VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 74603

Last change on this file since 74603 was 74603, checked in by vboxsync, 6 years ago

VMM/IEM, HM: Nested VMX: bugref:9180 VM-exit bits; LMSW intercept. Separated VINF_HM_INTERCEPT_NOT_ACTIVE into VMX and SVM
specific codes. Adjusted IEMExecDecodedLmsw to supply the additional memory operand parameter from the VMCS guest-linear address
field.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 575.0 KB
Line 
1/* $Id: HMVMXR0.cpp 74603 2018-10-04 06:07:20Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/x86.h>
25#include <iprt/asm-amd64-x86.h>
26#include <iprt/thread.h>
27
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/dbgf.h>
30#include <VBox/vmm/iem.h>
31#include <VBox/vmm/iom.h>
32#include <VBox/vmm/selm.h>
33#include <VBox/vmm/tm.h>
34#include <VBox/vmm/em.h>
35#include <VBox/vmm/gim.h>
36#include <VBox/vmm/apic.h>
37#ifdef VBOX_WITH_REM
38# include <VBox/vmm/rem.h>
39#endif
40#include "HMInternal.h"
41#include <VBox/vmm/vm.h>
42#include "HMVMXR0.h"
43#include "dtrace/VBoxVMM.h"
44
45#ifdef DEBUG_ramshankar
46# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
47# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
48# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
49# define HMVMX_ALWAYS_CHECK_GUEST_STATE
50# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
51# define HMVMX_ALWAYS_TRAP_PF
52# define HMVMX_ALWAYS_FLUSH_TLB
53# define HMVMX_ALWAYS_SWAP_EFER
54#endif
55
56
57/*********************************************************************************************************************************
58* Defined Constants And Macros *
59*********************************************************************************************************************************/
60/** Use the function table. */
61#define HMVMX_USE_FUNCTION_TABLE
62
63/** Determine which tagged-TLB flush handler to use. */
64#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
65#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
66#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
67#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
68
69/** @name HMVMX_READ_XXX
70 * Flags to skip redundant reads of some common VMCS fields that are not part of
71 * the guest-CPU or VCPU state but are needed while handling VM-exits.
72 */
73#define HMVMX_READ_IDT_VECTORING_INFO RT_BIT_32(0)
74#define HMVMX_READ_IDT_VECTORING_ERROR_CODE RT_BIT_32(1)
75#define HMVMX_READ_EXIT_QUALIFICATION RT_BIT_32(2)
76#define HMVMX_READ_EXIT_INSTR_LEN RT_BIT_32(3)
77#define HMVMX_READ_EXIT_INTERRUPTION_INFO RT_BIT_32(4)
78#define HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE RT_BIT_32(5)
79#define HMVMX_READ_EXIT_INSTR_INFO RT_BIT_32(6)
80#define HMVMX_READ_GUEST_LINEAR_ADDR RT_BIT_32(7)
81/** @} */
82
83/**
84 * States of the VMCS.
85 *
86 * This does not reflect all possible VMCS states but currently only those
87 * needed for maintaining the VMCS consistently even when thread-context hooks
88 * are used. Maybe later this can be extended (i.e. Nested Virtualization).
89 */
90#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
91#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
92#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
93
94/**
95 * Subset of the guest-CPU state that is kept by VMX R0 code while executing the
96 * guest using hardware-assisted VMX.
97 *
98 * This excludes state like GPRs (other than RSP) which are always are
99 * swapped and restored across the world-switch and also registers like EFER,
100 * MSR which cannot be modified by the guest without causing a VM-exit.
101 */
102#define HMVMX_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
103 | CPUMCTX_EXTRN_RFLAGS \
104 | CPUMCTX_EXTRN_RSP \
105 | CPUMCTX_EXTRN_SREG_MASK \
106 | CPUMCTX_EXTRN_TABLE_MASK \
107 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
108 | CPUMCTX_EXTRN_SYSCALL_MSRS \
109 | CPUMCTX_EXTRN_SYSENTER_MSRS \
110 | CPUMCTX_EXTRN_TSC_AUX \
111 | CPUMCTX_EXTRN_OTHER_MSRS \
112 | CPUMCTX_EXTRN_CR0 \
113 | CPUMCTX_EXTRN_CR3 \
114 | CPUMCTX_EXTRN_CR4 \
115 | CPUMCTX_EXTRN_DR7 \
116 | CPUMCTX_EXTRN_HM_VMX_MASK)
117
118/**
119 * Exception bitmap mask for real-mode guests (real-on-v86).
120 *
121 * We need to intercept all exceptions manually except:
122 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
123 * due to bugs in Intel CPUs.
124 * - \#PF need not be intercepted even in real-mode if we have Nested Paging
125 * support.
126 */
127#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
128 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
129 | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NM) | RT_BIT(X86_XCPT_DF) \
130 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
131 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
132 | RT_BIT(X86_XCPT_MF) /* always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
133 | RT_BIT(X86_XCPT_XF))
134
135/** Maximum VM-instruction error number. */
136#define HMVMX_INSTR_ERROR_MAX 28
137
138/** Profiling macro. */
139#ifdef HM_PROFILE_EXIT_DISPATCH
140# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
141# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
142#else
143# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
144# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
145#endif
146
147/** Assert that preemption is disabled or covered by thread-context hooks. */
148#define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
149 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD))
150
151/** Assert that we haven't migrated CPUs when thread-context hooks are not
152 * used. */
153#define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
154 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
155 ("Illegal migration! Entered on CPU %u Current %u\n", \
156 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()))
157
158/** Asserts that the given CPUMCTX_EXTRN_XXX bits are present in the guest-CPU
159 * context. */
160#define HMVMX_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
161 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
162 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
163
164/** Macro for importing guest state from the VMCS back into CPUMCTX (intended to be
165 * used only from VM-exit handlers). */
166#define HMVMX_CPUMCTX_IMPORT_STATE(a_pVCpu, a_fWhat) (hmR0VmxImportGuestState((a_pVCpu), (a_fWhat)))
167
168/** Helper macro for VM-exit handlers called unexpectedly. */
169#define HMVMX_UNEXPECTED_EXIT_RET(a_pVCpu, a_pVmxTransient) \
170 do { \
171 (a_pVCpu)->hm.s.u32HMError = (a_pVmxTransient)->uExitReason; \
172 return VERR_VMX_UNEXPECTED_EXIT; \
173 } while (0)
174
175/** Macro for importing segment registers to the VMCS from the guest-CPU context. */
176#ifdef VMX_USE_CACHED_VMCS_ACCESSES
177# define HMVMX_IMPORT_SREG(Sel, a_pCtxSelReg) \
178 hmR0VmxImportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
179 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
180#else
181# define HMVMX_IMPORT_SREG(Sel, a_pCtxSelReg) \
182 hmR0VmxImportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
183 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
184#endif
185
186/** Macro for exporting segment registers to the VMCS from the guest-CPU context. */
187#define HMVMX_EXPORT_SREG(Sel, a_pCtxSelReg) \
188 hmR0VmxExportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
189 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
190
191#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
192/** Macro that does the necessary privilege checks and intercepted VM-exits for
193 * guests that attempted to execute a VMX instruction. */
194# define HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(a_pVCpu, a_uExitReason) \
195 do \
196 { \
197 VBOXSTRICTRC rcStrictTmp = hmR0VmxCheckExitDueToVmxInstr((a_pVCpu), (a_uExitReason)); \
198 if (rcStrictTmp == VINF_SUCCESS) \
199 { /* likely */ } \
200 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
201 { \
202 Assert((a_pVCpu)->hm.s.Event.fPending); \
203 Log4Func(("Privilege checks failed -> %#x\n", VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo))); \
204 return VINF_SUCCESS; \
205 } \
206 else \
207 { \
208 int rcTmp = VBOXSTRICTRC_VAL(rcStrictTmp); \
209 AssertMsgFailedReturn(("Unexpected failure. rc=%Rrc", rcTmp), rcTmp); \
210 } \
211 } while (0)
212
213/** Macro that decodes a memory operand for an instruction VM-exit. */
214# define HMVMX_DECODE_MEM_OPERAND(a_pVCpu, a_uExitInstrInfo, a_uExitQual, a_enmMemAccess, a_pGCPtrEffAddr) \
215 do \
216 { \
217 VBOXSTRICTRC rcStrictTmp = hmR0VmxDecodeMemOperand((a_pVCpu), (a_uExitInstrInfo), (a_uExitQual), (a_enmMemAccess), \
218 (a_pGCPtrEffAddr)); \
219 if (rcStrictTmp == VINF_SUCCESS) \
220 { /* likely */ } \
221 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
222 { \
223 uint8_t const uXcptTmp = VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo); \
224 Log4Func(("Memory operand decoding failed, raising xcpt %#x\n", uXcptTmp)); \
225 return VINF_SUCCESS; \
226 } \
227 else \
228 { \
229 Log4Func(("hmR0VmxCheckExitDueToVmxInstr failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrictTmp))); \
230 return rcStrictTmp; \
231 } \
232 } while (0)
233
234#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
235
236
237/*********************************************************************************************************************************
238* Structures and Typedefs *
239*********************************************************************************************************************************/
240/**
241 * VMX transient state.
242 *
243 * A state structure for holding miscellaneous information across
244 * VMX non-root operation and restored after the transition.
245 */
246typedef struct VMXTRANSIENT
247{
248 /** The host's rflags/eflags. */
249 RTCCUINTREG fEFlags;
250#if HC_ARCH_BITS == 32
251 uint32_t u32Alignment0;
252#endif
253 /** The guest's TPR value used for TPR shadowing. */
254 uint8_t u8GuestTpr;
255 /** Alignment. */
256 uint8_t abAlignment0[7];
257
258 /** The basic VM-exit reason. */
259 uint16_t uExitReason;
260 /** Alignment. */
261 uint16_t u16Alignment0;
262 /** The VM-exit interruption error code. */
263 uint32_t uExitIntErrorCode;
264 /** The VM-exit exit code qualification. */
265 uint64_t uExitQual;
266 /** The Guest-linear address. */
267 uint64_t uGuestLinearAddr;
268
269 /** The VM-exit interruption-information field. */
270 uint32_t uExitIntInfo;
271 /** The VM-exit instruction-length field. */
272 uint32_t cbInstr;
273 /** The VM-exit instruction-information field. */
274 VMXEXITINSTRINFO ExitInstrInfo;
275 /** Whether the VM-entry failed or not. */
276 bool fVMEntryFailed;
277 /** Alignment. */
278 uint8_t abAlignment1[3];
279
280 /** The VM-entry interruption-information field. */
281 uint32_t uEntryIntInfo;
282 /** The VM-entry exception error code field. */
283 uint32_t uEntryXcptErrorCode;
284 /** The VM-entry instruction length field. */
285 uint32_t cbEntryInstr;
286
287 /** IDT-vectoring information field. */
288 uint32_t uIdtVectoringInfo;
289 /** IDT-vectoring error code. */
290 uint32_t uIdtVectoringErrorCode;
291
292 /** Mask of currently read VMCS fields; HMVMX_READ_XXX. */
293 uint32_t fVmcsFieldsRead;
294
295 /** Whether the guest debug state was active at the time of VM-exit. */
296 bool fWasGuestDebugStateActive;
297 /** Whether the hyper debug state was active at the time of VM-exit. */
298 bool fWasHyperDebugStateActive;
299 /** Whether TSC-offsetting should be setup before VM-entry. */
300 bool fUpdateTscOffsettingAndPreemptTimer;
301 /** Whether the VM-exit was caused by a page-fault during delivery of a
302 * contributory exception or a page-fault. */
303 bool fVectoringDoublePF;
304 /** Whether the VM-exit was caused by a page-fault during delivery of an
305 * external interrupt or NMI. */
306 bool fVectoringPF;
307} VMXTRANSIENT;
308AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
309AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
310AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
311AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestDebugStateActive, sizeof(uint64_t));
312AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
313/** Pointer to VMX transient state. */
314typedef VMXTRANSIENT *PVMXTRANSIENT;
315
316/**
317 * Memory operand read or write access.
318 */
319typedef enum VMXMEMACCESS
320{
321 VMXMEMACCESS_READ = 0,
322 VMXMEMACCESS_WRITE = 1
323} VMXMEMACCESS;
324
325/**
326 * VMX VM-exit handler.
327 *
328 * @returns Strict VBox status code (i.e. informational status codes too).
329 * @param pVCpu The cross context virtual CPU structure.
330 * @param pVmxTransient Pointer to the VMX-transient structure.
331 */
332#ifndef HMVMX_USE_FUNCTION_TABLE
333typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
334#else
335typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
336/** Pointer to VM-exit handler. */
337typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
338#endif
339
340/**
341 * VMX VM-exit handler, non-strict status code.
342 *
343 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
344 *
345 * @returns VBox status code, no informational status code returned.
346 * @param pVCpu The cross context virtual CPU structure.
347 * @param pVmxTransient Pointer to the VMX-transient structure.
348 *
349 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
350 * use of that status code will be replaced with VINF_EM_SOMETHING
351 * later when switching over to IEM.
352 */
353#ifndef HMVMX_USE_FUNCTION_TABLE
354typedef int FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
355#else
356typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
357#endif
358
359
360/*********************************************************************************************************************************
361* Internal Functions *
362*********************************************************************************************************************************/
363static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXTLBFLUSHEPT enmTlbFlush);
364static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr);
365static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu);
366static int hmR0VmxImportGuestState(PVMCPU pVCpu, uint64_t fWhat);
367static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, uint64_t u64IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
368 RTGCUINTREG GCPtrFaultAddress, bool fStepping, uint32_t *pfIntrState);
369#if HC_ARCH_BITS == 32
370static int hmR0VmxInitVmcsReadCache(PVMCPU pVCpu);
371#endif
372#ifndef HMVMX_USE_FUNCTION_TABLE
373DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
374# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
375# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
376#else
377# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
378# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
379#endif
380
381/** @name VM-exit handlers.
382 * @{
383 */
384static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
385static FNVMXEXITHANDLER hmR0VmxExitExtInt;
386static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
387static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
388static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
389static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
390static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
391static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
392static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
393static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
394static FNVMXEXITHANDLER hmR0VmxExitCpuid;
395static FNVMXEXITHANDLER hmR0VmxExitGetsec;
396static FNVMXEXITHANDLER hmR0VmxExitHlt;
397static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
398static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
399static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
400static FNVMXEXITHANDLER hmR0VmxExitVmcall;
401#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
402static FNVMXEXITHANDLER hmR0VmxExitVmclear;
403static FNVMXEXITHANDLER hmR0VmxExitVmlaunch;
404static FNVMXEXITHANDLER hmR0VmxExitVmptrld;
405static FNVMXEXITHANDLER hmR0VmxExitVmptrst;
406static FNVMXEXITHANDLER hmR0VmxExitVmread;
407static FNVMXEXITHANDLER hmR0VmxExitVmresume;
408static FNVMXEXITHANDLER hmR0VmxExitVmwrite;
409static FNVMXEXITHANDLER hmR0VmxExitVmxoff;
410static FNVMXEXITHANDLER hmR0VmxExitVmxon;
411#endif
412static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
413static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
414static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
415static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
416static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
417static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
418static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
419static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
420static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
421static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
422static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
423static FNVMXEXITHANDLER hmR0VmxExitMwait;
424static FNVMXEXITHANDLER hmR0VmxExitMtf;
425static FNVMXEXITHANDLER hmR0VmxExitMonitor;
426static FNVMXEXITHANDLER hmR0VmxExitPause;
427static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
428static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
429static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
430static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
431static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
432static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
433static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
434static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
435static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
436static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
437static FNVMXEXITHANDLER hmR0VmxExitRdrand;
438static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
439/** @} */
440
441static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
442static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
443static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
444static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
445static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
446static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
447static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
448static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu);
449
450
451/*********************************************************************************************************************************
452* Global Variables *
453*********************************************************************************************************************************/
454#ifdef HMVMX_USE_FUNCTION_TABLE
455
456/**
457 * VMX_EXIT dispatch table.
458 */
459static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
460{
461 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
462 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
463 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
464 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
465 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
466 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
467 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
468 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
469 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
470 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
471 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
472 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
473 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
474 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
475 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
476 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
477 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
478 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
479 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
480#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
481 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitVmclear,
482 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitVmlaunch,
483 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitVmptrld,
484 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitVmptrst,
485 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitVmread,
486 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitVmresume,
487 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitVmwrite,
488 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitVmxoff,
489 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitVmxon,
490#else
491 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
492 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
493 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
494 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
495 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
496 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
497 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
498 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
499 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
500#endif
501 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
502 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
503 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
504 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
505 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
506 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
507 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
508 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
509 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
510 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
511 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
512 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
513 /* 40 UNDEFINED */ hmR0VmxExitPause,
514 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
515 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
516 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
517 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
518 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
519 /* 46 VMX_EXIT_GDTR_IDTR_ACCESS */ hmR0VmxExitXdtrAccess,
520 /* 47 VMX_EXIT_LDTR_TR_ACCESS */ hmR0VmxExitXdtrAccess,
521 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
522 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
523 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
524 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
525 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
526 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
527 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
528 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
529 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
530 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
531 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
532 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
533 /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUndefined,
534 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
535 /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUndefined,
536 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
537 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
538};
539#endif /* HMVMX_USE_FUNCTION_TABLE */
540
541#ifdef VBOX_STRICT
542static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
543{
544 /* 0 */ "(Not Used)",
545 /* 1 */ "VMCALL executed in VMX root operation.",
546 /* 2 */ "VMCLEAR with invalid physical address.",
547 /* 3 */ "VMCLEAR with VMXON pointer.",
548 /* 4 */ "VMLAUNCH with non-clear VMCS.",
549 /* 5 */ "VMRESUME with non-launched VMCS.",
550 /* 6 */ "VMRESUME after VMXOFF",
551 /* 7 */ "VM-entry with invalid control fields.",
552 /* 8 */ "VM-entry with invalid host state fields.",
553 /* 9 */ "VMPTRLD with invalid physical address.",
554 /* 10 */ "VMPTRLD with VMXON pointer.",
555 /* 11 */ "VMPTRLD with incorrect revision identifier.",
556 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
557 /* 13 */ "VMWRITE to read-only VMCS component.",
558 /* 14 */ "(Not Used)",
559 /* 15 */ "VMXON executed in VMX root operation.",
560 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
561 /* 17 */ "VM-entry with non-launched executing VMCS.",
562 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
563 /* 19 */ "VMCALL with non-clear VMCS.",
564 /* 20 */ "VMCALL with invalid VM-exit control fields.",
565 /* 21 */ "(Not Used)",
566 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
567 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
568 /* 24 */ "VMCALL with invalid SMM-monitor features.",
569 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
570 /* 26 */ "VM-entry with events blocked by MOV SS.",
571 /* 27 */ "(Not Used)",
572 /* 28 */ "Invalid operand to INVEPT/INVVPID."
573};
574#endif /* VBOX_STRICT */
575
576
577/**
578 * Updates the VM's last error record.
579 *
580 * If there was a VMX instruction error, reads the error data from the VMCS and
581 * updates VCPU's last error record as well.
582 *
583 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
584 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
585 * VERR_VMX_INVALID_VMCS_FIELD.
586 * @param rc The error code.
587 */
588static void hmR0VmxUpdateErrorRecord(PVMCPU pVCpu, int rc)
589{
590 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
591 || rc == VERR_VMX_UNABLE_TO_START_VM)
592 {
593 AssertPtrReturnVoid(pVCpu);
594 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
595 }
596 pVCpu->CTX_SUFF(pVM)->hm.s.rcInit = rc;
597}
598
599
600/**
601 * Reads the VM-entry interruption-information field from the VMCS into the VMX
602 * transient structure.
603 *
604 * @returns VBox status code.
605 * @param pVmxTransient Pointer to the VMX transient structure.
606 *
607 * @remarks No-long-jump zone!!!
608 */
609DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
610{
611 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
612 AssertRCReturn(rc, rc);
613 return VINF_SUCCESS;
614}
615
616#ifdef VBOX_STRICT
617/**
618 * Reads the VM-entry exception error code field from the VMCS into
619 * the VMX transient structure.
620 *
621 * @returns VBox status code.
622 * @param pVmxTransient Pointer to the VMX transient structure.
623 *
624 * @remarks No-long-jump zone!!!
625 */
626DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
627{
628 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
629 AssertRCReturn(rc, rc);
630 return VINF_SUCCESS;
631}
632
633
634/**
635 * Reads the VM-entry exception error code field from the VMCS into
636 * the VMX transient structure.
637 *
638 * @returns VBox status code.
639 * @param pVmxTransient Pointer to the VMX transient structure.
640 *
641 * @remarks No-long-jump zone!!!
642 */
643DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
644{
645 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
646 AssertRCReturn(rc, rc);
647 return VINF_SUCCESS;
648}
649#endif /* VBOX_STRICT */
650
651
652/**
653 * Reads the VM-exit interruption-information field from the VMCS into the VMX
654 * transient structure.
655 *
656 * @returns VBox status code.
657 * @param pVmxTransient Pointer to the VMX transient structure.
658 */
659DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
660{
661 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_INFO))
662 {
663 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
664 AssertRCReturn(rc,rc);
665 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_INFO;
666 }
667 return VINF_SUCCESS;
668}
669
670
671/**
672 * Reads the VM-exit interruption error code from the VMCS into the VMX
673 * transient structure.
674 *
675 * @returns VBox status code.
676 * @param pVmxTransient Pointer to the VMX transient structure.
677 */
678DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
679{
680 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE))
681 {
682 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
683 AssertRCReturn(rc, rc);
684 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE;
685 }
686 return VINF_SUCCESS;
687}
688
689
690/**
691 * Reads the VM-exit instruction length field from the VMCS into the VMX
692 * transient structure.
693 *
694 * @returns VBox status code.
695 * @param pVmxTransient Pointer to the VMX transient structure.
696 */
697DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
698{
699 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_LEN))
700 {
701 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
702 AssertRCReturn(rc, rc);
703 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_LEN;
704 }
705 return VINF_SUCCESS;
706}
707
708
709/**
710 * Reads the VM-exit instruction-information field from the VMCS into
711 * the VMX transient structure.
712 *
713 * @returns VBox status code.
714 * @param pVmxTransient Pointer to the VMX transient structure.
715 */
716DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
717{
718 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_INFO))
719 {
720 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
721 AssertRCReturn(rc, rc);
722 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_INFO;
723 }
724 return VINF_SUCCESS;
725}
726
727
728/**
729 * Reads the VM-exit Qualification from the VMCS into the VMX transient structure.
730 *
731 * @returns VBox status code.
732 * @param pVCpu The cross context virtual CPU structure of the
733 * calling EMT. (Required for the VMCS cache case.)
734 * @param pVmxTransient Pointer to the VMX transient structure.
735 */
736DECLINLINE(int) hmR0VmxReadExitQualVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
737{
738 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_QUALIFICATION))
739 {
740 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual); NOREF(pVCpu);
741 AssertRCReturn(rc, rc);
742 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION;
743 }
744 return VINF_SUCCESS;
745}
746
747
748/**
749 * Reads the Guest-linear address from the VMCS into the VMX transient structure.
750 *
751 * @returns VBox status code.
752 * @param pVCpu The cross context virtual CPU structure of the
753 * calling EMT. (Required for the VMCS cache case.)
754 * @param pVmxTransient Pointer to the VMX transient structure.
755 */
756DECLINLINE(int) hmR0VmxReadGuestLinearAddrVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
757{
758 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_LINEAR_ADDR))
759 {
760 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr); NOREF(pVCpu);
761 AssertRCReturn(rc, rc);
762 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_LINEAR_ADDR;
763 }
764 return VINF_SUCCESS;
765}
766
767
768/**
769 * Reads the IDT-vectoring information field from the VMCS into the VMX
770 * transient structure.
771 *
772 * @returns VBox status code.
773 * @param pVmxTransient Pointer to the VMX transient structure.
774 *
775 * @remarks No-long-jump zone!!!
776 */
777DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
778{
779 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_INFO))
780 {
781 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
782 AssertRCReturn(rc, rc);
783 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_INFO;
784 }
785 return VINF_SUCCESS;
786}
787
788
789/**
790 * Reads the IDT-vectoring error code from the VMCS into the VMX
791 * transient structure.
792 *
793 * @returns VBox status code.
794 * @param pVmxTransient Pointer to the VMX transient structure.
795 */
796DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
797{
798 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_ERROR_CODE))
799 {
800 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
801 AssertRCReturn(rc, rc);
802 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_ERROR_CODE;
803 }
804 return VINF_SUCCESS;
805}
806
807
808/**
809 * Enters VMX root mode operation on the current CPU.
810 *
811 * @returns VBox status code.
812 * @param pVM The cross context VM structure. Can be
813 * NULL, after a resume.
814 * @param HCPhysCpuPage Physical address of the VMXON region.
815 * @param pvCpuPage Pointer to the VMXON region.
816 */
817static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
818{
819 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
820 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
821 Assert(pvCpuPage);
822 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
823
824 if (pVM)
825 {
826 /* Write the VMCS revision dword to the VMXON region. */
827 *(uint32_t *)pvCpuPage = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
828 }
829
830 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
831 RTCCUINTREG fEFlags = ASMIntDisableFlags();
832
833 /* Enable the VMX bit in CR4 if necessary. */
834 RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
835
836 /* Enter VMX root mode. */
837 int rc = VMXEnable(HCPhysCpuPage);
838 if (RT_FAILURE(rc))
839 {
840 if (!(uOldCr4 & X86_CR4_VMXE))
841 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
842
843 if (pVM)
844 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
845 }
846
847 /* Restore interrupts. */
848 ASMSetFlags(fEFlags);
849 return rc;
850}
851
852
853/**
854 * Exits VMX root mode operation on the current CPU.
855 *
856 * @returns VBox status code.
857 */
858static int hmR0VmxLeaveRootMode(void)
859{
860 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
861
862 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
863 RTCCUINTREG fEFlags = ASMIntDisableFlags();
864
865 /* If we're for some reason not in VMX root mode, then don't leave it. */
866 RTCCUINTREG uHostCR4 = ASMGetCR4();
867
868 int rc;
869 if (uHostCR4 & X86_CR4_VMXE)
870 {
871 /* Exit VMX root mode and clear the VMX bit in CR4. */
872 VMXDisable();
873 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
874 rc = VINF_SUCCESS;
875 }
876 else
877 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
878
879 /* Restore interrupts. */
880 ASMSetFlags(fEFlags);
881 return rc;
882}
883
884
885/**
886 * Allocates and maps one physically contiguous page. The allocated page is
887 * zero'd out. (Used by various VT-x structures).
888 *
889 * @returns IPRT status code.
890 * @param pMemObj Pointer to the ring-0 memory object.
891 * @param ppVirt Where to store the virtual address of the
892 * allocation.
893 * @param pHCPhys Where to store the physical address of the
894 * allocation.
895 */
896static int hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
897{
898 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
899 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
900 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
901
902 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
903 if (RT_FAILURE(rc))
904 return rc;
905 *ppVirt = RTR0MemObjAddress(*pMemObj);
906 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
907 ASMMemZero32(*ppVirt, PAGE_SIZE);
908 return VINF_SUCCESS;
909}
910
911
912/**
913 * Frees and unmaps an allocated physical page.
914 *
915 * @param pMemObj Pointer to the ring-0 memory object.
916 * @param ppVirt Where to re-initialize the virtual address of
917 * allocation as 0.
918 * @param pHCPhys Where to re-initialize the physical address of the
919 * allocation as 0.
920 */
921static void hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
922{
923 AssertPtr(pMemObj);
924 AssertPtr(ppVirt);
925 AssertPtr(pHCPhys);
926 if (*pMemObj != NIL_RTR0MEMOBJ)
927 {
928 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
929 AssertRC(rc);
930 *pMemObj = NIL_RTR0MEMOBJ;
931 *ppVirt = 0;
932 *pHCPhys = 0;
933 }
934}
935
936
937/**
938 * Worker function to free VT-x related structures.
939 *
940 * @returns IPRT status code.
941 * @param pVM The cross context VM structure.
942 */
943static void hmR0VmxStructsFree(PVM pVM)
944{
945 for (VMCPUID i = 0; i < pVM->cCpus; i++)
946 {
947 PVMCPU pVCpu = &pVM->aCpus[i];
948 AssertPtr(pVCpu);
949
950 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
951 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
952
953 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
954 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
955
956 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
957 }
958
959 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
960#ifdef VBOX_WITH_CRASHDUMP_MAGIC
961 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
962#endif
963}
964
965
966/**
967 * Worker function to allocate VT-x related VM structures.
968 *
969 * @returns IPRT status code.
970 * @param pVM The cross context VM structure.
971 */
972static int hmR0VmxStructsAlloc(PVM pVM)
973{
974 /*
975 * Initialize members up-front so we can cleanup properly on allocation failure.
976 */
977#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
978 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
979 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
980 pVM->hm.s.vmx.HCPhys##a_Name = 0;
981
982#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
983 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
984 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
985 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
986
987#ifdef VBOX_WITH_CRASHDUMP_MAGIC
988 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
989#endif
990 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
991
992 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
993 for (VMCPUID i = 0; i < pVM->cCpus; i++)
994 {
995 PVMCPU pVCpu = &pVM->aCpus[i];
996 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
997 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
998 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
999 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
1000 }
1001#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
1002#undef VMXLOCAL_INIT_VM_MEMOBJ
1003
1004 /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
1005 AssertReturnStmt(RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_SIZE) <= PAGE_SIZE,
1006 (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
1007 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
1008
1009 /*
1010 * Allocate all the VT-x structures.
1011 */
1012 int rc = VINF_SUCCESS;
1013#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1014 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
1015 if (RT_FAILURE(rc))
1016 goto cleanup;
1017 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
1018 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
1019#endif
1020
1021 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
1022 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
1023 {
1024 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
1025 &pVM->hm.s.vmx.HCPhysApicAccess);
1026 if (RT_FAILURE(rc))
1027 goto cleanup;
1028 }
1029
1030 /*
1031 * Initialize per-VCPU VT-x structures.
1032 */
1033 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1034 {
1035 PVMCPU pVCpu = &pVM->aCpus[i];
1036 AssertPtr(pVCpu);
1037
1038 /* Allocate the VM control structure (VMCS). */
1039 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
1040 if (RT_FAILURE(rc))
1041 goto cleanup;
1042
1043 /* Get the allocated virtual-APIC page from the APIC device for transparent TPR accesses. */
1044 if ( PDMHasApic(pVM)
1045 && (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
1046 {
1047 rc = APICGetApicPageForCpu(pVCpu, &pVCpu->hm.s.vmx.HCPhysVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
1048 NULL /* pR3Ptr */, NULL /* pRCPtr */);
1049 if (RT_FAILURE(rc))
1050 goto cleanup;
1051 }
1052
1053 /*
1054 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
1055 * transparent accesses of specific MSRs.
1056 *
1057 * If the condition for enabling MSR bitmaps changes here, don't forget to
1058 * update HMAreMsrBitmapsAvailable().
1059 */
1060 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1061 {
1062 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
1063 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1064 if (RT_FAILURE(rc))
1065 goto cleanup;
1066 ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
1067 }
1068
1069 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
1070 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
1071 if (RT_FAILURE(rc))
1072 goto cleanup;
1073
1074 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1075 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
1076 if (RT_FAILURE(rc))
1077 goto cleanup;
1078 }
1079
1080 return VINF_SUCCESS;
1081
1082cleanup:
1083 hmR0VmxStructsFree(pVM);
1084 return rc;
1085}
1086
1087
1088/**
1089 * Does global VT-x initialization (called during module initialization).
1090 *
1091 * @returns VBox status code.
1092 */
1093VMMR0DECL(int) VMXR0GlobalInit(void)
1094{
1095#ifdef HMVMX_USE_FUNCTION_TABLE
1096 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
1097# ifdef VBOX_STRICT
1098 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
1099 Assert(g_apfnVMExitHandlers[i]);
1100# endif
1101#endif
1102 return VINF_SUCCESS;
1103}
1104
1105
1106/**
1107 * Does global VT-x termination (called during module termination).
1108 */
1109VMMR0DECL(void) VMXR0GlobalTerm()
1110{
1111 /* Nothing to do currently. */
1112}
1113
1114
1115/**
1116 * Sets up and activates VT-x on the current CPU.
1117 *
1118 * @returns VBox status code.
1119 * @param pHostCpu Pointer to the global CPU info struct.
1120 * @param pVM The cross context VM structure. Can be
1121 * NULL after a host resume operation.
1122 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
1123 * fEnabledByHost is @c true).
1124 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
1125 * @a fEnabledByHost is @c true).
1126 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
1127 * enable VT-x on the host.
1128 * @param pvMsrs Opaque pointer to VMXMSRS struct.
1129 */
1130VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBALCPUINFO pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
1131 void *pvMsrs)
1132{
1133 Assert(pHostCpu);
1134 Assert(pvMsrs);
1135 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1136
1137 /* Enable VT-x if it's not already enabled by the host. */
1138 if (!fEnabledByHost)
1139 {
1140 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
1141 if (RT_FAILURE(rc))
1142 return rc;
1143 }
1144
1145 /*
1146 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been
1147 * using EPTPs) so we don't retain any stale guest-physical mappings which won't get
1148 * invalidated when flushing by VPID.
1149 */
1150 PVMXMSRS pMsrs = (PVMXMSRS)pvMsrs;
1151 if (pMsrs->u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1152 {
1153 hmR0VmxFlushEpt(NULL /* pVCpu */, VMXTLBFLUSHEPT_ALL_CONTEXTS);
1154 pHostCpu->fFlushAsidBeforeUse = false;
1155 }
1156 else
1157 pHostCpu->fFlushAsidBeforeUse = true;
1158
1159 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
1160 ++pHostCpu->cTlbFlushes;
1161
1162 return VINF_SUCCESS;
1163}
1164
1165
1166/**
1167 * Deactivates VT-x on the current CPU.
1168 *
1169 * @returns VBox status code.
1170 * @param pHostCpu Pointer to the global CPU info struct.
1171 * @param pvCpuPage Pointer to the VMXON region.
1172 * @param HCPhysCpuPage Physical address of the VMXON region.
1173 *
1174 * @remarks This function should never be called when SUPR0EnableVTx() or
1175 * similar was used to enable VT-x on the host.
1176 */
1177VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBALCPUINFO pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
1178{
1179 RT_NOREF3(pHostCpu, pvCpuPage, HCPhysCpuPage);
1180
1181 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1182 return hmR0VmxLeaveRootMode();
1183}
1184
1185
1186/**
1187 * Sets the permission bits for the specified MSR in the MSR bitmap.
1188 *
1189 * @param pVCpu The cross context virtual CPU structure.
1190 * @param uMsr The MSR value.
1191 * @param enmRead Whether reading this MSR causes a VM-exit.
1192 * @param enmWrite Whether writing this MSR causes a VM-exit.
1193 */
1194static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
1195{
1196 int32_t iBit;
1197 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1198
1199 /*
1200 * MSR Layout:
1201 * Byte index MSR range Interpreted as
1202 * 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits.
1203 * 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits.
1204 * 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits.
1205 * 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits.
1206 *
1207 * A bit corresponding to an MSR within the above range causes a VM-exit
1208 * if the bit is 1 on executions of RDMSR/WRMSR.
1209 *
1210 * If an MSR falls out of the MSR range, it always cause a VM-exit.
1211 *
1212 * See Intel spec. 24.6.9 "MSR-Bitmap Address".
1213 */
1214 if (uMsr <= 0x00001fff)
1215 iBit = uMsr;
1216 else if (uMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
1217 {
1218 iBit = uMsr - UINT32_C(0xc0000000);
1219 pbMsrBitmap += 0x400;
1220 }
1221 else
1222 AssertMsgFailedReturnVoid(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1223
1224 Assert(iBit <= 0x1fff);
1225 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1226 ASMBitSet(pbMsrBitmap, iBit);
1227 else
1228 ASMBitClear(pbMsrBitmap, iBit);
1229
1230 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1231 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1232 else
1233 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1234}
1235
1236
1237/**
1238 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1239 * area.
1240 *
1241 * @returns VBox status code.
1242 * @param pVCpu The cross context virtual CPU structure.
1243 * @param cMsrs The number of MSRs.
1244 */
1245static int hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
1246{
1247 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1248 uint64_t const uVmxMiscMsr = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc;
1249 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(uVmxMiscMsr);
1250 if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
1251 {
1252 LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1253 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1254 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1255 }
1256
1257 /* Update number of guest MSRs to load/store across the world-switch. */
1258 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
1259 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
1260
1261 /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
1262 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
1263 AssertRCReturn(rc, rc);
1264
1265 /* Update the VCPU's copy of the MSR count. */
1266 pVCpu->hm.s.vmx.cMsrs = cMsrs;
1267
1268 return VINF_SUCCESS;
1269}
1270
1271
1272/**
1273 * Adds a new (or updates the value of an existing) guest/host MSR
1274 * pair to be swapped during the world-switch as part of the
1275 * auto-load/store MSR area in the VMCS.
1276 *
1277 * @returns VBox status code.
1278 * @param pVCpu The cross context virtual CPU structure.
1279 * @param uMsr The MSR.
1280 * @param uGuestMsrValue Value of the guest MSR.
1281 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1282 * necessary.
1283 * @param pfAddedAndUpdated Where to store whether the MSR was added -and-
1284 * its value was updated. Optional, can be NULL.
1285 */
1286static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr,
1287 bool *pfAddedAndUpdated)
1288{
1289 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1290 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1291 uint32_t i;
1292 for (i = 0; i < cMsrs; i++)
1293 {
1294 if (pGuestMsr->u32Msr == uMsr)
1295 break;
1296 pGuestMsr++;
1297 }
1298
1299 bool fAdded = false;
1300 if (i == cMsrs)
1301 {
1302 ++cMsrs;
1303 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1304 AssertMsgRCReturn(rc, ("hmR0VmxAddAutoLoadStoreMsr: Insufficient space to add MSR %u\n", uMsr), rc);
1305
1306 /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
1307 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1308 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1309
1310 fAdded = true;
1311 }
1312
1313 /* Update the MSR values in the auto-load/store MSR area. */
1314 pGuestMsr->u32Msr = uMsr;
1315 pGuestMsr->u64Value = uGuestMsrValue;
1316
1317 /* Create/update the MSR slot in the host MSR area. */
1318 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1319 pHostMsr += i;
1320 pHostMsr->u32Msr = uMsr;
1321
1322 /*
1323 * Update the host MSR only when requested by the caller AND when we're
1324 * adding it to the auto-load/store area. Otherwise, it would have been
1325 * updated by hmR0VmxExportHostMsrs(). We do this for performance reasons.
1326 */
1327 bool fUpdatedMsrValue = false;
1328 if ( fAdded
1329 && fUpdateHostMsr)
1330 {
1331 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1332 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1333 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1334 fUpdatedMsrValue = true;
1335 }
1336
1337 if (pfAddedAndUpdated)
1338 *pfAddedAndUpdated = fUpdatedMsrValue;
1339 return VINF_SUCCESS;
1340}
1341
1342
1343/**
1344 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1345 * auto-load/store MSR area in the VMCS.
1346 *
1347 * @returns VBox status code.
1348 * @param pVCpu The cross context virtual CPU structure.
1349 * @param uMsr The MSR.
1350 */
1351static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
1352{
1353 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1354 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1355 for (uint32_t i = 0; i < cMsrs; i++)
1356 {
1357 /* Find the MSR. */
1358 if (pGuestMsr->u32Msr == uMsr)
1359 {
1360 /* If it's the last MSR, simply reduce the count. */
1361 if (i == cMsrs - 1)
1362 {
1363 --cMsrs;
1364 break;
1365 }
1366
1367 /* Remove it by swapping the last MSR in place of it, and reducing the count. */
1368 PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1369 pLastGuestMsr += cMsrs - 1;
1370 pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
1371 pGuestMsr->u64Value = pLastGuestMsr->u64Value;
1372
1373 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1374 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1375 pLastHostMsr += cMsrs - 1;
1376 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1377 pHostMsr->u64Value = pLastHostMsr->u64Value;
1378 --cMsrs;
1379 break;
1380 }
1381 pGuestMsr++;
1382 }
1383
1384 /* Update the VMCS if the count changed (meaning the MSR was found). */
1385 if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
1386 {
1387 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1388 AssertRCReturn(rc, rc);
1389
1390 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1391 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1392 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
1393
1394 Log4Func(("Removed MSR %#RX32 new cMsrs=%u\n", uMsr, pVCpu->hm.s.vmx.cMsrs));
1395 return VINF_SUCCESS;
1396 }
1397
1398 return VERR_NOT_FOUND;
1399}
1400
1401
1402/**
1403 * Checks if the specified guest MSR is part of the auto-load/store area in
1404 * the VMCS.
1405 *
1406 * @returns true if found, false otherwise.
1407 * @param pVCpu The cross context virtual CPU structure.
1408 * @param uMsr The MSR to find.
1409 */
1410static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1411{
1412 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1413 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1414
1415 for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
1416 {
1417 if (pGuestMsr->u32Msr == uMsr)
1418 return true;
1419 }
1420 return false;
1421}
1422
1423
1424/**
1425 * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
1426 *
1427 * @param pVCpu The cross context virtual CPU structure.
1428 *
1429 * @remarks No-long-jump zone!!!
1430 */
1431static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
1432{
1433 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1434 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1435 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1436 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1437
1438 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1439 {
1440 AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
1441
1442 /*
1443 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1444 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1445 */
1446 if (pHostMsr->u32Msr == MSR_K6_EFER)
1447 pHostMsr->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostEfer;
1448 else
1449 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1450 }
1451
1452 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
1453}
1454
1455
1456/**
1457 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1458 * perform lazy restoration of the host MSRs while leaving VT-x.
1459 *
1460 * @param pVCpu The cross context virtual CPU structure.
1461 *
1462 * @remarks No-long-jump zone!!!
1463 */
1464static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1465{
1466 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1467
1468 /*
1469 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
1470 */
1471 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
1472 {
1473 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
1474#if HC_ARCH_BITS == 64
1475 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1476 {
1477 pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
1478 pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
1479 pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
1480 pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1481 }
1482#endif
1483 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1484 }
1485}
1486
1487
1488/**
1489 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1490 * lazily while leaving VT-x.
1491 *
1492 * @returns true if it does, false otherwise.
1493 * @param pVCpu The cross context virtual CPU structure.
1494 * @param uMsr The MSR to check.
1495 */
1496static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1497{
1498 NOREF(pVCpu);
1499#if HC_ARCH_BITS == 64
1500 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1501 {
1502 switch (uMsr)
1503 {
1504 case MSR_K8_LSTAR:
1505 case MSR_K6_STAR:
1506 case MSR_K8_SF_MASK:
1507 case MSR_K8_KERNEL_GS_BASE:
1508 return true;
1509 }
1510 }
1511#else
1512 RT_NOREF(pVCpu, uMsr);
1513#endif
1514 return false;
1515}
1516
1517
1518/**
1519 * Loads a set of guests MSRs to allow read/passthru to the guest.
1520 *
1521 * The name of this function is slightly confusing. This function does NOT
1522 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1523 * common prefix for functions dealing with "lazy restoration" of the shared
1524 * MSRs.
1525 *
1526 * @param pVCpu The cross context virtual CPU structure.
1527 *
1528 * @remarks No-long-jump zone!!!
1529 */
1530static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu)
1531{
1532 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1533 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1534
1535 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1536#if HC_ARCH_BITS == 64
1537 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1538 {
1539 /*
1540 * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
1541 * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
1542 * we can skip a few MSR writes.
1543 *
1544 * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
1545 * guest MSR values in the guest-CPU context might be different to what's currently
1546 * loaded in the CPU. In either case, we need to write the new guest MSR values to the
1547 * CPU, see @bugref{8728}.
1548 */
1549 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1550 if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1551 && pCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr
1552 && pCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostLStarMsr
1553 && pCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostStarMsr
1554 && pCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostSFMaskMsr)
1555 {
1556#ifdef VBOX_STRICT
1557 Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pCtx->msrKERNELGSBASE);
1558 Assert(ASMRdMsr(MSR_K8_LSTAR) == pCtx->msrLSTAR);
1559 Assert(ASMRdMsr(MSR_K6_STAR) == pCtx->msrSTAR);
1560 Assert(ASMRdMsr(MSR_K8_SF_MASK) == pCtx->msrSFMASK);
1561#endif
1562 }
1563 else
1564 {
1565 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
1566 ASMWrMsr(MSR_K8_LSTAR, pCtx->msrLSTAR);
1567 ASMWrMsr(MSR_K6_STAR, pCtx->msrSTAR);
1568 ASMWrMsr(MSR_K8_SF_MASK, pCtx->msrSFMASK);
1569 }
1570 }
1571#endif
1572 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
1573}
1574
1575
1576/**
1577 * Performs lazy restoration of the set of host MSRs if they were previously
1578 * loaded with guest MSR values.
1579 *
1580 * @param pVCpu The cross context virtual CPU structure.
1581 *
1582 * @remarks No-long-jump zone!!!
1583 * @remarks The guest MSRs should have been saved back into the guest-CPU
1584 * context by hmR0VmxImportGuestState()!!!
1585 */
1586static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
1587{
1588 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1589 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1590
1591 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1592 {
1593 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1594#if HC_ARCH_BITS == 64
1595 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1596 {
1597 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
1598 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
1599 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
1600 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
1601 }
1602#endif
1603 }
1604 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
1605}
1606
1607
1608/**
1609 * Verifies that our cached values of the VMCS fields are all consistent with
1610 * what's actually present in the VMCS.
1611 *
1612 * @returns VBox status code.
1613 * @retval VINF_SUCCESS if all our caches match their respective VMCS fields.
1614 * @retval VERR_VMX_VMCS_FIELD_CACHE_INVALID if a cache field doesn't match the
1615 * VMCS content. HMCPU error-field is
1616 * updated, see VMX_VCI_XXX.
1617 * @param pVCpu The cross context virtual CPU structure.
1618 */
1619static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu)
1620{
1621 uint32_t u32Val;
1622 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
1623 AssertRCReturn(rc, rc);
1624 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32EntryCtls == u32Val,
1625 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32EntryCtls, u32Val),
1626 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_ENTRY,
1627 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1628
1629 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
1630 AssertRCReturn(rc, rc);
1631 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ExitCtls == u32Val,
1632 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ExitCtls, u32Val),
1633 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_EXIT,
1634 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1635
1636 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
1637 AssertRCReturn(rc, rc);
1638 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32PinCtls == u32Val,
1639 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32PinCtls, u32Val),
1640 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PIN_EXEC,
1641 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1642
1643 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
1644 AssertRCReturn(rc, rc);
1645 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ProcCtls == u32Val,
1646 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls, u32Val),
1647 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC,
1648 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1649
1650 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1651 {
1652 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
1653 AssertRCReturn(rc, rc);
1654 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ProcCtls2 == u32Val,
1655 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2, u32Val),
1656 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC2,
1657 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1658 }
1659
1660 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val);
1661 AssertRCReturn(rc, rc);
1662 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32XcptBitmap == u32Val,
1663 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap, u32Val),
1664 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_XCPT_BITMAP,
1665 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1666
1667 uint64_t u64Val;
1668 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, &u64Val);
1669 AssertRCReturn(rc, rc);
1670 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u64TscOffset == u64Val,
1671 ("Cache=%#RX64 VMCS=%#RX64\n", pVCpu->hm.s.vmx.u64TscOffset, u64Val),
1672 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_TSC_OFFSET,
1673 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1674
1675 return VINF_SUCCESS;
1676}
1677
1678
1679#ifdef VBOX_STRICT
1680/**
1681 * Verifies that our cached host EFER value has not changed
1682 * since we cached it.
1683 *
1684 * @param pVCpu The cross context virtual CPU structure.
1685 */
1686static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu)
1687{
1688 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1689
1690 if (pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
1691 {
1692 uint64_t u64Val;
1693 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &u64Val);
1694 AssertRC(rc);
1695
1696 uint64_t u64HostEferMsr = ASMRdMsr(MSR_K6_EFER);
1697 AssertMsgReturnVoid(u64HostEferMsr == u64Val, ("u64HostEferMsr=%#RX64 u64Val=%#RX64\n", u64HostEferMsr, u64Val));
1698 }
1699}
1700
1701
1702/**
1703 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
1704 * VMCS are correct.
1705 *
1706 * @param pVCpu The cross context virtual CPU structure.
1707 */
1708static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
1709{
1710 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1711
1712 /* Verify MSR counts in the VMCS are what we think it should be. */
1713 uint32_t cMsrs;
1714 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1715 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1716
1717 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
1718 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1719
1720 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1721 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1722
1723 PCVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1724 PCVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1725 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1726 {
1727 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
1728 AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32 cMsrs=%u\n", pHostMsr->u32Msr,
1729 pGuestMsr->u32Msr, cMsrs));
1730
1731 uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
1732 AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
1733 pHostMsr->u32Msr, pHostMsr->u64Value, u64Msr, cMsrs));
1734
1735 /* Verify that the permissions are as expected in the MSR bitmap. */
1736 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1737 {
1738 VMXMSREXITREAD enmRead;
1739 VMXMSREXITWRITE enmWrite;
1740 rc = HMVmxGetMsrPermission(pVCpu->hm.s.vmx.pvMsrBitmap, pGuestMsr->u32Msr, &enmRead, &enmWrite);
1741 AssertMsgReturnVoid(rc == VINF_SUCCESS, ("HMVmxGetMsrPermission! failed. rc=%Rrc\n", rc));
1742 if (pGuestMsr->u32Msr == MSR_K6_EFER)
1743 {
1744 AssertMsgReturnVoid(enmRead == VMXMSREXIT_INTERCEPT_READ, ("Passthru read for EFER!?\n"));
1745 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_INTERCEPT_WRITE, ("Passthru write for EFER!?\n"));
1746 }
1747 else
1748 {
1749 AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 cMsrs=%u No passthru read!\n",
1750 pGuestMsr->u32Msr, cMsrs));
1751 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 cMsrs=%u No passthru write!\n",
1752 pGuestMsr->u32Msr, cMsrs));
1753 }
1754 }
1755 }
1756}
1757#endif /* VBOX_STRICT */
1758
1759
1760/**
1761 * Flushes the TLB using EPT.
1762 *
1763 * @returns VBox status code.
1764 * @param pVCpu The cross context virtual CPU structure of the calling
1765 * EMT. Can be NULL depending on @a enmTlbFlush.
1766 * @param enmTlbFlush Type of flush.
1767 *
1768 * @remarks Caller is responsible for making sure this function is called only
1769 * when NestedPaging is supported and providing @a enmTlbFlush that is
1770 * supported by the CPU.
1771 * @remarks Can be called with interrupts disabled.
1772 */
1773static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXTLBFLUSHEPT enmTlbFlush)
1774{
1775 uint64_t au64Descriptor[2];
1776 if (enmTlbFlush == VMXTLBFLUSHEPT_ALL_CONTEXTS)
1777 au64Descriptor[0] = 0;
1778 else
1779 {
1780 Assert(pVCpu);
1781 au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1782 }
1783 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1784
1785 int rc = VMXR0InvEPT(enmTlbFlush, &au64Descriptor[0]);
1786 AssertMsg(rc == VINF_SUCCESS,
1787 ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0, rc));
1788
1789 if ( RT_SUCCESS(rc)
1790 && pVCpu)
1791 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1792}
1793
1794
1795/**
1796 * Flushes the TLB using VPID.
1797 *
1798 * @returns VBox status code.
1799 * @param pVCpu The cross context virtual CPU structure of the calling
1800 * EMT. Can be NULL depending on @a enmTlbFlush.
1801 * @param enmTlbFlush Type of flush.
1802 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1803 * on @a enmTlbFlush).
1804 *
1805 * @remarks Can be called with interrupts disabled.
1806 */
1807static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr)
1808{
1809 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid);
1810
1811 uint64_t au64Descriptor[2];
1812 if (enmTlbFlush == VMXTLBFLUSHVPID_ALL_CONTEXTS)
1813 {
1814 au64Descriptor[0] = 0;
1815 au64Descriptor[1] = 0;
1816 }
1817 else
1818 {
1819 AssertPtr(pVCpu);
1820 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1821 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1822 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1823 au64Descriptor[1] = GCPtr;
1824 }
1825
1826 int rc = VMXR0InvVPID(enmTlbFlush, &au64Descriptor[0]);
1827 AssertMsg(rc == VINF_SUCCESS,
1828 ("VMXR0InvVPID %#x %u %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1829
1830 if ( RT_SUCCESS(rc)
1831 && pVCpu)
1832 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1833 NOREF(rc);
1834}
1835
1836
1837/**
1838 * Invalidates a guest page by guest virtual address. Only relevant for
1839 * EPT/VPID, otherwise there is nothing really to invalidate.
1840 *
1841 * @returns VBox status code.
1842 * @param pVCpu The cross context virtual CPU structure.
1843 * @param GCVirt Guest virtual address of the page to invalidate.
1844 */
1845VMMR0DECL(int) VMXR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
1846{
1847 AssertPtr(pVCpu);
1848 LogFlowFunc(("pVCpu=%p GCVirt=%RGv\n", pVCpu, GCVirt));
1849
1850 bool fFlushPending = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
1851 if (!fFlushPending)
1852 {
1853 /*
1854 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for
1855 * the EPT case. See @bugref{6043} and @bugref{6177}.
1856 *
1857 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*()
1858 * as this function maybe called in a loop with individual addresses.
1859 */
1860 PVM pVM = pVCpu->CTX_SUFF(pVM);
1861 if (pVM->hm.s.vmx.fVpid)
1862 {
1863 bool fVpidFlush = RT_BOOL(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1864
1865#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1866 /*
1867 * Workaround Erratum BV75, AAJ159 and others that affect several Intel CPUs
1868 * where executing INVVPID outside 64-bit mode does not flush translations of
1869 * 64-bit linear addresses, see @bugref{6208#c72}.
1870 */
1871 if (RT_HI_U32(GCVirt))
1872 fVpidFlush = false;
1873#endif
1874
1875 if (fVpidFlush)
1876 {
1877 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_INDIV_ADDR, GCVirt);
1878 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1879 }
1880 else
1881 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1882 }
1883 else if (pVM->hm.s.fNestedPaging)
1884 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1885 }
1886
1887 return VINF_SUCCESS;
1888}
1889
1890
1891/**
1892 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1893 * case where neither EPT nor VPID is supported by the CPU.
1894 *
1895 * @param pVCpu The cross context virtual CPU structure.
1896 * @param pCpu Pointer to the global HM struct.
1897 *
1898 * @remarks Called with interrupts disabled.
1899 */
1900static void hmR0VmxFlushTaggedTlbNone(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1901{
1902 AssertPtr(pVCpu);
1903 AssertPtr(pCpu);
1904
1905 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1906
1907 Assert(pCpu->idCpu != NIL_RTCPUID);
1908 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1909 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1910 pVCpu->hm.s.fForceTLBFlush = false;
1911 return;
1912}
1913
1914
1915/**
1916 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1917 *
1918 * @param pVCpu The cross context virtual CPU structure.
1919 * @param pCpu Pointer to the global HM CPU struct.
1920 *
1921 * @remarks All references to "ASID" in this function pertains to "VPID" in Intel's
1922 * nomenclature. The reason is, to avoid confusion in compare statements
1923 * since the host-CPU copies are named "ASID".
1924 *
1925 * @remarks Called with interrupts disabled.
1926 */
1927static void hmR0VmxFlushTaggedTlbBoth(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1928{
1929#ifdef VBOX_WITH_STATISTICS
1930 bool fTlbFlushed = false;
1931# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
1932# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
1933 if (!fTlbFlushed) \
1934 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
1935 } while (0)
1936#else
1937# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
1938# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
1939#endif
1940
1941 AssertPtr(pCpu);
1942 AssertPtr(pVCpu);
1943 Assert(pCpu->idCpu != NIL_RTCPUID);
1944
1945 PVM pVM = pVCpu->CTX_SUFF(pVM);
1946 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1947 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1948 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1949
1950 /*
1951 * Force a TLB flush for the first world-switch if the current CPU differs from the one we
1952 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
1953 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
1954 * cannot reuse the current ASID anymore.
1955 */
1956 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1957 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1958 {
1959 ++pCpu->uCurrentAsid;
1960 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1961 {
1962 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
1963 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1964 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1965 }
1966
1967 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
1968 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1969 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1970
1971 /*
1972 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
1973 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
1974 */
1975 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmTlbFlushEpt);
1976 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1977 HMVMX_SET_TAGGED_TLB_FLUSHED();
1978 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1979 }
1980 else if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) /* Check for explicit TLB flushes. */
1981 {
1982 /*
1983 * Changes to the EPT paging structure by VMM requires flushing-by-EPT as the CPU
1984 * creates guest-physical (ie. only EPT-tagged) mappings while traversing the EPT
1985 * tables when EPT is in use. Flushing-by-VPID will only flush linear (only
1986 * VPID-tagged) and combined (EPT+VPID tagged) mappings but not guest-physical
1987 * mappings, see @bugref{6568}.
1988 *
1989 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information".
1990 */
1991 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmTlbFlushEpt);
1992 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1993 HMVMX_SET_TAGGED_TLB_FLUSHED();
1994 }
1995
1996 pVCpu->hm.s.fForceTLBFlush = false;
1997 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
1998
1999 Assert(pVCpu->hm.s.idLastCpu == pCpu->idCpu);
2000 Assert(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes);
2001 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2002 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2003 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2004 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2005 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2006 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2007 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2008
2009 /* Update VMCS with the VPID. */
2010 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2011 AssertRC(rc);
2012
2013#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2014}
2015
2016
2017/**
2018 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2019 *
2020 * @returns VBox status code.
2021 * @param pVCpu The cross context virtual CPU structure.
2022 * @param pCpu Pointer to the global HM CPU struct.
2023 *
2024 * @remarks Called with interrupts disabled.
2025 */
2026static void hmR0VmxFlushTaggedTlbEpt(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2027{
2028 AssertPtr(pVCpu);
2029 AssertPtr(pCpu);
2030 Assert(pCpu->idCpu != NIL_RTCPUID);
2031 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked without NestedPaging."));
2032 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID."));
2033
2034 /*
2035 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2036 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2037 */
2038 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2039 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2040 {
2041 pVCpu->hm.s.fForceTLBFlush = true;
2042 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2043 }
2044
2045 /* Check for explicit TLB flushes. */
2046 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2047 {
2048 pVCpu->hm.s.fForceTLBFlush = true;
2049 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2050 }
2051
2052 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2053 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2054
2055 if (pVCpu->hm.s.fForceTLBFlush)
2056 {
2057 hmR0VmxFlushEpt(pVCpu, pVCpu->CTX_SUFF(pVM)->hm.s.vmx.enmTlbFlushEpt);
2058 pVCpu->hm.s.fForceTLBFlush = false;
2059 }
2060}
2061
2062
2063/**
2064 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2065 *
2066 * @returns VBox status code.
2067 * @param pVCpu The cross context virtual CPU structure.
2068 * @param pCpu Pointer to the global HM CPU struct.
2069 *
2070 * @remarks Called with interrupts disabled.
2071 */
2072static void hmR0VmxFlushTaggedTlbVpid(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2073{
2074 AssertPtr(pVCpu);
2075 AssertPtr(pCpu);
2076 Assert(pCpu->idCpu != NIL_RTCPUID);
2077 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked without VPID."));
2078 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging"));
2079
2080 /*
2081 * Force a TLB flush for the first world switch if the current CPU differs from the one we
2082 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
2083 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
2084 * cannot reuse the current ASID anymore.
2085 */
2086 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2087 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2088 {
2089 pVCpu->hm.s.fForceTLBFlush = true;
2090 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2091 }
2092
2093 /* Check for explicit TLB flushes. */
2094 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2095 {
2096 /*
2097 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see
2098 * hmR0VmxSetupTaggedTlb()) we would need to explicitly flush in this case (add an
2099 * fExplicitFlush = true here and change the pCpu->fFlushAsidBeforeUse check below to
2100 * include fExplicitFlush's too) - an obscure corner case.
2101 */
2102 pVCpu->hm.s.fForceTLBFlush = true;
2103 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2104 }
2105
2106 PVM pVM = pVCpu->CTX_SUFF(pVM);
2107 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2108 if (pVCpu->hm.s.fForceTLBFlush)
2109 {
2110 ++pCpu->uCurrentAsid;
2111 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2112 {
2113 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2114 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2115 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2116 }
2117
2118 pVCpu->hm.s.fForceTLBFlush = false;
2119 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2120 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2121 if (pCpu->fFlushAsidBeforeUse)
2122 {
2123 if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
2124 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2125 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
2126 {
2127 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2128 pCpu->fFlushAsidBeforeUse = false;
2129 }
2130 else
2131 {
2132 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2133 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2134 }
2135 }
2136 }
2137
2138 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2139 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2140 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2141 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2142 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2143 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2144 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2145
2146 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2147 AssertRC(rc);
2148}
2149
2150
2151/**
2152 * Flushes the guest TLB entry based on CPU capabilities.
2153 *
2154 * @param pVCpu The cross context virtual CPU structure.
2155 * @param pCpu Pointer to the global HM CPU struct.
2156 */
2157DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2158{
2159#ifdef HMVMX_ALWAYS_FLUSH_TLB
2160 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2161#endif
2162 PVM pVM = pVCpu->CTX_SUFF(pVM);
2163 switch (pVM->hm.s.vmx.enmTlbFlushType)
2164 {
2165 case VMXTLBFLUSHTYPE_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVCpu, pCpu); break;
2166 case VMXTLBFLUSHTYPE_EPT: hmR0VmxFlushTaggedTlbEpt(pVCpu, pCpu); break;
2167 case VMXTLBFLUSHTYPE_VPID: hmR0VmxFlushTaggedTlbVpid(pVCpu, pCpu); break;
2168 case VMXTLBFLUSHTYPE_NONE: hmR0VmxFlushTaggedTlbNone(pVCpu, pCpu); break;
2169 default:
2170 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2171 break;
2172 }
2173 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2174}
2175
2176
2177/**
2178 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2179 * TLB entries from the host TLB before VM-entry.
2180 *
2181 * @returns VBox status code.
2182 * @param pVM The cross context VM structure.
2183 */
2184static int hmR0VmxSetupTaggedTlb(PVM pVM)
2185{
2186 /*
2187 * Determine optimal flush type for Nested Paging.
2188 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
2189 * guest execution (see hmR3InitFinalizeR0()).
2190 */
2191 if (pVM->hm.s.fNestedPaging)
2192 {
2193 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2194 {
2195 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2196 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_SINGLE_CONTEXT;
2197 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2198 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_ALL_CONTEXTS;
2199 else
2200 {
2201 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2202 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2203 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
2204 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2205 }
2206
2207 /* Make sure the write-back cacheable memory type for EPT is supported. */
2208 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
2209 {
2210 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2211 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
2212 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2213 }
2214
2215 /* EPT requires a page-walk length of 4. */
2216 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
2217 {
2218 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2219 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
2220 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2221 }
2222 }
2223 else
2224 {
2225 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2226 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2227 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
2228 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2229 }
2230 }
2231
2232 /*
2233 * Determine optimal flush type for VPID.
2234 */
2235 if (pVM->hm.s.vmx.fVpid)
2236 {
2237 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2238 {
2239 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2240 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_SINGLE_CONTEXT;
2241 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2242 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_ALL_CONTEXTS;
2243 else
2244 {
2245 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2246 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2247 LogRelFunc(("Only INDIV_ADDR supported. Ignoring VPID.\n"));
2248 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2249 LogRelFunc(("Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2250 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2251 pVM->hm.s.vmx.fVpid = false;
2252 }
2253 }
2254 else
2255 {
2256 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2257 Log4Func(("VPID supported without INVEPT support. Ignoring VPID.\n"));
2258 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2259 pVM->hm.s.vmx.fVpid = false;
2260 }
2261 }
2262
2263 /*
2264 * Setup the handler for flushing tagged-TLBs.
2265 */
2266 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2267 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT_VPID;
2268 else if (pVM->hm.s.fNestedPaging)
2269 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT;
2270 else if (pVM->hm.s.vmx.fVpid)
2271 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_VPID;
2272 else
2273 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_NONE;
2274 return VINF_SUCCESS;
2275}
2276
2277
2278/**
2279 * Sets up pin-based VM-execution controls in the VMCS.
2280 *
2281 * @returns VBox status code.
2282 * @param pVCpu The cross context virtual CPU structure.
2283 *
2284 * @remarks We don't really care about optimizing vmwrites here as it's done only
2285 * once per VM and hence we don't care about VMCS-field cache comparisons.
2286 */
2287static int hmR0VmxSetupPinCtls(PVMCPU pVCpu)
2288{
2289 PVM pVM = pVCpu->CTX_SUFF(pVM);
2290 uint32_t fVal = pVM->hm.s.vmx.Msrs.PinCtls.n.disallowed0; /* Bits set here must always be set. */
2291 uint32_t const fZap = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2292
2293 fVal |= VMX_PIN_CTLS_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2294 | VMX_PIN_CTLS_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2295
2296 if (pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
2297 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2298
2299 /* Enable the VMX preemption timer. */
2300 if (pVM->hm.s.vmx.fUsePreemptTimer)
2301 {
2302 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
2303 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
2304 }
2305
2306#if 0
2307 /* Enable posted-interrupt processing. */
2308 if (pVM->hm.s.fPostedIntrs)
2309 {
2310 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
2311 Assert(pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
2312 fVal |= VMX_PIN_CTL_POSTED_INT;
2313 }
2314#endif
2315
2316 if ((fVal & fZap) != fVal)
2317 {
2318 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX64 fVal=%#RX64 fZap=%#RX64\n",
2319 pVM->hm.s.vmx.Msrs.PinCtls.n.disallowed0, fVal, fZap));
2320 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2321 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2322 }
2323
2324 /* Commit it to the VMCS and update our cache. */
2325 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, fVal);
2326 AssertRCReturn(rc, rc);
2327 pVCpu->hm.s.vmx.u32PinCtls = fVal;
2328
2329 return VINF_SUCCESS;
2330}
2331
2332
2333/**
2334 * Sets up secondary processor-based VM-execution controls in the VMCS.
2335 *
2336 * @returns VBox status code.
2337 * @param pVCpu The cross context virtual CPU structure.
2338 *
2339 * @remarks We don't really care about optimizing vmwrites here as it's done only
2340 * once per VM and hence we don't care about VMCS-field cache comparisons.
2341 */
2342static int hmR0VmxSetupProcCtls2(PVMCPU pVCpu)
2343{
2344 PVM pVM = pVCpu->CTX_SUFF(pVM);
2345 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls2.n.disallowed0; /* Bits set here must be set in the VMCS. */
2346 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2347
2348 /* WBINVD causes a VM-exit. */
2349 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
2350 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
2351
2352 /* Enable EPT (aka nested-paging). */
2353 if (pVM->hm.s.fNestedPaging)
2354 fVal |= VMX_PROC_CTLS2_EPT;
2355
2356 /*
2357 * Enable the INVPCID instruction if supported by the hardware and we expose
2358 * it to the guest. Without this, guest executing INVPCID would cause a #UD.
2359 */
2360 if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID)
2361 && pVM->cpum.ro.GuestFeatures.fInvpcid)
2362 fVal |= VMX_PROC_CTLS2_INVPCID;
2363
2364 /* Enable VPID. */
2365 if (pVM->hm.s.vmx.fVpid)
2366 fVal |= VMX_PROC_CTLS2_VPID;
2367
2368 /* Enable Unrestricted guest execution. */
2369 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2370 fVal |= VMX_PROC_CTLS2_UNRESTRICTED_GUEST;
2371
2372#if 0
2373 if (pVM->hm.s.fVirtApicRegs)
2374 {
2375 /* Enable APIC-register virtualization. */
2376 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
2377 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
2378
2379 /* Enable virtual-interrupt delivery. */
2380 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
2381 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
2382 }
2383#endif
2384
2385 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is where the TPR shadow resides. */
2386 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2387 * done dynamically. */
2388 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
2389 {
2390 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
2391 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2392 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS; /* Virtualize APIC accesses. */
2393 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
2394 AssertRCReturn(rc, rc);
2395 }
2396
2397 /* Enable RDTSCP. */
2398 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP)
2399 fVal |= VMX_PROC_CTLS2_RDTSCP;
2400
2401 /* Enable Pause-Loop exiting. */
2402 if ( pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT
2403 && pVM->hm.s.vmx.cPleGapTicks
2404 && pVM->hm.s.vmx.cPleWindowTicks)
2405 {
2406 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
2407
2408 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
2409 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
2410 AssertRCReturn(rc, rc);
2411 }
2412
2413 if ((fVal & fZap) != fVal)
2414 {
2415 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX64 fVal=%#RX64 fZap=%#RX64\n",
2416 pVM->hm.s.vmx.Msrs.ProcCtls2.n.disallowed0, fVal, fZap));
2417 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2418 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2419 }
2420
2421 /* Commit it to the VMCS and update our cache. */
2422 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
2423 AssertRCReturn(rc, rc);
2424 pVCpu->hm.s.vmx.u32ProcCtls2 = fVal;
2425
2426 return VINF_SUCCESS;
2427}
2428
2429
2430/**
2431 * Sets up processor-based VM-execution controls in the VMCS.
2432 *
2433 * @returns VBox status code.
2434 * @param pVCpu The cross context virtual CPU structure.
2435 *
2436 * @remarks We don't really care about optimizing vmwrites here as it's done only
2437 * once per VM and hence we don't care about VMCS-field cache comparisons.
2438 */
2439static int hmR0VmxSetupProcCtls(PVMCPU pVCpu)
2440{
2441 PVM pVM = pVCpu->CTX_SUFF(pVM);
2442 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
2443 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2444
2445 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
2446 | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2447 | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2448 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2449 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2450 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2451 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2452
2453 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2454 if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
2455 || (pVM->hm.s.vmx.Msrs.ProcCtls.n.disallowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
2456 {
2457 LogRelFunc(("Unsupported VMX_PROC_CTLS_MOV_DR_EXIT combo!"));
2458 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2459 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2460 }
2461
2462 /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
2463 if (!pVM->hm.s.fNestedPaging)
2464 {
2465 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
2466 fVal |= VMX_PROC_CTLS_INVLPG_EXIT
2467 | VMX_PROC_CTLS_CR3_LOAD_EXIT
2468 | VMX_PROC_CTLS_CR3_STORE_EXIT;
2469 }
2470
2471 /* Use TPR shadowing if supported by the CPU. */
2472 if ( PDMHasApic(pVM)
2473 && pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW)
2474 {
2475 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2476 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2477 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
2478 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
2479 AssertRCReturn(rc, rc);
2480
2481 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2482 /* CR8 writes cause a VM-exit based on TPR threshold. */
2483 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
2484 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
2485 }
2486 else
2487 {
2488 /*
2489 * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
2490 * Set this control only for 64-bit guests.
2491 */
2492 if (pVM->hm.s.fAllow64BitGuests)
2493 {
2494 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
2495 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
2496 }
2497 }
2498
2499 /* Use MSR-bitmaps if supported by the CPU. */
2500 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
2501 {
2502 fVal |= VMX_PROC_CTLS_USE_MSR_BITMAPS;
2503
2504 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2505 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2506 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2507 AssertRCReturn(rc, rc);
2508
2509 /*
2510 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
2511 * automatically using dedicated fields in the VMCS.
2512 */
2513 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2514 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2515 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2516 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2517 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2518#if HC_ARCH_BITS == 64
2519 /*
2520 * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
2521 */
2522 if (pVM->hm.s.fAllow64BitGuests)
2523 {
2524 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2525 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2526 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2527 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2528 }
2529#endif
2530 /*
2531 * The IA32_PRED_CMD MSR is write-only and has no state associated with it. We never need to intercept
2532 * access (writes need to be executed without exiting, reds will #GP-fault anyway).
2533 */
2534 if (pVM->cpum.ro.GuestFeatures.fIbpb)
2535 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_PRED_CMD, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2536
2537 /* Though MSR_IA32_PERF_GLOBAL_CTRL is saved/restored lazily, we want intercept reads/write to it for now. */
2538 }
2539
2540 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2541 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2542 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
2543
2544 if ((fVal & fZap) != fVal)
2545 {
2546 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX64 fVal=%#RX64 fZap=%#RX64\n",
2547 pVM->hm.s.vmx.Msrs.ProcCtls.n.disallowed0, fVal, fZap));
2548 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2549 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2550 }
2551
2552 /* Commit it to the VMCS and update our cache. */
2553 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, fVal);
2554 AssertRCReturn(rc, rc);
2555 pVCpu->hm.s.vmx.u32ProcCtls = fVal;
2556
2557 /* Set up secondary processor-based VM-execution controls if the CPU supports it. */
2558 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2559 return hmR0VmxSetupProcCtls2(pVCpu);
2560
2561 /* Sanity check, should not really happen. */
2562 if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
2563 {
2564 LogRelFunc(("Unrestricted Guest enabled when secondary processor-based VM-execution controls not available\n"));
2565 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
2566 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2567 }
2568
2569 /* Old CPUs without secondary processor-based VM-execution controls would end up here. */
2570 return VINF_SUCCESS;
2571}
2572
2573
2574/**
2575 * Sets up miscellaneous (everything other than Pin & Processor-based
2576 * VM-execution) control fields in the VMCS.
2577 *
2578 * @returns VBox status code.
2579 * @param pVCpu The cross context virtual CPU structure.
2580 */
2581static int hmR0VmxSetupMiscCtls(PVMCPU pVCpu)
2582{
2583 AssertPtr(pVCpu);
2584
2585 int rc = VERR_GENERAL_FAILURE;
2586
2587 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2588#if 0
2589 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxExportGuestCR3AndCR4())*/
2590 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0);
2591 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0);
2592
2593 /*
2594 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
2595 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
2596 * We thus use the exception bitmap to control it rather than use both.
2597 */
2598 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0);
2599 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0);
2600
2601 /* All IO & IOIO instructions cause VM-exits. */
2602 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0);
2603 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0);
2604
2605 /* Initialize the MSR-bitmap area. */
2606 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
2607 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
2608 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
2609 AssertRCReturn(rc, rc);
2610#endif
2611
2612 /* Setup MSR auto-load/store area. */
2613 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
2614 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
2615 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2616 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2617 AssertRCReturn(rc, rc);
2618
2619 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
2620 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
2621 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
2622 AssertRCReturn(rc, rc);
2623
2624 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
2625 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
2626 AssertRCReturn(rc, rc);
2627
2628 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2629#if 0
2630 /* Setup debug controls */
2631 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0);
2632 rc |= VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
2633 AssertRCReturn(rc, rc);
2634#endif
2635
2636 return rc;
2637}
2638
2639
2640/**
2641 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2642 *
2643 * We shall setup those exception intercepts that don't change during the
2644 * lifetime of the VM here. The rest are done dynamically while loading the
2645 * guest state.
2646 *
2647 * @returns VBox status code.
2648 * @param pVCpu The cross context virtual CPU structure.
2649 */
2650static int hmR0VmxInitXcptBitmap(PVMCPU pVCpu)
2651{
2652 AssertPtr(pVCpu);
2653
2654 uint32_t uXcptBitmap;
2655
2656 /* Must always intercept #AC to prevent the guest from hanging the CPU. */
2657 uXcptBitmap = RT_BIT_32(X86_XCPT_AC);
2658
2659 /* Because we need to maintain the DR6 state even when intercepting DRx reads
2660 and writes, and because recursive #DBs can cause the CPU hang, we must always
2661 intercept #DB. */
2662 uXcptBitmap |= RT_BIT_32(X86_XCPT_DB);
2663
2664 /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
2665 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
2666 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
2667
2668 /* Commit it to the VMCS. */
2669 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
2670 AssertRCReturn(rc, rc);
2671
2672 /* Update our cache of the exception bitmap. */
2673 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
2674 return VINF_SUCCESS;
2675}
2676
2677
2678/**
2679 * Does per-VM VT-x initialization.
2680 *
2681 * @returns VBox status code.
2682 * @param pVM The cross context VM structure.
2683 */
2684VMMR0DECL(int) VMXR0InitVM(PVM pVM)
2685{
2686 LogFlowFunc(("pVM=%p\n", pVM));
2687
2688 int rc = hmR0VmxStructsAlloc(pVM);
2689 if (RT_FAILURE(rc))
2690 {
2691 LogRelFunc(("hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
2692 return rc;
2693 }
2694
2695 return VINF_SUCCESS;
2696}
2697
2698
2699/**
2700 * Does per-VM VT-x termination.
2701 *
2702 * @returns VBox status code.
2703 * @param pVM The cross context VM structure.
2704 */
2705VMMR0DECL(int) VMXR0TermVM(PVM pVM)
2706{
2707 LogFlowFunc(("pVM=%p\n", pVM));
2708
2709#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2710 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
2711 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
2712#endif
2713 hmR0VmxStructsFree(pVM);
2714 return VINF_SUCCESS;
2715}
2716
2717
2718/**
2719 * Sets up the VM for execution under VT-x.
2720 * This function is only called once per-VM during initialization.
2721 *
2722 * @returns VBox status code.
2723 * @param pVM The cross context VM structure.
2724 */
2725VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
2726{
2727 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
2728 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2729
2730 LogFlowFunc(("pVM=%p\n", pVM));
2731
2732 /*
2733 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be
2734 * allocated. We no longer support the highly unlikely case of UnrestrictedGuest without
2735 * pRealModeTSS, see hmR3InitFinalizeR0Intel().
2736 */
2737 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
2738 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
2739 || !pVM->hm.s.vmx.pRealModeTSS))
2740 {
2741 LogRelFunc(("Invalid real-on-v86 state.\n"));
2742 return VERR_INTERNAL_ERROR;
2743 }
2744
2745 /* Initialize these always, see hmR3InitFinalizeR0().*/
2746 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NONE;
2747 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NONE;
2748
2749 /* Setup the tagged-TLB flush handlers. */
2750 int rc = hmR0VmxSetupTaggedTlb(pVM);
2751 if (RT_FAILURE(rc))
2752 {
2753 LogRelFunc(("hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
2754 return rc;
2755 }
2756
2757 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
2758 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
2759#if HC_ARCH_BITS == 64
2760 if ( (pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
2761 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
2762 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR))
2763 {
2764 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
2765 }
2766#endif
2767
2768 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
2769 RTCCUINTREG const uHostCR4 = ASMGetCR4();
2770 if (RT_UNLIKELY(!(uHostCR4 & X86_CR4_VMXE)))
2771 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
2772
2773 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2774 {
2775 PVMCPU pVCpu = &pVM->aCpus[i];
2776 AssertPtr(pVCpu);
2777 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
2778
2779 /* Log the VCPU pointers, useful for debugging SMP VMs. */
2780 Log4Func(("pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
2781
2782 /* Set revision dword at the beginning of the VMCS structure. */
2783 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
2784
2785 /* Set the VMCS launch state to "clear", see Intel spec. 31.6 "Preparation and launch a virtual machine". */
2786 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2787 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc\n", rc),
2788 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2789
2790 /* Load this VMCS as the current VMCS. */
2791 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2792 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc\n", rc),
2793 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2794
2795 rc = hmR0VmxSetupPinCtls(pVCpu);
2796 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc\n", rc),
2797 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2798
2799 rc = hmR0VmxSetupProcCtls(pVCpu);
2800 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc\n", rc),
2801 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2802
2803 rc = hmR0VmxSetupMiscCtls(pVCpu);
2804 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc\n", rc),
2805 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2806
2807 rc = hmR0VmxInitXcptBitmap(pVCpu);
2808 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc\n", rc),
2809 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2810
2811#if HC_ARCH_BITS == 32
2812 rc = hmR0VmxInitVmcsReadCache(pVCpu);
2813 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc\n", rc),
2814 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2815#endif
2816
2817 /* Sync any CPU internal VMCS data back into our VMCS in memory. */
2818 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2819 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc\n", rc),
2820 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2821
2822 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
2823
2824 hmR0VmxUpdateErrorRecord(pVCpu, rc);
2825 }
2826
2827 return VINF_SUCCESS;
2828}
2829
2830
2831/**
2832 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2833 * the VMCS.
2834 *
2835 * @returns VBox status code.
2836 */
2837static int hmR0VmxExportHostControlRegs(void)
2838{
2839 RTCCUINTREG uReg = ASMGetCR0();
2840 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2841 AssertRCReturn(rc, rc);
2842
2843 uReg = ASMGetCR3();
2844 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2845 AssertRCReturn(rc, rc);
2846
2847 uReg = ASMGetCR4();
2848 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2849 AssertRCReturn(rc, rc);
2850 return rc;
2851}
2852
2853
2854/**
2855 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2856 * the host-state area in the VMCS.
2857 *
2858 * @returns VBox status code.
2859 * @param pVCpu The cross context virtual CPU structure.
2860 */
2861static int hmR0VmxExportHostSegmentRegs(PVMCPU pVCpu)
2862{
2863#if HC_ARCH_BITS == 64
2864/**
2865 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
2866 * requirements. See hmR0VmxExportHostSegmentRegs().
2867 */
2868# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
2869 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
2870 { \
2871 bool fValidSelector = true; \
2872 if ((selValue) & X86_SEL_LDT) \
2873 { \
2874 uint32_t uAttr = ASMGetSegAttr((selValue)); \
2875 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
2876 } \
2877 if (fValidSelector) \
2878 { \
2879 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
2880 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
2881 } \
2882 (selValue) = 0; \
2883 }
2884
2885 /*
2886 * If we've executed guest code using VT-x, the host-state bits will be messed up. We
2887 * should -not- save the messed up state without restoring the original host-state,
2888 * see @bugref{7240}.
2889 *
2890 * This apparently can happen (most likely the FPU changes), deal with it rather than
2891 * asserting. Was observed booting Solaris 10u10 32-bit guest.
2892 */
2893 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
2894 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
2895 {
2896 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
2897 pVCpu->idCpu));
2898 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
2899 }
2900 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
2901#else
2902 RT_NOREF(pVCpu);
2903#endif
2904
2905 /*
2906 * Host DS, ES, FS and GS segment registers.
2907 */
2908#if HC_ARCH_BITS == 64
2909 RTSEL uSelDS = ASMGetDS();
2910 RTSEL uSelES = ASMGetES();
2911 RTSEL uSelFS = ASMGetFS();
2912 RTSEL uSelGS = ASMGetGS();
2913#else
2914 RTSEL uSelDS = 0;
2915 RTSEL uSelES = 0;
2916 RTSEL uSelFS = 0;
2917 RTSEL uSelGS = 0;
2918#endif
2919
2920 /*
2921 * Host CS and SS segment registers.
2922 */
2923 RTSEL uSelCS = ASMGetCS();
2924 RTSEL uSelSS = ASMGetSS();
2925
2926 /*
2927 * Host TR segment register.
2928 */
2929 RTSEL uSelTR = ASMGetTR();
2930
2931#if HC_ARCH_BITS == 64
2932 /*
2933 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to
2934 * gain VM-entry and restore them before we get preempted.
2935 *
2936 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
2937 */
2938 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
2939 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
2940 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
2941 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
2942# undef VMXLOCAL_ADJUST_HOST_SEG
2943#endif
2944
2945 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2946 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2947 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2948 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2949 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2950 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2951 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2952 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
2953 Assert(uSelCS);
2954 Assert(uSelTR);
2955
2956 /* Assertion is right but we would not have updated u32ExitCtls yet. */
2957#if 0
2958 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE))
2959 Assert(uSelSS != 0);
2960#endif
2961
2962 /* Write these host selector fields into the host-state area in the VMCS. */
2963 int rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
2964 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
2965#if HC_ARCH_BITS == 64
2966 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
2967 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
2968 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
2969 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
2970#else
2971 NOREF(uSelDS);
2972 NOREF(uSelES);
2973 NOREF(uSelFS);
2974 NOREF(uSelGS);
2975#endif
2976 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
2977 AssertRCReturn(rc, rc);
2978
2979 /*
2980 * Host GDTR and IDTR.
2981 */
2982 RTGDTR Gdtr;
2983 RTIDTR Idtr;
2984 RT_ZERO(Gdtr);
2985 RT_ZERO(Idtr);
2986 ASMGetGDTR(&Gdtr);
2987 ASMGetIDTR(&Idtr);
2988 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
2989 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
2990 AssertRCReturn(rc, rc);
2991
2992#if HC_ARCH_BITS == 64
2993 /*
2994 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps
2995 * them to the maximum limit (0xffff) on every VM-exit.
2996 */
2997 if (Gdtr.cbGdt != 0xffff)
2998 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
2999
3000 /*
3001 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT" and
3002 * Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit
3003 * as 0xfff, VT-x bloating the limit to 0xffff shouldn't cause any different CPU behavior.
3004 * However, several hosts either insists on 0xfff being the limit (Windows Patch Guard) or
3005 * uses the limit for other purposes (darwin puts the CPU ID in there but botches sidt
3006 * alignment in at least one consumer). So, we're only allowing the IDTR.LIMIT to be left
3007 * at 0xffff on hosts where we are sure it won't cause trouble.
3008 */
3009# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
3010 if (Idtr.cbIdt < 0x0fff)
3011# else
3012 if (Idtr.cbIdt != 0xffff)
3013# endif
3014 {
3015 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
3016 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
3017 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
3018 }
3019#endif
3020
3021 /*
3022 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI
3023 * and RPL bits is effectively what the CPU does for "scaling by 8". TI is always 0 and
3024 * RPL should be too in most cases.
3025 */
3026 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
3027 ("TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt), VERR_VMX_INVALID_HOST_STATE);
3028
3029 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
3030#if HC_ARCH_BITS == 64
3031 uintptr_t uTRBase = X86DESC64_BASE(pDesc);
3032
3033 /*
3034 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on
3035 * all VM-exits. The type is the same for 64-bit busy TSS[1]. The limit needs manual
3036 * restoration if the host has something else. Task switching is not supported in 64-bit
3037 * mode[2], but the limit still matters as IOPM is supported in 64-bit mode. Restoring the
3038 * limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
3039 *
3040 * [1] See Intel spec. 3.5 "System Descriptor Types".
3041 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
3042 */
3043 PVM pVM = pVCpu->CTX_SUFF(pVM);
3044 Assert(pDesc->System.u4Type == 11);
3045 if ( pDesc->System.u16LimitLow != 0x67
3046 || pDesc->System.u4LimitHigh)
3047 {
3048 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
3049 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
3050 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
3051 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
3052 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
3053 }
3054
3055 /*
3056 * Store the GDTR as we need it when restoring the GDT and while restoring the TR.
3057 */
3058 if (pVCpu->hm.s.vmx.fRestoreHostFlags & (VMX_RESTORE_HOST_GDTR | VMX_RESTORE_HOST_SEL_TR))
3059 {
3060 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
3061 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3062 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_NEED_WRITABLE)
3063 {
3064 /* The GDT is read-only but the writable GDT is available. */
3065 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_NEED_WRITABLE;
3066 pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.cb = Gdtr.cbGdt;
3067 rc = SUPR0GetCurrentGdtRw(&pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.uAddr);
3068 AssertRCReturn(rc, rc);
3069 }
3070 }
3071#else
3072 uintptr_t uTRBase = X86DESC_BASE(pDesc);
3073#endif
3074 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
3075 AssertRCReturn(rc, rc);
3076
3077 /*
3078 * Host FS base and GS base.
3079 */
3080#if HC_ARCH_BITS == 64
3081 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
3082 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
3083 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
3084 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
3085 AssertRCReturn(rc, rc);
3086
3087 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
3088 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
3089 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
3090 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
3091 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
3092#endif
3093 return VINF_SUCCESS;
3094}
3095
3096
3097/**
3098 * Exports certain host MSRs in the VM-exit MSR-load area and some in the
3099 * host-state area of the VMCS.
3100 *
3101 * Theses MSRs will be automatically restored on the host after every successful
3102 * VM-exit.
3103 *
3104 * @returns VBox status code.
3105 * @param pVCpu The cross context virtual CPU structure.
3106 *
3107 * @remarks No-long-jump zone!!!
3108 */
3109static int hmR0VmxExportHostMsrs(PVMCPU pVCpu)
3110{
3111 AssertPtr(pVCpu);
3112 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
3113
3114 /*
3115 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
3116 * rather than swapping them on every VM-entry.
3117 */
3118 hmR0VmxLazySaveHostMsrs(pVCpu);
3119
3120 /*
3121 * Host Sysenter MSRs.
3122 */
3123 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
3124#if HC_ARCH_BITS == 32
3125 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3126 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3127#else
3128 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3129 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3130#endif
3131 AssertRCReturn(rc, rc);
3132
3133 /*
3134 * Host EFER MSR.
3135 *
3136 * If the CPU supports the newer VMCS controls for managing EFER, use it. Otherwise it's
3137 * done as part of auto-load/store MSR area in the VMCS, see hmR0VmxExportGuestMsrs().
3138 */
3139 PVM pVM = pVCpu->CTX_SUFF(pVM);
3140 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
3141 {
3142 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostEfer);
3143 AssertRCReturn(rc, rc);
3144 }
3145
3146 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see hmR0VmxExportGuestExitCtls(). */
3147
3148 return VINF_SUCCESS;
3149}
3150
3151
3152/**
3153 * Figures out if we need to swap the EFER MSR which is particularly expensive.
3154 *
3155 * We check all relevant bits. For now, that's everything besides LMA/LME, as
3156 * these two bits are handled by VM-entry, see hmR0VmxExportGuestExitCtls() and
3157 * hmR0VMxExportGuestEntryCtls().
3158 *
3159 * @returns true if we need to load guest EFER, false otherwise.
3160 * @param pVCpu The cross context virtual CPU structure.
3161 *
3162 * @remarks Requires EFER, CR4.
3163 * @remarks No-long-jump zone!!!
3164 */
3165static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu)
3166{
3167#ifdef HMVMX_ALWAYS_SWAP_EFER
3168 RT_NOREF(pVCpu);
3169 return true;
3170#else
3171
3172 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3173#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
3174 /* For 32-bit hosts running 64-bit guests, we always swap EFER in the world-switcher. Nothing to do here. */
3175 if (CPUMIsGuestInLongModeEx(pCtx))
3176 return false;
3177#endif
3178
3179 PVM pVM = pVCpu->CTX_SUFF(pVM);
3180 uint64_t const u64HostEfer = pVM->hm.s.vmx.u64HostEfer;
3181 uint64_t const u64GuestEfer = pCtx->msrEFER;
3182
3183 /*
3184 * For 64-bit guests, if EFER.SCE bit differs, we need to swap EFER to ensure that the
3185 * guest's SYSCALL behaviour isn't broken, see @bugref{7386}.
3186 */
3187 if ( CPUMIsGuestInLongModeEx(pCtx)
3188 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
3189 {
3190 return true;
3191 }
3192
3193 /*
3194 * If the guest uses PAE and EFER.NXE bit differs, we need to swap EFER as it
3195 * affects guest paging. 64-bit paging implies CR4.PAE as well.
3196 * See Intel spec. 4.5 "IA-32e Paging" and Intel spec. 4.1.1 "Three Paging Modes".
3197 */
3198 if ( (pCtx->cr4 & X86_CR4_PAE)
3199 && (pCtx->cr0 & X86_CR0_PG)
3200 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
3201 {
3202 /* Assert that host is NX capable. */
3203 Assert(pVCpu->CTX_SUFF(pVM)->cpum.ro.HostFeatures.fNoExecute);
3204 return true;
3205 }
3206
3207 return false;
3208#endif
3209}
3210
3211
3212/**
3213 * Exports the guest state with appropriate VM-entry controls in the VMCS.
3214 *
3215 * These controls can affect things done on VM-exit; e.g. "load debug controls",
3216 * see Intel spec. 24.8.1 "VM-entry controls".
3217 *
3218 * @returns VBox status code.
3219 * @param pVCpu The cross context virtual CPU structure.
3220 *
3221 * @remarks Requires EFER.
3222 * @remarks No-long-jump zone!!!
3223 */
3224static int hmR0VmxExportGuestEntryCtls(PVMCPU pVCpu)
3225{
3226 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_CTLS)
3227 {
3228 PVM pVM = pVCpu->CTX_SUFF(pVM);
3229 uint32_t fVal = pVM->hm.s.vmx.Msrs.EntryCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
3230 uint32_t const fZap = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3231
3232 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
3233 fVal |= VMX_ENTRY_CTLS_LOAD_DEBUG;
3234
3235 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
3236 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
3237 {
3238 fVal |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
3239 Log4Func(("VMX_ENTRY_CTLS_IA32E_MODE_GUEST\n"));
3240 }
3241 else
3242 Assert(!(fVal & VMX_ENTRY_CTLS_IA32E_MODE_GUEST));
3243
3244 /* If the CPU supports the newer VMCS controls for managing guest/host EFER, use it. */
3245 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3246 && hmR0VmxShouldSwapEferMsr(pVCpu))
3247 {
3248 fVal |= VMX_ENTRY_CTLS_LOAD_EFER_MSR;
3249 Log4Func(("VMX_ENTRY_CTLS_LOAD_EFER_MSR\n"));
3250 }
3251
3252 /*
3253 * The following should -not- be set (since we're not in SMM mode):
3254 * - VMX_ENTRY_CTLS_ENTRY_TO_SMM
3255 * - VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON
3256 */
3257
3258 /** @todo VMX_ENTRY_CTLS_LOAD_PERF_MSR,
3259 * VMX_ENTRY_CTLS_LOAD_PAT_MSR. */
3260
3261 if ((fVal & fZap) != fVal)
3262 {
3263 Log4Func(("Invalid VM-entry controls combo! Cpu=%RX64 fVal=%RX64 fZap=%RX64\n",
3264 pVM->hm.s.vmx.Msrs.EntryCtls.n.disallowed0, fVal, fZap));
3265 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
3266 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3267 }
3268
3269 /* Commit it to the VMCS and update our cache. */
3270 if (pVCpu->hm.s.vmx.u32EntryCtls != fVal)
3271 {
3272 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, fVal);
3273 AssertRCReturn(rc, rc);
3274 pVCpu->hm.s.vmx.u32EntryCtls = fVal;
3275 }
3276
3277 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_ENTRY_CTLS);
3278 }
3279 return VINF_SUCCESS;
3280}
3281
3282
3283/**
3284 * Exports the guest state with appropriate VM-exit controls in the VMCS.
3285 *
3286 * @returns VBox status code.
3287 * @param pVCpu The cross context virtual CPU structure.
3288 *
3289 * @remarks Requires EFER.
3290 */
3291static int hmR0VmxExportGuestExitCtls(PVMCPU pVCpu)
3292{
3293 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_EXIT_CTLS)
3294 {
3295 PVM pVM = pVCpu->CTX_SUFF(pVM);
3296 uint32_t fVal = pVM->hm.s.vmx.Msrs.ExitCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
3297 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3298
3299 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
3300 fVal |= VMX_EXIT_CTLS_SAVE_DEBUG;
3301
3302 /*
3303 * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
3304 * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in
3305 * hmR0VmxExportHostMsrs().
3306 */
3307#if HC_ARCH_BITS == 64
3308 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
3309 Log4Func(("VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE\n"));
3310#else
3311 Assert( pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64
3312 || pVCpu->hm.s.vmx.pfnStartVM == VMXR0StartVM32);
3313 /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
3314 if (pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64)
3315 {
3316 /* The switcher returns to long mode, EFER is managed by the switcher. */
3317 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
3318 Log4Func(("VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE\n"));
3319 }
3320 else
3321 Assert(!(fVal & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE));
3322#endif
3323
3324 /* If the newer VMCS fields for managing EFER exists, use it. */
3325 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3326 && hmR0VmxShouldSwapEferMsr(pVCpu))
3327 {
3328 fVal |= VMX_EXIT_CTLS_SAVE_EFER_MSR
3329 | VMX_EXIT_CTLS_LOAD_EFER_MSR;
3330 Log4Func(("VMX_EXIT_CTLS_SAVE_EFER_MSR and VMX_EXIT_CTLS_LOAD_EFER_MSR\n"));
3331 }
3332
3333 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
3334 Assert(!(fVal & VMX_EXIT_CTLS_ACK_EXT_INT));
3335
3336 /** @todo VMX_EXIT_CTLS_LOAD_PERF_MSR,
3337 * VMX_EXIT_CTLS_SAVE_PAT_MSR,
3338 * VMX_EXIT_CTLS_LOAD_PAT_MSR. */
3339
3340 /* Enable saving of the VMX preemption timer value on VM-exit. */
3341 if ( pVM->hm.s.vmx.fUsePreemptTimer
3342 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
3343 fVal |= VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER;
3344
3345 if ((fVal & fZap) != fVal)
3346 {
3347 LogRelFunc(("Invalid VM-exit controls combo! cpu=%RX64 fVal=%RX64 fZap=%RX64\n",
3348 pVM->hm.s.vmx.Msrs.ExitCtls.n.disallowed0, fVal, fZap));
3349 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
3350 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3351 }
3352
3353 /* Commit it to the VMCS and update our cache. */
3354 if (pVCpu->hm.s.vmx.u32ExitCtls != fVal)
3355 {
3356 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, fVal);
3357 AssertRCReturn(rc, rc);
3358 pVCpu->hm.s.vmx.u32ExitCtls = fVal;
3359 }
3360
3361 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_EXIT_CTLS);
3362 }
3363 return VINF_SUCCESS;
3364}
3365
3366
3367/**
3368 * Sets the TPR threshold in the VMCS.
3369 *
3370 * @returns VBox status code.
3371 * @param pVCpu The cross context virtual CPU structure.
3372 * @param u32TprThreshold The TPR threshold (task-priority class only).
3373 */
3374DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, uint32_t u32TprThreshold)
3375{
3376 Assert(!(u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)); /* Bits 31:4 MBZ. */
3377 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW); RT_NOREF_PV(pVCpu);
3378 return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
3379}
3380
3381
3382/**
3383 * Exports the guest APIC TPR state into the VMCS.
3384 *
3385 * @returns VBox status code.
3386 * @param pVCpu The cross context virtual CPU structure.
3387 *
3388 * @remarks No-long-jump zone!!!
3389 */
3390static int hmR0VmxExportGuestApicTpr(PVMCPU pVCpu)
3391{
3392 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
3393 {
3394 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
3395
3396 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
3397 && APICIsEnabled(pVCpu))
3398 {
3399 /*
3400 * Setup TPR shadowing.
3401 */
3402 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
3403 {
3404 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
3405
3406 bool fPendingIntr = false;
3407 uint8_t u8Tpr = 0;
3408 uint8_t u8PendingIntr = 0;
3409 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
3410 AssertRCReturn(rc, rc);
3411
3412 /*
3413 * If there are interrupts pending but masked by the TPR, instruct VT-x to
3414 * cause a TPR-below-threshold VM-exit when the guest lowers its TPR below the
3415 * priority of the pending interrupt so we can deliver the interrupt. If there
3416 * are no interrupts pending, set threshold to 0 to not cause any
3417 * TPR-below-threshold VM-exits.
3418 */
3419 pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR] = u8Tpr;
3420 uint32_t u32TprThreshold = 0;
3421 if (fPendingIntr)
3422 {
3423 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
3424 const uint8_t u8PendingPriority = u8PendingIntr >> 4;
3425 const uint8_t u8TprPriority = u8Tpr >> 4;
3426 if (u8PendingPriority <= u8TprPriority)
3427 u32TprThreshold = u8PendingPriority;
3428 }
3429
3430 rc = hmR0VmxApicSetTprThreshold(pVCpu, u32TprThreshold);
3431 AssertRCReturn(rc, rc);
3432 }
3433 }
3434 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
3435 }
3436 return VINF_SUCCESS;
3437}
3438
3439
3440/**
3441 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
3442 *
3443 * @returns Guest's interruptibility-state.
3444 * @param pVCpu The cross context virtual CPU structure.
3445 *
3446 * @remarks No-long-jump zone!!!
3447 */
3448static uint32_t hmR0VmxGetGuestIntrState(PVMCPU pVCpu)
3449{
3450 /*
3451 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
3452 */
3453 uint32_t fIntrState = 0;
3454 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3455 {
3456 /* If inhibition is active, RIP & RFLAGS should've been accessed
3457 (i.e. read previously from the VMCS or from ring-3). */
3458 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3459#ifdef VBOX_STRICT
3460 uint64_t const fExtrn = ASMAtomicUoReadU64(&pCtx->fExtrn);
3461 AssertMsg(!(fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)), ("%#x\n", fExtrn));
3462#endif
3463 if (pCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
3464 {
3465 if (pCtx->eflags.Bits.u1IF)
3466 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
3467 else
3468 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
3469 }
3470 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3471 {
3472 /*
3473 * We can clear the inhibit force flag as even if we go back to the recompiler
3474 * without executing guest code in VT-x, the flag's condition to be cleared is
3475 * met and thus the cleared state is correct.
3476 */
3477 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3478 }
3479 }
3480
3481 /*
3482 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
3483 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
3484 * setting this would block host-NMIs and IRET will not clear the blocking.
3485 *
3486 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
3487 */
3488 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
3489 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
3490 {
3491 fIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
3492 }
3493
3494 return fIntrState;
3495}
3496
3497
3498/**
3499 * Exports the guest's interruptibility-state into the guest-state area in the
3500 * VMCS.
3501 *
3502 * @returns VBox status code.
3503 * @param pVCpu The cross context virtual CPU structure.
3504 * @param fIntrState The interruptibility-state to set.
3505 */
3506static int hmR0VmxExportGuestIntrState(PVMCPU pVCpu, uint32_t fIntrState)
3507{
3508 NOREF(pVCpu);
3509 AssertMsg(!(fIntrState & 0xfffffff0), ("%#x\n", fIntrState)); /* Bits 31:4 MBZ. */
3510 Assert((fIntrState & 0x3) != 0x3); /* Block-by-STI and MOV SS cannot be simultaneously set. */
3511 return VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
3512}
3513
3514
3515/**
3516 * Exports the exception intercepts required for guest execution in the VMCS.
3517 *
3518 * @returns VBox status code.
3519 * @param pVCpu The cross context virtual CPU structure.
3520 *
3521 * @remarks No-long-jump zone!!!
3522 */
3523static int hmR0VmxExportGuestXcptIntercepts(PVMCPU pVCpu)
3524{
3525 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS)
3526 {
3527 uint32_t uXcptBitmap = pVCpu->hm.s.vmx.u32XcptBitmap;
3528
3529 /* The remaining exception intercepts are handled elsewhere, e.g. in hmR0VmxExportSharedCR0(). */
3530 if (pVCpu->hm.s.fGIMTrapXcptUD)
3531 uXcptBitmap |= RT_BIT(X86_XCPT_UD);
3532#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3533 else
3534 uXcptBitmap &= ~RT_BIT(X86_XCPT_UD);
3535#endif
3536
3537 Assert(uXcptBitmap & RT_BIT_32(X86_XCPT_AC));
3538 Assert(uXcptBitmap & RT_BIT_32(X86_XCPT_DB));
3539
3540 if (uXcptBitmap != pVCpu->hm.s.vmx.u32XcptBitmap)
3541 {
3542 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
3543 AssertRCReturn(rc, rc);
3544 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
3545 }
3546
3547 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS);
3548 Log4Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP=%#RX64\n", uXcptBitmap));
3549 }
3550 return VINF_SUCCESS;
3551}
3552
3553
3554/**
3555 * Exports the guest's RIP into the guest-state area in the VMCS.
3556 *
3557 * @returns VBox status code.
3558 * @param pVCpu The cross context virtual CPU structure.
3559 *
3560 * @remarks No-long-jump zone!!!
3561 */
3562static int hmR0VmxExportGuestRip(PVMCPU pVCpu)
3563{
3564 int rc = VINF_SUCCESS;
3565 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RIP)
3566 {
3567 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP);
3568
3569 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pVCpu->cpum.GstCtx.rip);
3570 AssertRCReturn(rc, rc);
3571
3572 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RIP);
3573 Log4Func(("RIP=%#RX64\n", pVCpu->cpum.GstCtx.rip));
3574 }
3575 return rc;
3576}
3577
3578
3579/**
3580 * Exports the guest's RSP into the guest-state area in the VMCS.
3581 *
3582 * @returns VBox status code.
3583 * @param pVCpu The cross context virtual CPU structure.
3584 *
3585 * @remarks No-long-jump zone!!!
3586 */
3587static int hmR0VmxExportGuestRsp(PVMCPU pVCpu)
3588{
3589 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RSP)
3590 {
3591 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP);
3592
3593 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pVCpu->cpum.GstCtx.rsp);
3594 AssertRCReturn(rc, rc);
3595
3596 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RSP);
3597 }
3598 return VINF_SUCCESS;
3599}
3600
3601
3602/**
3603 * Exports the guest's RFLAGS into the guest-state area in the VMCS.
3604 *
3605 * @returns VBox status code.
3606 * @param pVCpu The cross context virtual CPU structure.
3607 *
3608 * @remarks No-long-jump zone!!!
3609 */
3610static int hmR0VmxExportGuestRflags(PVMCPU pVCpu)
3611{
3612 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RFLAGS)
3613 {
3614 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
3615
3616 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
3617 Let us assert it as such and use 32-bit VMWRITE. */
3618 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.rflags.u64));
3619 X86EFLAGS fEFlags = pVCpu->cpum.GstCtx.eflags;
3620 Assert(fEFlags.u32 & X86_EFL_RA1_MASK);
3621 Assert(!(fEFlags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
3622
3623 /*
3624 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so
3625 * we can restore them on VM-exit. Modify the real-mode guest's eflags so that VT-x
3626 * can run the real-mode guest code under Virtual 8086 mode.
3627 */
3628 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3629 {
3630 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3631 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3632 pVCpu->hm.s.vmx.RealMode.Eflags.u32 = fEFlags.u32; /* Save the original eflags of the real-mode guest. */
3633 fEFlags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
3634 fEFlags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
3635 }
3636
3637 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, fEFlags.u32);
3638 AssertRCReturn(rc, rc);
3639
3640 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RFLAGS);
3641 Log4Func(("EFlags=%#RX32\n", fEFlags.u32));
3642 }
3643 return VINF_SUCCESS;
3644}
3645
3646
3647/**
3648 * Exports the guest CR0 control register into the guest-state area in the VMCS.
3649 *
3650 * The guest FPU state is always pre-loaded hence we don't need to bother about
3651 * sharing FPU related CR0 bits between the guest and host.
3652 *
3653 * @returns VBox status code.
3654 * @param pVCpu The cross context virtual CPU structure.
3655 *
3656 * @remarks No-long-jump zone!!!
3657 */
3658static int hmR0VmxExportGuestCR0(PVMCPU pVCpu)
3659{
3660 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR0)
3661 {
3662 PVM pVM = pVCpu->CTX_SUFF(pVM);
3663 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
3664 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.cr0));
3665
3666 uint32_t const u32ShadowCr0 = pVCpu->cpum.GstCtx.cr0;
3667 uint32_t u32GuestCr0 = pVCpu->cpum.GstCtx.cr0;
3668
3669 /*
3670 * Setup VT-x's view of the guest CR0.
3671 * Minimize VM-exits due to CR3 changes when we have NestedPaging.
3672 */
3673 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
3674 if (pVM->hm.s.fNestedPaging)
3675 {
3676 if (CPUMIsGuestPagingEnabled(pVCpu))
3677 {
3678 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
3679 uProcCtls &= ~( VMX_PROC_CTLS_CR3_LOAD_EXIT
3680 | VMX_PROC_CTLS_CR3_STORE_EXIT);
3681 }
3682 else
3683 {
3684 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
3685 uProcCtls |= VMX_PROC_CTLS_CR3_LOAD_EXIT
3686 | VMX_PROC_CTLS_CR3_STORE_EXIT;
3687 }
3688
3689 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
3690 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3691 uProcCtls &= ~VMX_PROC_CTLS_CR3_STORE_EXIT;
3692 }
3693 else
3694 {
3695 /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
3696 u32GuestCr0 |= X86_CR0_WP;
3697 }
3698
3699 /*
3700 * Guest FPU bits.
3701 *
3702 * Since we pre-load the guest FPU always before VM-entry there is no need to track lazy state
3703 * using CR0.TS.
3704 *
3705 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be
3706 * set on the first CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
3707 */
3708 u32GuestCr0 |= X86_CR0_NE;
3709
3710 /* If CR0.NE isn't set, we need to intercept #MF exceptions and report them to the guest differently. */
3711 bool const fInterceptMF = !(u32ShadowCr0 & X86_CR0_NE);
3712
3713 /*
3714 * Update exception intercepts.
3715 */
3716 uint32_t uXcptBitmap = pVCpu->hm.s.vmx.u32XcptBitmap;
3717 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3718 {
3719 Assert(PDMVmmDevHeapIsEnabled(pVM));
3720 Assert(pVM->hm.s.vmx.pRealModeTSS);
3721 uXcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
3722 }
3723 else
3724 {
3725 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
3726 uXcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
3727 if (fInterceptMF)
3728 uXcptBitmap |= RT_BIT(X86_XCPT_MF);
3729 }
3730
3731 /* Additional intercepts for debugging, define these yourself explicitly. */
3732#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3733 uXcptBitmap |= 0
3734 | RT_BIT(X86_XCPT_BP)
3735 | RT_BIT(X86_XCPT_DE)
3736 | RT_BIT(X86_XCPT_NM)
3737 | RT_BIT(X86_XCPT_TS)
3738 | RT_BIT(X86_XCPT_UD)
3739 | RT_BIT(X86_XCPT_NP)
3740 | RT_BIT(X86_XCPT_SS)
3741 | RT_BIT(X86_XCPT_GP)
3742 | RT_BIT(X86_XCPT_PF)
3743 | RT_BIT(X86_XCPT_MF)
3744 ;
3745#elif defined(HMVMX_ALWAYS_TRAP_PF)
3746 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
3747#endif
3748 Assert(pVM->hm.s.fNestedPaging || (uXcptBitmap & RT_BIT(X86_XCPT_PF)));
3749
3750 /*
3751 * Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW).
3752 */
3753 uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3754 uint32_t fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3755 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
3756 fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
3757 else
3758 Assert((fSetCr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
3759
3760 u32GuestCr0 |= fSetCr0;
3761 u32GuestCr0 &= fZapCr0;
3762 u32GuestCr0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
3763
3764 /*
3765 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
3766 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
3767 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
3768 */
3769 uint32_t u32Cr0Mask = X86_CR0_PE
3770 | X86_CR0_NE
3771 | (pVM->hm.s.fNestedPaging ? 0 : X86_CR0_WP)
3772 | X86_CR0_PG
3773 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
3774 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
3775 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
3776
3777 /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
3778 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
3779 * and @bugref{6944}. */
3780#if 0
3781 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3782 u32Cr0Mask &= ~X86_CR0_PE;
3783#endif
3784 /*
3785 * Finally, update VMCS fields with the CR0 values and the exception bitmap.
3786 */
3787 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCr0);
3788 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32ShadowCr0);
3789 if (u32Cr0Mask != pVCpu->hm.s.vmx.u32Cr0Mask)
3790 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32Cr0Mask);
3791 if (uProcCtls != pVCpu->hm.s.vmx.u32ProcCtls)
3792 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
3793 if (uXcptBitmap != pVCpu->hm.s.vmx.u32XcptBitmap)
3794 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
3795 AssertRCReturn(rc, rc);
3796
3797 /* Update our caches. */
3798 pVCpu->hm.s.vmx.u32Cr0Mask = u32Cr0Mask;
3799 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
3800 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
3801
3802 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR0);
3803
3804 Log4Func(("u32Cr0Mask=%#RX32 u32ShadowCr0=%#RX32 u32GuestCr0=%#RX32 (fSetCr0=%#RX32 fZapCr0=%#RX32\n", u32Cr0Mask,
3805 u32ShadowCr0, u32GuestCr0, fSetCr0, fZapCr0));
3806 }
3807
3808 return VINF_SUCCESS;
3809}
3810
3811
3812/**
3813 * Exports the guest control registers (CR3, CR4) into the guest-state area
3814 * in the VMCS.
3815 *
3816 * @returns VBox strict status code.
3817 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
3818 * without unrestricted guest access and the VMMDev is not presently
3819 * mapped (e.g. EFI32).
3820 *
3821 * @param pVCpu The cross context virtual CPU structure.
3822 *
3823 * @remarks No-long-jump zone!!!
3824 */
3825static VBOXSTRICTRC hmR0VmxExportGuestCR3AndCR4(PVMCPU pVCpu)
3826{
3827 int rc = VINF_SUCCESS;
3828 PVM pVM = pVCpu->CTX_SUFF(pVM);
3829
3830 /*
3831 * Guest CR2.
3832 * It's always loaded in the assembler code. Nothing to do here.
3833 */
3834
3835 /*
3836 * Guest CR3.
3837 */
3838 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR3)
3839 {
3840 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
3841
3842 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
3843 if (pVM->hm.s.fNestedPaging)
3844 {
3845 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
3846
3847 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
3848 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
3849 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
3850 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
3851
3852 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
3853 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
3854 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
3855
3856 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
3857 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
3858 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
3859 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3860 AssertMsg( !((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
3861 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
3862 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3863
3864 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
3865 AssertRCReturn(rc, rc);
3866
3867 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3868 if ( pVM->hm.s.vmx.fUnrestrictedGuest
3869 || CPUMIsGuestPagingEnabledEx(pCtx))
3870 {
3871 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
3872 if (CPUMIsGuestInPAEModeEx(pCtx))
3873 {
3874 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
3875 AssertRCReturn(rc, rc);
3876 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
3877 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
3878 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
3879 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
3880 AssertRCReturn(rc, rc);
3881 }
3882
3883 /*
3884 * The guest's view of its CR3 is unblemished with Nested Paging when the
3885 * guest is using paging or we have unrestricted guest execution to handle
3886 * the guest when it's not using paging.
3887 */
3888 GCPhysGuestCR3 = pCtx->cr3;
3889 }
3890 else
3891 {
3892 /*
3893 * The guest is not using paging, but the CPU (VT-x) has to. While the guest
3894 * thinks it accesses physical memory directly, we use our identity-mapped
3895 * page table to map guest-linear to guest-physical addresses. EPT takes care
3896 * of translating it to host-physical addresses.
3897 */
3898 RTGCPHYS GCPhys;
3899 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
3900
3901 /* We obtain it here every time as the guest could have relocated this PCI region. */
3902 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
3903 if (RT_SUCCESS(rc))
3904 { /* likely */ }
3905 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
3906 {
3907 Log4Func(("VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n"));
3908 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
3909 }
3910 else
3911 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
3912
3913 GCPhysGuestCR3 = GCPhys;
3914 }
3915
3916 Log4Func(("u32GuestCr3=%#RGp (GstN)\n", GCPhysGuestCR3));
3917 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
3918 AssertRCReturn(rc, rc);
3919 }
3920 else
3921 {
3922 /* Non-nested paging case, just use the hypervisor's CR3. */
3923 RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
3924
3925 Log4Func(("u32GuestCr3=%#RHv (HstN)\n", HCPhysGuestCR3));
3926 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
3927 AssertRCReturn(rc, rc);
3928 }
3929
3930 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR3);
3931 }
3932
3933 /*
3934 * Guest CR4.
3935 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
3936 */
3937 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR4)
3938 {
3939 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3940 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
3941 Assert(!RT_HI_U32(pCtx->cr4));
3942
3943 uint32_t u32GuestCr4 = pCtx->cr4;
3944 uint32_t const u32ShadowCr4 = pCtx->cr4;
3945
3946 /*
3947 * Setup VT-x's view of the guest CR4.
3948 *
3949 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software
3950 * interrupts to the 8086 program interrupt handler. Clear the VME bit (the interrupt
3951 * redirection bitmap is already all 0, see hmR3InitFinalizeR0())
3952 *
3953 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
3954 */
3955 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3956 {
3957 Assert(pVM->hm.s.vmx.pRealModeTSS);
3958 Assert(PDMVmmDevHeapIsEnabled(pVM));
3959 u32GuestCr4 &= ~X86_CR4_VME;
3960 }
3961
3962 if (pVM->hm.s.fNestedPaging)
3963 {
3964 if ( !CPUMIsGuestPagingEnabledEx(pCtx)
3965 && !pVM->hm.s.vmx.fUnrestrictedGuest)
3966 {
3967 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
3968 u32GuestCr4 |= X86_CR4_PSE;
3969 /* Our identity mapping is a 32-bit page directory. */
3970 u32GuestCr4 &= ~X86_CR4_PAE;
3971 }
3972 /* else use guest CR4.*/
3973 }
3974 else
3975 {
3976 /*
3977 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
3978 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
3979 */
3980 switch (pVCpu->hm.s.enmShadowMode)
3981 {
3982 case PGMMODE_REAL: /* Real-mode. */
3983 case PGMMODE_PROTECTED: /* Protected mode without paging. */
3984 case PGMMODE_32_BIT: /* 32-bit paging. */
3985 {
3986 u32GuestCr4 &= ~X86_CR4_PAE;
3987 break;
3988 }
3989
3990 case PGMMODE_PAE: /* PAE paging. */
3991 case PGMMODE_PAE_NX: /* PAE paging with NX. */
3992 {
3993 u32GuestCr4 |= X86_CR4_PAE;
3994 break;
3995 }
3996
3997 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
3998 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
3999#ifdef VBOX_ENABLE_64_BITS_GUESTS
4000 break;
4001#endif
4002 default:
4003 AssertFailed();
4004 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4005 }
4006 }
4007
4008 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
4009 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4010 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4011 u32GuestCr4 |= fSetCr4;
4012 u32GuestCr4 &= fZapCr4;
4013
4014 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them,
4015 that would cause a VM-exit. */
4016 uint32_t u32Cr4Mask = X86_CR4_VME
4017 | X86_CR4_PAE
4018 | X86_CR4_PGE
4019 | X86_CR4_PSE
4020 | X86_CR4_VMXE;
4021 if (pVM->cpum.ro.HostFeatures.fXSaveRstor)
4022 u32Cr4Mask |= X86_CR4_OSXSAVE;
4023 if (pVM->cpum.ro.GuestFeatures.fPcid)
4024 u32Cr4Mask |= X86_CR4_PCIDE;
4025
4026 /* Write VT-x's view of the guest CR4, the CR4 modify mask and the read-only CR4 shadow
4027 into the VMCS and update our cache. */
4028 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCr4);
4029 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32ShadowCr4);
4030 if (pVCpu->hm.s.vmx.u32Cr4Mask != u32Cr4Mask)
4031 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32Cr4Mask);
4032 AssertRCReturn(rc, rc);
4033 pVCpu->hm.s.vmx.u32Cr4Mask = u32Cr4Mask;
4034
4035 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
4036 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
4037
4038 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR4);
4039
4040 Log4Func(("u32GuestCr4=%#RX32 u32ShadowCr4=%#RX32 (fSetCr4=%#RX32 fZapCr4=%#RX32)\n", u32GuestCr4, u32ShadowCr4, fSetCr4,
4041 fZapCr4));
4042 }
4043 return rc;
4044}
4045
4046
4047/**
4048 * Exports the guest debug registers into the guest-state area in the VMCS.
4049 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
4050 *
4051 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
4052 *
4053 * @returns VBox status code.
4054 * @param pVCpu The cross context virtual CPU structure.
4055 *
4056 * @remarks No-long-jump zone!!!
4057 */
4058static int hmR0VmxExportSharedDebugState(PVMCPU pVCpu)
4059{
4060 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4061
4062#ifdef VBOX_STRICT
4063 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
4064 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
4065 {
4066 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
4067 Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
4068 Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
4069 }
4070#endif
4071
4072 bool fSteppingDB = false;
4073 bool fInterceptMovDRx = false;
4074 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
4075 if (pVCpu->hm.s.fSingleInstruction)
4076 {
4077 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
4078 PVM pVM = pVCpu->CTX_SUFF(pVM);
4079 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
4080 {
4081 uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
4082 Assert(fSteppingDB == false);
4083 }
4084 else
4085 {
4086 pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_TF;
4087 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
4088 pVCpu->hm.s.fClearTrapFlag = true;
4089 fSteppingDB = true;
4090 }
4091 }
4092
4093 uint32_t u32GuestDr7;
4094 if ( fSteppingDB
4095 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
4096 {
4097 /*
4098 * Use the combined guest and host DRx values found in the hypervisor register set
4099 * because the debugger has breakpoints active or someone is single stepping on the
4100 * host side without a monitor trap flag.
4101 *
4102 * Note! DBGF expects a clean DR6 state before executing guest code.
4103 */
4104#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4105 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
4106 && !CPUMIsHyperDebugStateActivePending(pVCpu))
4107 {
4108 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4109 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
4110 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
4111 }
4112 else
4113#endif
4114 if (!CPUMIsHyperDebugStateActive(pVCpu))
4115 {
4116 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4117 Assert(CPUMIsHyperDebugStateActive(pVCpu));
4118 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
4119 }
4120
4121 /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
4122 u32GuestDr7 = (uint32_t)CPUMGetHyperDR7(pVCpu);
4123 pVCpu->hm.s.fUsingHyperDR7 = true;
4124 fInterceptMovDRx = true;
4125 }
4126 else
4127 {
4128 /*
4129 * If the guest has enabled debug registers, we need to load them prior to
4130 * executing guest code so they'll trigger at the right time.
4131 */
4132 if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
4133 {
4134#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4135 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
4136 && !CPUMIsGuestDebugStateActivePending(pVCpu))
4137 {
4138 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4139 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
4140 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
4141 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4142 }
4143 else
4144#endif
4145 if (!CPUMIsGuestDebugStateActive(pVCpu))
4146 {
4147 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4148 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4149 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
4150 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4151 }
4152 Assert(!fInterceptMovDRx);
4153 }
4154 /*
4155 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
4156 * must intercept #DB in order to maintain a correct DR6 guest value, and
4157 * because we need to intercept it to prevent nested #DBs from hanging the
4158 * CPU, we end up always having to intercept it. See hmR0VmxInitXcptBitmap.
4159 */
4160#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4161 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
4162 && !CPUMIsGuestDebugStateActive(pVCpu))
4163#else
4164 else if (!CPUMIsGuestDebugStateActive(pVCpu))
4165#endif
4166 {
4167 fInterceptMovDRx = true;
4168 }
4169
4170 /* Update DR7 with the actual guest value. */
4171 u32GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
4172 pVCpu->hm.s.fUsingHyperDR7 = false;
4173 }
4174
4175 if (fInterceptMovDRx)
4176 uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
4177 else
4178 uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
4179
4180 /*
4181 * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
4182 * monitor-trap flag and update our cache.
4183 */
4184 if (uProcCtls != pVCpu->hm.s.vmx.u32ProcCtls)
4185 {
4186 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
4187 AssertRCReturn(rc2, rc2);
4188 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
4189 }
4190
4191 /*
4192 * Update guest DR7.
4193 */
4194 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, u32GuestDr7);
4195 AssertRCReturn(rc, rc);
4196
4197 return VINF_SUCCESS;
4198}
4199
4200
4201#ifdef VBOX_STRICT
4202/**
4203 * Strict function to validate segment registers.
4204 *
4205 * @param pVCpu The cross context virtual CPU structure.
4206 *
4207 * @remarks Will import guest CR0 on strict builds during validation of
4208 * segments.
4209 */
4210static void hmR0VmxValidateSegmentRegs(PVMCPU pVCpu)
4211{
4212 /*
4213 * Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
4214 *
4215 * The reason we check for attribute value 0 in this function and not just the unusable bit is
4216 * because hmR0VmxExportGuestSegmentReg() only updates the VMCS' copy of the value with the unusable bit
4217 * and doesn't change the guest-context value.
4218 */
4219 PVM pVM = pVCpu->CTX_SUFF(pVM);
4220 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4221 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0);
4222 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
4223 && ( !CPUMIsGuestInRealModeEx(pCtx)
4224 && !CPUMIsGuestInV86ModeEx(pCtx)))
4225 {
4226 /* Protected mode checks */
4227 /* CS */
4228 Assert(pCtx->cs.Attr.n.u1Present);
4229 Assert(!(pCtx->cs.Attr.u & 0xf00));
4230 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
4231 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
4232 || !(pCtx->cs.Attr.n.u1Granularity));
4233 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
4234 || (pCtx->cs.Attr.n.u1Granularity));
4235 /* CS cannot be loaded with NULL in protected mode. */
4236 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
4237 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
4238 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
4239 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
4240 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
4241 else
4242 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
4243 /* SS */
4244 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4245 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
4246 if ( !(pCtx->cr0 & X86_CR0_PE)
4247 || pCtx->cs.Attr.n.u4Type == 3)
4248 {
4249 Assert(!pCtx->ss.Attr.n.u2Dpl);
4250 }
4251 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
4252 {
4253 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4254 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
4255 Assert(pCtx->ss.Attr.n.u1Present);
4256 Assert(!(pCtx->ss.Attr.u & 0xf00));
4257 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
4258 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
4259 || !(pCtx->ss.Attr.n.u1Granularity));
4260 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
4261 || (pCtx->ss.Attr.n.u1Granularity));
4262 }
4263 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegmentReg(). */
4264 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
4265 {
4266 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4267 Assert(pCtx->ds.Attr.n.u1Present);
4268 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
4269 Assert(!(pCtx->ds.Attr.u & 0xf00));
4270 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
4271 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
4272 || !(pCtx->ds.Attr.n.u1Granularity));
4273 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
4274 || (pCtx->ds.Attr.n.u1Granularity));
4275 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4276 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
4277 }
4278 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
4279 {
4280 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4281 Assert(pCtx->es.Attr.n.u1Present);
4282 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
4283 Assert(!(pCtx->es.Attr.u & 0xf00));
4284 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
4285 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
4286 || !(pCtx->es.Attr.n.u1Granularity));
4287 Assert( !(pCtx->es.u32Limit & 0xfff00000)
4288 || (pCtx->es.Attr.n.u1Granularity));
4289 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4290 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
4291 }
4292 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
4293 {
4294 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4295 Assert(pCtx->fs.Attr.n.u1Present);
4296 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
4297 Assert(!(pCtx->fs.Attr.u & 0xf00));
4298 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
4299 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
4300 || !(pCtx->fs.Attr.n.u1Granularity));
4301 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
4302 || (pCtx->fs.Attr.n.u1Granularity));
4303 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4304 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4305 }
4306 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
4307 {
4308 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4309 Assert(pCtx->gs.Attr.n.u1Present);
4310 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
4311 Assert(!(pCtx->gs.Attr.u & 0xf00));
4312 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
4313 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
4314 || !(pCtx->gs.Attr.n.u1Granularity));
4315 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
4316 || (pCtx->gs.Attr.n.u1Granularity));
4317 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4318 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4319 }
4320 /* 64-bit capable CPUs. */
4321# if HC_ARCH_BITS == 64
4322 Assert(!RT_HI_U32(pCtx->cs.u64Base));
4323 Assert(!pCtx->ss.Attr.u || !RT_HI_U32(pCtx->ss.u64Base));
4324 Assert(!pCtx->ds.Attr.u || !RT_HI_U32(pCtx->ds.u64Base));
4325 Assert(!pCtx->es.Attr.u || !RT_HI_U32(pCtx->es.u64Base));
4326# endif
4327 }
4328 else if ( CPUMIsGuestInV86ModeEx(pCtx)
4329 || ( CPUMIsGuestInRealModeEx(pCtx)
4330 && !pVM->hm.s.vmx.fUnrestrictedGuest))
4331 {
4332 /* Real and v86 mode checks. */
4333 /* hmR0VmxExportGuestSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
4334 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
4335 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4336 {
4337 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
4338 }
4339 else
4340 {
4341 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
4342 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
4343 }
4344
4345 /* CS */
4346 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
4347 Assert(pCtx->cs.u32Limit == 0xffff);
4348 Assert(u32CSAttr == 0xf3);
4349 /* SS */
4350 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
4351 Assert(pCtx->ss.u32Limit == 0xffff);
4352 Assert(u32SSAttr == 0xf3);
4353 /* DS */
4354 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
4355 Assert(pCtx->ds.u32Limit == 0xffff);
4356 Assert(u32DSAttr == 0xf3);
4357 /* ES */
4358 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
4359 Assert(pCtx->es.u32Limit == 0xffff);
4360 Assert(u32ESAttr == 0xf3);
4361 /* FS */
4362 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
4363 Assert(pCtx->fs.u32Limit == 0xffff);
4364 Assert(u32FSAttr == 0xf3);
4365 /* GS */
4366 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
4367 Assert(pCtx->gs.u32Limit == 0xffff);
4368 Assert(u32GSAttr == 0xf3);
4369 /* 64-bit capable CPUs. */
4370# if HC_ARCH_BITS == 64
4371 Assert(!RT_HI_U32(pCtx->cs.u64Base));
4372 Assert(!u32SSAttr || !RT_HI_U32(pCtx->ss.u64Base));
4373 Assert(!u32DSAttr || !RT_HI_U32(pCtx->ds.u64Base));
4374 Assert(!u32ESAttr || !RT_HI_U32(pCtx->es.u64Base));
4375# endif
4376 }
4377}
4378#endif /* VBOX_STRICT */
4379
4380
4381/**
4382 * Exports a guest segment register into the guest-state area in the VMCS.
4383 *
4384 * @returns VBox status code.
4385 * @param pVCpu The cross context virtual CPU structure.
4386 * @param idxSel Index of the selector in the VMCS.
4387 * @param idxLimit Index of the segment limit in the VMCS.
4388 * @param idxBase Index of the segment base in the VMCS.
4389 * @param idxAccess Index of the access rights of the segment in the VMCS.
4390 * @param pSelReg Pointer to the segment selector.
4391 *
4392 * @remarks No-long-jump zone!!!
4393 */
4394static int hmR0VmxExportGuestSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
4395 PCCPUMSELREG pSelReg)
4396{
4397 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
4398 rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
4399 rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
4400 AssertRCReturn(rc, rc);
4401
4402 uint32_t u32Access = pSelReg->Attr.u;
4403 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4404 {
4405 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
4406 u32Access = 0xf3;
4407 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4408 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4409 }
4410 else
4411 {
4412 /*
4413 * The way to differentiate between whether this is really a null selector or was just
4414 * a selector loaded with 0 in real-mode is using the segment attributes. A selector
4415 * loaded in real-mode with the value 0 is valid and usable in protected-mode and we
4416 * should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures
4417 * NULL selectors loaded in protected-mode have their attribute as 0.
4418 */
4419 if (!u32Access)
4420 u32Access = X86DESCATTR_UNUSABLE;
4421 }
4422
4423 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
4424 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
4425 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
4426
4427 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
4428 AssertRCReturn(rc, rc);
4429 return rc;
4430}
4431
4432
4433/**
4434 * Exports the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
4435 * into the guest-state area in the VMCS.
4436 *
4437 * @returns VBox status code.
4438 * @param pVCpu The cross context virtual CPU structure.
4439 *
4440 * @remarks Will import guest CR0 on strict builds during validation of
4441 * segments.
4442 * @remarks No-long-jump zone!!!
4443 */
4444static int hmR0VmxExportGuestSegmentRegs(PVMCPU pVCpu)
4445{
4446 int rc = VERR_INTERNAL_ERROR_5;
4447 PVM pVM = pVCpu->CTX_SUFF(pVM);
4448 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4449
4450 /*
4451 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
4452 */
4453 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SREG_MASK)
4454 {
4455#ifdef VBOX_WITH_REM
4456 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
4457 {
4458 Assert(pVM->hm.s.vmx.pRealModeTSS);
4459 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
4460 if ( pVCpu->hm.s.vmx.fWasInRealMode
4461 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
4462 {
4463 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
4464 in real-mode (e.g. OpenBSD 4.0) */
4465 REMFlushTBs(pVM);
4466 Log4Func(("Switch to protected mode detected!\n"));
4467 pVCpu->hm.s.vmx.fWasInRealMode = false;
4468 }
4469 }
4470#endif
4471 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CS)
4472 {
4473 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
4474 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4475 pVCpu->hm.s.vmx.RealMode.AttrCS.u = pCtx->cs.Attr.u;
4476 rc = HMVMX_EXPORT_SREG(CS, &pCtx->cs);
4477 AssertRCReturn(rc, rc);
4478 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CS);
4479 }
4480
4481 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SS)
4482 {
4483 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
4484 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4485 pVCpu->hm.s.vmx.RealMode.AttrSS.u = pCtx->ss.Attr.u;
4486 rc = HMVMX_EXPORT_SREG(SS, &pCtx->ss);
4487 AssertRCReturn(rc, rc);
4488 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SS);
4489 }
4490
4491 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_DS)
4492 {
4493 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DS);
4494 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4495 pVCpu->hm.s.vmx.RealMode.AttrDS.u = pCtx->ds.Attr.u;
4496 rc = HMVMX_EXPORT_SREG(DS, &pCtx->ds);
4497 AssertRCReturn(rc, rc);
4498 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_DS);
4499 }
4500
4501 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_ES)
4502 {
4503 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_ES);
4504 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4505 pVCpu->hm.s.vmx.RealMode.AttrES.u = pCtx->es.Attr.u;
4506 rc = HMVMX_EXPORT_SREG(ES, &pCtx->es);
4507 AssertRCReturn(rc, rc);
4508 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_ES);
4509 }
4510
4511 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_FS)
4512 {
4513 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
4514 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4515 pVCpu->hm.s.vmx.RealMode.AttrFS.u = pCtx->fs.Attr.u;
4516 rc = HMVMX_EXPORT_SREG(FS, &pCtx->fs);
4517 AssertRCReturn(rc, rc);
4518 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_FS);
4519 }
4520
4521 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GS)
4522 {
4523 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
4524 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4525 pVCpu->hm.s.vmx.RealMode.AttrGS.u = pCtx->gs.Attr.u;
4526 rc = HMVMX_EXPORT_SREG(GS, &pCtx->gs);
4527 AssertRCReturn(rc, rc);
4528 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GS);
4529 }
4530
4531#ifdef VBOX_STRICT
4532 hmR0VmxValidateSegmentRegs(pVCpu);
4533#endif
4534
4535 Log4Func(("CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pCtx->cs.Sel, pCtx->cs.u64Base,
4536 pCtx->cs.u32Limit, pCtx->cs.Attr.u));
4537 }
4538
4539 /*
4540 * Guest TR.
4541 */
4542 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_TR)
4543 {
4544 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_TR);
4545
4546 /*
4547 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is
4548 * achieved using the interrupt redirection bitmap (all bits cleared to let the guest
4549 * handle INT-n's) in the TSS. See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
4550 */
4551 uint16_t u16Sel = 0;
4552 uint32_t u32Limit = 0;
4553 uint64_t u64Base = 0;
4554 uint32_t u32AccessRights = 0;
4555
4556 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4557 {
4558 u16Sel = pCtx->tr.Sel;
4559 u32Limit = pCtx->tr.u32Limit;
4560 u64Base = pCtx->tr.u64Base;
4561 u32AccessRights = pCtx->tr.Attr.u;
4562 }
4563 else
4564 {
4565 Assert(pVM->hm.s.vmx.pRealModeTSS);
4566 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMCanExecuteGuest() -XXX- what about inner loop changes? */
4567
4568 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
4569 RTGCPHYS GCPhys;
4570 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
4571 AssertRCReturn(rc, rc);
4572
4573 X86DESCATTR DescAttr;
4574 DescAttr.u = 0;
4575 DescAttr.n.u1Present = 1;
4576 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
4577
4578 u16Sel = 0;
4579 u32Limit = HM_VTX_TSS_SIZE;
4580 u64Base = GCPhys; /* in real-mode phys = virt. */
4581 u32AccessRights = DescAttr.u;
4582 }
4583
4584 /* Validate. */
4585 Assert(!(u16Sel & RT_BIT(2)));
4586 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
4587 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
4588 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
4589 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
4590 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
4591 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
4592 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
4593 Assert( (u32Limit & 0xfff) == 0xfff
4594 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
4595 Assert( !(pCtx->tr.u32Limit & 0xfff00000)
4596 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
4597
4598 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
4599 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
4600 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
4601 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
4602 AssertRCReturn(rc, rc);
4603
4604 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_TR);
4605 Log4Func(("TR base=%#RX64\n", pCtx->tr.u64Base));
4606 }
4607
4608 /*
4609 * Guest GDTR.
4610 */
4611 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GDTR)
4612 {
4613 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GDTR);
4614
4615 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt);
4616 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt);
4617 AssertRCReturn(rc, rc);
4618
4619 /* Validate. */
4620 Assert(!(pCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4621
4622 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GDTR);
4623 Log4Func(("GDTR base=%#RX64\n", pCtx->gdtr.pGdt));
4624 }
4625
4626 /*
4627 * Guest LDTR.
4628 */
4629 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_LDTR)
4630 {
4631 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_LDTR);
4632
4633 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
4634 uint32_t u32Access = 0;
4635 if (!pCtx->ldtr.Attr.u)
4636 u32Access = X86DESCATTR_UNUSABLE;
4637 else
4638 u32Access = pCtx->ldtr.Attr.u;
4639
4640 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pCtx->ldtr.Sel);
4641 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit);
4642 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
4643 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base);
4644 AssertRCReturn(rc, rc);
4645
4646 /* Validate. */
4647 if (!(u32Access & X86DESCATTR_UNUSABLE))
4648 {
4649 Assert(!(pCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
4650 Assert(pCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
4651 Assert(!pCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
4652 Assert(pCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
4653 Assert(!pCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
4654 Assert(!(pCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
4655 Assert( (pCtx->ldtr.u32Limit & 0xfff) == 0xfff
4656 || !pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
4657 Assert( !(pCtx->ldtr.u32Limit & 0xfff00000)
4658 || pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
4659 }
4660
4661 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_LDTR);
4662 Log4Func(("LDTR base=%#RX64\n", pCtx->ldtr.u64Base));
4663 }
4664
4665 /*
4666 * Guest IDTR.
4667 */
4668 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_IDTR)
4669 {
4670 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_IDTR);
4671
4672 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt);
4673 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt);
4674 AssertRCReturn(rc, rc);
4675
4676 /* Validate. */
4677 Assert(!(pCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4678
4679 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_IDTR);
4680 Log4Func(("IDTR base=%#RX64\n", pCtx->idtr.pIdt));
4681 }
4682
4683 return VINF_SUCCESS;
4684}
4685
4686
4687/**
4688 * Exports certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
4689 * areas.
4690 *
4691 * These MSRs will automatically be loaded to the host CPU on every successful
4692 * VM-entry and stored from the host CPU on every successful VM-exit. This also
4693 * creates/updates MSR slots for the host MSRs. The actual host MSR values are
4694 * -not- updated here for performance reasons. See hmR0VmxExportHostMsrs().
4695 *
4696 * Also exports the guest sysenter MSRs into the guest-state area in the VMCS.
4697 *
4698 * @returns VBox status code.
4699 * @param pVCpu The cross context virtual CPU structure.
4700 *
4701 * @remarks No-long-jump zone!!!
4702 */
4703static int hmR0VmxExportGuestMsrs(PVMCPU pVCpu)
4704{
4705 AssertPtr(pVCpu);
4706 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
4707
4708 /*
4709 * MSRs that we use the auto-load/store MSR area in the VMCS.
4710 * For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs().
4711 */
4712 PVM pVM = pVCpu->CTX_SUFF(pVM);
4713 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4714 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
4715 {
4716 if (pVM->hm.s.fAllow64BitGuests)
4717 {
4718#if HC_ARCH_BITS == 32
4719 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_KERNEL_GS_BASE);
4720
4721 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pCtx->msrLSTAR, false, NULL);
4722 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pCtx->msrSTAR, false, NULL);
4723 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pCtx->msrSFMASK, false, NULL);
4724 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE, false, NULL);
4725 AssertRCReturn(rc, rc);
4726# ifdef LOG_ENABLED
4727 PCVMXAUTOMSR pMsr = (PCVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
4728 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
4729 Log4Func(("MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", i, pMsr->u32Msr, pMsr->u64Value));
4730# endif
4731#endif
4732 }
4733 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_AUTO_MSRS);
4734 }
4735
4736 /*
4737 * Guest Sysenter MSRs.
4738 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
4739 * VM-exits on WRMSRs for these MSRs.
4740 */
4741 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
4742 {
4743 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
4744
4745 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
4746 {
4747 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
4748 AssertRCReturn(rc, rc);
4749 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_CS_MSR);
4750 }
4751
4752 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
4753 {
4754 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
4755 AssertRCReturn(rc, rc);
4756 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
4757 }
4758
4759 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
4760 {
4761 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
4762 AssertRCReturn(rc, rc);
4763 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
4764 }
4765 }
4766
4767 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_EFER_MSR)
4768 {
4769 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
4770
4771 if (hmR0VmxShouldSwapEferMsr(pVCpu))
4772 {
4773 /*
4774 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
4775 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
4776 */
4777 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4778 {
4779 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pCtx->msrEFER);
4780 AssertRCReturn(rc,rc);
4781 Log4Func(("EFER=%#RX64\n", pCtx->msrEFER));
4782 }
4783 else
4784 {
4785 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_EFER, pCtx->msrEFER, false /* fUpdateHostMsr */,
4786 NULL /* pfAddedAndUpdated */);
4787 AssertRCReturn(rc, rc);
4788
4789 /* We need to intercept reads too, see @bugref{7386#c16}. */
4790 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
4791 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_EFER, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
4792 Log4Func(("MSR[--]: u32Msr=%#RX32 u64Value=%#RX64 cMsrs=%u\n", MSR_K6_EFER, pCtx->msrEFER,
4793 pVCpu->hm.s.vmx.cMsrs));
4794 }
4795 }
4796 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
4797 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K6_EFER);
4798 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
4799 }
4800
4801 return VINF_SUCCESS;
4802}
4803
4804
4805#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
4806/**
4807 * Check if guest state allows safe use of 32-bit switcher again.
4808 *
4809 * Segment bases and protected mode structures must be 32-bit addressable
4810 * because the 32-bit switcher will ignore high dword when writing these VMCS
4811 * fields. See @bugref{8432} for details.
4812 *
4813 * @returns true if safe, false if must continue to use the 64-bit switcher.
4814 * @param pCtx Pointer to the guest-CPU context.
4815 *
4816 * @remarks No-long-jump zone!!!
4817 */
4818static bool hmR0VmxIs32BitSwitcherSafe(PCCPUMCTX pCtx)
4819{
4820 if (pCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000)) return false;
4821 if (pCtx->idtr.pIdt & UINT64_C(0xffffffff00000000)) return false;
4822 if (pCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000)) return false;
4823 if (pCtx->tr.u64Base & UINT64_C(0xffffffff00000000)) return false;
4824 if (pCtx->es.u64Base & UINT64_C(0xffffffff00000000)) return false;
4825 if (pCtx->cs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4826 if (pCtx->ss.u64Base & UINT64_C(0xffffffff00000000)) return false;
4827 if (pCtx->ds.u64Base & UINT64_C(0xffffffff00000000)) return false;
4828 if (pCtx->fs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4829 if (pCtx->gs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4830
4831 /* All good, bases are 32-bit. */
4832 return true;
4833}
4834#endif
4835
4836
4837/**
4838 * Selects up the appropriate function to run guest code.
4839 *
4840 * @returns VBox status code.
4841 * @param pVCpu The cross context virtual CPU structure.
4842 *
4843 * @remarks No-long-jump zone!!!
4844 */
4845static int hmR0VmxSelectVMRunHandler(PVMCPU pVCpu)
4846{
4847 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4848 if (CPUMIsGuestInLongModeEx(pCtx))
4849 {
4850#ifndef VBOX_ENABLE_64_BITS_GUESTS
4851 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4852#endif
4853 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4854#if HC_ARCH_BITS == 32
4855 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
4856 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
4857 {
4858#ifdef VBOX_STRICT
4859 if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4860 {
4861 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4862 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
4863 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
4864 AssertMsg(fCtxChanged & ( HM_CHANGED_VMX_EXIT_CTLS
4865 | HM_CHANGED_VMX_ENTRY_CTLS
4866 | HM_CHANGED_GUEST_EFER_MSR), ("fCtxChanged=%#RX64\n", fCtxChanged));
4867 }
4868#endif
4869 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
4870
4871 /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
4872 the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
4873 pVCpu->hm.s.vmx.fSwitchedTo64on32 = true;
4874 Log4Func(("Selected 64-bit switcher\n"));
4875 }
4876#else
4877 /* 64-bit host. */
4878 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
4879#endif
4880 }
4881 else
4882 {
4883 /* Guest is not in long mode, use the 32-bit handler. */
4884#if HC_ARCH_BITS == 32
4885 if ( pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32
4886 && !pVCpu->hm.s.vmx.fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
4887 && pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4888 {
4889# ifdef VBOX_STRICT
4890 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4891 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
4892 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
4893 AssertMsg(fCtxChanged & ( HM_CHANGED_VMX_EXIT_CTLS
4894 | HM_CHANGED_VMX_ENTRY_CTLS
4895 | HM_CHANGED_GUEST_EFER_MSR), ("fCtxChanged=%#RX64\n", fCtxChanged));
4896# endif
4897 }
4898# ifdef VBOX_ENABLE_64_BITS_GUESTS
4899 /*
4900 * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel
4901 * design, see @bugref{8432#c7}. If real-on-v86 mode is active, clear the 64-bit
4902 * switcher flag because now we know the guest is in a sane state where it's safe
4903 * to use the 32-bit switcher. Otherwise check the guest state if it's safe to use
4904 * the much faster 32-bit switcher again.
4905 */
4906 if (!pVCpu->hm.s.vmx.fSwitchedTo64on32)
4907 {
4908 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
4909 Log4Func(("Selected 32-bit switcher\n"));
4910 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4911 }
4912 else
4913 {
4914 Assert(pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64);
4915 if ( pVCpu->hm.s.vmx.RealMode.fRealOnV86Active
4916 || hmR0VmxIs32BitSwitcherSafe(pCtx))
4917 {
4918 pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
4919 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4920 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR
4921 | HM_CHANGED_VMX_ENTRY_CTLS
4922 | HM_CHANGED_VMX_EXIT_CTLS
4923 | HM_CHANGED_HOST_CONTEXT);
4924 Log4Func(("Selected 32-bit switcher (safe)\n"));
4925 }
4926 }
4927# else
4928 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4929# endif
4930#else
4931 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4932#endif
4933 }
4934 Assert(pVCpu->hm.s.vmx.pfnStartVM);
4935 return VINF_SUCCESS;
4936}
4937
4938
4939/**
4940 * Wrapper for running the guest code in VT-x.
4941 *
4942 * @returns VBox status code, no informational status codes.
4943 * @param pVCpu The cross context virtual CPU structure.
4944 *
4945 * @remarks No-long-jump zone!!!
4946 */
4947DECLINLINE(int) hmR0VmxRunGuest(PVMCPU pVCpu)
4948{
4949 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
4950 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4951 pCtx->fExtrn |= HMVMX_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
4952
4953 /*
4954 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
4955 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
4956 * callee-saved and thus the need for this XMM wrapper.
4957 *
4958 * See MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
4959 */
4960 bool const fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
4961 /** @todo Add stats for resume vs launch. */
4962 PVM pVM = pVCpu->CTX_SUFF(pVM);
4963#ifdef VBOX_WITH_KERNEL_USING_XMM
4964 int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
4965#else
4966 int rc = pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
4967#endif
4968 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
4969 return rc;
4970}
4971
4972
4973/**
4974 * Reports world-switch error and dumps some useful debug info.
4975 *
4976 * @param pVCpu The cross context virtual CPU structure.
4977 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
4978 * @param pVmxTransient Pointer to the VMX transient structure (only
4979 * exitReason updated).
4980 */
4981static void hmR0VmxReportWorldSwitchError(PVMCPU pVCpu, int rcVMRun, PVMXTRANSIENT pVmxTransient)
4982{
4983 Assert(pVCpu);
4984 Assert(pVmxTransient);
4985 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
4986
4987 Log4Func(("VM-entry failure: %Rrc\n", rcVMRun));
4988 switch (rcVMRun)
4989 {
4990 case VERR_VMX_INVALID_VMXON_PTR:
4991 AssertFailed();
4992 break;
4993 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
4994 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
4995 {
4996 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
4997 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
4998 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
4999 AssertRC(rc);
5000
5001 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
5002 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
5003 Cannot do it here as we may have been long preempted. */
5004
5005#ifdef VBOX_STRICT
5006 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
5007 pVmxTransient->uExitReason));
5008 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQual));
5009 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
5010 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
5011 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
5012 else
5013 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
5014 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
5015 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
5016
5017 /* VMX control bits. */
5018 uint32_t u32Val;
5019 uint64_t u64Val;
5020 RTHCUINTREG uHCReg;
5021 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
5022 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
5023 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
5024 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
5025 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
5026 {
5027 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
5028 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
5029 }
5030 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
5031 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
5032 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
5033 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
5034 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
5035 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
5036 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
5037 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
5038 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
5039 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
5040 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
5041 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
5042 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
5043 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
5044 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
5045 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
5046 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5047 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
5048 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5049 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
5050 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
5051 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
5052 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
5053 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
5054 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
5055 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
5056 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
5057 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
5058 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
5059 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5060 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
5061 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
5062 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
5063 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5064 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
5065 {
5066 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
5067 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
5068 }
5069
5070 /* Guest bits. */
5071 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
5072 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rip, u64Val));
5073 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
5074 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rsp, u64Val));
5075 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
5076 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pVCpu->cpum.GstCtx.eflags.u32, u32Val));
5077 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid)
5078 {
5079 rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
5080 Log4(("VMX_VMCS16_VPID %u\n", u32Val));
5081 }
5082
5083 /* Host bits. */
5084 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
5085 Log4(("Host CR0 %#RHr\n", uHCReg));
5086 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
5087 Log4(("Host CR3 %#RHr\n", uHCReg));
5088 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
5089 Log4(("Host CR4 %#RHr\n", uHCReg));
5090
5091 RTGDTR HostGdtr;
5092 PCX86DESCHC pDesc;
5093 ASMGetGDTR(&HostGdtr);
5094 rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
5095 Log4(("Host CS %#08x\n", u32Val));
5096 if (u32Val < HostGdtr.cbGdt)
5097 {
5098 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5099 hmR0DumpDescriptor(pDesc, u32Val, "CS: ");
5100 }
5101
5102 rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
5103 Log4(("Host DS %#08x\n", u32Val));
5104 if (u32Val < HostGdtr.cbGdt)
5105 {
5106 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5107 hmR0DumpDescriptor(pDesc, u32Val, "DS: ");
5108 }
5109
5110 rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
5111 Log4(("Host ES %#08x\n", u32Val));
5112 if (u32Val < HostGdtr.cbGdt)
5113 {
5114 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5115 hmR0DumpDescriptor(pDesc, u32Val, "ES: ");
5116 }
5117
5118 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
5119 Log4(("Host FS %#08x\n", u32Val));
5120 if (u32Val < HostGdtr.cbGdt)
5121 {
5122 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5123 hmR0DumpDescriptor(pDesc, u32Val, "FS: ");
5124 }
5125
5126 rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
5127 Log4(("Host GS %#08x\n", u32Val));
5128 if (u32Val < HostGdtr.cbGdt)
5129 {
5130 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5131 hmR0DumpDescriptor(pDesc, u32Val, "GS: ");
5132 }
5133
5134 rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
5135 Log4(("Host SS %#08x\n", u32Val));
5136 if (u32Val < HostGdtr.cbGdt)
5137 {
5138 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5139 hmR0DumpDescriptor(pDesc, u32Val, "SS: ");
5140 }
5141
5142 rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
5143 Log4(("Host TR %#08x\n", u32Val));
5144 if (u32Val < HostGdtr.cbGdt)
5145 {
5146 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5147 hmR0DumpDescriptor(pDesc, u32Val, "TR: ");
5148 }
5149
5150 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
5151 Log4(("Host TR Base %#RHv\n", uHCReg));
5152 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
5153 Log4(("Host GDTR Base %#RHv\n", uHCReg));
5154 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
5155 Log4(("Host IDTR Base %#RHv\n", uHCReg));
5156 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
5157 Log4(("Host SYSENTER CS %#08x\n", u32Val));
5158 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
5159 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
5160 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
5161 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
5162 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
5163 Log4(("Host RSP %#RHv\n", uHCReg));
5164 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
5165 Log4(("Host RIP %#RHv\n", uHCReg));
5166# if HC_ARCH_BITS == 64
5167 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
5168 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
5169 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
5170 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
5171 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
5172 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
5173# endif
5174#endif /* VBOX_STRICT */
5175 break;
5176 }
5177
5178 default:
5179 /* Impossible */
5180 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
5181 break;
5182 }
5183}
5184
5185
5186#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
5187#ifndef VMX_USE_CACHED_VMCS_ACCESSES
5188# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
5189#endif
5190#ifdef VBOX_STRICT
5191static bool hmR0VmxIsValidWriteField(uint32_t idxField)
5192{
5193 switch (idxField)
5194 {
5195 case VMX_VMCS_GUEST_RIP:
5196 case VMX_VMCS_GUEST_RSP:
5197 case VMX_VMCS_GUEST_SYSENTER_EIP:
5198 case VMX_VMCS_GUEST_SYSENTER_ESP:
5199 case VMX_VMCS_GUEST_GDTR_BASE:
5200 case VMX_VMCS_GUEST_IDTR_BASE:
5201 case VMX_VMCS_GUEST_CS_BASE:
5202 case VMX_VMCS_GUEST_DS_BASE:
5203 case VMX_VMCS_GUEST_ES_BASE:
5204 case VMX_VMCS_GUEST_FS_BASE:
5205 case VMX_VMCS_GUEST_GS_BASE:
5206 case VMX_VMCS_GUEST_SS_BASE:
5207 case VMX_VMCS_GUEST_LDTR_BASE:
5208 case VMX_VMCS_GUEST_TR_BASE:
5209 case VMX_VMCS_GUEST_CR3:
5210 return true;
5211 }
5212 return false;
5213}
5214
5215static bool hmR0VmxIsValidReadField(uint32_t idxField)
5216{
5217 switch (idxField)
5218 {
5219 /* Read-only fields. */
5220 case VMX_VMCS_RO_EXIT_QUALIFICATION:
5221 return true;
5222 }
5223 /* Remaining readable fields should also be writable. */
5224 return hmR0VmxIsValidWriteField(idxField);
5225}
5226#endif /* VBOX_STRICT */
5227
5228
5229/**
5230 * Executes the specified handler in 64-bit mode.
5231 *
5232 * @returns VBox status code (no informational status codes).
5233 * @param pVCpu The cross context virtual CPU structure.
5234 * @param enmOp The operation to perform.
5235 * @param cParams Number of parameters.
5236 * @param paParam Array of 32-bit parameters.
5237 */
5238VMMR0DECL(int) VMXR0Execute64BitsHandler(PVMCPU pVCpu, HM64ON32OP enmOp, uint32_t cParams, uint32_t *paParam)
5239{
5240 PVM pVM = pVCpu->CTX_SUFF(pVM);
5241 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
5242 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
5243 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
5244 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
5245
5246#ifdef VBOX_STRICT
5247 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
5248 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
5249
5250 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
5251 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
5252#endif
5253
5254 /* Disable interrupts. */
5255 RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
5256
5257#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
5258 RTCPUID idHostCpu = RTMpCpuId();
5259 CPUMR0SetLApic(pVCpu, idHostCpu);
5260#endif
5261
5262 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5263 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5264
5265 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
5266 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5267 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
5268
5269 /* Leave VMX Root Mode. */
5270 VMXDisable();
5271
5272 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5273
5274 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
5275 CPUMSetHyperEIP(pVCpu, enmOp);
5276 for (int i = (int)cParams - 1; i >= 0; i--)
5277 CPUMPushHyper(pVCpu, paParam[i]);
5278
5279 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
5280
5281 /* Call the switcher. */
5282 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_UOFFSETOF_DYN(VM, aCpus[pVCpu->idCpu].cpum) - RT_UOFFSETOF(VM, cpum));
5283 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
5284
5285 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
5286 /* Make sure the VMX instructions don't cause #UD faults. */
5287 SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
5288
5289 /* Re-enter VMX Root Mode */
5290 int rc2 = VMXEnable(HCPhysCpuPage);
5291 if (RT_FAILURE(rc2))
5292 {
5293 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5294 ASMSetFlags(fOldEFlags);
5295 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
5296 return rc2;
5297 }
5298
5299 rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5300 AssertRC(rc2);
5301 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
5302 Assert(!(ASMGetFlags() & X86_EFL_IF));
5303 ASMSetFlags(fOldEFlags);
5304 return rc;
5305}
5306
5307
5308/**
5309 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
5310 * supporting 64-bit guests.
5311 *
5312 * @returns VBox status code.
5313 * @param fResume Whether to VMLAUNCH or VMRESUME.
5314 * @param pCtx Pointer to the guest-CPU context.
5315 * @param pCache Pointer to the VMCS cache.
5316 * @param pVM The cross context VM structure.
5317 * @param pVCpu The cross context virtual CPU structure.
5318 */
5319DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
5320{
5321 NOREF(fResume);
5322
5323 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5324 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5325
5326#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5327 pCache->uPos = 1;
5328 pCache->interPD = PGMGetInterPaeCR3(pVM);
5329 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
5330#endif
5331
5332#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5333 pCache->TestIn.HCPhysCpuPage = 0;
5334 pCache->TestIn.HCPhysVmcs = 0;
5335 pCache->TestIn.pCache = 0;
5336 pCache->TestOut.HCPhysVmcs = 0;
5337 pCache->TestOut.pCache = 0;
5338 pCache->TestOut.pCtx = 0;
5339 pCache->TestOut.eflags = 0;
5340#else
5341 NOREF(pCache);
5342#endif
5343
5344 uint32_t aParam[10];
5345 aParam[0] = RT_LO_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
5346 aParam[1] = RT_HI_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Hi. */
5347 aParam[2] = RT_LO_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
5348 aParam[3] = RT_HI_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Hi. */
5349 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
5350 aParam[5] = 0;
5351 aParam[6] = VM_RC_ADDR(pVM, pVM);
5352 aParam[7] = 0;
5353 aParam[8] = VM_RC_ADDR(pVM, pVCpu);
5354 aParam[9] = 0;
5355
5356#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5357 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
5358 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
5359#endif
5360 int rc = VMXR0Execute64BitsHandler(pVCpu, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
5361
5362#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5363 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
5364 Assert(pCtx->dr[4] == 10);
5365 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
5366#endif
5367
5368#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5369 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
5370 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5371 pVCpu->hm.s.vmx.HCPhysVmcs));
5372 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5373 pCache->TestOut.HCPhysVmcs));
5374 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
5375 pCache->TestOut.pCache));
5376 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
5377 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
5378 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
5379 pCache->TestOut.pCtx));
5380 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
5381#endif
5382 NOREF(pCtx);
5383 return rc;
5384}
5385
5386
5387/**
5388 * Initialize the VMCS-Read cache.
5389 *
5390 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
5391 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
5392 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
5393 * (those that have a 32-bit FULL & HIGH part).
5394 *
5395 * @returns VBox status code.
5396 * @param pVCpu The cross context virtual CPU structure.
5397 */
5398static int hmR0VmxInitVmcsReadCache(PVMCPU pVCpu)
5399{
5400#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
5401 do { \
5402 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
5403 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
5404 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
5405 ++cReadFields; \
5406 } while (0)
5407
5408 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5409 uint32_t cReadFields = 0;
5410
5411 /*
5412 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
5413 * and serve to indicate exceptions to the rules.
5414 */
5415
5416 /* Guest-natural selector base fields. */
5417#if 0
5418 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
5419 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
5420 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
5421#endif
5422 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
5423 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
5424 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
5425 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
5426 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
5427 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
5428 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
5429 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
5430 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
5431 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
5432 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
5433 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
5434#if 0
5435 /* Unused natural width guest-state fields. */
5436 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS);
5437 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
5438#endif
5439 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
5440 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
5441
5442 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for
5443 these 64-bit fields (using "FULL" and "HIGH" fields). */
5444#if 0
5445 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
5446 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
5447 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
5448 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
5449 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
5450 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
5451 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
5452 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
5453 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
5454#endif
5455
5456 /* Natural width guest-state fields. */
5457 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
5458#if 0
5459 /* Currently unused field. */
5460 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR);
5461#endif
5462
5463 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
5464 {
5465 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
5466 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
5467 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
5468 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
5469 }
5470 else
5471 {
5472 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
5473 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
5474 }
5475
5476#undef VMXLOCAL_INIT_READ_CACHE_FIELD
5477 return VINF_SUCCESS;
5478}
5479
5480
5481/**
5482 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
5483 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
5484 * darwin, running 64-bit guests).
5485 *
5486 * @returns VBox status code.
5487 * @param pVCpu The cross context virtual CPU structure.
5488 * @param idxField The VMCS field encoding.
5489 * @param u64Val 16, 32 or 64-bit value.
5490 */
5491VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5492{
5493 int rc;
5494 switch (idxField)
5495 {
5496 /*
5497 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
5498 */
5499 /* 64-bit Control fields. */
5500 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
5501 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
5502 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
5503 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
5504 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
5505 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
5506 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
5507 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
5508 case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
5509 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
5510 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
5511 case VMX_VMCS64_CTRL_EPTP_FULL:
5512 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
5513 /* 64-bit Guest-state fields. */
5514 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
5515 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
5516 case VMX_VMCS64_GUEST_PAT_FULL:
5517 case VMX_VMCS64_GUEST_EFER_FULL:
5518 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
5519 case VMX_VMCS64_GUEST_PDPTE0_FULL:
5520 case VMX_VMCS64_GUEST_PDPTE1_FULL:
5521 case VMX_VMCS64_GUEST_PDPTE2_FULL:
5522 case VMX_VMCS64_GUEST_PDPTE3_FULL:
5523 /* 64-bit Host-state fields. */
5524 case VMX_VMCS64_HOST_PAT_FULL:
5525 case VMX_VMCS64_HOST_EFER_FULL:
5526 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
5527 {
5528 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
5529 rc |= VMXWriteVmcs32(idxField + 1, RT_HI_U32(u64Val));
5530 break;
5531 }
5532
5533 /*
5534 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
5535 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
5536 */
5537 /* Natural-width Guest-state fields. */
5538 case VMX_VMCS_GUEST_CR3:
5539 case VMX_VMCS_GUEST_ES_BASE:
5540 case VMX_VMCS_GUEST_CS_BASE:
5541 case VMX_VMCS_GUEST_SS_BASE:
5542 case VMX_VMCS_GUEST_DS_BASE:
5543 case VMX_VMCS_GUEST_FS_BASE:
5544 case VMX_VMCS_GUEST_GS_BASE:
5545 case VMX_VMCS_GUEST_LDTR_BASE:
5546 case VMX_VMCS_GUEST_TR_BASE:
5547 case VMX_VMCS_GUEST_GDTR_BASE:
5548 case VMX_VMCS_GUEST_IDTR_BASE:
5549 case VMX_VMCS_GUEST_RSP:
5550 case VMX_VMCS_GUEST_RIP:
5551 case VMX_VMCS_GUEST_SYSENTER_ESP:
5552 case VMX_VMCS_GUEST_SYSENTER_EIP:
5553 {
5554 if (!(RT_HI_U32(u64Val)))
5555 {
5556 /* If this field is 64-bit, VT-x will zero out the top bits. */
5557 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
5558 }
5559 else
5560 {
5561 /* Assert that only the 32->64 switcher case should ever come here. */
5562 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
5563 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
5564 }
5565 break;
5566 }
5567
5568 default:
5569 {
5570 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
5571 rc = VERR_INVALID_PARAMETER;
5572 break;
5573 }
5574 }
5575 AssertRCReturn(rc, rc);
5576 return rc;
5577}
5578
5579
5580/**
5581 * Queue up a VMWRITE by using the VMCS write cache.
5582 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
5583 *
5584 * @param pVCpu The cross context virtual CPU structure.
5585 * @param idxField The VMCS field encoding.
5586 * @param u64Val 16, 32 or 64-bit value.
5587 */
5588VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5589{
5590 AssertPtr(pVCpu);
5591 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5592
5593 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
5594 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
5595
5596 /* Make sure there are no duplicates. */
5597 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5598 {
5599 if (pCache->Write.aField[i] == idxField)
5600 {
5601 pCache->Write.aFieldVal[i] = u64Val;
5602 return VINF_SUCCESS;
5603 }
5604 }
5605
5606 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
5607 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
5608 pCache->Write.cValidEntries++;
5609 return VINF_SUCCESS;
5610}
5611#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
5612
5613
5614/**
5615 * Sets up the usage of TSC-offsetting and updates the VMCS.
5616 *
5617 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
5618 * VMX preemption timer.
5619 *
5620 * @returns VBox status code.
5621 * @param pVCpu The cross context virtual CPU structure.
5622 *
5623 * @remarks No-long-jump zone!!!
5624 */
5625static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPU pVCpu)
5626{
5627 bool fOffsettedTsc;
5628 bool fParavirtTsc;
5629 PVM pVM = pVCpu->CTX_SUFF(pVM);
5630 uint64_t uTscOffset;
5631 if (pVM->hm.s.vmx.fUsePreemptTimer)
5632 {
5633 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &uTscOffset, &fOffsettedTsc, &fParavirtTsc);
5634
5635 /* Make sure the returned values have sane upper and lower boundaries. */
5636 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
5637 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
5638 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
5639 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
5640
5641 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
5642 int rc = VMXWriteVmcs32(VMX_VMCS32_PREEMPT_TIMER_VALUE, cPreemptionTickCount);
5643 AssertRC(rc);
5644 }
5645 else
5646 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
5647
5648 if (fParavirtTsc)
5649 {
5650 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
5651 information before every VM-entry, hence disable it for performance sake. */
5652#if 0
5653 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
5654 AssertRC(rc);
5655#endif
5656 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
5657 }
5658
5659 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
5660 if ( fOffsettedTsc
5661 && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
5662 {
5663 if (pVCpu->hm.s.vmx.u64TscOffset != uTscOffset)
5664 {
5665 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, uTscOffset);
5666 AssertRC(rc);
5667 pVCpu->hm.s.vmx.u64TscOffset = uTscOffset;
5668 }
5669
5670 if (uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT)
5671 {
5672 uProcCtls &= ~VMX_PROC_CTLS_RDTSC_EXIT;
5673 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5674 AssertRC(rc);
5675 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
5676 }
5677 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
5678 }
5679 else
5680 {
5681 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
5682 if (!(uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
5683 {
5684 uProcCtls |= VMX_PROC_CTLS_RDTSC_EXIT;
5685 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5686 AssertRC(rc);
5687 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
5688 }
5689 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
5690 }
5691}
5692
5693
5694/**
5695 * Gets the IEM exception flags for the specified vector and IDT vectoring /
5696 * VM-exit interruption info type.
5697 *
5698 * @returns The IEM exception flags.
5699 * @param uVector The event vector.
5700 * @param uVmxVectorType The VMX event type.
5701 *
5702 * @remarks This function currently only constructs flags required for
5703 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
5704 * and CR2 aspects of an exception are not included).
5705 */
5706static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxVectorType)
5707{
5708 uint32_t fIemXcptFlags;
5709 switch (uVmxVectorType)
5710 {
5711 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
5712 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
5713 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5714 break;
5715
5716 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
5717 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5718 break;
5719
5720 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
5721 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
5722 break;
5723
5724 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
5725 {
5726 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5727 if (uVector == X86_XCPT_BP)
5728 fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
5729 else if (uVector == X86_XCPT_OF)
5730 fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
5731 else
5732 {
5733 fIemXcptFlags = 0;
5734 AssertMsgFailed(("Unexpected vector for software int. uVector=%#x", uVector));
5735 }
5736 break;
5737 }
5738
5739 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
5740 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5741 break;
5742
5743 default:
5744 fIemXcptFlags = 0;
5745 AssertMsgFailed(("Unexpected vector type! uVmxVectorType=%#x uVector=%#x", uVmxVectorType, uVector));
5746 break;
5747 }
5748 return fIemXcptFlags;
5749}
5750
5751
5752/**
5753 * Sets an event as a pending event to be injected into the guest.
5754 *
5755 * @param pVCpu The cross context virtual CPU structure.
5756 * @param u32IntInfo The VM-entry interruption-information field.
5757 * @param cbInstr The VM-entry instruction length in bytes (for software
5758 * interrupts, exceptions and privileged software
5759 * exceptions).
5760 * @param u32ErrCode The VM-entry exception error code.
5761 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
5762 * page-fault.
5763 *
5764 * @remarks Statistics counter assumes this is a guest event being injected or
5765 * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
5766 * always incremented.
5767 */
5768DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
5769 RTGCUINTPTR GCPtrFaultAddress)
5770{
5771 Assert(!pVCpu->hm.s.Event.fPending);
5772 pVCpu->hm.s.Event.fPending = true;
5773 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
5774 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
5775 pVCpu->hm.s.Event.cbInstr = cbInstr;
5776 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
5777}
5778
5779
5780/**
5781 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
5782 *
5783 * @param pVCpu The cross context virtual CPU structure.
5784 */
5785DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu)
5786{
5787 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
5788 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5789 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5790 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5791 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5792}
5793
5794
5795/**
5796 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
5797 *
5798 * @param pVCpu The cross context virtual CPU structure.
5799 */
5800DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu)
5801{
5802 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_UD)
5803 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5804 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
5805 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5806 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5807}
5808
5809
5810/**
5811 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
5812 *
5813 * @param pVCpu The cross context virtual CPU structure.
5814 */
5815DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu)
5816{
5817 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
5818 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5819 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
5820 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5821 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5822}
5823
5824
5825#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5826/**
5827 * Sets a general-protection (\#GP) exception as pending-for-injection into the VM.
5828 *
5829 * @param pVCpu The cross context virtual CPU structure.
5830 * @param u32ErrCode The error code for the general-protection exception.
5831 */
5832DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, uint32_t u32ErrCode)
5833{
5834 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
5835 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5836 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5837 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5838 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
5839}
5840
5841
5842/**
5843 * Sets a stack (\#SS) exception as pending-for-injection into the VM.
5844 *
5845 * @param pVCpu The cross context virtual CPU structure.
5846 * @param u32ErrCode The error code for the stack exception.
5847 */
5848DECLINLINE(void) hmR0VmxSetPendingXcptSS(PVMCPU pVCpu, uint32_t u32ErrCode)
5849{
5850 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_SS)
5851 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5852 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5853 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5854 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
5855}
5856
5857
5858/**
5859 * Decodes the memory operand of an instruction that caused a VM-exit.
5860 *
5861 * The VM-exit qualification field provides the displacement field for memory
5862 * operand instructions, if any.
5863 *
5864 * @returns Strict VBox status code (i.e. informational status codes too).
5865 * @retval VINF_SUCCESS if the operand was successfully decoded.
5866 * @retval VINF_HM_PENDING_XCPT if an exception was raised while decoding the
5867 * operand.
5868 * @param pVCpu The cross context virtual CPU structure.
5869 * @param uExitInstrInfo The VM-exit instruction information field.
5870 * @param enmMemAccess The memory operand's access type (read or write).
5871 * @param GCPtrDisp The instruction displacement field, if any. For
5872 * RIP-relative addressing pass RIP + displacement here.
5873 * @param pGCPtrMem Where to store the effective destination memory address.
5874 */
5875static VBOXSTRICTRC hmR0VmxDecodeMemOperand(PVMCPU pVCpu, uint32_t uExitInstrInfo, RTGCPTR GCPtrDisp, VMXMEMACCESS enmMemAccess,
5876 PRTGCPTR pGCPtrMem)
5877{
5878 Assert(pGCPtrMem);
5879 Assert(!CPUMIsGuestInRealOrV86Mode(pVCpu));
5880 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_CR0);
5881
5882 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
5883 static uint64_t const s_auAccessSizeMasks[] = { sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t) };
5884 AssertCompile(RT_ELEMENTS(s_auAccessSizeMasks) == RT_ELEMENTS(s_auAddrSizeMasks));
5885
5886 VMXEXITINSTRINFO ExitInstrInfo;
5887 ExitInstrInfo.u = uExitInstrInfo;
5888 uint8_t const uAddrSize = ExitInstrInfo.All.u3AddrSize;
5889 uint8_t const iSegReg = ExitInstrInfo.All.iSegReg;
5890 bool const fIdxRegValid = !ExitInstrInfo.All.fIdxRegInvalid;
5891 uint8_t const iIdxReg = ExitInstrInfo.All.iIdxReg;
5892 uint8_t const uScale = ExitInstrInfo.All.u2Scaling;
5893 bool const fBaseRegValid = !ExitInstrInfo.All.fBaseRegInvalid;
5894 uint8_t const iBaseReg = ExitInstrInfo.All.iBaseReg;
5895 bool const fIsMemOperand = !ExitInstrInfo.All.fIsRegOperand;
5896 bool const fIsLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
5897
5898 /*
5899 * Validate instruction information.
5900 * This shouldn't happen on real hardware but useful while testing our nested hardware-virtualization code.
5901 */
5902 AssertLogRelMsgReturn(uAddrSize < RT_ELEMENTS(s_auAddrSizeMasks),
5903 ("Invalid address size. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_1);
5904 AssertLogRelMsgReturn(iSegReg < X86_SREG_COUNT,
5905 ("Invalid segment register. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_2);
5906 AssertLogRelMsgReturn(fIsMemOperand,
5907 ("Expected memory operand. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_3);
5908
5909 /*
5910 * Compute the complete effective address.
5911 *
5912 * See AMD instruction spec. 1.4.2 "SIB Byte Format"
5913 * See AMD spec. 4.5.2 "Segment Registers".
5914 */
5915 RTGCPTR GCPtrMem = GCPtrDisp;
5916 if (fBaseRegValid)
5917 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iBaseReg].u64;
5918 if (fIdxRegValid)
5919 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iIdxReg].u64 << uScale;
5920
5921 RTGCPTR const GCPtrOff = GCPtrMem;
5922 if ( !fIsLongMode
5923 || iSegReg >= X86_SREG_FS)
5924 GCPtrMem += pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
5925 GCPtrMem &= s_auAddrSizeMasks[uAddrSize];
5926
5927 /*
5928 * Validate effective address.
5929 * See AMD spec. 4.5.3 "Segment Registers in 64-Bit Mode".
5930 */
5931 uint8_t const cbAccess = s_auAccessSizeMasks[uAddrSize];
5932 Assert(cbAccess > 0);
5933 if (fIsLongMode)
5934 {
5935 if (X86_IS_CANONICAL(GCPtrMem))
5936 {
5937 *pGCPtrMem = GCPtrMem;
5938 return VINF_SUCCESS;
5939 }
5940
5941 /** @todo r=ramshankar: We should probably raise \#SS or \#GP. See AMD spec. 4.12.2
5942 * "Data Limit Checks in 64-bit Mode". */
5943 Log4Func(("Long mode effective address is not canonical GCPtrMem=%#RX64\n", GCPtrMem));
5944 hmR0VmxSetPendingXcptGP(pVCpu, 0);
5945 return VINF_HM_PENDING_XCPT;
5946 }
5947
5948 /*
5949 * This is a watered down version of iemMemApplySegment().
5950 * Parts that are not applicable for VMX instructions like real-or-v8086 mode
5951 * and segment CPL/DPL checks are skipped.
5952 */
5953 RTGCPTR32 const GCPtrFirst32 = (RTGCPTR32)GCPtrOff;
5954 RTGCPTR32 const GCPtrLast32 = GCPtrFirst32 + cbAccess - 1;
5955 PCCPUMSELREG pSel = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
5956
5957 /* Check if the segment is present and usable. */
5958 if ( pSel->Attr.n.u1Present
5959 && !pSel->Attr.n.u1Unusable)
5960 {
5961 Assert(pSel->Attr.n.u1DescType);
5962 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
5963 {
5964 /* Check permissions for the data segment. */
5965 if ( enmMemAccess == VMXMEMACCESS_WRITE
5966 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE))
5967 {
5968 Log4Func(("Data segment access invalid. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
5969 hmR0VmxSetPendingXcptGP(pVCpu, iSegReg);
5970 return VINF_HM_PENDING_XCPT;
5971 }
5972
5973 /* Check limits if it's a normal data segment. */
5974 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
5975 {
5976 if ( GCPtrFirst32 > pSel->u32Limit
5977 || GCPtrLast32 > pSel->u32Limit)
5978 {
5979 Log4Func(("Data segment limit exceeded."
5980 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
5981 GCPtrLast32, pSel->u32Limit));
5982 if (iSegReg == X86_SREG_SS)
5983 hmR0VmxSetPendingXcptSS(pVCpu, 0);
5984 else
5985 hmR0VmxSetPendingXcptGP(pVCpu, 0);
5986 return VINF_HM_PENDING_XCPT;
5987 }
5988 }
5989 else
5990 {
5991 /* Check limits if it's an expand-down data segment.
5992 Note! The upper boundary is defined by the B bit, not the G bit! */
5993 if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
5994 || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
5995 {
5996 Log4Func(("Expand-down data segment limit exceeded."
5997 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
5998 GCPtrLast32, pSel->u32Limit));
5999 if (iSegReg == X86_SREG_SS)
6000 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6001 else
6002 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6003 return VINF_HM_PENDING_XCPT;
6004 }
6005 }
6006 }
6007 else
6008 {
6009 /* Check permissions for the code segment. */
6010 if ( enmMemAccess == VMXMEMACCESS_WRITE
6011 || ( enmMemAccess == VMXMEMACCESS_READ
6012 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ)))
6013 {
6014 Log4Func(("Code segment access invalid. Attr=%#RX32\n", pSel->Attr.u));
6015 Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
6016 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6017 return VINF_HM_PENDING_XCPT;
6018 }
6019
6020 /* Check limits for the code segment (normal/expand-down not applicable for code segments). */
6021 if ( GCPtrFirst32 > pSel->u32Limit
6022 || GCPtrLast32 > pSel->u32Limit)
6023 {
6024 Log4Func(("Code segment limit exceeded. GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n",
6025 GCPtrFirst32, GCPtrLast32, pSel->u32Limit));
6026 if (iSegReg == X86_SREG_SS)
6027 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6028 else
6029 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6030 return VINF_HM_PENDING_XCPT;
6031 }
6032 }
6033 }
6034 else
6035 {
6036 Log4Func(("Not present or unusable segment. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
6037 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6038 return VINF_HM_PENDING_XCPT;
6039 }
6040
6041 *pGCPtrMem = GCPtrMem;
6042 return VINF_SUCCESS;
6043}
6044
6045
6046/**
6047 * Perform the relevant VMX instruction checks for VM-exits that occurred due to the
6048 * guest attempting to execute a VMX instruction.
6049 *
6050 * @returns Strict VBox status code (i.e. informational status codes too).
6051 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
6052 * @retval VINF_HM_PENDING_XCPT if an exception was raised.
6053 *
6054 * @param pVCpu The cross context virtual CPU structure.
6055 * @param uExitReason The VM-exit reason.
6056 *
6057 * @todo NstVmx: Document other error codes when VM-exit is implemented.
6058 * @remarks No-long-jump zone!!!
6059 */
6060static VBOXSTRICTRC hmR0VmxCheckExitDueToVmxInstr(PVMCPU pVCpu, uint32_t uExitReason)
6061{
6062 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS
6063 | CPUMCTX_EXTRN_HWVIRT);
6064
6065 if ( CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx)
6066 || ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
6067 && !CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx)))
6068 {
6069 Log4Func(("In real/v86-mode or long-mode outside 64-bit code segment -> #UD\n"));
6070 hmR0VmxSetPendingXcptUD(pVCpu);
6071 return VINF_HM_PENDING_XCPT;
6072 }
6073
6074 if (uExitReason == VMX_EXIT_VMXON)
6075 {
6076 /*
6077 * We check CR4.VMXE because it is required to be always set while in VMX operation
6078 * by physical CPUs and our CR4 read shadow is only consulted when executing specific
6079 * instructions (CLTS, LMSW, MOV CR, and SMSW) and thus doesn't affect CPU operation
6080 * otherwise (i.e. physical CPU won't automatically #UD if Cr4Shadow.VMXE is 0).
6081 */
6082 if (!CPUMIsGuestVmxEnabled(&pVCpu->cpum.GstCtx))
6083 {
6084 Log4Func(("CR4.VMXE is not set -> #UD\n"));
6085 hmR0VmxSetPendingXcptUD(pVCpu);
6086 return VINF_HM_PENDING_XCPT;
6087 }
6088 }
6089 else if (!CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx))
6090 {
6091 /*
6092 * The guest has not entered VMX operation but attempted to execute a VMX instruction
6093 * (other than VMXON), we need to raise a #UD.
6094 */
6095 Log4Func(("Not in VMX root mode -> #UD\n"));
6096 hmR0VmxSetPendingXcptUD(pVCpu);
6097 return VINF_HM_PENDING_XCPT;
6098 }
6099
6100 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
6101 {
6102 /*
6103 * The nested-guest attempted to execute a VMX instruction, cause a VM-exit and let
6104 * the guest hypervisor deal with it.
6105 */
6106 /** @todo NSTVMX: Trigger a VM-exit */
6107 }
6108
6109 /*
6110 * VMX instructions require CPL 0 except in VMX non-root mode where the VM-exit intercept
6111 * (above) takes preceedence over the CPL check.
6112 */
6113 if (CPUMGetGuestCPL(pVCpu) > 0)
6114 {
6115 Log4Func(("CPL > 0 -> #GP(0)\n"));
6116 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6117 return VINF_HM_PENDING_XCPT;
6118 }
6119
6120 return VINF_SUCCESS;
6121}
6122
6123#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
6124
6125
6126/**
6127 * Handle a condition that occurred while delivering an event through the guest
6128 * IDT.
6129 *
6130 * @returns Strict VBox status code (i.e. informational status codes too).
6131 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
6132 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
6133 * to continue execution of the guest which will delivery the \#DF.
6134 * @retval VINF_EM_RESET if we detected a triple-fault condition.
6135 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
6136 *
6137 * @param pVCpu The cross context virtual CPU structure.
6138 * @param pVmxTransient Pointer to the VMX transient structure.
6139 *
6140 * @remarks No-long-jump zone!!!
6141 */
6142static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
6143{
6144 uint32_t const uExitVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
6145
6146 int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
6147 rc2 |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
6148 AssertRCReturn(rc2, rc2);
6149
6150 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
6151 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
6152 {
6153 uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
6154 uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
6155
6156 /*
6157 * If the event was a software interrupt (generated with INT n) or a software exception
6158 * (generated by INT3/INTO) or a privileged software exception (generated by INT1), we
6159 * can handle the VM-exit and continue guest execution which will re-execute the
6160 * instruction rather than re-injecting the exception, as that can cause premature
6161 * trips to ring-3 before injection and involve TRPM which currently has no way of
6162 * storing that these exceptions were caused by these instructions (ICEBP's #DB poses
6163 * the problem).
6164 */
6165 IEMXCPTRAISE enmRaise;
6166 IEMXCPTRAISEINFO fRaiseInfo;
6167 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
6168 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
6169 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
6170 {
6171 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
6172 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
6173 }
6174 else if (VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
6175 {
6176 uint32_t const uExitVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uExitIntInfo);
6177 uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
6178 uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
6179 /** @todo Make AssertMsgReturn as just AssertMsg later. */
6180 AssertMsgReturn(uExitVectorType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT,
6181 ("hmR0VmxCheckExitDueToEventDelivery: Unexpected VM-exit interruption info. %#x!\n",
6182 uExitVectorType), VERR_VMX_IPE_5);
6183
6184 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
6185
6186 /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
6187 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
6188 {
6189 pVmxTransient->fVectoringPF = true;
6190 enmRaise = IEMXCPTRAISE_PREV_EVENT;
6191 }
6192 }
6193 else
6194 {
6195 /*
6196 * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
6197 * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
6198 * It is sufficient to reflect the original event to the guest after handling the VM-exit.
6199 */
6200 Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
6201 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
6202 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
6203 enmRaise = IEMXCPTRAISE_PREV_EVENT;
6204 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
6205 }
6206
6207 /*
6208 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
6209 * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
6210 * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
6211 * subsequent VM-entry would fail.
6212 *
6213 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
6214 */
6215 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
6216 && uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
6217 && ( enmRaise == IEMXCPTRAISE_PREV_EVENT
6218 || (fRaiseInfo & IEMXCPTRAISEINFO_NMI_PF))
6219 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6220 {
6221 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6222 }
6223
6224 switch (enmRaise)
6225 {
6226 case IEMXCPTRAISE_CURRENT_XCPT:
6227 {
6228 Log4Func(("IDT: Pending secondary Xcpt: uIdtVectoringInfo=%#RX64 uExitIntInfo=%#RX64\n",
6229 pVmxTransient->uIdtVectoringInfo, pVmxTransient->uExitIntInfo));
6230 Assert(rcStrict == VINF_SUCCESS);
6231 break;
6232 }
6233
6234 case IEMXCPTRAISE_PREV_EVENT:
6235 {
6236 uint32_t u32ErrCode;
6237 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo))
6238 {
6239 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
6240 AssertRCReturn(rc2, rc2);
6241 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
6242 }
6243 else
6244 u32ErrCode = 0;
6245
6246 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
6247 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6248 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
6249 0 /* cbInstr */, u32ErrCode, pVCpu->cpum.GstCtx.cr2);
6250
6251 Log4Func(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->hm.s.Event.u64IntInfo,
6252 pVCpu->hm.s.Event.u32ErrCode));
6253 Assert(rcStrict == VINF_SUCCESS);
6254 break;
6255 }
6256
6257 case IEMXCPTRAISE_REEXEC_INSTR:
6258 Assert(rcStrict == VINF_SUCCESS);
6259 break;
6260
6261 case IEMXCPTRAISE_DOUBLE_FAULT:
6262 {
6263 /*
6264 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
6265 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
6266 */
6267 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
6268 {
6269 pVmxTransient->fVectoringDoublePF = true;
6270 Log4Func(("IDT: Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo,
6271 pVCpu->cpum.GstCtx.cr2));
6272 rcStrict = VINF_SUCCESS;
6273 }
6274 else
6275 {
6276 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6277 hmR0VmxSetPendingXcptDF(pVCpu);
6278 Log4Func(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
6279 uIdtVector, uExitVector));
6280 rcStrict = VINF_HM_DOUBLE_FAULT;
6281 }
6282 break;
6283 }
6284
6285 case IEMXCPTRAISE_TRIPLE_FAULT:
6286 {
6287 Log4Func(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector, uExitVector));
6288 rcStrict = VINF_EM_RESET;
6289 break;
6290 }
6291
6292 case IEMXCPTRAISE_CPU_HANG:
6293 {
6294 Log4Func(("IDT: Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", fRaiseInfo));
6295 rcStrict = VERR_EM_GUEST_CPU_HANG;
6296 break;
6297 }
6298
6299 default:
6300 {
6301 AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
6302 rcStrict = VERR_VMX_IPE_2;
6303 break;
6304 }
6305 }
6306 }
6307 else if ( VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
6308 && VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
6309 && uExitVector != X86_XCPT_DF
6310 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6311 {
6312 /*
6313 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
6314 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
6315 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
6316 */
6317 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6318 {
6319 Log4Func(("Setting VMCPU_FF_BLOCK_NMIS. fValid=%RTbool uExitReason=%u\n",
6320 VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
6321 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6322 }
6323 }
6324
6325 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
6326 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
6327 return rcStrict;
6328}
6329
6330
6331/**
6332 * Imports a guest segment register from the current VMCS into
6333 * the guest-CPU context.
6334 *
6335 * @returns VBox status code.
6336 * @param pVCpu The cross context virtual CPU structure.
6337 * @param idxSel Index of the selector in the VMCS.
6338 * @param idxLimit Index of the segment limit in the VMCS.
6339 * @param idxBase Index of the segment base in the VMCS.
6340 * @param idxAccess Index of the access rights of the segment in the VMCS.
6341 * @param pSelReg Pointer to the segment selector.
6342 *
6343 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
6344 * do not log!
6345 *
6346 * @remarks Never call this function directly!!! Use the
6347 * HMVMX_IMPORT_SREG() macro as that takes care
6348 * of whether to read from the VMCS cache or not.
6349 */
6350static int hmR0VmxImportGuestSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
6351 PCPUMSELREG pSelReg)
6352{
6353 NOREF(pVCpu);
6354
6355 uint32_t u32Sel;
6356 uint32_t u32Limit;
6357 uint32_t u32Attr;
6358 uint64_t u64Base;
6359 int rc = VMXReadVmcs32(idxSel, &u32Sel);
6360 rc |= VMXReadVmcs32(idxLimit, &u32Limit);
6361 rc |= VMXReadVmcs32(idxAccess, &u32Attr);
6362 rc |= VMXReadVmcsGstNByIdxVal(idxBase, &u64Base);
6363 AssertRCReturn(rc, rc);
6364
6365 pSelReg->Sel = (uint16_t)u32Sel;
6366 pSelReg->ValidSel = (uint16_t)u32Sel;
6367 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6368 pSelReg->u32Limit = u32Limit;
6369 pSelReg->u64Base = u64Base;
6370 pSelReg->Attr.u = u32Attr;
6371
6372 /*
6373 * If VT-x marks the segment as unusable, most other bits remain undefined:
6374 * - For CS the L, D and G bits have meaning.
6375 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
6376 * - For the remaining data segments no bits are defined.
6377 *
6378 * The present bit and the unusable bit has been observed to be set at the
6379 * same time (the selector was supposed to be invalid as we started executing
6380 * a V8086 interrupt in ring-0).
6381 *
6382 * What should be important for the rest of the VBox code, is that the P bit is
6383 * cleared. Some of the other VBox code recognizes the unusable bit, but
6384 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
6385 * safe side here, we'll strip off P and other bits we don't care about. If
6386 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
6387 *
6388 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
6389 */
6390 if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
6391 {
6392 Assert(idxSel != VMX_VMCS16_GUEST_TR_SEL); /* TR is the only selector that can never be unusable. */
6393
6394 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
6395 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
6396 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
6397#ifdef VBOX_STRICT
6398 VMMRZCallRing3Disable(pVCpu);
6399 Log4Func(("Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Sel, pSelReg->Attr.u));
6400# ifdef DEBUG_bird
6401 AssertMsg((u32Attr & ~X86DESCATTR_P) == pSelReg->Attr.u,
6402 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
6403 idxSel, u32Sel, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
6404# endif
6405 VMMRZCallRing3Enable(pVCpu);
6406#endif
6407 }
6408 return VINF_SUCCESS;
6409}
6410
6411
6412/**
6413 * Imports the guest RIP from the VMCS back into the guest-CPU context.
6414 *
6415 * @returns VBox status code.
6416 * @param pVCpu The cross context virtual CPU structure.
6417 *
6418 * @remarks Called with interrupts and/or preemption disabled, should not assert!
6419 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6420 * instead!!!
6421 */
6422DECLINLINE(int) hmR0VmxImportGuestRip(PVMCPU pVCpu)
6423{
6424 uint64_t u64Val;
6425 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6426 if (pCtx->fExtrn & CPUMCTX_EXTRN_RIP)
6427 {
6428 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
6429 if (RT_SUCCESS(rc))
6430 {
6431 pCtx->rip = u64Val;
6432 EMR0HistoryUpdatePC(pVCpu, pCtx->rip, false);
6433 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RIP;
6434 }
6435 return rc;
6436 }
6437 return VINF_SUCCESS;
6438}
6439
6440
6441/**
6442 * Imports the guest RFLAGS from the VMCS back into the guest-CPU context.
6443 *
6444 * @returns VBox status code.
6445 * @param pVCpu The cross context virtual CPU structure.
6446 *
6447 * @remarks Called with interrupts and/or preemption disabled, should not assert!
6448 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6449 * instead!!!
6450 */
6451DECLINLINE(int) hmR0VmxImportGuestRFlags(PVMCPU pVCpu)
6452{
6453 uint32_t u32Val;
6454 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6455 if (pCtx->fExtrn & CPUMCTX_EXTRN_RFLAGS)
6456 {
6457 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val);
6458 if (RT_SUCCESS(rc))
6459 {
6460 pCtx->eflags.u32 = u32Val;
6461
6462 /* Restore eflags for real-on-v86-mode hack. */
6463 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6464 {
6465 pCtx->eflags.Bits.u1VM = 0;
6466 pCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
6467 }
6468 }
6469 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
6470 return rc;
6471 }
6472 return VINF_SUCCESS;
6473}
6474
6475
6476/**
6477 * Imports the guest interruptibility-state from the VMCS back into the guest-CPU
6478 * context.
6479 *
6480 * @returns VBox status code.
6481 * @param pVCpu The cross context virtual CPU structure.
6482 *
6483 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
6484 * do not log!
6485 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6486 * instead!!!
6487 */
6488DECLINLINE(int) hmR0VmxImportGuestIntrState(PVMCPU pVCpu)
6489{
6490 uint32_t u32Val;
6491 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6492 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32Val);
6493 if (RT_SUCCESS(rc))
6494 {
6495 /*
6496 * We additionally have a requirement to import RIP, RFLAGS depending on whether we
6497 * might need them in hmR0VmxEvaluatePendingEvent().
6498 */
6499 if (!u32Val)
6500 {
6501 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6502 {
6503 rc = hmR0VmxImportGuestRip(pVCpu);
6504 rc |= hmR0VmxImportGuestRFlags(pVCpu);
6505 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6506 }
6507
6508 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6509 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6510 }
6511 else
6512 {
6513 rc = hmR0VmxImportGuestRip(pVCpu);
6514 rc |= hmR0VmxImportGuestRFlags(pVCpu);
6515
6516 if (u32Val & ( VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
6517 | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
6518 {
6519 EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
6520 }
6521 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6522 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6523
6524 if (u32Val & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
6525 {
6526 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6527 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6528 }
6529 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6530 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6531 }
6532 }
6533 return rc;
6534}
6535
6536
6537/**
6538 * Worker for VMXR0ImportStateOnDemand.
6539 *
6540 * @returns VBox status code.
6541 * @param pVCpu The cross context virtual CPU structure.
6542 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
6543 */
6544static int hmR0VmxImportGuestState(PVMCPU pVCpu, uint64_t fWhat)
6545{
6546#define VMXLOCAL_BREAK_RC(a_rc) \
6547 if (RT_FAILURE(a_rc)) \
6548 break
6549
6550 int rc = VINF_SUCCESS;
6551 PVM pVM = pVCpu->CTX_SUFF(pVM);
6552 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6553 uint64_t u64Val;
6554 uint32_t u32Val;
6555
6556 Log4Func(("fExtrn=%#RX64 fWhat=%#RX64\n", pCtx->fExtrn, fWhat));
6557 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
6558
6559 /*
6560 * We disable interrupts to make the updating of the state and in particular
6561 * the fExtrn modification atomic wrt to preemption hooks.
6562 */
6563 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
6564
6565 fWhat &= pCtx->fExtrn;
6566 if (fWhat)
6567 {
6568 do
6569 {
6570 if (fWhat & CPUMCTX_EXTRN_RIP)
6571 {
6572 rc = hmR0VmxImportGuestRip(pVCpu);
6573 VMXLOCAL_BREAK_RC(rc);
6574 }
6575
6576 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
6577 {
6578 rc = hmR0VmxImportGuestRFlags(pVCpu);
6579 VMXLOCAL_BREAK_RC(rc);
6580 }
6581
6582 if (fWhat & CPUMCTX_EXTRN_HM_VMX_INT_STATE)
6583 {
6584 rc = hmR0VmxImportGuestIntrState(pVCpu);
6585 VMXLOCAL_BREAK_RC(rc);
6586 }
6587
6588 if (fWhat & CPUMCTX_EXTRN_RSP)
6589 {
6590 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
6591 VMXLOCAL_BREAK_RC(rc);
6592 pCtx->rsp = u64Val;
6593 }
6594
6595 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
6596 {
6597 if (fWhat & CPUMCTX_EXTRN_CS)
6598 {
6599 rc = HMVMX_IMPORT_SREG(CS, &pCtx->cs);
6600 rc |= hmR0VmxImportGuestRip(pVCpu);
6601 VMXLOCAL_BREAK_RC(rc);
6602 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6603 pCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
6604 EMR0HistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true);
6605 }
6606 if (fWhat & CPUMCTX_EXTRN_SS)
6607 {
6608 rc = HMVMX_IMPORT_SREG(SS, &pCtx->ss);
6609 VMXLOCAL_BREAK_RC(rc);
6610 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6611 pCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
6612 }
6613 if (fWhat & CPUMCTX_EXTRN_DS)
6614 {
6615 rc = HMVMX_IMPORT_SREG(DS, &pCtx->ds);
6616 VMXLOCAL_BREAK_RC(rc);
6617 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6618 pCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
6619 }
6620 if (fWhat & CPUMCTX_EXTRN_ES)
6621 {
6622 rc = HMVMX_IMPORT_SREG(ES, &pCtx->es);
6623 VMXLOCAL_BREAK_RC(rc);
6624 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6625 pCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
6626 }
6627 if (fWhat & CPUMCTX_EXTRN_FS)
6628 {
6629 rc = HMVMX_IMPORT_SREG(FS, &pCtx->fs);
6630 VMXLOCAL_BREAK_RC(rc);
6631 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6632 pCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
6633 }
6634 if (fWhat & CPUMCTX_EXTRN_GS)
6635 {
6636 rc = HMVMX_IMPORT_SREG(GS, &pCtx->gs);
6637 VMXLOCAL_BREAK_RC(rc);
6638 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6639 pCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
6640 }
6641 }
6642
6643 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
6644 {
6645 if (fWhat & CPUMCTX_EXTRN_LDTR)
6646 {
6647 rc = HMVMX_IMPORT_SREG(LDTR, &pCtx->ldtr);
6648 VMXLOCAL_BREAK_RC(rc);
6649 }
6650
6651 if (fWhat & CPUMCTX_EXTRN_GDTR)
6652 {
6653 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
6654 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
6655 VMXLOCAL_BREAK_RC(rc);
6656 pCtx->gdtr.pGdt = u64Val;
6657 pCtx->gdtr.cbGdt = u32Val;
6658 }
6659
6660 /* Guest IDTR. */
6661 if (fWhat & CPUMCTX_EXTRN_IDTR)
6662 {
6663 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
6664 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
6665 VMXLOCAL_BREAK_RC(rc);
6666 pCtx->idtr.pIdt = u64Val;
6667 pCtx->idtr.cbIdt = u32Val;
6668 }
6669
6670 /* Guest TR. */
6671 if (fWhat & CPUMCTX_EXTRN_TR)
6672 {
6673 /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR, don't save that one. */
6674 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6675 {
6676 rc = HMVMX_IMPORT_SREG(TR, &pCtx->tr);
6677 VMXLOCAL_BREAK_RC(rc);
6678 }
6679 }
6680 }
6681
6682 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
6683 {
6684 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &pCtx->SysEnter.eip);
6685 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &pCtx->SysEnter.esp);
6686 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val);
6687 pCtx->SysEnter.cs = u32Val;
6688 VMXLOCAL_BREAK_RC(rc);
6689 }
6690
6691#if HC_ARCH_BITS == 64
6692 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
6693 {
6694 if ( pVM->hm.s.fAllow64BitGuests
6695 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
6696 pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
6697 }
6698
6699 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
6700 {
6701 if ( pVM->hm.s.fAllow64BitGuests
6702 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
6703 {
6704 pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
6705 pCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
6706 pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
6707 }
6708 }
6709#endif
6710
6711 if ( (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
6712#if HC_ARCH_BITS == 32
6713 || (fWhat & (CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS))
6714#endif
6715 )
6716 {
6717 PCVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
6718 uint32_t const cMsrs = pVCpu->hm.s.vmx.cMsrs;
6719 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
6720 {
6721 switch (pMsr->u32Msr)
6722 {
6723#if HC_ARCH_BITS == 32
6724 case MSR_K8_LSTAR: pCtx->msrLSTAR = pMsr->u64Value; break;
6725 case MSR_K6_STAR: pCtx->msrSTAR = pMsr->u64Value; break;
6726 case MSR_K8_SF_MASK: pCtx->msrSFMASK = pMsr->u64Value; break;
6727 case MSR_K8_KERNEL_GS_BASE: pCtx->msrKERNELGSBASE = pMsr->u64Value; break;
6728#endif
6729 case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsr->u64Value); break;
6730 case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsr->u64Value); break;
6731 case MSR_K6_EFER: /* EFER can't be changed without causing a VM-exit */ break;
6732 default:
6733 {
6734 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
6735 ASMSetFlags(fEFlags);
6736 AssertMsgFailed(("Unexpected MSR in auto-load/store area. uMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr,
6737 cMsrs));
6738 return VERR_HM_UNEXPECTED_LD_ST_MSR;
6739 }
6740 }
6741 }
6742 }
6743
6744 if (fWhat & CPUMCTX_EXTRN_DR7)
6745 {
6746 if (!pVCpu->hm.s.fUsingHyperDR7)
6747 {
6748 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
6749 rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val);
6750 VMXLOCAL_BREAK_RC(rc);
6751 pCtx->dr[7] = u32Val;
6752 }
6753 }
6754
6755 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
6756 {
6757 uint32_t u32Shadow;
6758 if (fWhat & CPUMCTX_EXTRN_CR0)
6759 {
6760 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val);
6761 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u32Shadow);
6762 VMXLOCAL_BREAK_RC(rc);
6763 u32Val = (u32Val & ~pVCpu->hm.s.vmx.u32Cr0Mask)
6764 | (u32Shadow & pVCpu->hm.s.vmx.u32Cr0Mask);
6765 VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
6766 CPUMSetGuestCR0(pVCpu, u32Val);
6767 VMMRZCallRing3Enable(pVCpu);
6768 }
6769
6770 if (fWhat & CPUMCTX_EXTRN_CR4)
6771 {
6772 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32Val);
6773 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u32Shadow);
6774 VMXLOCAL_BREAK_RC(rc);
6775 u32Val = (u32Val & ~pVCpu->hm.s.vmx.u32Cr4Mask)
6776 | (u32Shadow & pVCpu->hm.s.vmx.u32Cr4Mask);
6777 CPUMSetGuestCR4(pVCpu, u32Val);
6778 }
6779
6780 if (fWhat & CPUMCTX_EXTRN_CR3)
6781 {
6782 /* CR0.PG bit changes are always intercepted, so it's up to date. */
6783 if ( pVM->hm.s.vmx.fUnrestrictedGuest
6784 || ( pVM->hm.s.fNestedPaging
6785 && CPUMIsGuestPagingEnabledEx(pCtx)))
6786 {
6787 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
6788 if (pCtx->cr3 != u64Val)
6789 {
6790 CPUMSetGuestCR3(pVCpu, u64Val);
6791 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
6792 }
6793
6794 /* If the guest is in PAE mode, sync back the PDPE's into the guest state.
6795 Note: CR4.PAE, CR0.PG, EFER bit changes are always intercepted, so they're up to date. */
6796 if (CPUMIsGuestInPAEModeEx(pCtx))
6797 {
6798 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
6799 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
6800 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
6801 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
6802 VMXLOCAL_BREAK_RC(rc);
6803 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
6804 }
6805 }
6806 }
6807 }
6808 } while (0);
6809
6810 if (RT_SUCCESS(rc))
6811 {
6812 /* Update fExtrn. */
6813 pCtx->fExtrn &= ~fWhat;
6814
6815 /* If everything has been imported, clear the HM keeper bit. */
6816 if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
6817 {
6818 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
6819 Assert(!pCtx->fExtrn);
6820 }
6821 }
6822 }
6823 else
6824 AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn));
6825
6826 ASMSetFlags(fEFlags);
6827
6828 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
6829
6830 /*
6831 * Honor any pending CR3 updates.
6832 *
6833 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
6834 * -> VMMRZCallRing3Disable() -> hmR0VmxImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
6835 * -> continue with VM-exit handling -> hmR0VmxImportGuestState() and here we are.
6836 *
6837 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
6838 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
6839 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
6840 * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
6841 *
6842 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
6843 */
6844 if (VMMRZCallRing3IsEnabled(pVCpu))
6845 {
6846 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6847 {
6848 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3));
6849 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
6850 }
6851
6852 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6853 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6854
6855 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6856 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6857 }
6858
6859 return VINF_SUCCESS;
6860#undef VMXLOCAL_BREAK_RC
6861}
6862
6863
6864/**
6865 * Saves the guest state from the VMCS into the guest-CPU context.
6866 *
6867 * @returns VBox status code.
6868 * @param pVCpu The cross context virtual CPU structure.
6869 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
6870 */
6871VMMR0DECL(int) VMXR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
6872{
6873 return hmR0VmxImportGuestState(pVCpu, fWhat);
6874}
6875
6876
6877/**
6878 * Check per-VM and per-VCPU force flag actions that require us to go back to
6879 * ring-3 for one reason or another.
6880 *
6881 * @returns Strict VBox status code (i.e. informational status codes too)
6882 * @retval VINF_SUCCESS if we don't have any actions that require going back to
6883 * ring-3.
6884 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
6885 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
6886 * interrupts)
6887 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
6888 * all EMTs to be in ring-3.
6889 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
6890 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
6891 * to the EM loop.
6892 *
6893 * @param pVCpu The cross context virtual CPU structure.
6894 * @param fStepping Running in hmR0VmxRunGuestCodeStep().
6895 */
6896static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVMCPU pVCpu, bool fStepping)
6897{
6898 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6899
6900 /*
6901 * Anything pending? Should be more likely than not if we're doing a good job.
6902 */
6903 PVM pVM = pVCpu->CTX_SUFF(pVM);
6904 if ( !fStepping
6905 ? !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_MASK)
6906 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
6907 : !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
6908 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
6909 return VINF_SUCCESS;
6910
6911 /* Pending PGM C3 sync. */
6912 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
6913 {
6914 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6915 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4)));
6916 VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4,
6917 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
6918 if (rcStrict2 != VINF_SUCCESS)
6919 {
6920 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
6921 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
6922 return rcStrict2;
6923 }
6924 }
6925
6926 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
6927 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
6928 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
6929 {
6930 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
6931 int rc2 = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
6932 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
6933 return rc2;
6934 }
6935
6936 /* Pending VM request packets, such as hardware interrupts. */
6937 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
6938 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
6939 {
6940 Log4Func(("Pending VM request forcing us back to ring-3\n"));
6941 return VINF_EM_PENDING_REQUEST;
6942 }
6943
6944 /* Pending PGM pool flushes. */
6945 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
6946 {
6947 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
6948 return VINF_PGM_POOL_FLUSH_PENDING;
6949 }
6950
6951 /* Pending DMA requests. */
6952 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
6953 {
6954 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
6955 return VINF_EM_RAW_TO_R3;
6956 }
6957
6958 return VINF_SUCCESS;
6959}
6960
6961
6962/**
6963 * Converts any TRPM trap into a pending HM event. This is typically used when
6964 * entering from ring-3 (not longjmp returns).
6965 *
6966 * @param pVCpu The cross context virtual CPU structure.
6967 */
6968static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
6969{
6970 Assert(TRPMHasTrap(pVCpu));
6971 Assert(!pVCpu->hm.s.Event.fPending);
6972
6973 uint8_t uVector;
6974 TRPMEVENT enmTrpmEvent;
6975 RTGCUINT uErrCode;
6976 RTGCUINTPTR GCPtrFaultAddress;
6977 uint8_t cbInstr;
6978
6979 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
6980 AssertRC(rc);
6981
6982 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
6983 uint32_t u32IntInfo = uVector | VMX_EXIT_INT_INFO_VALID;
6984 if (enmTrpmEvent == TRPM_TRAP)
6985 {
6986 switch (uVector)
6987 {
6988 case X86_XCPT_NMI:
6989 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
6990 break;
6991
6992 case X86_XCPT_BP:
6993 case X86_XCPT_OF:
6994 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
6995 break;
6996
6997 case X86_XCPT_PF:
6998 case X86_XCPT_DF:
6999 case X86_XCPT_TS:
7000 case X86_XCPT_NP:
7001 case X86_XCPT_SS:
7002 case X86_XCPT_GP:
7003 case X86_XCPT_AC:
7004 u32IntInfo |= VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7005 RT_FALL_THRU();
7006 default:
7007 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7008 break;
7009 }
7010 }
7011 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
7012 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7013 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
7014 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7015 else
7016 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
7017
7018 rc = TRPMResetTrap(pVCpu);
7019 AssertRC(rc);
7020 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
7021 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
7022
7023 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
7024}
7025
7026
7027/**
7028 * Converts the pending HM event into a TRPM trap.
7029 *
7030 * @param pVCpu The cross context virtual CPU structure.
7031 */
7032static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
7033{
7034 Assert(pVCpu->hm.s.Event.fPending);
7035
7036 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7037 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
7038 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVCpu->hm.s.Event.u64IntInfo);
7039 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
7040
7041 /* If a trap was already pending, we did something wrong! */
7042 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
7043
7044 TRPMEVENT enmTrapType;
7045 switch (uVectorType)
7046 {
7047 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7048 enmTrapType = TRPM_HARDWARE_INT;
7049 break;
7050
7051 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7052 enmTrapType = TRPM_SOFTWARE_INT;
7053 break;
7054
7055 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7056 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
7057 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
7058 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7059 enmTrapType = TRPM_TRAP;
7060 break;
7061
7062 default:
7063 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
7064 enmTrapType = TRPM_32BIT_HACK;
7065 break;
7066 }
7067
7068 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
7069
7070 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7071 AssertRC(rc);
7072
7073 if (fErrorCodeValid)
7074 TRPMSetErrorCode(pVCpu, uErrorCode);
7075
7076 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
7077 && uVector == X86_XCPT_PF)
7078 {
7079 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
7080 }
7081 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7082 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
7083 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
7084 {
7085 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7086 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
7087 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
7088 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
7089 }
7090
7091 /* Clear any pending events from the VMCS. */
7092 VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);
7093 VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0);
7094
7095 /* We're now done converting the pending event. */
7096 pVCpu->hm.s.Event.fPending = false;
7097}
7098
7099
7100/**
7101 * Does the necessary state syncing before returning to ring-3 for any reason
7102 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
7103 *
7104 * @returns VBox status code.
7105 * @param pVCpu The cross context virtual CPU structure.
7106 * @param fImportState Whether to import the guest state from the VMCS back
7107 * to the guest-CPU context.
7108 *
7109 * @remarks No-long-jmp zone!!!
7110 */
7111static int hmR0VmxLeave(PVMCPU pVCpu, bool fImportState)
7112{
7113 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7114 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7115
7116 RTCPUID idCpu = RTMpCpuId();
7117 Log4Func(("HostCpuId=%u\n", idCpu));
7118
7119 /*
7120 * !!! IMPORTANT !!!
7121 * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
7122 */
7123
7124 /* Save the guest state if necessary. */
7125 if (fImportState)
7126 {
7127 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
7128 AssertRCReturn(rc, rc);
7129 }
7130
7131 /* Restore host FPU state if necessary. We will resync on next R0 reentry. */
7132 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7133 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
7134
7135 /* Restore host debug registers if necessary. We will resync on next R0 reentry. */
7136#ifdef VBOX_STRICT
7137 if (CPUMIsHyperDebugStateActive(pVCpu))
7138 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
7139#endif
7140 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7141 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
7142 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
7143
7144#if HC_ARCH_BITS == 64
7145 /* Restore host-state bits that VT-x only restores partially. */
7146 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7147 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7148 {
7149 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
7150 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7151 }
7152 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7153#endif
7154
7155 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7156 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
7157 {
7158 /* We shouldn't restore the host MSRs without saving the guest MSRs first. */
7159 if (!fImportState)
7160 {
7161 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS);
7162 AssertRCReturn(rc, rc);
7163 }
7164 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7165 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
7166 }
7167 else
7168 pVCpu->hm.s.vmx.fLazyMsrs = 0;
7169
7170 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7171 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7172
7173 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
7174 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
7175 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
7176 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
7177 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
7178 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
7179 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
7180 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
7181 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7182
7183 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7184
7185 /** @todo This partially defeats the purpose of having preemption hooks.
7186 * The problem is, deregistering the hooks should be moved to a place that
7187 * lasts until the EMT is about to be destroyed not everytime while leaving HM
7188 * context.
7189 */
7190 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7191 {
7192 int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7193 AssertRCReturn(rc, rc);
7194
7195 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7196 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
7197 }
7198 Assert(!(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
7199 NOREF(idCpu);
7200
7201 return VINF_SUCCESS;
7202}
7203
7204
7205/**
7206 * Leaves the VT-x session.
7207 *
7208 * @returns VBox status code.
7209 * @param pVCpu The cross context virtual CPU structure.
7210 *
7211 * @remarks No-long-jmp zone!!!
7212 */
7213static int hmR0VmxLeaveSession(PVMCPU pVCpu)
7214{
7215 HM_DISABLE_PREEMPT(pVCpu);
7216 HMVMX_ASSERT_CPU_SAFE(pVCpu);
7217 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7218 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7219
7220 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
7221 and done this from the VMXR0ThreadCtxCallback(). */
7222 if (!pVCpu->hm.s.fLeaveDone)
7223 {
7224 int rc2 = hmR0VmxLeave(pVCpu, true /* fImportState */);
7225 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
7226 pVCpu->hm.s.fLeaveDone = true;
7227 }
7228 Assert(!pVCpu->cpum.GstCtx.fExtrn);
7229
7230 /*
7231 * !!! IMPORTANT !!!
7232 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
7233 */
7234
7235 /* Deregister hook now that we've left HM context before re-enabling preemption. */
7236 /** @todo Deregistering here means we need to VMCLEAR always
7237 * (longjmp/exit-to-r3) in VT-x which is not efficient, eliminate need
7238 * for calling VMMR0ThreadCtxHookDisable here! */
7239 VMMR0ThreadCtxHookDisable(pVCpu);
7240
7241 /* Leave HM context. This takes care of local init (term). */
7242 int rc = HMR0LeaveCpu(pVCpu);
7243
7244 HM_RESTORE_PREEMPT();
7245 return rc;
7246}
7247
7248
7249/**
7250 * Does the necessary state syncing before doing a longjmp to ring-3.
7251 *
7252 * @returns VBox status code.
7253 * @param pVCpu The cross context virtual CPU structure.
7254 *
7255 * @remarks No-long-jmp zone!!!
7256 */
7257DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu)
7258{
7259 return hmR0VmxLeaveSession(pVCpu);
7260}
7261
7262
7263/**
7264 * Take necessary actions before going back to ring-3.
7265 *
7266 * An action requires us to go back to ring-3. This function does the necessary
7267 * steps before we can safely return to ring-3. This is not the same as longjmps
7268 * to ring-3, this is voluntary and prepares the guest so it may continue
7269 * executing outside HM (recompiler/IEM).
7270 *
7271 * @returns VBox status code.
7272 * @param pVCpu The cross context virtual CPU structure.
7273 * @param rcExit The reason for exiting to ring-3. Can be
7274 * VINF_VMM_UNKNOWN_RING3_CALL.
7275 */
7276static int hmR0VmxExitToRing3(PVMCPU pVCpu, VBOXSTRICTRC rcExit)
7277{
7278 Assert(pVCpu);
7279 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7280
7281 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
7282 {
7283 VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VMCSPhys);
7284 pVCpu->hm.s.vmx.LastError.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
7285 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
7286 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
7287 }
7288
7289 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
7290 VMMRZCallRing3Disable(pVCpu);
7291 Log4Func(("rcExit=%d\n", VBOXSTRICTRC_VAL(rcExit)));
7292
7293 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
7294 if (pVCpu->hm.s.Event.fPending)
7295 {
7296 hmR0VmxPendingEventToTrpmTrap(pVCpu);
7297 Assert(!pVCpu->hm.s.Event.fPending);
7298 }
7299
7300 /* Clear interrupt-window and NMI-window controls as we re-evaluate it when we return from ring-3. */
7301 hmR0VmxClearIntNmiWindowsVmcs(pVCpu);
7302
7303 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
7304 and if we're injecting an event we should have a TRPM trap pending. */
7305 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7306#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a triple fault in progress. */
7307 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7308#endif
7309
7310 /* Save guest state and restore host state bits. */
7311 int rc = hmR0VmxLeaveSession(pVCpu);
7312 AssertRCReturn(rc, rc);
7313 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7314 /* Thread-context hooks are unregistered at this point!!! */
7315
7316 /* Sync recompiler state. */
7317 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
7318 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
7319 | CPUM_CHANGED_LDTR
7320 | CPUM_CHANGED_GDTR
7321 | CPUM_CHANGED_IDTR
7322 | CPUM_CHANGED_TR
7323 | CPUM_CHANGED_HIDDEN_SEL_REGS);
7324 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
7325 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
7326 {
7327 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
7328 }
7329
7330 Assert(!pVCpu->hm.s.fClearTrapFlag);
7331
7332 /* Update the exit-to-ring 3 reason. */
7333 pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
7334
7335 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
7336 if (rcExit != VINF_EM_RAW_INTERRUPT)
7337 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7338
7339 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
7340
7341 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
7342 VMMRZCallRing3RemoveNotification(pVCpu);
7343 VMMRZCallRing3Enable(pVCpu);
7344
7345 return rc;
7346}
7347
7348
7349/**
7350 * VMMRZCallRing3() callback wrapper which saves the guest state before we
7351 * longjump to ring-3 and possibly get preempted.
7352 *
7353 * @returns VBox status code.
7354 * @param pVCpu The cross context virtual CPU structure.
7355 * @param enmOperation The operation causing the ring-3 longjump.
7356 * @param pvUser User argument, currently unused, NULL.
7357 */
7358static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
7359{
7360 RT_NOREF(pvUser);
7361 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
7362 {
7363 /*
7364 * !!! IMPORTANT !!!
7365 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
7366 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
7367 */
7368 VMMRZCallRing3RemoveNotification(pVCpu);
7369 VMMRZCallRing3Disable(pVCpu);
7370 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
7371 RTThreadPreemptDisable(&PreemptState);
7372
7373 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
7374 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7375 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7376
7377#if HC_ARCH_BITS == 64
7378 /* Restore host-state bits that VT-x only restores partially. */
7379 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7380 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7381 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7382 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7383#endif
7384
7385 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7386 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
7387 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7388
7389 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7390 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7391 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7392 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7393 {
7394 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7395 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7396 }
7397
7398 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7399 VMMR0ThreadCtxHookDisable(pVCpu);
7400 HMR0LeaveCpu(pVCpu);
7401 RTThreadPreemptRestore(&PreemptState);
7402 return VINF_SUCCESS;
7403 }
7404
7405 Assert(pVCpu);
7406 Assert(pvUser);
7407 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7408 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7409
7410 VMMRZCallRing3Disable(pVCpu);
7411 Assert(VMMR0IsLogFlushDisabled(pVCpu));
7412
7413 Log4Func((" -> hmR0VmxLongJmpToRing3 enmOperation=%d\n", enmOperation));
7414
7415 int rc = hmR0VmxLongJmpToRing3(pVCpu);
7416 AssertRCReturn(rc, rc);
7417
7418 VMMRZCallRing3Enable(pVCpu);
7419 return VINF_SUCCESS;
7420}
7421
7422
7423/**
7424 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7425 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7426 *
7427 * @param pVCpu The cross context virtual CPU structure.
7428 */
7429DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
7430{
7431 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_INT_WINDOW_EXIT))
7432 {
7433 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
7434 {
7435 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_PROC_CTLS_INT_WINDOW_EXIT;
7436 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7437 AssertRC(rc);
7438 Log4Func(("Setup interrupt-window exiting\n"));
7439 }
7440 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
7441}
7442
7443
7444/**
7445 * Clears the interrupt-window exiting control in the VMCS.
7446 *
7447 * @param pVCpu The cross context virtual CPU structure.
7448 */
7449DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMCPU pVCpu)
7450{
7451 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT);
7452 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_INT_WINDOW_EXIT;
7453 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7454 AssertRC(rc);
7455 Log4Func(("Cleared interrupt-window exiting\n"));
7456}
7457
7458
7459/**
7460 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7461 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7462 *
7463 * @param pVCpu The cross context virtual CPU structure.
7464 */
7465DECLINLINE(void) hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu)
7466{
7467 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
7468 {
7469 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
7470 {
7471 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7472 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7473 AssertRC(rc);
7474 Log4Func(("Setup NMI-window exiting\n"));
7475 }
7476 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7477}
7478
7479
7480/**
7481 * Clears the NMI-window exiting control in the VMCS.
7482 *
7483 * @param pVCpu The cross context virtual CPU structure.
7484 */
7485DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMCPU pVCpu)
7486{
7487 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT);
7488 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7489 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7490 AssertRC(rc);
7491 Log4Func(("Cleared NMI-window exiting\n"));
7492}
7493
7494
7495/**
7496 * Evaluates the event to be delivered to the guest and sets it as the pending
7497 * event.
7498 *
7499 * @returns The VT-x guest-interruptibility state.
7500 * @param pVCpu The cross context virtual CPU structure.
7501 */
7502static uint32_t hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu)
7503{
7504 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7505 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7506 uint32_t const fIntrState = hmR0VmxGetGuestIntrState(pVCpu);
7507 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
7508 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
7509 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
7510
7511 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_RFLAGS));
7512 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7513 Assert(!fBlockSti || pCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7514 Assert(!TRPMHasTrap(pVCpu));
7515
7516 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7517 APICUpdatePendingInterrupts(pVCpu);
7518
7519 /*
7520 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
7521 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
7522 */
7523 /** @todo SMI. SMIs take priority over NMIs. */
7524 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
7525 {
7526 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
7527 if ( !pVCpu->hm.s.Event.fPending
7528 && !fBlockNmi
7529 && !fBlockSti
7530 && !fBlockMovSS)
7531 {
7532 Log4Func(("Pending NMI\n"));
7533 uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INT_INFO_VALID;
7534 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7535
7536 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7537 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
7538 }
7539 else
7540 hmR0VmxSetNmiWindowExitVmcs(pVCpu);
7541 }
7542 /*
7543 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
7544 * a valid interrupt we must- deliver the interrupt. We can no longer re-request it from the APIC.
7545 */
7546 else if ( VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
7547 && !pVCpu->hm.s.fSingleInstruction)
7548 {
7549 Assert(!DBGFIsStepping(pVCpu));
7550 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
7551 AssertRCReturn(rc, 0);
7552 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
7553 if ( !pVCpu->hm.s.Event.fPending
7554 && !fBlockInt
7555 && !fBlockSti
7556 && !fBlockMovSS)
7557 {
7558 uint8_t u8Interrupt;
7559 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
7560 if (RT_SUCCESS(rc))
7561 {
7562 Log4Func(("Pending external interrupt u8Interrupt=%#x\n", u8Interrupt));
7563 uint32_t u32IntInfo = u8Interrupt
7564 | VMX_EXIT_INT_INFO_VALID
7565 | (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7566
7567 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
7568 }
7569 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
7570 {
7571 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
7572 hmR0VmxApicSetTprThreshold(pVCpu, u8Interrupt >> 4);
7573 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
7574
7575 /*
7576 * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
7577 * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
7578 * need to re-set this force-flag here.
7579 */
7580 }
7581 else
7582 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
7583 }
7584 else
7585 hmR0VmxSetIntWindowExitVmcs(pVCpu);
7586 }
7587
7588 return fIntrState;
7589}
7590
7591
7592/**
7593 * Sets a pending-debug exception to be delivered to the guest if the guest is
7594 * single-stepping in the VMCS.
7595 *
7596 * @param pVCpu The cross context virtual CPU structure.
7597 */
7598DECLINLINE(int) hmR0VmxSetPendingDebugXcptVmcs(PVMCPU pVCpu)
7599{
7600 Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
7601 RT_NOREF(pVCpu);
7602 return VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS);
7603}
7604
7605
7606/**
7607 * Injects any pending events into the guest if the guest is in a state to
7608 * receive them.
7609 *
7610 * @returns Strict VBox status code (i.e. informational status codes too).
7611 * @param pVCpu The cross context virtual CPU structure.
7612 * @param fIntrState The VT-x guest-interruptibility state.
7613 * @param fStepping Running in hmR0VmxRunGuestCodeStep() and we should
7614 * return VINF_EM_DBG_STEPPED if the event was
7615 * dispatched directly.
7616 */
7617static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, uint32_t fIntrState, bool fStepping)
7618{
7619 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7620 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7621
7622 bool fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
7623 bool fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
7624
7625 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
7626 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7627 Assert(!fBlockSti || pVCpu->cpum.GstCtx.eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7628 Assert(!TRPMHasTrap(pVCpu));
7629
7630 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7631 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
7632 if (pVCpu->hm.s.Event.fPending)
7633 {
7634 /*
7635 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
7636 * pending even while injecting an event and in this case, we want a VM-exit as soon as
7637 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
7638 *
7639 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
7640 */
7641 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7642#ifdef VBOX_STRICT
7643 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
7644 {
7645 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
7646 Assert(!fBlockInt);
7647 Assert(!fBlockSti);
7648 Assert(!fBlockMovSS);
7649 }
7650 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI)
7651 {
7652 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
7653 Assert(!fBlockSti);
7654 Assert(!fBlockMovSS);
7655 Assert(!fBlockNmi);
7656 }
7657#endif
7658 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
7659 uIntType));
7660 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
7661 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress, fStepping,
7662 &fIntrState);
7663 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
7664
7665 /* Update the interruptibility-state as it could have been changed by
7666 hmR0VmxInjectEventVmcs() (e.g. real-on-v86 guest injecting software interrupts) */
7667 fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
7668 fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
7669
7670 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
7671 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
7672 else
7673 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
7674 }
7675
7676 /* Deliver pending debug exception if the guest is single-stepping. Evaluate and set the BS bit. */
7677 if ( fBlockSti
7678 || fBlockMovSS)
7679 {
7680 if (!pVCpu->hm.s.fSingleInstruction)
7681 {
7682 /*
7683 * The pending-debug exceptions field is cleared on all VM-exits except VMX_EXIT_TPR_BELOW_THRESHOLD,
7684 * VMX_EXIT_MTF, VMX_EXIT_APIC_WRITE and VMX_EXIT_VIRTUALIZED_EOI.
7685 * See Intel spec. 27.3.4 "Saving Non-Register State".
7686 */
7687 Assert(!DBGFIsStepping(pVCpu));
7688 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
7689 AssertRCReturn(rc, rc);
7690 if (pCtx->eflags.Bits.u1TF)
7691 {
7692 int rc2 = hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
7693 AssertRCReturn(rc2, rc2);
7694 }
7695 }
7696 else if (pCtx->eflags.Bits.u1TF)
7697 {
7698 /*
7699 * We are single-stepping in the hypervisor debugger using EFLAGS.TF. Clear interrupt inhibition as setting the
7700 * BS bit would mean delivering a #DB to the guest upon VM-entry when it shouldn't be.
7701 */
7702 Assert(!(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG));
7703 fIntrState = 0;
7704 }
7705 }
7706
7707 /*
7708 * There's no need to clear the VM-entry interruption-information field here if we're not injecting anything.
7709 * VT-x clears the valid bit on every VM-exit. See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7710 */
7711 int rc3 = hmR0VmxExportGuestIntrState(pVCpu, fIntrState);
7712 AssertRCReturn(rc3, rc3);
7713
7714 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
7715 NOREF(fBlockMovSS); NOREF(fBlockSti);
7716 return rcStrict;
7717}
7718
7719
7720/**
7721 * Injects a double-fault (\#DF) exception into the VM.
7722 *
7723 * @returns Strict VBox status code (i.e. informational status codes too).
7724 * @param pVCpu The cross context virtual CPU structure.
7725 * @param fStepping Whether we're running in hmR0VmxRunGuestCodeStep()
7726 * and should return VINF_EM_DBG_STEPPED if the event
7727 * is injected directly (register modified by us, not
7728 * by hardware on VM-entry).
7729 * @param pfIntrState Pointer to the current guest interruptibility-state.
7730 * This interruptibility-state will be updated if
7731 * necessary. This cannot not be NULL.
7732 */
7733DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptDF(PVMCPU pVCpu, bool fStepping, uint32_t *pfIntrState)
7734{
7735 uint32_t const u32IntInfo = X86_XCPT_DF | VMX_EXIT_INT_INFO_VALID
7736 | (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT)
7737 | VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7738 return hmR0VmxInjectEventVmcs(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */, fStepping,
7739 pfIntrState);
7740}
7741
7742
7743/**
7744 * Injects a general-protection (\#GP) fault into the VM.
7745 *
7746 * @returns Strict VBox status code (i.e. informational status codes too).
7747 * @param pVCpu The cross context virtual CPU structure.
7748 * @param fErrorCodeValid Whether the error code is valid (depends on the CPU
7749 * mode, i.e. in real-mode it's not valid).
7750 * @param u32ErrorCode The error code associated with the \#GP.
7751 * @param fStepping Whether we're running in
7752 * hmR0VmxRunGuestCodeStep() and should return
7753 * VINF_EM_DBG_STEPPED if the event is injected
7754 * directly (register modified by us, not by
7755 * hardware on VM-entry).
7756 * @param pfIntrState Pointer to the current guest interruptibility-state.
7757 * This interruptibility-state will be updated if
7758 * necessary. This cannot not be NULL.
7759 */
7760DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptGP(PVMCPU pVCpu, bool fErrorCodeValid, uint32_t u32ErrorCode, bool fStepping,
7761 uint32_t *pfIntrState)
7762{
7763 uint32_t const u32IntInfo = X86_XCPT_GP | VMX_EXIT_INT_INFO_VALID
7764 | (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT)
7765 | (fErrorCodeValid ? VMX_EXIT_INT_INFO_ERROR_CODE_VALID : 0);
7766 return hmR0VmxInjectEventVmcs(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */, fStepping,
7767 pfIntrState);
7768}
7769
7770
7771/**
7772 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
7773 * stack.
7774 *
7775 * @returns Strict VBox status code (i.e. informational status codes too).
7776 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
7777 * @param pVCpu The cross context virtual CPU structure.
7778 * @param uValue The value to push to the guest stack.
7779 */
7780static VBOXSTRICTRC hmR0VmxRealModeGuestStackPush(PVMCPU pVCpu, uint16_t uValue)
7781{
7782 /*
7783 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
7784 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
7785 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
7786 */
7787 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7788 if (pCtx->sp == 1)
7789 return VINF_EM_RESET;
7790 pCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
7791 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->ss.u64Base + pCtx->sp, &uValue, sizeof(uint16_t));
7792 AssertRC(rc);
7793 return rc;
7794}
7795
7796
7797/**
7798 * Injects an event into the guest upon VM-entry by updating the relevant fields
7799 * in the VM-entry area in the VMCS.
7800 *
7801 * @returns Strict VBox status code (i.e. informational status codes too).
7802 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
7803 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
7804 *
7805 * @param pVCpu The cross context virtual CPU structure.
7806 * @param u64IntInfo The VM-entry interruption-information field.
7807 * @param cbInstr The VM-entry instruction length in bytes (for
7808 * software interrupts, exceptions and privileged
7809 * software exceptions).
7810 * @param u32ErrCode The VM-entry exception error code.
7811 * @param GCPtrFaultAddress The page-fault address for \#PF exceptions.
7812 * @param pfIntrState Pointer to the current guest interruptibility-state.
7813 * This interruptibility-state will be updated if
7814 * necessary. This cannot not be NULL.
7815 * @param fStepping Whether we're running in
7816 * hmR0VmxRunGuestCodeStep() and should return
7817 * VINF_EM_DBG_STEPPED if the event is injected
7818 * directly (register modified by us, not by
7819 * hardware on VM-entry).
7820 */
7821static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, uint64_t u64IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
7822 RTGCUINTREG GCPtrFaultAddress, bool fStepping, uint32_t *pfIntrState)
7823{
7824 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
7825 AssertMsg(!RT_HI_U32(u64IntInfo), ("%#RX64\n", u64IntInfo));
7826 Assert(pfIntrState);
7827
7828 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7829 uint32_t u32IntInfo = (uint32_t)u64IntInfo;
7830 uint32_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(u32IntInfo);
7831 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(u32IntInfo);
7832
7833#ifdef VBOX_STRICT
7834 /*
7835 * Validate the error-code-valid bit for hardware exceptions.
7836 * No error codes for exceptions in real-mode.
7837 *
7838 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
7839 */
7840 if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
7841 && !CPUMIsGuestInRealModeEx(pCtx))
7842 {
7843 switch (uVector)
7844 {
7845 case X86_XCPT_PF:
7846 case X86_XCPT_DF:
7847 case X86_XCPT_TS:
7848 case X86_XCPT_NP:
7849 case X86_XCPT_SS:
7850 case X86_XCPT_GP:
7851 case X86_XCPT_AC:
7852 AssertMsg(VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo),
7853 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
7854 RT_FALL_THRU();
7855 default:
7856 break;
7857 }
7858 }
7859#endif
7860
7861 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
7862 Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
7863 || !(*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
7864
7865 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
7866
7867 /*
7868 * Hardware interrupts & exceptions cannot be delivered through the software interrupt
7869 * redirection bitmap to the real mode task in virtual-8086 mode. We must jump to the
7870 * interrupt handler in the (real-mode) guest.
7871 *
7872 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode".
7873 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
7874 */
7875 if (CPUMIsGuestInRealModeEx(pCtx)) /* CR0.PE bit changes are always intercepted, so it's up to date. */
7876 {
7877 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest)
7878 {
7879 /*
7880 * For unrestricted execution enabled CPUs running real-mode guests, we must not
7881 * set the deliver-error-code bit.
7882 *
7883 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
7884 */
7885 u32IntInfo &= ~VMX_ENTRY_INT_INFO_ERROR_CODE_VALID;
7886 }
7887 else
7888 {
7889 PVM pVM = pVCpu->CTX_SUFF(pVM);
7890 Assert(PDMVmmDevHeapIsEnabled(pVM));
7891 Assert(pVM->hm.s.vmx.pRealModeTSS);
7892
7893 /* We require RIP, RSP, RFLAGS, CS, IDTR, import them. */
7894 int rc2 = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_RIP
7895 | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS);
7896 AssertRCReturn(rc2, rc2);
7897
7898 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
7899 size_t const cbIdtEntry = sizeof(X86IDTR16);
7900 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pCtx->idtr.cbIdt)
7901 {
7902 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
7903 if (uVector == X86_XCPT_DF)
7904 return VINF_EM_RESET;
7905
7906 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
7907 if (uVector == X86_XCPT_GP)
7908 return hmR0VmxInjectXcptDF(pVCpu, fStepping, pfIntrState);
7909
7910 /*
7911 * If we're injecting an event with no valid IDT entry, inject a #GP.
7912 * No error codes for exceptions in real-mode.
7913 *
7914 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
7915 */
7916 return hmR0VmxInjectXcptGP(pVCpu, false /* fErrCodeValid */, 0 /* u32ErrCode */, fStepping, pfIntrState);
7917 }
7918
7919 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
7920 uint16_t uGuestIp = pCtx->ip;
7921 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT)
7922 {
7923 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
7924 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
7925 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
7926 }
7927 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_INT)
7928 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
7929
7930 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
7931 X86IDTR16 IdtEntry;
7932 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pCtx->idtr.pIdt + uVector * cbIdtEntry;
7933 rc2 = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
7934 AssertRCReturn(rc2, rc2);
7935
7936 /* Construct the stack frame for the interrupt/exception handler. */
7937 VBOXSTRICTRC rcStrict;
7938 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->eflags.u32);
7939 if (rcStrict == VINF_SUCCESS)
7940 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->cs.Sel);
7941 if (rcStrict == VINF_SUCCESS)
7942 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, uGuestIp);
7943
7944 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
7945 if (rcStrict == VINF_SUCCESS)
7946 {
7947 pCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
7948 pCtx->rip = IdtEntry.offSel;
7949 pCtx->cs.Sel = IdtEntry.uSel;
7950 pCtx->cs.ValidSel = IdtEntry.uSel;
7951 pCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
7952 if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
7953 && uVector == X86_XCPT_PF)
7954 pCtx->cr2 = GCPtrFaultAddress;
7955
7956 /* If any other guest-state bits are changed here, make sure to update
7957 hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
7958 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CS | HM_CHANGED_GUEST_CR2
7959 | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
7960 | HM_CHANGED_GUEST_RSP);
7961
7962 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
7963 if (*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
7964 {
7965 Assert( uIntType != VMX_ENTRY_INT_INFO_TYPE_NMI
7966 && uIntType != VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
7967 Log4Func(("Clearing inhibition due to STI\n"));
7968 *pfIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
7969 }
7970 Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
7971 u32IntInfo, u32ErrCode, cbInstr, pCtx->eflags.u, pCtx->cs.Sel, pCtx->eip));
7972
7973 /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
7974 it, if we are returning to ring-3 before executing guest code. */
7975 pVCpu->hm.s.Event.fPending = false;
7976
7977 /* Make hmR0VmxPreRunGuest() return if we're stepping since we've changed cs:rip. */
7978 if (fStepping)
7979 rcStrict = VINF_EM_DBG_STEPPED;
7980 }
7981 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
7982 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
7983 return rcStrict;
7984 }
7985 }
7986
7987 /* Validate. */
7988 Assert(VMX_ENTRY_INT_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
7989 Assert(!(u32IntInfo & VMX_BF_ENTRY_INT_INFO_RSVD_12_30_MASK)); /* Bits 30:12 MBZ. */
7990
7991 /* Inject. */
7992 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
7993 if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
7994 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
7995 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
7996 AssertRCReturn(rc, rc);
7997
7998 /* Update CR2. */
7999 if ( VMX_ENTRY_INT_INFO_TYPE(u32IntInfo) == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
8000 && uVector == X86_XCPT_PF)
8001 pCtx->cr2 = GCPtrFaultAddress;
8002
8003 Log4(("Injecting u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x CR2=%#RX64\n", u32IntInfo, u32ErrCode, cbInstr, pCtx->cr2));
8004
8005 return VINF_SUCCESS;
8006}
8007
8008
8009/**
8010 * Clears the interrupt-window exiting control in the VMCS and if necessary
8011 * clears the current event in the VMCS as well.
8012 *
8013 * @returns VBox status code.
8014 * @param pVCpu The cross context virtual CPU structure.
8015 *
8016 * @remarks Use this function only to clear events that have not yet been
8017 * delivered to the guest but are injected in the VMCS!
8018 * @remarks No-long-jump zone!!!
8019 */
8020static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu)
8021{
8022 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
8023 {
8024 hmR0VmxClearIntWindowExitVmcs(pVCpu);
8025 Log4Func(("Cleared interrupt window\n"));
8026 }
8027
8028 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
8029 {
8030 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
8031 Log4Func(("Cleared NMI window\n"));
8032 }
8033}
8034
8035
8036/**
8037 * Enters the VT-x session.
8038 *
8039 * @returns VBox status code.
8040 * @param pVCpu The cross context virtual CPU structure.
8041 * @param pHostCpu Pointer to the global CPU info struct.
8042 */
8043VMMR0DECL(int) VMXR0Enter(PVMCPU pVCpu, PHMGLOBALCPUINFO pHostCpu)
8044{
8045 AssertPtr(pVCpu);
8046 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported);
8047 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8048 RT_NOREF(pHostCpu);
8049
8050 LogFlowFunc(("pVCpu=%p\n", pVCpu));
8051 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8052 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8053
8054#ifdef VBOX_STRICT
8055 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
8056 RTCCUINTREG uHostCR4 = ASMGetCR4();
8057 if (!(uHostCR4 & X86_CR4_VMXE))
8058 {
8059 LogRelFunc(("X86_CR4_VMXE bit in CR4 is not set!\n"));
8060 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8061 }
8062#endif
8063
8064 /*
8065 * Load the VCPU's VMCS as the current (and active) one.
8066 */
8067 Assert(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR);
8068 int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8069 if (RT_FAILURE(rc))
8070 return rc;
8071
8072 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8073 pVCpu->hm.s.fLeaveDone = false;
8074 Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8075
8076 return VINF_SUCCESS;
8077}
8078
8079
8080/**
8081 * The thread-context callback (only on platforms which support it).
8082 *
8083 * @param enmEvent The thread-context event.
8084 * @param pVCpu The cross context virtual CPU structure.
8085 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8086 * @thread EMT(pVCpu)
8087 */
8088VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8089{
8090 NOREF(fGlobalInit);
8091
8092 switch (enmEvent)
8093 {
8094 case RTTHREADCTXEVENT_OUT:
8095 {
8096 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8097 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8098 VMCPU_ASSERT_EMT(pVCpu);
8099
8100 /* No longjmps (logger flushes, locks) in this fragile context. */
8101 VMMRZCallRing3Disable(pVCpu);
8102 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8103
8104 /*
8105 * Restore host-state (FPU, debug etc.)
8106 */
8107 if (!pVCpu->hm.s.fLeaveDone)
8108 {
8109 /*
8110 * Do -not- import the guest-state here as we might already be in the middle of importing
8111 * it, esp. bad if we're holding the PGM lock, see comment in hmR0VmxImportGuestState().
8112 */
8113 hmR0VmxLeave(pVCpu, false /* fImportState */);
8114 pVCpu->hm.s.fLeaveDone = true;
8115 }
8116
8117 /* Leave HM context, takes care of local init (term). */
8118 int rc = HMR0LeaveCpu(pVCpu);
8119 AssertRC(rc); NOREF(rc);
8120
8121 /* Restore longjmp state. */
8122 VMMRZCallRing3Enable(pVCpu);
8123 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
8124 break;
8125 }
8126
8127 case RTTHREADCTXEVENT_IN:
8128 {
8129 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8130 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8131 VMCPU_ASSERT_EMT(pVCpu);
8132
8133 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8134 VMMRZCallRing3Disable(pVCpu);
8135 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8136
8137 /* Initialize the bare minimum state required for HM. This takes care of
8138 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8139 int rc = hmR0EnterCpu(pVCpu);
8140 AssertRC(rc);
8141 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8142 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8143
8144 /* Load the active VMCS as the current one. */
8145 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR)
8146 {
8147 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8148 AssertRC(rc); NOREF(rc);
8149 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8150 Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8151 }
8152 pVCpu->hm.s.fLeaveDone = false;
8153
8154 /* Restore longjmp state. */
8155 VMMRZCallRing3Enable(pVCpu);
8156 break;
8157 }
8158
8159 default:
8160 break;
8161 }
8162}
8163
8164
8165/**
8166 * Exports the host state into the VMCS host-state area.
8167 * Sets up the VM-exit MSR-load area.
8168 *
8169 * The CPU state will be loaded from these fields on every successful VM-exit.
8170 *
8171 * @returns VBox status code.
8172 * @param pVCpu The cross context virtual CPU structure.
8173 *
8174 * @remarks No-long-jump zone!!!
8175 */
8176static int hmR0VmxExportHostState(PVMCPU pVCpu)
8177{
8178 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8179
8180 int rc = VINF_SUCCESS;
8181 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
8182 {
8183 rc = hmR0VmxExportHostControlRegs();
8184 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8185
8186 rc = hmR0VmxExportHostSegmentRegs(pVCpu);
8187 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8188
8189 rc = hmR0VmxExportHostMsrs(pVCpu);
8190 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8191
8192 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT;
8193 }
8194 return rc;
8195}
8196
8197
8198/**
8199 * Saves the host state in the VMCS host-state.
8200 *
8201 * @returns VBox status code.
8202 * @param pVCpu The cross context virtual CPU structure.
8203 *
8204 * @remarks No-long-jump zone!!!
8205 */
8206VMMR0DECL(int) VMXR0ExportHostState(PVMCPU pVCpu)
8207{
8208 AssertPtr(pVCpu);
8209 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8210
8211 /*
8212 * Export the host state here while entering HM context.
8213 * When thread-context hooks are used, we might get preempted and have to re-save the host
8214 * state but most of the time we won't be, so do it here before we disable interrupts.
8215 */
8216 return hmR0VmxExportHostState(pVCpu);
8217}
8218
8219
8220/**
8221 * Exports the guest state into the VMCS guest-state area.
8222 *
8223 * The will typically be done before VM-entry when the guest-CPU state and the
8224 * VMCS state may potentially be out of sync.
8225 *
8226 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
8227 * VM-entry controls.
8228 * Sets up the appropriate VMX non-root function to execute guest code based on
8229 * the guest CPU mode.
8230 *
8231 * @returns VBox strict status code.
8232 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8233 * without unrestricted guest access and the VMMDev is not presently
8234 * mapped (e.g. EFI32).
8235 *
8236 * @param pVCpu The cross context virtual CPU structure.
8237 *
8238 * @remarks No-long-jump zone!!!
8239 */
8240static VBOXSTRICTRC hmR0VmxExportGuestState(PVMCPU pVCpu)
8241{
8242 AssertPtr(pVCpu);
8243 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8244
8245 LogFlowFunc(("pVCpu=%p\n", pVCpu));
8246
8247 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
8248
8249 /* Determine real-on-v86 mode. */
8250 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
8251 if ( !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
8252 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx))
8253 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
8254
8255 /*
8256 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
8257 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
8258 */
8259 int rc = hmR0VmxSelectVMRunHandler(pVCpu);
8260 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8261
8262 /* This needs to be done after hmR0VmxSelectVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
8263 rc = hmR0VmxExportGuestEntryCtls(pVCpu);
8264 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8265
8266 /* This needs to be done after hmR0VmxSelectVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
8267 rc = hmR0VmxExportGuestExitCtls(pVCpu);
8268 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8269
8270 rc = hmR0VmxExportGuestCR0(pVCpu);
8271 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8272
8273 VBOXSTRICTRC rcStrict = hmR0VmxExportGuestCR3AndCR4(pVCpu);
8274 if (rcStrict == VINF_SUCCESS)
8275 { /* likely */ }
8276 else
8277 {
8278 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
8279 return rcStrict;
8280 }
8281
8282 rc = hmR0VmxExportGuestSegmentRegs(pVCpu);
8283 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8284
8285 /* This needs to be done after hmR0VmxExportGuestEntryCtls() and hmR0VmxExportGuestExitCtls() as it
8286 may alter controls if we determine we don't have to swap EFER after all. */
8287 rc = hmR0VmxExportGuestMsrs(pVCpu);
8288 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8289
8290 rc = hmR0VmxExportGuestApicTpr(pVCpu);
8291 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8292
8293 rc = hmR0VmxExportGuestXcptIntercepts(pVCpu);
8294 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8295
8296 /* Exporting RFLAGS here is fine, even though RFLAGS.TF might depend on guest debug state which is
8297 not exported here. It is re-evaluated and updated if necessary in hmR0VmxExportSharedState(). */
8298 rc = hmR0VmxExportGuestRip(pVCpu);
8299 rc |= hmR0VmxExportGuestRsp(pVCpu);
8300 rc |= hmR0VmxExportGuestRflags(pVCpu);
8301 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8302
8303 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
8304 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( (HM_CHANGED_GUEST_GPRS_MASK & ~HM_CHANGED_GUEST_RSP)
8305 | HM_CHANGED_GUEST_CR2
8306 | (HM_CHANGED_GUEST_DR_MASK & ~HM_CHANGED_GUEST_DR7)
8307 | HM_CHANGED_GUEST_X87
8308 | HM_CHANGED_GUEST_SSE_AVX
8309 | HM_CHANGED_GUEST_OTHER_XSAVE
8310 | HM_CHANGED_GUEST_XCRx
8311 | HM_CHANGED_GUEST_KERNEL_GS_BASE /* Part of lazy or auto load-store MSRs. */
8312 | HM_CHANGED_GUEST_SYSCALL_MSRS /* Part of lazy or auto load-store MSRs. */
8313 | HM_CHANGED_GUEST_TSC_AUX
8314 | HM_CHANGED_GUEST_OTHER_MSRS
8315 | HM_CHANGED_GUEST_HWVIRT
8316 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
8317
8318 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
8319 return rc;
8320}
8321
8322
8323/**
8324 * Exports the state shared between the host and guest into the VMCS.
8325 *
8326 * @param pVCpu The cross context virtual CPU structure.
8327 *
8328 * @remarks No-long-jump zone!!!
8329 */
8330static void hmR0VmxExportSharedState(PVMCPU pVCpu)
8331{
8332 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8333 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8334
8335 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
8336 {
8337 int rc = hmR0VmxExportSharedDebugState(pVCpu);
8338 AssertRC(rc);
8339 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
8340
8341 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
8342 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_RFLAGS)
8343 {
8344 rc = hmR0VmxExportGuestRflags(pVCpu);
8345 AssertRC(rc);
8346 }
8347 }
8348
8349 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_GUEST_LAZY_MSRS)
8350 {
8351 hmR0VmxLazyLoadGuestMsrs(pVCpu);
8352 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_VMX_GUEST_LAZY_MSRS;
8353 }
8354
8355 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE),
8356 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
8357}
8358
8359
8360/**
8361 * Worker for loading the guest-state bits in the inner VT-x execution loop.
8362 *
8363 * @returns Strict VBox status code (i.e. informational status codes too).
8364 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8365 * without unrestricted guest access and the VMMDev is not presently
8366 * mapped (e.g. EFI32).
8367 *
8368 * @param pVCpu The cross context virtual CPU structure.
8369 *
8370 * @remarks No-long-jump zone!!!
8371 */
8372static VBOXSTRICTRC hmR0VmxExportGuestStateOptimal(PVMCPU pVCpu)
8373{
8374 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8375 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8376 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8377
8378#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
8379 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
8380#endif
8381
8382 /*
8383 * For many exits it's only RIP that changes and hence try to export it first
8384 * without going through a lot of change flag checks.
8385 */
8386 VBOXSTRICTRC rcStrict;
8387 uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
8388 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
8389 if ((fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)) == HM_CHANGED_GUEST_RIP)
8390 {
8391 rcStrict = hmR0VmxExportGuestRip(pVCpu);
8392 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8393 { /* likely */}
8394 else
8395 AssertMsgFailedReturn(("hmR0VmxExportGuestRip failed! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
8396 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportMinimal);
8397 }
8398 else if (fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8399 {
8400 rcStrict = hmR0VmxExportGuestState(pVCpu);
8401 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8402 { /* likely */}
8403 else
8404 {
8405 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM, ("hmR0VmxExportGuestState failed! rc=%Rrc\n",
8406 VBOXSTRICTRC_VAL(rcStrict)));
8407 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8408 return rcStrict;
8409 }
8410 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
8411 }
8412 else
8413 rcStrict = VINF_SUCCESS;
8414
8415#ifdef VBOX_STRICT
8416 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
8417 fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
8418 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
8419 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)),
8420 ("fCtxChanged=%#RX64\n", fCtxChanged));
8421#endif
8422 return rcStrict;
8423}
8424
8425
8426/**
8427 * Does the preparations before executing guest code in VT-x.
8428 *
8429 * This may cause longjmps to ring-3 and may even result in rescheduling to the
8430 * recompiler/IEM. We must be cautious what we do here regarding committing
8431 * guest-state information into the VMCS assuming we assuredly execute the
8432 * guest in VT-x mode.
8433 *
8434 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
8435 * the common-state (TRPM/forceflags), we must undo those changes so that the
8436 * recompiler/IEM can (and should) use them when it resumes guest execution.
8437 * Otherwise such operations must be done when we can no longer exit to ring-3.
8438 *
8439 * @returns Strict VBox status code (i.e. informational status codes too).
8440 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
8441 * have been disabled.
8442 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
8443 * double-fault into the guest.
8444 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
8445 * dispatched directly.
8446 * @retval VINF_* scheduling changes, we have to go back to ring-3.
8447 *
8448 * @param pVCpu The cross context virtual CPU structure.
8449 * @param pVmxTransient Pointer to the VMX transient structure.
8450 * @param fStepping Set if called from hmR0VmxRunGuestCodeStep(). Makes
8451 * us ignore some of the reasons for returning to
8452 * ring-3, and return VINF_EM_DBG_STEPPED if event
8453 * dispatching took place.
8454 */
8455static VBOXSTRICTRC hmR0VmxPreRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, bool fStepping)
8456{
8457 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8458
8459#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_ONLY_IN_IEM
8460 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
8461 return VINF_EM_RESCHEDULE_REM;
8462#endif
8463
8464#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
8465 PGMRZDynMapFlushAutoSet(pVCpu);
8466#endif
8467
8468 /* Check force flag actions that might require us to go back to ring-3. */
8469 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVCpu, fStepping);
8470 if (rcStrict == VINF_SUCCESS)
8471 { /* FFs doesn't get set all the time. */ }
8472 else
8473 return rcStrict;
8474
8475 /*
8476 * Setup the virtualized-APIC accesses.
8477 *
8478 * Note! This can cause a longjumps to R3 due to the acquisition of the PGM lock
8479 * in both PGMHandlerPhysicalReset() and IOMMMIOMapMMIOHCPage(), see @bugref{8721}.
8480 *
8481 * This is the reason we do it here and not in hmR0VmxExportGuestState().
8482 */
8483 PVM pVM = pVCpu->CTX_SUFF(pVM);
8484 if ( !pVCpu->hm.s.vmx.u64MsrApicBase
8485 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
8486 && PDMHasApic(pVM))
8487 {
8488 uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
8489 Assert(u64MsrApicBase);
8490 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
8491
8492 RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
8493
8494 /* Unalias any existing mapping. */
8495 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
8496 AssertRCReturn(rc, rc);
8497
8498 /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
8499 Log4Func(("Mapped HC APIC-access page at %#RGp\n", GCPhysApicBase));
8500 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
8501 AssertRCReturn(rc, rc);
8502
8503 /* Update the per-VCPU cache of the APIC base MSR. */
8504 pVCpu->hm.s.vmx.u64MsrApicBase = u64MsrApicBase;
8505 }
8506
8507 if (TRPMHasTrap(pVCpu))
8508 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
8509 uint32_t fIntrState = hmR0VmxEvaluatePendingEvent(pVCpu);
8510
8511 /*
8512 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
8513 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
8514 * also result in triple-faulting the VM.
8515 */
8516 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, fIntrState, fStepping);
8517 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8518 { /* likely */ }
8519 else
8520 {
8521 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8522 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8523 return rcStrict;
8524 }
8525
8526 /*
8527 * A longjump might result in importing CR3 even for VM-exits that don't necessarily
8528 * import CR3 themselves. We will need to update them here, as even as late as the above
8529 * hmR0VmxInjectPendingEvent() call may lazily import guest-CPU state on demand causing
8530 * the below force flags to be set.
8531 */
8532 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
8533 {
8534 Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3));
8535 int rc2 = PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
8536 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
8537 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
8538 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
8539 }
8540 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
8541 {
8542 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
8543 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
8544 }
8545
8546 /*
8547 * No longjmps to ring-3 from this point on!!!
8548 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
8549 * This also disables flushing of the R0-logger instance (if any).
8550 */
8551 VMMRZCallRing3Disable(pVCpu);
8552
8553 /*
8554 * Export the guest state bits.
8555 *
8556 * We cannot perform longjmps while loading the guest state because we do not preserve the
8557 * host/guest state (although the VMCS will be preserved) across longjmps which can cause
8558 * CPU migration.
8559 *
8560 * If we are injecting events to a real-on-v86 mode guest, we will have to update
8561 * RIP and some segment registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
8562 * Hence, loading of the guest state needs to be done -after- injection of events.
8563 */
8564 rcStrict = hmR0VmxExportGuestStateOptimal(pVCpu);
8565 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8566 { /* likely */ }
8567 else
8568 {
8569 VMMRZCallRing3Enable(pVCpu);
8570 return rcStrict;
8571 }
8572
8573 /*
8574 * We disable interrupts so that we don't miss any interrupts that would flag preemption
8575 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
8576 * preemption disabled for a while. Since this is purly to aid the
8577 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
8578 * disable interrupt on NT.
8579 *
8580 * We need to check for force-flags that could've possible been altered since we last
8581 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
8582 * see @bugref{6398}).
8583 *
8584 * We also check a couple of other force-flags as a last opportunity to get the EMT back
8585 * to ring-3 before executing guest code.
8586 */
8587 pVmxTransient->fEFlags = ASMIntDisableFlags();
8588
8589 if ( ( !VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
8590 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
8591 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
8592 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
8593 {
8594 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
8595 {
8596 pVCpu->hm.s.Event.fPending = false;
8597
8598 /*
8599 * We've injected any pending events. This is really the point of no return (to ring-3).
8600 *
8601 * Note! The caller expects to continue with interrupts & longjmps disabled on successful
8602 * returns from this function, so don't enable them here.
8603 */
8604 return VINF_SUCCESS;
8605 }
8606
8607 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
8608 rcStrict = VINF_EM_RAW_INTERRUPT;
8609 }
8610 else
8611 {
8612 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
8613 rcStrict = VINF_EM_RAW_TO_R3;
8614 }
8615
8616 ASMSetFlags(pVmxTransient->fEFlags);
8617 VMMRZCallRing3Enable(pVCpu);
8618
8619 return rcStrict;
8620}
8621
8622
8623/**
8624 * Prepares to run guest code in VT-x and we've committed to doing so. This
8625 * means there is no backing out to ring-3 or anywhere else at this
8626 * point.
8627 *
8628 * @param pVCpu The cross context virtual CPU structure.
8629 * @param pVmxTransient Pointer to the VMX transient structure.
8630 *
8631 * @remarks Called with preemption disabled.
8632 * @remarks No-long-jump zone!!!
8633 */
8634static void hmR0VmxPreRunGuestCommitted(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
8635{
8636 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8637 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8638 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8639
8640 /*
8641 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
8642 */
8643 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8644 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
8645
8646 PVM pVM = pVCpu->CTX_SUFF(pVM);
8647 if (!CPUMIsGuestFPUStateActive(pVCpu))
8648 {
8649 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
8650 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
8651 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT;
8652 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
8653 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
8654 }
8655
8656 /*
8657 * Lazy-update of the host MSRs values in the auto-load/store MSR area.
8658 */
8659 if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
8660 && pVCpu->hm.s.vmx.cMsrs > 0)
8661 hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
8662
8663 /*
8664 * Re-save the host state bits as we may've been preempted (only happens when
8665 * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
8666 * Note that the 64-on-32 switcher saves the (64-bit) host state into the VMCS and
8667 * if we change the switcher back to 32-bit, we *must* save the 32-bit host state here.
8668 * See @bugref{8432}.
8669 */
8670 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
8671 {
8672 int rc = hmR0VmxExportHostState(pVCpu);
8673 AssertRC(rc);
8674 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptExportHostState);
8675 }
8676 Assert(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT));
8677
8678 /*
8679 * Export the state shared between host and guest (FPU, debug, lazy MSRs).
8680 */
8681 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)
8682 hmR0VmxExportSharedState(pVCpu);
8683 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
8684
8685 /* Store status of the shared guest-host state at the time of VM-entry. */
8686#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
8687 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
8688 {
8689 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
8690 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
8691 }
8692 else
8693#endif
8694 {
8695 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
8696 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
8697 }
8698
8699 /*
8700 * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
8701 */
8702 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
8703 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR];
8704
8705 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
8706 RTCPUID idCurrentCpu = pCpu->idCpu;
8707 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
8708 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
8709 {
8710 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu);
8711 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
8712 }
8713
8714 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
8715 hmR0VmxFlushTaggedTlb(pVCpu, pCpu); /* Invalidate the appropriate guest entries from the TLB. */
8716 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
8717 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
8718
8719 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
8720
8721 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
8722 to start executing. */
8723
8724 /*
8725 * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
8726 */
8727 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_RDTSCP)
8728 {
8729 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
8730 {
8731 bool fMsrUpdated;
8732 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_TSC_AUX);
8733 int rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, CPUMGetGuestTscAux(pVCpu), true /* fUpdateHostMsr */,
8734 &fMsrUpdated);
8735 AssertRC(rc2);
8736 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8737 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8738 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8739 }
8740 else
8741 {
8742 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
8743 Assert(!pVCpu->hm.s.vmx.cMsrs || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8744 }
8745 }
8746
8747 if (pVM->cpum.ro.GuestFeatures.fIbrs)
8748 {
8749 bool fMsrUpdated;
8750 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_OTHER_MSRS);
8751 int rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_IA32_SPEC_CTRL, CPUMGetGuestSpecCtrl(pVCpu), true /* fUpdateHostMsr */,
8752 &fMsrUpdated);
8753 AssertRC(rc2);
8754 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8755 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8756 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8757 }
8758
8759#ifdef VBOX_STRICT
8760 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
8761 hmR0VmxCheckHostEferMsr(pVCpu);
8762 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu));
8763#endif
8764#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
8765 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
8766 {
8767 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu);
8768 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
8769 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
8770 }
8771#endif
8772}
8773
8774
8775/**
8776 * Performs some essential restoration of state after running guest code in
8777 * VT-x.
8778 *
8779 * @param pVCpu The cross context virtual CPU structure.
8780 * @param pVmxTransient Pointer to the VMX transient structure.
8781 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
8782 *
8783 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
8784 *
8785 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
8786 * unconditionally when it is safe to do so.
8787 */
8788static void hmR0VmxPostRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, int rcVMRun)
8789{
8790 uint64_t const uHostTsc = ASMReadTSC();
8791 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8792
8793 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
8794 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
8795 pVCpu->hm.s.fCtxChanged = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
8796 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
8797 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
8798 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
8799
8800 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
8801 TMCpuTickSetLastSeen(pVCpu, uHostTsc + pVCpu->hm.s.vmx.u64TscOffset);
8802
8803 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
8804 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
8805 Assert(!ASMIntAreEnabled());
8806 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8807
8808#if HC_ARCH_BITS == 64
8809 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
8810#endif
8811#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
8812 /* The 64-on-32 switcher maintains uVmcsState on its own and we need to leave it alone here. */
8813 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
8814 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8815#else
8816 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8817#endif
8818#ifdef VBOX_STRICT
8819 hmR0VmxCheckHostEferMsr(pVCpu); /* Verify that VMRUN/VMLAUNCH didn't modify host EFER. */
8820#endif
8821 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
8822
8823 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
8824 uint32_t uExitReason;
8825 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
8826 rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
8827 AssertRC(rc);
8828 pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
8829 pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
8830
8831 if (rcVMRun == VINF_SUCCESS)
8832 {
8833 /*
8834 * Update the VM-exit history array here even if the VM-entry failed due to:
8835 * - Invalid guest state.
8836 * - MSR loading.
8837 * - Machine-check event.
8838 *
8839 * In any of the above cases we will still have a "valid" VM-exit reason
8840 * despite @a fVMEntryFailed being false.
8841 *
8842 * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
8843 *
8844 * Note! We don't have CS or RIP at this point. Will probably address that later
8845 * by amending the history entry added here.
8846 */
8847 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_VMX, pVmxTransient->uExitReason & EMEXIT_F_TYPE_MASK),
8848 UINT64_MAX, uHostTsc);
8849
8850 if (!pVmxTransient->fVMEntryFailed)
8851 {
8852 VMMRZCallRing3Enable(pVCpu);
8853
8854 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
8855 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
8856
8857#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
8858 rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
8859 AssertRC(rc);
8860#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
8861 rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_RFLAGS);
8862 AssertRC(rc);
8863#else
8864 /*
8865 * Import the guest-interruptibility state always as we need it while evaluating
8866 * injecting events on re-entry.
8867 *
8868 * We don't import CR0 (when Unrestricted guest execution is unavailable) despite
8869 * checking for real-mode while exporting the state because all bits that cause
8870 * mode changes wrt CR0 are intercepted.
8871 */
8872 rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_HM_VMX_INT_STATE);
8873 AssertRC(rc);
8874#endif
8875
8876 /*
8877 * Sync the TPR shadow with our APIC state.
8878 */
8879 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
8880 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR])
8881 {
8882 rc = APICSetTpr(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR]);
8883 AssertRC(rc);
8884 ASMAtomicOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
8885 }
8886
8887 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8888 return;
8889 }
8890 }
8891 else
8892 Log4Func(("VM-entry failure: rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", rcVMRun, pVmxTransient->fVMEntryFailed));
8893
8894 VMMRZCallRing3Enable(pVCpu);
8895}
8896
8897
8898/**
8899 * Runs the guest code using VT-x the normal way.
8900 *
8901 * @returns VBox status code.
8902 * @param pVCpu The cross context virtual CPU structure.
8903 *
8904 * @note Mostly the same as hmR0VmxRunGuestCodeStep().
8905 */
8906static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVMCPU pVCpu)
8907{
8908 VMXTRANSIENT VmxTransient;
8909 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
8910 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
8911 uint32_t cLoops = 0;
8912
8913 for (;; cLoops++)
8914 {
8915 Assert(!HMR0SuspendPending());
8916 HMVMX_ASSERT_CPU_SAFE(pVCpu);
8917
8918 /* Preparatory work for running guest code, this may force us to return
8919 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
8920 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
8921 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
8922 if (rcStrict != VINF_SUCCESS)
8923 break;
8924
8925 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
8926 int rcRun = hmR0VmxRunGuest(pVCpu);
8927
8928 /* Restore any residual host-state and save any bits shared between host
8929 and guest into the guest-CPU state. Re-enables interrupts! */
8930 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
8931
8932 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
8933 if (RT_SUCCESS(rcRun))
8934 { /* very likely */ }
8935 else
8936 {
8937 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
8938 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
8939 return rcRun;
8940 }
8941
8942 /* Profile the VM-exit. */
8943 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
8944 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
8945 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
8946 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
8947 HMVMX_START_EXIT_DISPATCH_PROF();
8948
8949 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
8950
8951 /* Handle the VM-exit. */
8952#ifdef HMVMX_USE_FUNCTION_TABLE
8953 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, &VmxTransient);
8954#else
8955 rcStrict = hmR0VmxHandleExit(pVCpu, &VmxTransient, VmxTransient.uExitReason);
8956#endif
8957 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
8958 if (rcStrict == VINF_SUCCESS)
8959 {
8960 if (cLoops <= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
8961 continue; /* likely */
8962 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
8963 rcStrict = VINF_EM_RAW_INTERRUPT;
8964 }
8965 break;
8966 }
8967
8968 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
8969 return rcStrict;
8970}
8971
8972
8973
8974/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
8975 * probes.
8976 *
8977 * The following few functions and associated structure contains the bloat
8978 * necessary for providing detailed debug events and dtrace probes as well as
8979 * reliable host side single stepping. This works on the principle of
8980 * "subclassing" the normal execution loop and workers. We replace the loop
8981 * method completely and override selected helpers to add necessary adjustments
8982 * to their core operation.
8983 *
8984 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
8985 * any performance for debug and analysis features.
8986 *
8987 * @{
8988 */
8989
8990/**
8991 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
8992 * the debug run loop.
8993 */
8994typedef struct VMXRUNDBGSTATE
8995{
8996 /** The RIP we started executing at. This is for detecting that we stepped. */
8997 uint64_t uRipStart;
8998 /** The CS we started executing with. */
8999 uint16_t uCsStart;
9000
9001 /** Whether we've actually modified the 1st execution control field. */
9002 bool fModifiedProcCtls : 1;
9003 /** Whether we've actually modified the 2nd execution control field. */
9004 bool fModifiedProcCtls2 : 1;
9005 /** Whether we've actually modified the exception bitmap. */
9006 bool fModifiedXcptBitmap : 1;
9007
9008 /** We desire the modified the CR0 mask to be cleared. */
9009 bool fClearCr0Mask : 1;
9010 /** We desire the modified the CR4 mask to be cleared. */
9011 bool fClearCr4Mask : 1;
9012 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
9013 uint32_t fCpe1Extra;
9014 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
9015 uint32_t fCpe1Unwanted;
9016 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
9017 uint32_t fCpe2Extra;
9018 /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
9019 uint32_t bmXcptExtra;
9020 /** The sequence number of the Dtrace provider settings the state was
9021 * configured against. */
9022 uint32_t uDtraceSettingsSeqNo;
9023 /** VM-exits to check (one bit per VM-exit). */
9024 uint32_t bmExitsToCheck[3];
9025
9026 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
9027 uint32_t fProcCtlsInitial;
9028 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
9029 uint32_t fProcCtls2Initial;
9030 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
9031 uint32_t bmXcptInitial;
9032} VMXRUNDBGSTATE;
9033AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
9034typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
9035
9036
9037/**
9038 * Initializes the VMXRUNDBGSTATE structure.
9039 *
9040 * @param pVCpu The cross context virtual CPU structure of the
9041 * calling EMT.
9042 * @param pDbgState The structure to initialize.
9043 */
9044static void hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9045{
9046 pDbgState->uRipStart = pVCpu->cpum.GstCtx.rip;
9047 pDbgState->uCsStart = pVCpu->cpum.GstCtx.cs.Sel;
9048
9049 pDbgState->fModifiedProcCtls = false;
9050 pDbgState->fModifiedProcCtls2 = false;
9051 pDbgState->fModifiedXcptBitmap = false;
9052 pDbgState->fClearCr0Mask = false;
9053 pDbgState->fClearCr4Mask = false;
9054 pDbgState->fCpe1Extra = 0;
9055 pDbgState->fCpe1Unwanted = 0;
9056 pDbgState->fCpe2Extra = 0;
9057 pDbgState->bmXcptExtra = 0;
9058 pDbgState->fProcCtlsInitial = pVCpu->hm.s.vmx.u32ProcCtls;
9059 pDbgState->fProcCtls2Initial = pVCpu->hm.s.vmx.u32ProcCtls2;
9060 pDbgState->bmXcptInitial = pVCpu->hm.s.vmx.u32XcptBitmap;
9061}
9062
9063
9064/**
9065 * Updates the VMSC fields with changes requested by @a pDbgState.
9066 *
9067 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
9068 * immediately before executing guest code, i.e. when interrupts are disabled.
9069 * We don't check status codes here as we cannot easily assert or return in the
9070 * latter case.
9071 *
9072 * @param pVCpu The cross context virtual CPU structure.
9073 * @param pDbgState The debug state.
9074 */
9075static void hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9076{
9077 /*
9078 * Ensure desired flags in VMCS control fields are set.
9079 * (Ignoring write failure here, as we're committed and it's just debug extras.)
9080 *
9081 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
9082 * there should be no stale data in pCtx at this point.
9083 */
9084 if ( (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
9085 || (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Unwanted))
9086 {
9087 pVCpu->hm.s.vmx.u32ProcCtls |= pDbgState->fCpe1Extra;
9088 pVCpu->hm.s.vmx.u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
9089 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
9090 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls));
9091 pDbgState->fModifiedProcCtls = true;
9092 }
9093
9094 if ((pVCpu->hm.s.vmx.u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
9095 {
9096 pVCpu->hm.s.vmx.u32ProcCtls2 |= pDbgState->fCpe2Extra;
9097 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVCpu->hm.s.vmx.u32ProcCtls2);
9098 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2));
9099 pDbgState->fModifiedProcCtls2 = true;
9100 }
9101
9102 if ((pVCpu->hm.s.vmx.u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
9103 {
9104 pVCpu->hm.s.vmx.u32XcptBitmap |= pDbgState->bmXcptExtra;
9105 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
9106 Log6Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap));
9107 pDbgState->fModifiedXcptBitmap = true;
9108 }
9109
9110 if (pDbgState->fClearCr0Mask && pVCpu->hm.s.vmx.u32Cr0Mask != 0)
9111 {
9112 pVCpu->hm.s.vmx.u32Cr0Mask = 0;
9113 VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, 0);
9114 Log6Func(("VMX_VMCS_CTRL_CR0_MASK: 0\n"));
9115 }
9116
9117 if (pDbgState->fClearCr4Mask && pVCpu->hm.s.vmx.u32Cr4Mask != 0)
9118 {
9119 pVCpu->hm.s.vmx.u32Cr4Mask = 0;
9120 VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, 0);
9121 Log6Func(("VMX_VMCS_CTRL_CR4_MASK: 0\n"));
9122 }
9123}
9124
9125
9126/**
9127 * Restores VMCS fields that were changed by hmR0VmxPreRunGuestDebugStateApply for
9128 * re-entry next time around.
9129 *
9130 * @returns Strict VBox status code (i.e. informational status codes too).
9131 * @param pVCpu The cross context virtual CPU structure.
9132 * @param pDbgState The debug state.
9133 * @param rcStrict The return code from executing the guest using single
9134 * stepping.
9135 */
9136static VBOXSTRICTRC hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, VBOXSTRICTRC rcStrict)
9137{
9138 /*
9139 * Restore VM-exit control settings as we may not reenter this function the
9140 * next time around.
9141 */
9142 /* We reload the initial value, trigger what we can of recalculations the
9143 next time around. From the looks of things, that's all that's required atm. */
9144 if (pDbgState->fModifiedProcCtls)
9145 {
9146 if (!(pDbgState->fProcCtlsInitial & VMX_PROC_CTLS_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
9147 pDbgState->fProcCtlsInitial |= VMX_PROC_CTLS_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
9148 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
9149 AssertRCReturn(rc2, rc2);
9150 pVCpu->hm.s.vmx.u32ProcCtls = pDbgState->fProcCtlsInitial;
9151 }
9152
9153 /* We're currently the only ones messing with this one, so just restore the
9154 cached value and reload the field. */
9155 if ( pDbgState->fModifiedProcCtls2
9156 && pVCpu->hm.s.vmx.u32ProcCtls2 != pDbgState->fProcCtls2Initial)
9157 {
9158 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
9159 AssertRCReturn(rc2, rc2);
9160 pVCpu->hm.s.vmx.u32ProcCtls2 = pDbgState->fProcCtls2Initial;
9161 }
9162
9163 /* If we've modified the exception bitmap, we restore it and trigger
9164 reloading and partial recalculation the next time around. */
9165 if (pDbgState->fModifiedXcptBitmap)
9166 pVCpu->hm.s.vmx.u32XcptBitmap = pDbgState->bmXcptInitial;
9167
9168 return rcStrict;
9169}
9170
9171
9172/**
9173 * Configures VM-exit controls for current DBGF and DTrace settings.
9174 *
9175 * This updates @a pDbgState and the VMCS execution control fields to reflect
9176 * the necessary VM-exits demanded by DBGF and DTrace.
9177 *
9178 * @param pVCpu The cross context virtual CPU structure.
9179 * @param pDbgState The debug state.
9180 * @param pVmxTransient Pointer to the VMX transient structure. May update
9181 * fUpdateTscOffsettingAndPreemptTimer.
9182 */
9183static void hmR0VmxPreRunGuestDebugStateUpdate(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, PVMXTRANSIENT pVmxTransient)
9184{
9185 /*
9186 * Take down the dtrace serial number so we can spot changes.
9187 */
9188 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
9189 ASMCompilerBarrier();
9190
9191 /*
9192 * We'll rebuild most of the middle block of data members (holding the
9193 * current settings) as we go along here, so start by clearing it all.
9194 */
9195 pDbgState->bmXcptExtra = 0;
9196 pDbgState->fCpe1Extra = 0;
9197 pDbgState->fCpe1Unwanted = 0;
9198 pDbgState->fCpe2Extra = 0;
9199 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
9200 pDbgState->bmExitsToCheck[i] = 0;
9201
9202 /*
9203 * Software interrupts (INT XXh) - no idea how to trigger these...
9204 */
9205 PVM pVM = pVCpu->CTX_SUFF(pVM);
9206 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
9207 || VBOXVMM_INT_SOFTWARE_ENABLED())
9208 {
9209 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9210 }
9211
9212 /*
9213 * INT3 breakpoints - triggered by #BP exceptions.
9214 */
9215 if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
9216 pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9217
9218 /*
9219 * Exception bitmap and XCPT events+probes.
9220 */
9221 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
9222 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
9223 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
9224
9225 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
9226 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
9227 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9228 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
9229 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
9230 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
9231 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
9232 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
9233 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
9234 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
9235 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
9236 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
9237 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
9238 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
9239 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
9240 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
9241 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
9242 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
9243
9244 if (pDbgState->bmXcptExtra)
9245 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9246
9247 /*
9248 * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
9249 *
9250 * Note! This is the reverse of what hmR0VmxHandleExitDtraceEvents does.
9251 * So, when adding/changing/removing please don't forget to update it.
9252 *
9253 * Some of the macros are picking up local variables to save horizontal space,
9254 * (being able to see it in a table is the lesser evil here).
9255 */
9256#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
9257 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
9258 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
9259#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
9260 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9261 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9262 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9263 } else do { } while (0)
9264#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
9265 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9266 { \
9267 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
9268 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9269 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9270 } else do { } while (0)
9271#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
9272 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9273 { \
9274 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
9275 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9276 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9277 } else do { } while (0)
9278#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
9279 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9280 { \
9281 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
9282 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9283 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9284 } else do { } while (0)
9285
9286 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
9287 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
9288 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
9289 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
9290 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
9291
9292 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
9293 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
9294 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
9295 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
9296 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_PROC_CTLS_HLT_EXIT); /* paranoia */
9297 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
9298 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
9299 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
9300 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_PROC_CTLS_INVLPG_EXIT);
9301 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
9302 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_PROC_CTLS_RDPMC_EXIT);
9303 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
9304 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_PROC_CTLS_RDTSC_EXIT);
9305 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
9306 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
9307 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
9308 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
9309 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
9310 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
9311 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
9312 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
9313 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
9314 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
9315 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
9316 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
9317 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
9318 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
9319 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
9320 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
9321 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
9322 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
9323 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
9324 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
9325 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
9326 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
9327 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
9328
9329 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
9330 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9331 {
9332 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_APIC_TPR);
9333 AssertRC(rc);
9334
9335#if 0 /** @todo fix me */
9336 pDbgState->fClearCr0Mask = true;
9337 pDbgState->fClearCr4Mask = true;
9338#endif
9339 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
9340 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_STORE_EXIT | VMX_PROC_CTLS_CR8_STORE_EXIT;
9341 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9342 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_LOAD_EXIT | VMX_PROC_CTLS_CR8_LOAD_EXIT;
9343 pDbgState->fCpe1Unwanted |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* risky? */
9344 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
9345 require clearing here and in the loop if we start using it. */
9346 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
9347 }
9348 else
9349 {
9350 if (pDbgState->fClearCr0Mask)
9351 {
9352 pDbgState->fClearCr0Mask = false;
9353 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
9354 }
9355 if (pDbgState->fClearCr4Mask)
9356 {
9357 pDbgState->fClearCr4Mask = false;
9358 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
9359 }
9360 }
9361 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
9362 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
9363
9364 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
9365 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
9366 {
9367 /** @todo later, need to fix handler as it assumes this won't usually happen. */
9368 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
9369 }
9370 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
9371 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
9372
9373 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS); /* risky clearing this? */
9374 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
9375 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS);
9376 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
9377 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_PROC_CTLS_MWAIT_EXIT); /* paranoia */
9378 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
9379 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_PROC_CTLS_MONITOR_EXIT); /* paranoia */
9380 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
9381#if 0 /** @todo too slow, fix handler. */
9382 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_PROC_CTLS_PAUSE_EXIT);
9383#endif
9384 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
9385
9386 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
9387 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
9388 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
9389 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
9390 {
9391 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
9392 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_GDTR_IDTR_ACCESS);
9393 }
9394 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
9395 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
9396 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
9397 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
9398
9399 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
9400 || IS_EITHER_ENABLED(pVM, INSTR_STR)
9401 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
9402 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
9403 {
9404 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
9405 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_LDTR_TR_ACCESS);
9406 }
9407 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_LDTR_TR_ACCESS);
9408 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_LDTR_TR_ACCESS);
9409 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_LDTR_TR_ACCESS);
9410 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_LDTR_TR_ACCESS);
9411
9412 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
9413 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
9414 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_PROC_CTLS_RDTSC_EXIT);
9415 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
9416 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
9417 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
9418 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_PROC_CTLS2_WBINVD_EXIT);
9419 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
9420 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
9421 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
9422 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_PROC_CTLS2_RDRAND_EXIT);
9423 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
9424 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_PROC_CTLS_INVLPG_EXIT);
9425 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
9426 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
9427 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
9428 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_PROC_CTLS2_RDSEED_EXIT);
9429 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
9430 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
9431 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
9432 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
9433 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
9434
9435#undef IS_EITHER_ENABLED
9436#undef SET_ONLY_XBM_IF_EITHER_EN
9437#undef SET_CPE1_XBM_IF_EITHER_EN
9438#undef SET_CPEU_XBM_IF_EITHER_EN
9439#undef SET_CPE2_XBM_IF_EITHER_EN
9440
9441 /*
9442 * Sanitize the control stuff.
9443 */
9444 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1;
9445 if (pDbgState->fCpe2Extra)
9446 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
9447 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1;
9448 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.ProcCtls.n.disallowed0;
9449 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT))
9450 {
9451 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
9452 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9453 }
9454
9455 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
9456 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
9457 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
9458 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
9459}
9460
9461
9462/**
9463 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
9464 * appropriate.
9465 *
9466 * The caller has checked the VM-exit against the
9467 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
9468 * already, so we don't have to do that either.
9469 *
9470 * @returns Strict VBox status code (i.e. informational status codes too).
9471 * @param pVCpu The cross context virtual CPU structure.
9472 * @param pVmxTransient Pointer to the VMX-transient structure.
9473 * @param uExitReason The VM-exit reason.
9474 *
9475 * @remarks The name of this function is displayed by dtrace, so keep it short
9476 * and to the point. No longer than 33 chars long, please.
9477 */
9478static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
9479{
9480 /*
9481 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
9482 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
9483 *
9484 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
9485 * does. Must add/change/remove both places. Same ordering, please.
9486 *
9487 * Added/removed events must also be reflected in the next section
9488 * where we dispatch dtrace events.
9489 */
9490 bool fDtrace1 = false;
9491 bool fDtrace2 = false;
9492 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
9493 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
9494 uint32_t uEventArg = 0;
9495#define SET_EXIT(a_EventSubName) \
9496 do { \
9497 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9498 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9499 } while (0)
9500#define SET_BOTH(a_EventSubName) \
9501 do { \
9502 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
9503 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9504 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
9505 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9506 } while (0)
9507 switch (uExitReason)
9508 {
9509 case VMX_EXIT_MTF:
9510 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
9511
9512 case VMX_EXIT_XCPT_OR_NMI:
9513 {
9514 uint8_t const idxVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
9515 switch (VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo))
9516 {
9517 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
9518 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
9519 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
9520 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
9521 {
9522 if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uExitIntInfo))
9523 {
9524 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
9525 uEventArg = pVmxTransient->uExitIntErrorCode;
9526 }
9527 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
9528 switch (enmEvent1)
9529 {
9530 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
9531 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
9532 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
9533 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
9534 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
9535 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
9536 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
9537 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
9538 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
9539 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
9540 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
9541 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
9542 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
9543 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
9544 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
9545 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
9546 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
9547 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
9548 default: break;
9549 }
9550 }
9551 else
9552 AssertFailed();
9553 break;
9554
9555 case VMX_EXIT_INT_INFO_TYPE_SW_INT:
9556 uEventArg = idxVector;
9557 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
9558 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
9559 break;
9560 }
9561 break;
9562 }
9563
9564 case VMX_EXIT_TRIPLE_FAULT:
9565 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
9566 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
9567 break;
9568 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
9569 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
9570 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
9571 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
9572 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
9573
9574 /* Instruction specific VM-exits: */
9575 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
9576 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
9577 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
9578 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
9579 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
9580 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
9581 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
9582 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
9583 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
9584 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
9585 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
9586 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
9587 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
9588 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
9589 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
9590 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
9591 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
9592 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
9593 case VMX_EXIT_MOV_CRX:
9594 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9595 if (VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_CRX_ACCESS_READ)
9596 SET_BOTH(CRX_READ);
9597 else
9598 SET_BOTH(CRX_WRITE);
9599 uEventArg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
9600 break;
9601 case VMX_EXIT_MOV_DRX:
9602 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9603 if ( VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual)
9604 == VMX_EXIT_QUAL_DRX_DIRECTION_READ)
9605 SET_BOTH(DRX_READ);
9606 else
9607 SET_BOTH(DRX_WRITE);
9608 uEventArg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual);
9609 break;
9610 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
9611 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
9612 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
9613 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
9614 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
9615 case VMX_EXIT_GDTR_IDTR_ACCESS:
9616 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9617 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_XDTR_INSINFO_INSTR_ID))
9618 {
9619 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
9620 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
9621 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
9622 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
9623 }
9624 break;
9625
9626 case VMX_EXIT_LDTR_TR_ACCESS:
9627 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9628 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_YYTR_INSINFO_INSTR_ID))
9629 {
9630 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
9631 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
9632 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
9633 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
9634 }
9635 break;
9636
9637 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
9638 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
9639 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
9640 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
9641 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
9642 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
9643 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
9644 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
9645 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
9646 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
9647 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
9648
9649 /* Events that aren't relevant at this point. */
9650 case VMX_EXIT_EXT_INT:
9651 case VMX_EXIT_INT_WINDOW:
9652 case VMX_EXIT_NMI_WINDOW:
9653 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9654 case VMX_EXIT_PREEMPT_TIMER:
9655 case VMX_EXIT_IO_INSTR:
9656 break;
9657
9658 /* Errors and unexpected events. */
9659 case VMX_EXIT_INIT_SIGNAL:
9660 case VMX_EXIT_SIPI:
9661 case VMX_EXIT_IO_SMI:
9662 case VMX_EXIT_SMI:
9663 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
9664 case VMX_EXIT_ERR_MSR_LOAD:
9665 case VMX_EXIT_ERR_MACHINE_CHECK:
9666 break;
9667
9668 default:
9669 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
9670 break;
9671 }
9672#undef SET_BOTH
9673#undef SET_EXIT
9674
9675 /*
9676 * Dtrace tracepoints go first. We do them here at once so we don't
9677 * have to copy the guest state saving and stuff a few dozen times.
9678 * Down side is that we've got to repeat the switch, though this time
9679 * we use enmEvent since the probes are a subset of what DBGF does.
9680 */
9681 if (fDtrace1 || fDtrace2)
9682 {
9683 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9684 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
9685 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
9686 switch (enmEvent1)
9687 {
9688 /** @todo consider which extra parameters would be helpful for each probe. */
9689 case DBGFEVENT_END: break;
9690 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pCtx); break;
9691 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pCtx, pCtx->dr[6]); break;
9692 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pCtx); break;
9693 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pCtx); break;
9694 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pCtx); break;
9695 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pCtx); break;
9696 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pCtx); break;
9697 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pCtx); break;
9698 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pCtx, uEventArg); break;
9699 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pCtx, uEventArg); break;
9700 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pCtx, uEventArg); break;
9701 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pCtx, uEventArg); break;
9702 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pCtx, uEventArg, pCtx->cr2); break;
9703 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pCtx); break;
9704 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pCtx); break;
9705 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pCtx); break;
9706 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pCtx); break;
9707 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pCtx, uEventArg); break;
9708 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9709 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
9710 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pCtx); break;
9711 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pCtx); break;
9712 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pCtx); break;
9713 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pCtx); break;
9714 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pCtx); break;
9715 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pCtx); break;
9716 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pCtx); break;
9717 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9718 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9719 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9720 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9721 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
9722 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pCtx, pCtx->ecx,
9723 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
9724 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pCtx); break;
9725 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pCtx); break;
9726 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pCtx); break;
9727 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pCtx); break;
9728 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pCtx); break;
9729 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pCtx); break;
9730 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pCtx); break;
9731 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pCtx); break;
9732 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pCtx); break;
9733 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pCtx); break;
9734 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pCtx); break;
9735 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pCtx); break;
9736 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pCtx); break;
9737 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pCtx); break;
9738 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pCtx); break;
9739 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pCtx); break;
9740 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pCtx); break;
9741 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pCtx); break;
9742 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pCtx); break;
9743 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pCtx); break;
9744 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pCtx); break;
9745 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pCtx); break;
9746 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pCtx); break;
9747 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pCtx); break;
9748 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pCtx); break;
9749 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pCtx); break;
9750 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pCtx); break;
9751 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pCtx); break;
9752 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pCtx); break;
9753 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pCtx); break;
9754 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pCtx); break;
9755 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pCtx); break;
9756 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
9757 }
9758 switch (enmEvent2)
9759 {
9760 /** @todo consider which extra parameters would be helpful for each probe. */
9761 case DBGFEVENT_END: break;
9762 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pCtx); break;
9763 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
9764 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pCtx); break;
9765 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pCtx); break;
9766 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pCtx); break;
9767 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pCtx); break;
9768 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pCtx); break;
9769 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pCtx); break;
9770 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pCtx); break;
9771 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9772 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9773 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9774 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9775 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
9776 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pCtx, pCtx->ecx,
9777 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
9778 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pCtx); break;
9779 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pCtx); break;
9780 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pCtx); break;
9781 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pCtx); break;
9782 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pCtx); break;
9783 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pCtx); break;
9784 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pCtx); break;
9785 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pCtx); break;
9786 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pCtx); break;
9787 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pCtx); break;
9788 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pCtx); break;
9789 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pCtx); break;
9790 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pCtx); break;
9791 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pCtx); break;
9792 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pCtx); break;
9793 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pCtx); break;
9794 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pCtx); break;
9795 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pCtx); break;
9796 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pCtx); break;
9797 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pCtx); break;
9798 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pCtx); break;
9799 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pCtx); break;
9800 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pCtx); break;
9801 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pCtx); break;
9802 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pCtx); break;
9803 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pCtx); break;
9804 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pCtx); break;
9805 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pCtx); break;
9806 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pCtx); break;
9807 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pCtx); break;
9808 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pCtx); break;
9809 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pCtx); break;
9810 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pCtx); break;
9811 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pCtx); break;
9812 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pCtx); break;
9813 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pCtx); break;
9814 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
9815 }
9816 }
9817
9818 /*
9819 * Fire of the DBGF event, if enabled (our check here is just a quick one,
9820 * the DBGF call will do a full check).
9821 *
9822 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
9823 * Note! If we have to events, we prioritize the first, i.e. the instruction
9824 * one, in order to avoid event nesting.
9825 */
9826 PVM pVM = pVCpu->CTX_SUFF(pVM);
9827 if ( enmEvent1 != DBGFEVENT_END
9828 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
9829 {
9830 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent1, DBGFEVENTCTX_HM, 1, uEventArg);
9831 if (rcStrict != VINF_SUCCESS)
9832 return rcStrict;
9833 }
9834 else if ( enmEvent2 != DBGFEVENT_END
9835 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
9836 {
9837 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent2, DBGFEVENTCTX_HM, 1, uEventArg);
9838 if (rcStrict != VINF_SUCCESS)
9839 return rcStrict;
9840 }
9841
9842 return VINF_SUCCESS;
9843}
9844
9845
9846/**
9847 * Single-stepping VM-exit filtering.
9848 *
9849 * This is preprocessing the VM-exits and deciding whether we've gotten far
9850 * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
9851 * handling is performed.
9852 *
9853 * @returns Strict VBox status code (i.e. informational status codes too).
9854 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9855 * @param pVmxTransient Pointer to the VMX-transient structure.
9856 * @param pDbgState The debug state.
9857 */
9858DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
9859{
9860 /*
9861 * Expensive (saves context) generic dtrace VM-exit probe.
9862 */
9863 uint32_t const uExitReason = pVmxTransient->uExitReason;
9864 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
9865 { /* more likely */ }
9866 else
9867 {
9868 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9869 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
9870 AssertRC(rc);
9871 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
9872 }
9873
9874 /*
9875 * Check for host NMI, just to get that out of the way.
9876 */
9877 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
9878 { /* normally likely */ }
9879 else
9880 {
9881 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
9882 AssertRCReturn(rc2, rc2);
9883 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
9884 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
9885 return hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient);
9886 }
9887
9888 /*
9889 * Check for single stepping event if we're stepping.
9890 */
9891 if (pVCpu->hm.s.fSingleInstruction)
9892 {
9893 switch (uExitReason)
9894 {
9895 case VMX_EXIT_MTF:
9896 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
9897
9898 /* Various events: */
9899 case VMX_EXIT_XCPT_OR_NMI:
9900 case VMX_EXIT_EXT_INT:
9901 case VMX_EXIT_TRIPLE_FAULT:
9902 case VMX_EXIT_INT_WINDOW:
9903 case VMX_EXIT_NMI_WINDOW:
9904 case VMX_EXIT_TASK_SWITCH:
9905 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9906 case VMX_EXIT_APIC_ACCESS:
9907 case VMX_EXIT_EPT_VIOLATION:
9908 case VMX_EXIT_EPT_MISCONFIG:
9909 case VMX_EXIT_PREEMPT_TIMER:
9910
9911 /* Instruction specific VM-exits: */
9912 case VMX_EXIT_CPUID:
9913 case VMX_EXIT_GETSEC:
9914 case VMX_EXIT_HLT:
9915 case VMX_EXIT_INVD:
9916 case VMX_EXIT_INVLPG:
9917 case VMX_EXIT_RDPMC:
9918 case VMX_EXIT_RDTSC:
9919 case VMX_EXIT_RSM:
9920 case VMX_EXIT_VMCALL:
9921 case VMX_EXIT_VMCLEAR:
9922 case VMX_EXIT_VMLAUNCH:
9923 case VMX_EXIT_VMPTRLD:
9924 case VMX_EXIT_VMPTRST:
9925 case VMX_EXIT_VMREAD:
9926 case VMX_EXIT_VMRESUME:
9927 case VMX_EXIT_VMWRITE:
9928 case VMX_EXIT_VMXOFF:
9929 case VMX_EXIT_VMXON:
9930 case VMX_EXIT_MOV_CRX:
9931 case VMX_EXIT_MOV_DRX:
9932 case VMX_EXIT_IO_INSTR:
9933 case VMX_EXIT_RDMSR:
9934 case VMX_EXIT_WRMSR:
9935 case VMX_EXIT_MWAIT:
9936 case VMX_EXIT_MONITOR:
9937 case VMX_EXIT_PAUSE:
9938 case VMX_EXIT_GDTR_IDTR_ACCESS:
9939 case VMX_EXIT_LDTR_TR_ACCESS:
9940 case VMX_EXIT_INVEPT:
9941 case VMX_EXIT_RDTSCP:
9942 case VMX_EXIT_INVVPID:
9943 case VMX_EXIT_WBINVD:
9944 case VMX_EXIT_XSETBV:
9945 case VMX_EXIT_RDRAND:
9946 case VMX_EXIT_INVPCID:
9947 case VMX_EXIT_VMFUNC:
9948 case VMX_EXIT_RDSEED:
9949 case VMX_EXIT_XSAVES:
9950 case VMX_EXIT_XRSTORS:
9951 {
9952 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
9953 AssertRCReturn(rc, rc);
9954 if ( pVCpu->cpum.GstCtx.rip != pDbgState->uRipStart
9955 || pVCpu->cpum.GstCtx.cs.Sel != pDbgState->uCsStart)
9956 return VINF_EM_DBG_STEPPED;
9957 break;
9958 }
9959
9960 /* Errors and unexpected events: */
9961 case VMX_EXIT_INIT_SIGNAL:
9962 case VMX_EXIT_SIPI:
9963 case VMX_EXIT_IO_SMI:
9964 case VMX_EXIT_SMI:
9965 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
9966 case VMX_EXIT_ERR_MSR_LOAD:
9967 case VMX_EXIT_ERR_MACHINE_CHECK:
9968 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
9969 break;
9970
9971 default:
9972 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
9973 break;
9974 }
9975 }
9976
9977 /*
9978 * Check for debugger event breakpoints and dtrace probes.
9979 */
9980 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
9981 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
9982 {
9983 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVCpu, pVmxTransient, uExitReason);
9984 if (rcStrict != VINF_SUCCESS)
9985 return rcStrict;
9986 }
9987
9988 /*
9989 * Normal processing.
9990 */
9991#ifdef HMVMX_USE_FUNCTION_TABLE
9992 return g_apfnVMExitHandlers[uExitReason](pVCpu, pVmxTransient);
9993#else
9994 return hmR0VmxHandleExit(pVCpu, pVmxTransient, uExitReason);
9995#endif
9996}
9997
9998
9999/**
10000 * Single steps guest code using VT-x.
10001 *
10002 * @returns Strict VBox status code (i.e. informational status codes too).
10003 * @param pVCpu The cross context virtual CPU structure.
10004 *
10005 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
10006 */
10007static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVMCPU pVCpu)
10008{
10009 VMXTRANSIENT VmxTransient;
10010 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
10011
10012 /* Set HMCPU indicators. */
10013 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
10014 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
10015 pVCpu->hm.s.fDebugWantRdTscExit = false;
10016 pVCpu->hm.s.fUsingDebugLoop = true;
10017
10018 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
10019 VMXRUNDBGSTATE DbgState;
10020 hmR0VmxRunDebugStateInit(pVCpu, &DbgState);
10021 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &DbgState, &VmxTransient);
10022
10023 /*
10024 * The loop.
10025 */
10026 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10027 for (uint32_t cLoops = 0; ; cLoops++)
10028 {
10029 Assert(!HMR0SuspendPending());
10030 HMVMX_ASSERT_CPU_SAFE(pVCpu);
10031 bool fStepping = pVCpu->hm.s.fSingleInstruction;
10032
10033 /*
10034 * Preparatory work for running guest code, this may force us to return
10035 * to ring-3. This bugger disables interrupts on VINF_SUCCESS!
10036 */
10037 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10038 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Set up execute controls the next to can respond to. */
10039 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, fStepping);
10040 if (rcStrict != VINF_SUCCESS)
10041 break;
10042
10043 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
10044 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Override any obnoxious code in the above two calls. */
10045
10046 /*
10047 * Now we can run the guest code.
10048 */
10049 int rcRun = hmR0VmxRunGuest(pVCpu);
10050
10051 /*
10052 * Restore any residual host-state and save any bits shared between host
10053 * and guest into the guest-CPU state. Re-enables interrupts!
10054 */
10055 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
10056
10057 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
10058 if (RT_SUCCESS(rcRun))
10059 { /* very likely */ }
10060 else
10061 {
10062 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
10063 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
10064 return rcRun;
10065 }
10066
10067 /* Profile the VM-exit. */
10068 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10069 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10070 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10071 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
10072 HMVMX_START_EXIT_DISPATCH_PROF();
10073
10074 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
10075
10076 /*
10077 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
10078 */
10079 rcStrict = hmR0VmxRunDebugHandleExit(pVCpu, &VmxTransient, &DbgState);
10080 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
10081 if (rcStrict != VINF_SUCCESS)
10082 break;
10083 if (cLoops > pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
10084 {
10085 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10086 rcStrict = VINF_EM_RAW_INTERRUPT;
10087 break;
10088 }
10089
10090 /*
10091 * Stepping: Did the RIP change, if so, consider it a single step.
10092 * Otherwise, make sure one of the TFs gets set.
10093 */
10094 if (fStepping)
10095 {
10096 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
10097 AssertRC(rc);
10098 if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
10099 || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
10100 {
10101 rcStrict = VINF_EM_DBG_STEPPED;
10102 break;
10103 }
10104 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
10105 }
10106
10107 /*
10108 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
10109 */
10110 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
10111 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &DbgState, &VmxTransient);
10112 }
10113
10114 /*
10115 * Clear the X86_EFL_TF if necessary.
10116 */
10117 if (pVCpu->hm.s.fClearTrapFlag)
10118 {
10119 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
10120 AssertRC(rc);
10121 pVCpu->hm.s.fClearTrapFlag = false;
10122 pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
10123 }
10124 /** @todo there seems to be issues with the resume flag when the monitor trap
10125 * flag is pending without being used. Seen early in bios init when
10126 * accessing APIC page in protected mode. */
10127
10128 /*
10129 * Restore VM-exit control settings as we may not reenter this function the
10130 * next time around.
10131 */
10132 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &DbgState, rcStrict);
10133
10134 /* Restore HMCPU indicators. */
10135 pVCpu->hm.s.fUsingDebugLoop = false;
10136 pVCpu->hm.s.fDebugWantRdTscExit = false;
10137 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
10138
10139 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10140 return rcStrict;
10141}
10142
10143
10144/** @} */
10145
10146
10147/**
10148 * Checks if any expensive dtrace probes are enabled and we should go to the
10149 * debug loop.
10150 *
10151 * @returns true if we should use debug loop, false if not.
10152 */
10153static bool hmR0VmxAnyExpensiveProbesEnabled(void)
10154{
10155 /* It's probably faster to OR the raw 32-bit counter variables together.
10156 Since the variables are in an array and the probes are next to one
10157 another (more or less), we have good locality. So, better read
10158 eight-nine cache lines ever time and only have one conditional, than
10159 128+ conditionals, right? */
10160 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
10161 | VBOXVMM_XCPT_DE_ENABLED_RAW()
10162 | VBOXVMM_XCPT_DB_ENABLED_RAW()
10163 | VBOXVMM_XCPT_BP_ENABLED_RAW()
10164 | VBOXVMM_XCPT_OF_ENABLED_RAW()
10165 | VBOXVMM_XCPT_BR_ENABLED_RAW()
10166 | VBOXVMM_XCPT_UD_ENABLED_RAW()
10167 | VBOXVMM_XCPT_NM_ENABLED_RAW()
10168 | VBOXVMM_XCPT_DF_ENABLED_RAW()
10169 | VBOXVMM_XCPT_TS_ENABLED_RAW()
10170 | VBOXVMM_XCPT_NP_ENABLED_RAW()
10171 | VBOXVMM_XCPT_SS_ENABLED_RAW()
10172 | VBOXVMM_XCPT_GP_ENABLED_RAW()
10173 | VBOXVMM_XCPT_PF_ENABLED_RAW()
10174 | VBOXVMM_XCPT_MF_ENABLED_RAW()
10175 | VBOXVMM_XCPT_AC_ENABLED_RAW()
10176 | VBOXVMM_XCPT_XF_ENABLED_RAW()
10177 | VBOXVMM_XCPT_VE_ENABLED_RAW()
10178 | VBOXVMM_XCPT_SX_ENABLED_RAW()
10179 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
10180 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
10181 ) != 0
10182 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
10183 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
10184 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
10185 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
10186 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
10187 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
10188 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
10189 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
10190 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
10191 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
10192 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
10193 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
10194 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
10195 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
10196 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
10197 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
10198 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
10199 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
10200 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
10201 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
10202 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
10203 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
10204 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
10205 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
10206 | VBOXVMM_INSTR_STR_ENABLED_RAW()
10207 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
10208 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
10209 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
10210 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
10211 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
10212 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
10213 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
10214 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
10215 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
10216 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
10217 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
10218 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
10219 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
10220 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
10221 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
10222 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
10223 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
10224 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
10225 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
10226 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
10227 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
10228 ) != 0
10229 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
10230 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
10231 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
10232 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
10233 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
10234 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
10235 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
10236 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
10237 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
10238 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
10239 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
10240 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
10241 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
10242 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
10243 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
10244 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
10245 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
10246 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
10247 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
10248 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
10249 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
10250 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
10251 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
10252 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
10253 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
10254 | VBOXVMM_EXIT_STR_ENABLED_RAW()
10255 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
10256 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
10257 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
10258 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
10259 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
10260 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
10261 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
10262 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
10263 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
10264 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
10265 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
10266 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
10267 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
10268 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
10269 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
10270 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
10271 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
10272 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
10273 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
10274 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
10275 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
10276 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
10277 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
10278 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
10279 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
10280 ) != 0;
10281}
10282
10283
10284/**
10285 * Runs the guest code using VT-x.
10286 *
10287 * @returns Strict VBox status code (i.e. informational status codes too).
10288 * @param pVCpu The cross context virtual CPU structure.
10289 */
10290VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVMCPU pVCpu)
10291{
10292 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
10293 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10294 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
10295 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
10296
10297 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
10298
10299 VBOXSTRICTRC rcStrict;
10300 if ( !pVCpu->hm.s.fUseDebugLoop
10301 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
10302 && !DBGFIsStepping(pVCpu)
10303 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
10304 rcStrict = hmR0VmxRunGuestCodeNormal(pVCpu);
10305 else
10306 rcStrict = hmR0VmxRunGuestCodeDebug(pVCpu);
10307
10308 if (rcStrict == VERR_EM_INTERPRETER)
10309 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
10310 else if (rcStrict == VINF_EM_RESET)
10311 rcStrict = VINF_EM_TRIPLE_FAULT;
10312
10313 int rc2 = hmR0VmxExitToRing3(pVCpu, rcStrict);
10314 if (RT_FAILURE(rc2))
10315 {
10316 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
10317 rcStrict = rc2;
10318 }
10319 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
10320 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
10321 return rcStrict;
10322}
10323
10324
10325#ifndef HMVMX_USE_FUNCTION_TABLE
10326DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
10327{
10328#ifdef DEBUG_ramshankar
10329#define VMEXIT_CALL_RET(a_fSave, a_CallExpr) \
10330 do { \
10331 if (a_fSave != 0) \
10332 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL); \
10333 VBOXSTRICTRC rcStrict = a_CallExpr; \
10334 if (a_fSave != 0) \
10335 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
10336 return rcStrict; \
10337 } while (0)
10338#else
10339# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) return a_CallExpr
10340#endif
10341 switch (rcReason)
10342 {
10343 case VMX_EXIT_EPT_MISCONFIG: VMEXIT_CALL_RET(0, hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient));
10344 case VMX_EXIT_EPT_VIOLATION: VMEXIT_CALL_RET(0, hmR0VmxExitEptViolation(pVCpu, pVmxTransient));
10345 case VMX_EXIT_IO_INSTR: VMEXIT_CALL_RET(0, hmR0VmxExitIoInstr(pVCpu, pVmxTransient));
10346 case VMX_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0VmxExitCpuid(pVCpu, pVmxTransient));
10347 case VMX_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0VmxExitRdtsc(pVCpu, pVmxTransient));
10348 case VMX_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0VmxExitRdtscp(pVCpu, pVmxTransient));
10349 case VMX_EXIT_APIC_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitApicAccess(pVCpu, pVmxTransient));
10350 case VMX_EXIT_XCPT_OR_NMI: VMEXIT_CALL_RET(0, hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient));
10351 case VMX_EXIT_MOV_CRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovCRx(pVCpu, pVmxTransient));
10352 case VMX_EXIT_EXT_INT: VMEXIT_CALL_RET(0, hmR0VmxExitExtInt(pVCpu, pVmxTransient));
10353 case VMX_EXIT_INT_WINDOW: VMEXIT_CALL_RET(0, hmR0VmxExitIntWindow(pVCpu, pVmxTransient));
10354 case VMX_EXIT_TPR_BELOW_THRESHOLD: VMEXIT_CALL_RET(0, hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient));
10355 case VMX_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0VmxExitMwait(pVCpu, pVmxTransient));
10356 case VMX_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0VmxExitMonitor(pVCpu, pVmxTransient));
10357 case VMX_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0VmxExitTaskSwitch(pVCpu, pVmxTransient));
10358 case VMX_EXIT_PREEMPT_TIMER: VMEXIT_CALL_RET(0, hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient));
10359 case VMX_EXIT_RDMSR: VMEXIT_CALL_RET(0, hmR0VmxExitRdmsr(pVCpu, pVmxTransient));
10360 case VMX_EXIT_WRMSR: VMEXIT_CALL_RET(0, hmR0VmxExitWrmsr(pVCpu, pVmxTransient));
10361 case VMX_EXIT_VMCALL: VMEXIT_CALL_RET(0, hmR0VmxExitVmcall(pVCpu, pVmxTransient));
10362 case VMX_EXIT_MOV_DRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovDRx(pVCpu, pVmxTransient));
10363 case VMX_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0VmxExitHlt(pVCpu, pVmxTransient));
10364 case VMX_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0VmxExitInvd(pVCpu, pVmxTransient));
10365 case VMX_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0VmxExitInvlpg(pVCpu, pVmxTransient));
10366 case VMX_EXIT_RSM: VMEXIT_CALL_RET(0, hmR0VmxExitRsm(pVCpu, pVmxTransient));
10367 case VMX_EXIT_MTF: VMEXIT_CALL_RET(0, hmR0VmxExitMtf(pVCpu, pVmxTransient));
10368 case VMX_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0VmxExitPause(pVCpu, pVmxTransient));
10369 case VMX_EXIT_GDTR_IDTR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
10370 case VMX_EXIT_LDTR_TR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
10371 case VMX_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0VmxExitWbinvd(pVCpu, pVmxTransient));
10372 case VMX_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0VmxExitXsetbv(pVCpu, pVmxTransient));
10373 case VMX_EXIT_RDRAND: VMEXIT_CALL_RET(0, hmR0VmxExitRdrand(pVCpu, pVmxTransient));
10374 case VMX_EXIT_INVPCID: VMEXIT_CALL_RET(0, hmR0VmxExitInvpcid(pVCpu, pVmxTransient));
10375 case VMX_EXIT_GETSEC: VMEXIT_CALL_RET(0, hmR0VmxExitGetsec(pVCpu, pVmxTransient));
10376 case VMX_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0VmxExitRdpmc(pVCpu, pVmxTransient));
10377
10378 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pVmxTransient);
10379 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pVmxTransient);
10380 case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pVmxTransient);
10381 case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pVmxTransient);
10382 case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pVmxTransient);
10383 case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pVmxTransient);
10384 case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pVmxTransient);
10385 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
10386 case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pVmxTransient);
10387
10388 case VMX_EXIT_VMCLEAR:
10389 case VMX_EXIT_VMLAUNCH:
10390 case VMX_EXIT_VMPTRLD:
10391 case VMX_EXIT_VMPTRST:
10392 case VMX_EXIT_VMREAD:
10393 case VMX_EXIT_VMRESUME:
10394 case VMX_EXIT_VMWRITE:
10395 case VMX_EXIT_VMXOFF:
10396 case VMX_EXIT_VMXON:
10397 case VMX_EXIT_INVEPT:
10398 case VMX_EXIT_INVVPID:
10399 case VMX_EXIT_VMFUNC:
10400 case VMX_EXIT_XSAVES:
10401 case VMX_EXIT_XRSTORS:
10402 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
10403
10404 case VMX_EXIT_ENCLS:
10405 case VMX_EXIT_RDSEED: /* only spurious VM-exits, so undefined */
10406 case VMX_EXIT_PML_FULL:
10407 default:
10408 return hmR0VmxExitErrUndefined(pVCpu, pVmxTransient);
10409 }
10410#undef VMEXIT_CALL_RET
10411}
10412#endif /* !HMVMX_USE_FUNCTION_TABLE */
10413
10414
10415#ifdef VBOX_STRICT
10416/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
10417# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
10418 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
10419
10420# define HMVMX_ASSERT_PREEMPT_CPUID() \
10421 do { \
10422 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
10423 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
10424 } while (0)
10425
10426# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10427 do { \
10428 AssertPtr((a_pVCpu)); \
10429 AssertPtr((a_pVmxTransient)); \
10430 Assert((a_pVmxTransient)->fVMEntryFailed == false); \
10431 Assert(ASMIntAreEnabled()); \
10432 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
10433 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
10434 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", (a_pVCpu)->idCpu)); \
10435 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
10436 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
10437 HMVMX_ASSERT_PREEMPT_CPUID(); \
10438 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10439 } while (0)
10440
10441# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10442 do { \
10443 Log4Func(("\n")); \
10444 } while (0)
10445#else
10446# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10447 do { \
10448 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10449 NOREF((a_pVCpu)); NOREF((a_pVmxTransient)); \
10450 } while (0)
10451# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) do { } while (0)
10452#endif
10453
10454
10455/**
10456 * Advances the guest RIP by the specified number of bytes.
10457 *
10458 * @param pVCpu The cross context virtual CPU structure.
10459 * @param cbInstr Number of bytes to advance the RIP by.
10460 *
10461 * @remarks No-long-jump zone!!!
10462 */
10463DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, uint32_t cbInstr)
10464{
10465 /* Advance the RIP. */
10466 pVCpu->cpum.GstCtx.rip += cbInstr;
10467 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
10468
10469 /* Update interrupt inhibition. */
10470 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
10471 && pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
10472 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
10473}
10474
10475
10476/**
10477 * Advances the guest RIP after reading it from the VMCS.
10478 *
10479 * @returns VBox status code, no informational status codes.
10480 * @param pVCpu The cross context virtual CPU structure.
10481 * @param pVmxTransient Pointer to the VMX transient structure.
10482 *
10483 * @remarks No-long-jump zone!!!
10484 */
10485static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
10486{
10487 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10488 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
10489 AssertRCReturn(rc, rc);
10490
10491 hmR0VmxAdvanceGuestRipBy(pVCpu, pVmxTransient->cbInstr);
10492
10493 /*
10494 * Deliver a debug exception to the guest if it is single-stepping. Don't directly inject a #DB but use the
10495 * pending debug exception field as it takes care of priority of events.
10496 *
10497 * See Intel spec. 32.2.1 "Debug Exceptions".
10498 */
10499 if ( !pVCpu->hm.s.fSingleInstruction
10500 && pVCpu->cpum.GstCtx.eflags.Bits.u1TF)
10501 {
10502 rc = hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
10503 AssertRCReturn(rc, rc);
10504 }
10505
10506 return VINF_SUCCESS;
10507}
10508
10509
10510/**
10511 * Tries to determine what part of the guest-state VT-x has deemed as invalid
10512 * and update error record fields accordingly.
10513 *
10514 * @return VMX_IGS_* return codes.
10515 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
10516 * wrong with the guest state.
10517 *
10518 * @param pVCpu The cross context virtual CPU structure.
10519 *
10520 * @remarks This function assumes our cache of the VMCS controls
10521 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
10522 */
10523static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu)
10524{
10525#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
10526#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
10527 uError = (err); \
10528 break; \
10529 } else do { } while (0)
10530
10531 int rc;
10532 PVM pVM = pVCpu->CTX_SUFF(pVM);
10533 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
10534 uint32_t uError = VMX_IGS_ERROR;
10535 uint32_t u32Val;
10536 bool const fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
10537
10538 do
10539 {
10540 /*
10541 * CR0.
10542 */
10543 uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10544 uint32_t const fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10545 /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
10546 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
10547 if (fUnrestrictedGuest)
10548 fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
10549
10550 uint32_t u32GuestCr0;
10551 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCr0);
10552 AssertRCBreak(rc);
10553 HMVMX_CHECK_BREAK((u32GuestCr0 & fSetCr0) == fSetCr0, VMX_IGS_CR0_FIXED1);
10554 HMVMX_CHECK_BREAK(!(u32GuestCr0 & ~fZapCr0), VMX_IGS_CR0_FIXED0);
10555 if ( !fUnrestrictedGuest
10556 && (u32GuestCr0 & X86_CR0_PG)
10557 && !(u32GuestCr0 & X86_CR0_PE))
10558 {
10559 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
10560 }
10561
10562 /*
10563 * CR4.
10564 */
10565 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10566 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10567
10568 uint32_t u32GuestCr4;
10569 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCr4);
10570 AssertRCBreak(rc);
10571 HMVMX_CHECK_BREAK((u32GuestCr4 & fSetCr4) == fSetCr4, VMX_IGS_CR4_FIXED1);
10572 HMVMX_CHECK_BREAK(!(u32GuestCr4 & ~fZapCr4), VMX_IGS_CR4_FIXED0);
10573
10574 /*
10575 * IA32_DEBUGCTL MSR.
10576 */
10577 uint64_t u64Val;
10578 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
10579 AssertRCBreak(rc);
10580 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
10581 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
10582 {
10583 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
10584 }
10585 uint64_t u64DebugCtlMsr = u64Val;
10586
10587#ifdef VBOX_STRICT
10588 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
10589 AssertRCBreak(rc);
10590 Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
10591#endif
10592 bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
10593
10594 /*
10595 * RIP and RFLAGS.
10596 */
10597 uint32_t u32Eflags;
10598#if HC_ARCH_BITS == 64
10599 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
10600 AssertRCBreak(rc);
10601 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
10602 if ( !fLongModeGuest
10603 || !pCtx->cs.Attr.n.u1Long)
10604 {
10605 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
10606 }
10607 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
10608 * must be identical if the "IA-32e mode guest" VM-entry
10609 * control is 1 and CS.L is 1. No check applies if the
10610 * CPU supports 64 linear-address bits. */
10611
10612 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
10613 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
10614 AssertRCBreak(rc);
10615 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
10616 VMX_IGS_RFLAGS_RESERVED);
10617 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10618 u32Eflags = u64Val;
10619#else
10620 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
10621 AssertRCBreak(rc);
10622 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
10623 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10624#endif
10625
10626 if ( fLongModeGuest
10627 || ( fUnrestrictedGuest
10628 && !(u32GuestCr0 & X86_CR0_PE)))
10629 {
10630 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
10631 }
10632
10633 uint32_t u32EntryInfo;
10634 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
10635 AssertRCBreak(rc);
10636 if ( VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
10637 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
10638 {
10639 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
10640 }
10641
10642 /*
10643 * 64-bit checks.
10644 */
10645#if HC_ARCH_BITS == 64
10646 if (fLongModeGuest)
10647 {
10648 HMVMX_CHECK_BREAK(u32GuestCr0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
10649 HMVMX_CHECK_BREAK(u32GuestCr4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
10650 }
10651
10652 if ( !fLongModeGuest
10653 && (u32GuestCr4 & X86_CR4_PCIDE))
10654 {
10655 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
10656 }
10657
10658 /** @todo CR3 field must be such that bits 63:52 and bits in the range
10659 * 51:32 beyond the processor's physical-address width are 0. */
10660
10661 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
10662 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
10663 {
10664 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
10665 }
10666
10667 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
10668 AssertRCBreak(rc);
10669 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
10670
10671 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
10672 AssertRCBreak(rc);
10673 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
10674#endif
10675
10676 /*
10677 * PERF_GLOBAL MSR.
10678 */
10679 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)
10680 {
10681 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
10682 AssertRCBreak(rc);
10683 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
10684 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
10685 }
10686
10687 /*
10688 * PAT MSR.
10689 */
10690 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
10691 {
10692 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
10693 AssertRCBreak(rc);
10694 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
10695 for (unsigned i = 0; i < 8; i++)
10696 {
10697 uint8_t u8Val = (u64Val & 0xff);
10698 if ( u8Val != 0 /* UC */
10699 && u8Val != 1 /* WC */
10700 && u8Val != 4 /* WT */
10701 && u8Val != 5 /* WP */
10702 && u8Val != 6 /* WB */
10703 && u8Val != 7 /* UC- */)
10704 {
10705 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
10706 }
10707 u64Val >>= 8;
10708 }
10709 }
10710
10711 /*
10712 * EFER MSR.
10713 */
10714 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
10715 {
10716 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
10717 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
10718 AssertRCBreak(rc);
10719 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
10720 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
10721 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVCpu->hm.s.vmx.u32EntryCtls
10722 & VMX_ENTRY_CTLS_IA32E_MODE_GUEST),
10723 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
10724 /** @todo r=ramshankar: Unrestricted check here is probably wrong, see
10725 * iemVmxVmentryCheckGuestState(). */
10726 HMVMX_CHECK_BREAK( fUnrestrictedGuest
10727 || !(u32GuestCr0 & X86_CR0_PG)
10728 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
10729 VMX_IGS_EFER_LMA_LME_MISMATCH);
10730 }
10731
10732 /*
10733 * Segment registers.
10734 */
10735 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10736 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
10737 if (!(u32Eflags & X86_EFL_VM))
10738 {
10739 /* CS */
10740 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
10741 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
10742 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
10743 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
10744 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10745 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
10746 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10747 /* CS cannot be loaded with NULL in protected mode. */
10748 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
10749 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
10750 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
10751 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
10752 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
10753 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
10754 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
10755 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
10756 else
10757 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
10758
10759 /* SS */
10760 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10761 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
10762 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
10763 if ( !(pCtx->cr0 & X86_CR0_PE)
10764 || pCtx->cs.Attr.n.u4Type == 3)
10765 {
10766 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
10767 }
10768 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
10769 {
10770 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
10771 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
10772 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
10773 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
10774 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
10775 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10776 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
10777 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10778 }
10779
10780 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegmenReg(). */
10781 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
10782 {
10783 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
10784 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
10785 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10786 || pCtx->ds.Attr.n.u4Type > 11
10787 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10788 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
10789 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
10790 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
10791 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10792 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
10793 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10794 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10795 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
10796 }
10797 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
10798 {
10799 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
10800 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
10801 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10802 || pCtx->es.Attr.n.u4Type > 11
10803 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10804 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
10805 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
10806 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
10807 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10808 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
10809 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10810 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10811 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
10812 }
10813 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
10814 {
10815 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
10816 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
10817 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10818 || pCtx->fs.Attr.n.u4Type > 11
10819 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
10820 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
10821 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
10822 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
10823 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10824 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
10825 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10826 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10827 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
10828 }
10829 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
10830 {
10831 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
10832 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
10833 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10834 || pCtx->gs.Attr.n.u4Type > 11
10835 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
10836 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
10837 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
10838 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
10839 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10840 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
10841 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10842 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10843 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
10844 }
10845 /* 64-bit capable CPUs. */
10846#if HC_ARCH_BITS == 64
10847 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10848 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10849 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10850 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10851 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10852 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
10853 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10854 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
10855 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10856 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
10857 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10858#endif
10859 }
10860 else
10861 {
10862 /* V86 mode checks. */
10863 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
10864 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
10865 {
10866 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
10867 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
10868 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
10869 }
10870 else
10871 {
10872 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
10873 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
10874 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
10875 }
10876
10877 /* CS */
10878 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
10879 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
10880 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
10881 /* SS */
10882 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
10883 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
10884 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
10885 /* DS */
10886 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
10887 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
10888 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
10889 /* ES */
10890 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
10891 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
10892 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
10893 /* FS */
10894 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
10895 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
10896 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
10897 /* GS */
10898 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
10899 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
10900 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
10901 /* 64-bit capable CPUs. */
10902#if HC_ARCH_BITS == 64
10903 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10904 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10905 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10906 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10907 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10908 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
10909 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10910 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
10911 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10912 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
10913 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10914#endif
10915 }
10916
10917 /*
10918 * TR.
10919 */
10920 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
10921 /* 64-bit capable CPUs. */
10922#if HC_ARCH_BITS == 64
10923 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
10924#endif
10925 if (fLongModeGuest)
10926 {
10927 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
10928 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
10929 }
10930 else
10931 {
10932 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
10933 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
10934 VMX_IGS_TR_ATTR_TYPE_INVALID);
10935 }
10936 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
10937 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
10938 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
10939 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
10940 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
10941 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
10942 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
10943 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
10944
10945 /*
10946 * GDTR and IDTR.
10947 */
10948#if HC_ARCH_BITS == 64
10949 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
10950 AssertRCBreak(rc);
10951 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
10952
10953 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
10954 AssertRCBreak(rc);
10955 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
10956#endif
10957
10958 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
10959 AssertRCBreak(rc);
10960 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
10961
10962 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
10963 AssertRCBreak(rc);
10964 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
10965
10966 /*
10967 * Guest Non-Register State.
10968 */
10969 /* Activity State. */
10970 uint32_t u32ActivityState;
10971 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
10972 AssertRCBreak(rc);
10973 HMVMX_CHECK_BREAK( !u32ActivityState
10974 || (u32ActivityState & RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Misc, VMX_BF_MISC_ACTIVITY_STATES)),
10975 VMX_IGS_ACTIVITY_STATE_INVALID);
10976 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
10977 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
10978 uint32_t u32IntrState;
10979 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32IntrState);
10980 AssertRCBreak(rc);
10981 if ( u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
10982 || u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
10983 {
10984 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
10985 }
10986
10987 /** @todo Activity state and injecting interrupts. Left as a todo since we
10988 * currently don't use activity states but ACTIVE. */
10989
10990 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
10991 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
10992
10993 /* Guest interruptibility-state. */
10994 HMVMX_CHECK_BREAK(!(u32IntrState & 0xffffffe0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
10995 HMVMX_CHECK_BREAK((u32IntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
10996 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
10997 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
10998 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
10999 || !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
11000 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
11001 if (VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo))
11002 {
11003 if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
11004 {
11005 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
11006 && !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
11007 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
11008 }
11009 else if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
11010 {
11011 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
11012 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
11013 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
11014 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
11015 }
11016 }
11017 /** @todo Assumes the processor is not in SMM. */
11018 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
11019 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
11020 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
11021 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
11022 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
11023 if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
11024 && VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
11025 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
11026 {
11027 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI),
11028 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
11029 }
11030
11031 /* Pending debug exceptions. */
11032#if HC_ARCH_BITS == 64
11033 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u64Val);
11034 AssertRCBreak(rc);
11035 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
11036 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
11037 u32Val = u64Val; /* For pending debug exceptions checks below. */
11038#else
11039 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u32Val);
11040 AssertRCBreak(rc);
11041 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
11042 HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
11043#endif
11044
11045 if ( (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
11046 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
11047 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
11048 {
11049 if ( (u32Eflags & X86_EFL_TF)
11050 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11051 {
11052 /* Bit 14 is PendingDebug.BS. */
11053 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
11054 }
11055 if ( !(u32Eflags & X86_EFL_TF)
11056 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11057 {
11058 /* Bit 14 is PendingDebug.BS. */
11059 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
11060 }
11061 }
11062
11063 /* VMCS link pointer. */
11064 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
11065 AssertRCBreak(rc);
11066 if (u64Val != UINT64_C(0xffffffffffffffff))
11067 {
11068 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
11069 /** @todo Bits beyond the processor's physical-address width MBZ. */
11070 /** @todo 32-bit located in memory referenced by value of this field (as a
11071 * physical address) must contain the processor's VMCS revision ID. */
11072 /** @todo SMM checks. */
11073 }
11074
11075 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
11076 * not using Nested Paging? */
11077 if ( pVM->hm.s.fNestedPaging
11078 && !fLongModeGuest
11079 && CPUMIsGuestInPAEModeEx(pCtx))
11080 {
11081 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
11082 AssertRCBreak(rc);
11083 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11084
11085 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
11086 AssertRCBreak(rc);
11087 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11088
11089 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
11090 AssertRCBreak(rc);
11091 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11092
11093 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
11094 AssertRCBreak(rc);
11095 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11096 }
11097
11098 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
11099 if (uError == VMX_IGS_ERROR)
11100 uError = VMX_IGS_REASON_NOT_FOUND;
11101 } while (0);
11102
11103 pVCpu->hm.s.u32HMError = uError;
11104 return uError;
11105
11106#undef HMVMX_ERROR_BREAK
11107#undef HMVMX_CHECK_BREAK
11108}
11109
11110
11111/** @name VM-exit handlers.
11112 * @{
11113 */
11114/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11115/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
11116/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11117
11118/**
11119 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
11120 */
11121HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11122{
11123 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11124 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
11125 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
11126 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
11127 return VINF_SUCCESS;
11128 return VINF_EM_RAW_INTERRUPT;
11129}
11130
11131
11132/**
11133 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
11134 */
11135HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11136{
11137 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11138 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
11139
11140 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11141 AssertRCReturn(rc, rc);
11142
11143 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
11144 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
11145 && uIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
11146 Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
11147
11148 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
11149 {
11150 /*
11151 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we
11152 * injected it ourselves and anything we inject is not going to cause a VM-exit directly
11153 * for the event being injected[1]. Go ahead and dispatch the NMI to the host[2].
11154 *
11155 * [1] -- See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
11156 * [2] -- See Intel spec. 27.5.5 "Updating Non-Register State".
11157 */
11158 VMXDispatchHostNmi();
11159 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
11160 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11161 return VINF_SUCCESS;
11162 }
11163
11164 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11165 VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
11166 if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
11167 { /* likely */ }
11168 else
11169 {
11170 if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
11171 rcStrictRc1 = VINF_SUCCESS;
11172 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11173 return rcStrictRc1;
11174 }
11175
11176 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
11177 uint32_t uVector = VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo);
11178 switch (uIntType)
11179 {
11180 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
11181 Assert(uVector == X86_XCPT_DB);
11182 RT_FALL_THRU();
11183 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
11184 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT);
11185 RT_FALL_THRU();
11186 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
11187 {
11188 /*
11189 * If there's any exception caused as a result of event injection, the resulting
11190 * secondary/final execption will be pending, we shall continue guest execution
11191 * after injecting the event. The page-fault case is complicated and we manually
11192 * handle any currently pending event in hmR0VmxExitXcptPF.
11193 */
11194 if (!pVCpu->hm.s.Event.fPending)
11195 { /* likely */ }
11196 else if (uVector != X86_XCPT_PF)
11197 {
11198 rc = VINF_SUCCESS;
11199 break;
11200 }
11201
11202 switch (uVector)
11203 {
11204 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pVmxTransient); break;
11205 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pVmxTransient); break;
11206 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pVmxTransient); break;
11207 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pVmxTransient); break;
11208 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pVmxTransient); break;
11209 case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pVmxTransient); break;
11210
11211 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
11212 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11213 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
11214 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11215 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
11216 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11217 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
11218 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11219 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
11220 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11221 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
11222 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11223 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
11224 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11225 default:
11226 {
11227 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
11228 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11229 {
11230 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
11231 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
11232 Assert(CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx));
11233
11234 rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
11235 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11236 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11237 AssertRCReturn(rc, rc);
11238 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
11239 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
11240 0 /* GCPtrFaultAddress */);
11241 }
11242 else
11243 {
11244 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
11245 pVCpu->hm.s.u32HMError = uVector;
11246 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
11247 }
11248 break;
11249 }
11250 }
11251 break;
11252 }
11253
11254 default:
11255 {
11256 pVCpu->hm.s.u32HMError = uExitIntInfo;
11257 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
11258 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INT_INFO_TYPE(uExitIntInfo)));
11259 break;
11260 }
11261 }
11262 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11263 return rc;
11264}
11265
11266
11267/**
11268 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
11269 */
11270HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11271{
11272 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11273
11274 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
11275 hmR0VmxClearIntWindowExitVmcs(pVCpu);
11276
11277 /* Deliver the pending interrupts via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11278 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
11279 return VINF_SUCCESS;
11280}
11281
11282
11283/**
11284 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
11285 */
11286HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11287{
11288 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11289 if (RT_UNLIKELY(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)))
11290 {
11291 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
11292 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11293 }
11294
11295 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS));
11296
11297 /*
11298 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
11299 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
11300 */
11301 uint32_t fIntrState = 0;
11302 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
11303 AssertRCReturn(rc, rc);
11304
11305 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
11306 if ( fBlockSti
11307 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
11308 {
11309 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
11310 }
11311
11312 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
11313 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
11314
11315 /* Deliver the pending NMI via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11316 return VINF_SUCCESS;
11317}
11318
11319
11320/**
11321 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
11322 */
11323HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11324{
11325 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11326 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11327}
11328
11329
11330/**
11331 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
11332 */
11333HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11334{
11335 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11336 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11337}
11338
11339
11340/**
11341 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
11342 */
11343HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11344{
11345 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11346
11347 /*
11348 * Get the state we need and update the exit history entry.
11349 */
11350 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11351 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
11352 AssertRCReturn(rc, rc);
11353
11354 VBOXSTRICTRC rcStrict;
11355 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
11356 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
11357 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
11358 if (!pExitRec)
11359 {
11360 /*
11361 * Regular CPUID instruction execution.
11362 */
11363 rcStrict = IEMExecDecodedCpuid(pVCpu, pVmxTransient->cbInstr);
11364 if (rcStrict == VINF_SUCCESS)
11365 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11366 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11367 {
11368 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11369 rcStrict = VINF_SUCCESS;
11370 }
11371 }
11372 else
11373 {
11374 /*
11375 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
11376 */
11377 int rc2 = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
11378 AssertRCReturn(rc2, rc2);
11379
11380 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
11381 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
11382
11383 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
11384 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
11385
11386 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
11387 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
11388 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
11389 }
11390 return rcStrict;
11391}
11392
11393
11394/**
11395 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
11396 */
11397HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11398{
11399 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11400 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR4);
11401 AssertRCReturn(rc, rc);
11402
11403 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_SMXE)
11404 return VINF_EM_RAW_EMULATE_INSTR;
11405
11406 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
11407 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11408}
11409
11410
11411/**
11412 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
11413 */
11414HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11415{
11416 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11417 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
11418 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11419 AssertRCReturn(rc, rc);
11420
11421 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtsc(pVCpu, pVmxTransient->cbInstr);
11422 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11423 {
11424 /* If we get a spurious VM-exit when offsetting is enabled,
11425 we must reset offsetting on VM-reentry. See @bugref{6634}. */
11426 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
11427 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11428 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11429 }
11430 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11431 {
11432 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11433 rcStrict = VINF_SUCCESS;
11434 }
11435 return rcStrict;
11436}
11437
11438
11439/**
11440 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
11441 */
11442HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11443{
11444 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11445 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_TSC_AUX);
11446 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11447 AssertRCReturn(rc, rc);
11448
11449 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtscp(pVCpu, pVmxTransient->cbInstr);
11450 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11451 {
11452 /* If we get a spurious VM-exit when offsetting is enabled,
11453 we must reset offsetting on VM-reentry. See @bugref{6634}. */
11454 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
11455 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11456 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11457 }
11458 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11459 {
11460 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11461 rcStrict = VINF_SUCCESS;
11462 }
11463 return rcStrict;
11464}
11465
11466
11467/**
11468 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
11469 */
11470HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11471{
11472 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11473 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11474 AssertRCReturn(rc, rc);
11475
11476 PVM pVM = pVCpu->CTX_SUFF(pVM);
11477 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11478 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11479 if (RT_LIKELY(rc == VINF_SUCCESS))
11480 {
11481 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11482 Assert(pVmxTransient->cbInstr == 2);
11483 }
11484 else
11485 {
11486 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
11487 rc = VERR_EM_INTERPRETER;
11488 }
11489 return rc;
11490}
11491
11492
11493/**
11494 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
11495 */
11496HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11497{
11498 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11499
11500 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
11501 if (EMAreHypercallInstructionsEnabled(pVCpu))
11502 {
11503 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CR0
11504 | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
11505 AssertRCReturn(rc, rc);
11506
11507 /* Perform the hypercall. */
11508 rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
11509 if (rcStrict == VINF_SUCCESS)
11510 {
11511 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11512 AssertRCReturn(rc, rc);
11513 }
11514 else
11515 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
11516 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
11517 || RT_FAILURE(rcStrict));
11518
11519 /* If the hypercall changes anything other than guest's general-purpose registers,
11520 we would need to reload the guest changed bits here before VM-entry. */
11521 }
11522 else
11523 Log4Func(("Hypercalls not enabled\n"));
11524
11525 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
11526 if (RT_FAILURE(rcStrict))
11527 {
11528 hmR0VmxSetPendingXcptUD(pVCpu);
11529 rcStrict = VINF_SUCCESS;
11530 }
11531
11532 return rcStrict;
11533}
11534
11535
11536/**
11537 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
11538 */
11539HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11540{
11541 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11542 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
11543
11544 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11545 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11546 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
11547 AssertRCReturn(rc, rc);
11548
11549 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, pVmxTransient->cbInstr, pVmxTransient->uExitQual);
11550
11551 if (rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3)
11552 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11553 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11554 {
11555 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11556 rcStrict = VINF_SUCCESS;
11557 }
11558 else
11559 AssertMsgFailed(("Unexpected IEMExecDecodedInvlpg(%#RX64) sttus: %Rrc\n", pVmxTransient->uExitQual,
11560 VBOXSTRICTRC_VAL(rcStrict)));
11561 return rcStrict;
11562}
11563
11564
11565/**
11566 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
11567 */
11568HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11569{
11570 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11571 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11572 AssertRCReturn(rc, rc);
11573
11574 PVM pVM = pVCpu->CTX_SUFF(pVM);
11575 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11576 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11577 if (RT_LIKELY(rc == VINF_SUCCESS))
11578 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11579 else
11580 {
11581 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
11582 rc = VERR_EM_INTERPRETER;
11583 }
11584 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
11585 return rc;
11586}
11587
11588
11589/**
11590 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
11591 */
11592HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11593{
11594 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11595 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11596 AssertRCReturn(rc, rc);
11597
11598 PVM pVM = pVCpu->CTX_SUFF(pVM);
11599 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11600 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11601 rc = VBOXSTRICTRC_VAL(rc2);
11602 if (RT_LIKELY( rc == VINF_SUCCESS
11603 || rc == VINF_EM_HALT))
11604 {
11605 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11606 AssertRCReturn(rc3, rc3);
11607
11608 if ( rc == VINF_EM_HALT
11609 && EMMonitorWaitShouldContinue(pVCpu, pCtx))
11610 rc = VINF_SUCCESS;
11611 }
11612 else
11613 {
11614 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
11615 rc = VERR_EM_INTERPRETER;
11616 }
11617 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
11618 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
11619 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
11620 return rc;
11621}
11622
11623
11624/**
11625 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
11626 */
11627HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11628{
11629 /*
11630 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root
11631 * mode. In theory, we should never get this VM-exit. This can happen only if dual-monitor
11632 * treatment of SMI and VMX is enabled, which can (only?) be done by executing VMCALL in
11633 * VMX root operation. If we get here, something funny is going on.
11634 *
11635 * See Intel spec. 33.15.5 "Enabling the Dual-Monitor Treatment".
11636 */
11637 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11638 AssertMsgFailed(("Unexpected RSM VM-exit\n"));
11639 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11640}
11641
11642
11643/**
11644 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
11645 */
11646HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11647{
11648 /*
11649 * This can only happen if we support dual-monitor treatment of SMI, which can be activated
11650 * by executing VMCALL in VMX root operation. Only an STM (SMM transfer monitor) would get
11651 * this VM-exit when we (the executive monitor) execute a VMCALL in VMX root mode or receive
11652 * an SMI. If we get here, something funny is going on.
11653 *
11654 * See Intel spec. 33.15.6 "Activating the Dual-Monitor Treatment"
11655 * See Intel spec. 25.3 "Other Causes of VM-Exits"
11656 */
11657 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11658 AssertMsgFailed(("Unexpected SMI VM-exit\n"));
11659 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11660}
11661
11662
11663/**
11664 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
11665 */
11666HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11667{
11668 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
11669 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11670 AssertMsgFailed(("Unexpected IO SMI VM-exit\n"));
11671 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11672}
11673
11674
11675/**
11676 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
11677 */
11678HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11679{
11680 /*
11681 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used.
11682 * We don't make use of it as our guests don't have direct access to the host LAPIC.
11683 * See Intel spec. 25.3 "Other Causes of VM-exits".
11684 */
11685 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11686 AssertMsgFailed(("Unexpected SIPI VM-exit\n"));
11687 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11688}
11689
11690
11691/**
11692 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
11693 * VM-exit.
11694 */
11695HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11696{
11697 /*
11698 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
11699 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
11700 *
11701 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
11702 * See Intel spec. "23.8 Restrictions on VMX operation".
11703 */
11704 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11705 return VINF_SUCCESS;
11706}
11707
11708
11709/**
11710 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
11711 * VM-exit.
11712 */
11713HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11714{
11715 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11716 return VINF_EM_RESET;
11717}
11718
11719
11720/**
11721 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
11722 */
11723HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11724{
11725 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11726 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_HLT_EXIT);
11727
11728 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11729 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RFLAGS);
11730 AssertRCReturn(rc, rc);
11731
11732 if (EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx)) /* Requires eflags. */
11733 rc = VINF_SUCCESS;
11734 else
11735 rc = VINF_EM_HALT;
11736
11737 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
11738 if (rc != VINF_SUCCESS)
11739 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
11740 return rc;
11741}
11742
11743
11744/**
11745 * VM-exit handler for instructions that result in a \#UD exception delivered to
11746 * the guest.
11747 */
11748HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11749{
11750 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11751 hmR0VmxSetPendingXcptUD(pVCpu);
11752 return VINF_SUCCESS;
11753}
11754
11755
11756/**
11757 * VM-exit handler for expiry of the VMX preemption timer.
11758 */
11759HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11760{
11761 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11762
11763 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
11764 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11765
11766 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
11767 PVM pVM = pVCpu->CTX_SUFF(pVM);
11768 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
11769 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
11770 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
11771}
11772
11773
11774/**
11775 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
11776 */
11777HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11778{
11779 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11780
11781 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11782 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_CR4);
11783 AssertRCReturn(rc, rc);
11784
11785 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
11786 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11787 : HM_CHANGED_RAISED_XCPT_MASK);
11788
11789 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11790 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
11791
11792 return rcStrict;
11793}
11794
11795
11796/**
11797 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
11798 */
11799HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11800{
11801 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11802 /** @todo Use VM-exit instruction information. */
11803 return VERR_EM_INTERPRETER;
11804}
11805
11806
11807/**
11808 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
11809 * Error VM-exit.
11810 */
11811HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11812{
11813 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
11814 AssertRCReturn(rc, rc);
11815 rc = hmR0VmxCheckVmcsCtls(pVCpu);
11816 if (RT_FAILURE(rc))
11817 return rc;
11818
11819 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu);
11820 NOREF(uInvalidReason);
11821
11822#ifdef VBOX_STRICT
11823 uint32_t fIntrState;
11824 RTHCUINTREG uHCReg;
11825 uint64_t u64Val;
11826 uint32_t u32Val;
11827
11828 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
11829 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
11830 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
11831 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
11832 AssertRCReturn(rc, rc);
11833
11834 Log4(("uInvalidReason %u\n", uInvalidReason));
11835 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
11836 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
11837 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
11838 Log4(("VMX_VMCS32_GUEST_INT_STATE %#RX32\n", fIntrState));
11839
11840 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
11841 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
11842 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
11843 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
11844 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
11845 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11846 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
11847 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
11848 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
11849 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11850 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
11851 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
11852
11853 hmR0DumpRegs(pVCpu);
11854#else
11855 NOREF(pVmxTransient);
11856#endif
11857
11858 return VERR_VMX_INVALID_GUEST_STATE;
11859}
11860
11861
11862/**
11863 * VM-exit handler for VM-entry failure due to an MSR-load
11864 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
11865 */
11866HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11867{
11868 AssertMsgFailed(("Unexpected MSR-load exit\n"));
11869 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11870}
11871
11872
11873/**
11874 * VM-exit handler for VM-entry failure due to a machine-check event
11875 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
11876 */
11877HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11878{
11879 AssertMsgFailed(("Unexpected machine-check event exit\n"));
11880 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11881}
11882
11883
11884/**
11885 * VM-exit handler for all undefined reasons. Should never ever happen.. in
11886 * theory.
11887 */
11888HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11889{
11890 RT_NOREF2(pVCpu, pVmxTransient);
11891 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d\n", pVmxTransient->uExitReason));
11892 return VERR_VMX_UNDEFINED_EXIT_CODE;
11893}
11894
11895
11896/**
11897 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
11898 * (VMX_EXIT_GDTR_IDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
11899 * Conditional VM-exit.
11900 */
11901HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11902{
11903 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11904
11905 /* By default, we don't enable VMX_PROC_CTLS2_DESCRIPTOR_TABLE_EXIT. */
11906 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
11907 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_DESC_TABLE_EXIT)
11908 return VERR_EM_INTERPRETER;
11909 AssertMsgFailed(("Unexpected XDTR access\n"));
11910 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11911}
11912
11913
11914/**
11915 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
11916 */
11917HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11918{
11919 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11920
11921 /* By default, we don't enable VMX_PROC_CTLS2_RDRAND_EXIT. */
11922 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_RDRAND_EXIT)
11923 return VERR_EM_INTERPRETER;
11924 AssertMsgFailed(("Unexpected RDRAND exit\n"));
11925 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11926}
11927
11928
11929/**
11930 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
11931 */
11932HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11933{
11934 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11935
11936 /** @todo Optimize this: We currently drag in in the whole MSR state
11937 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
11938 * MSRs required. That would require changes to IEM and possibly CPUM too.
11939 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
11940 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx; NOREF(idMsr); /* Save it. */
11941 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11942 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
11943 AssertRCReturn(rc, rc);
11944
11945 Log4Func(("ecx=%#RX32\n", idMsr));
11946
11947#ifdef VBOX_STRICT
11948 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
11949 {
11950 if ( hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr)
11951 && idMsr != MSR_K6_EFER)
11952 {
11953 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", idMsr));
11954 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11955 }
11956 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
11957 {
11958 VMXMSREXITREAD enmRead;
11959 VMXMSREXITWRITE enmWrite;
11960 int rc2 = HMVmxGetMsrPermission(pVCpu->hm.s.vmx.pvMsrBitmap, idMsr, &enmRead, &enmWrite);
11961 AssertRCReturn(rc2, rc2);
11962 if (enmRead == VMXMSREXIT_PASSTHRU_READ)
11963 {
11964 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", idMsr));
11965 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11966 }
11967 }
11968 }
11969#endif
11970
11971 VBOXSTRICTRC rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmxTransient->cbInstr);
11972 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
11973 if (rcStrict == VINF_SUCCESS)
11974 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11975 | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX);
11976 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11977 {
11978 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11979 rcStrict = VINF_SUCCESS;
11980 }
11981 else
11982 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_READ, ("Unexpected IEMExecDecodedRdmsr status: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
11983
11984 return rcStrict;
11985}
11986
11987
11988/**
11989 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
11990 */
11991HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11992{
11993 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11994
11995 /** @todo Optimize this: We currently drag in in the whole MSR state
11996 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
11997 * MSRs required. That would require changes to IEM and possibly CPUM too.
11998 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
11999 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx; /* Save it. */
12000 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12001 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
12002 AssertRCReturn(rc, rc);
12003
12004 Log4Func(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", idMsr, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.eax));
12005
12006 VBOXSTRICTRC rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmxTransient->cbInstr);
12007 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
12008
12009 if (rcStrict == VINF_SUCCESS)
12010 {
12011 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
12012
12013 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
12014 if ( idMsr == MSR_IA32_APICBASE
12015 || ( idMsr >= MSR_IA32_X2APIC_START
12016 && idMsr <= MSR_IA32_X2APIC_END))
12017 {
12018 /*
12019 * We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
12020 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before IEM changes it.
12021 */
12022 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
12023 }
12024 else if (idMsr == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
12025 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
12026 else if (idMsr == MSR_K6_EFER)
12027 {
12028 /*
12029 * If the guest touches EFER we need to update the VM-Entry and VM-Exit controls as well,
12030 * even if it is -not- touching bits that cause paging mode changes (LMA/LME). We care about
12031 * the other bits as well, SCE and NXE. See @bugref{7368}.
12032 */
12033 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_CTLS
12034 | HM_CHANGED_VMX_EXIT_CTLS);
12035 }
12036
12037 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
12038 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
12039 {
12040 switch (idMsr)
12041 {
12042 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
12043 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
12044 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
12045 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
12046 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
12047 case MSR_K6_EFER: /* Nothing to do, already handled above. */ break;
12048 default:
12049 {
12050 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr))
12051 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
12052 else if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
12053 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_LAZY_MSRS);
12054 break;
12055 }
12056 }
12057 }
12058#ifdef VBOX_STRICT
12059 else
12060 {
12061 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
12062 switch (idMsr)
12063 {
12064 case MSR_IA32_SYSENTER_CS:
12065 case MSR_IA32_SYSENTER_EIP:
12066 case MSR_IA32_SYSENTER_ESP:
12067 case MSR_K8_FS_BASE:
12068 case MSR_K8_GS_BASE:
12069 {
12070 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", idMsr));
12071 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12072 }
12073
12074 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
12075 default:
12076 {
12077 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr))
12078 {
12079 /* EFER writes are always intercepted, see hmR0VmxExportGuestMsrs(). */
12080 if (idMsr != MSR_K6_EFER)
12081 {
12082 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12083 idMsr));
12084 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12085 }
12086 }
12087
12088 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
12089 {
12090 VMXMSREXITREAD enmRead;
12091 VMXMSREXITWRITE enmWrite;
12092 int rc2 = HMVmxGetMsrPermission(pVCpu->hm.s.vmx.pvMsrBitmap, idMsr, &enmRead, &enmWrite);
12093 AssertRCReturn(rc2, rc2);
12094 if (enmWrite == VMXMSREXIT_PASSTHRU_WRITE)
12095 {
12096 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", idMsr));
12097 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12098 }
12099 }
12100 break;
12101 }
12102 }
12103 }
12104#endif /* VBOX_STRICT */
12105 }
12106 else if (rcStrict == VINF_IEM_RAISED_XCPT)
12107 {
12108 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
12109 rcStrict = VINF_SUCCESS;
12110 }
12111 else
12112 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_WRITE, ("Unexpected IEMExecDecodedWrmsr status: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12113
12114 return rcStrict;
12115}
12116
12117
12118/**
12119 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
12120 */
12121HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12122{
12123 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12124 /** @todo The guest has likely hit a contended spinlock. We might want to
12125 * poke a schedule different guest VCPU. */
12126 return VINF_EM_RAW_INTERRUPT;
12127}
12128
12129
12130/**
12131 * VM-exit handler for when the TPR value is lowered below the specified
12132 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
12133 */
12134HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12135{
12136 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12137 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
12138
12139 /*
12140 * The TPR shadow would've been synced with the APIC TPR in hmR0VmxPostRunGuest(). We'll re-evaluate
12141 * pending interrupts and inject them before the next VM-entry so we can just continue execution here.
12142 */
12143 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
12144 return VINF_SUCCESS;
12145}
12146
12147
12148/**
12149 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
12150 * VM-exit.
12151 *
12152 * @retval VINF_SUCCESS when guest execution can continue.
12153 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
12154 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
12155 * interpreter.
12156 */
12157HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12158{
12159 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12160 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
12161
12162 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12163 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12164 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12165 AssertRCReturn(rc, rc);
12166
12167 VBOXSTRICTRC rcStrict;
12168 PVM pVM = pVCpu->CTX_SUFF(pVM);
12169 RTGCUINTPTR const uExitQual = pVmxTransient->uExitQual;
12170 uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(uExitQual);
12171 switch (uAccessType)
12172 {
12173 case VMX_EXIT_QUAL_CRX_ACCESS_WRITE: /* MOV to CRx */
12174 {
12175 uint32_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
12176 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
12177 VMX_EXIT_QUAL_CRX_GENREG(uExitQual));
12178 AssertMsg( rcStrict == VINF_SUCCESS
12179 || rcStrict == VINF_IEM_RAISED_XCPT
12180 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12181
12182 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
12183 {
12184 case 0:
12185 {
12186 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12187 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12188 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
12189 Log4Func(("CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr0));
12190
12191 /*
12192 * This is a kludge for handling switches back to real mode when we try to use
12193 * V86 mode to run real mode code directly. Problem is that V86 mode cannot
12194 * deal with special selector values, so we have to return to ring-3 and run
12195 * there till the selector values are V86 mode compatible.
12196 *
12197 * Note! Using VINF_EM_RESCHEDULE_REM here rather than VINF_EM_RESCHEDULE since the
12198 * latter is an alias for VINF_IEM_RAISED_XCPT which is converted to VINF_SUCCESs
12199 * at the end of this function.
12200 */
12201 if ( rc == VINF_SUCCESS
12202 && !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
12203 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx)
12204 && (uOldCr0 & X86_CR0_PE)
12205 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
12206 {
12207 /** @todo check selectors rather than returning all the time. */
12208 Log4Func(("CR0 write, back to real mode -> VINF_EM_RESCHEDULE_REM\n"));
12209 rcStrict = VINF_EM_RESCHEDULE_REM;
12210 }
12211 break;
12212 }
12213
12214 case 2:
12215 {
12216 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
12217 /* Nothing to do here, CR2 it's not part of the VMCS. */
12218 break;
12219 }
12220
12221 case 3:
12222 {
12223 Assert( !pVM->hm.s.fNestedPaging
12224 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
12225 || pVCpu->hm.s.fUsingDebugLoop);
12226 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
12227 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12228 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR3);
12229 Log4Func(("CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr3));
12230 break;
12231 }
12232
12233 case 4:
12234 {
12235 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
12236 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12237 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR4);
12238 Log4Func(("CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n", VBOXSTRICTRC_VAL(rcStrict),
12239 pVCpu->cpum.GstCtx.cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
12240 break;
12241 }
12242
12243 case 8:
12244 {
12245 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
12246 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
12247 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12248 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_APIC_TPR);
12249 break;
12250 }
12251 default:
12252 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual)));
12253 break;
12254 }
12255 break;
12256 }
12257
12258 case VMX_EXIT_QUAL_CRX_ACCESS_READ: /* MOV from CRx */
12259 {
12260 Assert( !pVM->hm.s.fNestedPaging
12261 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
12262 || pVCpu->hm.s.fUsingDebugLoop
12263 || VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 3);
12264 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
12265 Assert( VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 8
12266 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
12267
12268 rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_GENREG(uExitQual),
12269 VMX_EXIT_QUAL_CRX_REGISTER(uExitQual));
12270 AssertMsg( rcStrict == VINF_SUCCESS
12271 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12272#ifdef VBOX_WITH_STATISTICS
12273 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
12274 {
12275 case 0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
12276 case 2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
12277 case 3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
12278 case 4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
12279 case 8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
12280 }
12281#endif
12282 Log4Func(("CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
12283 VBOXSTRICTRC_VAL(rcStrict)));
12284 if (VMX_EXIT_QUAL_CRX_GENREG(uExitQual) == X86_GREG_xSP)
12285 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RSP);
12286 else
12287 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
12288 break;
12289 }
12290
12291 case VMX_EXIT_QUAL_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
12292 {
12293 rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
12294 AssertMsg( rcStrict == VINF_SUCCESS
12295 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12296
12297 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12298 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
12299 Log4Func(("CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12300 break;
12301 }
12302
12303 case VMX_EXIT_QUAL_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
12304 {
12305 /* Note! LMSW cannot clear CR0.PE, so no fRealOnV86Active kludge needed here. */
12306 rc = hmR0VmxReadGuestLinearAddrVmcs(pVCpu, pVmxTransient);
12307 AssertRCReturn(rc, rc);
12308 rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_LMSW_DATA(uExitQual),
12309 pVmxTransient->uGuestLinearAddr);
12310 AssertMsg( rcStrict == VINF_SUCCESS
12311 || rcStrict == VINF_IEM_RAISED_XCPT
12312 , ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12313
12314 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12315 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
12316 Log4Func(("LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12317 break;
12318 }
12319
12320 default:
12321 AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
12322 VERR_VMX_UNEXPECTED_EXCEPTION);
12323 }
12324
12325 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS))
12326 == (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS));
12327 if (rcStrict == VINF_IEM_RAISED_XCPT)
12328 {
12329 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
12330 rcStrict = VINF_SUCCESS;
12331 }
12332
12333 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
12334 NOREF(pVM);
12335 return rcStrict;
12336}
12337
12338
12339/**
12340 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
12341 * VM-exit.
12342 */
12343HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12344{
12345 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12346 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
12347
12348 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12349 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12350 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12351 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER);
12352 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
12353 AssertRCReturn(rc, rc);
12354
12355 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
12356 uint32_t uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
12357 uint8_t uIOWidth = VMX_EXIT_QUAL_IO_WIDTH(pVmxTransient->uExitQual);
12358 bool fIOWrite = (VMX_EXIT_QUAL_IO_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_IO_DIRECTION_OUT);
12359 bool fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
12360 bool fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
12361 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
12362 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
12363
12364 /*
12365 * Update exit history to see if this exit can be optimized.
12366 */
12367 VBOXSTRICTRC rcStrict;
12368 PCEMEXITREC pExitRec = NULL;
12369 if ( !fGstStepping
12370 && !fDbgStepping)
12371 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
12372 !fIOString
12373 ? !fIOWrite
12374 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
12375 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
12376 : !fIOWrite
12377 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
12378 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
12379 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
12380 if (!pExitRec)
12381 {
12382 /* I/O operation lookup arrays. */
12383 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
12384 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving result in AL/AX/EAX. */
12385 uint32_t const cbValue = s_aIOSizes[uIOWidth];
12386 uint32_t const cbInstr = pVmxTransient->cbInstr;
12387 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
12388 PVM pVM = pVCpu->CTX_SUFF(pVM);
12389 if (fIOString)
12390 {
12391 /*
12392 * INS/OUTS - I/O String instruction.
12393 *
12394 * Use instruction-information if available, otherwise fall back on
12395 * interpreting the instruction.
12396 */
12397 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12398 AssertReturn(pCtx->dx == uIOPort, VERR_VMX_IPE_2);
12399 bool const fInsOutsInfo = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
12400 if (fInsOutsInfo)
12401 {
12402 int rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12403 AssertRCReturn(rc2, rc2);
12404 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
12405 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
12406 IEMMODE const enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
12407 bool const fRep = VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual);
12408 if (fIOWrite)
12409 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
12410 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
12411 else
12412 {
12413 /*
12414 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
12415 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
12416 * See Intel Instruction spec. for "INS".
12417 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
12418 */
12419 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
12420 }
12421 }
12422 else
12423 rcStrict = IEMExecOne(pVCpu);
12424
12425 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
12426 fUpdateRipAlready = true;
12427 }
12428 else
12429 {
12430 /*
12431 * IN/OUT - I/O instruction.
12432 */
12433 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12434 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
12435 Assert(!VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual));
12436 if (fIOWrite)
12437 {
12438 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pCtx->eax & uAndVal, cbValue);
12439 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
12440 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
12441 && !pCtx->eflags.Bits.u1TF)
12442 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, uIOPort, cbInstr, cbValue, pCtx->eax & uAndVal);
12443 }
12444 else
12445 {
12446 uint32_t u32Result = 0;
12447 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
12448 if (IOM_SUCCESS(rcStrict))
12449 {
12450 /* Save result of I/O IN instr. in AL/AX/EAX. */
12451 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Result & uAndVal);
12452 }
12453 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
12454 && !pCtx->eflags.Bits.u1TF)
12455 rcStrict = EMRZSetPendingIoPortRead(pVCpu, uIOPort, cbInstr, cbValue);
12456 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
12457 }
12458 }
12459
12460 if (IOM_SUCCESS(rcStrict))
12461 {
12462 if (!fUpdateRipAlready)
12463 {
12464 hmR0VmxAdvanceGuestRipBy(pVCpu, cbInstr);
12465 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
12466 }
12467
12468 /*
12469 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru
12470 * while booting Fedora 17 64-bit guest.
12471 *
12472 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
12473 */
12474 if (fIOString)
12475 {
12476 /** @todo Single-step for INS/OUTS with REP prefix? */
12477 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RFLAGS);
12478 }
12479 else if ( !fDbgStepping
12480 && fGstStepping)
12481 {
12482 rc = hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
12483 AssertRCReturn(rc, rc);
12484 }
12485
12486 /*
12487 * If any I/O breakpoints are armed, we need to check if one triggered
12488 * and take appropriate action.
12489 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
12490 */
12491 rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
12492 AssertRCReturn(rc, rc);
12493
12494 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
12495 * execution engines about whether hyper BPs and such are pending. */
12496 uint32_t const uDr7 = pCtx->dr[7];
12497 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
12498 && X86_DR7_ANY_RW_IO(uDr7)
12499 && (pCtx->cr4 & X86_CR4_DE))
12500 || DBGFBpIsHwIoArmed(pVM)))
12501 {
12502 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
12503
12504 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
12505 VMMRZCallRing3Disable(pVCpu);
12506 HM_DISABLE_PREEMPT(pVCpu);
12507
12508 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
12509
12510 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, uIOPort, cbValue);
12511 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
12512 {
12513 /* Raise #DB. */
12514 if (fIsGuestDbgActive)
12515 ASMSetDR6(pCtx->dr[6]);
12516 if (pCtx->dr[7] != uDr7)
12517 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR7;
12518
12519 hmR0VmxSetPendingXcptDB(pVCpu);
12520 }
12521 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
12522 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
12523 else if ( rcStrict2 != VINF_SUCCESS
12524 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
12525 rcStrict = rcStrict2;
12526 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
12527
12528 HM_RESTORE_PREEMPT();
12529 VMMRZCallRing3Enable(pVCpu);
12530 }
12531 }
12532
12533#ifdef VBOX_STRICT
12534 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
12535 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
12536 Assert(!fIOWrite);
12537 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
12538 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
12539 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
12540 Assert(fIOWrite);
12541 else
12542 {
12543# if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
12544 * statuses, that the VMM device and some others may return. See
12545 * IOM_SUCCESS() for guidance. */
12546 AssertMsg( RT_FAILURE(rcStrict)
12547 || rcStrict == VINF_SUCCESS
12548 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
12549 || rcStrict == VINF_EM_DBG_BREAKPOINT
12550 || rcStrict == VINF_EM_RAW_GUEST_TRAP
12551 || rcStrict == VINF_EM_RAW_TO_R3
12552 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12553# endif
12554 }
12555#endif
12556 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
12557 }
12558 else
12559 {
12560 /*
12561 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
12562 */
12563 int rc2 = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
12564 AssertRCReturn(rc2, rc2);
12565 STAM_COUNTER_INC(!fIOString ? fIOWrite ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
12566 : fIOWrite ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
12567 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
12568 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12569 VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual) ? "REP " : "",
12570 fIOWrite ? "OUT" : "IN", fIOString ? "S" : "", uIOPort, uIOWidth));
12571
12572 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
12573 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
12574
12575 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
12576 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12577 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
12578 }
12579 return rcStrict;
12580}
12581
12582
12583/**
12584 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
12585 * VM-exit.
12586 */
12587HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12588{
12589 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12590
12591 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
12592 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12593 AssertRCReturn(rc, rc);
12594 if (VMX_EXIT_QUAL_TASK_SWITCH_TYPE(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT)
12595 {
12596 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
12597 AssertRCReturn(rc, rc);
12598 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
12599 {
12600 uint32_t uErrCode;
12601 RTGCUINTPTR GCPtrFaultAddress;
12602 uint32_t const uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
12603 uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
12604 bool const fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo);
12605 if (fErrorCodeValid)
12606 {
12607 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
12608 AssertRCReturn(rc, rc);
12609 uErrCode = pVmxTransient->uIdtVectoringErrorCode;
12610 }
12611 else
12612 uErrCode = 0;
12613
12614 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
12615 && uVector == X86_XCPT_PF)
12616 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
12617 else
12618 GCPtrFaultAddress = 0;
12619
12620 rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12621 AssertRCReturn(rc, rc);
12622
12623 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
12624 pVmxTransient->cbInstr, uErrCode, GCPtrFaultAddress);
12625
12626 Log4Func(("Pending event. uIntType=%#x uVector=%#x\n", uIntType, uVector));
12627 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12628 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12629 }
12630 }
12631
12632 /* Fall back to the interpreter to emulate the task-switch. */
12633 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12634 return VERR_EM_INTERPRETER;
12635}
12636
12637
12638/**
12639 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
12640 */
12641HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12642{
12643 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12644 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
12645 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
12646 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12647 AssertRCReturn(rc, rc);
12648 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
12649 return VINF_EM_DBG_STEPPED;
12650}
12651
12652
12653/**
12654 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
12655 */
12656HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12657{
12658 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12659
12660 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
12661
12662 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12663 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12664 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12665 {
12666 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
12667 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12668 {
12669 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12670 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12671 }
12672 }
12673 else
12674 {
12675 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12676 rcStrict1 = VINF_SUCCESS;
12677 return rcStrict1;
12678 }
12679
12680 /* IOMMIOPhysHandler() below may call into IEM, save the necessary state. */
12681 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12682 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12683 AssertRCReturn(rc, rc);
12684
12685 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
12686 uint32_t uAccessType = VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual);
12687 VBOXSTRICTRC rcStrict2;
12688 switch (uAccessType)
12689 {
12690 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
12691 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
12692 {
12693 AssertMsg( !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
12694 || VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual) != XAPIC_OFF_TPR,
12695 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
12696
12697 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64MsrApicBase; /* Always up-to-date, u64MsrApicBase is not part of the VMCS. */
12698 GCPhys &= PAGE_BASE_GC_MASK;
12699 GCPhys += VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual);
12700 PVM pVM = pVCpu->CTX_SUFF(pVM);
12701 Log4Func(("Linear access uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
12702 VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual)));
12703
12704 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12705 rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
12706 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
12707 CPUMCTX2CORE(pCtx), GCPhys);
12708 Log4Func(("IOMMMIOPhysHandler returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
12709 if ( rcStrict2 == VINF_SUCCESS
12710 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12711 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12712 {
12713 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
12714 | HM_CHANGED_GUEST_APIC_TPR);
12715 rcStrict2 = VINF_SUCCESS;
12716 }
12717 break;
12718 }
12719
12720 default:
12721 Log4Func(("uAccessType=%#x\n", uAccessType));
12722 rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
12723 break;
12724 }
12725
12726 if (rcStrict2 != VINF_SUCCESS)
12727 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
12728 return rcStrict2;
12729}
12730
12731
12732/**
12733 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
12734 * VM-exit.
12735 */
12736HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12737{
12738 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12739
12740 /* We should -not- get this VM-exit if the guest's debug registers were active. */
12741 if (pVmxTransient->fWasGuestDebugStateActive)
12742 {
12743 AssertMsgFailed(("Unexpected MOV DRx exit\n"));
12744 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12745 }
12746
12747 if ( !pVCpu->hm.s.fSingleInstruction
12748 && !pVmxTransient->fWasHyperDebugStateActive)
12749 {
12750 Assert(!DBGFIsStepping(pVCpu));
12751 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
12752
12753 /* Don't intercept MOV DRx any more. */
12754 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
12755 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12756 AssertRCReturn(rc, rc);
12757
12758 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
12759 VMMRZCallRing3Disable(pVCpu);
12760 HM_DISABLE_PREEMPT(pVCpu);
12761
12762 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
12763 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
12764 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
12765
12766 HM_RESTORE_PREEMPT();
12767 VMMRZCallRing3Enable(pVCpu);
12768
12769#ifdef VBOX_WITH_STATISTICS
12770 rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12771 AssertRCReturn(rc, rc);
12772 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
12773 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12774 else
12775 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12776#endif
12777 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
12778 return VINF_SUCCESS;
12779 }
12780
12781 /*
12782 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
12783 * Update the segment registers and DR7 from the CPU.
12784 */
12785 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12786 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12787 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_DR7);
12788 AssertRCReturn(rc, rc);
12789 Log4Func(("CS:RIP=%04x:%08RX64\n", pCtx->cs.Sel, pCtx->rip));
12790
12791 PVM pVM = pVCpu->CTX_SUFF(pVM);
12792 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
12793 {
12794 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
12795 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual),
12796 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual));
12797 if (RT_SUCCESS(rc))
12798 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
12799 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12800 }
12801 else
12802 {
12803 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
12804 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual),
12805 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual));
12806 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12807 }
12808
12809 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
12810 if (RT_SUCCESS(rc))
12811 {
12812 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
12813 AssertRCReturn(rc2, rc2);
12814 return VINF_SUCCESS;
12815 }
12816 return rc;
12817}
12818
12819
12820/**
12821 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
12822 * Conditional VM-exit.
12823 */
12824HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12825{
12826 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12827 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12828
12829 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12830 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12831 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12832 {
12833 /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
12834 injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
12835 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12836 {
12837 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12838 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12839 }
12840 }
12841 else
12842 {
12843 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12844 rcStrict1 = VINF_SUCCESS;
12845 return rcStrict1;
12846 }
12847
12848 /*
12849 * Get sufficent state and update the exit history entry.
12850 */
12851 RTGCPHYS GCPhys;
12852 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
12853 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12854 AssertRCReturn(rc, rc);
12855
12856 VBOXSTRICTRC rcStrict;
12857 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
12858 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
12859 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
12860 if (!pExitRec)
12861 {
12862 /*
12863 * If we succeed, resume guest execution.
12864 * If we fail in interpreting the instruction because we couldn't get the guest physical address
12865 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
12866 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
12867 * weird case. See @bugref{6043}.
12868 */
12869 PVM pVM = pVCpu->CTX_SUFF(pVM);
12870 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12871 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX);
12872 Log4Func(("At %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pCtx->rip, VBOXSTRICTRC_VAL(rcStrict)));
12873 if ( rcStrict == VINF_SUCCESS
12874 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
12875 || rcStrict == VERR_PAGE_NOT_PRESENT)
12876 {
12877 /* Successfully handled MMIO operation. */
12878 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
12879 | HM_CHANGED_GUEST_APIC_TPR);
12880 rcStrict = VINF_SUCCESS;
12881 }
12882 }
12883 else
12884 {
12885 /*
12886 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
12887 */
12888 int rc2 = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12889 AssertRCReturn(rc2, rc2);
12890
12891 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
12892 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhys));
12893
12894 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
12895 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
12896
12897 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
12898 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12899 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
12900 }
12901 return VBOXSTRICTRC_TODO(rcStrict);
12902}
12903
12904
12905/**
12906 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
12907 * VM-exit.
12908 */
12909HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12910{
12911 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12912 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12913
12914 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12915 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12916 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12917 {
12918 /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
12919 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12920 Log4Func(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
12921 }
12922 else
12923 {
12924 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12925 rcStrict1 = VINF_SUCCESS;
12926 return rcStrict1;
12927 }
12928
12929 RTGCPHYS GCPhys;
12930 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
12931 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12932 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12933 AssertRCReturn(rc, rc);
12934
12935 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
12936 AssertMsg(((pVmxTransient->uExitQual >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQual));
12937
12938 RTGCUINT uErrorCode = 0;
12939 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_INSTR_FETCH)
12940 uErrorCode |= X86_TRAP_PF_ID;
12941 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_DATA_WRITE)
12942 uErrorCode |= X86_TRAP_PF_RW;
12943 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ENTRY_PRESENT)
12944 uErrorCode |= X86_TRAP_PF_P;
12945
12946 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
12947
12948
12949 /* Handle the pagefault trap for the nested shadow table. */
12950 PVM pVM = pVCpu->CTX_SUFF(pVM);
12951 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12952
12953 Log4Func(("EPT violation %#x at %#RX64 ErrorCode %#x CS:RIP=%04x:%08RX64\n", pVmxTransient->uExitQual, GCPhys, uErrorCode,
12954 pCtx->cs.Sel, pCtx->rip));
12955
12956 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pCtx), GCPhys);
12957 TRPMResetTrap(pVCpu);
12958
12959 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
12960 if ( rcStrict2 == VINF_SUCCESS
12961 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12962 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12963 {
12964 /* Successfully synced our nested page tables. */
12965 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
12966 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
12967 return VINF_SUCCESS;
12968 }
12969
12970 Log4Func(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
12971 return rcStrict2;
12972}
12973
12974/** @} */
12975
12976/** @name VM-exit exception handlers.
12977 * @{
12978 */
12979/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12980/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= VM-exit exception handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
12981/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12982
12983/**
12984 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
12985 */
12986static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12987{
12988 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12989 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
12990
12991 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
12992 AssertRCReturn(rc, rc);
12993
12994 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE))
12995 {
12996 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
12997 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
12998
12999 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
13000 * provides VM-exit instruction length. If this causes problem later,
13001 * disassemble the instruction like it's done on AMD-V. */
13002 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13003 AssertRCReturn(rc2, rc2);
13004 return rc;
13005 }
13006
13007 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13008 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13009 return rc;
13010}
13011
13012
13013/**
13014 * VM-exit exception handler for \#BP (Breakpoint exception).
13015 */
13016static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13017{
13018 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13019 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
13020
13021 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13022 AssertRCReturn(rc, rc);
13023
13024 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13025 rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
13026 if (rc == VINF_EM_RAW_GUEST_TRAP)
13027 {
13028 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13029 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13030 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13031 AssertRCReturn(rc, rc);
13032
13033 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13034 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13035 }
13036
13037 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
13038 return rc;
13039}
13040
13041
13042/**
13043 * VM-exit exception handler for \#AC (alignment check exception).
13044 */
13045static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13046{
13047 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13048
13049 /*
13050 * Re-inject it. We'll detect any nesting before getting here.
13051 */
13052 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13053 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13054 AssertRCReturn(rc, rc);
13055 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
13056
13057 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13058 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13059 return VINF_SUCCESS;
13060}
13061
13062
13063/**
13064 * VM-exit exception handler for \#DB (Debug exception).
13065 */
13066static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13067{
13068 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13069 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
13070
13071 /*
13072 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
13073 * for processing.
13074 */
13075 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13076
13077 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
13078 uint64_t uDR6 = X86_DR6_INIT_VAL;
13079 uDR6 |= (pVmxTransient->uExitQual & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
13080
13081 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13082 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
13083 Log6Func(("rc=%Rrc\n", rc));
13084 if (rc == VINF_EM_RAW_GUEST_TRAP)
13085 {
13086 /*
13087 * The exception was for the guest. Update DR6, DR7.GD and
13088 * IA32_DEBUGCTL.LBR before forwarding it.
13089 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
13090 */
13091 VMMRZCallRing3Disable(pVCpu);
13092 HM_DISABLE_PREEMPT(pVCpu);
13093
13094 pCtx->dr[6] &= ~X86_DR6_B_MASK;
13095 pCtx->dr[6] |= uDR6;
13096 if (CPUMIsGuestDebugStateActive(pVCpu))
13097 ASMSetDR6(pCtx->dr[6]);
13098
13099 HM_RESTORE_PREEMPT();
13100 VMMRZCallRing3Enable(pVCpu);
13101
13102 rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
13103 AssertRCReturn(rc, rc);
13104
13105 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
13106 pCtx->dr[7] &= ~X86_DR7_GD;
13107
13108 /* Paranoia. */
13109 pCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
13110 pCtx->dr[7] |= X86_DR7_RA1_MASK;
13111
13112 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pCtx->dr[7]);
13113 AssertRCReturn(rc, rc);
13114
13115 /*
13116 * Raise #DB in the guest.
13117 *
13118 * It is important to reflect exactly what the VM-exit gave us (preserving the
13119 * interruption-type) rather than use hmR0VmxSetPendingXcptDB() as the #DB could've
13120 * been raised while executing ICEBP (INT1) and not the regular #DB. Thus it may
13121 * trigger different handling in the CPU (like skipping DPL checks), see @bugref{6398}.
13122 *
13123 * Intel re-documented ICEBP/INT1 on May 2018 previously documented as part of
13124 * Intel 386, see Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
13125 */
13126 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13127 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13128 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13129 AssertRCReturn(rc, rc);
13130 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13131 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13132 return VINF_SUCCESS;
13133 }
13134
13135 /*
13136 * Not a guest trap, must be a hypervisor related debug event then.
13137 * Update DR6 in case someone is interested in it.
13138 */
13139 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
13140 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
13141 CPUMSetHyperDR6(pVCpu, uDR6);
13142
13143 return rc;
13144}
13145
13146
13147/**
13148 * VM-exit exception handler for \#GP (General-protection exception).
13149 *
13150 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
13151 */
13152static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13153{
13154 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13155 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
13156
13157 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13158 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
13159 { /* likely */ }
13160 else
13161 {
13162#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13163 Assert(pVCpu->hm.s.fUsingDebugLoop);
13164#endif
13165 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
13166 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13167 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13168 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13169 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13170 AssertRCReturn(rc, rc);
13171 Log4Func(("Gst: CS:RIP %04x:%08RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u TR=%#04x\n", pCtx->cs.Sel, pCtx->rip,
13172 pVmxTransient->uExitIntErrorCode, pCtx->cr0, CPUMGetGuestCPL(pVCpu), pCtx->tr.Sel));
13173 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13174 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13175 return rc;
13176 }
13177
13178 Assert(CPUMIsGuestInRealModeEx(pCtx));
13179 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
13180
13181 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13182 AssertRCReturn(rc, rc);
13183
13184 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
13185 if (rcStrict == VINF_SUCCESS)
13186 {
13187 if (!CPUMIsGuestInRealModeEx(pCtx))
13188 {
13189 /*
13190 * The guest is no longer in real-mode, check if we can continue executing the
13191 * guest using hardware-assisted VMX. Otherwise, fall back to emulation.
13192 */
13193 if (HMVmxCanExecuteGuest(pVCpu, pCtx))
13194 {
13195 Log4Func(("Mode changed but guest still suitable for executing using VT-x\n"));
13196 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
13197 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13198 }
13199 else
13200 {
13201 Log4Func(("Mode changed -> VINF_EM_RESCHEDULE\n"));
13202 rcStrict = VINF_EM_RESCHEDULE;
13203 }
13204 }
13205 else
13206 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13207 }
13208 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13209 {
13210 rcStrict = VINF_SUCCESS;
13211 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13212 }
13213 return VBOXSTRICTRC_VAL(rcStrict);
13214}
13215
13216
13217/**
13218 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
13219 * the exception reported in the VMX transient structure back into the VM.
13220 *
13221 * @remarks Requires uExitIntInfo in the VMX transient structure to be
13222 * up-to-date.
13223 */
13224static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13225{
13226 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13227#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13228 AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.vmx.RealMode.fRealOnV86Active,
13229 ("uVector=%#x u32XcptBitmap=%#X32\n",
13230 VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVCpu->hm.s.vmx.u32XcptBitmap));
13231#endif
13232
13233 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
13234 hmR0VmxCheckExitDueToEventDelivery(). */
13235 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13236 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13237 AssertRCReturn(rc, rc);
13238 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
13239
13240#ifdef DEBUG_ramshankar
13241 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
13242 uint8_t uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
13243 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
13244#endif
13245
13246 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13247 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13248 return VINF_SUCCESS;
13249}
13250
13251
13252/**
13253 * VM-exit exception handler for \#PF (Page-fault exception).
13254 */
13255static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13256{
13257 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13258 PVM pVM = pVCpu->CTX_SUFF(pVM);
13259 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13260 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13261 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13262 AssertRCReturn(rc, rc);
13263
13264 if (!pVM->hm.s.fNestedPaging)
13265 { /* likely */ }
13266 else
13267 {
13268#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
13269 Assert(pVCpu->hm.s.fUsingDebugLoop);
13270#endif
13271 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
13272 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
13273 {
13274 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13275 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual);
13276 }
13277 else
13278 {
13279 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13280 hmR0VmxSetPendingXcptDF(pVCpu);
13281 Log4Func(("Pending #DF due to vectoring #PF w/ NestedPaging\n"));
13282 }
13283 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13284 return rc;
13285 }
13286
13287 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
13288 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
13289 if (pVmxTransient->fVectoringPF)
13290 {
13291 Assert(pVCpu->hm.s.Event.fPending);
13292 return VINF_EM_RAW_INJECT_TRPM_EVENT;
13293 }
13294
13295 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13296 rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13297 AssertRCReturn(rc, rc);
13298
13299 Log4Func(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQual, pCtx->cs.Sel,
13300 pCtx->rip, pVmxTransient->uExitIntErrorCode, pCtx->cr3));
13301
13302 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQual, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
13303 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pCtx), (RTGCPTR)pVmxTransient->uExitQual);
13304
13305 Log4Func(("#PF: rc=%Rrc\n", rc));
13306 if (rc == VINF_SUCCESS)
13307 {
13308 /*
13309 * This is typically a shadow page table sync or a MMIO instruction. But we may have
13310 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
13311 */
13312 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13313 TRPMResetTrap(pVCpu);
13314 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
13315 return rc;
13316 }
13317
13318 if (rc == VINF_EM_RAW_GUEST_TRAP)
13319 {
13320 if (!pVmxTransient->fVectoringDoublePF)
13321 {
13322 /* It's a guest page fault and needs to be reflected to the guest. */
13323 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
13324 TRPMResetTrap(pVCpu);
13325 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
13326 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13327 uGstErrorCode, pVmxTransient->uExitQual);
13328 }
13329 else
13330 {
13331 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13332 TRPMResetTrap(pVCpu);
13333 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
13334 hmR0VmxSetPendingXcptDF(pVCpu);
13335 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
13336 }
13337
13338 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13339 return VINF_SUCCESS;
13340 }
13341
13342 TRPMResetTrap(pVCpu);
13343 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
13344 return rc;
13345}
13346
13347/** @} */
13348
13349#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
13350/** @name Nested-guest VM-exit handlers.
13351 * @{
13352 */
13353/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13354/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Nested-guest VM-exit handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13355/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13356
13357/**
13358 * VM-exit handler for VMCLEAR (VMX_EXIT_VMCLEAR). Unconditional VM-exit.
13359 */
13360HMVMX_EXIT_DECL hmR0VmxExitVmclear(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13361{
13362 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13363
13364 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13365 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13366 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13367 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13368 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13369 AssertRCReturn(rc, rc);
13370
13371 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13372
13373 VMXVEXITINFO ExitInfo;
13374 RT_ZERO(ExitInfo);
13375 ExitInfo.uReason = pVmxTransient->uExitReason;
13376 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13377 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13378 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13379 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
13380
13381 VBOXSTRICTRC rcStrict = IEMExecDecodedVmclear(pVCpu, &ExitInfo);
13382 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13383 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13384 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13385 {
13386 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13387 rcStrict = VINF_SUCCESS;
13388 }
13389 return rcStrict;
13390}
13391
13392
13393/**
13394 * VM-exit handler for VMLAUNCH (VMX_EXIT_VMLAUNCH). Unconditional VM-exit.
13395 */
13396HMVMX_EXIT_DECL hmR0VmxExitVmlaunch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13397{
13398 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13399
13400 /** @todo NSTVMX: Vmlaunch. */
13401 hmR0VmxSetPendingXcptUD(pVCpu);
13402 return VINF_SUCCESS;
13403}
13404
13405
13406/**
13407 * VM-exit handler for VMPTRLD (VMX_EXIT_VMPTRLD). Unconditional VM-exit.
13408 */
13409HMVMX_EXIT_DECL hmR0VmxExitVmptrld(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13410{
13411 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13412
13413 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13414 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13415 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13416 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13417 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13418 AssertRCReturn(rc, rc);
13419
13420 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13421
13422 VMXVEXITINFO ExitInfo;
13423 RT_ZERO(ExitInfo);
13424 ExitInfo.uReason = pVmxTransient->uExitReason;
13425 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13426 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13427 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13428 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
13429
13430 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrld(pVCpu, &ExitInfo);
13431 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13432 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13433 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13434 {
13435 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13436 rcStrict = VINF_SUCCESS;
13437 }
13438 return rcStrict;
13439}
13440
13441
13442/**
13443 * VM-exit handler for VMPTRST (VMX_EXIT_VMPTRST). Unconditional VM-exit.
13444 */
13445HMVMX_EXIT_DECL hmR0VmxExitVmptrst(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13446{
13447 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13448
13449 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13450 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13451 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13452 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13453 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13454 AssertRCReturn(rc, rc);
13455
13456 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13457
13458 VMXVEXITINFO ExitInfo;
13459 RT_ZERO(ExitInfo);
13460 ExitInfo.uReason = pVmxTransient->uExitReason;
13461 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13462 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13463 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13464 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
13465
13466 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrst(pVCpu, &ExitInfo);
13467 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13468 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13469 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13470 {
13471 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13472 rcStrict = VINF_SUCCESS;
13473 }
13474 return rcStrict;
13475}
13476
13477
13478/**
13479 * VM-exit handler for VMREAD (VMX_EXIT_VMREAD). Unconditional VM-exit.
13480 */
13481HMVMX_EXIT_DECL hmR0VmxExitVmread(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13482{
13483 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13484
13485 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13486 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13487 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13488 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13489 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13490 AssertRCReturn(rc, rc);
13491
13492 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13493
13494 VMXVEXITINFO ExitInfo;
13495 RT_ZERO(ExitInfo);
13496 ExitInfo.uReason = pVmxTransient->uExitReason;
13497 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13498 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13499 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13500 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
13501 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
13502
13503 VBOXSTRICTRC rcStrict = IEMExecDecodedVmread(pVCpu, &ExitInfo);
13504 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13505 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13506 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13507 {
13508 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13509 rcStrict = VINF_SUCCESS;
13510 }
13511 return rcStrict;
13512}
13513
13514
13515/**
13516 * VM-exit handler for VMRESUME (VMX_EXIT_VMRESUME). Unconditional VM-exit.
13517 */
13518HMVMX_EXIT_DECL hmR0VmxExitVmresume(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13519{
13520 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13521
13522 /** @todo NSTVMX: Vmresume. */
13523 hmR0VmxSetPendingXcptUD(pVCpu);
13524 return VINF_SUCCESS;
13525}
13526
13527
13528/**
13529 * VM-exit handler for VMWRITE (VMX_EXIT_VMWRITE). Unconditional VM-exit.
13530 */
13531HMVMX_EXIT_DECL hmR0VmxExitVmwrite(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13532{
13533 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13534
13535 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13536 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13537 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13538 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13539 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13540 AssertRCReturn(rc, rc);
13541
13542 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13543
13544 VMXVEXITINFO ExitInfo;
13545 RT_ZERO(ExitInfo);
13546 ExitInfo.uReason = pVmxTransient->uExitReason;
13547 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13548 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13549 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13550 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
13551 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
13552
13553 VBOXSTRICTRC rcStrict = IEMExecDecodedVmwrite(pVCpu, &ExitInfo);
13554 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13555 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13556 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13557 {
13558 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13559 rcStrict = VINF_SUCCESS;
13560 }
13561 return rcStrict;
13562}
13563
13564
13565/**
13566 * VM-exit handler for VMXOFF (VMX_EXIT_VMXOFF). Unconditional VM-exit.
13567 */
13568HMVMX_EXIT_DECL hmR0VmxExitVmxoff(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13569{
13570 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13571
13572 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13573 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
13574 AssertRCReturn(rc, rc);
13575
13576 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13577
13578 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxoff(pVCpu, pVmxTransient->cbInstr);
13579 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13580 {
13581 /* VMXOFF on success changes the internal hwvirt state but not anything that's visible to the guest. */
13582 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
13583 }
13584 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13585 {
13586 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13587 rcStrict = VINF_SUCCESS;
13588 }
13589 return rcStrict;
13590}
13591
13592
13593/**
13594 * VM-exit handler for VMXON (VMX_EXIT_VMXON). Unconditional VM-exit.
13595 */
13596HMVMX_EXIT_DECL hmR0VmxExitVmxon(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13597{
13598 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13599
13600 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13601 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13602 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13603 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13604 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13605 AssertRCReturn(rc, rc);
13606
13607 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13608
13609 VMXVEXITINFO ExitInfo;
13610 RT_ZERO(ExitInfo);
13611 ExitInfo.uReason = pVmxTransient->uExitReason;
13612 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13613 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13614 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13615 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
13616
13617 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxon(pVCpu, &ExitInfo);
13618 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13619 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13620 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13621 {
13622 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13623 rcStrict = VINF_SUCCESS;
13624 }
13625 return rcStrict;
13626}
13627
13628/** @} */
13629#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
13630
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette