
---|
5489 | case SVM_EXIT_VMMCALL:
|
---|
5490 | return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
|
---|
5491 |
|
---|
5492 | case SVM_EXIT_VINTR:
|
---|
5493 | return hmR0SvmExitVIntr(pVCpu, pCtx, pSvmTransient);
|
---|
5494 |
|
---|
5495 | case SVM_EXIT_FERR_FREEZE:
|
---|
5496 | return hmR0SvmExitFerrFreeze(pVCpu, pCtx, pSvmTransient);
|
---|
5497 |
|
---|
5498 | case SVM_EXIT_INTR:
|
---|
5499 | case SVM_EXIT_NMI:
|
---|
5500 | case SVM_EXIT_XCPT_NMI: /* Shouldn't ever happen, SVM_EXIT_NMI is used instead. */
|
---|
5501 | return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
|
---|
5502 |
|
---|
5503 | case SVM_EXIT_MSR:
|
---|
5504 | return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
|
---|
5505 |
|
---|
5506 | case SVM_EXIT_INVLPG:
|
---|
5507 | return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
|
---|
5508 |
|
---|
5509 | case SVM_EXIT_WBINVD:
|
---|
5510 | return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
|
---|
5511 |
|
---|
5512 | case SVM_EXIT_INVD:
|
---|
5513 | return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
|
---|
5514 |
|
---|
5515 | case SVM_EXIT_RDPMC:
|
---|
5516 | return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
|
---|
5517 |
|
---|
5518 | default:
|
---|
5519 | {
|
---|
5520 | switch (pSvmTransient->u64ExitCode)
|
---|
5521 | {
|
---|
5522 | case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
|
---|
5523 | case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
|
---|
5524 | case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
|
---|
5525 | case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
|
---|
5526 | return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
|
---|
5527 |
|
---|
5528 | case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
|
---|
5529 | case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
|
---|
5530 | case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
|
---|
5531 | case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
|
---|
5532 | return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
|
---|
5533 |
|
---|
5534 | case SVM_EXIT_XSETBV:
|
---|
5535 | return hmR0SvmExitXsetbv(pVCpu, pCtx, pSvmTransient);
|
---|
5536 |
|
---|
5537 | case SVM_EXIT_TASK_SWITCH:
|
---|
5538 | return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
|
---|
5539 |
|
---|
5540 | case SVM_EXIT_IRET:
|
---|
5541 | return hmR0SvmExitIret(pVCpu, pCtx, pSvmTransient);
|
---|
5542 |
|
---|
5543 | case SVM_EXIT_SHUTDOWN:
|
---|
5544 | return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
|
---|
5545 |
|
---|
5546 | case SVM_EXIT_SMI:
|
---|
5547 | case SVM_EXIT_INIT:
|
---|
5548 | {
|
---|
5549 | /*
|
---|
5550 | * We don't intercept SMIs. As for INIT signals, it really shouldn't ever happen here.
|
---|
5551 | * If it ever does, we want to know about it so log the exit code and bail.
|
---|
5552 | */
|
---|
5553 | return hmR0SvmExitUnexpected(pVCpu, pCtx, pSvmTransient);
|
---|
5554 | }
|
---|
5555 |
|
---|
5556 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
5557 | case SVM_EXIT_CLGI: return hmR0SvmExitClgi(pVCpu, pCtx, pSvmTransient);
|
---|
5558 | case SVM_EXIT_STGI: return hmR0SvmExitStgi(pVCpu, pCtx, pSvmTransient);
|
---|
5559 | case SVM_EXIT_VMLOAD: return hmR0SvmExitVmload(pVCpu, pCtx, pSvmTransient);
|
---|
5560 | case SVM_EXIT_VMSAVE: return hmR0SvmExitVmsave(pVCpu, pCtx, pSvmTransient);
|
---|
5561 | case SVM_EXIT_INVLPGA: return hmR0SvmExitInvlpga(pVCpu, pCtx, pSvmTransient);
|
---|
5562 | case SVM_EXIT_VMRUN: return hmR0SvmExitVmrun(pVCpu, pCtx, pSvmTransient);
|
---|
5563 | #else
|
---|
5564 | case SVM_EXIT_CLGI:
|
---|
5565 | case SVM_EXIT_STGI:
|
---|
5566 | case SVM_EXIT_VMLOAD:
|
---|
5567 | case SVM_EXIT_VMSAVE:
|
---|
5568 | case SVM_EXIT_INVLPGA:
|
---|
5569 | case SVM_EXIT_VMRUN:
|
---|
5570 | #endif
|
---|
5571 | case SVM_EXIT_RSM:
|
---|
5572 | case SVM_EXIT_SKINIT:
|
---|
5573 | {
|
---|
5574 | hmR0SvmSetPendingXcptUD(pVCpu);
|
---|
5575 | return VINF_SUCCESS;
|
---|
5576 | }
|
---|
5577 |
|
---|
5578 | #ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
5579 | case SVM_EXIT_XCPT_0: /* #DE */
|
---|
5580 | /* SVM_EXIT_XCPT_1: */ /* #DB - Handled above. */
|
---|
5581 | /* SVM_EXIT_XCPT_2: */ /* #NMI - Handled above. */
|
---|
5582 | /* SVM_EXIT_XCPT_3: */ /* #BP - Handled above. */
|
---|
5583 | case SVM_EXIT_XCPT_4: /* #OF */
|
---|
5584 | case SVM_EXIT_XCPT_5: /* #BR */
|
---|
5585 | /* SVM_EXIT_XCPT_6: */ /* #UD - Handled above. */
|
---|
5586 | case SVM_EXIT_XCPT_7: /* #NM */
|
---|
5587 | case SVM_EXIT_XCPT_8: /* #DF */
|
---|
5588 | case SVM_EXIT_XCPT_9: /* #CO_SEG_OVERRUN */
|
---|
5589 | case SVM_EXIT_XCPT_10: /* #TS */
|
---|
5590 | case SVM_EXIT_XCPT_11: /* #NP */
|
---|
5591 | case SVM_EXIT_XCPT_12: /* #SS */
|
---|
5592 | case SVM_EXIT_XCPT_13: /* #GP */
|
---|
5593 | /* SVM_EXIT_XCPT_14: */ /* #PF - Handled above. */
|
---|
5594 | case SVM_EXIT_XCPT_15: /* Reserved. */
|
---|
5595 | /* SVM_EXIT_XCPT_16: */ /* #MF - Handled above. */
|
---|
5596 | /* SVM_EXIT_XCPT_17: */ /* #AC - Handled above. */
|
---|
5597 | case SVM_EXIT_XCPT_18: /* #MC */
|
---|
5598 | case SVM_EXIT_XCPT_19: /* #XF */
|
---|
5599 | case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
|
---|
5600 | case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
|
---|
5601 | case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
|
---|
5602 | return hmR0SvmExitXcptGeneric(pVCpu, pCtx, pSvmTransient);
|
---|
5603 | #endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
|
---|
5604 |
|
---|
5605 | default:
|
---|
5606 | {
|
---|
5607 | AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#RX64\n", uExitCode));
|
---|
5608 | pVCpu->hm.s.u32HMError = uExitCode;
|
---|
5609 | return VERR_SVM_UNKNOWN_EXIT;
|
---|
5610 | }
|
---|
5611 | }
|
---|
5612 | }
|
---|
5613 | }
|
---|
5614 | /* not reached */
|
---|
5615 | }
|
---|
5616 |
|
---|
5617 |
|
---|
5618 | #ifdef DEBUG
|
---|
5619 | /* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
|
---|
5620 | # define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
|
---|
5621 | RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
|
---|
5622 |
|
---|
5623 | # define HMSVM_ASSERT_PREEMPT_CPUID() \
|
---|
5624 | do \
|
---|
5625 | { \
|
---|
5626 | RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
|
---|
5627 | AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
|
---|
5628 | } while (0)
|
---|
5629 |
|
---|
5630 | # define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() \
|
---|
5631 | do { \
|
---|
5632 | AssertPtr(pVCpu); \
|
---|
5633 | AssertPtr(pCtx); \
|
---|
5634 | AssertPtr(pSvmTransient); \
|
---|
5635 | Assert(ASMIntAreEnabled()); \
|
---|
5636 | HMSVM_ASSERT_PREEMPT_SAFE(); \
|
---|
5637 | HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
|
---|
5638 | Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (uint32_t)pVCpu->idCpu)); \
|
---|
5639 | HMSVM_ASSERT_PREEMPT_SAFE(); \
|
---|
5640 | if (VMMR0IsLogFlushDisabled(pVCpu)) \
|
---|
5641 | HMSVM_ASSERT_PREEMPT_CPUID(); \
|
---|
5642 | } while (0)
|
---|
5643 | #else /* Release builds */
|
---|
5644 | # define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() do { NOREF(pVCpu); NOREF(pCtx); NOREF(pSvmTransient); } while (0)
|
---|
5645 | #endif
|
---|
5646 |
|
---|
5647 |
|
---|
5648 | /**
|
---|
5649 | * Worker for hmR0SvmInterpretInvlpg().
|
---|
5650 | *
|
---|
5651 | * @return VBox status code.
|
---|
5652 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5653 | * @param pCpu Pointer to the disassembler state.
|
---|
5654 | * @param pCtx The guest CPU context.
|
---|
5655 | */
|
---|
5656 | static int hmR0SvmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTX pCtx)
|
---|
5657 | {
|
---|
5658 | DISQPVPARAMVAL Param1;
|
---|
5659 | RTGCPTR GCPtrPage;
|
---|
5660 |
|
---|
5661 | int rc = DISQueryParamVal(CPUMCTX2CORE(pCtx), pCpu, &pCpu->Param1, &Param1, DISQPVWHICH_SRC);
|
---|
5662 | if (RT_FAILURE(rc))
|
---|
5663 | return VERR_EM_INTERPRETER;
|
---|
5664 |
|
---|
5665 | if ( Param1.type == DISQPV_TYPE_IMMEDIATE
|
---|
5666 | || Param1.type == DISQPV_TYPE_ADDRESS)
|
---|
5667 | {
|
---|
5668 | if (!(Param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
|
---|
5669 | return VERR_EM_INTERPRETER;
|
---|
5670 |
|
---|
5671 | GCPtrPage = Param1.val.val64;
|
---|
5672 | VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), GCPtrPage);
|
---|
5673 | rc = VBOXSTRICTRC_VAL(rc2);
|
---|
5674 | }
|
---|
5675 | else
|
---|
5676 | {
|
---|
5677 | Log4(("hmR0SvmInterpretInvlPgEx invalid parameter type %#x\n", Param1.type));
|
---|
5678 | rc = VERR_EM_INTERPRETER;
|
---|
5679 | }
|
---|
5680 |
|
---|
5681 | return rc;
|
---|
5682 | }
|
---|
5683 |
|
---|
5684 |
|
---|
5685 | /**
|
---|
5686 | * Interprets INVLPG.
|
---|
5687 | *
|
---|
5688 | * @returns VBox status code.
|
---|
5689 | * @retval VINF_* Scheduling instructions.
|
---|
5690 | * @retval VERR_EM_INTERPRETER Something we can't cope with.
|
---|
5691 | * @retval VERR_* Fatal errors.
|
---|
5692 | *
|
---|
5693 | * @param pVM The cross context VM structure.
|
---|
5694 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5695 | * @param pCtx The guest CPU context.
|
---|
5696 | *
|
---|
5697 | * @remarks Updates the RIP if the instruction was executed successfully.
|
---|
5698 | */
|
---|
5699 | static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
5700 | {
|
---|
5701 | /* Only allow 32 & 64 bit code. */
|
---|
5702 | if (CPUMGetGuestCodeBits(pVCpu) != 16)
|
---|
5703 | {
|
---|
5704 | PDISSTATE pDis = &pVCpu->hm.s.DisState;
|
---|
5705 | int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
|
---|
5706 | if ( RT_SUCCESS(rc)
|
---|
5707 | && pDis->pCurInstr->uOpcode == OP_INVLPG)
|
---|
5708 | {
|
---|
5709 | rc = hmR0SvmInterpretInvlPgEx(pVCpu, pDis, pCtx);
|
---|
5710 | if (RT_SUCCESS(rc))
|
---|
5711 | pCtx->rip += pDis->cbInstr;
|
---|
5712 | return rc;
|
---|
5713 | }
|
---|
5714 | else
|
---|
5715 | Log4(("hmR0SvmInterpretInvlpg: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
|
---|
5716 | }
|
---|
5717 | return VERR_EM_INTERPRETER;
|
---|
5718 | }
|
---|
5719 |
|
---|
5720 |
|
---|
5721 | #ifdef HMSVM_USE_IEM_EVENT_REFLECTION
|
---|
5722 | /**
|
---|
5723 | * Gets the IEM exception flags for the specified SVM event.
|
---|
5724 | *
|
---|
5725 | * @returns The IEM exception flags.
|
---|
5726 | * @param pEvent Pointer to the SVM event.
|
---|
5727 | *
|
---|
5728 | * @remarks This function currently only constructs flags required for
|
---|
5729 | * IEMEvaluateRecursiveXcpt and not the complete flags (e.g. error-code
|
---|
5730 | * and CR2 aspects of an exception are not included).
|
---|
5731 | */
|
---|
5732 | static uint32_t hmR0SvmGetIemXcptFlags(PCSVMEVENT pEvent)
|
---|
5733 | {
|
---|
5734 | uint8_t const uEventType = pEvent->n.u3Type;
|
---|
5735 | uint32_t fIemXcptFlags;
|
---|
5736 | switch (uEventType)
|
---|
5737 | {
|
---|
5738 | case SVM_EVENT_EXCEPTION:
|
---|
5739 | /*
|
---|
5740 | * Only INT3 and INTO instructions can raise #BP and #OF exceptions.
|
---|
5741 | * See AMD spec. Table 8-1. "Interrupt Vector Source and Cause".
|
---|
5742 | */
|
---|
5743 | if (pEvent->n.u8Vector == X86_XCPT_BP)
|
---|
5744 | {
|
---|
5745 | fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR;
|
---|
5746 | break;
|
---|
5747 | }
|
---|
5748 | if (pEvent->n.u8Vector == X86_XCPT_OF)
|
---|
5749 | {
|
---|
5750 | fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_OF_INSTR;
|
---|
5751 | break;
|
---|
5752 | }
|
---|
5753 | /** @todo How do we distinguish ICEBP \#DB from the regular one? */
|
---|
5754 | RT_FALL_THRU();
|
---|
5755 | case SVM_EVENT_NMI:
|
---|
5756 | fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
|
---|
5757 | break;
|
---|
5758 |
|
---|
5759 | case SVM_EVENT_EXTERNAL_IRQ:
|
---|
5760 | fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
|
---|
5761 | break;
|
---|
5762 |
|
---|
5763 | case SVM_EVENT_SOFTWARE_INT:
|
---|
5764 | fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
|
---|
5765 | break;
|
---|
5766 |
|
---|
5767 | default:
|
---|
5768 | fIemXcptFlags = 0;
|
---|
5769 | AssertMsgFailed(("Unexpected event type! uEventType=%#x uVector=%#x", uEventType, pEvent->n.u8Vector));
|
---|
5770 | break;
|
---|
5771 | }
|
---|
5772 | return fIemXcptFlags;
|
---|
5773 | }
|
---|
5774 |
|
---|
5775 | #else
|
---|
5776 | /**
|
---|
5777 | * Determines if an exception is a contributory exception.
|
---|
5778 | *
|
---|
5779 | * Contributory exceptions are ones which can cause double-faults unless the
|
---|
5780 | * original exception was a benign exception. Page-fault is intentionally not
|
---|
5781 | * included here as it's a conditional contributory exception.
|
---|
5782 | *
|
---|
5783 | * @returns @c true if the exception is contributory, @c false otherwise.
|
---|
5784 | * @param uVector The exception vector.
|
---|
5785 | */
|
---|
5786 | DECLINLINE(bool) hmR0SvmIsContributoryXcpt(const uint32_t uVector)
|
---|
5787 | {
|
---|
5788 | switch (uVector)
|
---|
5789 | {
|
---|
5790 | case X86_XCPT_GP:
|
---|
5791 | case X86_XCPT_SS:
|
---|
5792 | case X86_XCPT_NP:
|
---|
5793 | case X86_XCPT_TS:
|
---|
5794 | case X86_XCPT_DE:
|
---|
5795 | return true;
|
---|
5796 | default:
|
---|
5797 | break;
|
---|
5798 | }
|
---|
5799 | return false;
|
---|
5800 | }
|
---|
5801 | #endif /* HMSVM_USE_IEM_EVENT_REFLECTION */
|
---|
5802 |
|
---|
5803 |
|
---|
5804 | /**
|
---|
5805 | * Handle a condition that occurred while delivering an event through the guest
|
---|
5806 | * IDT.
|
---|
5807 | *
|
---|
5808 | * @returns VBox status code (informational error codes included).
|
---|
5809 | * @retval VINF_SUCCESS if we should continue handling the \#VMEXIT.
|
---|
5810 | * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought to
|
---|
5811 | * continue execution of the guest which will delivery the \#DF.
|
---|
5812 | * @retval VINF_EM_RESET if we detected a triple-fault condition.
|
---|
5813 | * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
|
---|
5814 | *
|
---|
5815 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5816 | * @param pCtx Pointer to the guest-CPU context.
|
---|
5817 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
5818 | *
|
---|
5819 | * @remarks No-long-jump zone!!!
|
---|
5820 | */
|
---|
5821 | static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
5822 | {
|
---|
5823 | int rc = VINF_SUCCESS;
|
---|
5824 | PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
5825 |
|
---|
5826 | Log4(("EXITINTINFO: Pending vectoring event %#RX64 Valid=%RTbool ErrValid=%RTbool Err=%#RX32 Type=%u Vector=%u\n",
|
---|
5827 | pVmcb->ctrl.ExitIntInfo.u, !!pVmcb->ctrl.ExitIntInfo.n.u1Valid, !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid,
|
---|
5828 | pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, pVmcb->ctrl.ExitIntInfo.n.u3Type, pVmcb->ctrl.ExitIntInfo.n.u8Vector));
|
---|
5829 |
|
---|
5830 | /* See AMD spec. 15.7.3 "EXITINFO Pseudo-Code". The EXITINTINFO (if valid) contains the prior exception (IDT vector)
|
---|
5831 | * that was trying to be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector). */
|
---|
5832 | if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
|
---|
5833 | {
|
---|
5834 | #ifdef HMSVM_USE_IEM_EVENT_REFLECTION
|
---|
5835 | IEMXCPTRAISE enmRaise;
|
---|
5836 | IEMXCPTRAISEINFO fRaiseInfo;
|
---|
5837 | bool const fExitIsHwXcpt = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0 <= SVM_EXIT_XCPT_31;
|
---|
5838 | uint8_t const uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
|
---|
5839 | if (fExitIsHwXcpt)
|
---|
5840 | {
|
---|
5841 | uint8_t const uExitVector = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0;
|
---|
5842 | uint32_t const fIdtVectorFlags = hmR0SvmGetIemXcptFlags(&pVmcb->ctrl.ExitIntInfo);
|
---|
5843 | uint32_t const fExitVectorFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
|
---|
5844 | enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
|
---|
5845 | }
|
---|
5846 | else
|
---|
5847 | {
|
---|
5848 | /*
|
---|
5849 | * If delivery of an event caused a #VMEXIT that is not an exception (e.g. #NPF) then we
|
---|
5850 | * end up here.
|
---|
5851 | *
|
---|
5852 | * If the event was:
|
---|
5853 | * - a software interrupt, we can re-execute the instruction which will regenerate
|
---|
5854 | * the event.
|
---|
5855 | * - an NMI, we need to clear NMI blocking and re-inject the NMI.
|
---|
5856 | * - a hardware exception or external interrupt, we re-inject it.
|
---|
5857 | */
|
---|
5858 | fRaiseInfo = IEMXCPTRAISEINFO_NONE;
|
---|
5859 | if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_SOFTWARE_INT)
|
---|
5860 | enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
|
---|
5861 | else
|
---|
5862 | enmRaise = IEMXCPTRAISE_PREV_EVENT;
|
---|
5863 | }
|
---|
5864 |
|
---|
5865 | switch (enmRaise)
|
---|
5866 | {
|
---|
5867 | case IEMXCPTRAISE_CURRENT_XCPT:
|
---|
5868 | case IEMXCPTRAISE_PREV_EVENT:
|
---|
5869 | {
|
---|
5870 | /* For software interrupts, we shall re-execute the instruction. */
|
---|
5871 | if (!(fRaiseInfo & IEMXCPTRAISEINFO_SOFT_INT_XCPT))
|
---|
5872 | {
|
---|
5873 | RTGCUINTPTR GCPtrFaultAddress = 0;
|
---|
5874 |
|
---|
5875 | /* If we are re-injecting an NMI, clear NMI blocking. */
|
---|
5876 | if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
|
---|
5877 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
5878 |
|
---|
5879 | /* Determine a vectoring #PF condition, see comment in hmR0SvmExitXcptPF(). */
|
---|
5880 | if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
|
---|
5881 | pSvmTransient->fVectoringPF = true;
|
---|
5882 | else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION
|
---|
5883 | && uIdtVector == X86_XCPT_PF)
|
---|
5884 | {
|
---|
5885 | /*
|
---|
5886 | * If the previous exception was a #PF, we need to recover the CR2 value.
|
---|
5887 | * This can't happen with shadow paging.
|
---|
5888 | */
|
---|
5889 | GCPtrFaultAddress = pCtx->cr2;
|
---|
5890 | }
|
---|
5891 |
|
---|
5892 | /*
|
---|
5893 | * Without nested paging, when uExitVector is #PF, CR2 value will be updated from the VMCB's
|
---|
5894 | * exit info. fields, if it's a guest #PF, see hmR0SvmExitXcptPF().
|
---|
5895 | */
|
---|
5896 | Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
|
---|
5897 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
|
---|
5898 | hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, GCPtrFaultAddress);
|
---|
5899 |
|
---|
5900 | Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32 GCPtrFaultAddress=%#RX64\n",
|
---|
5901 | pVmcb->ctrl.ExitIntInfo.u, RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid),
|
---|
5902 | pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, GCPtrFaultAddress));
|
---|
5903 | }
|
---|
5904 | break;
|
---|
5905 | }
|
---|
5906 |
|
---|
5907 | case IEMXCPTRAISE_REEXEC_INSTR:
|
---|
5908 | {
|
---|
5909 | Assert(rc == VINF_SUCCESS);
|
---|
5910 | break;
|
---|
5911 | }
|
---|
5912 |
|
---|
5913 | case IEMXCPTRAISE_DOUBLE_FAULT:
|
---|
5914 | {
|
---|
5915 | /*
|
---|
5916 | * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
|
---|
5917 | * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
|
---|
5918 | */
|
---|
5919 | if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
|
---|
5920 | {
|
---|
5921 | pSvmTransient->fVectoringDoublePF = true;
|
---|
5922 | Assert(rc == VINF_SUCCESS);
|
---|
5923 | }
|
---|
5924 | else
|
---|
5925 | {
|
---|
5926 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
|
---|
5927 | hmR0SvmSetPendingXcptDF(pVCpu);
|
---|
5928 | rc = VINF_HM_DOUBLE_FAULT;
|
---|
5929 | }
|
---|
5930 | break;
|
---|
5931 | }
|
---|
5932 |
|
---|
5933 | case IEMXCPTRAISE_TRIPLE_FAULT:
|
---|
5934 | {
|
---|
5935 | rc = VINF_EM_RESET;
|
---|
5936 | break;
|
---|
5937 | }
|
---|
5938 |
|
---|
5939 | case IEMXCPTRAISE_CPU_HANG:
|
---|
5940 | {
|
---|
5941 | rc = VERR_EM_GUEST_CPU_HANG;
|
---|
5942 | break;
|
---|
5943 | }
|
---|
5944 |
|
---|
5945 | default:
|
---|
5946 | {
|
---|
5947 | AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
|
---|
5948 | rc = VERR_SVM_IPE_2;
|
---|
5949 | break;
|
---|
5950 | }
|
---|
5951 | }
|
---|
5952 | #else
|
---|
5953 | uint8_t uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
|
---|
5954 |
|
---|
5955 | typedef enum
|
---|
5956 | {
|
---|
5957 | SVMREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
|
---|
5958 | SVMREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
|
---|
5959 | SVMREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
|
---|
5960 | SVMREFLECTXCPT_HANG, /* Indicate bad VM trying to deadlock the CPU. */
|
---|
5961 | SVMREFLECTXCPT_NONE /* Nothing to reflect. */
|
---|
5962 | } SVMREFLECTXCPT;
|
---|
5963 |
|
---|
5964 | SVMREFLECTXCPT enmReflect = SVMREFLECTXCPT_NONE;
|
---|
5965 | bool fReflectingNmi = false;
|
---|
5966 | if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION)
|
---|
5967 | {
|
---|
5968 | if (pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0 <= SVM_EXIT_XCPT_31)
|
---|
5969 | {
|
---|
5970 | uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0);
|
---|
5971 |
|
---|
5972 | #ifdef VBOX_STRICT
|
---|
5973 | if ( hmR0SvmIsContributoryXcpt(uIdtVector)
|
---|
5974 | && uExitVector == X86_XCPT_PF)
|
---|
5975 | {
|
---|
5976 | Log4(("IDT: Contributory #PF idCpu=%u uCR2=%#RX64\n", pVCpu->idCpu, pCtx->cr2));
|
---|
5977 | }
|
---|
5978 | #endif
|
---|
5979 |
|
---|
5980 | if ( uIdtVector == X86_XCPT_BP
|
---|
5981 | || uIdtVector == X86_XCPT_OF)
|
---|
5982 | {
|
---|
5983 | /* Ignore INT3/INTO, just re-execute. See @bugref{8357}. */
|
---|
5984 | }
|
---|
5985 | else if ( uExitVector == X86_XCPT_PF
|
---|
5986 | && uIdtVector == X86_XCPT_PF)
|
---|
5987 | {
|
---|
5988 | pSvmTransient->fVectoringDoublePF = true;
|
---|
5989 | Log4(("IDT: Vectoring double #PF uCR2=%#RX64\n", pCtx->cr2));
|
---|
5990 | }
|
---|
5991 | else if ( uExitVector == X86_XCPT_AC
|
---|
5992 | && uIdtVector == X86_XCPT_AC)
|
---|
5993 | {
|
---|
5994 | enmReflect = SVMREFLECTXCPT_HANG;
|
---|
5995 | Log4(("IDT: Nested #AC - Bad guest\n"));
|
---|
5996 | }
|
---|
5997 | else if ( (pVmcb->ctrl.u32InterceptXcpt & HMSVM_CONTRIBUTORY_XCPT_MASK)
|
---|
5998 | && hmR0SvmIsContributoryXcpt(uExitVector)
|
---|
5999 | && ( hmR0SvmIsContributoryXcpt(uIdtVector)
|
---|
6000 | || uIdtVector == X86_XCPT_PF))
|
---|
6001 | {
|
---|
6002 | enmReflect = SVMREFLECTXCPT_DF;
|
---|
6003 | Log4(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
|
---|
6004 | uIdtVector, uExitVector));
|
---|
6005 | }
|
---|
6006 | else if (uIdtVector == X86_XCPT_DF)
|
---|
6007 | {
|
---|
6008 | enmReflect = SVMREFLECTXCPT_TF;
|
---|
6009 | Log4(("IDT: Pending vectoring triple-fault %#RX64 uIdtVector=%#x uExitVector=%#x\n",
|
---|
6010 | pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
|
---|
6011 | }
|
---|
6012 | else
|
---|
6013 | enmReflect = SVMREFLECTXCPT_XCPT;
|
---|
6014 | }
|
---|
6015 | else
|
---|
6016 | {
|
---|
6017 | /*
|
---|
6018 | * If event delivery caused an #VMEXIT that is not an exception (e.g. #NPF) then reflect the original
|
---|
6019 | * exception to the guest after handling the #VMEXIT.
|
---|
6020 | */
|
---|
6021 | enmReflect = SVMREFLECTXCPT_XCPT;
|
---|
6022 | }
|
---|
6023 | }
|
---|
6024 | else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXTERNAL_IRQ
|
---|
6025 | || pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
|
---|
6026 | {
|
---|
6027 | enmReflect = SVMREFLECTXCPT_XCPT;
|
---|
6028 | fReflectingNmi = RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI);
|
---|
6029 |
|
---|
6030 | if (pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0 <= SVM_EXIT_XCPT_31)
|
---|
6031 | {
|
---|
6032 | uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0);
|
---|
6033 | if (uExitVector == X86_XCPT_PF)
|
---|
6034 | {
|
---|
6035 | pSvmTransient->fVectoringPF = true;
|
---|
6036 | Log4(("IDT: Vectoring #PF due to Ext-Int/NMI. uCR2=%#RX64\n", pCtx->cr2));
|
---|
6037 | }
|
---|
6038 | }
|
---|
6039 | }
|
---|
6040 | /* else: Ignore software interrupts (INT n) as they reoccur when restarting the instruction. */
|
---|
6041 |
|
---|
6042 | switch (enmReflect)
|
---|
6043 | {
|
---|
6044 | case SVMREFLECTXCPT_XCPT:
|
---|
6045 | {
|
---|
6046 | /* If we are re-injecting the NMI, clear NMI blocking. */
|
---|
6047 | if (fReflectingNmi)
|
---|
6048 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
6049 |
|
---|
6050 | Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
|
---|
6051 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
|
---|
6052 | hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, 0 /* GCPtrFaultAddress */);
|
---|
6053 |
|
---|
6054 | /* If uExitVector is #PF, CR2 value will be updated from the VMCB if it's a guest #PF. See hmR0SvmExitXcptPF(). */
|
---|
6055 | Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32\n", pVmcb->ctrl.ExitIntInfo.u,
|
---|
6056 | !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid, pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
|
---|
6057 | break;
|
---|
6058 | }
|
---|
6059 |
|
---|
6060 | case SVMREFLECTXCPT_DF:
|
---|
6061 | {
|
---|
6062 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
|
---|
6063 | hmR0SvmSetPendingXcptDF(pVCpu);
|
---|
6064 | rc = VINF_HM_DOUBLE_FAULT;
|
---|
6065 | break;
|
---|
6066 | }
|
---|
6067 |
|
---|
6068 | case SVMREFLECTXCPT_TF:
|
---|
6069 | {
|
---|
6070 | rc = VINF_EM_RESET;
|
---|
6071 | break;
|
---|
6072 | }
|
---|
6073 |
|
---|
6074 | case SVMREFLECTXCPT_HANG:
|
---|
6075 | {
|
---|
6076 | rc = VERR_EM_GUEST_CPU_HANG;
|
---|
6077 | break;
|
---|
6078 | }
|
---|
6079 |
|
---|
6080 | default:
|
---|
6081 | Assert(rc == VINF_SUCCESS);
|
---|
6082 | break;
|
---|
6083 | }
|
---|
6084 | #endif /* HMSVM_USE_IEM_EVENT_REFLECTION */
|
---|
6085 | }
|
---|
6086 | Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET || rc == VERR_EM_GUEST_CPU_HANG);
|
---|
6087 | NOREF(pCtx);
|
---|
6088 | return rc;
|
---|
6089 | }
|
---|
6090 |
|
---|
6091 |
|
---|
6092 | /**
|
---|
6093 | * Advances the guest RIP making use of the CPU's NRIP_SAVE feature if
|
---|
6094 | * supported, otherwise advances the RIP by the number of bytes specified in
|
---|
6095 | * @a cb.
|
---|
6096 | *
|
---|
6097 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6098 | * @param pCtx Pointer to the guest-CPU context.
|
---|
6099 | * @param cb RIP increment value in bytes.
|
---|
6100 | *
|
---|
6101 | * @remarks Use this function only from \#VMEXIT's where the NRIP value is valid
|
---|
6102 | * when NRIP_SAVE is supported by the CPU, otherwise use
|
---|
6103 | * hmR0SvmAdvanceRipDumb!
|
---|
6104 | */
|
---|
6105 | DECLINLINE(void) hmR0SvmAdvanceRipHwAssist(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
|
---|
6106 | {
|
---|
6107 | bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
|
---|
6108 | if (fSupportsNextRipSave)
|
---|
6109 | {
|
---|
6110 | PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
6111 | Assert(pVmcb);
|
---|
6112 | Assert(pVmcb->ctrl.u64NextRIP);
|
---|
6113 | AssertRelease(pVmcb->ctrl.u64NextRIP - pCtx->rip == cb); /* temporary, remove later */
|
---|
6114 | pCtx->rip = pVmcb->ctrl.u64NextRIP;
|
---|
6115 | }
|
---|
6116 | else
|
---|
6117 | pCtx->rip += cb;
|
---|
6118 |
|
---|
6119 | HMSVM_UPDATE_INTR_SHADOW(pVCpu, pCtx);
|
---|
6120 | }
|
---|
6121 |
|
---|
6122 |
|
---|
6123 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
6124 | /**
|
---|
6125 | * Gets the length of the current instruction if the CPU supports the NRIP_SAVE
|
---|
6126 | * feature. Otherwise, returns the value in @a cbLikely.
|
---|
6127 | *
|
---|
6128 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6129 | * @param pCtx Pointer to the guest-CPU context.
|
---|
6130 | * @param cbLikely The likely instruction length.
|
---|
6131 | */
|
---|
6132 | DECLINLINE(uint8_t) hmR0SvmGetInstrLengthHwAssist(PVMCPU pVCpu, PCPUMCTX pCtx, uint8_t cbLikely)
|
---|
6133 | {
|
---|
6134 | Assert(cbLikely <= 15); /* See Intel spec. 2.3.11 "AVX Instruction Length" */
|
---|
6135 | bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
|
---|
6136 | if (fSupportsNextRipSave)
|
---|
6137 | {
|
---|
6138 | PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
6139 | uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
|
---|
6140 | Assert(cbInstr == cbLikely);
|
---|
6141 | return cbInstr;
|
---|
6142 | }
|
---|
6143 | return cbLikely;
|
---|
6144 | }
|
---|
6145 | #endif
|
---|
6146 |
|
---|
6147 |
|
---|
6148 | /**
|
---|
6149 | * Advances the guest RIP by the number of bytes specified in @a cb. This does
|
---|
6150 | * not make use of any hardware features to determine the instruction length.
|
---|
6151 | *
|
---|
6152 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6153 | * @param pCtx Pointer to the guest-CPU context.
|
---|
6154 | * @param cb RIP increment value in bytes.
|
---|
6155 | */
|
---|
6156 | DECLINLINE(void) hmR0SvmAdvanceRipDumb(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
|
---|
6157 | {
|
---|
6158 | pCtx->rip += cb;
|
---|
6159 | HMSVM_UPDATE_INTR_SHADOW(pVCpu, pCtx);
|
---|
6160 | }
|
---|
6161 | #undef HMSVM_UPDATE_INTR_SHADOW
|
---|
6162 |
|
---|
6163 |
|
---|
6164 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
6165 | /* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
|
---|
6166 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
6167 |
|
---|
6168 | /** @name \#VMEXIT handlers.
|
---|
6169 | * @{
|
---|
6170 | */
|
---|
6171 |
|
---|
6172 | /**
|
---|
6173 | * \#VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
|
---|
6174 | * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
|
---|
6175 | */
|
---|
6176 | HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6177 | {
|
---|
6178 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6179 |
|
---|
6180 | if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
|
---|
6181 | STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
|
---|
6182 | else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
|
---|
6183 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
|
---|
6184 |
|
---|
6185 | /*
|
---|
6186 | * AMD-V has no preemption timer and the generic periodic preemption timer has no way to signal -before- the timer
|
---|
6187 | * fires if the current interrupt is our own timer or a some other host interrupt. We also cannot examine what
|
---|
6188 | * interrupt it is until the host actually take the interrupt.
|
---|
6189 | *
|
---|
6190 | * Going back to executing guest code here unconditionally causes random scheduling problems (observed on an
|
---|
6191 | * AMD Phenom 9850 Quad-Core on Windows 64-bit host).
|
---|
6192 | */
|
---|
6193 | return VINF_EM_RAW_INTERRUPT;
|
---|
6194 | }
|
---|
6195 |
|
---|
6196 |
|
---|
6197 | /**
|
---|
6198 | * \#VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional \#VMEXIT.
|
---|
6199 | */
|
---|
6200 | HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6201 | {
|
---|
6202 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6203 |
|
---|
6204 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
|
---|
6205 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
|
---|
6206 | int rc = VINF_SUCCESS;
|
---|
6207 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6208 | return rc;
|
---|
6209 | }
|
---|
6210 |
|
---|
6211 |
|
---|
6212 | /**
|
---|
6213 | * \#VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional \#VMEXIT.
|
---|
6214 | */
|
---|
6215 | HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6216 | {
|
---|
6217 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6218 |
|
---|
6219 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
|
---|
6220 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
|
---|
6221 | int rc = VINF_SUCCESS;
|
---|
6222 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6223 | return rc;
|
---|
6224 | }
|
---|
6225 |
|
---|
6226 |
|
---|
6227 | /**
|
---|
6228 | * \#VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional \#VMEXIT.
|
---|
6229 | */
|
---|
6230 | HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6231 | {
|
---|
6232 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6233 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6234 | int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
|
---|
6235 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
6236 | {
|
---|
6237 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
|
---|
6238 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6239 | }
|
---|
6240 | else
|
---|
6241 | {
|
---|
6242 | AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
|
---|
6243 | rc = VERR_EM_INTERPRETER;
|
---|
6244 | }
|
---|
6245 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
|
---|
6246 | return rc;
|
---|
6247 | }
|
---|
6248 |
|
---|
6249 |
|
---|
6250 | /**
|
---|
6251 | * \#VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional \#VMEXIT.
|
---|
6252 | */
|
---|
6253 | HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6254 | {
|
---|
6255 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6256 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6257 | int rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
|
---|
6258 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
6259 | {
|
---|
6260 | pSvmTransient->fUpdateTscOffsetting = true;
|
---|
6261 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
|
---|
6262 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6263 | }
|
---|
6264 | else
|
---|
6265 | {
|
---|
6266 | AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
|
---|
6267 | rc = VERR_EM_INTERPRETER;
|
---|
6268 | }
|
---|
6269 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
|
---|
6270 | return rc;
|
---|
6271 | }
|
---|
6272 |
|
---|
6273 |
|
---|
6274 | /**
|
---|
6275 | * \#VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional \#VMEXIT.
|
---|
6276 | */
|
---|
6277 | HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6278 | {
|
---|
6279 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6280 | int rc = EMInterpretRdtscp(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
|
---|
6281 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
6282 | {
|
---|
6283 | pSvmTransient->fUpdateTscOffsetting = true;
|
---|
6284 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3);
|
---|
6285 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6286 | }
|
---|
6287 | else
|
---|
6288 | {
|
---|
6289 | AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtscp failed with %Rrc\n", rc));
|
---|
6290 | rc = VERR_EM_INTERPRETER;
|
---|
6291 | }
|
---|
6292 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
|
---|
6293 | return rc;
|
---|
6294 | }
|
---|
6295 |
|
---|
6296 |
|
---|
6297 | /**
|
---|
6298 | * \#VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional \#VMEXIT.
|
---|
6299 | */
|
---|
6300 | HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6301 | {
|
---|
6302 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6303 | int rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
|
---|
6304 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
6305 | {
|
---|
6306 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
|
---|
6307 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6308 | }
|
---|
6309 | else
|
---|
6310 | {
|
---|
6311 | AssertMsgFailed(("hmR0SvmExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
|
---|
6312 | rc = VERR_EM_INTERPRETER;
|
---|
6313 | }
|
---|
6314 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
|
---|
6315 | return rc;
|
---|
6316 | }
|
---|
6317 |
|
---|
6318 |
|
---|
6319 | /**
|
---|
6320 | * \#VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional \#VMEXIT.
|
---|
6321 | */
|
---|
6322 | HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6323 | {
|
---|
6324 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6325 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6326 | Assert(!pVM->hm.s.fNestedPaging);
|
---|
6327 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
|
---|
6328 |
|
---|
6329 | bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu, pCtx);
|
---|
6330 | bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
|
---|
6331 | if ( fSupportsDecodeAssists
|
---|
6332 | && fSupportsNextRipSave)
|
---|
6333 | {
|
---|
6334 | PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
6335 | uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
|
---|
6336 | RTGCPTR const GCPtrPage = pVmcb->ctrl.u64ExitInfo1;
|
---|
6337 | VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, cbInstr, GCPtrPage);
|
---|
6338 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
|
---|
6339 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
6340 | }
|
---|
6341 |
|
---|
6342 | int rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, pCtx); /* Updates RIP if successful. */
|
---|
6343 | Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
|
---|
6344 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6345 | return rc;
|
---|
6346 | }
|
---|
6347 |
|
---|
6348 |
|
---|
6349 | /**
|
---|
6350 | * \#VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional \#VMEXIT.
|
---|
6351 | */
|
---|
6352 | HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6353 | {
|
---|
6354 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6355 |
|
---|
6356 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 1);
|
---|
6357 | int rc = EMShouldContinueAfterHalt(pVCpu, pCtx) ? VINF_SUCCESS : VINF_EM_HALT;
|
---|
6358 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6359 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
|
---|
6360 | if (rc != VINF_SUCCESS)
|
---|
6361 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
|
---|
6362 | return rc;
|
---|
6363 | }
|
---|
6364 |
|
---|
6365 |
|
---|
6366 | /**
|
---|
6367 | * \#VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional \#VMEXIT.
|
---|
6368 | */
|
---|
6369 | HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6370 | {
|
---|
6371 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6372 | int rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
|
---|
6373 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
6374 | {
|
---|
6375 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3);
|
---|
6376 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6377 | }
|
---|
6378 | else
|
---|
6379 | {
|
---|
6380 | AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
|
---|
6381 | rc = VERR_EM_INTERPRETER;
|
---|
6382 | }
|
---|
6383 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
|
---|
6384 | return rc;
|
---|
6385 | }
|
---|
6386 |
|
---|
6387 |
|
---|
6388 | /**
|
---|
6389 | * \#VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional \#VMEXIT.
|
---|
6390 | */
|
---|
6391 | HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6392 | {
|
---|
6393 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6394 | VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
|
---|
6395 | int rc = VBOXSTRICTRC_VAL(rc2);
|
---|
6396 | if ( rc == VINF_EM_HALT
|
---|
6397 | || rc == VINF_SUCCESS)
|
---|
6398 | {
|
---|
6399 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3);
|
---|
6400 |
|
---|
6401 | if ( rc == VINF_EM_HALT
|
---|
6402 | && EMMonitorWaitShouldContinue(pVCpu, pCtx))
|
---|
6403 | {
|
---|
6404 | rc = VINF_SUCCESS;
|
---|
6405 | }
|
---|
6406 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6407 | }
|
---|
6408 | else
|
---|
6409 | {
|
---|
6410 | AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
|
---|
6411 | rc = VERR_EM_INTERPRETER;
|
---|
6412 | }
|
---|
6413 | AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
|
---|
6414 | ("hmR0SvmExitMwait: EMInterpretMWait failed rc=%Rrc\n", rc));
|
---|
6415 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
|
---|
6416 | return rc;
|
---|
6417 | }
|
---|
6418 |
|
---|
6419 |
|
---|
6420 | /**
|
---|
6421 | * \#VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN). Conditional
|
---|
6422 | * \#VMEXIT.
|
---|
6423 | */
|
---|
6424 | HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6425 | {
|
---|
6426 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6427 | return VINF_EM_RESET;
|
---|
6428 | }
|
---|
6429 |
|
---|
6430 |
|
---|
6431 | /**
|
---|
6432 | * \#VMEXIT handler for unexpected exits. Conditional \#VMEXIT.
|
---|
6433 | */
|
---|
6434 | HMSVM_EXIT_DECL hmR0SvmExitUnexpected(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6435 | {
|
---|
6436 | RT_NOREF(pCtx);
|
---|
6437 | PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
6438 | AssertMsgFailed(("hmR0SvmExitUnexpected: ExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pSvmTransient->u64ExitCode,
|
---|
6439 | pVmcb->ctrl.u64ExitInfo1, pVmcb->ctrl.u64ExitInfo2));
|
---|
6440 | RT_NOREF(pVmcb);
|
---|
6441 | pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
|
---|
6442 | return VERR_SVM_UNEXPECTED_EXIT;
|
---|
6443 | }
|
---|
6444 |
|
---|
6445 |
|
---|
6446 | /**
|
---|
6447 | * \#VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional \#VMEXIT.
|
---|
6448 | */
|
---|
6449 | HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6450 | {
|
---|
6451 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6452 |
|
---|
6453 | Log4(("hmR0SvmExitReadCRx: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
|
---|
6454 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0]);
|
---|
6455 |
|
---|
6456 | bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu, pCtx);
|
---|
6457 | bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
|
---|
6458 | if ( fSupportsDecodeAssists
|
---|
6459 | && fSupportsNextRipSave)
|
---|
6460 | {
|
---|
6461 | PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
6462 | bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
|
---|
6463 | if (fMovCRx)
|
---|
6464 | {
|
---|
6465 | uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
|
---|
6466 | uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0;
|
---|
6467 | uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
|
---|
6468 | VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
|
---|
6469 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
|
---|
6470 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
6471 | }
|
---|
6472 | /* else: SMSW instruction, fall back below to IEM for this. */
|
---|
6473 | }
|
---|
6474 |
|
---|
6475 | VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
|
---|
6476 | int rc = VBOXSTRICTRC_VAL(rc2);
|
---|
6477 | AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3,
|
---|
6478 | ("hmR0SvmExitReadCRx: EMInterpretInstruction failed rc=%Rrc\n", rc));
|
---|
6479 | Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
|
---|
6480 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6481 | return rc;
|
---|
6482 | }
|
---|
6483 |
|
---|
6484 |
|
---|
6485 | /**
|
---|
6486 | * \#VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional \#VMEXIT.
|
---|
6487 | */
|
---|
6488 | HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6489 | {
|
---|
6490 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6491 |
|
---|
6492 | uint64_t const uExitCode = pSvmTransient->u64ExitCode;
|
---|
6493 | uint8_t const iCrReg = uExitCode == SVM_EXIT_CR0_SEL_WRITE ? 0 : (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0);
|
---|
6494 | Assert(iCrReg <= 15);
|
---|
6495 |
|
---|
6496 | VBOXSTRICTRC rcStrict = VERR_SVM_IPE_5;
|
---|
6497 | bool fDecodedInstr = false;
|
---|
6498 | bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu, pCtx);
|
---|
6499 | bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
|
---|
6500 | if ( fSupportsDecodeAssists
|
---|
6501 | && fSupportsNextRipSave)
|
---|
6502 | {
|
---|
6503 | PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
6504 | bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
|
---|
6505 | if (fMovCRx)
|
---|
6506 | {
|
---|
6507 | uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
|
---|
6508 | uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
|
---|
6509 | Log4(("hmR0SvmExitWriteCRx: Mov CR%u w/ iGReg=%#x\n", iCrReg, iGReg));
|
---|
6510 | rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
|
---|
6511 | fDecodedInstr = true;
|
---|
6512 | }
|
---|
6513 | /* else: LMSW or CLTS instruction, fall back below to IEM for this. */
|
---|
6514 | }
|
---|
6515 |
|
---|
6516 | if (!fDecodedInstr)
|
---|
6517 | {
|
---|
6518 | Log4(("hmR0SvmExitWriteCRx: iCrReg=%#x\n", iCrReg));
|
---|
6519 | rcStrict = IEMExecOneBypassEx(pVCpu, CPUMCTX2CORE(pCtx), NULL);
|
---|
6520 | if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED
|
---|
6521 | || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED))
|
---|
6522 | rcStrict = VERR_EM_INTERPRETER;
|
---|
6523 | }
|
---|
6524 |
|
---|
6525 | if (rcStrict == VINF_SUCCESS)
|
---|
6526 | {
|
---|
6527 | switch (iCrReg)
|
---|
6528 | {
|
---|
6529 | case 0: /* CR0. */
|
---|
6530 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
6531 | break;
|
---|
6532 |
|
---|
6533 | case 3: /* CR3. */
|
---|
6534 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
|
---|
6535 | break;
|
---|
6536 |
|
---|
6537 | case 4: /* CR4. */
|
---|
6538 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
|
---|
6539 | break;
|
---|
6540 |
|
---|
6541 | case 8: /* CR8 (TPR). */
|
---|
6542 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_APIC_STATE);
|
---|
6543 | break;
|
---|
6544 |
|
---|
6545 | default:
|
---|
6546 | AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n",
|
---|
6547 | pSvmTransient->u64ExitCode, iCrReg));
|
---|
6548 | break;
|
---|
6549 | }
|
---|
6550 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
|
---|
6551 | }
|
---|
6552 | else
|
---|
6553 | Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_CHANGE_MODE || rcStrict == VINF_PGM_SYNC_CR3);
|
---|
6554 | return VBOXSTRICTRC_TODO(rcStrict);
|
---|
6555 | }
|
---|
6556 |
|
---|
6557 |
|
---|
6558 | /**
|
---|
6559 | * \#VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional
|
---|
6560 | * \#VMEXIT.
|
---|
6561 | */
|
---|
6562 | HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6563 | {
|
---|
6564 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6565 | PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
6566 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6567 |
|
---|
6568 | int rc;
|
---|
6569 | if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
|
---|
6570 | {
|
---|
6571 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
|
---|
6572 | Log4(("MSR Write: idMsr=%#RX32\n", pCtx->ecx));
|
---|
6573 |
|
---|
6574 | /* Handle TPR patching; intercepted LSTAR write. */
|
---|
6575 | if ( pVM->hm.s.fTPRPatchingActive
|
---|
6576 | && pCtx->ecx == MSR_K8_LSTAR)
|
---|
6577 | {
|
---|
6578 | if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
|
---|
6579 | {
|
---|
6580 | /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
|
---|
6581 | int rc2 = APICSetTpr(pVCpu, pCtx->eax & 0xff);
|
---|
6582 | AssertRC(rc2);
|
---|
6583 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_APIC_STATE);
|
---|
6584 | }
|
---|
6585 | rc = VINF_SUCCESS;
|
---|
6586 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
|
---|
6587 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6588 | return rc;
|
---|
6589 | }
|
---|
6590 |
|
---|
6591 | bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
|
---|
6592 | if (fSupportsNextRipSave)
|
---|
6593 | {
|
---|
6594 | rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
|
---|
6595 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
6596 | {
|
---|
6597 | pCtx->rip = pVmcb->ctrl.u64NextRIP;
|
---|
6598 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6599 | }
|
---|
6600 | else
|
---|
6601 | AssertMsg( rc == VERR_EM_INTERPRETER
|
---|
6602 | || rc == VINF_CPUM_R3_MSR_WRITE, ("hmR0SvmExitMsr: EMInterpretWrmsr failed rc=%Rrc\n", rc));
|
---|
6603 | }
|
---|
6604 | else
|
---|
6605 | {
|
---|
6606 | rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */));
|
---|
6607 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
6608 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc); /* RIP updated by EMInterpretInstruction(). */
|
---|
6609 | else
|
---|
6610 | AssertMsg( rc == VERR_EM_INTERPRETER
|
---|
6611 | || rc == VINF_CPUM_R3_MSR_WRITE, ("hmR0SvmExitMsr: WrMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
|
---|
6612 | }
|
---|
6613 |
|
---|
6614 | if (rc == VINF_SUCCESS)
|
---|
6615 | {
|
---|
6616 | /* If this is an X2APIC WRMSR access, update the APIC state as well. */
|
---|
6617 | if ( pCtx->ecx >= MSR_IA32_X2APIC_START
|
---|
6618 | && pCtx->ecx <= MSR_IA32_X2APIC_END)
|
---|
6619 | {
|
---|
6620 | /*
|
---|
6621 | * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest(). When full APIC register
|
---|
6622 | * virtualization is implemented we'll have to make sure APIC state is saved from the VMCB before
|
---|
6623 | * EMInterpretWrmsr() changes it.
|
---|
6624 | */
|
---|
6625 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_APIC_STATE);
|
---|
6626 | }
|
---|
6627 | else
|
---|
6628 | {
|
---|
6629 | switch (pCtx->ecx)
|
---|
6630 | {
|
---|
6631 | case MSR_K6_EFER: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR); break;
|
---|
6632 | case MSR_IA32_TSC: pSvmTransient->fUpdateTscOffsetting = true; break;
|
---|
6633 | case MSR_K8_FS_BASE:
|
---|
6634 | case MSR_K8_GS_BASE: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS); break;
|
---|
6635 | case MSR_IA32_SYSENTER_CS: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
|
---|
6636 | case MSR_IA32_SYSENTER_EIP: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
|
---|
6637 | case MSR_IA32_SYSENTER_ESP: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
|
---|
6638 | }
|
---|
6639 | }
|
---|
6640 | }
|
---|
6641 | }
|
---|
6642 | else
|
---|
6643 | {
|
---|
6644 | /* MSR Read access. */
|
---|
6645 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
|
---|
6646 | Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ);
|
---|
6647 | Log4(("MSR Read: idMsr=%#RX32\n", pCtx->ecx));
|
---|
6648 |
|
---|
6649 | bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
|
---|
6650 | if (fSupportsNextRipSave)
|
---|
6651 | {
|
---|
6652 | rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
|
---|
6653 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
6654 | {
|
---|
6655 | pCtx->rip = pVmcb->ctrl.u64NextRIP;
|
---|
6656 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6657 | }
|
---|
6658 | else
|
---|
6659 | AssertMsg( rc == VERR_EM_INTERPRETER
|
---|
6660 | || rc == VINF_CPUM_R3_MSR_READ, ("hmR0SvmExitMsr: EMInterpretRdmsr failed rc=%Rrc\n", rc));
|
---|
6661 | }
|
---|
6662 | else
|
---|
6663 | {
|
---|
6664 | rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0));
|
---|
6665 | if (RT_UNLIKELY(rc != VINF_SUCCESS))
|
---|
6666 | {
|
---|
6667 | AssertMsg( rc == VERR_EM_INTERPRETER
|
---|
6668 | || rc == VINF_CPUM_R3_MSR_READ, ("hmR0SvmExitMsr: RdMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
|
---|
6669 | }
|
---|
6670 | /* RIP updated by EMInterpretInstruction(). */
|
---|
6671 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6672 | }
|
---|
6673 | }
|
---|
6674 |
|
---|
6675 | /* RIP has been updated by EMInterpret[Rd|Wr]msr() or EMInterpretInstruction(). */
|
---|
6676 | return rc;
|
---|
6677 | }
|
---|
6678 |
|
---|
6679 |
|
---|
6680 | /**
|
---|
6681 | * \#VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional \#VMEXIT.
|
---|
6682 | */
|
---|
6683 | HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6684 | {
|
---|
6685 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6686 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
|
---|
6687 |
|
---|
6688 | /** @todo Stepping with nested-guest. */
|
---|
6689 | if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
6690 | {
|
---|
6691 | /* We should -not- get this #VMEXIT if the guest's debug registers were active. */
|
---|
6692 | if (pSvmTransient->fWasGuestDebugStateActive)
|
---|
6693 | {
|
---|
6694 | AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
|
---|
6695 | pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
|
---|
6696 | return VERR_SVM_UNEXPECTED_EXIT;
|
---|
6697 | }
|
---|
6698 |
|
---|
6699 | /*
|
---|
6700 | * Lazy DR0-3 loading.
|
---|
6701 | */
|
---|
6702 | if (!pSvmTransient->fWasHyperDebugStateActive)
|
---|
6703 | {
|
---|
6704 | Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
|
---|
6705 | Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
|
---|
6706 |
|
---|
6707 | /* Don't intercept DRx read and writes. */
|
---|
6708 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
6709 | pVmcb->ctrl.u16InterceptRdDRx = 0;
|
---|
6710 | pVmcb->ctrl.u16InterceptWrDRx = 0;
|
---|
6711 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
6712 |
|
---|
6713 | /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
|
---|
6714 | VMMRZCallRing3Disable(pVCpu);
|
---|
6715 | HM_DISABLE_PREEMPT();
|
---|
6716 |
|
---|
6717 | /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
|
---|
6718 | CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
|
---|
6719 | Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
|
---|
6720 |
|
---|
6721 | HM_RESTORE_PREEMPT();
|
---|
6722 | VMMRZCallRing3Enable(pVCpu);
|
---|
6723 |
|
---|
6724 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
|
---|
6725 | return VINF_SUCCESS;
|
---|
6726 | }
|
---|
6727 | }
|
---|
6728 |
|
---|
6729 | /*
|
---|
6730 | * Interpret the read/writing of DRx.
|
---|
6731 | */
|
---|
6732 | /** @todo Decode assist. */
|
---|
6733 | VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
|
---|
6734 | Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
|
---|
6735 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
6736 | {
|
---|
6737 | /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
|
---|
6738 | /** @todo CPUM should set this flag! */
|
---|
6739 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
|
---|
6740 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
6741 | }
|
---|
6742 | else
|
---|
6743 | Assert(rc == VERR_EM_INTERPRETER);
|
---|
6744 | return VBOXSTRICTRC_TODO(rc);
|
---|
6745 | }
|
---|
6746 |
|
---|
6747 |
|
---|
6748 | /**
|
---|
6749 | * \#VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional \#VMEXIT.
|
---|
6750 | */
|
---|
6751 | HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6752 | {
|
---|
6753 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6754 | /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
|
---|
6755 | int rc = hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
|
---|
6756 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
|
---|
6757 | STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
|
---|
6758 | return rc;
|
---|
6759 | }
|
---|
6760 |
|
---|
6761 |
|
---|
6762 | /**
|
---|
6763 | * \#VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional \#VMEXIT.
|
---|
6764 | */
|
---|
6765 | HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6766 | {
|
---|
6767 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6768 |
|
---|
6769 | /** @todo decode assists... */
|
---|
6770 | VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
|
---|
6771 | if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
6772 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
6773 |
|
---|
6774 | pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
|
---|
6775 | Log4(("hmR0SvmExitXsetbv: New XCR0=%#RX64 fLoadSaveGuestXcr0=%d (cr4=%RX64) rcStrict=%Rrc\n",
|
---|
6776 | pCtx->aXcr[0], pVCpu->hm.s.fLoadSaveGuestXcr0, pCtx->cr4, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
6777 |
|
---|
6778 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
|
---|
6779 | return VBOXSTRICTRC_TODO(rcStrict);
|
---|
6780 | }
|
---|
6781 |
|
---|
6782 |
|
---|
6783 | /**
|
---|
6784 | * \#VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional \#VMEXIT.
|
---|
6785 | */
|
---|
6786 | HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
6787 | {
|
---|
6788 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
6789 |
|
---|
6790 | /* I/O operation lookup arrays. */
|
---|
6791 | static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
|
---|
6792 | static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
|
---|
6793 | the result (in AL/AX/EAX). */
|
---|
6794 | Log4(("hmR0SvmExitIOInstr: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
|
---|
6795 |
|
---|
6796 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6797 | PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
6798 |
|
---|
6799 | /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
|
---|
6800 | SVMIOIOEXITINFO IoExitInfo;
|
---|
6801 | IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
|
---|
6802 | uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
|
---|
6803 | uint32_t cbValue = s_aIOSize[uIOWidth];
|
---|
6804 | uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
|
---|
6805 |
|
---|
6806 | if (RT_UNLIKELY(!cbValue))
|
---|
6807 | {
|
---|
6808 | AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
|
---|
6809 | return VERR_EM_INTERPRETER;
|
---|
6810 | }
|
---|
6811 |
|
---|
6812 | VBOXSTRICTRC rcStrict;
|
---|
6813 | bool fUpdateRipAlready = false;
|
---|
6814 | if (IoExitInfo.n.u1Str)
|
---|
6815 | {
|
---|
6816 | #ifdef VBOX_WITH_2ND_IEM_STEP
|
---|
6817 | /* INS/OUTS - I/O String instruction. */
|
---|
6818 | /** @todo Huh? why can't we use the segment prefix information given by AMD-V
|
---|
6819 | * in EXITINFO1? Investigate once this thing is up and running. */
|
---|
6820 | Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue,
|
---|
6821 | IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r'));
|
---|
6822 | AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2);
|
---|
6823 | static IEMMODE const s_aenmAddrMode[8] =
|
---|
6824 | {
|
---|
6825 | (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1
|
---|
6826 | };
|
---|
6827 | IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7];
|
---|
6828 | if (enmAddrMode != (IEMMODE)-1)
|
---|
6829 | {
|
---|
6830 | uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
|
---|
6831 | if (cbInstr <= 15 && cbInstr >= 1)
|
---|
6832 | {
|
---|
6833 | Assert(cbInstr >= 1U + IoExitInfo.n.u1Rep);
|
---|
6834 | if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
|
---|
6835 | {
|
---|
6836 | /* Don't know exactly how to detect whether u3Seg is valid, currently
|
---|
6837 | only enabling it for Bulldozer and later with NRIP. OS/2 broke on
|
---|
6838 | 2384 Opterons when only checking NRIP. */
|
---|
6839 | bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
|
---|
6840 | if ( fSupportsNextRipSave
|
---|
6841 | && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First)
|
---|
6842 | {
|
---|
6843 | AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1Rep,
|
---|
6844 | ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3Seg, cbInstr, IoExitInfo.n.u1Rep));
|
---|
6845 | rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
|
---|
6846 | IoExitInfo.n.u3Seg, true /*fIoChecked*/);
|
---|
6847 | }
|
---|
6848 | else if (cbInstr == 1U + IoExitInfo.n.u1Rep)
|
---|
6849 | rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
|
---|
6850 | X86_SREG_DS, true /*fIoChecked*/);
|
---|
6851 | else
|
---|
6852 | rcStrict = IEMExecOne(pVCpu);
|
---|
6853 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
|
---|
6854 | }
|
---|
6855 | else
|
---|
6856 | {
|
---|
6857 | AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3Seg));
|
---|
6858 | rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
|
---|
6859 | true /*fIoChecked*/);
|
---|
6860 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
|
---|
6861 | }
|
---|
6862 | }
|
---|
6863 | else
|
---|
6864 | {
|
---|
6865 | AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr));
|
---|
6866 | rcStrict = IEMExecOne(pVCpu);
|
---|
6867 | }
|
---|
6868 | }
|
---|
6869 | else
|
---|
6870 | {
|
---|
6871 | AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u));
|
---|
6872 | rcStrict = IEMExecOne(pVCpu);
|
---|
6873 | }
|
---|
6874 | fUpdateRipAlready = true;
|
---|
6875 |
|
---|
6876 | #else
|
---|
6877 | /* INS/OUTS - I/O String instruction. */
|
---|
6878 | PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
|
---|
6879 |
|
---|
6880 | /** @todo Huh? why can't we use the segment prefix information given by AMD-V
|
---|
6881 | * in EXITINFO1? Investigate once this thing is up and running. */
|
---|
6882 |
|
---|
6883 | rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
|
---|
6884 | if (rcStrict == VINF_SUCCESS)
|
---|
6885 | {
|
---|
6886 | if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
|
---|
6887 | {
|
---|
6888 | rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
|
---|
6889 | (DISCPUMODE)pDis->uAddrMode, cbValue);
|
---|
6890 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
|
---|
6891 | }
|
---|
6892 | else
|
---|
6893 | {
|
---|
6894 | rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
|
---|
6895 | (DISCPUMODE)pDis->uAddrMode, cbValue);
|
---|
6896 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
|
---|
6897 | }
|
---|
6898 | }
|
---|
6899 | else
|
---|
6900 | rcStrict = VINF_EM_RAW_EMULATE_INSTR;
|
---|
6901 | #endif
|
---|
6902 | }
|
---|
6903 | else
|
---|
6904 | {
|
---|
6905 | /* IN/OUT - I/O instruction. */
|
---|
6906 | Assert(!IoExitInfo.n.u1Rep);
|
---|
6907 |
|
---|
6908 | if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
|
---|
6909 | {
|
---|
6910 | rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
|
---|
6911 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
|
---|
6912 | }
|
---|
6913 | else
|
---|
6914 | {
|
---|
6915 | uint32_t u32Val = 0;
|
---|
6916 | rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
|
---|
6917 | if (IOM_SUCCESS(rcStrict))
|
---|
6918 | {
|
---|
6919 | /* Save result of I/O IN instr. in AL/AX/EAX. */
|
---|
6920 | /** @todo r=bird: 32-bit op size should clear high bits of rax! */
|
---|
6921 | pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
|
---|
6922 | }
|
---|
6923 | else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
|
---|
6924 | HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
|
---|
6925 |
|
---|
6926 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
|
---|
6927 | }
|
---|
6928 | }
|
---|
6929 |
|
---|
6930 | if (IOM_SUCCESS(rcStrict))
|
---|
6931 | {
|
---|
6932 | /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
|
---|
6933 | if (!fUpdateRipAlready)
|
---|
6934 | pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
|
---|
6935 |
|
---|
6936 | /*
|
---|
6937 | * If any I/O breakpoints are armed, we need to check if one triggered
|
---|
6938 | * and take appropriate action.
|
---|
6939 | * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
|
---|
6940 | */
|
---|
6941 | /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
|
---|
6942 | * execution engines about whether hyper BPs and such are pending. */
|
---|
6943 | uint32_t const uDr7 = pCtx->dr[7];
|
---|
6944 | if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
|
---|
6945 | && X86_DR7_ANY_RW_IO(uDr7)
|
---|
6946 | && (pCtx->cr4 & X86_CR4_DE))
|
---|
6947 | || DBGFBpIsHwIoArmed(pVM)))
|
---|
6948 | {
|
---|
6949 | /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
|
---|
6950 | VMMRZCallRing3Disable(pVCpu);
|
---|
6951 | HM_DISABLE_PREEMPT();
|
---|
6952 |
|
---|
6953 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
|
---|
6954 | CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
|
---|
6955 |
|
---|
6956 | VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, IoExitInfo.n.u16Port, cbValue);
|
---|
6957 | if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
|
---|
6958 | {
|
---|
6959 | /* Raise #DB. */
|
---|
6960 | pVmcb->guest.u64DR6 = pCtx->dr[6];
|
---|
6961 | pVmcb->guest.u64DR7 = pCtx->dr[7];
|
---|
6962 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
|
---|
6963 | hmR0SvmSetPendingXcptDB(pVCpu);
|
---|
6964 | }
|
---|
6965 | /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
|
---|
6966 | however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
|
---|
6967 | else if ( rcStrict2 != VINF_SUCCESS
|
---|
6968 | && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
|
---|
6969 | rcStrict = rcStrict2;
|
---|
6970 | AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
|
---|
6971 |
|
---|
6972 | HM_RESTORE_PREEMPT();
|
---|
6973 | VMMRZCallRing3Enable(pVCpu);
|
---|
6974 | }
|
---|
6975 |
|
---|
6976 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
|
---|
6977 | }
|
---|
6978 |
|
---|
6979 | #ifdef VBOX_STRICT
|
---|
6980 | if (rcStrict == VINF_IOM_R3_IOPORT_READ)
|
---|
6981 | Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
|
---|
6982 | else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE)
|
---|
6983 | Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
|
---|
6984 | else
|
---|
6985 | {
|
---|
6986 | /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
|
---|
6987 | * statuses, that the VMM device and some others may return. See
|
---|
6988 | * IOM_SUCCESS() for guidance. */
|
---|
6989 | AssertMsg( RT_FAILURE(rcStrict)
|
---|
6990 | || rcStrict == VINF_SUCCESS
|
---|
6991 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR
|
---|
6992 | || rcStrict == VINF_EM_DBG_BREAKPOINT
|
---|
6993 | || rcStrict == VINF_EM_RAW_GUEST_TRAP
|
---|
6994 | || rcStrict == VINF_EM_RAW_TO_R3
|
---|
6995 | || rcStrict == VINF_TRPM_XCPT_DISPATCHED
|
---|
6996 | || rcStrict == VINF_EM_TRIPLE_FAULT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
6997 | }
|
---|
6998 | #endif
|
---|
6999 | return VBOXSTRICTRC_TODO(rcStrict);
|
---|
7000 | }
|
---|
7001 |
|
---|
7002 |
|
---|
7003 | /**
|
---|
7004 | * \#VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional \#VMEXIT.
|
---|
7005 | */
|
---|
7006 | HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7007 | {
|
---|
7008 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7009 |
|
---|
7010 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
7011 | Assert(pVM->hm.s.fNestedPaging);
|
---|
7012 |
|
---|
7013 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
7014 |
|
---|
7015 | /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
|
---|
7016 | PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
7017 | RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
|
---|
7018 | uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1; /* Note! High bits in EXITINFO1 may contain additional info and are
|
---|
7019 | thus intentionally not copied into u32ErrCode. */
|
---|
7020 |
|
---|
7021 | Log4(("#NPF at CS:RIP=%04x:%#RX64 faultaddr=%RGp errcode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr, u32ErrCode));
|
---|
7022 |
|
---|
7023 | /*
|
---|
7024 | * TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions.
|
---|
7025 | */
|
---|
7026 | if ( pVM->hm.s.fTprPatchingAllowed
|
---|
7027 | && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == XAPIC_OFF_TPR
|
---|
7028 | && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
|
---|
7029 | || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
|
---|
7030 | && !CPUMIsGuestInLongModeEx(pCtx)
|
---|
7031 | && !CPUMGetGuestCPL(pVCpu)
|
---|
7032 | && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
|
---|
7033 | {
|
---|
7034 | RTGCPHYS GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
|
---|
7035 | GCPhysApicBase &= PAGE_BASE_GC_MASK;
|
---|
7036 |
|
---|
7037 | if (GCPhysFaultAddr == GCPhysApicBase + XAPIC_OFF_TPR)
|
---|
7038 | {
|
---|
7039 | /* Only attempt to patch the instruction once. */
|
---|
7040 | PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
|
---|
7041 | if (!pPatch)
|
---|
7042 | return VINF_EM_HM_PATCH_TPR_INSTR;
|
---|
7043 | }
|
---|
7044 | }
|
---|
7045 |
|
---|
7046 | /*
|
---|
7047 | * Determine the nested paging mode.
|
---|
7048 | */
|
---|
7049 | PGMMODE enmNestedPagingMode;
|
---|
7050 | #if HC_ARCH_BITS == 32
|
---|
7051 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
7052 | enmNestedPagingMode = PGMMODE_AMD64_NX;
|
---|
7053 | else
|
---|
7054 | #endif
|
---|
7055 | enmNestedPagingMode = PGMGetHostMode(pVM);
|
---|
7056 |
|
---|
7057 | /*
|
---|
7058 | * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
|
---|
7059 | */
|
---|
7060 | int rc;
|
---|
7061 | Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
|
---|
7062 | if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
|
---|
7063 | {
|
---|
7064 | /* If event delivery causes an MMIO #NPF, go back to instruction emulation as
|
---|
7065 | otherwise injecting the original pending event would most likely cause the same MMIO #NPF. */
|
---|
7066 | if (pVCpu->hm.s.Event.fPending)
|
---|
7067 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
7068 |
|
---|
7069 | VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
|
---|
7070 | u32ErrCode);
|
---|
7071 | rc = VBOXSTRICTRC_VAL(rc2);
|
---|
7072 |
|
---|
7073 | /*
|
---|
7074 | * If we succeed, resume guest execution.
|
---|
7075 | * If we fail in interpreting the instruction because we couldn't get the guest physical address
|
---|
7076 | * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
|
---|
7077 | * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
|
---|
7078 | * weird case. See @bugref{6043}.
|
---|
7079 | */
|
---|
7080 | if ( rc == VINF_SUCCESS
|
---|
7081 | || rc == VERR_PAGE_TABLE_NOT_PRESENT
|
---|
7082 | || rc == VERR_PAGE_NOT_PRESENT)
|
---|
7083 | {
|
---|
7084 | /* Successfully handled MMIO operation. */
|
---|
7085 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_APIC_STATE);
|
---|
7086 | rc = VINF_SUCCESS;
|
---|
7087 | }
|
---|
7088 | return rc;
|
---|
7089 | }
|
---|
7090 |
|
---|
7091 | TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
|
---|
7092 | rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
|
---|
7093 | TRPMResetTrap(pVCpu);
|
---|
7094 |
|
---|
7095 | Log4(("#NPF: PGMR0Trap0eHandlerNestedPaging returned %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
|
---|
7096 |
|
---|
7097 | /*
|
---|
7098 | * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
|
---|
7099 | */
|
---|
7100 | if ( rc == VINF_SUCCESS
|
---|
7101 | || rc == VERR_PAGE_TABLE_NOT_PRESENT
|
---|
7102 | || rc == VERR_PAGE_NOT_PRESENT)
|
---|
7103 | {
|
---|
7104 | /* We've successfully synced our shadow page tables. */
|
---|
7105 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
|
---|
7106 | rc = VINF_SUCCESS;
|
---|
7107 | }
|
---|
7108 |
|
---|
7109 | return rc;
|
---|
7110 | }
|
---|
7111 |
|
---|
7112 |
|
---|
7113 | /**
|
---|
7114 | * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional
|
---|
7115 | * \#VMEXIT.
|
---|
7116 | */
|
---|
7117 | HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7118 | {
|
---|
7119 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7120 | HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
|
---|
7121 |
|
---|
7122 | /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
|
---|
7123 | PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
7124 | hmR0SvmClearIntWindowExiting(pVCpu, pVmcb, pCtx);
|
---|
7125 |
|
---|
7126 | /* Deliver the pending interrupt via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
|
---|
7127 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
|
---|
7128 | return VINF_SUCCESS;
|
---|
7129 | }
|
---|
7130 |
|
---|
7131 |
|
---|
7132 | /**
|
---|
7133 | * \#VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional
|
---|
7134 | * \#VMEXIT.
|
---|
7135 | */
|
---|
7136 | HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7137 | {
|
---|
7138 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7139 |
|
---|
7140 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
7141 |
|
---|
7142 | #ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
|
---|
7143 | Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
|
---|
7144 | #endif
|
---|
7145 |
|
---|
7146 | /* Check if this task-switch occurred while delivering an event through the guest IDT. */
|
---|
7147 | if (pVCpu->hm.s.Event.fPending) /* Can happen with exceptions/NMI. See @bugref{8411}. */
|
---|
7148 | {
|
---|
7149 | /*
|
---|
7150 | * AMD-V provides us with the exception which caused the TS; we collect
|
---|
7151 | * the information in the call to hmR0SvmCheckExitDueToEventDelivery.
|
---|
7152 | */
|
---|
7153 | Log4(("hmR0SvmExitTaskSwitch: TS occurred during event delivery.\n"));
|
---|
7154 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
|
---|
7155 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
7156 | }
|
---|
7157 |
|
---|
7158 | /** @todo Emulate task switch someday, currently just going back to ring-3 for
|
---|
7159 | * emulation. */
|
---|
7160 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
|
---|
7161 | return VERR_EM_INTERPRETER;
|
---|
7162 | }
|
---|
7163 |
|
---|
7164 |
|
---|
7165 | /**
|
---|
7166 | * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
|
---|
7167 | */
|
---|
7168 | HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7169 | {
|
---|
7170 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7171 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmcall);
|
---|
7172 |
|
---|
7173 | bool fRipUpdated;
|
---|
7174 | VBOXSTRICTRC rcStrict = HMSvmVmmcall(pVCpu, pCtx, &fRipUpdated);
|
---|
7175 | if (RT_SUCCESS(rcStrict))
|
---|
7176 | {
|
---|
7177 | /* Only update the RIP if we're continuing guest execution and not
|
---|
7178 | in the case of say VINF_GIM_R3_HYPERCALL. */
|
---|
7179 | if ( rcStrict == VINF_SUCCESS
|
---|
7180 | && !fRipUpdated)
|
---|
7181 | {
|
---|
7182 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3 /* cbInstr */);
|
---|
7183 | }
|
---|
7184 |
|
---|
7185 | /* If the hypercall or TPR patching changes anything other than guest's general-purpose registers,
|
---|
7186 | we would need to reload the guest changed bits here before VM-entry. */
|
---|
7187 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
7188 | }
|
---|
7189 |
|
---|
7190 | hmR0SvmSetPendingXcptUD(pVCpu);
|
---|
7191 | return VINF_SUCCESS;
|
---|
7192 | }
|
---|
7193 |
|
---|
7194 |
|
---|
7195 | /**
|
---|
7196 | * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
|
---|
7197 | */
|
---|
7198 | HMSVM_EXIT_DECL hmR0SvmExitPause(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7199 | {
|
---|
7200 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7201 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
|
---|
7202 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
|
---|
7203 | /** @todo The guest has likely hit a contended spinlock. We might want to
|
---|
7204 | * poke a schedule different guest VCPU. */
|
---|
7205 | return VINF_EM_RAW_INTERRUPT;
|
---|
7206 | }
|
---|
7207 |
|
---|
7208 |
|
---|
7209 | /**
|
---|
7210 | * \#VMEXIT handler for FERR intercept (SVM_EXIT_FERR_FREEZE). Conditional
|
---|
7211 | * \#VMEXIT.
|
---|
7212 | */
|
---|
7213 | HMSVM_EXIT_DECL hmR0SvmExitFerrFreeze(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7214 | {
|
---|
7215 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7216 | Assert(!(pCtx->cr0 & X86_CR0_NE));
|
---|
7217 |
|
---|
7218 | Log4(("hmR0SvmExitFerrFreeze: Raising IRQ 13 in response to #FERR\n"));
|
---|
7219 | return PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
|
---|
7220 | }
|
---|
7221 |
|
---|
7222 |
|
---|
7223 | /**
|
---|
7224 | * \#VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional \#VMEXIT.
|
---|
7225 | */
|
---|
7226 | HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7227 | {
|
---|
7228 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7229 |
|
---|
7230 | /* Clear NMI blocking. */
|
---|
7231 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
7232 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
7233 |
|
---|
7234 | /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
|
---|
7235 | PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
7236 | hmR0SvmClearCtrlIntercept(pVCpu, pCtx, pVmcb, SVM_CTRL_INTERCEPT_IRET);
|
---|
7237 |
|
---|
7238 | /* Deliver the pending NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
|
---|
7239 | return VINF_SUCCESS;
|
---|
7240 | }
|
---|
7241 |
|
---|
7242 |
|
---|
7243 | /**
|
---|
7244 | * \#VMEXIT handler for page-fault exceptions (SVM_EXIT_XCPT_14).
|
---|
7245 | * Conditional \#VMEXIT.
|
---|
7246 | */
|
---|
7247 | HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7248 | {
|
---|
7249 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7250 | HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
|
---|
7251 |
|
---|
7252 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
7253 |
|
---|
7254 | /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
|
---|
7255 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
7256 | uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
|
---|
7257 | RTGCUINTPTR uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
|
---|
7258 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
7259 |
|
---|
7260 | #if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
|
---|
7261 | if (pVM->hm.s.fNestedPaging)
|
---|
7262 | {
|
---|
7263 | pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
|
---|
7264 | if (!pSvmTransient->fVectoringDoublePF)
|
---|
7265 | {
|
---|
7266 | /* A genuine guest #PF, reflect it to the guest. */
|
---|
7267 | hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
|
---|
7268 | Log4(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RGv ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
|
---|
7269 | uFaultAddress, u32ErrCode));
|
---|
7270 | }
|
---|
7271 | else
|
---|
7272 | {
|
---|
7273 | /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
|
---|
7274 | hmR0SvmSetPendingXcptDF(pVCpu);
|
---|
7275 | Log4(("Pending #DF due to vectoring #PF. NP\n"));
|
---|
7276 | }
|
---|
7277 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
|
---|
7278 | return VINF_SUCCESS;
|
---|
7279 | }
|
---|
7280 | #endif
|
---|
7281 |
|
---|
7282 | Assert(!pVM->hm.s.fNestedPaging);
|
---|
7283 |
|
---|
7284 | /*
|
---|
7285 | * TPR patching shortcut for APIC TPR reads and writes; only applicable to 32-bit guests.
|
---|
7286 | */
|
---|
7287 | if ( pVM->hm.s.fTprPatchingAllowed
|
---|
7288 | && (uFaultAddress & 0xfff) == XAPIC_OFF_TPR
|
---|
7289 | && !(u32ErrCode & X86_TRAP_PF_P) /* Not present. */
|
---|
7290 | && !CPUMIsGuestInLongModeEx(pCtx)
|
---|
7291 | && !CPUMGetGuestCPL(pVCpu)
|
---|
7292 | && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
|
---|
7293 | {
|
---|
7294 | RTGCPHYS GCPhysApicBase;
|
---|
7295 | GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
|
---|
7296 | GCPhysApicBase &= PAGE_BASE_GC_MASK;
|
---|
7297 |
|
---|
7298 | /* Check if the page at the fault-address is the APIC base. */
|
---|
7299 | RTGCPHYS GCPhysPage;
|
---|
7300 | int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
|
---|
7301 | if ( rc2 == VINF_SUCCESS
|
---|
7302 | && GCPhysPage == GCPhysApicBase)
|
---|
7303 | {
|
---|
7304 | /* Only attempt to patch the instruction once. */
|
---|
7305 | PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
|
---|
7306 | if (!pPatch)
|
---|
7307 | return VINF_EM_HM_PATCH_TPR_INSTR;
|
---|
7308 | }
|
---|
7309 | }
|
---|
7310 |
|
---|
7311 | Log4(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
|
---|
7312 | pCtx->rip, u32ErrCode, pCtx->cr3));
|
---|
7313 |
|
---|
7314 | /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
|
---|
7315 | of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
|
---|
7316 | if (pSvmTransient->fVectoringPF)
|
---|
7317 | {
|
---|
7318 | Assert(pVCpu->hm.s.Event.fPending);
|
---|
7319 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
7320 | }
|
---|
7321 |
|
---|
7322 | TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
|
---|
7323 | int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
|
---|
7324 |
|
---|
7325 | Log4(("#PF rc=%Rrc\n", rc));
|
---|
7326 |
|
---|
7327 | if (rc == VINF_SUCCESS)
|
---|
7328 | {
|
---|
7329 | /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
|
---|
7330 | TRPMResetTrap(pVCpu);
|
---|
7331 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
|
---|
7332 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
7333 | return rc;
|
---|
7334 | }
|
---|
7335 | else if (rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
7336 | {
|
---|
7337 | pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
|
---|
7338 |
|
---|
7339 | if (!pSvmTransient->fVectoringDoublePF)
|
---|
7340 | {
|
---|
7341 | /* It's a guest page fault and needs to be reflected to the guest. */
|
---|
7342 | u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
|
---|
7343 | TRPMResetTrap(pVCpu);
|
---|
7344 | hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
|
---|
7345 | }
|
---|
7346 | else
|
---|
7347 | {
|
---|
7348 | /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
|
---|
7349 | TRPMResetTrap(pVCpu);
|
---|
7350 | hmR0SvmSetPendingXcptDF(pVCpu);
|
---|
7351 | Log4(("#PF: Pending #DF due to vectoring #PF\n"));
|
---|
7352 | }
|
---|
7353 |
|
---|
7354 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
|
---|
7355 | return VINF_SUCCESS;
|
---|
7356 | }
|
---|
7357 |
|
---|
7358 | TRPMResetTrap(pVCpu);
|
---|
7359 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
|
---|
7360 | return rc;
|
---|
7361 | }
|
---|
7362 |
|
---|
7363 |
|
---|
7364 | /**
|
---|
7365 | * \#VMEXIT handler for undefined opcode (SVM_EXIT_XCPT_6).
|
---|
7366 | * Conditional \#VMEXIT.
|
---|
7367 | */
|
---|
7368 | HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7369 | {
|
---|
7370 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7371 | HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
|
---|
7372 |
|
---|
7373 | /* Paranoia; Ensure we cannot be called as a result of event delivery. */
|
---|
7374 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
7375 | Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
|
---|
7376 |
|
---|
7377 | int rc = VERR_SVM_UNEXPECTED_XCPT_EXIT;
|
---|
7378 | if (pVCpu->hm.s.fGIMTrapXcptUD)
|
---|
7379 | {
|
---|
7380 | uint8_t cbInstr = 0;
|
---|
7381 | VBOXSTRICTRC rcStrict = GIMXcptUD(pVCpu, pCtx, NULL /* pDis */, &cbInstr);
|
---|
7382 | if (rcStrict == VINF_SUCCESS)
|
---|
7383 | {
|
---|
7384 | /* #UD #VMEXIT does not have valid NRIP information, manually advance RIP. See @bugref{7270#c170}. */
|
---|
7385 | hmR0SvmAdvanceRipDumb(pVCpu, pCtx, cbInstr);
|
---|
7386 | rc = VINF_SUCCESS;
|
---|
7387 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
7388 | }
|
---|
7389 | else if (rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
|
---|
7390 | rc = VINF_SUCCESS;
|
---|
7391 | else if (rcStrict == VINF_GIM_R3_HYPERCALL)
|
---|
7392 | rc = VINF_GIM_R3_HYPERCALL;
|
---|
7393 | else
|
---|
7394 | Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
|
---|
7395 | }
|
---|
7396 |
|
---|
7397 | /* If the GIM #UD exception handler didn't succeed for some reason or wasn't needed, raise #UD. */
|
---|
7398 | if (RT_FAILURE(rc))
|
---|
7399 | {
|
---|
7400 | hmR0SvmSetPendingXcptUD(pVCpu);
|
---|
7401 | rc = VINF_SUCCESS;
|
---|
7402 | }
|
---|
7403 |
|
---|
7404 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
|
---|
7405 | return rc;
|
---|
7406 | }
|
---|
7407 |
|
---|
7408 |
|
---|
7409 | /**
|
---|
7410 | * \#VMEXIT handler for math-fault exceptions (SVM_EXIT_XCPT_16).
|
---|
7411 | * Conditional \#VMEXIT.
|
---|
7412 | */
|
---|
7413 | HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7414 | {
|
---|
7415 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7416 |
|
---|
7417 | /* Paranoia; Ensure we cannot be called as a result of event delivery. */
|
---|
7418 | PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
7419 | Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
|
---|
7420 |
|
---|
7421 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
|
---|
7422 |
|
---|
7423 | if (!(pCtx->cr0 & X86_CR0_NE))
|
---|
7424 | {
|
---|
7425 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
7426 | PDISSTATE pDis = &pVCpu->hm.s.DisState;
|
---|
7427 | unsigned cbOp;
|
---|
7428 | int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
|
---|
7429 | if (RT_SUCCESS(rc))
|
---|
7430 | {
|
---|
7431 | /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
|
---|
7432 | rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
|
---|
7433 | if (RT_SUCCESS(rc))
|
---|
7434 | pCtx->rip += cbOp;
|
---|
7435 | }
|
---|
7436 | else
|
---|
7437 | Log4(("hmR0SvmExitXcptMF: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
|
---|
7438 | return rc;
|
---|
7439 | }
|
---|
7440 |
|
---|
7441 | hmR0SvmSetPendingXcptMF(pVCpu);
|
---|
7442 | return VINF_SUCCESS;
|
---|
7443 | }
|
---|
7444 |
|
---|
7445 |
|
---|
7446 | /**
|
---|
7447 | * \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1). Conditional
|
---|
7448 | * \#VMEXIT.
|
---|
7449 | */
|
---|
7450 | HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7451 | {
|
---|
7452 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7453 |
|
---|
7454 | /* If this #DB is the result of delivering an event, go back to the interpreter. */
|
---|
7455 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
7456 | if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
|
---|
7457 | {
|
---|
7458 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
|
---|
7459 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
7460 | }
|
---|
7461 |
|
---|
7462 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
|
---|
7463 |
|
---|
7464 | /* This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data breakpoint). However, for both cases
|
---|
7465 | DR6 and DR7 are updated to what the exception handler expects. See AMD spec. 15.12.2 "#DB (Debug)". */
|
---|
7466 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
7467 | PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
|
---|
7468 | int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
|
---|
7469 | if (rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
7470 | {
|
---|
7471 | Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
|
---|
7472 | if (CPUMIsHyperDebugStateActive(pVCpu))
|
---|
7473 | CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
|
---|
7474 |
|
---|
7475 | /* Reflect the exception back to the guest. */
|
---|
7476 | hmR0SvmSetPendingXcptDB(pVCpu);
|
---|
7477 | rc = VINF_SUCCESS;
|
---|
7478 | }
|
---|
7479 |
|
---|
7480 | /*
|
---|
7481 | * Update DR6.
|
---|
7482 | */
|
---|
7483 | if (CPUMIsHyperDebugStateActive(pVCpu))
|
---|
7484 | {
|
---|
7485 | Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
|
---|
7486 | pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
|
---|
7487 | pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
|
---|
7488 | }
|
---|
7489 | else
|
---|
7490 | {
|
---|
7491 | AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
|
---|
7492 | Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
|
---|
7493 | }
|
---|
7494 |
|
---|
7495 | return rc;
|
---|
7496 | }
|
---|
7497 |
|
---|
7498 |
|
---|
7499 | /**
|
---|
7500 | * \#VMEXIT handler for alignment check exceptions (SVM_EXIT_XCPT_17).
|
---|
7501 | * Conditional \#VMEXIT.
|
---|
7502 | */
|
---|
7503 | HMSVM_EXIT_DECL hmR0SvmExitXcptAC(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7504 | {
|
---|
7505 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7506 |
|
---|
7507 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
7508 |
|
---|
7509 | SVMEVENT Event;
|
---|
7510 | Event.u = 0;
|
---|
7511 | Event.n.u1Valid = 1;
|
---|
7512 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
7513 | Event.n.u8Vector = X86_XCPT_AC;
|
---|
7514 | Event.n.u1ErrorCodeValid = 1;
|
---|
7515 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
7516 | return VINF_SUCCESS;
|
---|
7517 | }
|
---|
7518 |
|
---|
7519 |
|
---|
7520 | /**
|
---|
7521 | * \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
|
---|
7522 | * Conditional \#VMEXIT.
|
---|
7523 | */
|
---|
7524 | HMSVM_EXIT_DECL hmR0SvmExitXcptBP(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7525 | {
|
---|
7526 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7527 |
|
---|
7528 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
7529 |
|
---|
7530 | int rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
|
---|
7531 | if (rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
7532 | {
|
---|
7533 | SVMEVENT Event;
|
---|
7534 | Event.u = 0;
|
---|
7535 | Event.n.u1Valid = 1;
|
---|
7536 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
7537 | Event.n.u8Vector = X86_XCPT_BP;
|
---|
7538 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
7539 | }
|
---|
7540 |
|
---|
7541 | Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
|
---|
7542 | return rc;
|
---|
7543 | }
|
---|
7544 |
|
---|
7545 |
|
---|
7546 | #if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(VBOX_WITH_NESTED_HWVIRT)
|
---|
7547 | /**
|
---|
7548 | * \#VMEXIT handler for generic exceptions. Conditional \#VMEXIT.
|
---|
7549 | */
|
---|
7550 | HMSVM_EXIT_DECL hmR0SvmExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7551 | {
|
---|
7552 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7553 |
|
---|
7554 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
7555 |
|
---|
7556 | PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
7557 | uint8_t const uVector = pVmcb->ctrl.u64ExitCode - SVM_EXIT_XCPT_0;
|
---|
7558 | uint32_t const uErrCode = pVmcb->ctrl.u64ExitInfo1;
|
---|
7559 | Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
|
---|
7560 | Assert(uVector <= X86_XCPT_LAST);
|
---|
7561 | Log4(("hmR0SvmExitXcptGeneric: uVector=%#x uErrCode=%u\n", uVector, uErrCode));
|
---|
7562 |
|
---|
7563 | SVMEVENT Event;
|
---|
7564 | Event.u = 0;
|
---|
7565 | Event.n.u1Valid = 1;
|
---|
7566 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
7567 | Event.n.u8Vector = uVector;
|
---|
7568 | switch (uVector)
|
---|
7569 | {
|
---|
7570 | /* Shouldn't be here for reflecting #PFs (among other things, the fault address isn't passed along). */
|
---|
7571 | case X86_XCPT_PF: AssertMsgFailed(("hmR0SvmExitXcptGeneric: Unexpected exception")); return VERR_SVM_IPE_5;
|
---|
7572 | case X86_XCPT_DF:
|
---|
7573 | case X86_XCPT_TS:
|
---|
7574 | case X86_XCPT_NP:
|
---|
7575 | case X86_XCPT_SS:
|
---|
7576 | case X86_XCPT_GP:
|
---|
7577 | case X86_XCPT_AC:
|
---|
7578 | {
|
---|
7579 | Event.n.u1ErrorCodeValid = 1;
|
---|
7580 | Event.n.u32ErrorCode = uErrCode;
|
---|
7581 | break;
|
---|
7582 | }
|
---|
7583 | }
|
---|
7584 |
|
---|
7585 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
7586 | return VINF_SUCCESS;
|
---|
7587 | }
|
---|
7588 | #endif
|
---|
7589 |
|
---|
7590 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
7591 | /**
|
---|
7592 | * \#VMEXIT handler for #PF occuring while in nested-guest execution
|
---|
7593 | * (SVM_EXIT_XCPT_14). Conditional \#VMEXIT.
|
---|
7594 | */
|
---|
7595 | HMSVM_EXIT_DECL hmR0SvmExitXcptPFNested(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7596 | {
|
---|
7597 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7598 |
|
---|
7599 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
7600 |
|
---|
7601 | /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
|
---|
7602 | PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
7603 | uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
|
---|
7604 | uint64_t const uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
|
---|
7605 |
|
---|
7606 | Log4(("#PFNested: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode=%#RX32 CR3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
|
---|
7607 | pCtx->rip, u32ErrCode, pCtx->cr3));
|
---|
7608 |
|
---|
7609 | /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
|
---|
7610 | of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
|
---|
7611 | if (pSvmTransient->fVectoringPF)
|
---|
7612 | {
|
---|
7613 | Assert(pVCpu->hm.s.Event.fPending);
|
---|
7614 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
7615 | }
|
---|
7616 |
|
---|
7617 | Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
|
---|
7618 |
|
---|
7619 | TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
|
---|
7620 | int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
|
---|
7621 |
|
---|
7622 | Log4(("#PFNested: rc=%Rrc\n", rc));
|
---|
7623 |
|
---|
7624 | if (rc == VINF_SUCCESS)
|
---|
7625 | {
|
---|
7626 | /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
|
---|
7627 | TRPMResetTrap(pVCpu);
|
---|
7628 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
|
---|
7629 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
7630 | return rc;
|
---|
7631 | }
|
---|
7632 |
|
---|
7633 | if (rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
7634 | {
|
---|
7635 | pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
|
---|
7636 |
|
---|
7637 | if (!pSvmTransient->fVectoringDoublePF)
|
---|
7638 | {
|
---|
7639 | /* It's a nested-guest page fault and needs to be reflected to the nested-guest. */
|
---|
7640 | u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
|
---|
7641 | TRPMResetTrap(pVCpu);
|
---|
7642 | hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
|
---|
7643 | }
|
---|
7644 | else
|
---|
7645 | {
|
---|
7646 | /* A nested-guest page-fault occurred during delivery of a page-fault. Inject #DF. */
|
---|
7647 | TRPMResetTrap(pVCpu);
|
---|
7648 | hmR0SvmSetPendingXcptDF(pVCpu);
|
---|
7649 | Log4(("#PF: Pending #DF due to vectoring #PF\n"));
|
---|
7650 | }
|
---|
7651 |
|
---|
7652 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
|
---|
7653 | return VINF_SUCCESS;
|
---|
7654 | }
|
---|
7655 |
|
---|
7656 | TRPMResetTrap(pVCpu);
|
---|
7657 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
|
---|
7658 | return rc;
|
---|
7659 | }
|
---|
7660 |
|
---|
7661 |
|
---|
7662 | /**
|
---|
7663 | * \#VMEXIT handler for CLGI (SVM_EXIT_CLGI). Conditional \#VMEXIT.
|
---|
7664 | */
|
---|
7665 | HMSVM_EXIT_DECL hmR0SvmExitClgi(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7666 | {
|
---|
7667 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7668 |
|
---|
7669 | #ifdef VBOX_STRICT
|
---|
7670 | PCSVMVMCB pVmcbTmp = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
7671 | Assert(pVmcbTmp);
|
---|
7672 | Assert(!pVmcbTmp->ctrl.IntCtrl.n.u1VGifEnable);
|
---|
7673 | RT_NOREF(pVmcbTmp);
|
---|
7674 | #endif
|
---|
7675 |
|
---|
7676 | /** @todo Stat. */
|
---|
7677 | /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClgi); */
|
---|
7678 | uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
|
---|
7679 | VBOXSTRICTRC rcStrict = IEMExecDecodedClgi(pVCpu, cbInstr);
|
---|
7680 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
7681 | }
|
---|
7682 |
|
---|
7683 |
|
---|
7684 | /**
|
---|
7685 | * \#VMEXIT handler for STGI (SVM_EXIT_STGI). Conditional \#VMEXIT.
|
---|
7686 | */
|
---|
7687 | HMSVM_EXIT_DECL hmR0SvmExitStgi(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7688 | {
|
---|
7689 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7690 |
|
---|
7691 | /*
|
---|
7692 | * When VGIF is not used we always intercept STGI instructions. When VGIF is used,
|
---|
7693 | * we only intercept STGI when events are pending for GIF to become 1.
|
---|
7694 | */
|
---|
7695 | PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
7696 | if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
|
---|
7697 | hmR0SvmClearCtrlIntercept(pVCpu, pCtx, pVmcb, SVM_CTRL_INTERCEPT_STGI);
|
---|
7698 |
|
---|
7699 | uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
|
---|
7700 | VBOXSTRICTRC rcStrict = IEMExecDecodedStgi(pVCpu, cbInstr);
|
---|
7701 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
7702 | }
|
---|
7703 |
|
---|
7704 |
|
---|
7705 | /**
|
---|
7706 | * \#VMEXIT handler for VMLOAD (SVM_EXIT_VMLOAD). Conditional \#VMEXIT.
|
---|
7707 | */
|
---|
7708 | HMSVM_EXIT_DECL hmR0SvmExitVmload(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7709 | {
|
---|
7710 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7711 |
|
---|
7712 | #ifdef VBOX_STRICT
|
---|
7713 | PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
7714 | Assert(pVmcb);
|
---|
7715 | Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
|
---|
7716 | RT_NOREF(pVmcb);
|
---|
7717 | #endif
|
---|
7718 |
|
---|
7719 | uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
|
---|
7720 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmload(pVCpu, cbInstr);
|
---|
7721 | if (rcStrict == VINF_SUCCESS)
|
---|
7722 | {
|
---|
7723 | /* We skip flagging changes made to LSTAR, STAR, SFMASK and other MSRs as they are always re-loaded. */
|
---|
7724 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS
|
---|
7725 | | HM_CHANGED_GUEST_TR
|
---|
7726 | | HM_CHANGED_GUEST_LDTR);
|
---|
7727 | }
|
---|
7728 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
7729 | }
|
---|
7730 |
|
---|
7731 |
|
---|
7732 | /**
|
---|
7733 | * \#VMEXIT handler for VMSAVE (SVM_EXIT_VMSAVE). Conditional \#VMEXIT.
|
---|
7734 | */
|
---|
7735 | HMSVM_EXIT_DECL hmR0SvmExitVmsave(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7736 | {
|
---|
7737 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7738 |
|
---|
7739 | #ifdef VBOX_STRICT
|
---|
7740 | PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
|
---|
7741 | Assert(pVmcb);
|
---|
7742 | Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
|
---|
7743 | RT_NOREF(pVmcb);
|
---|
7744 | #endif
|
---|
7745 |
|
---|
7746 | uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
|
---|
7747 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmsave(pVCpu, cbInstr);
|
---|
7748 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
7749 | }
|
---|
7750 |
|
---|
7751 |
|
---|
7752 | /**
|
---|
7753 | * \#VMEXIT handler for INVLPGA (SVM_EXIT_INVLPGA). Conditional \#VMEXIT.
|
---|
7754 | */
|
---|
7755 | HMSVM_EXIT_DECL hmR0SvmExitInvlpga(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7756 | {
|
---|
7757 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7758 | /** @todo Stat. */
|
---|
7759 | /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpga); */
|
---|
7760 | uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
|
---|
7761 | VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpga(pVCpu, cbInstr);
|
---|
7762 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
7763 | }
|
---|
7764 |
|
---|
7765 |
|
---|
7766 | /**
|
---|
7767 | * \#VMEXIT handler for STGI (SVM_EXIT_VMRUN). Conditional \#VMEXIT.
|
---|
7768 | */
|
---|
7769 | HMSVM_EXIT_DECL hmR0SvmExitVmrun(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7770 | {
|
---|
7771 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7772 |
|
---|
7773 | VBOXSTRICTRC rcStrict;
|
---|
7774 | uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
|
---|
7775 | rcStrict = IEMExecDecodedVmrun(pVCpu, cbInstr);
|
---|
7776 | Log4(("IEMExecDecodedVmrun: returned %d\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
7777 | if (rcStrict == VINF_SUCCESS)
|
---|
7778 | {
|
---|
7779 | rcStrict = VINF_SVM_VMRUN;
|
---|
7780 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
7781 | }
|
---|
7782 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
7783 | }
|
---|
7784 |
|
---|
7785 |
|
---|
7786 | /**
|
---|
7787 | * Nested-guest \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1).
|
---|
7788 | * Unconditional \#VMEXIT.
|
---|
7789 | */
|
---|
7790 | HMSVM_EXIT_DECL hmR0SvmNestedExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7791 | {
|
---|
7792 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7793 |
|
---|
7794 | /* If this #DB is the result of delivering an event, go back to the interpreter. */
|
---|
7795 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
7796 | if (pVCpu->hm.s.Event.fPending)
|
---|
7797 | {
|
---|
7798 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
|
---|
7799 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
7800 | }
|
---|
7801 |
|
---|
7802 | hmR0SvmSetPendingXcptDB(pVCpu);
|
---|
7803 | return VINF_SUCCESS;
|
---|
7804 | }
|
---|
7805 |
|
---|
7806 |
|
---|
7807 | /**
|
---|
7808 | * Nested-guest \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
|
---|
7809 | * Conditional \#VMEXIT.
|
---|
7810 | */
|
---|
7811 | HMSVM_EXIT_DECL hmR0SvmNestedExitXcptBP(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
7812 | {
|
---|
7813 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
7814 |
|
---|
7815 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
7816 |
|
---|
7817 | SVMEVENT Event;
|
---|
7818 | Event.u = 0;
|
---|
7819 | Event.n.u1Valid = 1;
|
---|
7820 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
7821 | Event.n.u8Vector = X86_XCPT_BP;
|
---|
7822 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
7823 | return VINF_SUCCESS;
|
---|
7824 | }
|
---|
7825 |
|
---|
7826 | #endif /* VBOX_WITH_NESTED_HWVIRT */
|
---|
7827 |
|
---|
7828 |
|
---|
7829 | /** @} */
|
---|
7830 |
|
---|