VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 77463

Last change on this file since 77463 was 77463, checked in by vboxsync, 6 years ago

VMM/HMVMXR0: Nested VMX: bugref:9180 Get rid of temporary IEMExecOne in-place of IEMExecDecodedXXX VMX instructions.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 579.6 KB
Line 
1/* $Id: HMVMXR0.cpp 77463 2019-02-26 04:39:10Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/x86.h>
25#include <iprt/asm-amd64-x86.h>
26#include <iprt/thread.h>
27
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/dbgf.h>
30#include <VBox/vmm/iem.h>
31#include <VBox/vmm/iom.h>
32#include <VBox/vmm/selm.h>
33#include <VBox/vmm/tm.h>
34#include <VBox/vmm/em.h>
35#include <VBox/vmm/gim.h>
36#include <VBox/vmm/apic.h>
37#ifdef VBOX_WITH_REM
38# include <VBox/vmm/rem.h>
39#endif
40#include "HMInternal.h"
41#include <VBox/vmm/vm.h>
42#include <VBox/vmm/hmvmxinline.h>
43#include "HMVMXR0.h"
44#include "dtrace/VBoxVMM.h"
45
46#ifdef DEBUG_ramshankar
47# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
48# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
49# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
50# define HMVMX_ALWAYS_CHECK_GUEST_STATE
51# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
52# define HMVMX_ALWAYS_TRAP_PF
53# define HMVMX_ALWAYS_FLUSH_TLB
54# define HMVMX_ALWAYS_SWAP_EFER
55#endif
56
57
58/*********************************************************************************************************************************
59* Defined Constants And Macros *
60*********************************************************************************************************************************/
61/** Use the function table. */
62#define HMVMX_USE_FUNCTION_TABLE
63
64/** Determine which tagged-TLB flush handler to use. */
65#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
66#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
67#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
68#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
69
70/** @name HMVMX_READ_XXX
71 * Flags to skip redundant reads of some common VMCS fields that are not part of
72 * the guest-CPU or VCPU state but are needed while handling VM-exits.
73 */
74#define HMVMX_READ_IDT_VECTORING_INFO RT_BIT_32(0)
75#define HMVMX_READ_IDT_VECTORING_ERROR_CODE RT_BIT_32(1)
76#define HMVMX_READ_EXIT_QUALIFICATION RT_BIT_32(2)
77#define HMVMX_READ_EXIT_INSTR_LEN RT_BIT_32(3)
78#define HMVMX_READ_EXIT_INTERRUPTION_INFO RT_BIT_32(4)
79#define HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE RT_BIT_32(5)
80#define HMVMX_READ_EXIT_INSTR_INFO RT_BIT_32(6)
81#define HMVMX_READ_GUEST_LINEAR_ADDR RT_BIT_32(7)
82/** @} */
83
84/**
85 * States of the VMCS.
86 *
87 * This does not reflect all possible VMCS states but currently only those
88 * needed for maintaining the VMCS consistently even when thread-context hooks
89 * are used. Maybe later this can be extended (i.e. Nested Virtualization).
90 */
91#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
92#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
93#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
94
95/**
96 * Subset of the guest-CPU state that is kept by VMX R0 code while executing the
97 * guest using hardware-assisted VMX.
98 *
99 * This excludes state like GPRs (other than RSP) which are always are
100 * swapped and restored across the world-switch and also registers like EFER,
101 * MSR which cannot be modified by the guest without causing a VM-exit.
102 */
103#define HMVMX_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
104 | CPUMCTX_EXTRN_RFLAGS \
105 | CPUMCTX_EXTRN_RSP \
106 | CPUMCTX_EXTRN_SREG_MASK \
107 | CPUMCTX_EXTRN_TABLE_MASK \
108 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
109 | CPUMCTX_EXTRN_SYSCALL_MSRS \
110 | CPUMCTX_EXTRN_SYSENTER_MSRS \
111 | CPUMCTX_EXTRN_TSC_AUX \
112 | CPUMCTX_EXTRN_OTHER_MSRS \
113 | CPUMCTX_EXTRN_CR0 \
114 | CPUMCTX_EXTRN_CR3 \
115 | CPUMCTX_EXTRN_CR4 \
116 | CPUMCTX_EXTRN_DR7 \
117 | CPUMCTX_EXTRN_HM_VMX_MASK)
118
119/**
120 * Exception bitmap mask for real-mode guests (real-on-v86).
121 *
122 * We need to intercept all exceptions manually except:
123 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
124 * due to bugs in Intel CPUs.
125 * - \#PF need not be intercepted even in real-mode if we have Nested Paging
126 * support.
127 */
128#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
129 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
130 | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NM) | RT_BIT(X86_XCPT_DF) \
131 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
132 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
133 | RT_BIT(X86_XCPT_MF) /* always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
134 | RT_BIT(X86_XCPT_XF))
135
136/** Maximum VM-instruction error number. */
137#define HMVMX_INSTR_ERROR_MAX 28
138
139/** Profiling macro. */
140#ifdef HM_PROFILE_EXIT_DISPATCH
141# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
142# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
143#else
144# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
145# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
146#endif
147
148/** Assert that preemption is disabled or covered by thread-context hooks. */
149#define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
150 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD))
151
152/** Assert that we haven't migrated CPUs when thread-context hooks are not
153 * used. */
154#define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
155 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
156 ("Illegal migration! Entered on CPU %u Current %u\n", \
157 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()))
158
159/** Asserts that the given CPUMCTX_EXTRN_XXX bits are present in the guest-CPU
160 * context. */
161#define HMVMX_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
162 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
163 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
164
165/** Macro for importing guest state from the VMCS back into CPUMCTX (intended to be
166 * used only from VM-exit handlers). */
167#define HMVMX_CPUMCTX_IMPORT_STATE(a_pVCpu, a_fWhat) (hmR0VmxImportGuestState((a_pVCpu), (a_fWhat)))
168
169/** Helper macro for VM-exit handlers called unexpectedly. */
170#define HMVMX_UNEXPECTED_EXIT_RET(a_pVCpu, a_pVmxTransient) \
171 do { \
172 (a_pVCpu)->hm.s.u32HMError = (a_pVmxTransient)->uExitReason; \
173 return VERR_VMX_UNEXPECTED_EXIT; \
174 } while (0)
175
176/** Macro for importing segment registers to the VMCS from the guest-CPU context. */
177#ifdef VMX_USE_CACHED_VMCS_ACCESSES
178# define HMVMX_IMPORT_SREG(Sel, a_pCtxSelReg) \
179 hmR0VmxImportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
180 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
181#else
182# define HMVMX_IMPORT_SREG(Sel, a_pCtxSelReg) \
183 hmR0VmxImportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
184 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
185#endif
186
187/** Macro for exporting segment registers to the VMCS from the guest-CPU context. */
188#define HMVMX_EXPORT_SREG(Sel, a_pCtxSelReg) \
189 hmR0VmxExportGuestSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
190 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, (a_pCtxSelReg))
191
192#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
193/** Macro that does the necessary privilege checks and intercepted VM-exits for
194 * guests that attempted to execute a VMX instruction. */
195# define HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(a_pVCpu, a_uExitReason) \
196 do \
197 { \
198 VBOXSTRICTRC rcStrictTmp = hmR0VmxCheckExitDueToVmxInstr((a_pVCpu), (a_uExitReason)); \
199 if (rcStrictTmp == VINF_SUCCESS) \
200 { /* likely */ } \
201 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
202 { \
203 Assert((a_pVCpu)->hm.s.Event.fPending); \
204 Log4Func(("Privilege checks failed -> %#x\n", VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo))); \
205 return VINF_SUCCESS; \
206 } \
207 else \
208 { \
209 int rcTmp = VBOXSTRICTRC_VAL(rcStrictTmp); \
210 AssertMsgFailedReturn(("Unexpected failure. rc=%Rrc", rcTmp), rcTmp); \
211 } \
212 } while (0)
213
214/** Macro that decodes a memory operand for an instruction VM-exit. */
215# define HMVMX_DECODE_MEM_OPERAND(a_pVCpu, a_uExitInstrInfo, a_uExitQual, a_enmMemAccess, a_pGCPtrEffAddr) \
216 do \
217 { \
218 VBOXSTRICTRC rcStrictTmp = hmR0VmxDecodeMemOperand((a_pVCpu), (a_uExitInstrInfo), (a_uExitQual), (a_enmMemAccess), \
219 (a_pGCPtrEffAddr)); \
220 if (rcStrictTmp == VINF_SUCCESS) \
221 { /* likely */ } \
222 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
223 { \
224 uint8_t const uXcptTmp = VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo); \
225 Log4Func(("Memory operand decoding failed, raising xcpt %#x\n", uXcptTmp)); \
226 NOREF(uXcptTmp); \
227 return VINF_SUCCESS; \
228 } \
229 else \
230 { \
231 Log4Func(("hmR0VmxDecodeMemOperand failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrictTmp))); \
232 return rcStrictTmp; \
233 } \
234 } while (0)
235
236#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
237
238
239/*********************************************************************************************************************************
240* Structures and Typedefs *
241*********************************************************************************************************************************/
242/**
243 * VMX transient state.
244 *
245 * A state structure for holding miscellaneous information across
246 * VMX non-root operation and restored after the transition.
247 */
248typedef struct VMXTRANSIENT
249{
250 /** The host's rflags/eflags. */
251 RTCCUINTREG fEFlags;
252#if HC_ARCH_BITS == 32
253 uint32_t u32Alignment0;
254#endif
255 /** The guest's TPR value used for TPR shadowing. */
256 uint8_t u8GuestTpr;
257 /** Alignment. */
258 uint8_t abAlignment0[7];
259
260 /** The basic VM-exit reason. */
261 uint16_t uExitReason;
262 /** Alignment. */
263 uint16_t u16Alignment0;
264 /** The VM-exit interruption error code. */
265 uint32_t uExitIntErrorCode;
266 /** The VM-exit exit code qualification. */
267 uint64_t uExitQual;
268 /** The Guest-linear address. */
269 uint64_t uGuestLinearAddr;
270
271 /** The VM-exit interruption-information field. */
272 uint32_t uExitIntInfo;
273 /** The VM-exit instruction-length field. */
274 uint32_t cbInstr;
275 /** The VM-exit instruction-information field. */
276 VMXEXITINSTRINFO ExitInstrInfo;
277 /** Whether the VM-entry failed or not. */
278 bool fVMEntryFailed;
279 /** Alignment. */
280 uint8_t abAlignment1[3];
281
282 /** The VM-entry interruption-information field. */
283 uint32_t uEntryIntInfo;
284 /** The VM-entry exception error code field. */
285 uint32_t uEntryXcptErrorCode;
286 /** The VM-entry instruction length field. */
287 uint32_t cbEntryInstr;
288
289 /** IDT-vectoring information field. */
290 uint32_t uIdtVectoringInfo;
291 /** IDT-vectoring error code. */
292 uint32_t uIdtVectoringErrorCode;
293
294 /** Mask of currently read VMCS fields; HMVMX_READ_XXX. */
295 uint32_t fVmcsFieldsRead;
296
297 /** Whether the guest debug state was active at the time of VM-exit. */
298 bool fWasGuestDebugStateActive;
299 /** Whether the hyper debug state was active at the time of VM-exit. */
300 bool fWasHyperDebugStateActive;
301 /** Whether TSC-offsetting should be setup before VM-entry. */
302 bool fUpdateTscOffsettingAndPreemptTimer;
303 /** Whether the VM-exit was caused by a page-fault during delivery of a
304 * contributory exception or a page-fault. */
305 bool fVectoringDoublePF;
306 /** Whether the VM-exit was caused by a page-fault during delivery of an
307 * external interrupt or NMI. */
308 bool fVectoringPF;
309} VMXTRANSIENT;
310AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
311AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
312AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
313AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestDebugStateActive, sizeof(uint64_t));
314AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
315/** Pointer to VMX transient state. */
316typedef VMXTRANSIENT *PVMXTRANSIENT;
317
318/**
319 * Memory operand read or write access.
320 */
321typedef enum VMXMEMACCESS
322{
323 VMXMEMACCESS_READ = 0,
324 VMXMEMACCESS_WRITE = 1
325} VMXMEMACCESS;
326
327/**
328 * VMX VM-exit handler.
329 *
330 * @returns Strict VBox status code (i.e. informational status codes too).
331 * @param pVCpu The cross context virtual CPU structure.
332 * @param pVmxTransient Pointer to the VMX-transient structure.
333 */
334#ifndef HMVMX_USE_FUNCTION_TABLE
335typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
336#else
337typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
338/** Pointer to VM-exit handler. */
339typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
340#endif
341
342/**
343 * VMX VM-exit handler, non-strict status code.
344 *
345 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
346 *
347 * @returns VBox status code, no informational status code returned.
348 * @param pVCpu The cross context virtual CPU structure.
349 * @param pVmxTransient Pointer to the VMX-transient structure.
350 *
351 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
352 * use of that status code will be replaced with VINF_EM_SOMETHING
353 * later when switching over to IEM.
354 */
355#ifndef HMVMX_USE_FUNCTION_TABLE
356typedef int FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
357#else
358typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
359#endif
360
361
362/*********************************************************************************************************************************
363* Internal Functions *
364*********************************************************************************************************************************/
365static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXTLBFLUSHEPT enmTlbFlush);
366static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr);
367static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu);
368static int hmR0VmxImportGuestState(PVMCPU pVCpu, uint64_t fWhat);
369static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, uint64_t u64IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
370 RTGCUINTREG GCPtrFaultAddress, bool fStepping, uint32_t *pfIntrState);
371#if HC_ARCH_BITS == 32
372static int hmR0VmxInitVmcsReadCache(PVMCPU pVCpu);
373#endif
374#ifndef HMVMX_USE_FUNCTION_TABLE
375DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
376# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
377# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
378#else
379# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
380# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
381#endif
382
383/** @name VM-exit handlers.
384 * @{
385 */
386static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
387static FNVMXEXITHANDLER hmR0VmxExitExtInt;
388static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
389static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
390static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
391static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
392static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
393static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
394static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
395static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
396static FNVMXEXITHANDLER hmR0VmxExitCpuid;
397static FNVMXEXITHANDLER hmR0VmxExitGetsec;
398static FNVMXEXITHANDLER hmR0VmxExitHlt;
399static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
400static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
401static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
402static FNVMXEXITHANDLER hmR0VmxExitVmcall;
403#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
404static FNVMXEXITHANDLER hmR0VmxExitVmclear;
405static FNVMXEXITHANDLER hmR0VmxExitVmlaunch;
406static FNVMXEXITHANDLER hmR0VmxExitVmptrld;
407static FNVMXEXITHANDLER hmR0VmxExitVmptrst;
408static FNVMXEXITHANDLER hmR0VmxExitVmread;
409static FNVMXEXITHANDLER hmR0VmxExitVmresume;
410static FNVMXEXITHANDLER hmR0VmxExitVmwrite;
411static FNVMXEXITHANDLER hmR0VmxExitVmxoff;
412static FNVMXEXITHANDLER hmR0VmxExitVmxon;
413#endif
414static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
415static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
416static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
417static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
418static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
419static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
420static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
421static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
422static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
423static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
424static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
425static FNVMXEXITHANDLER hmR0VmxExitMwait;
426static FNVMXEXITHANDLER hmR0VmxExitMtf;
427static FNVMXEXITHANDLER hmR0VmxExitMonitor;
428static FNVMXEXITHANDLER hmR0VmxExitPause;
429static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
430static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
431static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
432static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
433static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
434static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
435static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
436static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
437static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
438static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
439static FNVMXEXITHANDLER hmR0VmxExitRdrand;
440static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
441/** @} */
442
443static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
444static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
445static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
446static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
447static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
448static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
449static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient);
450static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu);
451
452
453/*********************************************************************************************************************************
454* Global Variables *
455*********************************************************************************************************************************/
456#ifdef HMVMX_USE_FUNCTION_TABLE
457
458/**
459 * VMX_EXIT dispatch table.
460 */
461static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
462{
463 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
464 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
465 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
466 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
467 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
468 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
469 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
470 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
471 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
472 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
473 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
474 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
475 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
476 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
477 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
478 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
479 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
480 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
481 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
482#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
483 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitVmclear,
484 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitVmlaunch,
485 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitVmptrld,
486 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitVmptrst,
487 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitVmread,
488 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitVmresume,
489 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitVmwrite,
490 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitVmxoff,
491 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitVmxon,
492#else
493 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
494 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
495 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
496 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
497 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
498 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
499 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
500 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
501 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
502#endif
503 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
504 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
505 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
506 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
507 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
508 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
509 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
510 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
511 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
512 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
513 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
514 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
515 /* 40 UNDEFINED */ hmR0VmxExitPause,
516 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
517 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
518 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
519 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
520 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
521 /* 46 VMX_EXIT_GDTR_IDTR_ACCESS */ hmR0VmxExitXdtrAccess,
522 /* 47 VMX_EXIT_LDTR_TR_ACCESS */ hmR0VmxExitXdtrAccess,
523 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
524 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
525 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
526 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
527 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
528 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
529 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
530 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
531 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
532 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
533 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
534 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
535 /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUndefined,
536 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
537 /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUndefined,
538 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
539 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
540};
541#endif /* HMVMX_USE_FUNCTION_TABLE */
542
543#if defined(VBOX_STRICT) && defined(LOG_ENABLED)
544static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
545{
546 /* 0 */ "(Not Used)",
547 /* 1 */ "VMCALL executed in VMX root operation.",
548 /* 2 */ "VMCLEAR with invalid physical address.",
549 /* 3 */ "VMCLEAR with VMXON pointer.",
550 /* 4 */ "VMLAUNCH with non-clear VMCS.",
551 /* 5 */ "VMRESUME with non-launched VMCS.",
552 /* 6 */ "VMRESUME after VMXOFF",
553 /* 7 */ "VM-entry with invalid control fields.",
554 /* 8 */ "VM-entry with invalid host state fields.",
555 /* 9 */ "VMPTRLD with invalid physical address.",
556 /* 10 */ "VMPTRLD with VMXON pointer.",
557 /* 11 */ "VMPTRLD with incorrect revision identifier.",
558 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
559 /* 13 */ "VMWRITE to read-only VMCS component.",
560 /* 14 */ "(Not Used)",
561 /* 15 */ "VMXON executed in VMX root operation.",
562 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
563 /* 17 */ "VM-entry with non-launched executing VMCS.",
564 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
565 /* 19 */ "VMCALL with non-clear VMCS.",
566 /* 20 */ "VMCALL with invalid VM-exit control fields.",
567 /* 21 */ "(Not Used)",
568 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
569 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
570 /* 24 */ "VMCALL with invalid SMM-monitor features.",
571 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
572 /* 26 */ "VM-entry with events blocked by MOV SS.",
573 /* 27 */ "(Not Used)",
574 /* 28 */ "Invalid operand to INVEPT/INVVPID."
575};
576#endif /* VBOX_STRICT */
577
578
579/**
580 * Updates the VM's last error record.
581 *
582 * If there was a VMX instruction error, reads the error data from the VMCS and
583 * updates VCPU's last error record as well.
584 *
585 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
586 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
587 * VERR_VMX_INVALID_VMCS_FIELD.
588 * @param rc The error code.
589 */
590static void hmR0VmxUpdateErrorRecord(PVMCPU pVCpu, int rc)
591{
592 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
593 || rc == VERR_VMX_UNABLE_TO_START_VM)
594 {
595 AssertPtrReturnVoid(pVCpu);
596 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
597 }
598 pVCpu->CTX_SUFF(pVM)->hm.s.rcInit = rc;
599}
600
601
602/**
603 * Reads the VM-entry interruption-information field from the VMCS into the VMX
604 * transient structure.
605 *
606 * @returns VBox status code.
607 * @param pVmxTransient Pointer to the VMX transient structure.
608 *
609 * @remarks No-long-jump zone!!!
610 */
611DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
612{
613 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
614 AssertRCReturn(rc, rc);
615 return VINF_SUCCESS;
616}
617
618#ifdef VBOX_STRICT
619/**
620 * Reads the VM-entry exception error code field from the VMCS into
621 * the VMX transient structure.
622 *
623 * @returns VBox status code.
624 * @param pVmxTransient Pointer to the VMX transient structure.
625 *
626 * @remarks No-long-jump zone!!!
627 */
628DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
629{
630 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
631 AssertRCReturn(rc, rc);
632 return VINF_SUCCESS;
633}
634
635
636/**
637 * Reads the VM-entry exception error code field from the VMCS into
638 * the VMX transient structure.
639 *
640 * @returns VBox status code.
641 * @param pVmxTransient Pointer to the VMX transient structure.
642 *
643 * @remarks No-long-jump zone!!!
644 */
645DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
646{
647 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
648 AssertRCReturn(rc, rc);
649 return VINF_SUCCESS;
650}
651#endif /* VBOX_STRICT */
652
653
654/**
655 * Reads the VM-exit interruption-information field from the VMCS into the VMX
656 * transient structure.
657 *
658 * @returns VBox status code.
659 * @param pVmxTransient Pointer to the VMX transient structure.
660 */
661DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
662{
663 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_INFO))
664 {
665 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
666 AssertRCReturn(rc,rc);
667 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_INFO;
668 }
669 return VINF_SUCCESS;
670}
671
672
673/**
674 * Reads the VM-exit interruption error code from the VMCS into the VMX
675 * transient structure.
676 *
677 * @returns VBox status code.
678 * @param pVmxTransient Pointer to the VMX transient structure.
679 */
680DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
681{
682 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE))
683 {
684 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
685 AssertRCReturn(rc, rc);
686 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE;
687 }
688 return VINF_SUCCESS;
689}
690
691
692/**
693 * Reads the VM-exit instruction length field from the VMCS into the VMX
694 * transient structure.
695 *
696 * @returns VBox status code.
697 * @param pVmxTransient Pointer to the VMX transient structure.
698 */
699DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
700{
701 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_LEN))
702 {
703 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
704 AssertRCReturn(rc, rc);
705 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_LEN;
706 }
707 return VINF_SUCCESS;
708}
709
710
711/**
712 * Reads the VM-exit instruction-information field from the VMCS into
713 * the VMX transient structure.
714 *
715 * @returns VBox status code.
716 * @param pVmxTransient Pointer to the VMX transient structure.
717 */
718DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
719{
720 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_INFO))
721 {
722 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
723 AssertRCReturn(rc, rc);
724 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_INFO;
725 }
726 return VINF_SUCCESS;
727}
728
729
730/**
731 * Reads the VM-exit Qualification from the VMCS into the VMX transient structure.
732 *
733 * @returns VBox status code.
734 * @param pVCpu The cross context virtual CPU structure of the
735 * calling EMT. (Required for the VMCS cache case.)
736 * @param pVmxTransient Pointer to the VMX transient structure.
737 */
738DECLINLINE(int) hmR0VmxReadExitQualVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
739{
740 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_QUALIFICATION))
741 {
742 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual); NOREF(pVCpu);
743 AssertRCReturn(rc, rc);
744 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION;
745 }
746 return VINF_SUCCESS;
747}
748
749
750/**
751 * Reads the Guest-linear address from the VMCS into the VMX transient structure.
752 *
753 * @returns VBox status code.
754 * @param pVCpu The cross context virtual CPU structure of the
755 * calling EMT. (Required for the VMCS cache case.)
756 * @param pVmxTransient Pointer to the VMX transient structure.
757 */
758DECLINLINE(int) hmR0VmxReadGuestLinearAddrVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
759{
760 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_LINEAR_ADDR))
761 {
762 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr); NOREF(pVCpu);
763 AssertRCReturn(rc, rc);
764 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_LINEAR_ADDR;
765 }
766 return VINF_SUCCESS;
767}
768
769
770/**
771 * Reads the IDT-vectoring information field from the VMCS into the VMX
772 * transient structure.
773 *
774 * @returns VBox status code.
775 * @param pVmxTransient Pointer to the VMX transient structure.
776 *
777 * @remarks No-long-jump zone!!!
778 */
779DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
780{
781 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_INFO))
782 {
783 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
784 AssertRCReturn(rc, rc);
785 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_INFO;
786 }
787 return VINF_SUCCESS;
788}
789
790
791/**
792 * Reads the IDT-vectoring error code from the VMCS into the VMX
793 * transient structure.
794 *
795 * @returns VBox status code.
796 * @param pVmxTransient Pointer to the VMX transient structure.
797 */
798DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
799{
800 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_ERROR_CODE))
801 {
802 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
803 AssertRCReturn(rc, rc);
804 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_ERROR_CODE;
805 }
806 return VINF_SUCCESS;
807}
808
809
810/**
811 * Enters VMX root mode operation on the current CPU.
812 *
813 * @returns VBox status code.
814 * @param pVM The cross context VM structure. Can be
815 * NULL, after a resume.
816 * @param HCPhysCpuPage Physical address of the VMXON region.
817 * @param pvCpuPage Pointer to the VMXON region.
818 */
819static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
820{
821 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
822 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
823 Assert(pvCpuPage);
824 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
825
826 if (pVM)
827 {
828 /* Write the VMCS revision dword to the VMXON region. */
829 *(uint32_t *)pvCpuPage = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
830 }
831
832 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
833 RTCCUINTREG fEFlags = ASMIntDisableFlags();
834
835 /* Enable the VMX bit in CR4 if necessary. */
836 RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
837
838 /* Enter VMX root mode. */
839 int rc = VMXEnable(HCPhysCpuPage);
840 if (RT_FAILURE(rc))
841 {
842 if (!(uOldCr4 & X86_CR4_VMXE))
843 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
844
845 if (pVM)
846 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
847 }
848
849 /* Restore interrupts. */
850 ASMSetFlags(fEFlags);
851 return rc;
852}
853
854
855/**
856 * Exits VMX root mode operation on the current CPU.
857 *
858 * @returns VBox status code.
859 */
860static int hmR0VmxLeaveRootMode(void)
861{
862 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
863
864 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
865 RTCCUINTREG fEFlags = ASMIntDisableFlags();
866
867 /* If we're for some reason not in VMX root mode, then don't leave it. */
868 RTCCUINTREG uHostCR4 = ASMGetCR4();
869
870 int rc;
871 if (uHostCR4 & X86_CR4_VMXE)
872 {
873 /* Exit VMX root mode and clear the VMX bit in CR4. */
874 VMXDisable();
875 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
876 rc = VINF_SUCCESS;
877 }
878 else
879 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
880
881 /* Restore interrupts. */
882 ASMSetFlags(fEFlags);
883 return rc;
884}
885
886
887/**
888 * Allocates and maps one physically contiguous page. The allocated page is
889 * zero'd out. (Used by various VT-x structures).
890 *
891 * @returns IPRT status code.
892 * @param pMemObj Pointer to the ring-0 memory object.
893 * @param ppVirt Where to store the virtual address of the
894 * allocation.
895 * @param pHCPhys Where to store the physical address of the
896 * allocation.
897 */
898static int hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
899{
900 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
901 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
902 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
903
904 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
905 if (RT_FAILURE(rc))
906 return rc;
907 *ppVirt = RTR0MemObjAddress(*pMemObj);
908 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
909 ASMMemZero32(*ppVirt, PAGE_SIZE);
910 return VINF_SUCCESS;
911}
912
913
914/**
915 * Frees and unmaps an allocated physical page.
916 *
917 * @param pMemObj Pointer to the ring-0 memory object.
918 * @param ppVirt Where to re-initialize the virtual address of
919 * allocation as 0.
920 * @param pHCPhys Where to re-initialize the physical address of the
921 * allocation as 0.
922 */
923static void hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
924{
925 AssertPtr(pMemObj);
926 AssertPtr(ppVirt);
927 AssertPtr(pHCPhys);
928 if (*pMemObj != NIL_RTR0MEMOBJ)
929 {
930 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
931 AssertRC(rc);
932 *pMemObj = NIL_RTR0MEMOBJ;
933 *ppVirt = 0;
934 *pHCPhys = 0;
935 }
936}
937
938
939/**
940 * Worker function to free VT-x related structures.
941 *
942 * @returns IPRT status code.
943 * @param pVM The cross context VM structure.
944 */
945static void hmR0VmxStructsFree(PVM pVM)
946{
947 for (VMCPUID i = 0; i < pVM->cCpus; i++)
948 {
949 PVMCPU pVCpu = &pVM->aCpus[i];
950 AssertPtr(pVCpu);
951
952 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
953 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
954
955 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
956 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
957
958 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
959 }
960
961 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
962#ifdef VBOX_WITH_CRASHDUMP_MAGIC
963 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
964#endif
965}
966
967
968/**
969 * Worker function to allocate VT-x related VM structures.
970 *
971 * @returns IPRT status code.
972 * @param pVM The cross context VM structure.
973 */
974static int hmR0VmxStructsAlloc(PVM pVM)
975{
976 /*
977 * Initialize members up-front so we can cleanup properly on allocation failure.
978 */
979#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
980 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
981 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
982 pVM->hm.s.vmx.HCPhys##a_Name = 0;
983
984#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
985 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
986 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
987 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
988
989#ifdef VBOX_WITH_CRASHDUMP_MAGIC
990 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
991#endif
992 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
993
994 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
995 for (VMCPUID i = 0; i < pVM->cCpus; i++)
996 {
997 PVMCPU pVCpu = &pVM->aCpus[i];
998 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
999 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
1000 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
1001 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
1002 }
1003#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
1004#undef VMXLOCAL_INIT_VM_MEMOBJ
1005
1006 /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
1007 AssertReturnStmt(RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_SIZE) <= PAGE_SIZE,
1008 (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
1009 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
1010
1011 /*
1012 * Allocate all the VT-x structures.
1013 */
1014 int rc = VINF_SUCCESS;
1015#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1016 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
1017 if (RT_FAILURE(rc))
1018 goto cleanup;
1019 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
1020 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
1021#endif
1022
1023 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
1024 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
1025 {
1026 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
1027 &pVM->hm.s.vmx.HCPhysApicAccess);
1028 if (RT_FAILURE(rc))
1029 goto cleanup;
1030 }
1031
1032 /*
1033 * Initialize per-VCPU VT-x structures.
1034 */
1035 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1036 {
1037 PVMCPU pVCpu = &pVM->aCpus[i];
1038 AssertPtr(pVCpu);
1039
1040 /* Allocate the VM control structure (VMCS). */
1041 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
1042 if (RT_FAILURE(rc))
1043 goto cleanup;
1044
1045 /* Get the allocated virtual-APIC page from the APIC device for transparent TPR accesses. */
1046 if ( PDMHasApic(pVM)
1047 && (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
1048 {
1049 rc = APICGetApicPageForCpu(pVCpu, &pVCpu->hm.s.vmx.HCPhysVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
1050 NULL /* pR3Ptr */, NULL /* pRCPtr */);
1051 if (RT_FAILURE(rc))
1052 goto cleanup;
1053 }
1054
1055 /*
1056 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
1057 * transparent accesses of specific MSRs.
1058 *
1059 * If the condition for enabling MSR bitmaps changes here, don't forget to
1060 * update HMAreMsrBitmapsAvailable().
1061 */
1062 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1063 {
1064 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
1065 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1066 if (RT_FAILURE(rc))
1067 goto cleanup;
1068 ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
1069 }
1070
1071 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
1072 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
1073 if (RT_FAILURE(rc))
1074 goto cleanup;
1075
1076 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1077 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
1078 if (RT_FAILURE(rc))
1079 goto cleanup;
1080 }
1081
1082 return VINF_SUCCESS;
1083
1084cleanup:
1085 hmR0VmxStructsFree(pVM);
1086 return rc;
1087}
1088
1089
1090/**
1091 * Does global VT-x initialization (called during module initialization).
1092 *
1093 * @returns VBox status code.
1094 */
1095VMMR0DECL(int) VMXR0GlobalInit(void)
1096{
1097#ifdef HMVMX_USE_FUNCTION_TABLE
1098 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
1099# ifdef VBOX_STRICT
1100 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
1101 Assert(g_apfnVMExitHandlers[i]);
1102# endif
1103#endif
1104 return VINF_SUCCESS;
1105}
1106
1107
1108/**
1109 * Does global VT-x termination (called during module termination).
1110 */
1111VMMR0DECL(void) VMXR0GlobalTerm()
1112{
1113 /* Nothing to do currently. */
1114}
1115
1116
1117/**
1118 * Sets up and activates VT-x on the current CPU.
1119 *
1120 * @returns VBox status code.
1121 * @param pHostCpu The HM physical-CPU structure.
1122 * @param pVM The cross context VM structure. Can be
1123 * NULL after a host resume operation.
1124 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
1125 * fEnabledByHost is @c true).
1126 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
1127 * @a fEnabledByHost is @c true).
1128 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
1129 * enable VT-x on the host.
1130 * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs.
1131 */
1132VMMR0DECL(int) VMXR0EnableCpu(PHMPHYSCPU pHostCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
1133 PCSUPHWVIRTMSRS pHwvirtMsrs)
1134{
1135 Assert(pHostCpu);
1136 Assert(pHwvirtMsrs);
1137 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1138
1139 /* Enable VT-x if it's not already enabled by the host. */
1140 if (!fEnabledByHost)
1141 {
1142 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
1143 if (RT_FAILURE(rc))
1144 return rc;
1145 }
1146
1147 /*
1148 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been
1149 * using EPTPs) so we don't retain any stale guest-physical mappings which won't get
1150 * invalidated when flushing by VPID.
1151 */
1152 if (pHwvirtMsrs->u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1153 {
1154 hmR0VmxFlushEpt(NULL /* pVCpu */, VMXTLBFLUSHEPT_ALL_CONTEXTS);
1155 pHostCpu->fFlushAsidBeforeUse = false;
1156 }
1157 else
1158 pHostCpu->fFlushAsidBeforeUse = true;
1159
1160 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
1161 ++pHostCpu->cTlbFlushes;
1162
1163 return VINF_SUCCESS;
1164}
1165
1166
1167/**
1168 * Deactivates VT-x on the current CPU.
1169 *
1170 * @returns VBox status code.
1171 * @param pvCpuPage Pointer to the VMXON region.
1172 * @param HCPhysCpuPage Physical address of the VMXON region.
1173 *
1174 * @remarks This function should never be called when SUPR0EnableVTx() or
1175 * similar was used to enable VT-x on the host.
1176 */
1177VMMR0DECL(int) VMXR0DisableCpu(void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
1178{
1179 RT_NOREF2(pvCpuPage, HCPhysCpuPage);
1180
1181 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1182 return hmR0VmxLeaveRootMode();
1183}
1184
1185
1186/**
1187 * Sets the permission bits for the specified MSR in the MSR bitmap.
1188 *
1189 * @param pVCpu The cross context virtual CPU structure.
1190 * @param uMsr The MSR value.
1191 * @param enmRead Whether reading this MSR causes a VM-exit.
1192 * @param enmWrite Whether writing this MSR causes a VM-exit.
1193 */
1194static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
1195{
1196 int32_t iBit;
1197 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1198
1199 /*
1200 * MSR Layout:
1201 * Byte index MSR range Interpreted as
1202 * 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits.
1203 * 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits.
1204 * 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits.
1205 * 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits.
1206 *
1207 * A bit corresponding to an MSR within the above range causes a VM-exit
1208 * if the bit is 1 on executions of RDMSR/WRMSR.
1209 *
1210 * If an MSR falls out of the MSR range, it always cause a VM-exit.
1211 *
1212 * See Intel spec. 24.6.9 "MSR-Bitmap Address".
1213 */
1214 if (uMsr <= 0x00001fff)
1215 iBit = uMsr;
1216 else if (uMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
1217 {
1218 iBit = uMsr - UINT32_C(0xc0000000);
1219 pbMsrBitmap += 0x400;
1220 }
1221 else
1222 AssertMsgFailedReturnVoid(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1223
1224 Assert(iBit <= 0x1fff);
1225 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1226 ASMBitSet(pbMsrBitmap, iBit);
1227 else
1228 ASMBitClear(pbMsrBitmap, iBit);
1229
1230 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1231 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1232 else
1233 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1234}
1235
1236
1237/**
1238 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1239 * area.
1240 *
1241 * @returns VBox status code.
1242 * @param pVCpu The cross context virtual CPU structure.
1243 * @param cMsrs The number of MSRs.
1244 */
1245static int hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
1246{
1247 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1248 uint64_t const uVmxMiscMsr = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc;
1249 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(uVmxMiscMsr);
1250 if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
1251 {
1252 LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1253 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1254 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1255 }
1256
1257 /* Update number of guest MSRs to load/store across the world-switch. */
1258 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
1259 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
1260
1261 /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
1262 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
1263 AssertRCReturn(rc, rc);
1264
1265 /* Update the VCPU's copy of the MSR count. */
1266 pVCpu->hm.s.vmx.cMsrs = cMsrs;
1267
1268 return VINF_SUCCESS;
1269}
1270
1271
1272/**
1273 * Adds a new (or updates the value of an existing) guest/host MSR
1274 * pair to be swapped during the world-switch as part of the
1275 * auto-load/store MSR area in the VMCS.
1276 *
1277 * @returns VBox status code.
1278 * @param pVCpu The cross context virtual CPU structure.
1279 * @param uMsr The MSR.
1280 * @param uGuestMsrValue Value of the guest MSR.
1281 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1282 * necessary.
1283 * @param pfAddedAndUpdated Where to store whether the MSR was added -and-
1284 * its value was updated. Optional, can be NULL.
1285 */
1286static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr,
1287 bool *pfAddedAndUpdated)
1288{
1289 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1290 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1291 uint32_t i;
1292 for (i = 0; i < cMsrs; i++)
1293 {
1294 if (pGuestMsr->u32Msr == uMsr)
1295 break;
1296 pGuestMsr++;
1297 }
1298
1299 bool fAdded = false;
1300 if (i == cMsrs)
1301 {
1302 ++cMsrs;
1303 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1304 AssertMsgRCReturn(rc, ("hmR0VmxAddAutoLoadStoreMsr: Insufficient space to add MSR %u\n", uMsr), rc);
1305
1306 /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
1307 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1308 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1309
1310 fAdded = true;
1311 }
1312
1313 /* Update the MSR values in the auto-load/store MSR area. */
1314 pGuestMsr->u32Msr = uMsr;
1315 pGuestMsr->u64Value = uGuestMsrValue;
1316
1317 /* Create/update the MSR slot in the host MSR area. */
1318 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1319 pHostMsr += i;
1320 pHostMsr->u32Msr = uMsr;
1321
1322 /*
1323 * Update the host MSR only when requested by the caller AND when we're
1324 * adding it to the auto-load/store area. Otherwise, it would have been
1325 * updated by hmR0VmxExportHostMsrs(). We do this for performance reasons.
1326 */
1327 bool fUpdatedMsrValue = false;
1328 if ( fAdded
1329 && fUpdateHostMsr)
1330 {
1331 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1332 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1333 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1334 fUpdatedMsrValue = true;
1335 }
1336
1337 if (pfAddedAndUpdated)
1338 *pfAddedAndUpdated = fUpdatedMsrValue;
1339 return VINF_SUCCESS;
1340}
1341
1342
1343/**
1344 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1345 * auto-load/store MSR area in the VMCS.
1346 *
1347 * @returns VBox status code.
1348 * @param pVCpu The cross context virtual CPU structure.
1349 * @param uMsr The MSR.
1350 */
1351static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
1352{
1353 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1354 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1355 for (uint32_t i = 0; i < cMsrs; i++)
1356 {
1357 /* Find the MSR. */
1358 if (pGuestMsr->u32Msr == uMsr)
1359 {
1360 /* If it's the last MSR, simply reduce the count. */
1361 if (i == cMsrs - 1)
1362 {
1363 --cMsrs;
1364 break;
1365 }
1366
1367 /* Remove it by swapping the last MSR in place of it, and reducing the count. */
1368 PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1369 pLastGuestMsr += cMsrs - 1;
1370 pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
1371 pGuestMsr->u64Value = pLastGuestMsr->u64Value;
1372
1373 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1374 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1375 pLastHostMsr += cMsrs - 1;
1376 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1377 pHostMsr->u64Value = pLastHostMsr->u64Value;
1378 --cMsrs;
1379 break;
1380 }
1381 pGuestMsr++;
1382 }
1383
1384 /* Update the VMCS if the count changed (meaning the MSR was found). */
1385 if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
1386 {
1387 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1388 AssertRCReturn(rc, rc);
1389
1390 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1391 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1392 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
1393
1394 Log4Func(("Removed MSR %#RX32 new cMsrs=%u\n", uMsr, pVCpu->hm.s.vmx.cMsrs));
1395 return VINF_SUCCESS;
1396 }
1397
1398 return VERR_NOT_FOUND;
1399}
1400
1401
1402/**
1403 * Checks if the specified guest MSR is part of the auto-load/store area in
1404 * the VMCS.
1405 *
1406 * @returns true if found, false otherwise.
1407 * @param pVCpu The cross context virtual CPU structure.
1408 * @param uMsr The MSR to find.
1409 */
1410static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1411{
1412 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1413 uint32_t const cMsrs = pVCpu->hm.s.vmx.cMsrs;
1414
1415 for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
1416 {
1417 if (pGuestMsr->u32Msr == uMsr)
1418 return true;
1419 }
1420 return false;
1421}
1422
1423
1424/**
1425 * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
1426 *
1427 * @param pVCpu The cross context virtual CPU structure.
1428 *
1429 * @remarks No-long-jump zone!!!
1430 */
1431static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
1432{
1433 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1434 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1435 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1436 uint32_t const cMsrs = pVCpu->hm.s.vmx.cMsrs;
1437
1438 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1439 {
1440 AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
1441
1442 /*
1443 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1444 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1445 */
1446 if (pHostMsr->u32Msr == MSR_K6_EFER)
1447 pHostMsr->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostEfer;
1448 else
1449 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1450 }
1451
1452 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
1453}
1454
1455
1456/**
1457 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1458 * perform lazy restoration of the host MSRs while leaving VT-x.
1459 *
1460 * @param pVCpu The cross context virtual CPU structure.
1461 *
1462 * @remarks No-long-jump zone!!!
1463 */
1464static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1465{
1466 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1467
1468 /*
1469 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
1470 */
1471 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
1472 {
1473 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
1474#if HC_ARCH_BITS == 64
1475 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1476 {
1477 pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
1478 pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
1479 pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
1480 pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1481 }
1482#endif
1483 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1484 }
1485}
1486
1487
1488/**
1489 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1490 * lazily while leaving VT-x.
1491 *
1492 * @returns true if it does, false otherwise.
1493 * @param pVCpu The cross context virtual CPU structure.
1494 * @param uMsr The MSR to check.
1495 */
1496static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1497{
1498 NOREF(pVCpu);
1499#if HC_ARCH_BITS == 64
1500 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1501 {
1502 switch (uMsr)
1503 {
1504 case MSR_K8_LSTAR:
1505 case MSR_K6_STAR:
1506 case MSR_K8_SF_MASK:
1507 case MSR_K8_KERNEL_GS_BASE:
1508 return true;
1509 }
1510 }
1511#else
1512 RT_NOREF(pVCpu, uMsr);
1513#endif
1514 return false;
1515}
1516
1517
1518/**
1519 * Loads a set of guests MSRs to allow read/passthru to the guest.
1520 *
1521 * The name of this function is slightly confusing. This function does NOT
1522 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1523 * common prefix for functions dealing with "lazy restoration" of the shared
1524 * MSRs.
1525 *
1526 * @param pVCpu The cross context virtual CPU structure.
1527 *
1528 * @remarks No-long-jump zone!!!
1529 */
1530static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu)
1531{
1532 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1533 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1534
1535 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1536#if HC_ARCH_BITS == 64
1537 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1538 {
1539 /*
1540 * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
1541 * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
1542 * we can skip a few MSR writes.
1543 *
1544 * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
1545 * guest MSR values in the guest-CPU context might be different to what's currently
1546 * loaded in the CPU. In either case, we need to write the new guest MSR values to the
1547 * CPU, see @bugref{8728}.
1548 */
1549 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1550 if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1551 && pCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr
1552 && pCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostLStarMsr
1553 && pCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostStarMsr
1554 && pCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostSFMaskMsr)
1555 {
1556#ifdef VBOX_STRICT
1557 Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pCtx->msrKERNELGSBASE);
1558 Assert(ASMRdMsr(MSR_K8_LSTAR) == pCtx->msrLSTAR);
1559 Assert(ASMRdMsr(MSR_K6_STAR) == pCtx->msrSTAR);
1560 Assert(ASMRdMsr(MSR_K8_SF_MASK) == pCtx->msrSFMASK);
1561#endif
1562 }
1563 else
1564 {
1565 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
1566 ASMWrMsr(MSR_K8_LSTAR, pCtx->msrLSTAR);
1567 ASMWrMsr(MSR_K6_STAR, pCtx->msrSTAR);
1568 ASMWrMsr(MSR_K8_SF_MASK, pCtx->msrSFMASK);
1569 }
1570 }
1571#endif
1572 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
1573}
1574
1575
1576/**
1577 * Performs lazy restoration of the set of host MSRs if they were previously
1578 * loaded with guest MSR values.
1579 *
1580 * @param pVCpu The cross context virtual CPU structure.
1581 *
1582 * @remarks No-long-jump zone!!!
1583 * @remarks The guest MSRs should have been saved back into the guest-CPU
1584 * context by hmR0VmxImportGuestState()!!!
1585 */
1586static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
1587{
1588 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1589 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1590
1591 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1592 {
1593 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1594#if HC_ARCH_BITS == 64
1595 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1596 {
1597 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
1598 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
1599 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
1600 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
1601 }
1602#endif
1603 }
1604 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
1605}
1606
1607
1608/**
1609 * Verifies that our cached values of the VMCS fields are all consistent with
1610 * what's actually present in the VMCS.
1611 *
1612 * @returns VBox status code.
1613 * @retval VINF_SUCCESS if all our caches match their respective VMCS fields.
1614 * @retval VERR_VMX_VMCS_FIELD_CACHE_INVALID if a cache field doesn't match the
1615 * VMCS content. HMCPU error-field is
1616 * updated, see VMX_VCI_XXX.
1617 * @param pVCpu The cross context virtual CPU structure.
1618 */
1619static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu)
1620{
1621 uint32_t u32Val;
1622 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
1623 AssertRCReturn(rc, rc);
1624 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32EntryCtls == u32Val,
1625 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32EntryCtls, u32Val),
1626 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_ENTRY,
1627 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1628
1629 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
1630 AssertRCReturn(rc, rc);
1631 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ExitCtls == u32Val,
1632 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ExitCtls, u32Val),
1633 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_EXIT,
1634 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1635
1636 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
1637 AssertRCReturn(rc, rc);
1638 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32PinCtls == u32Val,
1639 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32PinCtls, u32Val),
1640 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PIN_EXEC,
1641 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1642
1643 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
1644 AssertRCReturn(rc, rc);
1645 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ProcCtls == u32Val,
1646 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls, u32Val),
1647 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC,
1648 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1649
1650 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1651 {
1652 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
1653 AssertRCReturn(rc, rc);
1654 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32ProcCtls2 == u32Val,
1655 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2, u32Val),
1656 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC2,
1657 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1658 }
1659
1660 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val);
1661 AssertRCReturn(rc, rc);
1662 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u32XcptBitmap == u32Val,
1663 ("Cache=%#RX32 VMCS=%#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap, u32Val),
1664 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_XCPT_BITMAP,
1665 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1666
1667 uint64_t u64Val;
1668 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, &u64Val);
1669 AssertRCReturn(rc, rc);
1670 AssertMsgReturnStmt(pVCpu->hm.s.vmx.u64TscOffset == u64Val,
1671 ("Cache=%#RX64 VMCS=%#RX64\n", pVCpu->hm.s.vmx.u64TscOffset, u64Val),
1672 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_TSC_OFFSET,
1673 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
1674
1675 return VINF_SUCCESS;
1676}
1677
1678
1679#ifdef VBOX_STRICT
1680/**
1681 * Verifies that our cached host EFER value has not changed
1682 * since we cached it.
1683 *
1684 * @param pVCpu The cross context virtual CPU structure.
1685 */
1686static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu)
1687{
1688 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1689
1690 if (pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
1691 {
1692 uint64_t u64Val;
1693 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &u64Val);
1694 AssertRC(rc);
1695
1696 uint64_t u64HostEferMsr = ASMRdMsr(MSR_K6_EFER);
1697 AssertMsgReturnVoid(u64HostEferMsr == u64Val, ("u64HostEferMsr=%#RX64 u64Val=%#RX64\n", u64HostEferMsr, u64Val));
1698 }
1699}
1700
1701
1702/**
1703 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
1704 * VMCS are correct.
1705 *
1706 * @param pVCpu The cross context virtual CPU structure.
1707 */
1708static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
1709{
1710 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1711
1712 /* Verify MSR counts in the VMCS are what we think it should be. */
1713 uint32_t cMsrs;
1714 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1715 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1716
1717 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
1718 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1719
1720 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1721 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1722
1723 PCVMXAUTOMSR pHostMsr = (PCVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1724 PCVMXAUTOMSR pGuestMsr = (PCVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1725 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1726 {
1727 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
1728 AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32 cMsrs=%u\n", pHostMsr->u32Msr,
1729 pGuestMsr->u32Msr, cMsrs));
1730
1731 uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
1732 AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
1733 pHostMsr->u32Msr, pHostMsr->u64Value, u64Msr, cMsrs));
1734
1735 /* Verify that the permissions are as expected in the MSR bitmap. */
1736 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
1737 {
1738 VMXMSREXITREAD enmRead;
1739 VMXMSREXITWRITE enmWrite;
1740 rc = HMGetVmxMsrPermission(pVCpu->hm.s.vmx.pvMsrBitmap, pGuestMsr->u32Msr, &enmRead, &enmWrite);
1741 AssertMsgReturnVoid(rc == VINF_SUCCESS, ("HMGetVmxMsrPermission! failed. rc=%Rrc\n", rc));
1742 if (pGuestMsr->u32Msr == MSR_K6_EFER)
1743 {
1744 AssertMsgReturnVoid(enmRead == VMXMSREXIT_INTERCEPT_READ, ("Passthru read for EFER!?\n"));
1745 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_INTERCEPT_WRITE, ("Passthru write for EFER!?\n"));
1746 }
1747 else
1748 {
1749 AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 cMsrs=%u No passthru read!\n",
1750 pGuestMsr->u32Msr, cMsrs));
1751 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 cMsrs=%u No passthru write!\n",
1752 pGuestMsr->u32Msr, cMsrs));
1753 }
1754 }
1755 }
1756}
1757#endif /* VBOX_STRICT */
1758
1759
1760/**
1761 * Flushes the TLB using EPT.
1762 *
1763 * @returns VBox status code.
1764 * @param pVCpu The cross context virtual CPU structure of the calling
1765 * EMT. Can be NULL depending on @a enmTlbFlush.
1766 * @param enmTlbFlush Type of flush.
1767 *
1768 * @remarks Caller is responsible for making sure this function is called only
1769 * when NestedPaging is supported and providing @a enmTlbFlush that is
1770 * supported by the CPU.
1771 * @remarks Can be called with interrupts disabled.
1772 */
1773static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXTLBFLUSHEPT enmTlbFlush)
1774{
1775 uint64_t au64Descriptor[2];
1776 if (enmTlbFlush == VMXTLBFLUSHEPT_ALL_CONTEXTS)
1777 au64Descriptor[0] = 0;
1778 else
1779 {
1780 Assert(pVCpu);
1781 au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1782 }
1783 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1784
1785 int rc = VMXR0InvEPT(enmTlbFlush, &au64Descriptor[0]);
1786 AssertMsg(rc == VINF_SUCCESS,
1787 ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0, rc));
1788
1789 if ( RT_SUCCESS(rc)
1790 && pVCpu)
1791 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1792}
1793
1794
1795/**
1796 * Flushes the TLB using VPID.
1797 *
1798 * @returns VBox status code.
1799 * @param pVCpu The cross context virtual CPU structure of the calling
1800 * EMT. Can be NULL depending on @a enmTlbFlush.
1801 * @param enmTlbFlush Type of flush.
1802 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1803 * on @a enmTlbFlush).
1804 *
1805 * @remarks Can be called with interrupts disabled.
1806 */
1807static void hmR0VmxFlushVpid(PVMCPU pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr)
1808{
1809 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid);
1810
1811 uint64_t au64Descriptor[2];
1812 if (enmTlbFlush == VMXTLBFLUSHVPID_ALL_CONTEXTS)
1813 {
1814 au64Descriptor[0] = 0;
1815 au64Descriptor[1] = 0;
1816 }
1817 else
1818 {
1819 AssertPtr(pVCpu);
1820 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1821 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1822 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1823 au64Descriptor[1] = GCPtr;
1824 }
1825
1826 int rc = VMXR0InvVPID(enmTlbFlush, &au64Descriptor[0]);
1827 AssertMsg(rc == VINF_SUCCESS,
1828 ("VMXR0InvVPID %#x %u %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1829
1830 if ( RT_SUCCESS(rc)
1831 && pVCpu)
1832 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1833 NOREF(rc);
1834}
1835
1836
1837/**
1838 * Invalidates a guest page by guest virtual address. Only relevant for
1839 * EPT/VPID, otherwise there is nothing really to invalidate.
1840 *
1841 * @returns VBox status code.
1842 * @param pVCpu The cross context virtual CPU structure.
1843 * @param GCVirt Guest virtual address of the page to invalidate.
1844 */
1845VMMR0DECL(int) VMXR0InvalidatePage(PVMCPU pVCpu, RTGCPTR GCVirt)
1846{
1847 AssertPtr(pVCpu);
1848 LogFlowFunc(("pVCpu=%p GCVirt=%RGv\n", pVCpu, GCVirt));
1849
1850 bool fFlushPending = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1851 if (!fFlushPending)
1852 {
1853 /*
1854 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for
1855 * the EPT case. See @bugref{6043} and @bugref{6177}.
1856 *
1857 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*()
1858 * as this function maybe called in a loop with individual addresses.
1859 */
1860 PVM pVM = pVCpu->CTX_SUFF(pVM);
1861 if (pVM->hm.s.vmx.fVpid)
1862 {
1863 bool fVpidFlush = RT_BOOL(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1864
1865#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1866 /*
1867 * Workaround Erratum BV75, AAJ159 and others that affect several Intel CPUs
1868 * where executing INVVPID outside 64-bit mode does not flush translations of
1869 * 64-bit linear addresses, see @bugref{6208#c72}.
1870 */
1871 if (RT_HI_U32(GCVirt))
1872 fVpidFlush = false;
1873#endif
1874
1875 if (fVpidFlush)
1876 {
1877 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_INDIV_ADDR, GCVirt);
1878 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1879 }
1880 else
1881 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1882 }
1883 else if (pVM->hm.s.fNestedPaging)
1884 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1885 }
1886
1887 return VINF_SUCCESS;
1888}
1889
1890
1891/**
1892 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1893 * case where neither EPT nor VPID is supported by the CPU.
1894 *
1895 * @param pHostCpu The HM physical-CPU structure.
1896 * @param pVCpu The cross context virtual CPU structure.
1897 *
1898 * @remarks Called with interrupts disabled.
1899 */
1900static void hmR0VmxFlushTaggedTlbNone(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
1901{
1902 AssertPtr(pVCpu);
1903 AssertPtr(pHostCpu);
1904
1905 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1906
1907 Assert(pHostCpu->idCpu != NIL_RTCPUID);
1908 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
1909 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1910 pVCpu->hm.s.fForceTLBFlush = false;
1911 return;
1912}
1913
1914
1915/**
1916 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1917 *
1918 * @param pHostCpu The HM physical-CPU structure.
1919 * @param pVCpu The cross context virtual CPU structure.
1920 *
1921 * @remarks All references to "ASID" in this function pertains to "VPID" in Intel's
1922 * nomenclature. The reason is, to avoid confusion in compare statements
1923 * since the host-CPU copies are named "ASID".
1924 *
1925 * @remarks Called with interrupts disabled.
1926 */
1927static void hmR0VmxFlushTaggedTlbBoth(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
1928{
1929#ifdef VBOX_WITH_STATISTICS
1930 bool fTlbFlushed = false;
1931# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
1932# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
1933 if (!fTlbFlushed) \
1934 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
1935 } while (0)
1936#else
1937# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
1938# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
1939#endif
1940
1941 AssertPtr(pVCpu);
1942 AssertPtr(pHostCpu);
1943 Assert(pHostCpu->idCpu != NIL_RTCPUID);
1944
1945 PVM pVM = pVCpu->CTX_SUFF(pVM);
1946 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1947 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1948 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1949
1950 /*
1951 * Force a TLB flush for the first world-switch if the current CPU differs from the one we
1952 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
1953 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
1954 * cannot reuse the current ASID anymore.
1955 */
1956 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
1957 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
1958 {
1959 ++pHostCpu->uCurrentAsid;
1960 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1961 {
1962 pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
1963 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1964 pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1965 }
1966
1967 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
1968 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
1969 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
1970
1971 /*
1972 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
1973 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
1974 */
1975 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmTlbFlushEpt);
1976 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1977 HMVMX_SET_TAGGED_TLB_FLUSHED();
1978 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1979 }
1980 else if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) /* Check for explicit TLB flushes. */
1981 {
1982 /*
1983 * Changes to the EPT paging structure by VMM requires flushing-by-EPT as the CPU
1984 * creates guest-physical (ie. only EPT-tagged) mappings while traversing the EPT
1985 * tables when EPT is in use. Flushing-by-VPID will only flush linear (only
1986 * VPID-tagged) and combined (EPT+VPID tagged) mappings but not guest-physical
1987 * mappings, see @bugref{6568}.
1988 *
1989 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information".
1990 */
1991 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmTlbFlushEpt);
1992 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1993 HMVMX_SET_TAGGED_TLB_FLUSHED();
1994 }
1995
1996 pVCpu->hm.s.fForceTLBFlush = false;
1997 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
1998
1999 Assert(pVCpu->hm.s.idLastCpu == pHostCpu->idCpu);
2000 Assert(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes);
2001 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
2002 ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
2003 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2004 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
2005 pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2006 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2007 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2008
2009 /* Update VMCS with the VPID. */
2010 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2011 AssertRC(rc);
2012
2013#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2014}
2015
2016
2017/**
2018 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2019 *
2020 * @param pHostCpu The HM physical-CPU structure.
2021 * @param pVCpu The cross context virtual CPU structure.
2022 *
2023 * @remarks Called with interrupts disabled.
2024 */
2025static void hmR0VmxFlushTaggedTlbEpt(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
2026{
2027 AssertPtr(pVCpu);
2028 AssertPtr(pHostCpu);
2029 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2030 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked without NestedPaging."));
2031 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID."));
2032
2033 /*
2034 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2035 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2036 */
2037 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
2038 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
2039 {
2040 pVCpu->hm.s.fForceTLBFlush = true;
2041 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2042 }
2043
2044 /* Check for explicit TLB flushes. */
2045 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2046 {
2047 pVCpu->hm.s.fForceTLBFlush = true;
2048 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2049 }
2050
2051 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2052 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2053
2054 if (pVCpu->hm.s.fForceTLBFlush)
2055 {
2056 hmR0VmxFlushEpt(pVCpu, pVCpu->CTX_SUFF(pVM)->hm.s.vmx.enmTlbFlushEpt);
2057 pVCpu->hm.s.fForceTLBFlush = false;
2058 }
2059}
2060
2061
2062/**
2063 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2064 *
2065 * @param pHostCpu The HM physical-CPU structure.
2066 * @param pVCpu The cross context virtual CPU structure.
2067 *
2068 * @remarks Called with interrupts disabled.
2069 */
2070static void hmR0VmxFlushTaggedTlbVpid(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
2071{
2072 AssertPtr(pVCpu);
2073 AssertPtr(pHostCpu);
2074 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2075 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked without VPID."));
2076 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging"));
2077
2078 /*
2079 * Force a TLB flush for the first world switch if the current CPU differs from the one we
2080 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
2081 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
2082 * cannot reuse the current ASID anymore.
2083 */
2084 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
2085 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
2086 {
2087 pVCpu->hm.s.fForceTLBFlush = true;
2088 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2089 }
2090
2091 /* Check for explicit TLB flushes. */
2092 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2093 {
2094 /*
2095 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see
2096 * hmR0VmxSetupTaggedTlb()) we would need to explicitly flush in this case (add an
2097 * fExplicitFlush = true here and change the pHostCpu->fFlushAsidBeforeUse check below to
2098 * include fExplicitFlush's too) - an obscure corner case.
2099 */
2100 pVCpu->hm.s.fForceTLBFlush = true;
2101 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2102 }
2103
2104 PVM pVM = pVCpu->CTX_SUFF(pVM);
2105 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2106 if (pVCpu->hm.s.fForceTLBFlush)
2107 {
2108 ++pHostCpu->uCurrentAsid;
2109 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2110 {
2111 pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2112 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2113 pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2114 }
2115
2116 pVCpu->hm.s.fForceTLBFlush = false;
2117 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2118 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
2119 if (pHostCpu->fFlushAsidBeforeUse)
2120 {
2121 if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
2122 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2123 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
2124 {
2125 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2126 pHostCpu->fFlushAsidBeforeUse = false;
2127 }
2128 else
2129 {
2130 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2131 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2132 }
2133 }
2134 }
2135
2136 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
2137 ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
2138 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2139 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
2140 pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2141 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2142 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2143
2144 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2145 AssertRC(rc);
2146}
2147
2148
2149/**
2150 * Flushes the guest TLB entry based on CPU capabilities.
2151 *
2152 * @param pHostCpu The HM physical-CPU structure.
2153 * @param pVCpu The cross context virtual CPU structure.
2154 *
2155 * @remarks Called with interrupts disabled.
2156 */
2157DECLINLINE(void) hmR0VmxFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPU pVCpu)
2158{
2159#ifdef HMVMX_ALWAYS_FLUSH_TLB
2160 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2161#endif
2162 PVM pVM = pVCpu->CTX_SUFF(pVM);
2163 switch (pVM->hm.s.vmx.enmTlbFlushType)
2164 {
2165 case VMXTLBFLUSHTYPE_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pHostCpu, pVCpu); break;
2166 case VMXTLBFLUSHTYPE_EPT: hmR0VmxFlushTaggedTlbEpt(pHostCpu, pVCpu); break;
2167 case VMXTLBFLUSHTYPE_VPID: hmR0VmxFlushTaggedTlbVpid(pHostCpu, pVCpu); break;
2168 case VMXTLBFLUSHTYPE_NONE: hmR0VmxFlushTaggedTlbNone(pHostCpu, pVCpu); break;
2169 default:
2170 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2171 break;
2172 }
2173 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2174}
2175
2176
2177/**
2178 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2179 * TLB entries from the host TLB before VM-entry.
2180 *
2181 * @returns VBox status code.
2182 * @param pVM The cross context VM structure.
2183 */
2184static int hmR0VmxSetupTaggedTlb(PVM pVM)
2185{
2186 /*
2187 * Determine optimal flush type for Nested Paging.
2188 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
2189 * guest execution (see hmR3InitFinalizeR0()).
2190 */
2191 if (pVM->hm.s.fNestedPaging)
2192 {
2193 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2194 {
2195 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2196 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_SINGLE_CONTEXT;
2197 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2198 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_ALL_CONTEXTS;
2199 else
2200 {
2201 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2202 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2203 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
2204 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2205 }
2206
2207 /* Make sure the write-back cacheable memory type for EPT is supported. */
2208 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
2209 {
2210 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2211 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
2212 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2213 }
2214
2215 /* EPT requires a page-walk length of 4. */
2216 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
2217 {
2218 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2219 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
2220 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2221 }
2222 }
2223 else
2224 {
2225 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2226 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
2227 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
2228 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2229 }
2230 }
2231
2232 /*
2233 * Determine optimal flush type for VPID.
2234 */
2235 if (pVM->hm.s.vmx.fVpid)
2236 {
2237 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2238 {
2239 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2240 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_SINGLE_CONTEXT;
2241 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2242 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_ALL_CONTEXTS;
2243 else
2244 {
2245 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2246 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2247 LogRelFunc(("Only INDIV_ADDR supported. Ignoring VPID.\n"));
2248 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2249 LogRelFunc(("Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2250 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2251 pVM->hm.s.vmx.fVpid = false;
2252 }
2253 }
2254 else
2255 {
2256 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2257 Log4Func(("VPID supported without INVEPT support. Ignoring VPID.\n"));
2258 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
2259 pVM->hm.s.vmx.fVpid = false;
2260 }
2261 }
2262
2263 /*
2264 * Setup the handler for flushing tagged-TLBs.
2265 */
2266 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2267 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT_VPID;
2268 else if (pVM->hm.s.fNestedPaging)
2269 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT;
2270 else if (pVM->hm.s.vmx.fVpid)
2271 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_VPID;
2272 else
2273 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_NONE;
2274 return VINF_SUCCESS;
2275}
2276
2277
2278/**
2279 * Sets up pin-based VM-execution controls in the VMCS.
2280 *
2281 * @returns VBox status code.
2282 * @param pVCpu The cross context virtual CPU structure.
2283 *
2284 * @remarks We don't really care about optimizing vmwrites here as it's done only
2285 * once per VM and hence we don't care about VMCS-field cache comparisons.
2286 */
2287static int hmR0VmxSetupPinCtls(PVMCPU pVCpu)
2288{
2289 PVM pVM = pVCpu->CTX_SUFF(pVM);
2290 uint32_t fVal = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0; /* Bits set here must always be set. */
2291 uint32_t const fZap = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2292
2293 fVal |= VMX_PIN_CTLS_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2294 | VMX_PIN_CTLS_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2295
2296 if (pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
2297 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2298
2299 /* Enable the VMX preemption timer. */
2300 if (pVM->hm.s.vmx.fUsePreemptTimer)
2301 {
2302 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
2303 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
2304 }
2305
2306#if 0
2307 /* Enable posted-interrupt processing. */
2308 if (pVM->hm.s.fPostedIntrs)
2309 {
2310 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
2311 Assert(pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
2312 fVal |= VMX_PIN_CTL_POSTED_INT;
2313 }
2314#endif
2315
2316 if ((fVal & fZap) != fVal)
2317 {
2318 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2319 pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0, fVal, fZap));
2320 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2321 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2322 }
2323
2324 /* Commit it to the VMCS and update our cache. */
2325 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, fVal);
2326 AssertRCReturn(rc, rc);
2327 pVCpu->hm.s.vmx.u32PinCtls = fVal;
2328
2329 return VINF_SUCCESS;
2330}
2331
2332
2333/**
2334 * Sets up secondary processor-based VM-execution controls in the VMCS.
2335 *
2336 * @returns VBox status code.
2337 * @param pVCpu The cross context virtual CPU structure.
2338 *
2339 * @remarks We don't really care about optimizing vmwrites here as it's done only
2340 * once per VM and hence we don't care about VMCS-field cache comparisons.
2341 */
2342static int hmR0VmxSetupProcCtls2(PVMCPU pVCpu)
2343{
2344 PVM pVM = pVCpu->CTX_SUFF(pVM);
2345 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
2346 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2347
2348 /* WBINVD causes a VM-exit. */
2349 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
2350 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
2351
2352 /* Enable EPT (aka nested-paging). */
2353 if (pVM->hm.s.fNestedPaging)
2354 fVal |= VMX_PROC_CTLS2_EPT;
2355
2356 /*
2357 * Enable the INVPCID instruction if supported by the hardware and we expose
2358 * it to the guest. Without this, guest executing INVPCID would cause a #UD.
2359 */
2360 if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID)
2361 && pVM->cpum.ro.GuestFeatures.fInvpcid)
2362 fVal |= VMX_PROC_CTLS2_INVPCID;
2363
2364 /* Enable VPID. */
2365 if (pVM->hm.s.vmx.fVpid)
2366 fVal |= VMX_PROC_CTLS2_VPID;
2367
2368 /* Enable Unrestricted guest execution. */
2369 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2370 fVal |= VMX_PROC_CTLS2_UNRESTRICTED_GUEST;
2371
2372#if 0
2373 if (pVM->hm.s.fVirtApicRegs)
2374 {
2375 /* Enable APIC-register virtualization. */
2376 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
2377 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
2378
2379 /* Enable virtual-interrupt delivery. */
2380 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
2381 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
2382 }
2383#endif
2384
2385 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is where the TPR shadow resides. */
2386 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2387 * done dynamically. */
2388 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
2389 {
2390 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
2391 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2392 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS; /* Virtualize APIC accesses. */
2393 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
2394 AssertRCReturn(rc, rc);
2395 }
2396
2397 /* Enable RDTSCP. */
2398 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP)
2399 fVal |= VMX_PROC_CTLS2_RDTSCP;
2400
2401 /* Enable Pause-Loop exiting. */
2402 if ( pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT
2403 && pVM->hm.s.vmx.cPleGapTicks
2404 && pVM->hm.s.vmx.cPleWindowTicks)
2405 {
2406 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
2407
2408 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
2409 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
2410 AssertRCReturn(rc, rc);
2411 }
2412
2413 if ((fVal & fZap) != fVal)
2414 {
2415 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2416 pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0, fVal, fZap));
2417 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2418 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2419 }
2420
2421 /* Commit it to the VMCS and update our cache. */
2422 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
2423 AssertRCReturn(rc, rc);
2424 pVCpu->hm.s.vmx.u32ProcCtls2 = fVal;
2425
2426 return VINF_SUCCESS;
2427}
2428
2429
2430/**
2431 * Sets up processor-based VM-execution controls in the VMCS.
2432 *
2433 * @returns VBox status code.
2434 * @param pVCpu The cross context virtual CPU structure.
2435 *
2436 * @remarks We don't really care about optimizing vmwrites here as it's done only
2437 * once per VM and hence we don't care about VMCS-field cache comparisons.
2438 */
2439static int hmR0VmxSetupProcCtls(PVMCPU pVCpu)
2440{
2441 PVM pVM = pVCpu->CTX_SUFF(pVM);
2442 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
2443 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2444
2445 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
2446 | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2447 | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2448 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2449 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2450 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2451 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2452
2453 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2454 if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
2455 || (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
2456 {
2457 LogRelFunc(("Unsupported VMX_PROC_CTLS_MOV_DR_EXIT combo!"));
2458 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2459 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2460 }
2461
2462 /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
2463 if (!pVM->hm.s.fNestedPaging)
2464 {
2465 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
2466 fVal |= VMX_PROC_CTLS_INVLPG_EXIT
2467 | VMX_PROC_CTLS_CR3_LOAD_EXIT
2468 | VMX_PROC_CTLS_CR3_STORE_EXIT;
2469 }
2470
2471 /* Use TPR shadowing if supported by the CPU. */
2472 if ( PDMHasApic(pVM)
2473 && pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW)
2474 {
2475 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2476 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2477 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
2478 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
2479 AssertRCReturn(rc, rc);
2480
2481 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2482 /* CR8 writes cause a VM-exit based on TPR threshold. */
2483 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
2484 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
2485 }
2486 else
2487 {
2488 /*
2489 * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
2490 * Set this control only for 64-bit guests.
2491 */
2492 if (pVM->hm.s.fAllow64BitGuests)
2493 {
2494 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
2495 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
2496 }
2497 }
2498
2499 /* Use MSR-bitmaps if supported by the CPU. */
2500 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
2501 {
2502 fVal |= VMX_PROC_CTLS_USE_MSR_BITMAPS;
2503
2504 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2505 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2506 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2507 AssertRCReturn(rc, rc);
2508
2509 /*
2510 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
2511 * automatically using dedicated fields in the VMCS.
2512 */
2513 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2514 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2515 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2516 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2517 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2518#if HC_ARCH_BITS == 64
2519 /*
2520 * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
2521 */
2522 if (pVM->hm.s.fAllow64BitGuests)
2523 {
2524 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2525 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2526 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2527 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2528 }
2529#endif
2530 /*
2531 * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
2532 * associated with then. We never need to intercept access (writes need to
2533 * be executed without exiting, reads will #GP-fault anyway).
2534 */
2535 if (pVM->cpum.ro.GuestFeatures.fIbpb)
2536 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_PRED_CMD, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2537 if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
2538 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_FLUSH_CMD, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2539
2540 /* Though MSR_IA32_PERF_GLOBAL_CTRL is saved/restored lazily, we want intercept reads/write to it for now. */
2541 }
2542
2543 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2544 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2545 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
2546
2547 if ((fVal & fZap) != fVal)
2548 {
2549 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2550 pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0, fVal, fZap));
2551 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2552 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2553 }
2554
2555 /* Commit it to the VMCS and update our cache. */
2556 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, fVal);
2557 AssertRCReturn(rc, rc);
2558 pVCpu->hm.s.vmx.u32ProcCtls = fVal;
2559
2560 /* Set up secondary processor-based VM-execution controls if the CPU supports it. */
2561 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2562 return hmR0VmxSetupProcCtls2(pVCpu);
2563
2564 /* Sanity check, should not really happen. */
2565 if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
2566 {
2567 LogRelFunc(("Unrestricted Guest enabled when secondary processor-based VM-execution controls not available\n"));
2568 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
2569 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2570 }
2571
2572 /* Old CPUs without secondary processor-based VM-execution controls would end up here. */
2573 return VINF_SUCCESS;
2574}
2575
2576
2577/**
2578 * Sets up miscellaneous (everything other than Pin & Processor-based
2579 * VM-execution) control fields in the VMCS.
2580 *
2581 * @returns VBox status code.
2582 * @param pVCpu The cross context virtual CPU structure.
2583 */
2584static int hmR0VmxSetupMiscCtls(PVMCPU pVCpu)
2585{
2586 AssertPtr(pVCpu);
2587
2588 int rc = VERR_GENERAL_FAILURE;
2589
2590 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2591#if 0
2592 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxExportGuestCR3AndCR4())*/
2593 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0);
2594 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0);
2595
2596 /*
2597 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
2598 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
2599 * We thus use the exception bitmap to control it rather than use both.
2600 */
2601 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0);
2602 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0);
2603
2604 /* All IO & IOIO instructions cause VM-exits. */
2605 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0);
2606 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0);
2607
2608 /* Initialize the MSR-bitmap area. */
2609 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
2610 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
2611 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
2612 AssertRCReturn(rc, rc);
2613#endif
2614
2615 /* Setup MSR auto-load/store area. */
2616 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
2617 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
2618 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2619 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2620 AssertRCReturn(rc, rc);
2621
2622 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
2623 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
2624 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
2625 AssertRCReturn(rc, rc);
2626
2627 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
2628 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
2629 AssertRCReturn(rc, rc);
2630
2631 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2632#if 0
2633 /* Setup debug controls */
2634 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0);
2635 rc |= VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0);
2636 AssertRCReturn(rc, rc);
2637#endif
2638
2639 return rc;
2640}
2641
2642
2643/**
2644 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2645 *
2646 * We shall setup those exception intercepts that don't change during the
2647 * lifetime of the VM here. The rest are done dynamically while loading the
2648 * guest state.
2649 *
2650 * @returns VBox status code.
2651 * @param pVCpu The cross context virtual CPU structure.
2652 */
2653static int hmR0VmxInitXcptBitmap(PVMCPU pVCpu)
2654{
2655 AssertPtr(pVCpu);
2656
2657 uint32_t uXcptBitmap;
2658
2659 /* Must always intercept #AC to prevent the guest from hanging the CPU. */
2660 uXcptBitmap = RT_BIT_32(X86_XCPT_AC);
2661
2662 /* Because we need to maintain the DR6 state even when intercepting DRx reads
2663 and writes, and because recursive #DBs can cause the CPU hang, we must always
2664 intercept #DB. */
2665 uXcptBitmap |= RT_BIT_32(X86_XCPT_DB);
2666
2667 /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
2668 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
2669 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
2670
2671 /* Commit it to the VMCS. */
2672 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
2673 AssertRCReturn(rc, rc);
2674
2675 /* Update our cache of the exception bitmap. */
2676 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
2677 return VINF_SUCCESS;
2678}
2679
2680
2681/**
2682 * Does per-VM VT-x initialization.
2683 *
2684 * @returns VBox status code.
2685 * @param pVM The cross context VM structure.
2686 */
2687VMMR0DECL(int) VMXR0InitVM(PVM pVM)
2688{
2689 LogFlowFunc(("pVM=%p\n", pVM));
2690
2691 int rc = hmR0VmxStructsAlloc(pVM);
2692 if (RT_FAILURE(rc))
2693 {
2694 LogRelFunc(("hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
2695 return rc;
2696 }
2697
2698 return VINF_SUCCESS;
2699}
2700
2701
2702/**
2703 * Does per-VM VT-x termination.
2704 *
2705 * @returns VBox status code.
2706 * @param pVM The cross context VM structure.
2707 */
2708VMMR0DECL(int) VMXR0TermVM(PVM pVM)
2709{
2710 LogFlowFunc(("pVM=%p\n", pVM));
2711
2712#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2713 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
2714 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
2715#endif
2716 hmR0VmxStructsFree(pVM);
2717 return VINF_SUCCESS;
2718}
2719
2720
2721/**
2722 * Sets up the VM for execution under VT-x.
2723 * This function is only called once per-VM during initialization.
2724 *
2725 * @returns VBox status code.
2726 * @param pVM The cross context VM structure.
2727 */
2728VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
2729{
2730 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
2731 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2732
2733 LogFlowFunc(("pVM=%p\n", pVM));
2734
2735 /*
2736 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be
2737 * allocated. We no longer support the highly unlikely case of UnrestrictedGuest without
2738 * pRealModeTSS, see hmR3InitFinalizeR0Intel().
2739 */
2740 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
2741 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
2742 || !pVM->hm.s.vmx.pRealModeTSS))
2743 {
2744 LogRelFunc(("Invalid real-on-v86 state.\n"));
2745 return VERR_INTERNAL_ERROR;
2746 }
2747
2748 /* Initialize these always, see hmR3InitFinalizeR0().*/
2749 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NONE;
2750 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NONE;
2751
2752 /* Setup the tagged-TLB flush handlers. */
2753 int rc = hmR0VmxSetupTaggedTlb(pVM);
2754 if (RT_FAILURE(rc))
2755 {
2756 LogRelFunc(("hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
2757 return rc;
2758 }
2759
2760 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
2761 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
2762#if HC_ARCH_BITS == 64
2763 if ( (pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
2764 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
2765 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR))
2766 {
2767 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
2768 }
2769#endif
2770
2771 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
2772 RTCCUINTREG const uHostCR4 = ASMGetCR4();
2773 if (RT_UNLIKELY(!(uHostCR4 & X86_CR4_VMXE)))
2774 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
2775
2776 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2777 {
2778 PVMCPU pVCpu = &pVM->aCpus[i];
2779 AssertPtr(pVCpu);
2780 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
2781
2782 /* Log the VCPU pointers, useful for debugging SMP VMs. */
2783 Log4Func(("pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
2784
2785 /* Set revision dword at the beginning of the VMCS structure. */
2786 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
2787
2788 /* Set the VMCS launch state to "clear", see Intel spec. 31.6 "Preparation and launch a virtual machine". */
2789 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2790 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc\n", rc),
2791 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2792
2793 /* Load this VMCS as the current VMCS. */
2794 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2795 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc\n", rc),
2796 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2797
2798 rc = hmR0VmxSetupPinCtls(pVCpu);
2799 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc\n", rc),
2800 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2801
2802 rc = hmR0VmxSetupProcCtls(pVCpu);
2803 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc\n", rc),
2804 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2805
2806 rc = hmR0VmxSetupMiscCtls(pVCpu);
2807 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc\n", rc),
2808 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2809
2810 rc = hmR0VmxInitXcptBitmap(pVCpu);
2811 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc\n", rc),
2812 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2813
2814#if HC_ARCH_BITS == 32
2815 rc = hmR0VmxInitVmcsReadCache(pVCpu);
2816 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc\n", rc),
2817 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2818#endif
2819
2820 /* Sync any CPU internal VMCS data back into our VMCS in memory. */
2821 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2822 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc\n", rc),
2823 hmR0VmxUpdateErrorRecord(pVCpu, rc), rc);
2824
2825 pVCpu->hm.s.vmx.fVmcsState = HMVMX_VMCS_STATE_CLEAR;
2826
2827 hmR0VmxUpdateErrorRecord(pVCpu, rc);
2828 }
2829
2830 return VINF_SUCCESS;
2831}
2832
2833
2834/**
2835 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2836 * the VMCS.
2837 *
2838 * @returns VBox status code.
2839 */
2840static int hmR0VmxExportHostControlRegs(void)
2841{
2842 RTCCUINTREG uReg = ASMGetCR0();
2843 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2844 AssertRCReturn(rc, rc);
2845
2846 uReg = ASMGetCR3();
2847 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2848 AssertRCReturn(rc, rc);
2849
2850 uReg = ASMGetCR4();
2851 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2852 AssertRCReturn(rc, rc);
2853 return rc;
2854}
2855
2856
2857/**
2858 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2859 * the host-state area in the VMCS.
2860 *
2861 * @returns VBox status code.
2862 * @param pVCpu The cross context virtual CPU structure.
2863 */
2864static int hmR0VmxExportHostSegmentRegs(PVMCPU pVCpu)
2865{
2866#if HC_ARCH_BITS == 64
2867/**
2868 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
2869 * requirements. See hmR0VmxExportHostSegmentRegs().
2870 */
2871# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
2872 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
2873 { \
2874 bool fValidSelector = true; \
2875 if ((selValue) & X86_SEL_LDT) \
2876 { \
2877 uint32_t uAttr = ASMGetSegAttr((selValue)); \
2878 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
2879 } \
2880 if (fValidSelector) \
2881 { \
2882 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
2883 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
2884 } \
2885 (selValue) = 0; \
2886 }
2887
2888 /*
2889 * If we've executed guest code using VT-x, the host-state bits will be messed up. We
2890 * should -not- save the messed up state without restoring the original host-state,
2891 * see @bugref{7240}.
2892 *
2893 * This apparently can happen (most likely the FPU changes), deal with it rather than
2894 * asserting. Was observed booting Solaris 10u10 32-bit guest.
2895 */
2896 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
2897 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
2898 {
2899 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
2900 pVCpu->idCpu));
2901 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
2902 }
2903 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
2904#else
2905 RT_NOREF(pVCpu);
2906#endif
2907
2908 /*
2909 * Host DS, ES, FS and GS segment registers.
2910 */
2911#if HC_ARCH_BITS == 64
2912 RTSEL uSelDS = ASMGetDS();
2913 RTSEL uSelES = ASMGetES();
2914 RTSEL uSelFS = ASMGetFS();
2915 RTSEL uSelGS = ASMGetGS();
2916#else
2917 RTSEL uSelDS = 0;
2918 RTSEL uSelES = 0;
2919 RTSEL uSelFS = 0;
2920 RTSEL uSelGS = 0;
2921#endif
2922
2923 /*
2924 * Host CS and SS segment registers.
2925 */
2926 RTSEL uSelCS = ASMGetCS();
2927 RTSEL uSelSS = ASMGetSS();
2928
2929 /*
2930 * Host TR segment register.
2931 */
2932 RTSEL uSelTR = ASMGetTR();
2933
2934#if HC_ARCH_BITS == 64
2935 /*
2936 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to
2937 * gain VM-entry and restore them before we get preempted.
2938 *
2939 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
2940 */
2941 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
2942 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
2943 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
2944 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
2945# undef VMXLOCAL_ADJUST_HOST_SEG
2946#endif
2947
2948 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2949 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2950 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2951 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2952 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2953 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2954 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2955 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
2956 Assert(uSelCS);
2957 Assert(uSelTR);
2958
2959 /* Assertion is right but we would not have updated u32ExitCtls yet. */
2960#if 0
2961 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE))
2962 Assert(uSelSS != 0);
2963#endif
2964
2965 /* Write these host selector fields into the host-state area in the VMCS. */
2966 int rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
2967 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
2968#if HC_ARCH_BITS == 64
2969 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
2970 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
2971 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
2972 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
2973#else
2974 NOREF(uSelDS);
2975 NOREF(uSelES);
2976 NOREF(uSelFS);
2977 NOREF(uSelGS);
2978#endif
2979 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
2980 AssertRCReturn(rc, rc);
2981
2982 /*
2983 * Host GDTR and IDTR.
2984 */
2985 RTGDTR Gdtr;
2986 RTIDTR Idtr;
2987 RT_ZERO(Gdtr);
2988 RT_ZERO(Idtr);
2989 ASMGetGDTR(&Gdtr);
2990 ASMGetIDTR(&Idtr);
2991 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
2992 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
2993 AssertRCReturn(rc, rc);
2994
2995#if HC_ARCH_BITS == 64
2996 /*
2997 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps
2998 * them to the maximum limit (0xffff) on every VM-exit.
2999 */
3000 if (Gdtr.cbGdt != 0xffff)
3001 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
3002
3003 /*
3004 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT" and
3005 * Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit
3006 * as 0xfff, VT-x bloating the limit to 0xffff shouldn't cause any different CPU behavior.
3007 * However, several hosts either insists on 0xfff being the limit (Windows Patch Guard) or
3008 * uses the limit for other purposes (darwin puts the CPU ID in there but botches sidt
3009 * alignment in at least one consumer). So, we're only allowing the IDTR.LIMIT to be left
3010 * at 0xffff on hosts where we are sure it won't cause trouble.
3011 */
3012# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
3013 if (Idtr.cbIdt < 0x0fff)
3014# else
3015 if (Idtr.cbIdt != 0xffff)
3016# endif
3017 {
3018 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
3019 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
3020 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
3021 }
3022#endif
3023
3024 /*
3025 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI
3026 * and RPL bits is effectively what the CPU does for "scaling by 8". TI is always 0 and
3027 * RPL should be too in most cases.
3028 */
3029 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
3030 ("TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt), VERR_VMX_INVALID_HOST_STATE);
3031
3032 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
3033#if HC_ARCH_BITS == 64
3034 uintptr_t uTRBase = X86DESC64_BASE(pDesc);
3035
3036 /*
3037 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on
3038 * all VM-exits. The type is the same for 64-bit busy TSS[1]. The limit needs manual
3039 * restoration if the host has something else. Task switching is not supported in 64-bit
3040 * mode[2], but the limit still matters as IOPM is supported in 64-bit mode. Restoring the
3041 * limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
3042 *
3043 * [1] See Intel spec. 3.5 "System Descriptor Types".
3044 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
3045 */
3046 PVM pVM = pVCpu->CTX_SUFF(pVM);
3047 Assert(pDesc->System.u4Type == 11);
3048 if ( pDesc->System.u16LimitLow != 0x67
3049 || pDesc->System.u4LimitHigh)
3050 {
3051 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
3052 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
3053 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
3054 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
3055 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
3056 }
3057
3058 /*
3059 * Store the GDTR as we need it when restoring the GDT and while restoring the TR.
3060 */
3061 if (pVCpu->hm.s.vmx.fRestoreHostFlags & (VMX_RESTORE_HOST_GDTR | VMX_RESTORE_HOST_SEL_TR))
3062 {
3063 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
3064 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3065 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_NEED_WRITABLE)
3066 {
3067 /* The GDT is read-only but the writable GDT is available. */
3068 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_NEED_WRITABLE;
3069 pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.cb = Gdtr.cbGdt;
3070 rc = SUPR0GetCurrentGdtRw(&pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.uAddr);
3071 AssertRCReturn(rc, rc);
3072 }
3073 }
3074#else
3075 uintptr_t uTRBase = X86DESC_BASE(pDesc);
3076#endif
3077 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
3078 AssertRCReturn(rc, rc);
3079
3080 /*
3081 * Host FS base and GS base.
3082 */
3083#if HC_ARCH_BITS == 64
3084 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
3085 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
3086 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
3087 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
3088 AssertRCReturn(rc, rc);
3089
3090 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
3091 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
3092 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
3093 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
3094 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
3095#endif
3096 return VINF_SUCCESS;
3097}
3098
3099
3100/**
3101 * Exports certain host MSRs in the VM-exit MSR-load area and some in the
3102 * host-state area of the VMCS.
3103 *
3104 * Theses MSRs will be automatically restored on the host after every successful
3105 * VM-exit.
3106 *
3107 * @returns VBox status code.
3108 * @param pVCpu The cross context virtual CPU structure.
3109 *
3110 * @remarks No-long-jump zone!!!
3111 */
3112static int hmR0VmxExportHostMsrs(PVMCPU pVCpu)
3113{
3114 AssertPtr(pVCpu);
3115 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
3116
3117 /*
3118 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
3119 * rather than swapping them on every VM-entry.
3120 */
3121 hmR0VmxLazySaveHostMsrs(pVCpu);
3122
3123 /*
3124 * Host Sysenter MSRs.
3125 */
3126 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
3127#if HC_ARCH_BITS == 32
3128 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3129 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3130#else
3131 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3132 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3133#endif
3134 AssertRCReturn(rc, rc);
3135
3136 /*
3137 * Host EFER MSR.
3138 *
3139 * If the CPU supports the newer VMCS controls for managing EFER, use it. Otherwise it's
3140 * done as part of auto-load/store MSR area in the VMCS, see hmR0VmxExportGuestMsrs().
3141 */
3142 PVM pVM = pVCpu->CTX_SUFF(pVM);
3143 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
3144 {
3145 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostEfer);
3146 AssertRCReturn(rc, rc);
3147 }
3148
3149 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see hmR0VmxExportGuestExitCtls(). */
3150
3151 return VINF_SUCCESS;
3152}
3153
3154
3155/**
3156 * Figures out if we need to swap the EFER MSR which is particularly expensive.
3157 *
3158 * We check all relevant bits. For now, that's everything besides LMA/LME, as
3159 * these two bits are handled by VM-entry, see hmR0VmxExportGuestExitCtls() and
3160 * hmR0VMxExportGuestEntryCtls().
3161 *
3162 * @returns true if we need to load guest EFER, false otherwise.
3163 * @param pVCpu The cross context virtual CPU structure.
3164 *
3165 * @remarks Requires EFER, CR4.
3166 * @remarks No-long-jump zone!!!
3167 */
3168static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu)
3169{
3170#ifdef HMVMX_ALWAYS_SWAP_EFER
3171 RT_NOREF(pVCpu);
3172 return true;
3173#else
3174
3175 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3176#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
3177 /* For 32-bit hosts running 64-bit guests, we always swap EFER in the world-switcher. Nothing to do here. */
3178 if (CPUMIsGuestInLongModeEx(pCtx))
3179 return false;
3180#endif
3181
3182 PVM pVM = pVCpu->CTX_SUFF(pVM);
3183 uint64_t const u64HostEfer = pVM->hm.s.vmx.u64HostEfer;
3184 uint64_t const u64GuestEfer = pCtx->msrEFER;
3185
3186 /*
3187 * For 64-bit guests, if EFER.SCE bit differs, we need to swap EFER to ensure that the
3188 * guest's SYSCALL behaviour isn't broken, see @bugref{7386}.
3189 */
3190 if ( CPUMIsGuestInLongModeEx(pCtx)
3191 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
3192 {
3193 return true;
3194 }
3195
3196 /*
3197 * If the guest uses PAE and EFER.NXE bit differs, we need to swap EFER as it
3198 * affects guest paging. 64-bit paging implies CR4.PAE as well.
3199 * See Intel spec. 4.5 "IA-32e Paging" and Intel spec. 4.1.1 "Three Paging Modes".
3200 */
3201 if ( (pCtx->cr4 & X86_CR4_PAE)
3202 && (pCtx->cr0 & X86_CR0_PG)
3203 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
3204 {
3205 /* Assert that host is NX capable. */
3206 Assert(pVCpu->CTX_SUFF(pVM)->cpum.ro.HostFeatures.fNoExecute);
3207 return true;
3208 }
3209
3210 return false;
3211#endif
3212}
3213
3214
3215/**
3216 * Exports the guest state with appropriate VM-entry controls in the VMCS.
3217 *
3218 * These controls can affect things done on VM-exit; e.g. "load debug controls",
3219 * see Intel spec. 24.8.1 "VM-entry controls".
3220 *
3221 * @returns VBox status code.
3222 * @param pVCpu The cross context virtual CPU structure.
3223 *
3224 * @remarks Requires EFER.
3225 * @remarks No-long-jump zone!!!
3226 */
3227static int hmR0VmxExportGuestEntryCtls(PVMCPU pVCpu)
3228{
3229 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_CTLS)
3230 {
3231 PVM pVM = pVCpu->CTX_SUFF(pVM);
3232 uint32_t fVal = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
3233 uint32_t const fZap = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3234
3235 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
3236 fVal |= VMX_ENTRY_CTLS_LOAD_DEBUG;
3237
3238 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
3239 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
3240 {
3241 fVal |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
3242 Log4Func(("VMX_ENTRY_CTLS_IA32E_MODE_GUEST\n"));
3243 }
3244 else
3245 Assert(!(fVal & VMX_ENTRY_CTLS_IA32E_MODE_GUEST));
3246
3247 /* If the CPU supports the newer VMCS controls for managing guest/host EFER, use it. */
3248 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3249 && hmR0VmxShouldSwapEferMsr(pVCpu))
3250 {
3251 fVal |= VMX_ENTRY_CTLS_LOAD_EFER_MSR;
3252 Log4Func(("VMX_ENTRY_CTLS_LOAD_EFER_MSR\n"));
3253 }
3254
3255 /*
3256 * The following should -not- be set (since we're not in SMM mode):
3257 * - VMX_ENTRY_CTLS_ENTRY_TO_SMM
3258 * - VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON
3259 */
3260
3261 /** @todo VMX_ENTRY_CTLS_LOAD_PERF_MSR,
3262 * VMX_ENTRY_CTLS_LOAD_PAT_MSR. */
3263
3264 if ((fVal & fZap) != fVal)
3265 {
3266 Log4Func(("Invalid VM-entry controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3267 pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0, fVal, fZap));
3268 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
3269 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3270 }
3271
3272 /* Commit it to the VMCS and update our cache. */
3273 if (pVCpu->hm.s.vmx.u32EntryCtls != fVal)
3274 {
3275 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, fVal);
3276 AssertRCReturn(rc, rc);
3277 pVCpu->hm.s.vmx.u32EntryCtls = fVal;
3278 }
3279
3280 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_ENTRY_CTLS);
3281 }
3282 return VINF_SUCCESS;
3283}
3284
3285
3286/**
3287 * Exports the guest state with appropriate VM-exit controls in the VMCS.
3288 *
3289 * @returns VBox status code.
3290 * @param pVCpu The cross context virtual CPU structure.
3291 *
3292 * @remarks Requires EFER.
3293 */
3294static int hmR0VmxExportGuestExitCtls(PVMCPU pVCpu)
3295{
3296 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_EXIT_CTLS)
3297 {
3298 PVM pVM = pVCpu->CTX_SUFF(pVM);
3299 uint32_t fVal = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
3300 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3301
3302 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
3303 fVal |= VMX_EXIT_CTLS_SAVE_DEBUG;
3304
3305 /*
3306 * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
3307 * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in
3308 * hmR0VmxExportHostMsrs().
3309 */
3310#if HC_ARCH_BITS == 64
3311 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
3312 Log4Func(("VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE\n"));
3313#else
3314 Assert( pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64
3315 || pVCpu->hm.s.vmx.pfnStartVM == VMXR0StartVM32);
3316 /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
3317 if (pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64)
3318 {
3319 /* The switcher returns to long mode, EFER is managed by the switcher. */
3320 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
3321 Log4Func(("VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE\n"));
3322 }
3323 else
3324 Assert(!(fVal & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE));
3325#endif
3326
3327 /* If the newer VMCS fields for managing EFER exists, use it. */
3328 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3329 && hmR0VmxShouldSwapEferMsr(pVCpu))
3330 {
3331 fVal |= VMX_EXIT_CTLS_SAVE_EFER_MSR
3332 | VMX_EXIT_CTLS_LOAD_EFER_MSR;
3333 Log4Func(("VMX_EXIT_CTLS_SAVE_EFER_MSR and VMX_EXIT_CTLS_LOAD_EFER_MSR\n"));
3334 }
3335
3336 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
3337 Assert(!(fVal & VMX_EXIT_CTLS_ACK_EXT_INT));
3338
3339 /** @todo VMX_EXIT_CTLS_LOAD_PERF_MSR,
3340 * VMX_EXIT_CTLS_SAVE_PAT_MSR,
3341 * VMX_EXIT_CTLS_LOAD_PAT_MSR. */
3342
3343 /* Enable saving of the VMX preemption timer value on VM-exit. */
3344 if ( pVM->hm.s.vmx.fUsePreemptTimer
3345 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
3346 fVal |= VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER;
3347
3348 if ((fVal & fZap) != fVal)
3349 {
3350 LogRelFunc(("Invalid VM-exit controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%R#X32\n",
3351 pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0, fVal, fZap));
3352 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
3353 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3354 }
3355
3356 /* Commit it to the VMCS and update our cache. */
3357 if (pVCpu->hm.s.vmx.u32ExitCtls != fVal)
3358 {
3359 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, fVal);
3360 AssertRCReturn(rc, rc);
3361 pVCpu->hm.s.vmx.u32ExitCtls = fVal;
3362 }
3363
3364 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_EXIT_CTLS);
3365 }
3366 return VINF_SUCCESS;
3367}
3368
3369
3370/**
3371 * Sets the TPR threshold in the VMCS.
3372 *
3373 * @returns VBox status code.
3374 * @param pVCpu The cross context virtual CPU structure.
3375 * @param u32TprThreshold The TPR threshold (task-priority class only).
3376 */
3377DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, uint32_t u32TprThreshold)
3378{
3379 Assert(!(u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)); /* Bits 31:4 MBZ. */
3380 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW); RT_NOREF_PV(pVCpu);
3381 return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
3382}
3383
3384
3385/**
3386 * Exports the guest APIC TPR state into the VMCS.
3387 *
3388 * @returns VBox status code.
3389 * @param pVCpu The cross context virtual CPU structure.
3390 *
3391 * @remarks No-long-jump zone!!!
3392 */
3393static int hmR0VmxExportGuestApicTpr(PVMCPU pVCpu)
3394{
3395 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
3396 {
3397 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
3398
3399 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
3400 && APICIsEnabled(pVCpu))
3401 {
3402 /*
3403 * Setup TPR shadowing.
3404 */
3405 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
3406 {
3407 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
3408
3409 bool fPendingIntr = false;
3410 uint8_t u8Tpr = 0;
3411 uint8_t u8PendingIntr = 0;
3412 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
3413 AssertRCReturn(rc, rc);
3414
3415 /*
3416 * If there are interrupts pending but masked by the TPR, instruct VT-x to
3417 * cause a TPR-below-threshold VM-exit when the guest lowers its TPR below the
3418 * priority of the pending interrupt so we can deliver the interrupt. If there
3419 * are no interrupts pending, set threshold to 0 to not cause any
3420 * TPR-below-threshold VM-exits.
3421 */
3422 pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR] = u8Tpr;
3423 uint32_t u32TprThreshold = 0;
3424 if (fPendingIntr)
3425 {
3426 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
3427 const uint8_t u8PendingPriority = u8PendingIntr >> 4;
3428 const uint8_t u8TprPriority = u8Tpr >> 4;
3429 if (u8PendingPriority <= u8TprPriority)
3430 u32TprThreshold = u8PendingPriority;
3431 }
3432
3433 rc = hmR0VmxApicSetTprThreshold(pVCpu, u32TprThreshold);
3434 AssertRCReturn(rc, rc);
3435 }
3436 }
3437 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
3438 }
3439 return VINF_SUCCESS;
3440}
3441
3442
3443/**
3444 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
3445 *
3446 * @returns Guest's interruptibility-state.
3447 * @param pVCpu The cross context virtual CPU structure.
3448 *
3449 * @remarks No-long-jump zone!!!
3450 */
3451static uint32_t hmR0VmxGetGuestIntrState(PVMCPU pVCpu)
3452{
3453 /*
3454 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
3455 */
3456 uint32_t fIntrState = 0;
3457 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3458 {
3459 /* If inhibition is active, RIP & RFLAGS should've been accessed
3460 (i.e. read previously from the VMCS or from ring-3). */
3461 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3462#ifdef VBOX_STRICT
3463 uint64_t const fExtrn = ASMAtomicUoReadU64(&pCtx->fExtrn);
3464 AssertMsg(!(fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)), ("%#x\n", fExtrn));
3465#endif
3466 if (pCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
3467 {
3468 if (pCtx->eflags.Bits.u1IF)
3469 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
3470 else
3471 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
3472 }
3473 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3474 {
3475 /*
3476 * We can clear the inhibit force flag as even if we go back to the recompiler
3477 * without executing guest code in VT-x, the flag's condition to be cleared is
3478 * met and thus the cleared state is correct.
3479 */
3480 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3481 }
3482 }
3483
3484 /*
3485 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
3486 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
3487 * setting this would block host-NMIs and IRET will not clear the blocking.
3488 *
3489 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
3490 */
3491 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)
3492 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
3493 {
3494 fIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
3495 }
3496
3497 return fIntrState;
3498}
3499
3500
3501/**
3502 * Exports the exception intercepts required for guest execution in the VMCS.
3503 *
3504 * @returns VBox status code.
3505 * @param pVCpu The cross context virtual CPU structure.
3506 *
3507 * @remarks No-long-jump zone!!!
3508 */
3509static int hmR0VmxExportGuestXcptIntercepts(PVMCPU pVCpu)
3510{
3511 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS)
3512 {
3513 uint32_t uXcptBitmap = pVCpu->hm.s.vmx.u32XcptBitmap;
3514
3515 /* The remaining exception intercepts are handled elsewhere, e.g. in hmR0VmxExportGuestCR0(). */
3516 if (pVCpu->hm.s.fGIMTrapXcptUD)
3517 uXcptBitmap |= RT_BIT(X86_XCPT_UD);
3518#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3519 else
3520 uXcptBitmap &= ~RT_BIT(X86_XCPT_UD);
3521#endif
3522
3523 Assert(uXcptBitmap & RT_BIT_32(X86_XCPT_AC));
3524 Assert(uXcptBitmap & RT_BIT_32(X86_XCPT_DB));
3525
3526 if (uXcptBitmap != pVCpu->hm.s.vmx.u32XcptBitmap)
3527 {
3528 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
3529 AssertRCReturn(rc, rc);
3530 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
3531 }
3532
3533 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_XCPT_INTERCEPTS);
3534 Log4Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP=%#RX64\n", uXcptBitmap));
3535 }
3536 return VINF_SUCCESS;
3537}
3538
3539
3540/**
3541 * Exports the guest's RIP into the guest-state area in the VMCS.
3542 *
3543 * @returns VBox status code.
3544 * @param pVCpu The cross context virtual CPU structure.
3545 *
3546 * @remarks No-long-jump zone!!!
3547 */
3548static int hmR0VmxExportGuestRip(PVMCPU pVCpu)
3549{
3550 int rc = VINF_SUCCESS;
3551 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RIP)
3552 {
3553 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP);
3554
3555 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pVCpu->cpum.GstCtx.rip);
3556 AssertRCReturn(rc, rc);
3557
3558 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RIP);
3559 Log4Func(("RIP=%#RX64\n", pVCpu->cpum.GstCtx.rip));
3560 }
3561 return rc;
3562}
3563
3564
3565/**
3566 * Exports the guest's RSP into the guest-state area in the VMCS.
3567 *
3568 * @returns VBox status code.
3569 * @param pVCpu The cross context virtual CPU structure.
3570 *
3571 * @remarks No-long-jump zone!!!
3572 */
3573static int hmR0VmxExportGuestRsp(PVMCPU pVCpu)
3574{
3575 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RSP)
3576 {
3577 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP);
3578
3579 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pVCpu->cpum.GstCtx.rsp);
3580 AssertRCReturn(rc, rc);
3581
3582 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RSP);
3583 }
3584 return VINF_SUCCESS;
3585}
3586
3587
3588/**
3589 * Exports the guest's RFLAGS into the guest-state area in the VMCS.
3590 *
3591 * @returns VBox status code.
3592 * @param pVCpu The cross context virtual CPU structure.
3593 *
3594 * @remarks No-long-jump zone!!!
3595 */
3596static int hmR0VmxExportGuestRflags(PVMCPU pVCpu)
3597{
3598 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RFLAGS)
3599 {
3600 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
3601
3602 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
3603 Let us assert it as such and use 32-bit VMWRITE. */
3604 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.rflags.u64));
3605 X86EFLAGS fEFlags = pVCpu->cpum.GstCtx.eflags;
3606 Assert(fEFlags.u32 & X86_EFL_RA1_MASK);
3607 Assert(!(fEFlags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
3608
3609 /*
3610 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so
3611 * we can restore them on VM-exit. Modify the real-mode guest's eflags so that VT-x
3612 * can run the real-mode guest code under Virtual 8086 mode.
3613 */
3614 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3615 {
3616 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3617 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3618 pVCpu->hm.s.vmx.RealMode.Eflags.u32 = fEFlags.u32; /* Save the original eflags of the real-mode guest. */
3619 fEFlags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
3620 fEFlags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
3621 }
3622
3623 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, fEFlags.u32);
3624 AssertRCReturn(rc, rc);
3625
3626 /*
3627 * Setup pending debug exceptions if the guest is single-stepping using EFLAGS.TF.
3628 *
3629 * We must avoid setting any automatic debug exceptions delivery when single-stepping
3630 * through the hypervisor debugger using EFLAGS.TF.
3631 */
3632 if ( !pVCpu->hm.s.fSingleInstruction
3633 && fEFlags.Bits.u1TF)
3634 {
3635 /** @todo r=ramshankar: Warning! We ASSUME EFLAGS.TF will not cleared on
3636 * premature trips to ring-3 esp since IEM does not yet handle it. */
3637 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS);
3638 AssertRCReturn(rc, rc);
3639 }
3640
3641 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RFLAGS);
3642 Log4Func(("EFlags=%#RX32\n", fEFlags.u32));
3643 }
3644 return VINF_SUCCESS;
3645}
3646
3647
3648/**
3649 * Exports the guest CR0 control register into the guest-state area in the VMCS.
3650 *
3651 * The guest FPU state is always pre-loaded hence we don't need to bother about
3652 * sharing FPU related CR0 bits between the guest and host.
3653 *
3654 * @returns VBox status code.
3655 * @param pVCpu The cross context virtual CPU structure.
3656 *
3657 * @remarks No-long-jump zone!!!
3658 */
3659static int hmR0VmxExportGuestCR0(PVMCPU pVCpu)
3660{
3661 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR0)
3662 {
3663 PVM pVM = pVCpu->CTX_SUFF(pVM);
3664 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
3665 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.cr0));
3666
3667 uint32_t const u32ShadowCr0 = pVCpu->cpum.GstCtx.cr0;
3668 uint32_t u32GuestCr0 = pVCpu->cpum.GstCtx.cr0;
3669
3670 /*
3671 * Setup VT-x's view of the guest CR0.
3672 * Minimize VM-exits due to CR3 changes when we have NestedPaging.
3673 */
3674 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
3675 if (pVM->hm.s.fNestedPaging)
3676 {
3677 if (CPUMIsGuestPagingEnabled(pVCpu))
3678 {
3679 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
3680 uProcCtls &= ~( VMX_PROC_CTLS_CR3_LOAD_EXIT
3681 | VMX_PROC_CTLS_CR3_STORE_EXIT);
3682 }
3683 else
3684 {
3685 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
3686 uProcCtls |= VMX_PROC_CTLS_CR3_LOAD_EXIT
3687 | VMX_PROC_CTLS_CR3_STORE_EXIT;
3688 }
3689
3690 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
3691 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3692 uProcCtls &= ~VMX_PROC_CTLS_CR3_STORE_EXIT;
3693 }
3694 else
3695 {
3696 /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
3697 u32GuestCr0 |= X86_CR0_WP;
3698 }
3699
3700 /*
3701 * Guest FPU bits.
3702 *
3703 * Since we pre-load the guest FPU always before VM-entry there is no need to track lazy state
3704 * using CR0.TS.
3705 *
3706 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be
3707 * set on the first CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
3708 */
3709 u32GuestCr0 |= X86_CR0_NE;
3710
3711 /* If CR0.NE isn't set, we need to intercept #MF exceptions and report them to the guest differently. */
3712 bool const fInterceptMF = !(u32ShadowCr0 & X86_CR0_NE);
3713
3714 /*
3715 * Update exception intercepts.
3716 */
3717 uint32_t uXcptBitmap = pVCpu->hm.s.vmx.u32XcptBitmap;
3718 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3719 {
3720 Assert(PDMVmmDevHeapIsEnabled(pVM));
3721 Assert(pVM->hm.s.vmx.pRealModeTSS);
3722 uXcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
3723 }
3724 else
3725 {
3726 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
3727 uXcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
3728 if (fInterceptMF)
3729 uXcptBitmap |= RT_BIT(X86_XCPT_MF);
3730 }
3731
3732 /* Additional intercepts for debugging, define these yourself explicitly. */
3733#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3734 uXcptBitmap |= 0
3735 | RT_BIT(X86_XCPT_BP)
3736 | RT_BIT(X86_XCPT_DE)
3737 | RT_BIT(X86_XCPT_NM)
3738 | RT_BIT(X86_XCPT_TS)
3739 | RT_BIT(X86_XCPT_UD)
3740 | RT_BIT(X86_XCPT_NP)
3741 | RT_BIT(X86_XCPT_SS)
3742 | RT_BIT(X86_XCPT_GP)
3743 | RT_BIT(X86_XCPT_PF)
3744 | RT_BIT(X86_XCPT_MF)
3745 ;
3746#elif defined(HMVMX_ALWAYS_TRAP_PF)
3747 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
3748#endif
3749 if (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv)
3750 uXcptBitmap |= RT_BIT(X86_XCPT_GP);
3751 Assert(pVM->hm.s.fNestedPaging || (uXcptBitmap & RT_BIT(X86_XCPT_PF)));
3752
3753 /*
3754 * Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW).
3755 */
3756 uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3757 uint32_t fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3758 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
3759 fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
3760 else
3761 Assert((fSetCr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
3762
3763 u32GuestCr0 |= fSetCr0;
3764 u32GuestCr0 &= fZapCr0;
3765 u32GuestCr0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
3766
3767 /*
3768 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
3769 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
3770 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
3771 */
3772 uint32_t u32Cr0Mask = X86_CR0_PE
3773 | X86_CR0_NE
3774 | (pVM->hm.s.fNestedPaging ? 0 : X86_CR0_WP)
3775 | X86_CR0_PG
3776 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
3777 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
3778 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
3779
3780 /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
3781 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
3782 * and @bugref{6944}. */
3783#if 0
3784 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3785 u32Cr0Mask &= ~X86_CR0_PE;
3786#endif
3787 /*
3788 * Finally, update VMCS fields with the CR0 values and the exception bitmap.
3789 */
3790 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCr0);
3791 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32ShadowCr0);
3792 if (u32Cr0Mask != pVCpu->hm.s.vmx.u32Cr0Mask)
3793 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32Cr0Mask);
3794 if (uProcCtls != pVCpu->hm.s.vmx.u32ProcCtls)
3795 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
3796 if (uXcptBitmap != pVCpu->hm.s.vmx.u32XcptBitmap)
3797 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
3798 AssertRCReturn(rc, rc);
3799
3800 /* Update our caches. */
3801 pVCpu->hm.s.vmx.u32Cr0Mask = u32Cr0Mask;
3802 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
3803 pVCpu->hm.s.vmx.u32XcptBitmap = uXcptBitmap;
3804
3805 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR0);
3806
3807 Log4Func(("u32Cr0Mask=%#RX32 u32ShadowCr0=%#RX32 u32GuestCr0=%#RX32 (fSetCr0=%#RX32 fZapCr0=%#RX32\n", u32Cr0Mask,
3808 u32ShadowCr0, u32GuestCr0, fSetCr0, fZapCr0));
3809 }
3810
3811 return VINF_SUCCESS;
3812}
3813
3814
3815/**
3816 * Exports the guest control registers (CR3, CR4) into the guest-state area
3817 * in the VMCS.
3818 *
3819 * @returns VBox strict status code.
3820 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
3821 * without unrestricted guest access and the VMMDev is not presently
3822 * mapped (e.g. EFI32).
3823 *
3824 * @param pVCpu The cross context virtual CPU structure.
3825 *
3826 * @remarks No-long-jump zone!!!
3827 */
3828static VBOXSTRICTRC hmR0VmxExportGuestCR3AndCR4(PVMCPU pVCpu)
3829{
3830 int rc = VINF_SUCCESS;
3831 PVM pVM = pVCpu->CTX_SUFF(pVM);
3832
3833 /*
3834 * Guest CR2.
3835 * It's always loaded in the assembler code. Nothing to do here.
3836 */
3837
3838 /*
3839 * Guest CR3.
3840 */
3841 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR3)
3842 {
3843 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
3844
3845 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
3846 if (pVM->hm.s.fNestedPaging)
3847 {
3848 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
3849
3850 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
3851 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
3852 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
3853 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
3854
3855 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
3856 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
3857 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
3858
3859 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
3860 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
3861 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
3862 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3863 AssertMsg( !((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
3864 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
3865 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3866
3867 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
3868 AssertRCReturn(rc, rc);
3869
3870 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3871 if ( pVM->hm.s.vmx.fUnrestrictedGuest
3872 || CPUMIsGuestPagingEnabledEx(pCtx))
3873 {
3874 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
3875 if (CPUMIsGuestInPAEModeEx(pCtx))
3876 {
3877 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
3878 AssertRCReturn(rc, rc);
3879 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
3880 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
3881 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
3882 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
3883 AssertRCReturn(rc, rc);
3884 }
3885
3886 /*
3887 * The guest's view of its CR3 is unblemished with Nested Paging when the
3888 * guest is using paging or we have unrestricted guest execution to handle
3889 * the guest when it's not using paging.
3890 */
3891 GCPhysGuestCR3 = pCtx->cr3;
3892 }
3893 else
3894 {
3895 /*
3896 * The guest is not using paging, but the CPU (VT-x) has to. While the guest
3897 * thinks it accesses physical memory directly, we use our identity-mapped
3898 * page table to map guest-linear to guest-physical addresses. EPT takes care
3899 * of translating it to host-physical addresses.
3900 */
3901 RTGCPHYS GCPhys;
3902 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
3903
3904 /* We obtain it here every time as the guest could have relocated this PCI region. */
3905 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
3906 if (RT_SUCCESS(rc))
3907 { /* likely */ }
3908 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
3909 {
3910 Log4Func(("VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n"));
3911 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
3912 }
3913 else
3914 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
3915
3916 GCPhysGuestCR3 = GCPhys;
3917 }
3918
3919 Log4Func(("u32GuestCr3=%#RGp (GstN)\n", GCPhysGuestCR3));
3920 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
3921 AssertRCReturn(rc, rc);
3922 }
3923 else
3924 {
3925 /* Non-nested paging case, just use the hypervisor's CR3. */
3926 RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
3927
3928 Log4Func(("u32GuestCr3=%#RHv (HstN)\n", HCPhysGuestCR3));
3929 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
3930 AssertRCReturn(rc, rc);
3931 }
3932
3933 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR3);
3934 }
3935
3936 /*
3937 * Guest CR4.
3938 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
3939 */
3940 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR4)
3941 {
3942 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
3943 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
3944 Assert(!RT_HI_U32(pCtx->cr4));
3945
3946 uint32_t u32GuestCr4 = pCtx->cr4;
3947 uint32_t const u32ShadowCr4 = pCtx->cr4;
3948
3949 /*
3950 * Setup VT-x's view of the guest CR4.
3951 *
3952 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software
3953 * interrupts to the 8086 program interrupt handler. Clear the VME bit (the interrupt
3954 * redirection bitmap is already all 0, see hmR3InitFinalizeR0())
3955 *
3956 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
3957 */
3958 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3959 {
3960 Assert(pVM->hm.s.vmx.pRealModeTSS);
3961 Assert(PDMVmmDevHeapIsEnabled(pVM));
3962 u32GuestCr4 &= ~X86_CR4_VME;
3963 }
3964
3965 if (pVM->hm.s.fNestedPaging)
3966 {
3967 if ( !CPUMIsGuestPagingEnabledEx(pCtx)
3968 && !pVM->hm.s.vmx.fUnrestrictedGuest)
3969 {
3970 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
3971 u32GuestCr4 |= X86_CR4_PSE;
3972 /* Our identity mapping is a 32-bit page directory. */
3973 u32GuestCr4 &= ~X86_CR4_PAE;
3974 }
3975 /* else use guest CR4.*/
3976 }
3977 else
3978 {
3979 /*
3980 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
3981 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
3982 */
3983 switch (pVCpu->hm.s.enmShadowMode)
3984 {
3985 case PGMMODE_REAL: /* Real-mode. */
3986 case PGMMODE_PROTECTED: /* Protected mode without paging. */
3987 case PGMMODE_32_BIT: /* 32-bit paging. */
3988 {
3989 u32GuestCr4 &= ~X86_CR4_PAE;
3990 break;
3991 }
3992
3993 case PGMMODE_PAE: /* PAE paging. */
3994 case PGMMODE_PAE_NX: /* PAE paging with NX. */
3995 {
3996 u32GuestCr4 |= X86_CR4_PAE;
3997 break;
3998 }
3999
4000 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
4001 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
4002#ifdef VBOX_ENABLE_64_BITS_GUESTS
4003 break;
4004#endif
4005 default:
4006 AssertFailed();
4007 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4008 }
4009 }
4010
4011 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
4012 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4013 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4014 u32GuestCr4 |= fSetCr4;
4015 u32GuestCr4 &= fZapCr4;
4016
4017 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them,
4018 that would cause a VM-exit. */
4019 uint32_t u32Cr4Mask = X86_CR4_VME
4020 | X86_CR4_PAE
4021 | X86_CR4_PGE
4022 | X86_CR4_PSE
4023 | X86_CR4_VMXE;
4024 if (pVM->cpum.ro.HostFeatures.fXSaveRstor)
4025 u32Cr4Mask |= X86_CR4_OSXSAVE;
4026 if (pVM->cpum.ro.GuestFeatures.fPcid)
4027 u32Cr4Mask |= X86_CR4_PCIDE;
4028
4029 /* Write VT-x's view of the guest CR4, the CR4 modify mask and the read-only CR4 shadow
4030 into the VMCS and update our cache. */
4031 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCr4);
4032 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32ShadowCr4);
4033 if (pVCpu->hm.s.vmx.u32Cr4Mask != u32Cr4Mask)
4034 rc |= VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32Cr4Mask);
4035 AssertRCReturn(rc, rc);
4036 pVCpu->hm.s.vmx.u32Cr4Mask = u32Cr4Mask;
4037
4038 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
4039 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
4040
4041 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR4);
4042
4043 Log4Func(("u32GuestCr4=%#RX32 u32ShadowCr4=%#RX32 (fSetCr4=%#RX32 fZapCr4=%#RX32)\n", u32GuestCr4, u32ShadowCr4, fSetCr4,
4044 fZapCr4));
4045 }
4046 return rc;
4047}
4048
4049
4050/**
4051 * Exports the guest debug registers into the guest-state area in the VMCS.
4052 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
4053 *
4054 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
4055 *
4056 * @returns VBox status code.
4057 * @param pVCpu The cross context virtual CPU structure.
4058 *
4059 * @remarks No-long-jump zone!!!
4060 */
4061static int hmR0VmxExportSharedDebugState(PVMCPU pVCpu)
4062{
4063 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4064
4065#ifdef VBOX_STRICT
4066 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
4067 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
4068 {
4069 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
4070 Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
4071 Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
4072 }
4073#endif
4074
4075 bool fSteppingDB = false;
4076 bool fInterceptMovDRx = false;
4077 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
4078 if (pVCpu->hm.s.fSingleInstruction)
4079 {
4080 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
4081 PVM pVM = pVCpu->CTX_SUFF(pVM);
4082 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
4083 {
4084 uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
4085 Assert(fSteppingDB == false);
4086 }
4087 else
4088 {
4089 pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_TF;
4090 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
4091 pVCpu->hm.s.fClearTrapFlag = true;
4092 fSteppingDB = true;
4093 }
4094 }
4095
4096 uint32_t u32GuestDr7;
4097 if ( fSteppingDB
4098 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
4099 {
4100 /*
4101 * Use the combined guest and host DRx values found in the hypervisor register set
4102 * because the debugger has breakpoints active or someone is single stepping on the
4103 * host side without a monitor trap flag.
4104 *
4105 * Note! DBGF expects a clean DR6 state before executing guest code.
4106 */
4107#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4108 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
4109 && !CPUMIsHyperDebugStateActivePending(pVCpu))
4110 {
4111 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4112 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
4113 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
4114 }
4115 else
4116#endif
4117 if (!CPUMIsHyperDebugStateActive(pVCpu))
4118 {
4119 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4120 Assert(CPUMIsHyperDebugStateActive(pVCpu));
4121 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
4122 }
4123
4124 /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
4125 u32GuestDr7 = (uint32_t)CPUMGetHyperDR7(pVCpu);
4126 pVCpu->hm.s.fUsingHyperDR7 = true;
4127 fInterceptMovDRx = true;
4128 }
4129 else
4130 {
4131 /*
4132 * If the guest has enabled debug registers, we need to load them prior to
4133 * executing guest code so they'll trigger at the right time.
4134 */
4135 if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
4136 {
4137#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4138 if ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
4139 && !CPUMIsGuestDebugStateActivePending(pVCpu))
4140 {
4141 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4142 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
4143 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
4144 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4145 }
4146 else
4147#endif
4148 if (!CPUMIsGuestDebugStateActive(pVCpu))
4149 {
4150 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4151 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4152 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
4153 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4154 }
4155 Assert(!fInterceptMovDRx);
4156 }
4157 /*
4158 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
4159 * must intercept #DB in order to maintain a correct DR6 guest value, and
4160 * because we need to intercept it to prevent nested #DBs from hanging the
4161 * CPU, we end up always having to intercept it. See hmR0VmxInitXcptBitmap.
4162 */
4163#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4164 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
4165 && !CPUMIsGuestDebugStateActive(pVCpu))
4166#else
4167 else if (!CPUMIsGuestDebugStateActive(pVCpu))
4168#endif
4169 {
4170 fInterceptMovDRx = true;
4171 }
4172
4173 /* Update DR7 with the actual guest value. */
4174 u32GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
4175 pVCpu->hm.s.fUsingHyperDR7 = false;
4176 }
4177
4178 if (fInterceptMovDRx)
4179 uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
4180 else
4181 uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
4182
4183 /*
4184 * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
4185 * monitor-trap flag and update our cache.
4186 */
4187 if (uProcCtls != pVCpu->hm.s.vmx.u32ProcCtls)
4188 {
4189 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
4190 AssertRCReturn(rc2, rc2);
4191 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
4192 }
4193
4194 /*
4195 * Update guest DR7.
4196 */
4197 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, u32GuestDr7);
4198 AssertRCReturn(rc, rc);
4199
4200 /*
4201 * If we have forced EFLAGS.TF to be set because we're single-stepping in the hypervisor debugger,
4202 * we need to clear interrupt inhibition if any as otherwise it causes a VM-entry failure.
4203 *
4204 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
4205 */
4206 if (fSteppingDB)
4207 {
4208 Assert(pVCpu->hm.s.fSingleInstruction);
4209 Assert(pVCpu->cpum.GstCtx.eflags.Bits.u1TF);
4210
4211 uint32_t fIntrState = 0;
4212 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
4213 AssertRCReturn(rc, rc);
4214
4215 if (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
4216 {
4217 fIntrState &= ~(VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
4218 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
4219 AssertRCReturn(rc, rc);
4220 }
4221 }
4222
4223 return VINF_SUCCESS;
4224}
4225
4226
4227#ifdef VBOX_STRICT
4228/**
4229 * Strict function to validate segment registers.
4230 *
4231 * @param pVCpu The cross context virtual CPU structure.
4232 *
4233 * @remarks Will import guest CR0 on strict builds during validation of
4234 * segments.
4235 */
4236static void hmR0VmxValidateSegmentRegs(PVMCPU pVCpu)
4237{
4238 /*
4239 * Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
4240 *
4241 * The reason we check for attribute value 0 in this function and not just the unusable bit is
4242 * because hmR0VmxExportGuestSegmentReg() only updates the VMCS' copy of the value with the unusable bit
4243 * and doesn't change the guest-context value.
4244 */
4245 PVM pVM = pVCpu->CTX_SUFF(pVM);
4246 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4247 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0);
4248 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
4249 && ( !CPUMIsGuestInRealModeEx(pCtx)
4250 && !CPUMIsGuestInV86ModeEx(pCtx)))
4251 {
4252 /* Protected mode checks */
4253 /* CS */
4254 Assert(pCtx->cs.Attr.n.u1Present);
4255 Assert(!(pCtx->cs.Attr.u & 0xf00));
4256 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
4257 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
4258 || !(pCtx->cs.Attr.n.u1Granularity));
4259 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
4260 || (pCtx->cs.Attr.n.u1Granularity));
4261 /* CS cannot be loaded with NULL in protected mode. */
4262 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
4263 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
4264 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
4265 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
4266 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
4267 else
4268 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
4269 /* SS */
4270 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4271 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
4272 if ( !(pCtx->cr0 & X86_CR0_PE)
4273 || pCtx->cs.Attr.n.u4Type == 3)
4274 {
4275 Assert(!pCtx->ss.Attr.n.u2Dpl);
4276 }
4277 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
4278 {
4279 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4280 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
4281 Assert(pCtx->ss.Attr.n.u1Present);
4282 Assert(!(pCtx->ss.Attr.u & 0xf00));
4283 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
4284 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
4285 || !(pCtx->ss.Attr.n.u1Granularity));
4286 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
4287 || (pCtx->ss.Attr.n.u1Granularity));
4288 }
4289 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegmentReg(). */
4290 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
4291 {
4292 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4293 Assert(pCtx->ds.Attr.n.u1Present);
4294 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
4295 Assert(!(pCtx->ds.Attr.u & 0xf00));
4296 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
4297 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
4298 || !(pCtx->ds.Attr.n.u1Granularity));
4299 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
4300 || (pCtx->ds.Attr.n.u1Granularity));
4301 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4302 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
4303 }
4304 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
4305 {
4306 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4307 Assert(pCtx->es.Attr.n.u1Present);
4308 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
4309 Assert(!(pCtx->es.Attr.u & 0xf00));
4310 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
4311 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
4312 || !(pCtx->es.Attr.n.u1Granularity));
4313 Assert( !(pCtx->es.u32Limit & 0xfff00000)
4314 || (pCtx->es.Attr.n.u1Granularity));
4315 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4316 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
4317 }
4318 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
4319 {
4320 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4321 Assert(pCtx->fs.Attr.n.u1Present);
4322 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
4323 Assert(!(pCtx->fs.Attr.u & 0xf00));
4324 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
4325 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
4326 || !(pCtx->fs.Attr.n.u1Granularity));
4327 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
4328 || (pCtx->fs.Attr.n.u1Granularity));
4329 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4330 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4331 }
4332 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
4333 {
4334 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4335 Assert(pCtx->gs.Attr.n.u1Present);
4336 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
4337 Assert(!(pCtx->gs.Attr.u & 0xf00));
4338 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
4339 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
4340 || !(pCtx->gs.Attr.n.u1Granularity));
4341 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
4342 || (pCtx->gs.Attr.n.u1Granularity));
4343 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4344 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4345 }
4346 /* 64-bit capable CPUs. */
4347# if HC_ARCH_BITS == 64
4348 Assert(!RT_HI_U32(pCtx->cs.u64Base));
4349 Assert(!pCtx->ss.Attr.u || !RT_HI_U32(pCtx->ss.u64Base));
4350 Assert(!pCtx->ds.Attr.u || !RT_HI_U32(pCtx->ds.u64Base));
4351 Assert(!pCtx->es.Attr.u || !RT_HI_U32(pCtx->es.u64Base));
4352# endif
4353 }
4354 else if ( CPUMIsGuestInV86ModeEx(pCtx)
4355 || ( CPUMIsGuestInRealModeEx(pCtx)
4356 && !pVM->hm.s.vmx.fUnrestrictedGuest))
4357 {
4358 /* Real and v86 mode checks. */
4359 /* hmR0VmxExportGuestSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
4360 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
4361 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4362 {
4363 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
4364 }
4365 else
4366 {
4367 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
4368 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
4369 }
4370
4371 /* CS */
4372 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
4373 Assert(pCtx->cs.u32Limit == 0xffff);
4374 Assert(u32CSAttr == 0xf3);
4375 /* SS */
4376 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
4377 Assert(pCtx->ss.u32Limit == 0xffff);
4378 Assert(u32SSAttr == 0xf3);
4379 /* DS */
4380 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
4381 Assert(pCtx->ds.u32Limit == 0xffff);
4382 Assert(u32DSAttr == 0xf3);
4383 /* ES */
4384 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
4385 Assert(pCtx->es.u32Limit == 0xffff);
4386 Assert(u32ESAttr == 0xf3);
4387 /* FS */
4388 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
4389 Assert(pCtx->fs.u32Limit == 0xffff);
4390 Assert(u32FSAttr == 0xf3);
4391 /* GS */
4392 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
4393 Assert(pCtx->gs.u32Limit == 0xffff);
4394 Assert(u32GSAttr == 0xf3);
4395 /* 64-bit capable CPUs. */
4396# if HC_ARCH_BITS == 64
4397 Assert(!RT_HI_U32(pCtx->cs.u64Base));
4398 Assert(!u32SSAttr || !RT_HI_U32(pCtx->ss.u64Base));
4399 Assert(!u32DSAttr || !RT_HI_U32(pCtx->ds.u64Base));
4400 Assert(!u32ESAttr || !RT_HI_U32(pCtx->es.u64Base));
4401# endif
4402 }
4403}
4404#endif /* VBOX_STRICT */
4405
4406
4407/**
4408 * Exports a guest segment register into the guest-state area in the VMCS.
4409 *
4410 * @returns VBox status code.
4411 * @param pVCpu The cross context virtual CPU structure.
4412 * @param idxSel Index of the selector in the VMCS.
4413 * @param idxLimit Index of the segment limit in the VMCS.
4414 * @param idxBase Index of the segment base in the VMCS.
4415 * @param idxAccess Index of the access rights of the segment in the VMCS.
4416 * @param pSelReg Pointer to the segment selector.
4417 *
4418 * @remarks No-long-jump zone!!!
4419 */
4420static int hmR0VmxExportGuestSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
4421 PCCPUMSELREG pSelReg)
4422{
4423 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
4424 rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
4425 rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
4426 AssertRCReturn(rc, rc);
4427
4428 uint32_t u32Access = pSelReg->Attr.u;
4429 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4430 {
4431 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
4432 u32Access = 0xf3;
4433 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4434 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4435 }
4436 else
4437 {
4438 /*
4439 * The way to differentiate between whether this is really a null selector or was just
4440 * a selector loaded with 0 in real-mode is using the segment attributes. A selector
4441 * loaded in real-mode with the value 0 is valid and usable in protected-mode and we
4442 * should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures
4443 * NULL selectors loaded in protected-mode have their attribute as 0.
4444 */
4445 if (!u32Access)
4446 u32Access = X86DESCATTR_UNUSABLE;
4447 }
4448
4449 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
4450 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
4451 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
4452
4453 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
4454 AssertRCReturn(rc, rc);
4455 return rc;
4456}
4457
4458
4459/**
4460 * Exports the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
4461 * into the guest-state area in the VMCS.
4462 *
4463 * @returns VBox status code.
4464 * @param pVCpu The cross context virtual CPU structure.
4465 *
4466 * @remarks Will import guest CR0 on strict builds during validation of
4467 * segments.
4468 * @remarks No-long-jump zone!!!
4469 */
4470static int hmR0VmxExportGuestSegmentRegs(PVMCPU pVCpu)
4471{
4472 int rc = VERR_INTERNAL_ERROR_5;
4473 PVM pVM = pVCpu->CTX_SUFF(pVM);
4474 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4475
4476 /*
4477 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
4478 */
4479 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SREG_MASK)
4480 {
4481#ifdef VBOX_WITH_REM
4482 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
4483 {
4484 Assert(pVM->hm.s.vmx.pRealModeTSS);
4485 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
4486 if ( pVCpu->hm.s.vmx.fWasInRealMode
4487 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
4488 {
4489 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
4490 in real-mode (e.g. OpenBSD 4.0) */
4491 REMFlushTBs(pVM);
4492 Log4Func(("Switch to protected mode detected!\n"));
4493 pVCpu->hm.s.vmx.fWasInRealMode = false;
4494 }
4495 }
4496#endif
4497 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CS)
4498 {
4499 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
4500 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4501 pVCpu->hm.s.vmx.RealMode.AttrCS.u = pCtx->cs.Attr.u;
4502 rc = HMVMX_EXPORT_SREG(CS, &pCtx->cs);
4503 AssertRCReturn(rc, rc);
4504 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CS);
4505 }
4506
4507 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SS)
4508 {
4509 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
4510 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4511 pVCpu->hm.s.vmx.RealMode.AttrSS.u = pCtx->ss.Attr.u;
4512 rc = HMVMX_EXPORT_SREG(SS, &pCtx->ss);
4513 AssertRCReturn(rc, rc);
4514 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SS);
4515 }
4516
4517 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_DS)
4518 {
4519 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DS);
4520 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4521 pVCpu->hm.s.vmx.RealMode.AttrDS.u = pCtx->ds.Attr.u;
4522 rc = HMVMX_EXPORT_SREG(DS, &pCtx->ds);
4523 AssertRCReturn(rc, rc);
4524 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_DS);
4525 }
4526
4527 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_ES)
4528 {
4529 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_ES);
4530 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4531 pVCpu->hm.s.vmx.RealMode.AttrES.u = pCtx->es.Attr.u;
4532 rc = HMVMX_EXPORT_SREG(ES, &pCtx->es);
4533 AssertRCReturn(rc, rc);
4534 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_ES);
4535 }
4536
4537 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_FS)
4538 {
4539 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
4540 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4541 pVCpu->hm.s.vmx.RealMode.AttrFS.u = pCtx->fs.Attr.u;
4542 rc = HMVMX_EXPORT_SREG(FS, &pCtx->fs);
4543 AssertRCReturn(rc, rc);
4544 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_FS);
4545 }
4546
4547 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GS)
4548 {
4549 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
4550 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4551 pVCpu->hm.s.vmx.RealMode.AttrGS.u = pCtx->gs.Attr.u;
4552 rc = HMVMX_EXPORT_SREG(GS, &pCtx->gs);
4553 AssertRCReturn(rc, rc);
4554 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GS);
4555 }
4556
4557#ifdef VBOX_STRICT
4558 hmR0VmxValidateSegmentRegs(pVCpu);
4559#endif
4560
4561 Log4Func(("CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pCtx->cs.Sel, pCtx->cs.u64Base,
4562 pCtx->cs.u32Limit, pCtx->cs.Attr.u));
4563 }
4564
4565 /*
4566 * Guest TR.
4567 */
4568 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_TR)
4569 {
4570 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_TR);
4571
4572 /*
4573 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is
4574 * achieved using the interrupt redirection bitmap (all bits cleared to let the guest
4575 * handle INT-n's) in the TSS. See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
4576 */
4577 uint16_t u16Sel = 0;
4578 uint32_t u32Limit = 0;
4579 uint64_t u64Base = 0;
4580 uint32_t u32AccessRights = 0;
4581
4582 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4583 {
4584 u16Sel = pCtx->tr.Sel;
4585 u32Limit = pCtx->tr.u32Limit;
4586 u64Base = pCtx->tr.u64Base;
4587 u32AccessRights = pCtx->tr.Attr.u;
4588 }
4589 else
4590 {
4591 Assert(pVM->hm.s.vmx.pRealModeTSS);
4592 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMCanExecuteGuest() -XXX- what about inner loop changes? */
4593
4594 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
4595 RTGCPHYS GCPhys;
4596 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
4597 AssertRCReturn(rc, rc);
4598
4599 X86DESCATTR DescAttr;
4600 DescAttr.u = 0;
4601 DescAttr.n.u1Present = 1;
4602 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
4603
4604 u16Sel = 0;
4605 u32Limit = HM_VTX_TSS_SIZE;
4606 u64Base = GCPhys; /* in real-mode phys = virt. */
4607 u32AccessRights = DescAttr.u;
4608 }
4609
4610 /* Validate. */
4611 Assert(!(u16Sel & RT_BIT(2)));
4612 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
4613 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
4614 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
4615 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
4616 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
4617 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
4618 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
4619 Assert( (u32Limit & 0xfff) == 0xfff
4620 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
4621 Assert( !(pCtx->tr.u32Limit & 0xfff00000)
4622 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
4623
4624 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
4625 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
4626 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
4627 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
4628 AssertRCReturn(rc, rc);
4629
4630 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_TR);
4631 Log4Func(("TR base=%#RX64\n", pCtx->tr.u64Base));
4632 }
4633
4634 /*
4635 * Guest GDTR.
4636 */
4637 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GDTR)
4638 {
4639 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GDTR);
4640
4641 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt);
4642 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt);
4643 AssertRCReturn(rc, rc);
4644
4645 /* Validate. */
4646 Assert(!(pCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4647
4648 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GDTR);
4649 Log4Func(("GDTR base=%#RX64\n", pCtx->gdtr.pGdt));
4650 }
4651
4652 /*
4653 * Guest LDTR.
4654 */
4655 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_LDTR)
4656 {
4657 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_LDTR);
4658
4659 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
4660 uint32_t u32Access = 0;
4661 if (!pCtx->ldtr.Attr.u)
4662 u32Access = X86DESCATTR_UNUSABLE;
4663 else
4664 u32Access = pCtx->ldtr.Attr.u;
4665
4666 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pCtx->ldtr.Sel);
4667 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit);
4668 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
4669 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base);
4670 AssertRCReturn(rc, rc);
4671
4672 /* Validate. */
4673 if (!(u32Access & X86DESCATTR_UNUSABLE))
4674 {
4675 Assert(!(pCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
4676 Assert(pCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
4677 Assert(!pCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
4678 Assert(pCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
4679 Assert(!pCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
4680 Assert(!(pCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
4681 Assert( (pCtx->ldtr.u32Limit & 0xfff) == 0xfff
4682 || !pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
4683 Assert( !(pCtx->ldtr.u32Limit & 0xfff00000)
4684 || pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
4685 }
4686
4687 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_LDTR);
4688 Log4Func(("LDTR base=%#RX64\n", pCtx->ldtr.u64Base));
4689 }
4690
4691 /*
4692 * Guest IDTR.
4693 */
4694 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_IDTR)
4695 {
4696 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_IDTR);
4697
4698 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt);
4699 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt);
4700 AssertRCReturn(rc, rc);
4701
4702 /* Validate. */
4703 Assert(!(pCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4704
4705 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_IDTR);
4706 Log4Func(("IDTR base=%#RX64\n", pCtx->idtr.pIdt));
4707 }
4708
4709 return VINF_SUCCESS;
4710}
4711
4712
4713/**
4714 * Exports certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
4715 * areas.
4716 *
4717 * These MSRs will automatically be loaded to the host CPU on every successful
4718 * VM-entry and stored from the host CPU on every successful VM-exit. This also
4719 * creates/updates MSR slots for the host MSRs. The actual host MSR values are
4720 * -not- updated here for performance reasons. See hmR0VmxExportHostMsrs().
4721 *
4722 * Also exports the guest sysenter MSRs into the guest-state area in the VMCS.
4723 *
4724 * @returns VBox status code.
4725 * @param pVCpu The cross context virtual CPU structure.
4726 *
4727 * @remarks No-long-jump zone!!!
4728 */
4729static int hmR0VmxExportGuestMsrs(PVMCPU pVCpu)
4730{
4731 AssertPtr(pVCpu);
4732 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
4733
4734 /*
4735 * MSRs that we use the auto-load/store MSR area in the VMCS.
4736 * For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs().
4737 */
4738 PVM pVM = pVCpu->CTX_SUFF(pVM);
4739 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4740 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
4741 {
4742 if (pVM->hm.s.fAllow64BitGuests)
4743 {
4744#if HC_ARCH_BITS == 32
4745 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_KERNEL_GS_BASE);
4746
4747 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pCtx->msrLSTAR, false, NULL);
4748 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pCtx->msrSTAR, false, NULL);
4749 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pCtx->msrSFMASK, false, NULL);
4750 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE, false, NULL);
4751 AssertRCReturn(rc, rc);
4752# ifdef LOG_ENABLED
4753 PCVMXAUTOMSR pMsr = (PCVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
4754 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
4755 Log4Func(("MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", i, pMsr->u32Msr, pMsr->u64Value));
4756# endif
4757#endif
4758 }
4759 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_AUTO_MSRS);
4760 }
4761
4762 /*
4763 * Guest Sysenter MSRs.
4764 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
4765 * VM-exits on WRMSRs for these MSRs.
4766 */
4767 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
4768 {
4769 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
4770
4771 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
4772 {
4773 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
4774 AssertRCReturn(rc, rc);
4775 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_CS_MSR);
4776 }
4777
4778 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
4779 {
4780 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
4781 AssertRCReturn(rc, rc);
4782 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
4783 }
4784
4785 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
4786 {
4787 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
4788 AssertRCReturn(rc, rc);
4789 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
4790 }
4791 }
4792
4793 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_EFER_MSR)
4794 {
4795 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
4796
4797 if (hmR0VmxShouldSwapEferMsr(pVCpu))
4798 {
4799 /*
4800 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
4801 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
4802 */
4803 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4804 {
4805 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pCtx->msrEFER);
4806 AssertRCReturn(rc,rc);
4807 Log4Func(("EFER=%#RX64\n", pCtx->msrEFER));
4808 }
4809 else
4810 {
4811 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_EFER, pCtx->msrEFER, false /* fUpdateHostMsr */,
4812 NULL /* pfAddedAndUpdated */);
4813 AssertRCReturn(rc, rc);
4814
4815 /* We need to intercept reads too, see @bugref{7386#c16}. */
4816 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
4817 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_EFER, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
4818 Log4Func(("MSR[--]: u32Msr=%#RX32 u64Value=%#RX64 cMsrs=%u\n", MSR_K6_EFER, pCtx->msrEFER,
4819 pVCpu->hm.s.vmx.cMsrs));
4820 }
4821 }
4822 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
4823 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K6_EFER);
4824 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
4825 }
4826
4827 return VINF_SUCCESS;
4828}
4829
4830
4831#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
4832/**
4833 * Check if guest state allows safe use of 32-bit switcher again.
4834 *
4835 * Segment bases and protected mode structures must be 32-bit addressable
4836 * because the 32-bit switcher will ignore high dword when writing these VMCS
4837 * fields. See @bugref{8432} for details.
4838 *
4839 * @returns true if safe, false if must continue to use the 64-bit switcher.
4840 * @param pCtx Pointer to the guest-CPU context.
4841 *
4842 * @remarks No-long-jump zone!!!
4843 */
4844static bool hmR0VmxIs32BitSwitcherSafe(PCCPUMCTX pCtx)
4845{
4846 if (pCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000)) return false;
4847 if (pCtx->idtr.pIdt & UINT64_C(0xffffffff00000000)) return false;
4848 if (pCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000)) return false;
4849 if (pCtx->tr.u64Base & UINT64_C(0xffffffff00000000)) return false;
4850 if (pCtx->es.u64Base & UINT64_C(0xffffffff00000000)) return false;
4851 if (pCtx->cs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4852 if (pCtx->ss.u64Base & UINT64_C(0xffffffff00000000)) return false;
4853 if (pCtx->ds.u64Base & UINT64_C(0xffffffff00000000)) return false;
4854 if (pCtx->fs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4855 if (pCtx->gs.u64Base & UINT64_C(0xffffffff00000000)) return false;
4856
4857 /* All good, bases are 32-bit. */
4858 return true;
4859}
4860#endif
4861
4862
4863/**
4864 * Selects up the appropriate function to run guest code.
4865 *
4866 * @returns VBox status code.
4867 * @param pVCpu The cross context virtual CPU structure.
4868 *
4869 * @remarks No-long-jump zone!!!
4870 */
4871static int hmR0VmxSelectVMRunHandler(PVMCPU pVCpu)
4872{
4873 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4874 if (CPUMIsGuestInLongModeEx(pCtx))
4875 {
4876#ifndef VBOX_ENABLE_64_BITS_GUESTS
4877 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4878#endif
4879 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4880#if HC_ARCH_BITS == 32
4881 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
4882 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
4883 {
4884#ifdef VBOX_STRICT
4885 if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4886 {
4887 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4888 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
4889 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
4890 AssertMsg(fCtxChanged & ( HM_CHANGED_VMX_EXIT_CTLS
4891 | HM_CHANGED_VMX_ENTRY_CTLS
4892 | HM_CHANGED_GUEST_EFER_MSR), ("fCtxChanged=%#RX64\n", fCtxChanged));
4893 }
4894#endif
4895 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
4896
4897 /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
4898 the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
4899 pVCpu->hm.s.vmx.fSwitchedTo64on32 = true;
4900 Log4Func(("Selected 64-bit switcher\n"));
4901 }
4902#else
4903 /* 64-bit host. */
4904 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
4905#endif
4906 }
4907 else
4908 {
4909 /* Guest is not in long mode, use the 32-bit handler. */
4910#if HC_ARCH_BITS == 32
4911 if ( pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32
4912 && !pVCpu->hm.s.vmx.fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
4913 && pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4914 {
4915# ifdef VBOX_STRICT
4916 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4917 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
4918 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
4919 AssertMsg(fCtxChanged & ( HM_CHANGED_VMX_EXIT_CTLS
4920 | HM_CHANGED_VMX_ENTRY_CTLS
4921 | HM_CHANGED_GUEST_EFER_MSR), ("fCtxChanged=%#RX64\n", fCtxChanged));
4922# endif
4923 }
4924# ifdef VBOX_ENABLE_64_BITS_GUESTS
4925 /*
4926 * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel
4927 * design, see @bugref{8432#c7}. If real-on-v86 mode is active, clear the 64-bit
4928 * switcher flag because now we know the guest is in a sane state where it's safe
4929 * to use the 32-bit switcher. Otherwise check the guest state if it's safe to use
4930 * the much faster 32-bit switcher again.
4931 */
4932 if (!pVCpu->hm.s.vmx.fSwitchedTo64on32)
4933 {
4934 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
4935 Log4Func(("Selected 32-bit switcher\n"));
4936 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4937 }
4938 else
4939 {
4940 Assert(pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64);
4941 if ( pVCpu->hm.s.vmx.RealMode.fRealOnV86Active
4942 || hmR0VmxIs32BitSwitcherSafe(pCtx))
4943 {
4944 pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
4945 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4946 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR
4947 | HM_CHANGED_VMX_ENTRY_CTLS
4948 | HM_CHANGED_VMX_EXIT_CTLS
4949 | HM_CHANGED_HOST_CONTEXT);
4950 Log4Func(("Selected 32-bit switcher (safe)\n"));
4951 }
4952 }
4953# else
4954 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4955# endif
4956#else
4957 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4958#endif
4959 }
4960 Assert(pVCpu->hm.s.vmx.pfnStartVM);
4961 return VINF_SUCCESS;
4962}
4963
4964
4965/**
4966 * Wrapper for running the guest code in VT-x.
4967 *
4968 * @returns VBox status code, no informational status codes.
4969 * @param pVCpu The cross context virtual CPU structure.
4970 *
4971 * @remarks No-long-jump zone!!!
4972 */
4973DECLINLINE(int) hmR0VmxRunGuest(PVMCPU pVCpu)
4974{
4975 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
4976 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4977 pCtx->fExtrn |= HMVMX_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
4978
4979 /*
4980 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
4981 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
4982 * callee-saved and thus the need for this XMM wrapper.
4983 *
4984 * See MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
4985 */
4986 bool const fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.fVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
4987 /** @todo Add stats for resume vs launch. */
4988 PVM pVM = pVCpu->CTX_SUFF(pVM);
4989#ifdef VBOX_WITH_KERNEL_USING_XMM
4990 int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
4991#else
4992 int rc = pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
4993#endif
4994 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
4995 return rc;
4996}
4997
4998
4999/**
5000 * Reports world-switch error and dumps some useful debug info.
5001 *
5002 * @param pVCpu The cross context virtual CPU structure.
5003 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
5004 * @param pVmxTransient Pointer to the VMX transient structure (only
5005 * exitReason updated).
5006 */
5007static void hmR0VmxReportWorldSwitchError(PVMCPU pVCpu, int rcVMRun, PVMXTRANSIENT pVmxTransient)
5008{
5009 Assert(pVCpu);
5010 Assert(pVmxTransient);
5011 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
5012
5013 Log4Func(("VM-entry failure: %Rrc\n", rcVMRun));
5014 switch (rcVMRun)
5015 {
5016 case VERR_VMX_INVALID_VMXON_PTR:
5017 AssertFailed();
5018 break;
5019 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
5020 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
5021 {
5022 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
5023 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
5024 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
5025 AssertRC(rc);
5026
5027 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
5028 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
5029 Cannot do it here as we may have been long preempted. */
5030
5031#ifdef VBOX_STRICT
5032 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
5033 pVmxTransient->uExitReason));
5034 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQual));
5035 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
5036 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
5037 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
5038 else
5039 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
5040 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
5041 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
5042
5043 /* VMX control bits. */
5044 uint32_t u32Val;
5045 uint64_t u64Val;
5046 RTHCUINTREG uHCReg;
5047 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
5048 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
5049 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
5050 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
5051 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
5052 {
5053 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
5054 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
5055 }
5056 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
5057 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
5058 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
5059 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
5060 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
5061 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
5062 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
5063 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
5064 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
5065 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
5066 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
5067 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
5068 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
5069 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
5070 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
5071 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
5072 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5073 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
5074 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5075 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
5076 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
5077 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
5078 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
5079 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
5080 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
5081 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
5082 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
5083 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
5084 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
5085 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5086 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
5087 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
5088 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
5089 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5090 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
5091 {
5092 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
5093 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
5094 }
5095
5096 /* Guest bits. */
5097 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
5098 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rip, u64Val));
5099 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
5100 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pVCpu->cpum.GstCtx.rsp, u64Val));
5101 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
5102 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pVCpu->cpum.GstCtx.eflags.u32, u32Val));
5103 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid)
5104 {
5105 rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
5106 Log4(("VMX_VMCS16_VPID %u\n", u32Val));
5107 }
5108
5109 /* Host bits. */
5110 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
5111 Log4(("Host CR0 %#RHr\n", uHCReg));
5112 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
5113 Log4(("Host CR3 %#RHr\n", uHCReg));
5114 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
5115 Log4(("Host CR4 %#RHr\n", uHCReg));
5116
5117 RTGDTR HostGdtr;
5118 PCX86DESCHC pDesc;
5119 ASMGetGDTR(&HostGdtr);
5120 rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
5121 Log4(("Host CS %#08x\n", u32Val));
5122 if (u32Val < HostGdtr.cbGdt)
5123 {
5124 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5125 hmR0DumpDescriptor(pDesc, u32Val, "CS: ");
5126 }
5127
5128 rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
5129 Log4(("Host DS %#08x\n", u32Val));
5130 if (u32Val < HostGdtr.cbGdt)
5131 {
5132 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5133 hmR0DumpDescriptor(pDesc, u32Val, "DS: ");
5134 }
5135
5136 rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
5137 Log4(("Host ES %#08x\n", u32Val));
5138 if (u32Val < HostGdtr.cbGdt)
5139 {
5140 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5141 hmR0DumpDescriptor(pDesc, u32Val, "ES: ");
5142 }
5143
5144 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
5145 Log4(("Host FS %#08x\n", u32Val));
5146 if (u32Val < HostGdtr.cbGdt)
5147 {
5148 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5149 hmR0DumpDescriptor(pDesc, u32Val, "FS: ");
5150 }
5151
5152 rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
5153 Log4(("Host GS %#08x\n", u32Val));
5154 if (u32Val < HostGdtr.cbGdt)
5155 {
5156 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5157 hmR0DumpDescriptor(pDesc, u32Val, "GS: ");
5158 }
5159
5160 rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
5161 Log4(("Host SS %#08x\n", u32Val));
5162 if (u32Val < HostGdtr.cbGdt)
5163 {
5164 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5165 hmR0DumpDescriptor(pDesc, u32Val, "SS: ");
5166 }
5167
5168 rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
5169 Log4(("Host TR %#08x\n", u32Val));
5170 if (u32Val < HostGdtr.cbGdt)
5171 {
5172 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5173 hmR0DumpDescriptor(pDesc, u32Val, "TR: ");
5174 }
5175
5176 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
5177 Log4(("Host TR Base %#RHv\n", uHCReg));
5178 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
5179 Log4(("Host GDTR Base %#RHv\n", uHCReg));
5180 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
5181 Log4(("Host IDTR Base %#RHv\n", uHCReg));
5182 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
5183 Log4(("Host SYSENTER CS %#08x\n", u32Val));
5184 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
5185 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
5186 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
5187 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
5188 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
5189 Log4(("Host RSP %#RHv\n", uHCReg));
5190 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
5191 Log4(("Host RIP %#RHv\n", uHCReg));
5192# if HC_ARCH_BITS == 64
5193 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
5194 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
5195 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
5196 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
5197 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
5198 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
5199# endif
5200#endif /* VBOX_STRICT */
5201 break;
5202 }
5203
5204 default:
5205 /* Impossible */
5206 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
5207 break;
5208 }
5209}
5210
5211
5212#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
5213#ifndef VMX_USE_CACHED_VMCS_ACCESSES
5214# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
5215#endif
5216#ifdef VBOX_STRICT
5217static bool hmR0VmxIsValidWriteField(uint32_t idxField)
5218{
5219 switch (idxField)
5220 {
5221 case VMX_VMCS_GUEST_RIP:
5222 case VMX_VMCS_GUEST_RSP:
5223 case VMX_VMCS_GUEST_SYSENTER_EIP:
5224 case VMX_VMCS_GUEST_SYSENTER_ESP:
5225 case VMX_VMCS_GUEST_GDTR_BASE:
5226 case VMX_VMCS_GUEST_IDTR_BASE:
5227 case VMX_VMCS_GUEST_CS_BASE:
5228 case VMX_VMCS_GUEST_DS_BASE:
5229 case VMX_VMCS_GUEST_ES_BASE:
5230 case VMX_VMCS_GUEST_FS_BASE:
5231 case VMX_VMCS_GUEST_GS_BASE:
5232 case VMX_VMCS_GUEST_SS_BASE:
5233 case VMX_VMCS_GUEST_LDTR_BASE:
5234 case VMX_VMCS_GUEST_TR_BASE:
5235 case VMX_VMCS_GUEST_CR3:
5236 return true;
5237 }
5238 return false;
5239}
5240
5241static bool hmR0VmxIsValidReadField(uint32_t idxField)
5242{
5243 switch (idxField)
5244 {
5245 /* Read-only fields. */
5246 case VMX_VMCS_RO_EXIT_QUALIFICATION:
5247 return true;
5248 }
5249 /* Remaining readable fields should also be writable. */
5250 return hmR0VmxIsValidWriteField(idxField);
5251}
5252#endif /* VBOX_STRICT */
5253
5254
5255/**
5256 * Executes the specified handler in 64-bit mode.
5257 *
5258 * @returns VBox status code (no informational status codes).
5259 * @param pVCpu The cross context virtual CPU structure.
5260 * @param enmOp The operation to perform.
5261 * @param cParams Number of parameters.
5262 * @param paParam Array of 32-bit parameters.
5263 */
5264VMMR0DECL(int) VMXR0Execute64BitsHandler(PVMCPU pVCpu, HM64ON32OP enmOp, uint32_t cParams, uint32_t *paParam)
5265{
5266 PVM pVM = pVCpu->CTX_SUFF(pVM);
5267 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
5268 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
5269 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
5270 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
5271
5272#ifdef VBOX_STRICT
5273 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
5274 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
5275
5276 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
5277 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
5278#endif
5279
5280 /* Disable interrupts. */
5281 RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
5282
5283#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
5284 RTCPUID idHostCpu = RTMpCpuId();
5285 CPUMR0SetLApic(pVCpu, idHostCpu);
5286#endif
5287
5288 PCHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
5289 RTHCPHYS HCPhysCpuPage = pHostCpu->HCPhysMemObj;
5290
5291 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
5292 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5293 pVCpu->hm.s.vmx.fVmcsState = HMVMX_VMCS_STATE_CLEAR;
5294
5295 /* Leave VMX Root Mode. */
5296 VMXDisable();
5297
5298 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5299
5300 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
5301 CPUMSetHyperEIP(pVCpu, enmOp);
5302 for (int i = (int)cParams - 1; i >= 0; i--)
5303 CPUMPushHyper(pVCpu, paParam[i]);
5304
5305 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
5306
5307 /* Call the switcher. */
5308 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_UOFFSETOF_DYN(VM, aCpus[pVCpu->idCpu].cpum) - RT_UOFFSETOF(VM, cpum));
5309 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
5310
5311 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
5312 /* Make sure the VMX instructions don't cause #UD faults. */
5313 SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
5314
5315 /* Re-enter VMX Root Mode */
5316 int rc2 = VMXEnable(HCPhysCpuPage);
5317 if (RT_FAILURE(rc2))
5318 {
5319 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5320 ASMSetFlags(fOldEFlags);
5321 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
5322 return rc2;
5323 }
5324
5325 rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5326 AssertRC(rc2);
5327 pVCpu->hm.s.vmx.fVmcsState = HMVMX_VMCS_STATE_ACTIVE;
5328 Assert(!(ASMGetFlags() & X86_EFL_IF));
5329 ASMSetFlags(fOldEFlags);
5330 return rc;
5331}
5332
5333
5334/**
5335 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
5336 * supporting 64-bit guests.
5337 *
5338 * @returns VBox status code.
5339 * @param fResume Whether to VMLAUNCH or VMRESUME.
5340 * @param pCtx Pointer to the guest-CPU context.
5341 * @param pCache Pointer to the VMCS cache.
5342 * @param pVM The cross context VM structure.
5343 * @param pVCpu The cross context virtual CPU structure.
5344 */
5345DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
5346{
5347 NOREF(fResume);
5348
5349 PCHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
5350 RTHCPHYS const HCPhysCpuPage = pHostCpu->HCPhysMemObj;
5351
5352#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5353 pCache->uPos = 1;
5354 pCache->interPD = PGMGetInterPaeCR3(pVM);
5355 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
5356#endif
5357
5358#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5359 pCache->TestIn.HCPhysCpuPage = 0;
5360 pCache->TestIn.HCPhysVmcs = 0;
5361 pCache->TestIn.pCache = 0;
5362 pCache->TestOut.HCPhysVmcs = 0;
5363 pCache->TestOut.pCache = 0;
5364 pCache->TestOut.pCtx = 0;
5365 pCache->TestOut.eflags = 0;
5366#else
5367 NOREF(pCache);
5368#endif
5369
5370 uint32_t aParam[10];
5371 aParam[0] = RT_LO_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
5372 aParam[1] = RT_HI_U32(HCPhysCpuPage); /* Param 1: VMXON physical address - Hi. */
5373 aParam[2] = RT_LO_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
5374 aParam[3] = RT_HI_U32(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Hi. */
5375 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
5376 aParam[5] = 0;
5377 aParam[6] = VM_RC_ADDR(pVM, pVM);
5378 aParam[7] = 0;
5379 aParam[8] = VM_RC_ADDR(pVM, pVCpu);
5380 aParam[9] = 0;
5381
5382#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5383 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
5384 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
5385#endif
5386 int rc = VMXR0Execute64BitsHandler(pVCpu, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
5387
5388#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5389 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
5390 Assert(pCtx->dr[4] == 10);
5391 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
5392#endif
5393
5394#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5395 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
5396 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5397 pVCpu->hm.s.vmx.HCPhysVmcs));
5398 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5399 pCache->TestOut.HCPhysVmcs));
5400 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
5401 pCache->TestOut.pCache));
5402 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
5403 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
5404 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
5405 pCache->TestOut.pCtx));
5406 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
5407#endif
5408 NOREF(pCtx);
5409 return rc;
5410}
5411
5412
5413/**
5414 * Initialize the VMCS-Read cache.
5415 *
5416 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
5417 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
5418 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
5419 * (those that have a 32-bit FULL & HIGH part).
5420 *
5421 * @returns VBox status code.
5422 * @param pVCpu The cross context virtual CPU structure.
5423 */
5424static int hmR0VmxInitVmcsReadCache(PVMCPU pVCpu)
5425{
5426#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
5427 do { \
5428 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
5429 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
5430 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
5431 ++cReadFields; \
5432 } while (0)
5433
5434 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5435 uint32_t cReadFields = 0;
5436
5437 /*
5438 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
5439 * and serve to indicate exceptions to the rules.
5440 */
5441
5442 /* Guest-natural selector base fields. */
5443#if 0
5444 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
5445 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
5446 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
5447#endif
5448 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
5449 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
5450 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
5451 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
5452 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
5453 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
5454 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
5455 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
5456 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
5457 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
5458 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
5459 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
5460#if 0
5461 /* Unused natural width guest-state fields. */
5462 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS);
5463 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
5464#endif
5465 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
5466 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
5467
5468 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for
5469 these 64-bit fields (using "FULL" and "HIGH" fields). */
5470#if 0
5471 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
5472 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
5473 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
5474 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
5475 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
5476 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
5477 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
5478 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
5479 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
5480#endif
5481
5482 /* Natural width guest-state fields. */
5483 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
5484 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_GUEST_LINEAR_ADDR);
5485
5486 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
5487 {
5488 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
5489 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
5490 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
5491 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
5492 }
5493 else
5494 {
5495 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
5496 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
5497 }
5498
5499#undef VMXLOCAL_INIT_READ_CACHE_FIELD
5500 return VINF_SUCCESS;
5501}
5502
5503
5504/**
5505 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
5506 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
5507 * darwin, running 64-bit guests).
5508 *
5509 * @returns VBox status code.
5510 * @param pVCpu The cross context virtual CPU structure.
5511 * @param idxField The VMCS field encoding.
5512 * @param u64Val 16, 32 or 64-bit value.
5513 */
5514VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5515{
5516 int rc;
5517 switch (idxField)
5518 {
5519 /*
5520 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
5521 */
5522 /* 64-bit Control fields. */
5523 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
5524 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
5525 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
5526 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
5527 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
5528 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
5529 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
5530 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
5531 case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
5532 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
5533 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
5534 case VMX_VMCS64_CTRL_EPTP_FULL:
5535 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
5536 /* 64-bit Guest-state fields. */
5537 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
5538 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
5539 case VMX_VMCS64_GUEST_PAT_FULL:
5540 case VMX_VMCS64_GUEST_EFER_FULL:
5541 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
5542 case VMX_VMCS64_GUEST_PDPTE0_FULL:
5543 case VMX_VMCS64_GUEST_PDPTE1_FULL:
5544 case VMX_VMCS64_GUEST_PDPTE2_FULL:
5545 case VMX_VMCS64_GUEST_PDPTE3_FULL:
5546 /* 64-bit Host-state fields. */
5547 case VMX_VMCS64_HOST_PAT_FULL:
5548 case VMX_VMCS64_HOST_EFER_FULL:
5549 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
5550 {
5551 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
5552 rc |= VMXWriteVmcs32(idxField + 1, RT_HI_U32(u64Val));
5553 break;
5554 }
5555
5556 /*
5557 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
5558 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
5559 */
5560 /* Natural-width Guest-state fields. */
5561 case VMX_VMCS_GUEST_CR3:
5562 case VMX_VMCS_GUEST_ES_BASE:
5563 case VMX_VMCS_GUEST_CS_BASE:
5564 case VMX_VMCS_GUEST_SS_BASE:
5565 case VMX_VMCS_GUEST_DS_BASE:
5566 case VMX_VMCS_GUEST_FS_BASE:
5567 case VMX_VMCS_GUEST_GS_BASE:
5568 case VMX_VMCS_GUEST_LDTR_BASE:
5569 case VMX_VMCS_GUEST_TR_BASE:
5570 case VMX_VMCS_GUEST_GDTR_BASE:
5571 case VMX_VMCS_GUEST_IDTR_BASE:
5572 case VMX_VMCS_GUEST_RSP:
5573 case VMX_VMCS_GUEST_RIP:
5574 case VMX_VMCS_GUEST_SYSENTER_ESP:
5575 case VMX_VMCS_GUEST_SYSENTER_EIP:
5576 {
5577 if (!(RT_HI_U32(u64Val)))
5578 {
5579 /* If this field is 64-bit, VT-x will zero out the top bits. */
5580 rc = VMXWriteVmcs32(idxField, RT_LO_U32(u64Val));
5581 }
5582 else
5583 {
5584 /* Assert that only the 32->64 switcher case should ever come here. */
5585 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
5586 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
5587 }
5588 break;
5589 }
5590
5591 default:
5592 {
5593 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
5594 rc = VERR_INVALID_PARAMETER;
5595 break;
5596 }
5597 }
5598 AssertRCReturn(rc, rc);
5599 return rc;
5600}
5601
5602
5603/**
5604 * Queue up a VMWRITE by using the VMCS write cache.
5605 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
5606 *
5607 * @param pVCpu The cross context virtual CPU structure.
5608 * @param idxField The VMCS field encoding.
5609 * @param u64Val 16, 32 or 64-bit value.
5610 */
5611VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5612{
5613 AssertPtr(pVCpu);
5614 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5615
5616 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
5617 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
5618
5619 /* Make sure there are no duplicates. */
5620 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5621 {
5622 if (pCache->Write.aField[i] == idxField)
5623 {
5624 pCache->Write.aFieldVal[i] = u64Val;
5625 return VINF_SUCCESS;
5626 }
5627 }
5628
5629 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
5630 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
5631 pCache->Write.cValidEntries++;
5632 return VINF_SUCCESS;
5633}
5634#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
5635
5636
5637/**
5638 * Sets up the usage of TSC-offsetting and updates the VMCS.
5639 *
5640 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
5641 * VMX preemption timer.
5642 *
5643 * @returns VBox status code.
5644 * @param pVCpu The cross context virtual CPU structure.
5645 *
5646 * @remarks No-long-jump zone!!!
5647 */
5648static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPU pVCpu)
5649{
5650 bool fOffsettedTsc;
5651 bool fParavirtTsc;
5652 PVM pVM = pVCpu->CTX_SUFF(pVM);
5653 uint64_t uTscOffset;
5654 if (pVM->hm.s.vmx.fUsePreemptTimer)
5655 {
5656 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &uTscOffset, &fOffsettedTsc, &fParavirtTsc);
5657
5658 /* Make sure the returned values have sane upper and lower boundaries. */
5659 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
5660 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
5661 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
5662 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
5663
5664 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
5665 int rc = VMXWriteVmcs32(VMX_VMCS32_PREEMPT_TIMER_VALUE, cPreemptionTickCount);
5666 AssertRC(rc);
5667 }
5668 else
5669 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
5670
5671 if (fParavirtTsc)
5672 {
5673 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
5674 information before every VM-entry, hence disable it for performance sake. */
5675#if 0
5676 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
5677 AssertRC(rc);
5678#endif
5679 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
5680 }
5681
5682 uint32_t uProcCtls = pVCpu->hm.s.vmx.u32ProcCtls;
5683 if ( fOffsettedTsc
5684 && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
5685 {
5686 if (pVCpu->hm.s.vmx.u64TscOffset != uTscOffset)
5687 {
5688 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, uTscOffset);
5689 AssertRC(rc);
5690 pVCpu->hm.s.vmx.u64TscOffset = uTscOffset;
5691 }
5692
5693 if (uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT)
5694 {
5695 uProcCtls &= ~VMX_PROC_CTLS_RDTSC_EXIT;
5696 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5697 AssertRC(rc);
5698 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
5699 }
5700 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
5701 }
5702 else
5703 {
5704 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
5705 if (!(uProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
5706 {
5707 uProcCtls |= VMX_PROC_CTLS_RDTSC_EXIT;
5708 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5709 AssertRC(rc);
5710 pVCpu->hm.s.vmx.u32ProcCtls = uProcCtls;
5711 }
5712 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
5713 }
5714}
5715
5716
5717/**
5718 * Gets the IEM exception flags for the specified vector and IDT vectoring /
5719 * VM-exit interruption info type.
5720 *
5721 * @returns The IEM exception flags.
5722 * @param uVector The event vector.
5723 * @param uVmxVectorType The VMX event type.
5724 *
5725 * @remarks This function currently only constructs flags required for
5726 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
5727 * and CR2 aspects of an exception are not included).
5728 */
5729static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxVectorType)
5730{
5731 uint32_t fIemXcptFlags;
5732 switch (uVmxVectorType)
5733 {
5734 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
5735 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
5736 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5737 break;
5738
5739 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
5740 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5741 break;
5742
5743 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
5744 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
5745 break;
5746
5747 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
5748 {
5749 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5750 if (uVector == X86_XCPT_BP)
5751 fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
5752 else if (uVector == X86_XCPT_OF)
5753 fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
5754 else
5755 {
5756 fIemXcptFlags = 0;
5757 AssertMsgFailed(("Unexpected vector for software int. uVector=%#x", uVector));
5758 }
5759 break;
5760 }
5761
5762 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
5763 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5764 break;
5765
5766 default:
5767 fIemXcptFlags = 0;
5768 AssertMsgFailed(("Unexpected vector type! uVmxVectorType=%#x uVector=%#x", uVmxVectorType, uVector));
5769 break;
5770 }
5771 return fIemXcptFlags;
5772}
5773
5774
5775/**
5776 * Sets an event as a pending event to be injected into the guest.
5777 *
5778 * @param pVCpu The cross context virtual CPU structure.
5779 * @param u32IntInfo The VM-entry interruption-information field.
5780 * @param cbInstr The VM-entry instruction length in bytes (for software
5781 * interrupts, exceptions and privileged software
5782 * exceptions).
5783 * @param u32ErrCode The VM-entry exception error code.
5784 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
5785 * page-fault.
5786 *
5787 * @remarks Statistics counter assumes this is a guest event being injected or
5788 * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
5789 * always incremented.
5790 */
5791DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
5792 RTGCUINTPTR GCPtrFaultAddress)
5793{
5794 Assert(!pVCpu->hm.s.Event.fPending);
5795 pVCpu->hm.s.Event.fPending = true;
5796 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
5797 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
5798 pVCpu->hm.s.Event.cbInstr = cbInstr;
5799 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
5800}
5801
5802
5803/**
5804 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
5805 *
5806 * @param pVCpu The cross context virtual CPU structure.
5807 */
5808DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu)
5809{
5810 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
5811 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5812 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5813 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5814 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5815}
5816
5817
5818/**
5819 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
5820 *
5821 * @param pVCpu The cross context virtual CPU structure.
5822 */
5823DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu)
5824{
5825 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_UD)
5826 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5827 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
5828 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5829 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5830}
5831
5832
5833/**
5834 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
5835 *
5836 * @param pVCpu The cross context virtual CPU structure.
5837 */
5838DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu)
5839{
5840 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
5841 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5842 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
5843 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5844 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5845}
5846
5847
5848#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5849/**
5850 * Sets a general-protection (\#GP) exception as pending-for-injection into the VM.
5851 *
5852 * @param pVCpu The cross context virtual CPU structure.
5853 * @param u32ErrCode The error code for the general-protection exception.
5854 */
5855DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, uint32_t u32ErrCode)
5856{
5857 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
5858 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5859 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5860 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5861 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
5862}
5863
5864
5865/**
5866 * Sets a stack (\#SS) exception as pending-for-injection into the VM.
5867 *
5868 * @param pVCpu The cross context virtual CPU structure.
5869 * @param u32ErrCode The error code for the stack exception.
5870 */
5871DECLINLINE(void) hmR0VmxSetPendingXcptSS(PVMCPU pVCpu, uint32_t u32ErrCode)
5872{
5873 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_SS)
5874 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
5875 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
5876 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
5877 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
5878}
5879
5880
5881/**
5882 * Decodes the memory operand of an instruction that caused a VM-exit.
5883 *
5884 * The VM-exit qualification field provides the displacement field for memory
5885 * operand instructions, if any.
5886 *
5887 * @returns Strict VBox status code (i.e. informational status codes too).
5888 * @retval VINF_SUCCESS if the operand was successfully decoded.
5889 * @retval VINF_HM_PENDING_XCPT if an exception was raised while decoding the
5890 * operand.
5891 * @param pVCpu The cross context virtual CPU structure.
5892 * @param uExitInstrInfo The VM-exit instruction information field.
5893 * @param enmMemAccess The memory operand's access type (read or write).
5894 * @param GCPtrDisp The instruction displacement field, if any. For
5895 * RIP-relative addressing pass RIP + displacement here.
5896 * @param pGCPtrMem Where to store the effective destination memory address.
5897 */
5898static VBOXSTRICTRC hmR0VmxDecodeMemOperand(PVMCPU pVCpu, uint32_t uExitInstrInfo, RTGCPTR GCPtrDisp, VMXMEMACCESS enmMemAccess,
5899 PRTGCPTR pGCPtrMem)
5900{
5901 Assert(pGCPtrMem);
5902 Assert(!CPUMIsGuestInRealOrV86Mode(pVCpu));
5903 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER
5904 | CPUMCTX_EXTRN_CR0);
5905
5906 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
5907 static uint64_t const s_auAccessSizeMasks[] = { sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t) };
5908 AssertCompile(RT_ELEMENTS(s_auAccessSizeMasks) == RT_ELEMENTS(s_auAddrSizeMasks));
5909
5910 VMXEXITINSTRINFO ExitInstrInfo;
5911 ExitInstrInfo.u = uExitInstrInfo;
5912 uint8_t const uAddrSize = ExitInstrInfo.All.u3AddrSize;
5913 uint8_t const iSegReg = ExitInstrInfo.All.iSegReg;
5914 bool const fIdxRegValid = !ExitInstrInfo.All.fIdxRegInvalid;
5915 uint8_t const iIdxReg = ExitInstrInfo.All.iIdxReg;
5916 uint8_t const uScale = ExitInstrInfo.All.u2Scaling;
5917 bool const fBaseRegValid = !ExitInstrInfo.All.fBaseRegInvalid;
5918 uint8_t const iBaseReg = ExitInstrInfo.All.iBaseReg;
5919 bool const fIsMemOperand = !ExitInstrInfo.All.fIsRegOperand;
5920 bool const fIsLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
5921
5922 /*
5923 * Validate instruction information.
5924 * This shouldn't happen on real hardware but useful while testing our nested hardware-virtualization code.
5925 */
5926 AssertLogRelMsgReturn(uAddrSize < RT_ELEMENTS(s_auAddrSizeMasks),
5927 ("Invalid address size. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_1);
5928 AssertLogRelMsgReturn(iSegReg < X86_SREG_COUNT,
5929 ("Invalid segment register. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_2);
5930 AssertLogRelMsgReturn(fIsMemOperand,
5931 ("Expected memory operand. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_3);
5932
5933 /*
5934 * Compute the complete effective address.
5935 *
5936 * See AMD instruction spec. 1.4.2 "SIB Byte Format"
5937 * See AMD spec. 4.5.2 "Segment Registers".
5938 */
5939 RTGCPTR GCPtrMem = GCPtrDisp;
5940 if (fBaseRegValid)
5941 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iBaseReg].u64;
5942 if (fIdxRegValid)
5943 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iIdxReg].u64 << uScale;
5944
5945 RTGCPTR const GCPtrOff = GCPtrMem;
5946 if ( !fIsLongMode
5947 || iSegReg >= X86_SREG_FS)
5948 GCPtrMem += pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
5949 GCPtrMem &= s_auAddrSizeMasks[uAddrSize];
5950
5951 /*
5952 * Validate effective address.
5953 * See AMD spec. 4.5.3 "Segment Registers in 64-Bit Mode".
5954 */
5955 uint8_t const cbAccess = s_auAccessSizeMasks[uAddrSize];
5956 Assert(cbAccess > 0);
5957 if (fIsLongMode)
5958 {
5959 if (X86_IS_CANONICAL(GCPtrMem))
5960 {
5961 *pGCPtrMem = GCPtrMem;
5962 return VINF_SUCCESS;
5963 }
5964
5965 /** @todo r=ramshankar: We should probably raise \#SS or \#GP. See AMD spec. 4.12.2
5966 * "Data Limit Checks in 64-bit Mode". */
5967 Log4Func(("Long mode effective address is not canonical GCPtrMem=%#RX64\n", GCPtrMem));
5968 hmR0VmxSetPendingXcptGP(pVCpu, 0);
5969 return VINF_HM_PENDING_XCPT;
5970 }
5971
5972 /*
5973 * This is a watered down version of iemMemApplySegment().
5974 * Parts that are not applicable for VMX instructions like real-or-v8086 mode
5975 * and segment CPL/DPL checks are skipped.
5976 */
5977 RTGCPTR32 const GCPtrFirst32 = (RTGCPTR32)GCPtrOff;
5978 RTGCPTR32 const GCPtrLast32 = GCPtrFirst32 + cbAccess - 1;
5979 PCCPUMSELREG pSel = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
5980
5981 /* Check if the segment is present and usable. */
5982 if ( pSel->Attr.n.u1Present
5983 && !pSel->Attr.n.u1Unusable)
5984 {
5985 Assert(pSel->Attr.n.u1DescType);
5986 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
5987 {
5988 /* Check permissions for the data segment. */
5989 if ( enmMemAccess == VMXMEMACCESS_WRITE
5990 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE))
5991 {
5992 Log4Func(("Data segment access invalid. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
5993 hmR0VmxSetPendingXcptGP(pVCpu, iSegReg);
5994 return VINF_HM_PENDING_XCPT;
5995 }
5996
5997 /* Check limits if it's a normal data segment. */
5998 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
5999 {
6000 if ( GCPtrFirst32 > pSel->u32Limit
6001 || GCPtrLast32 > pSel->u32Limit)
6002 {
6003 Log4Func(("Data segment limit exceeded."
6004 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
6005 GCPtrLast32, pSel->u32Limit));
6006 if (iSegReg == X86_SREG_SS)
6007 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6008 else
6009 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6010 return VINF_HM_PENDING_XCPT;
6011 }
6012 }
6013 else
6014 {
6015 /* Check limits if it's an expand-down data segment.
6016 Note! The upper boundary is defined by the B bit, not the G bit! */
6017 if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
6018 || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
6019 {
6020 Log4Func(("Expand-down data segment limit exceeded."
6021 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
6022 GCPtrLast32, pSel->u32Limit));
6023 if (iSegReg == X86_SREG_SS)
6024 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6025 else
6026 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6027 return VINF_HM_PENDING_XCPT;
6028 }
6029 }
6030 }
6031 else
6032 {
6033 /* Check permissions for the code segment. */
6034 if ( enmMemAccess == VMXMEMACCESS_WRITE
6035 || ( enmMemAccess == VMXMEMACCESS_READ
6036 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ)))
6037 {
6038 Log4Func(("Code segment access invalid. Attr=%#RX32\n", pSel->Attr.u));
6039 Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
6040 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6041 return VINF_HM_PENDING_XCPT;
6042 }
6043
6044 /* Check limits for the code segment (normal/expand-down not applicable for code segments). */
6045 if ( GCPtrFirst32 > pSel->u32Limit
6046 || GCPtrLast32 > pSel->u32Limit)
6047 {
6048 Log4Func(("Code segment limit exceeded. GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n",
6049 GCPtrFirst32, GCPtrLast32, pSel->u32Limit));
6050 if (iSegReg == X86_SREG_SS)
6051 hmR0VmxSetPendingXcptSS(pVCpu, 0);
6052 else
6053 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6054 return VINF_HM_PENDING_XCPT;
6055 }
6056 }
6057 }
6058 else
6059 {
6060 Log4Func(("Not present or unusable segment. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
6061 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6062 return VINF_HM_PENDING_XCPT;
6063 }
6064
6065 *pGCPtrMem = GCPtrMem;
6066 return VINF_SUCCESS;
6067}
6068
6069
6070/**
6071 * Perform the relevant VMX instruction checks for VM-exits that occurred due to the
6072 * guest attempting to execute a VMX instruction.
6073 *
6074 * @returns Strict VBox status code (i.e. informational status codes too).
6075 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
6076 * @retval VINF_HM_PENDING_XCPT if an exception was raised.
6077 *
6078 * @param pVCpu The cross context virtual CPU structure.
6079 * @param uExitReason The VM-exit reason.
6080 *
6081 * @todo NstVmx: Document other error codes when VM-exit is implemented.
6082 * @remarks No-long-jump zone!!!
6083 */
6084static VBOXSTRICTRC hmR0VmxCheckExitDueToVmxInstr(PVMCPU pVCpu, uint32_t uExitReason)
6085{
6086 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS
6087 | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
6088
6089 if ( CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx)
6090 || ( CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
6091 && !CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx)))
6092 {
6093 Log4Func(("In real/v86-mode or long-mode outside 64-bit code segment -> #UD\n"));
6094 hmR0VmxSetPendingXcptUD(pVCpu);
6095 return VINF_HM_PENDING_XCPT;
6096 }
6097
6098 if (uExitReason == VMX_EXIT_VMXON)
6099 {
6100 /*
6101 * We check CR4.VMXE because it is required to be always set while in VMX operation
6102 * by physical CPUs and our CR4 read shadow is only consulted when executing specific
6103 * instructions (CLTS, LMSW, MOV CR, and SMSW) and thus doesn't affect CPU operation
6104 * otherwise (i.e. physical CPU won't automatically #UD if Cr4Shadow.VMXE is 0).
6105 */
6106 if (!CPUMIsGuestVmxEnabled(&pVCpu->cpum.GstCtx))
6107 {
6108 Log4Func(("CR4.VMXE is not set -> #UD\n"));
6109 hmR0VmxSetPendingXcptUD(pVCpu);
6110 return VINF_HM_PENDING_XCPT;
6111 }
6112 }
6113 else if (!CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx))
6114 {
6115 /*
6116 * The guest has not entered VMX operation but attempted to execute a VMX instruction
6117 * (other than VMXON), we need to raise a #UD.
6118 */
6119 Log4Func(("Not in VMX root mode -> #UD\n"));
6120 hmR0VmxSetPendingXcptUD(pVCpu);
6121 return VINF_HM_PENDING_XCPT;
6122 }
6123
6124 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
6125 {
6126 /*
6127 * The nested-guest attempted to execute a VMX instruction, cause a VM-exit and let
6128 * the guest hypervisor deal with it.
6129 */
6130 /** @todo NSTVMX: Trigger a VM-exit */
6131 }
6132
6133 /*
6134 * VMX instructions require CPL 0 except in VMX non-root mode where the VM-exit intercept
6135 * (above) takes preceedence over the CPL check.
6136 */
6137 if (CPUMGetGuestCPL(pVCpu) > 0)
6138 {
6139 Log4Func(("CPL > 0 -> #GP(0)\n"));
6140 hmR0VmxSetPendingXcptGP(pVCpu, 0);
6141 return VINF_HM_PENDING_XCPT;
6142 }
6143
6144 return VINF_SUCCESS;
6145}
6146#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
6147
6148
6149/**
6150 * Handle a condition that occurred while delivering an event through the guest
6151 * IDT.
6152 *
6153 * @returns Strict VBox status code (i.e. informational status codes too).
6154 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
6155 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
6156 * to continue execution of the guest which will delivery the \#DF.
6157 * @retval VINF_EM_RESET if we detected a triple-fault condition.
6158 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
6159 *
6160 * @param pVCpu The cross context virtual CPU structure.
6161 * @param pVmxTransient Pointer to the VMX transient structure.
6162 *
6163 * @remarks No-long-jump zone!!!
6164 */
6165static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
6166{
6167 uint32_t const uExitVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
6168
6169 int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
6170 rc2 |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
6171 AssertRCReturn(rc2, rc2);
6172
6173 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
6174 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
6175 {
6176 uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
6177 uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
6178
6179 /*
6180 * If the event was a software interrupt (generated with INT n) or a software exception
6181 * (generated by INT3/INTO) or a privileged software exception (generated by INT1), we
6182 * can handle the VM-exit and continue guest execution which will re-execute the
6183 * instruction rather than re-injecting the exception, as that can cause premature
6184 * trips to ring-3 before injection and involve TRPM which currently has no way of
6185 * storing that these exceptions were caused by these instructions (ICEBP's #DB poses
6186 * the problem).
6187 */
6188 IEMXCPTRAISE enmRaise;
6189 IEMXCPTRAISEINFO fRaiseInfo;
6190 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
6191 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
6192 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
6193 {
6194 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
6195 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
6196 }
6197 else if (VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
6198 {
6199 uint32_t const uExitVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uExitIntInfo);
6200 uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
6201 uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
6202 /** @todo Make AssertMsgReturn as just AssertMsg later. */
6203 AssertMsgReturn(uExitVectorType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT,
6204 ("hmR0VmxCheckExitDueToEventDelivery: Unexpected VM-exit interruption info. %#x!\n",
6205 uExitVectorType), VERR_VMX_IPE_5);
6206
6207 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
6208
6209 /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
6210 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
6211 {
6212 pVmxTransient->fVectoringPF = true;
6213 enmRaise = IEMXCPTRAISE_PREV_EVENT;
6214 }
6215 }
6216 else
6217 {
6218 /*
6219 * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
6220 * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
6221 * It is sufficient to reflect the original event to the guest after handling the VM-exit.
6222 */
6223 Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
6224 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
6225 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
6226 enmRaise = IEMXCPTRAISE_PREV_EVENT;
6227 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
6228 }
6229
6230 /*
6231 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
6232 * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
6233 * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
6234 * subsequent VM-entry would fail.
6235 *
6236 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
6237 */
6238 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)
6239 && uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
6240 && ( enmRaise == IEMXCPTRAISE_PREV_EVENT
6241 || (fRaiseInfo & IEMXCPTRAISEINFO_NMI_PF))
6242 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6243 {
6244 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6245 }
6246
6247 switch (enmRaise)
6248 {
6249 case IEMXCPTRAISE_CURRENT_XCPT:
6250 {
6251 Log4Func(("IDT: Pending secondary Xcpt: uIdtVectoringInfo=%#RX64 uExitIntInfo=%#RX64\n",
6252 pVmxTransient->uIdtVectoringInfo, pVmxTransient->uExitIntInfo));
6253 Assert(rcStrict == VINF_SUCCESS);
6254 break;
6255 }
6256
6257 case IEMXCPTRAISE_PREV_EVENT:
6258 {
6259 uint32_t u32ErrCode;
6260 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo))
6261 {
6262 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
6263 AssertRCReturn(rc2, rc2);
6264 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
6265 }
6266 else
6267 u32ErrCode = 0;
6268
6269 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
6270 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6271 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
6272 0 /* cbInstr */, u32ErrCode, pVCpu->cpum.GstCtx.cr2);
6273
6274 Log4Func(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->hm.s.Event.u64IntInfo,
6275 pVCpu->hm.s.Event.u32ErrCode));
6276 Assert(rcStrict == VINF_SUCCESS);
6277 break;
6278 }
6279
6280 case IEMXCPTRAISE_REEXEC_INSTR:
6281 Assert(rcStrict == VINF_SUCCESS);
6282 break;
6283
6284 case IEMXCPTRAISE_DOUBLE_FAULT:
6285 {
6286 /*
6287 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
6288 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
6289 */
6290 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
6291 {
6292 pVmxTransient->fVectoringDoublePF = true;
6293 Log4Func(("IDT: Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo,
6294 pVCpu->cpum.GstCtx.cr2));
6295 rcStrict = VINF_SUCCESS;
6296 }
6297 else
6298 {
6299 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6300 hmR0VmxSetPendingXcptDF(pVCpu);
6301 Log4Func(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
6302 uIdtVector, uExitVector));
6303 rcStrict = VINF_HM_DOUBLE_FAULT;
6304 }
6305 break;
6306 }
6307
6308 case IEMXCPTRAISE_TRIPLE_FAULT:
6309 {
6310 Log4Func(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector, uExitVector));
6311 rcStrict = VINF_EM_RESET;
6312 break;
6313 }
6314
6315 case IEMXCPTRAISE_CPU_HANG:
6316 {
6317 Log4Func(("IDT: Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", fRaiseInfo));
6318 rcStrict = VERR_EM_GUEST_CPU_HANG;
6319 break;
6320 }
6321
6322 default:
6323 {
6324 AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
6325 rcStrict = VERR_VMX_IPE_2;
6326 break;
6327 }
6328 }
6329 }
6330 else if ( VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
6331 && VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
6332 && uExitVector != X86_XCPT_DF
6333 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6334 {
6335 /*
6336 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
6337 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
6338 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
6339 */
6340 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
6341 {
6342 Log4Func(("Setting VMCPU_FF_BLOCK_NMIS. fValid=%RTbool uExitReason=%u\n",
6343 VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
6344 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6345 }
6346 }
6347
6348 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
6349 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
6350 return rcStrict;
6351}
6352
6353
6354/**
6355 * Imports a guest segment register from the current VMCS into
6356 * the guest-CPU context.
6357 *
6358 * @returns VBox status code.
6359 * @param pVCpu The cross context virtual CPU structure.
6360 * @param idxSel Index of the selector in the VMCS.
6361 * @param idxLimit Index of the segment limit in the VMCS.
6362 * @param idxBase Index of the segment base in the VMCS.
6363 * @param idxAccess Index of the access rights of the segment in the VMCS.
6364 * @param pSelReg Pointer to the segment selector.
6365 *
6366 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
6367 * do not log!
6368 *
6369 * @remarks Never call this function directly!!! Use the
6370 * HMVMX_IMPORT_SREG() macro as that takes care
6371 * of whether to read from the VMCS cache or not.
6372 */
6373static int hmR0VmxImportGuestSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
6374 PCPUMSELREG pSelReg)
6375{
6376 NOREF(pVCpu);
6377
6378 uint32_t u32Sel;
6379 uint32_t u32Limit;
6380 uint32_t u32Attr;
6381 uint64_t u64Base;
6382 int rc = VMXReadVmcs32(idxSel, &u32Sel);
6383 rc |= VMXReadVmcs32(idxLimit, &u32Limit);
6384 rc |= VMXReadVmcs32(idxAccess, &u32Attr);
6385 rc |= VMXReadVmcsGstNByIdxVal(idxBase, &u64Base);
6386 AssertRCReturn(rc, rc);
6387
6388 pSelReg->Sel = (uint16_t)u32Sel;
6389 pSelReg->ValidSel = (uint16_t)u32Sel;
6390 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6391 pSelReg->u32Limit = u32Limit;
6392 pSelReg->u64Base = u64Base;
6393 pSelReg->Attr.u = u32Attr;
6394
6395 /*
6396 * If VT-x marks the segment as unusable, most other bits remain undefined:
6397 * - For CS the L, D and G bits have meaning.
6398 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
6399 * - For the remaining data segments no bits are defined.
6400 *
6401 * The present bit and the unusable bit has been observed to be set at the
6402 * same time (the selector was supposed to be invalid as we started executing
6403 * a V8086 interrupt in ring-0).
6404 *
6405 * What should be important for the rest of the VBox code, is that the P bit is
6406 * cleared. Some of the other VBox code recognizes the unusable bit, but
6407 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
6408 * safe side here, we'll strip off P and other bits we don't care about. If
6409 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
6410 *
6411 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
6412 */
6413 if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
6414 {
6415 Assert(idxSel != VMX_VMCS16_GUEST_TR_SEL); /* TR is the only selector that can never be unusable. */
6416
6417 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
6418 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
6419 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
6420#ifdef VBOX_STRICT
6421 VMMRZCallRing3Disable(pVCpu);
6422 Log4Func(("Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Sel, pSelReg->Attr.u));
6423# ifdef DEBUG_bird
6424 AssertMsg((u32Attr & ~X86DESCATTR_P) == pSelReg->Attr.u,
6425 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
6426 idxSel, u32Sel, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
6427# endif
6428 VMMRZCallRing3Enable(pVCpu);
6429#endif
6430 }
6431 return VINF_SUCCESS;
6432}
6433
6434
6435/**
6436 * Imports the guest RIP from the VMCS back into the guest-CPU context.
6437 *
6438 * @returns VBox status code.
6439 * @param pVCpu The cross context virtual CPU structure.
6440 *
6441 * @remarks Called with interrupts and/or preemption disabled, should not assert!
6442 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6443 * instead!!!
6444 */
6445DECLINLINE(int) hmR0VmxImportGuestRip(PVMCPU pVCpu)
6446{
6447 uint64_t u64Val;
6448 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6449 if (pCtx->fExtrn & CPUMCTX_EXTRN_RIP)
6450 {
6451 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
6452 if (RT_SUCCESS(rc))
6453 {
6454 pCtx->rip = u64Val;
6455 EMR0HistoryUpdatePC(pVCpu, pCtx->rip, false);
6456 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RIP;
6457 }
6458 return rc;
6459 }
6460 return VINF_SUCCESS;
6461}
6462
6463
6464/**
6465 * Imports the guest RFLAGS from the VMCS back into the guest-CPU context.
6466 *
6467 * @returns VBox status code.
6468 * @param pVCpu The cross context virtual CPU structure.
6469 *
6470 * @remarks Called with interrupts and/or preemption disabled, should not assert!
6471 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6472 * instead!!!
6473 */
6474DECLINLINE(int) hmR0VmxImportGuestRFlags(PVMCPU pVCpu)
6475{
6476 uint32_t u32Val;
6477 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6478 if (pCtx->fExtrn & CPUMCTX_EXTRN_RFLAGS)
6479 {
6480 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val);
6481 if (RT_SUCCESS(rc))
6482 {
6483 pCtx->eflags.u32 = u32Val;
6484
6485 /* Restore eflags for real-on-v86-mode hack. */
6486 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6487 {
6488 pCtx->eflags.Bits.u1VM = 0;
6489 pCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
6490 }
6491 }
6492 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
6493 return rc;
6494 }
6495 return VINF_SUCCESS;
6496}
6497
6498
6499/**
6500 * Imports the guest interruptibility-state from the VMCS back into the guest-CPU
6501 * context.
6502 *
6503 * @returns VBox status code.
6504 * @param pVCpu The cross context virtual CPU structure.
6505 *
6506 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
6507 * do not log!
6508 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
6509 * instead!!!
6510 */
6511DECLINLINE(int) hmR0VmxImportGuestIntrState(PVMCPU pVCpu)
6512{
6513 uint32_t u32Val;
6514 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6515 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32Val);
6516 AssertRCReturn(rc, rc);
6517
6518 /*
6519 * We additionally have a requirement to import RIP, RFLAGS depending on whether we
6520 * might need them in hmR0VmxEvaluatePendingEvent().
6521 */
6522 if (!u32Val)
6523 {
6524 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6525 {
6526 rc = hmR0VmxImportGuestRip(pVCpu);
6527 rc |= hmR0VmxImportGuestRFlags(pVCpu);
6528 AssertRCReturn(rc, rc);
6529 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6530 }
6531
6532 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
6533 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6534 }
6535 else
6536 {
6537 rc = hmR0VmxImportGuestRip(pVCpu);
6538 rc |= hmR0VmxImportGuestRFlags(pVCpu);
6539 AssertRCReturn(rc, rc);
6540
6541 if (u32Val & ( VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
6542 | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
6543 {
6544 EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
6545 }
6546 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6547 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6548
6549 if (u32Val & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
6550 {
6551 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
6552 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6553 }
6554 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
6555 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6556 }
6557
6558 return VINF_SUCCESS;
6559}
6560
6561
6562/**
6563 * Worker for VMXR0ImportStateOnDemand.
6564 *
6565 * @returns VBox status code.
6566 * @param pVCpu The cross context virtual CPU structure.
6567 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
6568 */
6569static int hmR0VmxImportGuestState(PVMCPU pVCpu, uint64_t fWhat)
6570{
6571#define VMXLOCAL_BREAK_RC(a_rc) \
6572 if (RT_FAILURE(a_rc)) \
6573 break
6574
6575 int rc = VINF_SUCCESS;
6576 PVM pVM = pVCpu->CTX_SUFF(pVM);
6577 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6578 uint64_t u64Val;
6579 uint32_t u32Val;
6580
6581 Log4Func(("fExtrn=%#RX64 fWhat=%#RX64\n", pCtx->fExtrn, fWhat));
6582 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
6583
6584 /*
6585 * We disable interrupts to make the updating of the state and in particular
6586 * the fExtrn modification atomic wrt to preemption hooks.
6587 */
6588 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
6589
6590 fWhat &= pCtx->fExtrn;
6591 if (fWhat)
6592 {
6593 do
6594 {
6595 if (fWhat & CPUMCTX_EXTRN_RIP)
6596 {
6597 rc = hmR0VmxImportGuestRip(pVCpu);
6598 VMXLOCAL_BREAK_RC(rc);
6599 }
6600
6601 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
6602 {
6603 rc = hmR0VmxImportGuestRFlags(pVCpu);
6604 VMXLOCAL_BREAK_RC(rc);
6605 }
6606
6607 if (fWhat & CPUMCTX_EXTRN_HM_VMX_INT_STATE)
6608 {
6609 rc = hmR0VmxImportGuestIntrState(pVCpu);
6610 VMXLOCAL_BREAK_RC(rc);
6611 }
6612
6613 if (fWhat & CPUMCTX_EXTRN_RSP)
6614 {
6615 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
6616 VMXLOCAL_BREAK_RC(rc);
6617 pCtx->rsp = u64Val;
6618 }
6619
6620 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
6621 {
6622 if (fWhat & CPUMCTX_EXTRN_CS)
6623 {
6624 rc = HMVMX_IMPORT_SREG(CS, &pCtx->cs);
6625 rc |= hmR0VmxImportGuestRip(pVCpu);
6626 VMXLOCAL_BREAK_RC(rc);
6627 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6628 pCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
6629 EMR0HistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true);
6630 }
6631 if (fWhat & CPUMCTX_EXTRN_SS)
6632 {
6633 rc = HMVMX_IMPORT_SREG(SS, &pCtx->ss);
6634 VMXLOCAL_BREAK_RC(rc);
6635 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6636 pCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
6637 }
6638 if (fWhat & CPUMCTX_EXTRN_DS)
6639 {
6640 rc = HMVMX_IMPORT_SREG(DS, &pCtx->ds);
6641 VMXLOCAL_BREAK_RC(rc);
6642 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6643 pCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
6644 }
6645 if (fWhat & CPUMCTX_EXTRN_ES)
6646 {
6647 rc = HMVMX_IMPORT_SREG(ES, &pCtx->es);
6648 VMXLOCAL_BREAK_RC(rc);
6649 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6650 pCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
6651 }
6652 if (fWhat & CPUMCTX_EXTRN_FS)
6653 {
6654 rc = HMVMX_IMPORT_SREG(FS, &pCtx->fs);
6655 VMXLOCAL_BREAK_RC(rc);
6656 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6657 pCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
6658 }
6659 if (fWhat & CPUMCTX_EXTRN_GS)
6660 {
6661 rc = HMVMX_IMPORT_SREG(GS, &pCtx->gs);
6662 VMXLOCAL_BREAK_RC(rc);
6663 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6664 pCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
6665 }
6666 }
6667
6668 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
6669 {
6670 if (fWhat & CPUMCTX_EXTRN_LDTR)
6671 {
6672 rc = HMVMX_IMPORT_SREG(LDTR, &pCtx->ldtr);
6673 VMXLOCAL_BREAK_RC(rc);
6674 }
6675
6676 if (fWhat & CPUMCTX_EXTRN_GDTR)
6677 {
6678 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
6679 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
6680 VMXLOCAL_BREAK_RC(rc);
6681 pCtx->gdtr.pGdt = u64Val;
6682 pCtx->gdtr.cbGdt = u32Val;
6683 }
6684
6685 /* Guest IDTR. */
6686 if (fWhat & CPUMCTX_EXTRN_IDTR)
6687 {
6688 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
6689 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
6690 VMXLOCAL_BREAK_RC(rc);
6691 pCtx->idtr.pIdt = u64Val;
6692 pCtx->idtr.cbIdt = u32Val;
6693 }
6694
6695 /* Guest TR. */
6696 if (fWhat & CPUMCTX_EXTRN_TR)
6697 {
6698 /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR, don't save that one. */
6699 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6700 {
6701 rc = HMVMX_IMPORT_SREG(TR, &pCtx->tr);
6702 VMXLOCAL_BREAK_RC(rc);
6703 }
6704 }
6705 }
6706
6707 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
6708 {
6709 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &pCtx->SysEnter.eip);
6710 rc |= VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &pCtx->SysEnter.esp);
6711 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val);
6712 pCtx->SysEnter.cs = u32Val;
6713 VMXLOCAL_BREAK_RC(rc);
6714 }
6715
6716#if HC_ARCH_BITS == 64
6717 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
6718 {
6719 if ( pVM->hm.s.fAllow64BitGuests
6720 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
6721 pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
6722 }
6723
6724 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
6725 {
6726 if ( pVM->hm.s.fAllow64BitGuests
6727 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
6728 {
6729 pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
6730 pCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
6731 pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
6732 }
6733 }
6734#endif
6735
6736 if ( (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
6737#if HC_ARCH_BITS == 32
6738 || (fWhat & (CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS))
6739#endif
6740 )
6741 {
6742 PCVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
6743 uint32_t const cMsrs = pVCpu->hm.s.vmx.cMsrs;
6744 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
6745 {
6746 switch (pMsr->u32Msr)
6747 {
6748#if HC_ARCH_BITS == 32
6749 case MSR_K8_LSTAR: pCtx->msrLSTAR = pMsr->u64Value; break;
6750 case MSR_K6_STAR: pCtx->msrSTAR = pMsr->u64Value; break;
6751 case MSR_K8_SF_MASK: pCtx->msrSFMASK = pMsr->u64Value; break;
6752 case MSR_K8_KERNEL_GS_BASE: pCtx->msrKERNELGSBASE = pMsr->u64Value; break;
6753#endif
6754 case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsr->u64Value); break;
6755 case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsr->u64Value); break;
6756 case MSR_K6_EFER: /* EFER can't be changed without causing a VM-exit */ break;
6757 default:
6758 {
6759 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
6760 ASMSetFlags(fEFlags);
6761 AssertMsgFailed(("Unexpected MSR in auto-load/store area. uMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr,
6762 cMsrs));
6763 return VERR_HM_UNEXPECTED_LD_ST_MSR;
6764 }
6765 }
6766 }
6767 }
6768
6769 if (fWhat & CPUMCTX_EXTRN_DR7)
6770 {
6771 if (!pVCpu->hm.s.fUsingHyperDR7)
6772 {
6773 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
6774 rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val);
6775 VMXLOCAL_BREAK_RC(rc);
6776 pCtx->dr[7] = u32Val;
6777 }
6778 }
6779
6780 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
6781 {
6782 uint32_t u32Shadow;
6783 if (fWhat & CPUMCTX_EXTRN_CR0)
6784 {
6785 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val);
6786 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u32Shadow);
6787 VMXLOCAL_BREAK_RC(rc);
6788 u32Val = (u32Val & ~pVCpu->hm.s.vmx.u32Cr0Mask)
6789 | (u32Shadow & pVCpu->hm.s.vmx.u32Cr0Mask);
6790 VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
6791 CPUMSetGuestCR0(pVCpu, u32Val);
6792 VMMRZCallRing3Enable(pVCpu);
6793 }
6794
6795 if (fWhat & CPUMCTX_EXTRN_CR4)
6796 {
6797 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32Val);
6798 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u32Shadow);
6799 VMXLOCAL_BREAK_RC(rc);
6800 u32Val = (u32Val & ~pVCpu->hm.s.vmx.u32Cr4Mask)
6801 | (u32Shadow & pVCpu->hm.s.vmx.u32Cr4Mask);
6802 CPUMSetGuestCR4(pVCpu, u32Val);
6803 }
6804
6805 if (fWhat & CPUMCTX_EXTRN_CR3)
6806 {
6807 /* CR0.PG bit changes are always intercepted, so it's up to date. */
6808 if ( pVM->hm.s.vmx.fUnrestrictedGuest
6809 || ( pVM->hm.s.fNestedPaging
6810 && CPUMIsGuestPagingEnabledEx(pCtx)))
6811 {
6812 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
6813 if (pCtx->cr3 != u64Val)
6814 {
6815 CPUMSetGuestCR3(pVCpu, u64Val);
6816 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
6817 }
6818
6819 /* If the guest is in PAE mode, sync back the PDPE's into the guest state.
6820 Note: CR4.PAE, CR0.PG, EFER bit changes are always intercepted, so they're up to date. */
6821 if (CPUMIsGuestInPAEModeEx(pCtx))
6822 {
6823 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
6824 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
6825 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
6826 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
6827 VMXLOCAL_BREAK_RC(rc);
6828 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
6829 }
6830 }
6831 }
6832 }
6833 } while (0);
6834
6835 if (RT_SUCCESS(rc))
6836 {
6837 /* Update fExtrn. */
6838 pCtx->fExtrn &= ~fWhat;
6839
6840 /* If everything has been imported, clear the HM keeper bit. */
6841 if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
6842 {
6843 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
6844 Assert(!pCtx->fExtrn);
6845 }
6846 }
6847 }
6848 else
6849 AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn));
6850
6851 ASMSetFlags(fEFlags);
6852
6853 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
6854
6855 /*
6856 * Honor any pending CR3 updates.
6857 *
6858 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
6859 * -> VMMRZCallRing3Disable() -> hmR0VmxImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
6860 * -> continue with VM-exit handling -> hmR0VmxImportGuestState() and here we are.
6861 *
6862 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
6863 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
6864 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
6865 * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
6866 *
6867 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
6868 */
6869 if (VMMRZCallRing3IsEnabled(pVCpu))
6870 {
6871 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6872 {
6873 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3));
6874 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
6875 }
6876
6877 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6878 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6879
6880 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6881 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6882 }
6883
6884 return VINF_SUCCESS;
6885#undef VMXLOCAL_BREAK_RC
6886}
6887
6888
6889/**
6890 * Saves the guest state from the VMCS into the guest-CPU context.
6891 *
6892 * @returns VBox status code.
6893 * @param pVCpu The cross context virtual CPU structure.
6894 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
6895 */
6896VMMR0DECL(int) VMXR0ImportStateOnDemand(PVMCPU pVCpu, uint64_t fWhat)
6897{
6898 return hmR0VmxImportGuestState(pVCpu, fWhat);
6899}
6900
6901
6902/**
6903 * Check per-VM and per-VCPU force flag actions that require us to go back to
6904 * ring-3 for one reason or another.
6905 *
6906 * @returns Strict VBox status code (i.e. informational status codes too)
6907 * @retval VINF_SUCCESS if we don't have any actions that require going back to
6908 * ring-3.
6909 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
6910 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
6911 * interrupts)
6912 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
6913 * all EMTs to be in ring-3.
6914 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
6915 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
6916 * to the EM loop.
6917 *
6918 * @param pVCpu The cross context virtual CPU structure.
6919 * @param fStepping Running in hmR0VmxRunGuestCodeStep().
6920 */
6921static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVMCPU pVCpu, bool fStepping)
6922{
6923 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6924
6925 /*
6926 * Anything pending? Should be more likely than not if we're doing a good job.
6927 */
6928 PVM pVM = pVCpu->CTX_SUFF(pVM);
6929 if ( !fStepping
6930 ? !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_MASK)
6931 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
6932 : !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
6933 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
6934 return VINF_SUCCESS;
6935
6936 /* Pending PGM C3 sync. */
6937 if (VMCPU_FF_IS_ANY_SET(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
6938 {
6939 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6940 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4)));
6941 VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4,
6942 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
6943 if (rcStrict2 != VINF_SUCCESS)
6944 {
6945 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
6946 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
6947 return rcStrict2;
6948 }
6949 }
6950
6951 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
6952 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
6953 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
6954 {
6955 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
6956 int rc2 = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
6957 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
6958 return rc2;
6959 }
6960
6961 /* Pending VM request packets, such as hardware interrupts. */
6962 if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
6963 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
6964 {
6965 Log4Func(("Pending VM request forcing us back to ring-3\n"));
6966 return VINF_EM_PENDING_REQUEST;
6967 }
6968
6969 /* Pending PGM pool flushes. */
6970 if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
6971 {
6972 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
6973 return VINF_PGM_POOL_FLUSH_PENDING;
6974 }
6975
6976 /* Pending DMA requests. */
6977 if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
6978 {
6979 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
6980 return VINF_EM_RAW_TO_R3;
6981 }
6982
6983 return VINF_SUCCESS;
6984}
6985
6986
6987/**
6988 * Converts any TRPM trap into a pending HM event. This is typically used when
6989 * entering from ring-3 (not longjmp returns).
6990 *
6991 * @param pVCpu The cross context virtual CPU structure.
6992 */
6993static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
6994{
6995 Assert(TRPMHasTrap(pVCpu));
6996 Assert(!pVCpu->hm.s.Event.fPending);
6997
6998 uint8_t uVector;
6999 TRPMEVENT enmTrpmEvent;
7000 RTGCUINT uErrCode;
7001 RTGCUINTPTR GCPtrFaultAddress;
7002 uint8_t cbInstr;
7003
7004 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
7005 AssertRC(rc);
7006
7007 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
7008 uint32_t u32IntInfo = uVector | VMX_EXIT_INT_INFO_VALID;
7009 if (enmTrpmEvent == TRPM_TRAP)
7010 {
7011 switch (uVector)
7012 {
7013 case X86_XCPT_NMI:
7014 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7015 break;
7016
7017 case X86_XCPT_BP:
7018 case X86_XCPT_OF:
7019 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7020 break;
7021
7022 case X86_XCPT_PF:
7023 case X86_XCPT_DF:
7024 case X86_XCPT_TS:
7025 case X86_XCPT_NP:
7026 case X86_XCPT_SS:
7027 case X86_XCPT_GP:
7028 case X86_XCPT_AC:
7029 u32IntInfo |= VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7030 RT_FALL_THRU();
7031 default:
7032 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7033 break;
7034 }
7035 }
7036 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
7037 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7038 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
7039 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_SW_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7040 else
7041 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
7042
7043 rc = TRPMResetTrap(pVCpu);
7044 AssertRC(rc);
7045 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
7046 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
7047
7048 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
7049}
7050
7051
7052/**
7053 * Converts the pending HM event into a TRPM trap.
7054 *
7055 * @param pVCpu The cross context virtual CPU structure.
7056 */
7057static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
7058{
7059 Assert(pVCpu->hm.s.Event.fPending);
7060
7061 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7062 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
7063 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVCpu->hm.s.Event.u64IntInfo);
7064 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
7065
7066 /* If a trap was already pending, we did something wrong! */
7067 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
7068
7069 TRPMEVENT enmTrapType;
7070 switch (uVectorType)
7071 {
7072 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7073 enmTrapType = TRPM_HARDWARE_INT;
7074 break;
7075
7076 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7077 enmTrapType = TRPM_SOFTWARE_INT;
7078 break;
7079
7080 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7081 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
7082 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
7083 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7084 enmTrapType = TRPM_TRAP;
7085 break;
7086
7087 default:
7088 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
7089 enmTrapType = TRPM_32BIT_HACK;
7090 break;
7091 }
7092
7093 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
7094
7095 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7096 AssertRC(rc);
7097
7098 if (fErrorCodeValid)
7099 TRPMSetErrorCode(pVCpu, uErrorCode);
7100
7101 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
7102 && uVector == X86_XCPT_PF)
7103 {
7104 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
7105 }
7106 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7107 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
7108 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
7109 {
7110 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7111 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
7112 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
7113 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
7114 }
7115
7116 /* Clear the events from the VMCS. */
7117 VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);
7118
7119 /* We're now done converting the pending event. */
7120 pVCpu->hm.s.Event.fPending = false;
7121}
7122
7123
7124/**
7125 * Does the necessary state syncing before returning to ring-3 for any reason
7126 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
7127 *
7128 * @returns VBox status code.
7129 * @param pVCpu The cross context virtual CPU structure.
7130 * @param fImportState Whether to import the guest state from the VMCS back
7131 * to the guest-CPU context.
7132 *
7133 * @remarks No-long-jmp zone!!!
7134 */
7135static int hmR0VmxLeave(PVMCPU pVCpu, bool fImportState)
7136{
7137 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7138 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7139
7140 RTCPUID idCpu = RTMpCpuId();
7141 Log4Func(("HostCpuId=%u\n", idCpu));
7142
7143 /*
7144 * !!! IMPORTANT !!!
7145 * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
7146 */
7147
7148 /* Save the guest state if necessary. */
7149 if (fImportState)
7150 {
7151 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
7152 AssertRCReturn(rc, rc);
7153 }
7154
7155 /* Restore host FPU state if necessary. We will resync on next R0 reentry. */
7156 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7157 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
7158
7159 /* Restore host debug registers if necessary. We will resync on next R0 reentry. */
7160#ifdef VBOX_STRICT
7161 if (CPUMIsHyperDebugStateActive(pVCpu))
7162 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
7163#endif
7164 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7165 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
7166 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
7167
7168#if HC_ARCH_BITS == 64
7169 /* Restore host-state bits that VT-x only restores partially. */
7170 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7171 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7172 {
7173 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
7174 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7175 }
7176 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7177#endif
7178
7179 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7180 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
7181 {
7182 /* We shouldn't restore the host MSRs without saving the guest MSRs first. */
7183 if (!fImportState)
7184 {
7185 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS);
7186 AssertRCReturn(rc, rc);
7187 }
7188 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7189 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
7190 }
7191 else
7192 pVCpu->hm.s.vmx.fLazyMsrs = 0;
7193
7194 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7195 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7196
7197 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
7198 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
7199 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
7200 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
7201 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
7202 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
7203 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
7204 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
7205 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7206
7207 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7208
7209 /** @todo This partially defeats the purpose of having preemption hooks.
7210 * The problem is, deregistering the hooks should be moved to a place that
7211 * lasts until the EMT is about to be destroyed not everytime while leaving HM
7212 * context.
7213 */
7214 if (pVCpu->hm.s.vmx.fVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7215 {
7216 int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7217 AssertRCReturn(rc, rc);
7218
7219 pVCpu->hm.s.vmx.fVmcsState = HMVMX_VMCS_STATE_CLEAR;
7220 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
7221 }
7222 Assert(!(pVCpu->hm.s.vmx.fVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
7223 NOREF(idCpu);
7224
7225 return VINF_SUCCESS;
7226}
7227
7228
7229/**
7230 * Leaves the VT-x session.
7231 *
7232 * @returns VBox status code.
7233 * @param pVCpu The cross context virtual CPU structure.
7234 *
7235 * @remarks No-long-jmp zone!!!
7236 */
7237static int hmR0VmxLeaveSession(PVMCPU pVCpu)
7238{
7239 HM_DISABLE_PREEMPT(pVCpu);
7240 HMVMX_ASSERT_CPU_SAFE(pVCpu);
7241 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7242 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7243
7244 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
7245 and done this from the VMXR0ThreadCtxCallback(). */
7246 if (!pVCpu->hm.s.fLeaveDone)
7247 {
7248 int rc2 = hmR0VmxLeave(pVCpu, true /* fImportState */);
7249 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
7250 pVCpu->hm.s.fLeaveDone = true;
7251 }
7252 Assert(!pVCpu->cpum.GstCtx.fExtrn);
7253
7254 /*
7255 * !!! IMPORTANT !!!
7256 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
7257 */
7258
7259 /* Deregister hook now that we've left HM context before re-enabling preemption. */
7260 /** @todo Deregistering here means we need to VMCLEAR always
7261 * (longjmp/exit-to-r3) in VT-x which is not efficient, eliminate need
7262 * for calling VMMR0ThreadCtxHookDisable here! */
7263 VMMR0ThreadCtxHookDisable(pVCpu);
7264
7265 /* Leave HM context. This takes care of local init (term). */
7266 int rc = HMR0LeaveCpu(pVCpu);
7267
7268 HM_RESTORE_PREEMPT();
7269 return rc;
7270}
7271
7272
7273/**
7274 * Does the necessary state syncing before doing a longjmp to ring-3.
7275 *
7276 * @returns VBox status code.
7277 * @param pVCpu The cross context virtual CPU structure.
7278 *
7279 * @remarks No-long-jmp zone!!!
7280 */
7281DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu)
7282{
7283 return hmR0VmxLeaveSession(pVCpu);
7284}
7285
7286
7287/**
7288 * Take necessary actions before going back to ring-3.
7289 *
7290 * An action requires us to go back to ring-3. This function does the necessary
7291 * steps before we can safely return to ring-3. This is not the same as longjmps
7292 * to ring-3, this is voluntary and prepares the guest so it may continue
7293 * executing outside HM (recompiler/IEM).
7294 *
7295 * @returns VBox status code.
7296 * @param pVCpu The cross context virtual CPU structure.
7297 * @param rcExit The reason for exiting to ring-3. Can be
7298 * VINF_VMM_UNKNOWN_RING3_CALL.
7299 */
7300static int hmR0VmxExitToRing3(PVMCPU pVCpu, VBOXSTRICTRC rcExit)
7301{
7302 Assert(pVCpu);
7303 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7304
7305 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
7306 {
7307 VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VmcsPhys);
7308 pVCpu->hm.s.vmx.LastError.u32VmcsRev = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
7309 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
7310 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
7311 }
7312
7313 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
7314 VMMRZCallRing3Disable(pVCpu);
7315 Log4Func(("rcExit=%d\n", VBOXSTRICTRC_VAL(rcExit)));
7316
7317 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
7318 if (pVCpu->hm.s.Event.fPending)
7319 {
7320 hmR0VmxPendingEventToTrpmTrap(pVCpu);
7321 Assert(!pVCpu->hm.s.Event.fPending);
7322 }
7323
7324 /* Clear interrupt-window and NMI-window controls as we re-evaluate it when we return from ring-3. */
7325 hmR0VmxClearIntNmiWindowsVmcs(pVCpu);
7326
7327 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
7328 and if we're injecting an event we should have a TRPM trap pending. */
7329 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7330#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a triple fault in progress. */
7331 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7332#endif
7333
7334 /* Save guest state and restore host state bits. */
7335 int rc = hmR0VmxLeaveSession(pVCpu);
7336 AssertRCReturn(rc, rc);
7337 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7338 /* Thread-context hooks are unregistered at this point!!! */
7339
7340 /* Sync recompiler state. */
7341 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
7342 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
7343 | CPUM_CHANGED_LDTR
7344 | CPUM_CHANGED_GDTR
7345 | CPUM_CHANGED_IDTR
7346 | CPUM_CHANGED_TR
7347 | CPUM_CHANGED_HIDDEN_SEL_REGS);
7348 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
7349 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
7350 {
7351 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
7352 }
7353
7354 Assert(!pVCpu->hm.s.fClearTrapFlag);
7355
7356 /* Update the exit-to-ring 3 reason. */
7357 pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
7358
7359 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
7360 if (rcExit != VINF_EM_RAW_INTERRUPT)
7361 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
7362
7363 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
7364
7365 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
7366 VMMRZCallRing3RemoveNotification(pVCpu);
7367 VMMRZCallRing3Enable(pVCpu);
7368
7369 return rc;
7370}
7371
7372
7373/**
7374 * VMMRZCallRing3() callback wrapper which saves the guest state before we
7375 * longjump to ring-3 and possibly get preempted.
7376 *
7377 * @returns VBox status code.
7378 * @param pVCpu The cross context virtual CPU structure.
7379 * @param enmOperation The operation causing the ring-3 longjump.
7380 * @param pvUser User argument, currently unused, NULL.
7381 */
7382static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
7383{
7384 RT_NOREF(pvUser);
7385 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
7386 {
7387 /*
7388 * !!! IMPORTANT !!!
7389 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
7390 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
7391 */
7392 VMMRZCallRing3RemoveNotification(pVCpu);
7393 VMMRZCallRing3Disable(pVCpu);
7394 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
7395 RTThreadPreemptDisable(&PreemptState);
7396
7397 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
7398 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7399 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7400
7401#if HC_ARCH_BITS == 64
7402 /* Restore host-state bits that VT-x only restores partially. */
7403 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7404 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7405 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7406 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7407#endif
7408
7409 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7410 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
7411 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7412
7413 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7414 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7415 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7416 if (pVCpu->hm.s.vmx.fVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7417 {
7418 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7419 pVCpu->hm.s.vmx.fVmcsState = HMVMX_VMCS_STATE_CLEAR;
7420 }
7421
7422 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7423 VMMR0ThreadCtxHookDisable(pVCpu);
7424 HMR0LeaveCpu(pVCpu);
7425 RTThreadPreemptRestore(&PreemptState);
7426 return VINF_SUCCESS;
7427 }
7428
7429 Assert(pVCpu);
7430 Assert(pvUser);
7431 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7432 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7433
7434 VMMRZCallRing3Disable(pVCpu);
7435 Assert(VMMR0IsLogFlushDisabled(pVCpu));
7436
7437 Log4Func((" -> hmR0VmxLongJmpToRing3 enmOperation=%d\n", enmOperation));
7438
7439 int rc = hmR0VmxLongJmpToRing3(pVCpu);
7440 AssertRCReturn(rc, rc);
7441
7442 VMMRZCallRing3Enable(pVCpu);
7443 return VINF_SUCCESS;
7444}
7445
7446
7447/**
7448 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7449 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7450 *
7451 * @param pVCpu The cross context virtual CPU structure.
7452 */
7453DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
7454{
7455 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_INT_WINDOW_EXIT))
7456 {
7457 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
7458 {
7459 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_PROC_CTLS_INT_WINDOW_EXIT;
7460 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7461 AssertRC(rc);
7462 Log4Func(("Setup interrupt-window exiting\n"));
7463 }
7464 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
7465}
7466
7467
7468/**
7469 * Clears the interrupt-window exiting control in the VMCS.
7470 *
7471 * @param pVCpu The cross context virtual CPU structure.
7472 */
7473DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMCPU pVCpu)
7474{
7475 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT);
7476 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_INT_WINDOW_EXIT;
7477 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7478 AssertRC(rc);
7479 Log4Func(("Cleared interrupt-window exiting\n"));
7480}
7481
7482
7483/**
7484 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7485 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7486 *
7487 * @param pVCpu The cross context virtual CPU structure.
7488 */
7489DECLINLINE(void) hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu)
7490{
7491 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
7492 {
7493 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
7494 {
7495 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7496 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7497 AssertRC(rc);
7498 Log4Func(("Setup NMI-window exiting\n"));
7499 }
7500 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7501}
7502
7503
7504/**
7505 * Clears the NMI-window exiting control in the VMCS.
7506 *
7507 * @param pVCpu The cross context virtual CPU structure.
7508 */
7509DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMCPU pVCpu)
7510{
7511 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT);
7512 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_NMI_WINDOW_EXIT;
7513 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7514 AssertRC(rc);
7515 Log4Func(("Cleared NMI-window exiting\n"));
7516}
7517
7518
7519/**
7520 * Evaluates the event to be delivered to the guest and sets it as the pending
7521 * event.
7522 *
7523 * @returns The VT-x guest-interruptibility state.
7524 * @param pVCpu The cross context virtual CPU structure.
7525 */
7526static uint32_t hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu)
7527{
7528 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7529 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7530 uint32_t const fIntrState = hmR0VmxGetGuestIntrState(pVCpu);
7531 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
7532 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
7533 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
7534
7535 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_RFLAGS));
7536 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7537 Assert(!fBlockSti || pCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7538 Assert(!TRPMHasTrap(pVCpu));
7539
7540 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7541 APICUpdatePendingInterrupts(pVCpu);
7542
7543 /*
7544 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
7545 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
7546 */
7547 /** @todo SMI. SMIs take priority over NMIs. */
7548 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
7549 {
7550 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
7551 if ( !pVCpu->hm.s.Event.fPending
7552 && !fBlockNmi
7553 && !fBlockSti
7554 && !fBlockMovSS)
7555 {
7556 Log4Func(("Pending NMI\n"));
7557 uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INT_INFO_VALID;
7558 u32IntInfo |= (VMX_EXIT_INT_INFO_TYPE_NMI << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7559
7560 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7561 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
7562 }
7563 else
7564 hmR0VmxSetNmiWindowExitVmcs(pVCpu);
7565 }
7566 /*
7567 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
7568 * a valid interrupt we must- deliver the interrupt. We can no longer re-request it from the APIC.
7569 */
7570 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
7571 && !pVCpu->hm.s.fSingleInstruction)
7572 {
7573 Assert(!DBGFIsStepping(pVCpu));
7574 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
7575 AssertRCReturn(rc, 0);
7576 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
7577 if ( !pVCpu->hm.s.Event.fPending
7578 && !fBlockInt
7579 && !fBlockSti
7580 && !fBlockMovSS)
7581 {
7582 uint8_t u8Interrupt;
7583 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
7584 if (RT_SUCCESS(rc))
7585 {
7586 Log4Func(("Pending external interrupt u8Interrupt=%#x\n", u8Interrupt));
7587 uint32_t u32IntInfo = u8Interrupt
7588 | VMX_EXIT_INT_INFO_VALID
7589 | (VMX_EXIT_INT_INFO_TYPE_EXT_INT << VMX_EXIT_INT_INFO_TYPE_SHIFT);
7590
7591 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
7592 }
7593 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
7594 {
7595 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
7596 hmR0VmxApicSetTprThreshold(pVCpu, u8Interrupt >> 4);
7597 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
7598
7599 /*
7600 * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
7601 * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
7602 * need to re-set this force-flag here.
7603 */
7604 }
7605 else
7606 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
7607 }
7608 else
7609 hmR0VmxSetIntWindowExitVmcs(pVCpu);
7610 }
7611
7612 return fIntrState;
7613}
7614
7615
7616/**
7617 * Injects any pending events into the guest if the guest is in a state to
7618 * receive them.
7619 *
7620 * @returns Strict VBox status code (i.e. informational status codes too).
7621 * @param pVCpu The cross context virtual CPU structure.
7622 * @param fIntrState The VT-x guest-interruptibility state.
7623 * @param fStepping Running in hmR0VmxRunGuestCodeStep() and we should
7624 * return VINF_EM_DBG_STEPPED if the event was
7625 * dispatched directly.
7626 */
7627static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, uint32_t fIntrState, bool fStepping)
7628{
7629 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
7630 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7631
7632 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
7633 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
7634
7635 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
7636 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7637 Assert(!fBlockSti || pVCpu->cpum.GstCtx.eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7638 Assert(!TRPMHasTrap(pVCpu));
7639
7640 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
7641 if (pVCpu->hm.s.Event.fPending)
7642 {
7643 /*
7644 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
7645 * pending even while injecting an event and in this case, we want a VM-exit as soon as
7646 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
7647 *
7648 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
7649 */
7650 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7651#ifdef VBOX_STRICT
7652 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
7653 {
7654 bool const fBlockInt = !(pVCpu->cpum.GstCtx.eflags.u32 & X86_EFL_IF);
7655 Assert(!fBlockInt);
7656 Assert(!fBlockSti);
7657 Assert(!fBlockMovSS);
7658 }
7659 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI)
7660 {
7661 bool const fBlockNmi = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
7662 Assert(!fBlockSti);
7663 Assert(!fBlockMovSS);
7664 Assert(!fBlockNmi);
7665 }
7666#endif
7667 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
7668 uIntType));
7669
7670 /*
7671 * Inject the event and get any changes to the guest-interruptibility state.
7672 *
7673 * The guest-interruptibility state may need to be updated if we inject the event
7674 * into the guest IDT ourselves (for real-on-v86 guest injecting software interrupts).
7675 */
7676 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
7677 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress, fStepping,
7678 &fIntrState);
7679 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
7680
7681 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
7682 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
7683 else
7684 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
7685 }
7686
7687 /*
7688 * Update the guest-interruptibility state.
7689 *
7690 * This is required for the real-on-v86 software interrupt injection case above, as well as
7691 * updates to the guest state from ring-3 or IEM/REM.
7692 */
7693 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
7694 AssertRCReturn(rc, rc);
7695
7696 /*
7697 * There's no need to clear the VM-entry interruption-information field here if we're not
7698 * injecting anything. VT-x clears the valid bit on every VM-exit.
7699 *
7700 * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7701 */
7702
7703 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
7704 NOREF(fBlockMovSS); NOREF(fBlockSti);
7705 return rcStrict;
7706}
7707
7708
7709/**
7710 * Injects a double-fault (\#DF) exception into the VM.
7711 *
7712 * @returns Strict VBox status code (i.e. informational status codes too).
7713 * @param pVCpu The cross context virtual CPU structure.
7714 * @param fStepping Whether we're running in hmR0VmxRunGuestCodeStep()
7715 * and should return VINF_EM_DBG_STEPPED if the event
7716 * is injected directly (register modified by us, not
7717 * by hardware on VM-entry).
7718 * @param pfIntrState Pointer to the current guest interruptibility-state.
7719 * This interruptibility-state will be updated if
7720 * necessary. This cannot not be NULL.
7721 */
7722DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptDF(PVMCPU pVCpu, bool fStepping, uint32_t *pfIntrState)
7723{
7724 uint32_t const u32IntInfo = X86_XCPT_DF | VMX_EXIT_INT_INFO_VALID
7725 | (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT)
7726 | VMX_EXIT_INT_INFO_ERROR_CODE_VALID;
7727 return hmR0VmxInjectEventVmcs(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */, fStepping,
7728 pfIntrState);
7729}
7730
7731
7732/**
7733 * Injects a general-protection (\#GP) fault into the VM.
7734 *
7735 * @returns Strict VBox status code (i.e. informational status codes too).
7736 * @param pVCpu The cross context virtual CPU structure.
7737 * @param fErrorCodeValid Whether the error code is valid (depends on the CPU
7738 * mode, i.e. in real-mode it's not valid).
7739 * @param u32ErrorCode The error code associated with the \#GP.
7740 * @param fStepping Whether we're running in
7741 * hmR0VmxRunGuestCodeStep() and should return
7742 * VINF_EM_DBG_STEPPED if the event is injected
7743 * directly (register modified by us, not by
7744 * hardware on VM-entry).
7745 * @param pfIntrState Pointer to the current guest interruptibility-state.
7746 * This interruptibility-state will be updated if
7747 * necessary. This cannot not be NULL.
7748 */
7749DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptGP(PVMCPU pVCpu, bool fErrorCodeValid, uint32_t u32ErrorCode, bool fStepping,
7750 uint32_t *pfIntrState)
7751{
7752 uint32_t const u32IntInfo = X86_XCPT_GP | VMX_EXIT_INT_INFO_VALID
7753 | (VMX_EXIT_INT_INFO_TYPE_HW_XCPT << VMX_EXIT_INT_INFO_TYPE_SHIFT)
7754 | (fErrorCodeValid ? VMX_EXIT_INT_INFO_ERROR_CODE_VALID : 0);
7755 return hmR0VmxInjectEventVmcs(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */, fStepping,
7756 pfIntrState);
7757}
7758
7759
7760/**
7761 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
7762 * stack.
7763 *
7764 * @returns Strict VBox status code (i.e. informational status codes too).
7765 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
7766 * @param pVCpu The cross context virtual CPU structure.
7767 * @param uValue The value to push to the guest stack.
7768 */
7769static VBOXSTRICTRC hmR0VmxRealModeGuestStackPush(PVMCPU pVCpu, uint16_t uValue)
7770{
7771 /*
7772 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
7773 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
7774 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
7775 */
7776 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7777 if (pCtx->sp == 1)
7778 return VINF_EM_RESET;
7779 pCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
7780 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->ss.u64Base + pCtx->sp, &uValue, sizeof(uint16_t));
7781 AssertRC(rc);
7782 return rc;
7783}
7784
7785
7786/**
7787 * Injects an event into the guest upon VM-entry by updating the relevant fields
7788 * in the VM-entry area in the VMCS.
7789 *
7790 * @returns Strict VBox status code (i.e. informational status codes too).
7791 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
7792 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
7793 *
7794 * @param pVCpu The cross context virtual CPU structure.
7795 * @param u64IntInfo The VM-entry interruption-information field.
7796 * @param cbInstr The VM-entry instruction length in bytes (for
7797 * software interrupts, exceptions and privileged
7798 * software exceptions).
7799 * @param u32ErrCode The VM-entry exception error code.
7800 * @param GCPtrFaultAddress The page-fault address for \#PF exceptions.
7801 * @param pfIntrState Pointer to the current guest interruptibility-state.
7802 * This interruptibility-state will be updated if
7803 * necessary. This cannot not be NULL.
7804 * @param fStepping Whether we're running in
7805 * hmR0VmxRunGuestCodeStep() and should return
7806 * VINF_EM_DBG_STEPPED if the event is injected
7807 * directly (register modified by us, not by
7808 * hardware on VM-entry).
7809 */
7810static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, uint64_t u64IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
7811 RTGCUINTREG GCPtrFaultAddress, bool fStepping, uint32_t *pfIntrState)
7812{
7813 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
7814 AssertMsg(!RT_HI_U32(u64IntInfo), ("%#RX64\n", u64IntInfo));
7815 Assert(pfIntrState);
7816
7817 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7818 uint32_t u32IntInfo = (uint32_t)u64IntInfo;
7819 uint32_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(u32IntInfo);
7820 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(u32IntInfo);
7821
7822#ifdef VBOX_STRICT
7823 /*
7824 * Validate the error-code-valid bit for hardware exceptions.
7825 * No error codes for exceptions in real-mode.
7826 *
7827 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
7828 */
7829 if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
7830 && !CPUMIsGuestInRealModeEx(pCtx))
7831 {
7832 switch (uVector)
7833 {
7834 case X86_XCPT_PF:
7835 case X86_XCPT_DF:
7836 case X86_XCPT_TS:
7837 case X86_XCPT_NP:
7838 case X86_XCPT_SS:
7839 case X86_XCPT_GP:
7840 case X86_XCPT_AC:
7841 AssertMsg(VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo),
7842 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
7843 RT_FALL_THRU();
7844 default:
7845 break;
7846 }
7847 }
7848#endif
7849
7850 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
7851 Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
7852 || !(*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
7853
7854 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
7855
7856 /*
7857 * Hardware interrupts & exceptions cannot be delivered through the software interrupt
7858 * redirection bitmap to the real mode task in virtual-8086 mode. We must jump to the
7859 * interrupt handler in the (real-mode) guest.
7860 *
7861 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode".
7862 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
7863 */
7864 if (CPUMIsGuestInRealModeEx(pCtx)) /* CR0.PE bit changes are always intercepted, so it's up to date. */
7865 {
7866 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest)
7867 {
7868 /*
7869 * For unrestricted execution enabled CPUs running real-mode guests, we must not
7870 * set the deliver-error-code bit.
7871 *
7872 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
7873 */
7874 u32IntInfo &= ~VMX_ENTRY_INT_INFO_ERROR_CODE_VALID;
7875 }
7876 else
7877 {
7878 PVM pVM = pVCpu->CTX_SUFF(pVM);
7879 Assert(PDMVmmDevHeapIsEnabled(pVM));
7880 Assert(pVM->hm.s.vmx.pRealModeTSS);
7881
7882 /* We require RIP, RSP, RFLAGS, CS, IDTR, import them. */
7883 int rc2 = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_RIP
7884 | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS);
7885 AssertRCReturn(rc2, rc2);
7886
7887 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
7888 size_t const cbIdtEntry = sizeof(X86IDTR16);
7889 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pCtx->idtr.cbIdt)
7890 {
7891 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
7892 if (uVector == X86_XCPT_DF)
7893 return VINF_EM_RESET;
7894
7895 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
7896 if (uVector == X86_XCPT_GP)
7897 return hmR0VmxInjectXcptDF(pVCpu, fStepping, pfIntrState);
7898
7899 /*
7900 * If we're injecting an event with no valid IDT entry, inject a #GP.
7901 * No error codes for exceptions in real-mode.
7902 *
7903 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
7904 */
7905 return hmR0VmxInjectXcptGP(pVCpu, false /* fErrCodeValid */, 0 /* u32ErrCode */, fStepping, pfIntrState);
7906 }
7907
7908 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
7909 uint16_t uGuestIp = pCtx->ip;
7910 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT)
7911 {
7912 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
7913 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
7914 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
7915 }
7916 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_INT)
7917 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
7918
7919 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
7920 X86IDTR16 IdtEntry;
7921 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pCtx->idtr.pIdt + uVector * cbIdtEntry;
7922 rc2 = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
7923 AssertRCReturn(rc2, rc2);
7924
7925 /* Construct the stack frame for the interrupt/exception handler. */
7926 VBOXSTRICTRC rcStrict;
7927 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->eflags.u32);
7928 if (rcStrict == VINF_SUCCESS)
7929 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->cs.Sel);
7930 if (rcStrict == VINF_SUCCESS)
7931 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, uGuestIp);
7932
7933 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
7934 if (rcStrict == VINF_SUCCESS)
7935 {
7936 pCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
7937 pCtx->rip = IdtEntry.offSel;
7938 pCtx->cs.Sel = IdtEntry.uSel;
7939 pCtx->cs.ValidSel = IdtEntry.uSel;
7940 pCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
7941 if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
7942 && uVector == X86_XCPT_PF)
7943 pCtx->cr2 = GCPtrFaultAddress;
7944
7945 /* If any other guest-state bits are changed here, make sure to update
7946 hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
7947 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CS | HM_CHANGED_GUEST_CR2
7948 | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
7949 | HM_CHANGED_GUEST_RSP);
7950
7951 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
7952 if (*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
7953 {
7954 Assert( uIntType != VMX_ENTRY_INT_INFO_TYPE_NMI
7955 && uIntType != VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
7956 Log4Func(("Clearing inhibition due to STI\n"));
7957 *pfIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
7958 }
7959 Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
7960 u32IntInfo, u32ErrCode, cbInstr, pCtx->eflags.u, pCtx->cs.Sel, pCtx->eip));
7961
7962 /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
7963 it, if we are returning to ring-3 before executing guest code. */
7964 pVCpu->hm.s.Event.fPending = false;
7965
7966 /* Make hmR0VmxPreRunGuest() return if we're stepping since we've changed cs:rip. */
7967 if (fStepping)
7968 rcStrict = VINF_EM_DBG_STEPPED;
7969 }
7970 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
7971 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
7972 return rcStrict;
7973 }
7974 }
7975
7976 /* Validate. */
7977 Assert(VMX_ENTRY_INT_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
7978 Assert(!(u32IntInfo & VMX_BF_ENTRY_INT_INFO_RSVD_12_30_MASK)); /* Bits 30:12 MBZ. */
7979
7980 /* Inject. */
7981 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
7982 if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
7983 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
7984 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
7985 AssertRCReturn(rc, rc);
7986
7987 /* Update CR2. */
7988 if ( VMX_ENTRY_INT_INFO_TYPE(u32IntInfo) == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
7989 && uVector == X86_XCPT_PF)
7990 pCtx->cr2 = GCPtrFaultAddress;
7991
7992 Log4(("Injecting u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x CR2=%#RX64\n", u32IntInfo, u32ErrCode, cbInstr, pCtx->cr2));
7993
7994 return VINF_SUCCESS;
7995}
7996
7997
7998/**
7999 * Clears the interrupt-window exiting control in the VMCS and if necessary
8000 * clears the current event in the VMCS as well.
8001 *
8002 * @returns VBox status code.
8003 * @param pVCpu The cross context virtual CPU structure.
8004 *
8005 * @remarks Use this function only to clear events that have not yet been
8006 * delivered to the guest but are injected in the VMCS!
8007 * @remarks No-long-jump zone!!!
8008 */
8009static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu)
8010{
8011 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
8012 {
8013 hmR0VmxClearIntWindowExitVmcs(pVCpu);
8014 Log4Func(("Cleared interrupt window\n"));
8015 }
8016
8017 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
8018 {
8019 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
8020 Log4Func(("Cleared NMI window\n"));
8021 }
8022}
8023
8024
8025/**
8026 * Enters the VT-x session.
8027 *
8028 * @returns VBox status code.
8029 * @param pVCpu The cross context virtual CPU structure.
8030 */
8031VMMR0DECL(int) VMXR0Enter(PVMCPU pVCpu)
8032{
8033 AssertPtr(pVCpu);
8034 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported);
8035 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8036
8037 LogFlowFunc(("pVCpu=%p\n", pVCpu));
8038 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8039 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8040
8041#ifdef VBOX_STRICT
8042 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
8043 RTCCUINTREG uHostCR4 = ASMGetCR4();
8044 if (!(uHostCR4 & X86_CR4_VMXE))
8045 {
8046 LogRelFunc(("X86_CR4_VMXE bit in CR4 is not set!\n"));
8047 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8048 }
8049#endif
8050
8051 /*
8052 * Load the VCPU's VMCS as the current (and active) one.
8053 */
8054 Assert(pVCpu->hm.s.vmx.fVmcsState & HMVMX_VMCS_STATE_CLEAR);
8055 int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8056 if (RT_SUCCESS(rc))
8057 {
8058 pVCpu->hm.s.vmx.fVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8059 pVCpu->hm.s.fLeaveDone = false;
8060 Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8061
8062 /*
8063 * Do the EMT scheduled L1D flush here if needed.
8064 */
8065 if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
8066 ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
8067 }
8068 return rc;
8069}
8070
8071
8072/**
8073 * The thread-context callback (only on platforms which support it).
8074 *
8075 * @param enmEvent The thread-context event.
8076 * @param pVCpu The cross context virtual CPU structure.
8077 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8078 * @thread EMT(pVCpu)
8079 */
8080VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8081{
8082 NOREF(fGlobalInit);
8083
8084 switch (enmEvent)
8085 {
8086 case RTTHREADCTXEVENT_OUT:
8087 {
8088 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8089 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8090 VMCPU_ASSERT_EMT(pVCpu);
8091
8092 /* No longjmps (logger flushes, locks) in this fragile context. */
8093 VMMRZCallRing3Disable(pVCpu);
8094 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8095
8096 /*
8097 * Restore host-state (FPU, debug etc.)
8098 */
8099 if (!pVCpu->hm.s.fLeaveDone)
8100 {
8101 /*
8102 * Do -not- import the guest-state here as we might already be in the middle of importing
8103 * it, esp. bad if we're holding the PGM lock, see comment in hmR0VmxImportGuestState().
8104 */
8105 hmR0VmxLeave(pVCpu, false /* fImportState */);
8106 pVCpu->hm.s.fLeaveDone = true;
8107 }
8108
8109 /* Leave HM context, takes care of local init (term). */
8110 int rc = HMR0LeaveCpu(pVCpu);
8111 AssertRC(rc); NOREF(rc);
8112
8113 /* Restore longjmp state. */
8114 VMMRZCallRing3Enable(pVCpu);
8115 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
8116 break;
8117 }
8118
8119 case RTTHREADCTXEVENT_IN:
8120 {
8121 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8122 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8123 VMCPU_ASSERT_EMT(pVCpu);
8124
8125 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8126 VMMRZCallRing3Disable(pVCpu);
8127 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8128
8129 /* Initialize the bare minimum state required for HM. This takes care of
8130 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8131 int rc = hmR0EnterCpu(pVCpu);
8132 AssertRC(rc);
8133 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8134 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
8135
8136 /* Load the active VMCS as the current one. */
8137 if (pVCpu->hm.s.vmx.fVmcsState & HMVMX_VMCS_STATE_CLEAR)
8138 {
8139 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8140 AssertRC(rc); NOREF(rc);
8141 pVCpu->hm.s.vmx.fVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8142 Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8143 }
8144 pVCpu->hm.s.fLeaveDone = false;
8145
8146 /* Do the EMT scheduled L1D flush if needed. */
8147 if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
8148 ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
8149
8150 /* Restore longjmp state. */
8151 VMMRZCallRing3Enable(pVCpu);
8152 break;
8153 }
8154
8155 default:
8156 break;
8157 }
8158}
8159
8160
8161/**
8162 * Exports the host state into the VMCS host-state area.
8163 * Sets up the VM-exit MSR-load area.
8164 *
8165 * The CPU state will be loaded from these fields on every successful VM-exit.
8166 *
8167 * @returns VBox status code.
8168 * @param pVCpu The cross context virtual CPU structure.
8169 *
8170 * @remarks No-long-jump zone!!!
8171 */
8172static int hmR0VmxExportHostState(PVMCPU pVCpu)
8173{
8174 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8175
8176 int rc = VINF_SUCCESS;
8177 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
8178 {
8179 rc = hmR0VmxExportHostControlRegs();
8180 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8181
8182 rc = hmR0VmxExportHostSegmentRegs(pVCpu);
8183 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8184
8185 rc = hmR0VmxExportHostMsrs(pVCpu);
8186 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8187
8188 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT;
8189 }
8190 return rc;
8191}
8192
8193
8194/**
8195 * Saves the host state in the VMCS host-state.
8196 *
8197 * @returns VBox status code.
8198 * @param pVCpu The cross context virtual CPU structure.
8199 *
8200 * @remarks No-long-jump zone!!!
8201 */
8202VMMR0DECL(int) VMXR0ExportHostState(PVMCPU pVCpu)
8203{
8204 AssertPtr(pVCpu);
8205 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8206
8207 /*
8208 * Export the host state here while entering HM context.
8209 * When thread-context hooks are used, we might get preempted and have to re-save the host
8210 * state but most of the time we won't be, so do it here before we disable interrupts.
8211 */
8212 return hmR0VmxExportHostState(pVCpu);
8213}
8214
8215
8216/**
8217 * Exports the guest state into the VMCS guest-state area.
8218 *
8219 * The will typically be done before VM-entry when the guest-CPU state and the
8220 * VMCS state may potentially be out of sync.
8221 *
8222 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
8223 * VM-entry controls.
8224 * Sets up the appropriate VMX non-root function to execute guest code based on
8225 * the guest CPU mode.
8226 *
8227 * @returns VBox strict status code.
8228 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8229 * without unrestricted guest access and the VMMDev is not presently
8230 * mapped (e.g. EFI32).
8231 *
8232 * @param pVCpu The cross context virtual CPU structure.
8233 *
8234 * @remarks No-long-jump zone!!!
8235 */
8236static VBOXSTRICTRC hmR0VmxExportGuestState(PVMCPU pVCpu)
8237{
8238 AssertPtr(pVCpu);
8239 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8240
8241 LogFlowFunc(("pVCpu=%p\n", pVCpu));
8242
8243 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
8244
8245 /* Determine real-on-v86 mode. */
8246 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
8247 if ( !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
8248 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx))
8249 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
8250
8251 /*
8252 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
8253 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
8254 */
8255 int rc = hmR0VmxSelectVMRunHandler(pVCpu);
8256 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8257
8258 /* This needs to be done after hmR0VmxSelectVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
8259 rc = hmR0VmxExportGuestEntryCtls(pVCpu);
8260 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8261
8262 /* This needs to be done after hmR0VmxSelectVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
8263 rc = hmR0VmxExportGuestExitCtls(pVCpu);
8264 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8265
8266 rc = hmR0VmxExportGuestCR0(pVCpu);
8267 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8268
8269 VBOXSTRICTRC rcStrict = hmR0VmxExportGuestCR3AndCR4(pVCpu);
8270 if (rcStrict == VINF_SUCCESS)
8271 { /* likely */ }
8272 else
8273 {
8274 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
8275 return rcStrict;
8276 }
8277
8278 rc = hmR0VmxExportGuestSegmentRegs(pVCpu);
8279 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8280
8281 /* This needs to be done after hmR0VmxExportGuestEntryCtls() and hmR0VmxExportGuestExitCtls() as it
8282 may alter controls if we determine we don't have to swap EFER after all. */
8283 rc = hmR0VmxExportGuestMsrs(pVCpu);
8284 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8285
8286 rc = hmR0VmxExportGuestApicTpr(pVCpu);
8287 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8288
8289 rc = hmR0VmxExportGuestXcptIntercepts(pVCpu);
8290 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8291
8292 rc = hmR0VmxExportGuestRip(pVCpu);
8293 rc |= hmR0VmxExportGuestRsp(pVCpu);
8294 rc |= hmR0VmxExportGuestRflags(pVCpu);
8295 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
8296
8297 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
8298 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( (HM_CHANGED_GUEST_GPRS_MASK & ~HM_CHANGED_GUEST_RSP)
8299 | HM_CHANGED_GUEST_CR2
8300 | (HM_CHANGED_GUEST_DR_MASK & ~HM_CHANGED_GUEST_DR7)
8301 | HM_CHANGED_GUEST_X87
8302 | HM_CHANGED_GUEST_SSE_AVX
8303 | HM_CHANGED_GUEST_OTHER_XSAVE
8304 | HM_CHANGED_GUEST_XCRx
8305 | HM_CHANGED_GUEST_KERNEL_GS_BASE /* Part of lazy or auto load-store MSRs. */
8306 | HM_CHANGED_GUEST_SYSCALL_MSRS /* Part of lazy or auto load-store MSRs. */
8307 | HM_CHANGED_GUEST_TSC_AUX
8308 | HM_CHANGED_GUEST_OTHER_MSRS
8309 | HM_CHANGED_GUEST_HWVIRT
8310 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
8311
8312 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
8313 return rc;
8314}
8315
8316
8317/**
8318 * Exports the state shared between the host and guest into the VMCS.
8319 *
8320 * @param pVCpu The cross context virtual CPU structure.
8321 *
8322 * @remarks No-long-jump zone!!!
8323 */
8324static void hmR0VmxExportSharedState(PVMCPU pVCpu)
8325{
8326 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8327 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8328
8329 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
8330 {
8331 int rc = hmR0VmxExportSharedDebugState(pVCpu);
8332 AssertRC(rc);
8333 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
8334
8335 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
8336 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_RFLAGS)
8337 {
8338 rc = hmR0VmxExportGuestRflags(pVCpu);
8339 AssertRC(rc);
8340 }
8341 }
8342
8343 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_GUEST_LAZY_MSRS)
8344 {
8345 hmR0VmxLazyLoadGuestMsrs(pVCpu);
8346 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_VMX_GUEST_LAZY_MSRS;
8347 }
8348
8349 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE),
8350 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
8351}
8352
8353
8354/**
8355 * Worker for loading the guest-state bits in the inner VT-x execution loop.
8356 *
8357 * @returns Strict VBox status code (i.e. informational status codes too).
8358 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8359 * without unrestricted guest access and the VMMDev is not presently
8360 * mapped (e.g. EFI32).
8361 *
8362 * @param pVCpu The cross context virtual CPU structure.
8363 *
8364 * @remarks No-long-jump zone!!!
8365 */
8366static VBOXSTRICTRC hmR0VmxExportGuestStateOptimal(PVMCPU pVCpu)
8367{
8368 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8369 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8370 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8371
8372#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
8373 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
8374#endif
8375
8376 /*
8377 * For many exits it's only RIP that changes and hence try to export it first
8378 * without going through a lot of change flag checks.
8379 */
8380 VBOXSTRICTRC rcStrict;
8381 uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
8382 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
8383 if ((fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)) == HM_CHANGED_GUEST_RIP)
8384 {
8385 rcStrict = hmR0VmxExportGuestRip(pVCpu);
8386 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8387 { /* likely */}
8388 else
8389 AssertMsgFailedReturn(("hmR0VmxExportGuestRip failed! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
8390 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportMinimal);
8391 }
8392 else if (fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
8393 {
8394 rcStrict = hmR0VmxExportGuestState(pVCpu);
8395 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8396 { /* likely */}
8397 else
8398 {
8399 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM, ("hmR0VmxExportGuestState failed! rc=%Rrc\n",
8400 VBOXSTRICTRC_VAL(rcStrict)));
8401 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8402 return rcStrict;
8403 }
8404 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
8405 }
8406 else
8407 rcStrict = VINF_SUCCESS;
8408
8409#ifdef VBOX_STRICT
8410 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
8411 fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
8412 RT_UNTRUSTED_NONVOLATILE_COPY_FENCE();
8413 AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)),
8414 ("fCtxChanged=%#RX64\n", fCtxChanged));
8415#endif
8416 return rcStrict;
8417}
8418
8419
8420/**
8421 * Does the preparations before executing guest code in VT-x.
8422 *
8423 * This may cause longjmps to ring-3 and may even result in rescheduling to the
8424 * recompiler/IEM. We must be cautious what we do here regarding committing
8425 * guest-state information into the VMCS assuming we assuredly execute the
8426 * guest in VT-x mode.
8427 *
8428 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
8429 * the common-state (TRPM/forceflags), we must undo those changes so that the
8430 * recompiler/IEM can (and should) use them when it resumes guest execution.
8431 * Otherwise such operations must be done when we can no longer exit to ring-3.
8432 *
8433 * @returns Strict VBox status code (i.e. informational status codes too).
8434 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
8435 * have been disabled.
8436 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
8437 * double-fault into the guest.
8438 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
8439 * dispatched directly.
8440 * @retval VINF_* scheduling changes, we have to go back to ring-3.
8441 *
8442 * @param pVCpu The cross context virtual CPU structure.
8443 * @param pVmxTransient Pointer to the VMX transient structure.
8444 * @param fStepping Set if called from hmR0VmxRunGuestCodeStep(). Makes
8445 * us ignore some of the reasons for returning to
8446 * ring-3, and return VINF_EM_DBG_STEPPED if event
8447 * dispatching took place.
8448 */
8449static VBOXSTRICTRC hmR0VmxPreRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, bool fStepping)
8450{
8451 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8452
8453#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
8454 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
8455 {
8456 Log2(("hmR0VmxPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
8457 RT_NOREF3(pVCpu, pVmxTransient, fStepping);
8458 return VINF_EM_RESCHEDULE_REM;
8459 }
8460#endif
8461
8462#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
8463 PGMRZDynMapFlushAutoSet(pVCpu);
8464#endif
8465
8466 /* Check force flag actions that might require us to go back to ring-3. */
8467 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVCpu, fStepping);
8468 if (rcStrict == VINF_SUCCESS)
8469 { /* FFs doesn't get set all the time. */ }
8470 else
8471 return rcStrict;
8472
8473 /*
8474 * Setup the virtualized-APIC accesses.
8475 *
8476 * Note! This can cause a longjumps to R3 due to the acquisition of the PGM lock
8477 * in both PGMHandlerPhysicalReset() and IOMMMIOMapMMIOHCPage(), see @bugref{8721}.
8478 *
8479 * This is the reason we do it here and not in hmR0VmxExportGuestState().
8480 */
8481 PVM pVM = pVCpu->CTX_SUFF(pVM);
8482 if ( !pVCpu->hm.s.vmx.u64MsrApicBase
8483 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
8484 && PDMHasApic(pVM))
8485 {
8486 uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
8487 Assert(u64MsrApicBase);
8488 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
8489
8490 RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
8491
8492 /* Unalias any existing mapping. */
8493 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
8494 AssertRCReturn(rc, rc);
8495
8496 /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
8497 Log4Func(("Mapped HC APIC-access page at %#RGp\n", GCPhysApicBase));
8498 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
8499 AssertRCReturn(rc, rc);
8500
8501 /* Update the per-VCPU cache of the APIC base MSR. */
8502 pVCpu->hm.s.vmx.u64MsrApicBase = u64MsrApicBase;
8503 }
8504
8505 if (TRPMHasTrap(pVCpu))
8506 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
8507 uint32_t fIntrState = hmR0VmxEvaluatePendingEvent(pVCpu);
8508
8509 /*
8510 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
8511 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
8512 * also result in triple-faulting the VM.
8513 */
8514 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, fIntrState, fStepping);
8515 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8516 { /* likely */ }
8517 else
8518 {
8519 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8520 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8521 return rcStrict;
8522 }
8523
8524 /*
8525 * A longjump might result in importing CR3 even for VM-exits that don't necessarily
8526 * import CR3 themselves. We will need to update them here, as even as late as the above
8527 * hmR0VmxInjectPendingEvent() call may lazily import guest-CPU state on demand causing
8528 * the below force flags to be set.
8529 */
8530 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
8531 {
8532 Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3));
8533 int rc2 = PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
8534 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
8535 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
8536 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
8537 }
8538 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
8539 {
8540 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
8541 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
8542 }
8543
8544 /*
8545 * No longjmps to ring-3 from this point on!!!
8546 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
8547 * This also disables flushing of the R0-logger instance (if any).
8548 */
8549 VMMRZCallRing3Disable(pVCpu);
8550
8551 /*
8552 * Export the guest state bits.
8553 *
8554 * We cannot perform longjmps while loading the guest state because we do not preserve the
8555 * host/guest state (although the VMCS will be preserved) across longjmps which can cause
8556 * CPU migration.
8557 *
8558 * If we are injecting events to a real-on-v86 mode guest, we will have to update
8559 * RIP and some segment registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
8560 * Hence, loading of the guest state needs to be done -after- injection of events.
8561 */
8562 rcStrict = hmR0VmxExportGuestStateOptimal(pVCpu);
8563 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8564 { /* likely */ }
8565 else
8566 {
8567 VMMRZCallRing3Enable(pVCpu);
8568 return rcStrict;
8569 }
8570
8571 /*
8572 * We disable interrupts so that we don't miss any interrupts that would flag preemption
8573 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
8574 * preemption disabled for a while. Since this is purly to aid the
8575 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
8576 * disable interrupt on NT.
8577 *
8578 * We need to check for force-flags that could've possible been altered since we last
8579 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
8580 * see @bugref{6398}).
8581 *
8582 * We also check a couple of other force-flags as a last opportunity to get the EMT back
8583 * to ring-3 before executing guest code.
8584 */
8585 pVmxTransient->fEFlags = ASMIntDisableFlags();
8586
8587 if ( ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
8588 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
8589 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
8590 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
8591 {
8592 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
8593 {
8594 pVCpu->hm.s.Event.fPending = false;
8595
8596 /*
8597 * We've injected any pending events. This is really the point of no return (to ring-3).
8598 *
8599 * Note! The caller expects to continue with interrupts & longjmps disabled on successful
8600 * returns from this function, so don't enable them here.
8601 */
8602 return VINF_SUCCESS;
8603 }
8604
8605 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
8606 rcStrict = VINF_EM_RAW_INTERRUPT;
8607 }
8608 else
8609 {
8610 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
8611 rcStrict = VINF_EM_RAW_TO_R3;
8612 }
8613
8614 ASMSetFlags(pVmxTransient->fEFlags);
8615 VMMRZCallRing3Enable(pVCpu);
8616
8617 return rcStrict;
8618}
8619
8620
8621/**
8622 * Prepares to run guest code in VT-x and we've committed to doing so. This
8623 * means there is no backing out to ring-3 or anywhere else at this
8624 * point.
8625 *
8626 * @param pVCpu The cross context virtual CPU structure.
8627 * @param pVmxTransient Pointer to the VMX transient structure.
8628 *
8629 * @remarks Called with preemption disabled.
8630 * @remarks No-long-jump zone!!!
8631 */
8632static void hmR0VmxPreRunGuestCommitted(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
8633{
8634 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8635 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8636 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8637
8638 /*
8639 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
8640 */
8641 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8642 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
8643
8644 PVM pVM = pVCpu->CTX_SUFF(pVM);
8645 if (!CPUMIsGuestFPUStateActive(pVCpu))
8646 {
8647 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
8648 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
8649 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT;
8650 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
8651 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
8652 }
8653
8654 /*
8655 * Lazy-update of the host MSRs values in the auto-load/store MSR area.
8656 */
8657 if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
8658 && pVCpu->hm.s.vmx.cMsrs > 0)
8659 hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
8660
8661 /*
8662 * Re-save the host state bits as we may've been preempted (only happens when
8663 * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
8664 * Note that the 64-on-32 switcher saves the (64-bit) host state into the VMCS and
8665 * if we change the switcher back to 32-bit, we *must* save the 32-bit host state here.
8666 * See @bugref{8432}.
8667 */
8668 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
8669 {
8670 int rc = hmR0VmxExportHostState(pVCpu);
8671 AssertRC(rc);
8672 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptExportHostState);
8673 }
8674 Assert(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT));
8675
8676 /*
8677 * Export the state shared between host and guest (FPU, debug, lazy MSRs).
8678 */
8679 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)
8680 hmR0VmxExportSharedState(pVCpu);
8681 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
8682
8683 /* Store status of the shared guest-host state at the time of VM-entry. */
8684#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
8685 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
8686 {
8687 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
8688 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
8689 }
8690 else
8691#endif
8692 {
8693 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
8694 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
8695 }
8696
8697 /*
8698 * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
8699 */
8700 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
8701 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR];
8702
8703 PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
8704 RTCPUID idCurrentCpu = pHostCpu->idCpu;
8705 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
8706 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
8707 {
8708 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu);
8709 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
8710 }
8711
8712 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
8713 hmR0VmxFlushTaggedTlb(pHostCpu, pVCpu); /* Invalidate the appropriate guest entries from the TLB. */
8714 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
8715 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
8716
8717 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
8718
8719 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
8720 to start executing. */
8721
8722 /*
8723 * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
8724 */
8725 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_RDTSCP)
8726 {
8727 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
8728 {
8729 bool fMsrUpdated;
8730 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_TSC_AUX);
8731 int rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, CPUMGetGuestTscAux(pVCpu), true /* fUpdateHostMsr */,
8732 &fMsrUpdated);
8733 AssertRC(rc2);
8734 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8735 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8736 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8737 }
8738 else
8739 {
8740 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
8741 Assert(!pVCpu->hm.s.vmx.cMsrs || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8742 }
8743 }
8744
8745 if (pVM->cpum.ro.GuestFeatures.fIbrs)
8746 {
8747 bool fMsrUpdated;
8748 hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_OTHER_MSRS);
8749 int rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_IA32_SPEC_CTRL, CPUMGetGuestSpecCtrl(pVCpu), true /* fUpdateHostMsr */,
8750 &fMsrUpdated);
8751 AssertRC(rc2);
8752 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8753 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8754 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8755 }
8756
8757#ifdef VBOX_STRICT
8758 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
8759 hmR0VmxCheckHostEferMsr(pVCpu);
8760 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu));
8761#endif
8762#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
8763 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
8764 {
8765 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu);
8766 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
8767 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
8768 }
8769#endif
8770}
8771
8772
8773/**
8774 * Performs some essential restoration of state after running guest code in
8775 * VT-x.
8776 *
8777 * @param pVCpu The cross context virtual CPU structure.
8778 * @param pVmxTransient Pointer to the VMX transient structure.
8779 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
8780 *
8781 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
8782 *
8783 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
8784 * unconditionally when it is safe to do so.
8785 */
8786static void hmR0VmxPostRunGuest(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, int rcVMRun)
8787{
8788 uint64_t const uHostTsc = ASMReadTSC();
8789 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8790
8791 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
8792 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
8793 pVCpu->hm.s.fCtxChanged = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
8794 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
8795 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
8796 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
8797
8798 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
8799 TMCpuTickSetLastSeen(pVCpu, uHostTsc + pVCpu->hm.s.vmx.u64TscOffset);
8800
8801 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
8802 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
8803 Assert(!ASMIntAreEnabled());
8804 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8805
8806#if HC_ARCH_BITS == 64
8807 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
8808#endif
8809#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
8810 /* The 64-on-32 switcher maintains fVmcsState on its own and we need to leave it alone here. */
8811 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
8812 pVCpu->hm.s.vmx.fVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8813#else
8814 pVCpu->hm.s.vmx.fVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8815#endif
8816#ifdef VBOX_STRICT
8817 hmR0VmxCheckHostEferMsr(pVCpu); /* Verify that VMRUN/VMLAUNCH didn't modify host EFER. */
8818#endif
8819 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
8820
8821 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
8822 uint32_t uExitReason;
8823 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
8824 rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
8825 AssertRC(rc);
8826 pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
8827 pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
8828
8829 if (rcVMRun == VINF_SUCCESS)
8830 {
8831 /*
8832 * Update the VM-exit history array here even if the VM-entry failed due to:
8833 * - Invalid guest state.
8834 * - MSR loading.
8835 * - Machine-check event.
8836 *
8837 * In any of the above cases we will still have a "valid" VM-exit reason
8838 * despite @a fVMEntryFailed being false.
8839 *
8840 * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
8841 *
8842 * Note! We don't have CS or RIP at this point. Will probably address that later
8843 * by amending the history entry added here.
8844 */
8845 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_VMX, pVmxTransient->uExitReason & EMEXIT_F_TYPE_MASK),
8846 UINT64_MAX, uHostTsc);
8847
8848 if (!pVmxTransient->fVMEntryFailed)
8849 {
8850 VMMRZCallRing3Enable(pVCpu);
8851
8852 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
8853 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
8854
8855#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
8856 rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
8857 AssertRC(rc);
8858#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
8859 rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_RFLAGS);
8860 AssertRC(rc);
8861#else
8862 /*
8863 * Import the guest-interruptibility state always as we need it while evaluating
8864 * injecting events on re-entry.
8865 *
8866 * We don't import CR0 (when Unrestricted guest execution is unavailable) despite
8867 * checking for real-mode while exporting the state because all bits that cause
8868 * mode changes wrt CR0 are intercepted.
8869 */
8870 rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_HM_VMX_INT_STATE);
8871 AssertRC(rc);
8872#endif
8873
8874 /*
8875 * Sync the TPR shadow with our APIC state.
8876 */
8877 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
8878 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR])
8879 {
8880 rc = APICSetTpr(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR]);
8881 AssertRC(rc);
8882 ASMAtomicOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
8883 }
8884
8885 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8886 return;
8887 }
8888 }
8889 else
8890 Log4Func(("VM-entry failure: rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", rcVMRun, pVmxTransient->fVMEntryFailed));
8891
8892 VMMRZCallRing3Enable(pVCpu);
8893}
8894
8895
8896/**
8897 * Runs the guest code using VT-x the normal way.
8898 *
8899 * @returns VBox status code.
8900 * @param pVCpu The cross context virtual CPU structure.
8901 *
8902 * @note Mostly the same as hmR0VmxRunGuestCodeStep().
8903 */
8904static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVMCPU pVCpu)
8905{
8906 VMXTRANSIENT VmxTransient;
8907 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
8908 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
8909 uint32_t cLoops = 0;
8910
8911 for (;; cLoops++)
8912 {
8913 Assert(!HMR0SuspendPending());
8914 HMVMX_ASSERT_CPU_SAFE(pVCpu);
8915
8916 /* Preparatory work for running guest code, this may force us to return
8917 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
8918 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
8919 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
8920 if (rcStrict != VINF_SUCCESS)
8921 break;
8922
8923 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
8924 int rcRun = hmR0VmxRunGuest(pVCpu);
8925
8926 /* Restore any residual host-state and save any bits shared between host
8927 and guest into the guest-CPU state. Re-enables interrupts! */
8928 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
8929
8930 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
8931 if (RT_SUCCESS(rcRun))
8932 { /* very likely */ }
8933 else
8934 {
8935 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
8936 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
8937 return rcRun;
8938 }
8939
8940 /* Profile the VM-exit. */
8941 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
8942 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
8943 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
8944 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
8945 HMVMX_START_EXIT_DISPATCH_PROF();
8946
8947 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
8948
8949 /* Handle the VM-exit. */
8950#ifdef HMVMX_USE_FUNCTION_TABLE
8951 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, &VmxTransient);
8952#else
8953 rcStrict = hmR0VmxHandleExit(pVCpu, &VmxTransient, VmxTransient.uExitReason);
8954#endif
8955 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
8956 if (rcStrict == VINF_SUCCESS)
8957 {
8958 if (cLoops <= pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
8959 continue; /* likely */
8960 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
8961 rcStrict = VINF_EM_RAW_INTERRUPT;
8962 }
8963 break;
8964 }
8965
8966 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
8967 return rcStrict;
8968}
8969
8970
8971
8972/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
8973 * probes.
8974 *
8975 * The following few functions and associated structure contains the bloat
8976 * necessary for providing detailed debug events and dtrace probes as well as
8977 * reliable host side single stepping. This works on the principle of
8978 * "subclassing" the normal execution loop and workers. We replace the loop
8979 * method completely and override selected helpers to add necessary adjustments
8980 * to their core operation.
8981 *
8982 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
8983 * any performance for debug and analysis features.
8984 *
8985 * @{
8986 */
8987
8988/**
8989 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
8990 * the debug run loop.
8991 */
8992typedef struct VMXRUNDBGSTATE
8993{
8994 /** The RIP we started executing at. This is for detecting that we stepped. */
8995 uint64_t uRipStart;
8996 /** The CS we started executing with. */
8997 uint16_t uCsStart;
8998
8999 /** Whether we've actually modified the 1st execution control field. */
9000 bool fModifiedProcCtls : 1;
9001 /** Whether we've actually modified the 2nd execution control field. */
9002 bool fModifiedProcCtls2 : 1;
9003 /** Whether we've actually modified the exception bitmap. */
9004 bool fModifiedXcptBitmap : 1;
9005
9006 /** We desire the modified the CR0 mask to be cleared. */
9007 bool fClearCr0Mask : 1;
9008 /** We desire the modified the CR4 mask to be cleared. */
9009 bool fClearCr4Mask : 1;
9010 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
9011 uint32_t fCpe1Extra;
9012 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
9013 uint32_t fCpe1Unwanted;
9014 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
9015 uint32_t fCpe2Extra;
9016 /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
9017 uint32_t bmXcptExtra;
9018 /** The sequence number of the Dtrace provider settings the state was
9019 * configured against. */
9020 uint32_t uDtraceSettingsSeqNo;
9021 /** VM-exits to check (one bit per VM-exit). */
9022 uint32_t bmExitsToCheck[3];
9023
9024 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
9025 uint32_t fProcCtlsInitial;
9026 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
9027 uint32_t fProcCtls2Initial;
9028 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
9029 uint32_t bmXcptInitial;
9030} VMXRUNDBGSTATE;
9031AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
9032typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
9033
9034
9035/**
9036 * Initializes the VMXRUNDBGSTATE structure.
9037 *
9038 * @param pVCpu The cross context virtual CPU structure of the
9039 * calling EMT.
9040 * @param pDbgState The structure to initialize.
9041 */
9042static void hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9043{
9044 pDbgState->uRipStart = pVCpu->cpum.GstCtx.rip;
9045 pDbgState->uCsStart = pVCpu->cpum.GstCtx.cs.Sel;
9046
9047 pDbgState->fModifiedProcCtls = false;
9048 pDbgState->fModifiedProcCtls2 = false;
9049 pDbgState->fModifiedXcptBitmap = false;
9050 pDbgState->fClearCr0Mask = false;
9051 pDbgState->fClearCr4Mask = false;
9052 pDbgState->fCpe1Extra = 0;
9053 pDbgState->fCpe1Unwanted = 0;
9054 pDbgState->fCpe2Extra = 0;
9055 pDbgState->bmXcptExtra = 0;
9056 pDbgState->fProcCtlsInitial = pVCpu->hm.s.vmx.u32ProcCtls;
9057 pDbgState->fProcCtls2Initial = pVCpu->hm.s.vmx.u32ProcCtls2;
9058 pDbgState->bmXcptInitial = pVCpu->hm.s.vmx.u32XcptBitmap;
9059}
9060
9061
9062/**
9063 * Updates the VMSC fields with changes requested by @a pDbgState.
9064 *
9065 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
9066 * immediately before executing guest code, i.e. when interrupts are disabled.
9067 * We don't check status codes here as we cannot easily assert or return in the
9068 * latter case.
9069 *
9070 * @param pVCpu The cross context virtual CPU structure.
9071 * @param pDbgState The debug state.
9072 */
9073static void hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9074{
9075 /*
9076 * Ensure desired flags in VMCS control fields are set.
9077 * (Ignoring write failure here, as we're committed and it's just debug extras.)
9078 *
9079 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
9080 * there should be no stale data in pCtx at this point.
9081 */
9082 if ( (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
9083 || (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Unwanted))
9084 {
9085 pVCpu->hm.s.vmx.u32ProcCtls |= pDbgState->fCpe1Extra;
9086 pVCpu->hm.s.vmx.u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
9087 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
9088 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls));
9089 pDbgState->fModifiedProcCtls = true;
9090 }
9091
9092 if ((pVCpu->hm.s.vmx.u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
9093 {
9094 pVCpu->hm.s.vmx.u32ProcCtls2 |= pDbgState->fCpe2Extra;
9095 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVCpu->hm.s.vmx.u32ProcCtls2);
9096 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2));
9097 pDbgState->fModifiedProcCtls2 = true;
9098 }
9099
9100 if ((pVCpu->hm.s.vmx.u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
9101 {
9102 pVCpu->hm.s.vmx.u32XcptBitmap |= pDbgState->bmXcptExtra;
9103 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
9104 Log6Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap));
9105 pDbgState->fModifiedXcptBitmap = true;
9106 }
9107
9108 if (pDbgState->fClearCr0Mask && pVCpu->hm.s.vmx.u32Cr0Mask != 0)
9109 {
9110 pVCpu->hm.s.vmx.u32Cr0Mask = 0;
9111 VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, 0);
9112 Log6Func(("VMX_VMCS_CTRL_CR0_MASK: 0\n"));
9113 }
9114
9115 if (pDbgState->fClearCr4Mask && pVCpu->hm.s.vmx.u32Cr4Mask != 0)
9116 {
9117 pVCpu->hm.s.vmx.u32Cr4Mask = 0;
9118 VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, 0);
9119 Log6Func(("VMX_VMCS_CTRL_CR4_MASK: 0\n"));
9120 }
9121}
9122
9123
9124/**
9125 * Restores VMCS fields that were changed by hmR0VmxPreRunGuestDebugStateApply for
9126 * re-entry next time around.
9127 *
9128 * @returns Strict VBox status code (i.e. informational status codes too).
9129 * @param pVCpu The cross context virtual CPU structure.
9130 * @param pDbgState The debug state.
9131 * @param rcStrict The return code from executing the guest using single
9132 * stepping.
9133 */
9134static VBOXSTRICTRC hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, VBOXSTRICTRC rcStrict)
9135{
9136 /*
9137 * Restore VM-exit control settings as we may not reenter this function the
9138 * next time around.
9139 */
9140 /* We reload the initial value, trigger what we can of recalculations the
9141 next time around. From the looks of things, that's all that's required atm. */
9142 if (pDbgState->fModifiedProcCtls)
9143 {
9144 if (!(pDbgState->fProcCtlsInitial & VMX_PROC_CTLS_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
9145 pDbgState->fProcCtlsInitial |= VMX_PROC_CTLS_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
9146 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
9147 AssertRCReturn(rc2, rc2);
9148 pVCpu->hm.s.vmx.u32ProcCtls = pDbgState->fProcCtlsInitial;
9149 }
9150
9151 /* We're currently the only ones messing with this one, so just restore the
9152 cached value and reload the field. */
9153 if ( pDbgState->fModifiedProcCtls2
9154 && pVCpu->hm.s.vmx.u32ProcCtls2 != pDbgState->fProcCtls2Initial)
9155 {
9156 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
9157 AssertRCReturn(rc2, rc2);
9158 pVCpu->hm.s.vmx.u32ProcCtls2 = pDbgState->fProcCtls2Initial;
9159 }
9160
9161 /* If we've modified the exception bitmap, we restore it and trigger
9162 reloading and partial recalculation the next time around. */
9163 if (pDbgState->fModifiedXcptBitmap)
9164 pVCpu->hm.s.vmx.u32XcptBitmap = pDbgState->bmXcptInitial;
9165
9166 return rcStrict;
9167}
9168
9169
9170/**
9171 * Configures VM-exit controls for current DBGF and DTrace settings.
9172 *
9173 * This updates @a pDbgState and the VMCS execution control fields to reflect
9174 * the necessary VM-exits demanded by DBGF and DTrace.
9175 *
9176 * @param pVCpu The cross context virtual CPU structure.
9177 * @param pDbgState The debug state.
9178 * @param pVmxTransient Pointer to the VMX transient structure. May update
9179 * fUpdateTscOffsettingAndPreemptTimer.
9180 */
9181static void hmR0VmxPreRunGuestDebugStateUpdate(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, PVMXTRANSIENT pVmxTransient)
9182{
9183 /*
9184 * Take down the dtrace serial number so we can spot changes.
9185 */
9186 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
9187 ASMCompilerBarrier();
9188
9189 /*
9190 * We'll rebuild most of the middle block of data members (holding the
9191 * current settings) as we go along here, so start by clearing it all.
9192 */
9193 pDbgState->bmXcptExtra = 0;
9194 pDbgState->fCpe1Extra = 0;
9195 pDbgState->fCpe1Unwanted = 0;
9196 pDbgState->fCpe2Extra = 0;
9197 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
9198 pDbgState->bmExitsToCheck[i] = 0;
9199
9200 /*
9201 * Software interrupts (INT XXh) - no idea how to trigger these...
9202 */
9203 PVM pVM = pVCpu->CTX_SUFF(pVM);
9204 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
9205 || VBOXVMM_INT_SOFTWARE_ENABLED())
9206 {
9207 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9208 }
9209
9210 /*
9211 * INT3 breakpoints - triggered by #BP exceptions.
9212 */
9213 if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
9214 pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9215
9216 /*
9217 * Exception bitmap and XCPT events+probes.
9218 */
9219 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
9220 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
9221 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
9222
9223 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
9224 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
9225 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9226 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
9227 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
9228 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
9229 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
9230 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
9231 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
9232 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
9233 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
9234 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
9235 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
9236 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
9237 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
9238 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
9239 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
9240 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
9241
9242 if (pDbgState->bmXcptExtra)
9243 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9244
9245 /*
9246 * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
9247 *
9248 * Note! This is the reverse of what hmR0VmxHandleExitDtraceEvents does.
9249 * So, when adding/changing/removing please don't forget to update it.
9250 *
9251 * Some of the macros are picking up local variables to save horizontal space,
9252 * (being able to see it in a table is the lesser evil here).
9253 */
9254#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
9255 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
9256 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
9257#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
9258 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9259 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9260 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9261 } else do { } while (0)
9262#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
9263 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9264 { \
9265 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
9266 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9267 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9268 } else do { } while (0)
9269#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
9270 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9271 { \
9272 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
9273 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9274 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9275 } else do { } while (0)
9276#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
9277 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9278 { \
9279 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
9280 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9281 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9282 } else do { } while (0)
9283
9284 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
9285 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
9286 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
9287 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
9288 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
9289
9290 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
9291 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
9292 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
9293 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
9294 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_PROC_CTLS_HLT_EXIT); /* paranoia */
9295 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
9296 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
9297 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
9298 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_PROC_CTLS_INVLPG_EXIT);
9299 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
9300 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_PROC_CTLS_RDPMC_EXIT);
9301 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
9302 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_PROC_CTLS_RDTSC_EXIT);
9303 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
9304 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
9305 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
9306 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
9307 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
9308 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
9309 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
9310 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
9311 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
9312 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
9313 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
9314 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
9315 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
9316 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
9317 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
9318 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
9319 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
9320 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
9321 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
9322 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
9323 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
9324 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
9325 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
9326
9327 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
9328 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9329 {
9330 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_APIC_TPR);
9331 AssertRC(rc);
9332
9333#if 0 /** @todo fix me */
9334 pDbgState->fClearCr0Mask = true;
9335 pDbgState->fClearCr4Mask = true;
9336#endif
9337 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
9338 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_STORE_EXIT | VMX_PROC_CTLS_CR8_STORE_EXIT;
9339 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9340 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_LOAD_EXIT | VMX_PROC_CTLS_CR8_LOAD_EXIT;
9341 pDbgState->fCpe1Unwanted |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* risky? */
9342 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
9343 require clearing here and in the loop if we start using it. */
9344 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
9345 }
9346 else
9347 {
9348 if (pDbgState->fClearCr0Mask)
9349 {
9350 pDbgState->fClearCr0Mask = false;
9351 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
9352 }
9353 if (pDbgState->fClearCr4Mask)
9354 {
9355 pDbgState->fClearCr4Mask = false;
9356 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
9357 }
9358 }
9359 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
9360 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
9361
9362 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
9363 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
9364 {
9365 /** @todo later, need to fix handler as it assumes this won't usually happen. */
9366 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
9367 }
9368 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
9369 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
9370
9371 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS); /* risky clearing this? */
9372 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
9373 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS);
9374 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
9375 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_PROC_CTLS_MWAIT_EXIT); /* paranoia */
9376 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
9377 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_PROC_CTLS_MONITOR_EXIT); /* paranoia */
9378 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
9379#if 0 /** @todo too slow, fix handler. */
9380 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_PROC_CTLS_PAUSE_EXIT);
9381#endif
9382 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
9383
9384 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
9385 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
9386 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
9387 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
9388 {
9389 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
9390 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_GDTR_IDTR_ACCESS);
9391 }
9392 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
9393 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
9394 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
9395 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
9396
9397 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
9398 || IS_EITHER_ENABLED(pVM, INSTR_STR)
9399 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
9400 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
9401 {
9402 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
9403 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_LDTR_TR_ACCESS);
9404 }
9405 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_LDTR_TR_ACCESS);
9406 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_LDTR_TR_ACCESS);
9407 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_LDTR_TR_ACCESS);
9408 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_LDTR_TR_ACCESS);
9409
9410 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
9411 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
9412 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_PROC_CTLS_RDTSC_EXIT);
9413 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
9414 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
9415 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
9416 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_PROC_CTLS2_WBINVD_EXIT);
9417 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
9418 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
9419 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
9420 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_PROC_CTLS2_RDRAND_EXIT);
9421 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
9422 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_PROC_CTLS_INVLPG_EXIT);
9423 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
9424 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
9425 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
9426 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_PROC_CTLS2_RDSEED_EXIT);
9427 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
9428 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
9429 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
9430 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
9431 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
9432
9433#undef IS_EITHER_ENABLED
9434#undef SET_ONLY_XBM_IF_EITHER_EN
9435#undef SET_CPE1_XBM_IF_EITHER_EN
9436#undef SET_CPEU_XBM_IF_EITHER_EN
9437#undef SET_CPE2_XBM_IF_EITHER_EN
9438
9439 /*
9440 * Sanitize the control stuff.
9441 */
9442 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1;
9443 if (pDbgState->fCpe2Extra)
9444 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
9445 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1;
9446 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0;
9447 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT))
9448 {
9449 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
9450 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9451 }
9452
9453 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
9454 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
9455 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
9456 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
9457}
9458
9459
9460/**
9461 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
9462 * appropriate.
9463 *
9464 * The caller has checked the VM-exit against the
9465 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
9466 * already, so we don't have to do that either.
9467 *
9468 * @returns Strict VBox status code (i.e. informational status codes too).
9469 * @param pVCpu The cross context virtual CPU structure.
9470 * @param pVmxTransient Pointer to the VMX-transient structure.
9471 * @param uExitReason The VM-exit reason.
9472 *
9473 * @remarks The name of this function is displayed by dtrace, so keep it short
9474 * and to the point. No longer than 33 chars long, please.
9475 */
9476static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
9477{
9478 /*
9479 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
9480 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
9481 *
9482 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
9483 * does. Must add/change/remove both places. Same ordering, please.
9484 *
9485 * Added/removed events must also be reflected in the next section
9486 * where we dispatch dtrace events.
9487 */
9488 bool fDtrace1 = false;
9489 bool fDtrace2 = false;
9490 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
9491 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
9492 uint32_t uEventArg = 0;
9493#define SET_EXIT(a_EventSubName) \
9494 do { \
9495 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9496 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9497 } while (0)
9498#define SET_BOTH(a_EventSubName) \
9499 do { \
9500 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
9501 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9502 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
9503 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9504 } while (0)
9505 switch (uExitReason)
9506 {
9507 case VMX_EXIT_MTF:
9508 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
9509
9510 case VMX_EXIT_XCPT_OR_NMI:
9511 {
9512 uint8_t const idxVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
9513 switch (VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo))
9514 {
9515 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
9516 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
9517 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
9518 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
9519 {
9520 if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uExitIntInfo))
9521 {
9522 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
9523 uEventArg = pVmxTransient->uExitIntErrorCode;
9524 }
9525 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
9526 switch (enmEvent1)
9527 {
9528 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
9529 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
9530 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
9531 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
9532 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
9533 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
9534 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
9535 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
9536 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
9537 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
9538 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
9539 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
9540 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
9541 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
9542 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
9543 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
9544 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
9545 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
9546 default: break;
9547 }
9548 }
9549 else
9550 AssertFailed();
9551 break;
9552
9553 case VMX_EXIT_INT_INFO_TYPE_SW_INT:
9554 uEventArg = idxVector;
9555 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
9556 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
9557 break;
9558 }
9559 break;
9560 }
9561
9562 case VMX_EXIT_TRIPLE_FAULT:
9563 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
9564 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
9565 break;
9566 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
9567 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
9568 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
9569 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
9570 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
9571
9572 /* Instruction specific VM-exits: */
9573 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
9574 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
9575 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
9576 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
9577 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
9578 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
9579 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
9580 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
9581 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
9582 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
9583 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
9584 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
9585 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
9586 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
9587 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
9588 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
9589 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
9590 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
9591 case VMX_EXIT_MOV_CRX:
9592 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9593 if (VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_CRX_ACCESS_READ)
9594 SET_BOTH(CRX_READ);
9595 else
9596 SET_BOTH(CRX_WRITE);
9597 uEventArg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
9598 break;
9599 case VMX_EXIT_MOV_DRX:
9600 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9601 if ( VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual)
9602 == VMX_EXIT_QUAL_DRX_DIRECTION_READ)
9603 SET_BOTH(DRX_READ);
9604 else
9605 SET_BOTH(DRX_WRITE);
9606 uEventArg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual);
9607 break;
9608 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
9609 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
9610 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
9611 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
9612 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
9613 case VMX_EXIT_GDTR_IDTR_ACCESS:
9614 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9615 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_XDTR_INSINFO_INSTR_ID))
9616 {
9617 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
9618 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
9619 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
9620 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
9621 }
9622 break;
9623
9624 case VMX_EXIT_LDTR_TR_ACCESS:
9625 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9626 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_YYTR_INSINFO_INSTR_ID))
9627 {
9628 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
9629 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
9630 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
9631 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
9632 }
9633 break;
9634
9635 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
9636 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
9637 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
9638 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
9639 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
9640 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
9641 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
9642 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
9643 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
9644 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
9645 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
9646
9647 /* Events that aren't relevant at this point. */
9648 case VMX_EXIT_EXT_INT:
9649 case VMX_EXIT_INT_WINDOW:
9650 case VMX_EXIT_NMI_WINDOW:
9651 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9652 case VMX_EXIT_PREEMPT_TIMER:
9653 case VMX_EXIT_IO_INSTR:
9654 break;
9655
9656 /* Errors and unexpected events. */
9657 case VMX_EXIT_INIT_SIGNAL:
9658 case VMX_EXIT_SIPI:
9659 case VMX_EXIT_IO_SMI:
9660 case VMX_EXIT_SMI:
9661 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
9662 case VMX_EXIT_ERR_MSR_LOAD:
9663 case VMX_EXIT_ERR_MACHINE_CHECK:
9664 break;
9665
9666 default:
9667 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
9668 break;
9669 }
9670#undef SET_BOTH
9671#undef SET_EXIT
9672
9673 /*
9674 * Dtrace tracepoints go first. We do them here at once so we don't
9675 * have to copy the guest state saving and stuff a few dozen times.
9676 * Down side is that we've got to repeat the switch, though this time
9677 * we use enmEvent since the probes are a subset of what DBGF does.
9678 */
9679 if (fDtrace1 || fDtrace2)
9680 {
9681 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9682 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
9683 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
9684 switch (enmEvent1)
9685 {
9686 /** @todo consider which extra parameters would be helpful for each probe. */
9687 case DBGFEVENT_END: break;
9688 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pCtx); break;
9689 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pCtx, pCtx->dr[6]); break;
9690 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pCtx); break;
9691 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pCtx); break;
9692 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pCtx); break;
9693 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pCtx); break;
9694 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pCtx); break;
9695 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pCtx); break;
9696 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pCtx, uEventArg); break;
9697 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pCtx, uEventArg); break;
9698 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pCtx, uEventArg); break;
9699 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pCtx, uEventArg); break;
9700 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pCtx, uEventArg, pCtx->cr2); break;
9701 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pCtx); break;
9702 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pCtx); break;
9703 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pCtx); break;
9704 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pCtx); break;
9705 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pCtx, uEventArg); break;
9706 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9707 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
9708 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pCtx); break;
9709 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pCtx); break;
9710 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pCtx); break;
9711 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pCtx); break;
9712 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pCtx); break;
9713 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pCtx); break;
9714 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pCtx); break;
9715 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9716 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9717 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9718 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9719 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
9720 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pCtx, pCtx->ecx,
9721 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
9722 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pCtx); break;
9723 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pCtx); break;
9724 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pCtx); break;
9725 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pCtx); break;
9726 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pCtx); break;
9727 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pCtx); break;
9728 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pCtx); break;
9729 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pCtx); break;
9730 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pCtx); break;
9731 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pCtx); break;
9732 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pCtx); break;
9733 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pCtx); break;
9734 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pCtx); break;
9735 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pCtx); break;
9736 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pCtx); break;
9737 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pCtx); break;
9738 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pCtx); break;
9739 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pCtx); break;
9740 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pCtx); break;
9741 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pCtx); break;
9742 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pCtx); break;
9743 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pCtx); break;
9744 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pCtx); break;
9745 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pCtx); break;
9746 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pCtx); break;
9747 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pCtx); break;
9748 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pCtx); break;
9749 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pCtx); break;
9750 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pCtx); break;
9751 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pCtx); break;
9752 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pCtx); break;
9753 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pCtx); break;
9754 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
9755 }
9756 switch (enmEvent2)
9757 {
9758 /** @todo consider which extra parameters would be helpful for each probe. */
9759 case DBGFEVENT_END: break;
9760 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pCtx); break;
9761 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
9762 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pCtx); break;
9763 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pCtx); break;
9764 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pCtx); break;
9765 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pCtx); break;
9766 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pCtx); break;
9767 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pCtx); break;
9768 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pCtx); break;
9769 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9770 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9771 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
9772 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
9773 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
9774 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pCtx, pCtx->ecx,
9775 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
9776 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pCtx); break;
9777 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pCtx); break;
9778 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pCtx); break;
9779 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pCtx); break;
9780 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pCtx); break;
9781 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pCtx); break;
9782 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pCtx); break;
9783 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pCtx); break;
9784 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pCtx); break;
9785 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pCtx); break;
9786 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pCtx); break;
9787 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pCtx); break;
9788 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pCtx); break;
9789 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pCtx); break;
9790 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pCtx); break;
9791 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pCtx); break;
9792 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pCtx); break;
9793 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pCtx); break;
9794 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pCtx); break;
9795 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pCtx); break;
9796 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pCtx); break;
9797 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pCtx); break;
9798 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pCtx); break;
9799 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pCtx); break;
9800 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pCtx); break;
9801 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pCtx); break;
9802 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pCtx); break;
9803 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pCtx); break;
9804 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pCtx); break;
9805 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pCtx); break;
9806 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pCtx); break;
9807 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pCtx); break;
9808 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pCtx); break;
9809 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pCtx); break;
9810 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pCtx); break;
9811 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pCtx); break;
9812 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
9813 }
9814 }
9815
9816 /*
9817 * Fire of the DBGF event, if enabled (our check here is just a quick one,
9818 * the DBGF call will do a full check).
9819 *
9820 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
9821 * Note! If we have to events, we prioritize the first, i.e. the instruction
9822 * one, in order to avoid event nesting.
9823 */
9824 PVM pVM = pVCpu->CTX_SUFF(pVM);
9825 if ( enmEvent1 != DBGFEVENT_END
9826 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
9827 {
9828 HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
9829 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent1, DBGFEVENTCTX_HM, 1, uEventArg);
9830 if (rcStrict != VINF_SUCCESS)
9831 return rcStrict;
9832 }
9833 else if ( enmEvent2 != DBGFEVENT_END
9834 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
9835 {
9836 HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
9837 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent2, DBGFEVENTCTX_HM, 1, uEventArg);
9838 if (rcStrict != VINF_SUCCESS)
9839 return rcStrict;
9840 }
9841
9842 return VINF_SUCCESS;
9843}
9844
9845
9846/**
9847 * Single-stepping VM-exit filtering.
9848 *
9849 * This is preprocessing the VM-exits and deciding whether we've gotten far
9850 * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
9851 * handling is performed.
9852 *
9853 * @returns Strict VBox status code (i.e. informational status codes too).
9854 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9855 * @param pVmxTransient Pointer to the VMX-transient structure.
9856 * @param pDbgState The debug state.
9857 */
9858DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
9859{
9860 /*
9861 * Expensive (saves context) generic dtrace VM-exit probe.
9862 */
9863 uint32_t const uExitReason = pVmxTransient->uExitReason;
9864 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
9865 { /* more likely */ }
9866 else
9867 {
9868 hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
9869 int rc = hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
9870 AssertRC(rc);
9871 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
9872 }
9873
9874 /*
9875 * Check for host NMI, just to get that out of the way.
9876 */
9877 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
9878 { /* normally likely */ }
9879 else
9880 {
9881 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
9882 AssertRCReturn(rc2, rc2);
9883 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
9884 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
9885 return hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient);
9886 }
9887
9888 /*
9889 * Check for single stepping event if we're stepping.
9890 */
9891 if (pVCpu->hm.s.fSingleInstruction)
9892 {
9893 switch (uExitReason)
9894 {
9895 case VMX_EXIT_MTF:
9896 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
9897
9898 /* Various events: */
9899 case VMX_EXIT_XCPT_OR_NMI:
9900 case VMX_EXIT_EXT_INT:
9901 case VMX_EXIT_TRIPLE_FAULT:
9902 case VMX_EXIT_INT_WINDOW:
9903 case VMX_EXIT_NMI_WINDOW:
9904 case VMX_EXIT_TASK_SWITCH:
9905 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9906 case VMX_EXIT_APIC_ACCESS:
9907 case VMX_EXIT_EPT_VIOLATION:
9908 case VMX_EXIT_EPT_MISCONFIG:
9909 case VMX_EXIT_PREEMPT_TIMER:
9910
9911 /* Instruction specific VM-exits: */
9912 case VMX_EXIT_CPUID:
9913 case VMX_EXIT_GETSEC:
9914 case VMX_EXIT_HLT:
9915 case VMX_EXIT_INVD:
9916 case VMX_EXIT_INVLPG:
9917 case VMX_EXIT_RDPMC:
9918 case VMX_EXIT_RDTSC:
9919 case VMX_EXIT_RSM:
9920 case VMX_EXIT_VMCALL:
9921 case VMX_EXIT_VMCLEAR:
9922 case VMX_EXIT_VMLAUNCH:
9923 case VMX_EXIT_VMPTRLD:
9924 case VMX_EXIT_VMPTRST:
9925 case VMX_EXIT_VMREAD:
9926 case VMX_EXIT_VMRESUME:
9927 case VMX_EXIT_VMWRITE:
9928 case VMX_EXIT_VMXOFF:
9929 case VMX_EXIT_VMXON:
9930 case VMX_EXIT_MOV_CRX:
9931 case VMX_EXIT_MOV_DRX:
9932 case VMX_EXIT_IO_INSTR:
9933 case VMX_EXIT_RDMSR:
9934 case VMX_EXIT_WRMSR:
9935 case VMX_EXIT_MWAIT:
9936 case VMX_EXIT_MONITOR:
9937 case VMX_EXIT_PAUSE:
9938 case VMX_EXIT_GDTR_IDTR_ACCESS:
9939 case VMX_EXIT_LDTR_TR_ACCESS:
9940 case VMX_EXIT_INVEPT:
9941 case VMX_EXIT_RDTSCP:
9942 case VMX_EXIT_INVVPID:
9943 case VMX_EXIT_WBINVD:
9944 case VMX_EXIT_XSETBV:
9945 case VMX_EXIT_RDRAND:
9946 case VMX_EXIT_INVPCID:
9947 case VMX_EXIT_VMFUNC:
9948 case VMX_EXIT_RDSEED:
9949 case VMX_EXIT_XSAVES:
9950 case VMX_EXIT_XRSTORS:
9951 {
9952 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
9953 AssertRCReturn(rc, rc);
9954 if ( pVCpu->cpum.GstCtx.rip != pDbgState->uRipStart
9955 || pVCpu->cpum.GstCtx.cs.Sel != pDbgState->uCsStart)
9956 return VINF_EM_DBG_STEPPED;
9957 break;
9958 }
9959
9960 /* Errors and unexpected events: */
9961 case VMX_EXIT_INIT_SIGNAL:
9962 case VMX_EXIT_SIPI:
9963 case VMX_EXIT_IO_SMI:
9964 case VMX_EXIT_SMI:
9965 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
9966 case VMX_EXIT_ERR_MSR_LOAD:
9967 case VMX_EXIT_ERR_MACHINE_CHECK:
9968 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
9969 break;
9970
9971 default:
9972 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
9973 break;
9974 }
9975 }
9976
9977 /*
9978 * Check for debugger event breakpoints and dtrace probes.
9979 */
9980 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
9981 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
9982 {
9983 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVCpu, pVmxTransient, uExitReason);
9984 if (rcStrict != VINF_SUCCESS)
9985 return rcStrict;
9986 }
9987
9988 /*
9989 * Normal processing.
9990 */
9991#ifdef HMVMX_USE_FUNCTION_TABLE
9992 return g_apfnVMExitHandlers[uExitReason](pVCpu, pVmxTransient);
9993#else
9994 return hmR0VmxHandleExit(pVCpu, pVmxTransient, uExitReason);
9995#endif
9996}
9997
9998
9999/**
10000 * Single steps guest code using VT-x.
10001 *
10002 * @returns Strict VBox status code (i.e. informational status codes too).
10003 * @param pVCpu The cross context virtual CPU structure.
10004 *
10005 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
10006 */
10007static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVMCPU pVCpu)
10008{
10009 VMXTRANSIENT VmxTransient;
10010 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
10011
10012 /* Set HMCPU indicators. */
10013 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
10014 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
10015 pVCpu->hm.s.fDebugWantRdTscExit = false;
10016 pVCpu->hm.s.fUsingDebugLoop = true;
10017
10018 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
10019 VMXRUNDBGSTATE DbgState;
10020 hmR0VmxRunDebugStateInit(pVCpu, &DbgState);
10021 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &DbgState, &VmxTransient);
10022
10023 /*
10024 * The loop.
10025 */
10026 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10027 for (uint32_t cLoops = 0; ; cLoops++)
10028 {
10029 Assert(!HMR0SuspendPending());
10030 HMVMX_ASSERT_CPU_SAFE(pVCpu);
10031 bool fStepping = pVCpu->hm.s.fSingleInstruction;
10032
10033 /*
10034 * Preparatory work for running guest code, this may force us to return
10035 * to ring-3. This bugger disables interrupts on VINF_SUCCESS!
10036 */
10037 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10038 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Set up execute controls the next to can respond to. */
10039 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, fStepping);
10040 if (rcStrict != VINF_SUCCESS)
10041 break;
10042
10043 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
10044 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Override any obnoxious code in the above two calls. */
10045
10046 /*
10047 * Now we can run the guest code.
10048 */
10049 int rcRun = hmR0VmxRunGuest(pVCpu);
10050
10051 /*
10052 * Restore any residual host-state and save any bits shared between host
10053 * and guest into the guest-CPU state. Re-enables interrupts!
10054 */
10055 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
10056
10057 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
10058 if (RT_SUCCESS(rcRun))
10059 { /* very likely */ }
10060 else
10061 {
10062 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
10063 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
10064 return rcRun;
10065 }
10066
10067 /* Profile the VM-exit. */
10068 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10069 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10070 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10071 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
10072 HMVMX_START_EXIT_DISPATCH_PROF();
10073
10074 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
10075
10076 /*
10077 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
10078 */
10079 rcStrict = hmR0VmxRunDebugHandleExit(pVCpu, &VmxTransient, &DbgState);
10080 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
10081 if (rcStrict != VINF_SUCCESS)
10082 break;
10083 if (cLoops > pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops)
10084 {
10085 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10086 rcStrict = VINF_EM_RAW_INTERRUPT;
10087 break;
10088 }
10089
10090 /*
10091 * Stepping: Did the RIP change, if so, consider it a single step.
10092 * Otherwise, make sure one of the TFs gets set.
10093 */
10094 if (fStepping)
10095 {
10096 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
10097 AssertRC(rc);
10098 if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
10099 || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
10100 {
10101 rcStrict = VINF_EM_DBG_STEPPED;
10102 break;
10103 }
10104 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
10105 }
10106
10107 /*
10108 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
10109 */
10110 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
10111 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &DbgState, &VmxTransient);
10112 }
10113
10114 /*
10115 * Clear the X86_EFL_TF if necessary.
10116 */
10117 if (pVCpu->hm.s.fClearTrapFlag)
10118 {
10119 int rc = hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RFLAGS);
10120 AssertRC(rc);
10121 pVCpu->hm.s.fClearTrapFlag = false;
10122 pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
10123 }
10124 /** @todo there seems to be issues with the resume flag when the monitor trap
10125 * flag is pending without being used. Seen early in bios init when
10126 * accessing APIC page in protected mode. */
10127
10128 /*
10129 * Restore VM-exit control settings as we may not reenter this function the
10130 * next time around.
10131 */
10132 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &DbgState, rcStrict);
10133
10134 /* Restore HMCPU indicators. */
10135 pVCpu->hm.s.fUsingDebugLoop = false;
10136 pVCpu->hm.s.fDebugWantRdTscExit = false;
10137 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
10138
10139 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10140 return rcStrict;
10141}
10142
10143
10144/** @} */
10145
10146
10147/**
10148 * Checks if any expensive dtrace probes are enabled and we should go to the
10149 * debug loop.
10150 *
10151 * @returns true if we should use debug loop, false if not.
10152 */
10153static bool hmR0VmxAnyExpensiveProbesEnabled(void)
10154{
10155 /* It's probably faster to OR the raw 32-bit counter variables together.
10156 Since the variables are in an array and the probes are next to one
10157 another (more or less), we have good locality. So, better read
10158 eight-nine cache lines ever time and only have one conditional, than
10159 128+ conditionals, right? */
10160 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
10161 | VBOXVMM_XCPT_DE_ENABLED_RAW()
10162 | VBOXVMM_XCPT_DB_ENABLED_RAW()
10163 | VBOXVMM_XCPT_BP_ENABLED_RAW()
10164 | VBOXVMM_XCPT_OF_ENABLED_RAW()
10165 | VBOXVMM_XCPT_BR_ENABLED_RAW()
10166 | VBOXVMM_XCPT_UD_ENABLED_RAW()
10167 | VBOXVMM_XCPT_NM_ENABLED_RAW()
10168 | VBOXVMM_XCPT_DF_ENABLED_RAW()
10169 | VBOXVMM_XCPT_TS_ENABLED_RAW()
10170 | VBOXVMM_XCPT_NP_ENABLED_RAW()
10171 | VBOXVMM_XCPT_SS_ENABLED_RAW()
10172 | VBOXVMM_XCPT_GP_ENABLED_RAW()
10173 | VBOXVMM_XCPT_PF_ENABLED_RAW()
10174 | VBOXVMM_XCPT_MF_ENABLED_RAW()
10175 | VBOXVMM_XCPT_AC_ENABLED_RAW()
10176 | VBOXVMM_XCPT_XF_ENABLED_RAW()
10177 | VBOXVMM_XCPT_VE_ENABLED_RAW()
10178 | VBOXVMM_XCPT_SX_ENABLED_RAW()
10179 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
10180 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
10181 ) != 0
10182 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
10183 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
10184 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
10185 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
10186 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
10187 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
10188 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
10189 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
10190 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
10191 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
10192 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
10193 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
10194 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
10195 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
10196 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
10197 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
10198 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
10199 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
10200 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
10201 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
10202 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
10203 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
10204 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
10205 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
10206 | VBOXVMM_INSTR_STR_ENABLED_RAW()
10207 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
10208 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
10209 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
10210 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
10211 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
10212 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
10213 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
10214 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
10215 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
10216 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
10217 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
10218 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
10219 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
10220 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
10221 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
10222 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
10223 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
10224 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
10225 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
10226 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
10227 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
10228 ) != 0
10229 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
10230 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
10231 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
10232 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
10233 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
10234 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
10235 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
10236 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
10237 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
10238 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
10239 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
10240 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
10241 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
10242 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
10243 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
10244 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
10245 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
10246 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
10247 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
10248 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
10249 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
10250 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
10251 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
10252 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
10253 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
10254 | VBOXVMM_EXIT_STR_ENABLED_RAW()
10255 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
10256 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
10257 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
10258 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
10259 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
10260 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
10261 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
10262 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
10263 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
10264 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
10265 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
10266 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
10267 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
10268 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
10269 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
10270 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
10271 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
10272 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
10273 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
10274 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
10275 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
10276 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
10277 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
10278 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
10279 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
10280 ) != 0;
10281}
10282
10283
10284/**
10285 * Runs the guest code using VT-x.
10286 *
10287 * @returns Strict VBox status code (i.e. informational status codes too).
10288 * @param pVCpu The cross context virtual CPU structure.
10289 */
10290VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVMCPU pVCpu)
10291{
10292 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
10293 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10294 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
10295 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
10296
10297 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
10298
10299 VBOXSTRICTRC rcStrict;
10300 if ( !pVCpu->hm.s.fUseDebugLoop
10301 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
10302 && !DBGFIsStepping(pVCpu)
10303 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
10304 rcStrict = hmR0VmxRunGuestCodeNormal(pVCpu);
10305 else
10306 rcStrict = hmR0VmxRunGuestCodeDebug(pVCpu);
10307
10308 if (rcStrict == VERR_EM_INTERPRETER)
10309 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
10310 else if (rcStrict == VINF_EM_RESET)
10311 rcStrict = VINF_EM_TRIPLE_FAULT;
10312
10313 int rc2 = hmR0VmxExitToRing3(pVCpu, rcStrict);
10314 if (RT_FAILURE(rc2))
10315 {
10316 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
10317 rcStrict = rc2;
10318 }
10319 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
10320 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
10321 return rcStrict;
10322}
10323
10324
10325#ifndef HMVMX_USE_FUNCTION_TABLE
10326DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
10327{
10328#ifdef DEBUG_ramshankar
10329#define VMEXIT_CALL_RET(a_fSave, a_CallExpr) \
10330 do { \
10331 if (a_fSave != 0) \
10332 hmR0VmxImportGuestState(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL); \
10333 VBOXSTRICTRC rcStrict = a_CallExpr; \
10334 if (a_fSave != 0) \
10335 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
10336 return rcStrict; \
10337 } while (0)
10338#else
10339# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) return a_CallExpr
10340#endif
10341 switch (rcReason)
10342 {
10343 case VMX_EXIT_EPT_MISCONFIG: VMEXIT_CALL_RET(0, hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient));
10344 case VMX_EXIT_EPT_VIOLATION: VMEXIT_CALL_RET(0, hmR0VmxExitEptViolation(pVCpu, pVmxTransient));
10345 case VMX_EXIT_IO_INSTR: VMEXIT_CALL_RET(0, hmR0VmxExitIoInstr(pVCpu, pVmxTransient));
10346 case VMX_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0VmxExitCpuid(pVCpu, pVmxTransient));
10347 case VMX_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0VmxExitRdtsc(pVCpu, pVmxTransient));
10348 case VMX_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0VmxExitRdtscp(pVCpu, pVmxTransient));
10349 case VMX_EXIT_APIC_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitApicAccess(pVCpu, pVmxTransient));
10350 case VMX_EXIT_XCPT_OR_NMI: VMEXIT_CALL_RET(0, hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient));
10351 case VMX_EXIT_MOV_CRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovCRx(pVCpu, pVmxTransient));
10352 case VMX_EXIT_EXT_INT: VMEXIT_CALL_RET(0, hmR0VmxExitExtInt(pVCpu, pVmxTransient));
10353 case VMX_EXIT_INT_WINDOW: VMEXIT_CALL_RET(0, hmR0VmxExitIntWindow(pVCpu, pVmxTransient));
10354 case VMX_EXIT_TPR_BELOW_THRESHOLD: VMEXIT_CALL_RET(0, hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient));
10355 case VMX_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0VmxExitMwait(pVCpu, pVmxTransient));
10356 case VMX_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0VmxExitMonitor(pVCpu, pVmxTransient));
10357 case VMX_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0VmxExitTaskSwitch(pVCpu, pVmxTransient));
10358 case VMX_EXIT_PREEMPT_TIMER: VMEXIT_CALL_RET(0, hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient));
10359 case VMX_EXIT_RDMSR: VMEXIT_CALL_RET(0, hmR0VmxExitRdmsr(pVCpu, pVmxTransient));
10360 case VMX_EXIT_WRMSR: VMEXIT_CALL_RET(0, hmR0VmxExitWrmsr(pVCpu, pVmxTransient));
10361 case VMX_EXIT_VMCALL: VMEXIT_CALL_RET(0, hmR0VmxExitVmcall(pVCpu, pVmxTransient));
10362 case VMX_EXIT_MOV_DRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovDRx(pVCpu, pVmxTransient));
10363 case VMX_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0VmxExitHlt(pVCpu, pVmxTransient));
10364 case VMX_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0VmxExitInvd(pVCpu, pVmxTransient));
10365 case VMX_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0VmxExitInvlpg(pVCpu, pVmxTransient));
10366 case VMX_EXIT_RSM: VMEXIT_CALL_RET(0, hmR0VmxExitRsm(pVCpu, pVmxTransient));
10367 case VMX_EXIT_MTF: VMEXIT_CALL_RET(0, hmR0VmxExitMtf(pVCpu, pVmxTransient));
10368 case VMX_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0VmxExitPause(pVCpu, pVmxTransient));
10369 case VMX_EXIT_GDTR_IDTR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
10370 case VMX_EXIT_LDTR_TR_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitXdtrAccess(pVCpu, pVmxTransient));
10371 case VMX_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0VmxExitWbinvd(pVCpu, pVmxTransient));
10372 case VMX_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0VmxExitXsetbv(pVCpu, pVmxTransient));
10373 case VMX_EXIT_RDRAND: VMEXIT_CALL_RET(0, hmR0VmxExitRdrand(pVCpu, pVmxTransient));
10374 case VMX_EXIT_INVPCID: VMEXIT_CALL_RET(0, hmR0VmxExitInvpcid(pVCpu, pVmxTransient));
10375 case VMX_EXIT_GETSEC: VMEXIT_CALL_RET(0, hmR0VmxExitGetsec(pVCpu, pVmxTransient));
10376 case VMX_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0VmxExitRdpmc(pVCpu, pVmxTransient));
10377#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10378 case VMX_EXIT_VMCLEAR: VMEXIT_CALL_RET(0, hmR0VmxExitVmclear(pVCpu, pVmxTransient));
10379 case VMX_EXIT_VMLAUNCH: VMEXIT_CALL_RET(0, hmR0VmxExitVmlaunch(pVCpu, pVmxTransient));
10380 case VMX_EXIT_VMPTRLD: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrld(pVCpu, pVmxTransient));
10381 case VMX_EXIT_VMPTRST: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrst(pVCpu, pVmxTransient));
10382 case VMX_EXIT_VMREAD: VMEXIT_CALL_RET(0, hmR0VmxExitVmread(pVCpu, pVmxTransient));
10383 case VMX_EXIT_VMRESUME: VMEXIT_CALL_RET(0, hmR0VmxExitVmwrite(pVCpu, pVmxTransient));
10384 case VMX_EXIT_VMWRITE: VMEXIT_CALL_RET(0, hmR0VmxExitVmresume(pVCpu, pVmxTransient));
10385 case VMX_EXIT_VMXOFF: VMEXIT_CALL_RET(0, hmR0VmxExitVmxoff(pVCpu, pVmxTransient));
10386 case VMX_EXIT_VMXON: VMEXIT_CALL_RET(0, hmR0VmxExitVmxon(pVCpu, pVmxTransient));
10387#else
10388 case VMX_EXIT_VMCLEAR:
10389 case VMX_EXIT_VMLAUNCH:
10390 case VMX_EXIT_VMPTRLD:
10391 case VMX_EXIT_VMPTRST:
10392 case VMX_EXIT_VMREAD:
10393 case VMX_EXIT_VMRESUME:
10394 case VMX_EXIT_VMWRITE:
10395 case VMX_EXIT_VMXOFF:
10396 case VMX_EXIT_VMXON:
10397 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
10398#endif
10399
10400 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pVmxTransient);
10401 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pVmxTransient);
10402 case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pVmxTransient);
10403 case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pVmxTransient);
10404 case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pVmxTransient);
10405 case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pVmxTransient);
10406 case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pVmxTransient);
10407 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
10408 case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pVmxTransient);
10409
10410 case VMX_EXIT_INVEPT:
10411 case VMX_EXIT_INVVPID:
10412 case VMX_EXIT_VMFUNC:
10413 case VMX_EXIT_XSAVES:
10414 case VMX_EXIT_XRSTORS:
10415 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
10416
10417 case VMX_EXIT_ENCLS:
10418 case VMX_EXIT_RDSEED: /* only spurious VM-exits, so undefined */
10419 case VMX_EXIT_PML_FULL:
10420 default:
10421 return hmR0VmxExitErrUndefined(pVCpu, pVmxTransient);
10422 }
10423#undef VMEXIT_CALL_RET
10424}
10425#endif /* !HMVMX_USE_FUNCTION_TABLE */
10426
10427
10428#ifdef VBOX_STRICT
10429/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
10430# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
10431 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
10432
10433# define HMVMX_ASSERT_PREEMPT_CPUID() \
10434 do { \
10435 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
10436 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
10437 } while (0)
10438
10439# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10440 do { \
10441 AssertPtr((a_pVCpu)); \
10442 AssertPtr((a_pVmxTransient)); \
10443 Assert((a_pVmxTransient)->fVMEntryFailed == false); \
10444 Assert(ASMIntAreEnabled()); \
10445 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
10446 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
10447 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", (a_pVCpu)->idCpu)); \
10448 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
10449 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
10450 HMVMX_ASSERT_PREEMPT_CPUID(); \
10451 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10452 } while (0)
10453
10454# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10455 do { \
10456 Log4Func(("\n")); \
10457 } while (0)
10458#else
10459# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
10460 do { \
10461 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10462 NOREF((a_pVCpu)); NOREF((a_pVmxTransient)); \
10463 } while (0)
10464# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) do { } while (0)
10465#endif
10466
10467
10468/**
10469 * Advances the guest RIP by the specified number of bytes.
10470 *
10471 * @param pVCpu The cross context virtual CPU structure.
10472 * @param cbInstr Number of bytes to advance the RIP by.
10473 *
10474 * @remarks No-long-jump zone!!!
10475 */
10476DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, uint32_t cbInstr)
10477{
10478 /* Advance the RIP. */
10479 pVCpu->cpum.GstCtx.rip += cbInstr;
10480 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
10481
10482 /* Update interrupt inhibition. */
10483 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
10484 && pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
10485 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
10486}
10487
10488
10489/**
10490 * Advances the guest RIP after reading it from the VMCS.
10491 *
10492 * @returns VBox status code, no informational status codes.
10493 * @param pVCpu The cross context virtual CPU structure.
10494 * @param pVmxTransient Pointer to the VMX transient structure.
10495 *
10496 * @remarks No-long-jump zone!!!
10497 */
10498static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
10499{
10500 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10501 rc |= hmR0VmxImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
10502 AssertRCReturn(rc, rc);
10503
10504 hmR0VmxAdvanceGuestRipBy(pVCpu, pVmxTransient->cbInstr);
10505 return VINF_SUCCESS;
10506}
10507
10508
10509/**
10510 * Tries to determine what part of the guest-state VT-x has deemed as invalid
10511 * and update error record fields accordingly.
10512 *
10513 * @return VMX_IGS_* return codes.
10514 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
10515 * wrong with the guest state.
10516 *
10517 * @param pVCpu The cross context virtual CPU structure.
10518 *
10519 * @remarks This function assumes our cache of the VMCS controls
10520 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
10521 */
10522static uint32_t hmR0VmxCheckGuestState(PVMCPU pVCpu)
10523{
10524#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
10525#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
10526 uError = (err); \
10527 break; \
10528 } else do { } while (0)
10529
10530 int rc;
10531 PVM pVM = pVCpu->CTX_SUFF(pVM);
10532 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
10533 uint32_t uError = VMX_IGS_ERROR;
10534 uint32_t u32Val;
10535 bool const fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
10536
10537 do
10538 {
10539 /*
10540 * CR0.
10541 */
10542 uint32_t fSetCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10543 uint32_t const fZapCr0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10544 /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
10545 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
10546 if (fUnrestrictedGuest)
10547 fSetCr0 &= ~(X86_CR0_PE | X86_CR0_PG);
10548
10549 uint32_t u32GuestCr0;
10550 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCr0);
10551 AssertRCBreak(rc);
10552 HMVMX_CHECK_BREAK((u32GuestCr0 & fSetCr0) == fSetCr0, VMX_IGS_CR0_FIXED1);
10553 HMVMX_CHECK_BREAK(!(u32GuestCr0 & ~fZapCr0), VMX_IGS_CR0_FIXED0);
10554 if ( !fUnrestrictedGuest
10555 && (u32GuestCr0 & X86_CR0_PG)
10556 && !(u32GuestCr0 & X86_CR0_PE))
10557 {
10558 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
10559 }
10560
10561 /*
10562 * CR4.
10563 */
10564 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10565 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10566
10567 uint32_t u32GuestCr4;
10568 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCr4);
10569 AssertRCBreak(rc);
10570 HMVMX_CHECK_BREAK((u32GuestCr4 & fSetCr4) == fSetCr4, VMX_IGS_CR4_FIXED1);
10571 HMVMX_CHECK_BREAK(!(u32GuestCr4 & ~fZapCr4), VMX_IGS_CR4_FIXED0);
10572
10573 /*
10574 * IA32_DEBUGCTL MSR.
10575 */
10576 uint64_t u64Val;
10577 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
10578 AssertRCBreak(rc);
10579 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
10580 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
10581 {
10582 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
10583 }
10584 uint64_t u64DebugCtlMsr = u64Val;
10585
10586#ifdef VBOX_STRICT
10587 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
10588 AssertRCBreak(rc);
10589 Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
10590#endif
10591 bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
10592
10593 /*
10594 * RIP and RFLAGS.
10595 */
10596 uint32_t u32Eflags;
10597#if HC_ARCH_BITS == 64
10598 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
10599 AssertRCBreak(rc);
10600 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
10601 if ( !fLongModeGuest
10602 || !pCtx->cs.Attr.n.u1Long)
10603 {
10604 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
10605 }
10606 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
10607 * must be identical if the "IA-32e mode guest" VM-entry
10608 * control is 1 and CS.L is 1. No check applies if the
10609 * CPU supports 64 linear-address bits. */
10610
10611 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
10612 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
10613 AssertRCBreak(rc);
10614 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
10615 VMX_IGS_RFLAGS_RESERVED);
10616 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10617 u32Eflags = u64Val;
10618#else
10619 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
10620 AssertRCBreak(rc);
10621 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
10622 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10623#endif
10624
10625 if ( fLongModeGuest
10626 || ( fUnrestrictedGuest
10627 && !(u32GuestCr0 & X86_CR0_PE)))
10628 {
10629 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
10630 }
10631
10632 uint32_t u32EntryInfo;
10633 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
10634 AssertRCBreak(rc);
10635 if ( VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
10636 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
10637 {
10638 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
10639 }
10640
10641 /*
10642 * 64-bit checks.
10643 */
10644#if HC_ARCH_BITS == 64
10645 if (fLongModeGuest)
10646 {
10647 HMVMX_CHECK_BREAK(u32GuestCr0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
10648 HMVMX_CHECK_BREAK(u32GuestCr4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
10649 }
10650
10651 if ( !fLongModeGuest
10652 && (u32GuestCr4 & X86_CR4_PCIDE))
10653 {
10654 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
10655 }
10656
10657 /** @todo CR3 field must be such that bits 63:52 and bits in the range
10658 * 51:32 beyond the processor's physical-address width are 0. */
10659
10660 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
10661 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
10662 {
10663 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
10664 }
10665
10666 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
10667 AssertRCBreak(rc);
10668 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
10669
10670 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
10671 AssertRCBreak(rc);
10672 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
10673#endif
10674
10675 /*
10676 * PERF_GLOBAL MSR.
10677 */
10678 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)
10679 {
10680 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
10681 AssertRCBreak(rc);
10682 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
10683 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
10684 }
10685
10686 /*
10687 * PAT MSR.
10688 */
10689 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
10690 {
10691 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
10692 AssertRCBreak(rc);
10693 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
10694 for (unsigned i = 0; i < 8; i++)
10695 {
10696 uint8_t u8Val = (u64Val & 0xff);
10697 if ( u8Val != 0 /* UC */
10698 && u8Val != 1 /* WC */
10699 && u8Val != 4 /* WT */
10700 && u8Val != 5 /* WP */
10701 && u8Val != 6 /* WB */
10702 && u8Val != 7 /* UC- */)
10703 {
10704 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
10705 }
10706 u64Val >>= 8;
10707 }
10708 }
10709
10710 /*
10711 * EFER MSR.
10712 */
10713 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
10714 {
10715 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
10716 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
10717 AssertRCBreak(rc);
10718 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
10719 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
10720 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVCpu->hm.s.vmx.u32EntryCtls
10721 & VMX_ENTRY_CTLS_IA32E_MODE_GUEST),
10722 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
10723 /** @todo r=ramshankar: Unrestricted check here is probably wrong, see
10724 * iemVmxVmentryCheckGuestState(). */
10725 HMVMX_CHECK_BREAK( fUnrestrictedGuest
10726 || !(u32GuestCr0 & X86_CR0_PG)
10727 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
10728 VMX_IGS_EFER_LMA_LME_MISMATCH);
10729 }
10730
10731 /*
10732 * Segment registers.
10733 */
10734 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10735 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
10736 if (!(u32Eflags & X86_EFL_VM))
10737 {
10738 /* CS */
10739 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
10740 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
10741 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
10742 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
10743 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10744 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
10745 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10746 /* CS cannot be loaded with NULL in protected mode. */
10747 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
10748 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
10749 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
10750 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
10751 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
10752 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
10753 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
10754 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
10755 else
10756 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
10757
10758 /* SS */
10759 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10760 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
10761 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
10762 if ( !(pCtx->cr0 & X86_CR0_PE)
10763 || pCtx->cs.Attr.n.u4Type == 3)
10764 {
10765 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
10766 }
10767 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
10768 {
10769 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
10770 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
10771 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
10772 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
10773 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
10774 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10775 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
10776 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10777 }
10778
10779 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegmenReg(). */
10780 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
10781 {
10782 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
10783 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
10784 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10785 || pCtx->ds.Attr.n.u4Type > 11
10786 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10787 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
10788 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
10789 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
10790 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10791 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
10792 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10793 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10794 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
10795 }
10796 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
10797 {
10798 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
10799 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
10800 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10801 || pCtx->es.Attr.n.u4Type > 11
10802 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10803 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
10804 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
10805 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
10806 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10807 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
10808 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10809 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10810 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
10811 }
10812 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
10813 {
10814 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
10815 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
10816 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10817 || pCtx->fs.Attr.n.u4Type > 11
10818 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
10819 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
10820 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
10821 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
10822 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10823 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
10824 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10825 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10826 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
10827 }
10828 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
10829 {
10830 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
10831 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
10832 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10833 || pCtx->gs.Attr.n.u4Type > 11
10834 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
10835 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
10836 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
10837 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
10838 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10839 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
10840 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10841 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10842 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
10843 }
10844 /* 64-bit capable CPUs. */
10845#if HC_ARCH_BITS == 64
10846 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10847 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10848 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10849 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10850 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10851 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
10852 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10853 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
10854 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10855 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
10856 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10857#endif
10858 }
10859 else
10860 {
10861 /* V86 mode checks. */
10862 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
10863 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
10864 {
10865 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
10866 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
10867 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
10868 }
10869 else
10870 {
10871 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
10872 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
10873 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
10874 }
10875
10876 /* CS */
10877 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
10878 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
10879 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
10880 /* SS */
10881 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
10882 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
10883 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
10884 /* DS */
10885 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
10886 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
10887 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
10888 /* ES */
10889 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
10890 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
10891 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
10892 /* FS */
10893 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
10894 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
10895 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
10896 /* GS */
10897 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
10898 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
10899 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
10900 /* 64-bit capable CPUs. */
10901#if HC_ARCH_BITS == 64
10902 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10903 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10904 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10905 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10906 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10907 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
10908 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10909 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
10910 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10911 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
10912 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10913#endif
10914 }
10915
10916 /*
10917 * TR.
10918 */
10919 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
10920 /* 64-bit capable CPUs. */
10921#if HC_ARCH_BITS == 64
10922 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
10923#endif
10924 if (fLongModeGuest)
10925 {
10926 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
10927 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
10928 }
10929 else
10930 {
10931 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
10932 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
10933 VMX_IGS_TR_ATTR_TYPE_INVALID);
10934 }
10935 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
10936 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
10937 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
10938 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
10939 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
10940 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
10941 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
10942 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
10943
10944 /*
10945 * GDTR and IDTR.
10946 */
10947#if HC_ARCH_BITS == 64
10948 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
10949 AssertRCBreak(rc);
10950 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
10951
10952 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
10953 AssertRCBreak(rc);
10954 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
10955#endif
10956
10957 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
10958 AssertRCBreak(rc);
10959 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
10960
10961 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
10962 AssertRCBreak(rc);
10963 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
10964
10965 /*
10966 * Guest Non-Register State.
10967 */
10968 /* Activity State. */
10969 uint32_t u32ActivityState;
10970 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
10971 AssertRCBreak(rc);
10972 HMVMX_CHECK_BREAK( !u32ActivityState
10973 || (u32ActivityState & RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Misc, VMX_BF_MISC_ACTIVITY_STATES)),
10974 VMX_IGS_ACTIVITY_STATE_INVALID);
10975 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
10976 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
10977 uint32_t u32IntrState;
10978 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32IntrState);
10979 AssertRCBreak(rc);
10980 if ( u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
10981 || u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
10982 {
10983 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
10984 }
10985
10986 /** @todo Activity state and injecting interrupts. Left as a todo since we
10987 * currently don't use activity states but ACTIVE. */
10988
10989 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
10990 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
10991
10992 /* Guest interruptibility-state. */
10993 HMVMX_CHECK_BREAK(!(u32IntrState & 0xffffffe0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
10994 HMVMX_CHECK_BREAK((u32IntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
10995 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
10996 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
10997 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
10998 || !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
10999 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
11000 if (VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo))
11001 {
11002 if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_EXT_INT)
11003 {
11004 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
11005 && !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
11006 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
11007 }
11008 else if (VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
11009 {
11010 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
11011 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
11012 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
11013 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
11014 }
11015 }
11016 /** @todo Assumes the processor is not in SMM. */
11017 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
11018 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
11019 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
11020 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
11021 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
11022 if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
11023 && VMX_ENTRY_INT_INFO_IS_VALID(u32EntryInfo)
11024 && VMX_ENTRY_INT_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INT_INFO_TYPE_NMI)
11025 {
11026 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI),
11027 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
11028 }
11029
11030 /* Pending debug exceptions. */
11031#if HC_ARCH_BITS == 64
11032 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u64Val);
11033 AssertRCBreak(rc);
11034 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
11035 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
11036 u32Val = u64Val; /* For pending debug exceptions checks below. */
11037#else
11038 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u32Val);
11039 AssertRCBreak(rc);
11040 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
11041 HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
11042#endif
11043
11044 if ( (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
11045 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
11046 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
11047 {
11048 if ( (u32Eflags & X86_EFL_TF)
11049 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11050 {
11051 /* Bit 14 is PendingDebug.BS. */
11052 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
11053 }
11054 if ( !(u32Eflags & X86_EFL_TF)
11055 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11056 {
11057 /* Bit 14 is PendingDebug.BS. */
11058 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
11059 }
11060 }
11061
11062 /* VMCS link pointer. */
11063 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
11064 AssertRCBreak(rc);
11065 if (u64Val != UINT64_C(0xffffffffffffffff))
11066 {
11067 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
11068 /** @todo Bits beyond the processor's physical-address width MBZ. */
11069 /** @todo 32-bit located in memory referenced by value of this field (as a
11070 * physical address) must contain the processor's VMCS revision ID. */
11071 /** @todo SMM checks. */
11072 }
11073
11074 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
11075 * not using Nested Paging? */
11076 if ( pVM->hm.s.fNestedPaging
11077 && !fLongModeGuest
11078 && CPUMIsGuestInPAEModeEx(pCtx))
11079 {
11080 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
11081 AssertRCBreak(rc);
11082 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11083
11084 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
11085 AssertRCBreak(rc);
11086 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11087
11088 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
11089 AssertRCBreak(rc);
11090 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11091
11092 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
11093 AssertRCBreak(rc);
11094 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11095 }
11096
11097 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
11098 if (uError == VMX_IGS_ERROR)
11099 uError = VMX_IGS_REASON_NOT_FOUND;
11100 } while (0);
11101
11102 pVCpu->hm.s.u32HMError = uError;
11103 return uError;
11104
11105#undef HMVMX_ERROR_BREAK
11106#undef HMVMX_CHECK_BREAK
11107}
11108
11109
11110/** @name VM-exit handlers.
11111 * @{
11112 */
11113/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11114/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
11115/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11116
11117/**
11118 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
11119 */
11120HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11121{
11122 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11123 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
11124 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
11125 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
11126 return VINF_SUCCESS;
11127 return VINF_EM_RAW_INTERRUPT;
11128}
11129
11130
11131/**
11132 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
11133 */
11134HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11135{
11136 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11137 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
11138
11139 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11140 AssertRCReturn(rc, rc);
11141
11142 uint32_t uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
11143 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
11144 && uIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
11145 Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
11146
11147 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
11148 {
11149 /*
11150 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we
11151 * injected it ourselves and anything we inject is not going to cause a VM-exit directly
11152 * for the event being injected[1]. Go ahead and dispatch the NMI to the host[2].
11153 *
11154 * [1] -- See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
11155 * [2] -- See Intel spec. 27.5.5 "Updating Non-Register State".
11156 */
11157 VMXDispatchHostNmi();
11158 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
11159 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11160 return VINF_SUCCESS;
11161 }
11162
11163 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11164 VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
11165 if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
11166 { /* likely */ }
11167 else
11168 {
11169 if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
11170 rcStrictRc1 = VINF_SUCCESS;
11171 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11172 return rcStrictRc1;
11173 }
11174
11175 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
11176 uint32_t uVector = VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo);
11177 switch (uIntType)
11178 {
11179 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
11180 Assert(uVector == X86_XCPT_DB);
11181 RT_FALL_THRU();
11182 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
11183 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT);
11184 RT_FALL_THRU();
11185 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
11186 {
11187 /*
11188 * If there's any exception caused as a result of event injection, the resulting
11189 * secondary/final execption will be pending, we shall continue guest execution
11190 * after injecting the event. The page-fault case is complicated and we manually
11191 * handle any currently pending event in hmR0VmxExitXcptPF.
11192 */
11193 if (!pVCpu->hm.s.Event.fPending)
11194 { /* likely */ }
11195 else if (uVector != X86_XCPT_PF)
11196 {
11197 rc = VINF_SUCCESS;
11198 break;
11199 }
11200
11201 switch (uVector)
11202 {
11203 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pVmxTransient); break;
11204 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pVmxTransient); break;
11205 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pVmxTransient); break;
11206 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pVmxTransient); break;
11207 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pVmxTransient); break;
11208 case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pVmxTransient); break;
11209
11210 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
11211 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11212 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
11213 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11214 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
11215 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11216 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
11217 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11218 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
11219 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11220 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
11221 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11222 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
11223 rc = hmR0VmxExitXcptGeneric(pVCpu, pVmxTransient); break;
11224 default:
11225 {
11226 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
11227 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11228 {
11229 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
11230 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
11231 Assert(CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx));
11232
11233 rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
11234 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11235 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11236 AssertRCReturn(rc, rc);
11237 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
11238 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
11239 0 /* GCPtrFaultAddress */);
11240 }
11241 else
11242 {
11243 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
11244 pVCpu->hm.s.u32HMError = uVector;
11245 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
11246 }
11247 break;
11248 }
11249 }
11250 break;
11251 }
11252
11253 default:
11254 {
11255 pVCpu->hm.s.u32HMError = uExitIntInfo;
11256 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
11257 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INT_INFO_TYPE(uExitIntInfo)));
11258 break;
11259 }
11260 }
11261 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11262 return rc;
11263}
11264
11265
11266/**
11267 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
11268 */
11269HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11270{
11271 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11272
11273 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
11274 hmR0VmxClearIntWindowExitVmcs(pVCpu);
11275
11276 /* Deliver the pending interrupts via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11277 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
11278 return VINF_SUCCESS;
11279}
11280
11281
11282/**
11283 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
11284 */
11285HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11286{
11287 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11288 if (RT_UNLIKELY(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)))
11289 {
11290 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
11291 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11292 }
11293
11294 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS));
11295
11296 /*
11297 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
11298 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
11299 */
11300 uint32_t fIntrState = 0;
11301 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
11302 AssertRCReturn(rc, rc);
11303 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
11304 if (fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
11305 {
11306 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
11307 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
11308
11309 fIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
11310 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
11311 AssertRCReturn(rc, rc);
11312 }
11313
11314 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
11315 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
11316
11317 /* Deliver the pending NMI via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11318 return VINF_SUCCESS;
11319}
11320
11321
11322/**
11323 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
11324 */
11325HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11326{
11327 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11328 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11329}
11330
11331
11332/**
11333 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
11334 */
11335HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11336{
11337 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11338 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11339}
11340
11341
11342/**
11343 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
11344 */
11345HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11346{
11347 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11348
11349 /*
11350 * Get the state we need and update the exit history entry.
11351 */
11352 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11353 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
11354 AssertRCReturn(rc, rc);
11355
11356 VBOXSTRICTRC rcStrict;
11357 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
11358 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
11359 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
11360 if (!pExitRec)
11361 {
11362 /*
11363 * Regular CPUID instruction execution.
11364 */
11365 rcStrict = IEMExecDecodedCpuid(pVCpu, pVmxTransient->cbInstr);
11366 if (rcStrict == VINF_SUCCESS)
11367 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11368 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11369 {
11370 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11371 rcStrict = VINF_SUCCESS;
11372 }
11373 }
11374 else
11375 {
11376 /*
11377 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
11378 */
11379 int rc2 = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
11380 AssertRCReturn(rc2, rc2);
11381
11382 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
11383 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
11384
11385 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
11386 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
11387
11388 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
11389 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
11390 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
11391 }
11392 return rcStrict;
11393}
11394
11395
11396/**
11397 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
11398 */
11399HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11400{
11401 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11402 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR4);
11403 AssertRCReturn(rc, rc);
11404
11405 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_SMXE)
11406 return VINF_EM_RAW_EMULATE_INSTR;
11407
11408 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
11409 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11410}
11411
11412
11413/**
11414 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
11415 */
11416HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11417{
11418 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11419 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
11420 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11421 AssertRCReturn(rc, rc);
11422
11423 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtsc(pVCpu, pVmxTransient->cbInstr);
11424 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11425 {
11426 /* If we get a spurious VM-exit when offsetting is enabled,
11427 we must reset offsetting on VM-reentry. See @bugref{6634}. */
11428 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
11429 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11430 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11431 }
11432 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11433 {
11434 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11435 rcStrict = VINF_SUCCESS;
11436 }
11437 return rcStrict;
11438}
11439
11440
11441/**
11442 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
11443 */
11444HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11445{
11446 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11447 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_TSC_AUX);
11448 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11449 AssertRCReturn(rc, rc);
11450
11451 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtscp(pVCpu, pVmxTransient->cbInstr);
11452 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11453 {
11454 /* If we get a spurious VM-exit when offsetting is enabled,
11455 we must reset offsetting on VM-reentry. See @bugref{6634}. */
11456 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
11457 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11458 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11459 }
11460 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11461 {
11462 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11463 rcStrict = VINF_SUCCESS;
11464 }
11465 return rcStrict;
11466}
11467
11468
11469/**
11470 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
11471 */
11472HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11473{
11474 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11475 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11476 AssertRCReturn(rc, rc);
11477
11478 PVM pVM = pVCpu->CTX_SUFF(pVM);
11479 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11480 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11481 if (RT_LIKELY(rc == VINF_SUCCESS))
11482 {
11483 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11484 Assert(pVmxTransient->cbInstr == 2);
11485 }
11486 else
11487 {
11488 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
11489 rc = VERR_EM_INTERPRETER;
11490 }
11491 return rc;
11492}
11493
11494
11495/**
11496 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
11497 */
11498HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11499{
11500 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11501
11502 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
11503 if (EMAreHypercallInstructionsEnabled(pVCpu))
11504 {
11505 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CR0
11506 | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
11507 AssertRCReturn(rc, rc);
11508
11509 /* Perform the hypercall. */
11510 rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
11511 if (rcStrict == VINF_SUCCESS)
11512 {
11513 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11514 AssertRCReturn(rc, rc);
11515 }
11516 else
11517 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
11518 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
11519 || RT_FAILURE(rcStrict));
11520
11521 /* If the hypercall changes anything other than guest's general-purpose registers,
11522 we would need to reload the guest changed bits here before VM-entry. */
11523 }
11524 else
11525 Log4Func(("Hypercalls not enabled\n"));
11526
11527 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
11528 if (RT_FAILURE(rcStrict))
11529 {
11530 hmR0VmxSetPendingXcptUD(pVCpu);
11531 rcStrict = VINF_SUCCESS;
11532 }
11533
11534 return rcStrict;
11535}
11536
11537
11538/**
11539 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
11540 */
11541HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11542{
11543 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11544 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
11545
11546 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
11547 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11548 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
11549 AssertRCReturn(rc, rc);
11550
11551 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, pVmxTransient->cbInstr, pVmxTransient->uExitQual);
11552
11553 if (rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3)
11554 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
11555 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11556 {
11557 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11558 rcStrict = VINF_SUCCESS;
11559 }
11560 else
11561 AssertMsgFailed(("Unexpected IEMExecDecodedInvlpg(%#RX64) sttus: %Rrc\n", pVmxTransient->uExitQual,
11562 VBOXSTRICTRC_VAL(rcStrict)));
11563 return rcStrict;
11564}
11565
11566
11567/**
11568 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
11569 */
11570HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11571{
11572 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11573 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11574 AssertRCReturn(rc, rc);
11575
11576 PVM pVM = pVCpu->CTX_SUFF(pVM);
11577 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11578 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11579 if (RT_LIKELY(rc == VINF_SUCCESS))
11580 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11581 else
11582 {
11583 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
11584 rc = VERR_EM_INTERPRETER;
11585 }
11586 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
11587 return rc;
11588}
11589
11590
11591/**
11592 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
11593 */
11594HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11595{
11596 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11597 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
11598 AssertRCReturn(rc, rc);
11599
11600 PVM pVM = pVCpu->CTX_SUFF(pVM);
11601 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11602 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pCtx));
11603 rc = VBOXSTRICTRC_VAL(rc2);
11604 if (RT_LIKELY( rc == VINF_SUCCESS
11605 || rc == VINF_EM_HALT))
11606 {
11607 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11608 AssertRCReturn(rc3, rc3);
11609
11610 if ( rc == VINF_EM_HALT
11611 && EMMonitorWaitShouldContinue(pVCpu, pCtx))
11612 rc = VINF_SUCCESS;
11613 }
11614 else
11615 {
11616 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
11617 rc = VERR_EM_INTERPRETER;
11618 }
11619 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
11620 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
11621 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
11622 return rc;
11623}
11624
11625
11626/**
11627 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
11628 */
11629HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11630{
11631 /*
11632 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root
11633 * mode. In theory, we should never get this VM-exit. This can happen only if dual-monitor
11634 * treatment of SMI and VMX is enabled, which can (only?) be done by executing VMCALL in
11635 * VMX root operation. If we get here, something funny is going on.
11636 *
11637 * See Intel spec. 33.15.5 "Enabling the Dual-Monitor Treatment".
11638 */
11639 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11640 AssertMsgFailed(("Unexpected RSM VM-exit\n"));
11641 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11642}
11643
11644
11645/**
11646 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
11647 */
11648HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11649{
11650 /*
11651 * This can only happen if we support dual-monitor treatment of SMI, which can be activated
11652 * by executing VMCALL in VMX root operation. Only an STM (SMM transfer monitor) would get
11653 * this VM-exit when we (the executive monitor) execute a VMCALL in VMX root mode or receive
11654 * an SMI. If we get here, something funny is going on.
11655 *
11656 * See Intel spec. 33.15.6 "Activating the Dual-Monitor Treatment"
11657 * See Intel spec. 25.3 "Other Causes of VM-Exits"
11658 */
11659 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11660 AssertMsgFailed(("Unexpected SMI VM-exit\n"));
11661 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11662}
11663
11664
11665/**
11666 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
11667 */
11668HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11669{
11670 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
11671 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11672 AssertMsgFailed(("Unexpected IO SMI VM-exit\n"));
11673 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11674}
11675
11676
11677/**
11678 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
11679 */
11680HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11681{
11682 /*
11683 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used.
11684 * We don't make use of it as our guests don't have direct access to the host LAPIC.
11685 * See Intel spec. 25.3 "Other Causes of VM-exits".
11686 */
11687 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11688 AssertMsgFailed(("Unexpected SIPI VM-exit\n"));
11689 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11690}
11691
11692
11693/**
11694 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
11695 * VM-exit.
11696 */
11697HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11698{
11699 /*
11700 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
11701 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
11702 *
11703 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
11704 * See Intel spec. "23.8 Restrictions on VMX operation".
11705 */
11706 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11707 return VINF_SUCCESS;
11708}
11709
11710
11711/**
11712 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
11713 * VM-exit.
11714 */
11715HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11716{
11717 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11718 return VINF_EM_RESET;
11719}
11720
11721
11722/**
11723 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
11724 */
11725HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11726{
11727 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11728 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_HLT_EXIT);
11729
11730 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
11731 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RFLAGS);
11732 AssertRCReturn(rc, rc);
11733
11734 if (EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx)) /* Requires eflags. */
11735 rc = VINF_SUCCESS;
11736 else
11737 rc = VINF_EM_HALT;
11738
11739 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
11740 if (rc != VINF_SUCCESS)
11741 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
11742 return rc;
11743}
11744
11745
11746/**
11747 * VM-exit handler for instructions that result in a \#UD exception delivered to
11748 * the guest.
11749 */
11750HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11751{
11752 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11753 hmR0VmxSetPendingXcptUD(pVCpu);
11754 return VINF_SUCCESS;
11755}
11756
11757
11758/**
11759 * VM-exit handler for expiry of the VMX preemption timer.
11760 */
11761HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11762{
11763 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11764
11765 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
11766 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11767
11768 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
11769 PVM pVM = pVCpu->CTX_SUFF(pVM);
11770 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
11771 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
11772 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
11773}
11774
11775
11776/**
11777 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
11778 */
11779HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11780{
11781 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11782
11783 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11784 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_CR4);
11785 AssertRCReturn(rc, rc);
11786
11787 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
11788 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11789 : HM_CHANGED_RAISED_XCPT_MASK);
11790
11791 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
11792 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
11793
11794 return rcStrict;
11795}
11796
11797
11798/**
11799 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
11800 */
11801HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11802{
11803 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11804 /** @todo Use VM-exit instruction information. */
11805 return VERR_EM_INTERPRETER;
11806}
11807
11808
11809/**
11810 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
11811 * Error VM-exit.
11812 */
11813HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11814{
11815 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
11816 AssertRCReturn(rc, rc);
11817 rc = hmR0VmxCheckVmcsCtls(pVCpu);
11818 if (RT_FAILURE(rc))
11819 return rc;
11820
11821 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu);
11822 NOREF(uInvalidReason);
11823
11824#ifdef VBOX_STRICT
11825 uint32_t fIntrState;
11826 RTHCUINTREG uHCReg;
11827 uint64_t u64Val;
11828 uint32_t u32Val;
11829
11830 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
11831 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
11832 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
11833 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
11834 AssertRCReturn(rc, rc);
11835
11836 Log4(("uInvalidReason %u\n", uInvalidReason));
11837 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
11838 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
11839 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
11840 Log4(("VMX_VMCS32_GUEST_INT_STATE %#RX32\n", fIntrState));
11841
11842 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
11843 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
11844 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
11845 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
11846 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
11847 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11848 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
11849 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
11850 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
11851 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11852 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
11853 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
11854
11855 hmR0DumpRegs(pVCpu);
11856#else
11857 NOREF(pVmxTransient);
11858#endif
11859
11860 return VERR_VMX_INVALID_GUEST_STATE;
11861}
11862
11863
11864/**
11865 * VM-exit handler for VM-entry failure due to an MSR-load
11866 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
11867 */
11868HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11869{
11870 AssertMsgFailed(("Unexpected MSR-load exit\n"));
11871 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11872}
11873
11874
11875/**
11876 * VM-exit handler for VM-entry failure due to a machine-check event
11877 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
11878 */
11879HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11880{
11881 AssertMsgFailed(("Unexpected machine-check event exit\n"));
11882 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11883}
11884
11885
11886/**
11887 * VM-exit handler for all undefined reasons. Should never ever happen.. in
11888 * theory.
11889 */
11890HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11891{
11892 RT_NOREF2(pVCpu, pVmxTransient);
11893 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d\n", pVmxTransient->uExitReason));
11894 return VERR_VMX_UNDEFINED_EXIT_CODE;
11895}
11896
11897
11898/**
11899 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
11900 * (VMX_EXIT_GDTR_IDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
11901 * Conditional VM-exit.
11902 */
11903HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11904{
11905 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11906
11907 /* By default, we don't enable VMX_PROC_CTLS2_DESCRIPTOR_TABLE_EXIT. */
11908 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
11909 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_DESC_TABLE_EXIT)
11910 return VERR_EM_INTERPRETER;
11911 AssertMsgFailed(("Unexpected XDTR access\n"));
11912 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11913}
11914
11915
11916/**
11917 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
11918 */
11919HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11920{
11921 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11922
11923 /* By default, we don't enable VMX_PROC_CTLS2_RDRAND_EXIT. */
11924 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_PROC_CTLS2_RDRAND_EXIT)
11925 return VERR_EM_INTERPRETER;
11926 AssertMsgFailed(("Unexpected RDRAND exit\n"));
11927 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11928}
11929
11930
11931/**
11932 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
11933 */
11934HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
11935{
11936 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
11937
11938 /** @todo Optimize this: We currently drag in in the whole MSR state
11939 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
11940 * MSRs required. That would require changes to IEM and possibly CPUM too.
11941 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
11942 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
11943 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11944 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
11945 switch (idMsr)
11946 {
11947 /* The FS and GS base MSRs are not part of the above all-MSRs mask. */
11948 case MSR_K8_FS_BASE: rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_FS); break;
11949 case MSR_K8_GS_BASE: rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_GS); break;
11950 }
11951 AssertRCReturn(rc, rc);
11952
11953 Log4Func(("ecx=%#RX32\n", idMsr));
11954
11955#ifdef VBOX_STRICT
11956 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
11957 {
11958 if ( hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr)
11959 && idMsr != MSR_K6_EFER)
11960 {
11961 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", idMsr));
11962 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11963 }
11964 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
11965 {
11966 VMXMSREXITREAD enmRead;
11967 VMXMSREXITWRITE enmWrite;
11968 int rc2 = HMGetVmxMsrPermission(pVCpu->hm.s.vmx.pvMsrBitmap, idMsr, &enmRead, &enmWrite);
11969 AssertRCReturn(rc2, rc2);
11970 if (enmRead == VMXMSREXIT_PASSTHRU_READ)
11971 {
11972 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", idMsr));
11973 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
11974 }
11975 }
11976 }
11977#endif
11978
11979 VBOXSTRICTRC rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmxTransient->cbInstr);
11980 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
11981 if (rcStrict == VINF_SUCCESS)
11982 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
11983 | HM_CHANGED_GUEST_RAX | HM_CHANGED_GUEST_RDX);
11984 else if (rcStrict == VINF_IEM_RAISED_XCPT)
11985 {
11986 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
11987 rcStrict = VINF_SUCCESS;
11988 }
11989 else
11990 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_READ, ("Unexpected IEMExecDecodedRdmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
11991
11992 return rcStrict;
11993}
11994
11995
11996/**
11997 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
11998 */
11999HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12000{
12001 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12002
12003 /** @todo Optimize this: We currently drag in in the whole MSR state
12004 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
12005 * MSRs required. That would require changes to IEM and possibly CPUM too.
12006 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
12007 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
12008 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12009 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK
12010 | CPUMCTX_EXTRN_ALL_MSRS);
12011 switch (idMsr)
12012 {
12013 /*
12014 * The FS and GS base MSRs are not part of the above all-MSRs mask.
12015 *
12016 * Although we don't need to fetch the base as it will be overwritten shortly, while
12017 * loading guest-state we would also load the entire segment register including limit
12018 * and attributes and thus we need to load them here.
12019 */
12020 case MSR_K8_FS_BASE: rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_FS); break;
12021 case MSR_K8_GS_BASE: rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_GS); break;
12022 }
12023 AssertRCReturn(rc, rc);
12024
12025 Log4Func(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", idMsr, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.eax));
12026
12027 VBOXSTRICTRC rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmxTransient->cbInstr);
12028 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
12029
12030 if (rcStrict == VINF_SUCCESS)
12031 {
12032 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
12033
12034 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
12035 if ( idMsr == MSR_IA32_APICBASE
12036 || ( idMsr >= MSR_IA32_X2APIC_START
12037 && idMsr <= MSR_IA32_X2APIC_END))
12038 {
12039 /*
12040 * We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
12041 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before IEM changes it.
12042 */
12043 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
12044 }
12045 else if (idMsr == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
12046 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
12047 else if (idMsr == MSR_K6_EFER)
12048 {
12049 /*
12050 * If the guest touches EFER we need to update the VM-Entry and VM-Exit controls as well,
12051 * even if it is -not- touching bits that cause paging mode changes (LMA/LME). We care about
12052 * the other bits as well, SCE and NXE. See @bugref{7368}.
12053 */
12054 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_CTLS
12055 | HM_CHANGED_VMX_EXIT_CTLS);
12056 }
12057
12058 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
12059 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
12060 {
12061 switch (idMsr)
12062 {
12063 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
12064 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
12065 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
12066 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
12067 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
12068 case MSR_K6_EFER: /* Nothing to do, already handled above. */ break;
12069 default:
12070 {
12071 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr))
12072 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
12073 else if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
12074 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_LAZY_MSRS);
12075 break;
12076 }
12077 }
12078 }
12079#ifdef VBOX_STRICT
12080 else
12081 {
12082 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
12083 switch (idMsr)
12084 {
12085 case MSR_IA32_SYSENTER_CS:
12086 case MSR_IA32_SYSENTER_EIP:
12087 case MSR_IA32_SYSENTER_ESP:
12088 case MSR_K8_FS_BASE:
12089 case MSR_K8_GS_BASE:
12090 {
12091 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", idMsr));
12092 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12093 }
12094
12095 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
12096 default:
12097 {
12098 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, idMsr))
12099 {
12100 /* EFER writes are always intercepted, see hmR0VmxExportGuestMsrs(). */
12101 if (idMsr != MSR_K6_EFER)
12102 {
12103 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12104 idMsr));
12105 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12106 }
12107 }
12108
12109 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
12110 {
12111 VMXMSREXITREAD enmRead;
12112 VMXMSREXITWRITE enmWrite;
12113 int rc2 = HMGetVmxMsrPermission(pVCpu->hm.s.vmx.pvMsrBitmap, idMsr, &enmRead, &enmWrite);
12114 AssertRCReturn(rc2, rc2);
12115 if (enmWrite == VMXMSREXIT_PASSTHRU_WRITE)
12116 {
12117 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", idMsr));
12118 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12119 }
12120 }
12121 break;
12122 }
12123 }
12124 }
12125#endif /* VBOX_STRICT */
12126 }
12127 else if (rcStrict == VINF_IEM_RAISED_XCPT)
12128 {
12129 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
12130 rcStrict = VINF_SUCCESS;
12131 }
12132 else
12133 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_WRITE, ("Unexpected IEMExecDecodedWrmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
12134
12135 return rcStrict;
12136}
12137
12138
12139/**
12140 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
12141 */
12142HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12143{
12144 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12145 /** @todo The guest has likely hit a contended spinlock. We might want to
12146 * poke a schedule different guest VCPU. */
12147 return VINF_EM_RAW_INTERRUPT;
12148}
12149
12150
12151/**
12152 * VM-exit handler for when the TPR value is lowered below the specified
12153 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
12154 */
12155HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12156{
12157 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12158 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
12159
12160 /*
12161 * The TPR shadow would've been synced with the APIC TPR in hmR0VmxPostRunGuest(). We'll re-evaluate
12162 * pending interrupts and inject them before the next VM-entry so we can just continue execution here.
12163 */
12164 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
12165 return VINF_SUCCESS;
12166}
12167
12168
12169/**
12170 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
12171 * VM-exit.
12172 *
12173 * @retval VINF_SUCCESS when guest execution can continue.
12174 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
12175 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
12176 * interpreter.
12177 */
12178HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12179{
12180 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12181 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
12182
12183 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12184 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12185 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12186 AssertRCReturn(rc, rc);
12187
12188 VBOXSTRICTRC rcStrict;
12189 PVM pVM = pVCpu->CTX_SUFF(pVM);
12190 RTGCUINTPTR const uExitQual = pVmxTransient->uExitQual;
12191 uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(uExitQual);
12192 switch (uAccessType)
12193 {
12194 case VMX_EXIT_QUAL_CRX_ACCESS_WRITE: /* MOV to CRx */
12195 {
12196 uint32_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
12197 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
12198 VMX_EXIT_QUAL_CRX_GENREG(uExitQual));
12199 AssertMsg( rcStrict == VINF_SUCCESS
12200 || rcStrict == VINF_IEM_RAISED_XCPT
12201 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12202
12203 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
12204 {
12205 case 0:
12206 {
12207 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12208 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12209 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
12210 Log4Func(("CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr0));
12211
12212 /*
12213 * This is a kludge for handling switches back to real mode when we try to use
12214 * V86 mode to run real mode code directly. Problem is that V86 mode cannot
12215 * deal with special selector values, so we have to return to ring-3 and run
12216 * there till the selector values are V86 mode compatible.
12217 *
12218 * Note! Using VINF_EM_RESCHEDULE_REM here rather than VINF_EM_RESCHEDULE since the
12219 * latter is an alias for VINF_IEM_RAISED_XCPT which is converted to VINF_SUCCESs
12220 * at the end of this function.
12221 */
12222 if ( rc == VINF_SUCCESS
12223 && !pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
12224 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx)
12225 && (uOldCr0 & X86_CR0_PE)
12226 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE) )
12227 {
12228 /** @todo check selectors rather than returning all the time. */
12229 Log4Func(("CR0 write, back to real mode -> VINF_EM_RESCHEDULE_REM\n"));
12230 rcStrict = VINF_EM_RESCHEDULE_REM;
12231 }
12232 break;
12233 }
12234
12235 case 2:
12236 {
12237 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
12238 /* Nothing to do here, CR2 it's not part of the VMCS. */
12239 break;
12240 }
12241
12242 case 3:
12243 {
12244 Assert( !pVM->hm.s.fNestedPaging
12245 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
12246 || pVCpu->hm.s.fUsingDebugLoop);
12247 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
12248 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12249 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR3);
12250 Log4Func(("CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr3));
12251 break;
12252 }
12253
12254 case 4:
12255 {
12256 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
12257 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12258 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR4);
12259 Log4Func(("CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n", VBOXSTRICTRC_VAL(rcStrict),
12260 pVCpu->cpum.GstCtx.cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
12261 break;
12262 }
12263
12264 case 8:
12265 {
12266 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
12267 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
12268 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
12269 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_APIC_TPR);
12270 break;
12271 }
12272 default:
12273 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual)));
12274 break;
12275 }
12276 break;
12277 }
12278
12279 case VMX_EXIT_QUAL_CRX_ACCESS_READ: /* MOV from CRx */
12280 {
12281 Assert( !pVM->hm.s.fNestedPaging
12282 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
12283 || pVCpu->hm.s.fUsingDebugLoop
12284 || VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 3);
12285 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
12286 Assert( VMX_EXIT_QUAL_CRX_REGISTER(uExitQual) != 8
12287 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
12288
12289 rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_GENREG(uExitQual),
12290 VMX_EXIT_QUAL_CRX_REGISTER(uExitQual));
12291 AssertMsg( rcStrict == VINF_SUCCESS
12292 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12293#ifdef VBOX_WITH_STATISTICS
12294 switch (VMX_EXIT_QUAL_CRX_REGISTER(uExitQual))
12295 {
12296 case 0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
12297 case 2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
12298 case 3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
12299 case 4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
12300 case 8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
12301 }
12302#endif
12303 Log4Func(("CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUAL_CRX_REGISTER(uExitQual),
12304 VBOXSTRICTRC_VAL(rcStrict)));
12305 if (VMX_EXIT_QUAL_CRX_GENREG(uExitQual) == X86_GREG_xSP)
12306 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RSP);
12307 else
12308 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
12309 break;
12310 }
12311
12312 case VMX_EXIT_QUAL_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
12313 {
12314 rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
12315 AssertMsg( rcStrict == VINF_SUCCESS
12316 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12317
12318 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12319 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
12320 Log4Func(("CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12321 break;
12322 }
12323
12324 case VMX_EXIT_QUAL_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
12325 {
12326 /* Note! LMSW cannot clear CR0.PE, so no fRealOnV86Active kludge needed here. */
12327 rc = hmR0VmxReadGuestLinearAddrVmcs(pVCpu, pVmxTransient);
12328 AssertRCReturn(rc, rc);
12329 rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr, VMX_EXIT_QUAL_CRX_LMSW_DATA(uExitQual),
12330 pVmxTransient->uGuestLinearAddr);
12331 AssertMsg( rcStrict == VINF_SUCCESS
12332 || rcStrict == VINF_IEM_RAISED_XCPT
12333 , ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12334
12335 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
12336 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
12337 Log4Func(("LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12338 break;
12339 }
12340
12341 default:
12342 AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
12343 VERR_VMX_UNEXPECTED_EXCEPTION);
12344 }
12345
12346 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS))
12347 == (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS));
12348 if (rcStrict == VINF_IEM_RAISED_XCPT)
12349 {
12350 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
12351 rcStrict = VINF_SUCCESS;
12352 }
12353
12354 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
12355 NOREF(pVM);
12356 return rcStrict;
12357}
12358
12359
12360/**
12361 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
12362 * VM-exit.
12363 */
12364HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12365{
12366 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12367 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
12368
12369 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12370 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12371 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12372 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER);
12373 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
12374 AssertRCReturn(rc, rc);
12375
12376 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
12377 uint32_t uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
12378 uint8_t uIOWidth = VMX_EXIT_QUAL_IO_WIDTH(pVmxTransient->uExitQual);
12379 bool fIOWrite = (VMX_EXIT_QUAL_IO_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_IO_DIRECTION_OUT);
12380 bool fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
12381 bool fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
12382 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
12383 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
12384
12385 /*
12386 * Update exit history to see if this exit can be optimized.
12387 */
12388 VBOXSTRICTRC rcStrict;
12389 PCEMEXITREC pExitRec = NULL;
12390 if ( !fGstStepping
12391 && !fDbgStepping)
12392 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
12393 !fIOString
12394 ? !fIOWrite
12395 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
12396 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
12397 : !fIOWrite
12398 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
12399 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
12400 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
12401 if (!pExitRec)
12402 {
12403 /* I/O operation lookup arrays. */
12404 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
12405 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving result in AL/AX/EAX. */
12406 uint32_t const cbValue = s_aIOSizes[uIOWidth];
12407 uint32_t const cbInstr = pVmxTransient->cbInstr;
12408 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
12409 PVM pVM = pVCpu->CTX_SUFF(pVM);
12410 if (fIOString)
12411 {
12412 /*
12413 * INS/OUTS - I/O String instruction.
12414 *
12415 * Use instruction-information if available, otherwise fall back on
12416 * interpreting the instruction.
12417 */
12418 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12419 AssertReturn(pCtx->dx == uIOPort, VERR_VMX_IPE_2);
12420 bool const fInsOutsInfo = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
12421 if (fInsOutsInfo)
12422 {
12423 int rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12424 AssertRCReturn(rc2, rc2);
12425 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
12426 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
12427 IEMMODE const enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
12428 bool const fRep = VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual);
12429 if (fIOWrite)
12430 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
12431 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
12432 else
12433 {
12434 /*
12435 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
12436 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
12437 * See Intel Instruction spec. for "INS".
12438 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
12439 */
12440 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
12441 }
12442 }
12443 else
12444 rcStrict = IEMExecOne(pVCpu);
12445
12446 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
12447 fUpdateRipAlready = true;
12448 }
12449 else
12450 {
12451 /*
12452 * IN/OUT - I/O instruction.
12453 */
12454 Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12455 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
12456 Assert(!VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual));
12457 if (fIOWrite)
12458 {
12459 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pCtx->eax & uAndVal, cbValue);
12460 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
12461 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
12462 && !pCtx->eflags.Bits.u1TF)
12463 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, uIOPort, cbInstr, cbValue, pCtx->eax & uAndVal);
12464 }
12465 else
12466 {
12467 uint32_t u32Result = 0;
12468 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
12469 if (IOM_SUCCESS(rcStrict))
12470 {
12471 /* Save result of I/O IN instr. in AL/AX/EAX. */
12472 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Result & uAndVal);
12473 }
12474 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
12475 && !pCtx->eflags.Bits.u1TF)
12476 rcStrict = EMRZSetPendingIoPortRead(pVCpu, uIOPort, cbInstr, cbValue);
12477 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
12478 }
12479 }
12480
12481 if (IOM_SUCCESS(rcStrict))
12482 {
12483 if (!fUpdateRipAlready)
12484 {
12485 hmR0VmxAdvanceGuestRipBy(pVCpu, cbInstr);
12486 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
12487 }
12488
12489 /*
12490 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru
12491 * while booting Fedora 17 64-bit guest.
12492 *
12493 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
12494 */
12495 if (fIOString)
12496 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RFLAGS);
12497
12498 /*
12499 * If any I/O breakpoints are armed, we need to check if one triggered
12500 * and take appropriate action.
12501 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
12502 */
12503 rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
12504 AssertRCReturn(rc, rc);
12505
12506 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
12507 * execution engines about whether hyper BPs and such are pending. */
12508 uint32_t const uDr7 = pCtx->dr[7];
12509 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
12510 && X86_DR7_ANY_RW_IO(uDr7)
12511 && (pCtx->cr4 & X86_CR4_DE))
12512 || DBGFBpIsHwIoArmed(pVM)))
12513 {
12514 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
12515
12516 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
12517 VMMRZCallRing3Disable(pVCpu);
12518 HM_DISABLE_PREEMPT(pVCpu);
12519
12520 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
12521
12522 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, uIOPort, cbValue);
12523 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
12524 {
12525 /* Raise #DB. */
12526 if (fIsGuestDbgActive)
12527 ASMSetDR6(pCtx->dr[6]);
12528 if (pCtx->dr[7] != uDr7)
12529 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR7;
12530
12531 hmR0VmxSetPendingXcptDB(pVCpu);
12532 }
12533 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
12534 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
12535 else if ( rcStrict2 != VINF_SUCCESS
12536 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
12537 rcStrict = rcStrict2;
12538 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
12539
12540 HM_RESTORE_PREEMPT();
12541 VMMRZCallRing3Enable(pVCpu);
12542 }
12543 }
12544
12545#ifdef VBOX_STRICT
12546 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
12547 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
12548 Assert(!fIOWrite);
12549 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
12550 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
12551 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
12552 Assert(fIOWrite);
12553 else
12554 {
12555# if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
12556 * statuses, that the VMM device and some others may return. See
12557 * IOM_SUCCESS() for guidance. */
12558 AssertMsg( RT_FAILURE(rcStrict)
12559 || rcStrict == VINF_SUCCESS
12560 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
12561 || rcStrict == VINF_EM_DBG_BREAKPOINT
12562 || rcStrict == VINF_EM_RAW_GUEST_TRAP
12563 || rcStrict == VINF_EM_RAW_TO_R3
12564 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12565# endif
12566 }
12567#endif
12568 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
12569 }
12570 else
12571 {
12572 /*
12573 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
12574 */
12575 int rc2 = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
12576 AssertRCReturn(rc2, rc2);
12577 STAM_COUNTER_INC(!fIOString ? fIOWrite ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
12578 : fIOWrite ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
12579 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
12580 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12581 VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual) ? "REP " : "",
12582 fIOWrite ? "OUT" : "IN", fIOString ? "S" : "", uIOPort, uIOWidth));
12583
12584 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
12585 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
12586
12587 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
12588 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12589 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
12590 }
12591 return rcStrict;
12592}
12593
12594
12595/**
12596 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
12597 * VM-exit.
12598 */
12599HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12600{
12601 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12602
12603 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
12604 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12605 AssertRCReturn(rc, rc);
12606 if (VMX_EXIT_QUAL_TASK_SWITCH_TYPE(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT)
12607 {
12608 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
12609 AssertRCReturn(rc, rc);
12610 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
12611 {
12612 uint32_t uErrCode;
12613 RTGCUINTPTR GCPtrFaultAddress;
12614 uint32_t const uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
12615 uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
12616 bool const fErrorCodeValid = VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo);
12617 if (fErrorCodeValid)
12618 {
12619 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
12620 AssertRCReturn(rc, rc);
12621 uErrCode = pVmxTransient->uIdtVectoringErrorCode;
12622 }
12623 else
12624 uErrCode = 0;
12625
12626 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
12627 && uVector == X86_XCPT_PF)
12628 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
12629 else
12630 GCPtrFaultAddress = 0;
12631
12632 rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12633 AssertRCReturn(rc, rc);
12634
12635 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
12636 pVmxTransient->cbInstr, uErrCode, GCPtrFaultAddress);
12637
12638 Log4Func(("Pending event. uIntType=%#x uVector=%#x\n", uIntType, uVector));
12639 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12640 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12641 }
12642 }
12643
12644 /* Fall back to the interpreter to emulate the task-switch. */
12645 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12646 return VERR_EM_INTERPRETER;
12647}
12648
12649
12650/**
12651 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
12652 */
12653HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12654{
12655 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12656 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
12657 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
12658 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12659 AssertRCReturn(rc, rc);
12660 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
12661 return VINF_EM_DBG_STEPPED;
12662}
12663
12664
12665/**
12666 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
12667 */
12668HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12669{
12670 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12671
12672 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
12673
12674 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12675 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12676 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12677 {
12678 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
12679 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12680 {
12681 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12682 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12683 }
12684 }
12685 else
12686 {
12687 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12688 rcStrict1 = VINF_SUCCESS;
12689 return rcStrict1;
12690 }
12691
12692 /* IOMMIOPhysHandler() below may call into IEM, save the necessary state. */
12693 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12694 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12695 AssertRCReturn(rc, rc);
12696
12697 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
12698 uint32_t uAccessType = VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual);
12699 VBOXSTRICTRC rcStrict2;
12700 switch (uAccessType)
12701 {
12702 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
12703 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
12704 {
12705 AssertMsg( !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
12706 || VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual) != XAPIC_OFF_TPR,
12707 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
12708
12709 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64MsrApicBase; /* Always up-to-date, u64MsrApicBase is not part of the VMCS. */
12710 GCPhys &= PAGE_BASE_GC_MASK;
12711 GCPhys += VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual);
12712 PVM pVM = pVCpu->CTX_SUFF(pVM);
12713 Log4Func(("Linear access uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
12714 VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual)));
12715
12716 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12717 rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
12718 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
12719 CPUMCTX2CORE(pCtx), GCPhys);
12720 Log4Func(("IOMMMIOPhysHandler returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
12721 if ( rcStrict2 == VINF_SUCCESS
12722 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12723 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12724 {
12725 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
12726 | HM_CHANGED_GUEST_APIC_TPR);
12727 rcStrict2 = VINF_SUCCESS;
12728 }
12729 break;
12730 }
12731
12732 default:
12733 Log4Func(("uAccessType=%#x\n", uAccessType));
12734 rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
12735 break;
12736 }
12737
12738 if (rcStrict2 != VINF_SUCCESS)
12739 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
12740 return rcStrict2;
12741}
12742
12743
12744/**
12745 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
12746 * VM-exit.
12747 */
12748HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12749{
12750 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12751
12752 /* We should -not- get this VM-exit if the guest's debug registers were active. */
12753 if (pVmxTransient->fWasGuestDebugStateActive)
12754 {
12755 AssertMsgFailed(("Unexpected MOV DRx exit\n"));
12756 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient);
12757 }
12758
12759 if ( !pVCpu->hm.s.fSingleInstruction
12760 && !pVmxTransient->fWasHyperDebugStateActive)
12761 {
12762 Assert(!DBGFIsStepping(pVCpu));
12763 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
12764
12765 /* Don't intercept MOV DRx any more. */
12766 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
12767 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12768 AssertRCReturn(rc, rc);
12769
12770 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
12771 VMMRZCallRing3Disable(pVCpu);
12772 HM_DISABLE_PREEMPT(pVCpu);
12773
12774 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
12775 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
12776 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
12777
12778 HM_RESTORE_PREEMPT();
12779 VMMRZCallRing3Enable(pVCpu);
12780
12781#ifdef VBOX_WITH_STATISTICS
12782 rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12783 AssertRCReturn(rc, rc);
12784 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
12785 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12786 else
12787 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12788#endif
12789 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
12790 return VINF_SUCCESS;
12791 }
12792
12793 /*
12794 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
12795 * Update the segment registers and DR7 from the CPU.
12796 */
12797 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12798 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12799 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_DR7);
12800 AssertRCReturn(rc, rc);
12801 Log4Func(("CS:RIP=%04x:%08RX64\n", pCtx->cs.Sel, pCtx->rip));
12802
12803 PVM pVM = pVCpu->CTX_SUFF(pVM);
12804 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
12805 {
12806 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
12807 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual),
12808 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual));
12809 if (RT_SUCCESS(rc))
12810 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
12811 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12812 }
12813 else
12814 {
12815 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
12816 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual),
12817 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual));
12818 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12819 }
12820
12821 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
12822 if (RT_SUCCESS(rc))
12823 {
12824 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
12825 AssertRCReturn(rc2, rc2);
12826 return VINF_SUCCESS;
12827 }
12828 return rc;
12829}
12830
12831
12832/**
12833 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
12834 * Conditional VM-exit.
12835 */
12836HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12837{
12838 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12839 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12840
12841 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12842 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12843 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12844 {
12845 /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
12846 injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
12847 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12848 {
12849 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12850 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12851 }
12852 }
12853 else
12854 {
12855 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12856 rcStrict1 = VINF_SUCCESS;
12857 return rcStrict1;
12858 }
12859
12860 /*
12861 * Get sufficent state and update the exit history entry.
12862 */
12863 RTGCPHYS GCPhys;
12864 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
12865 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12866 AssertRCReturn(rc, rc);
12867
12868 VBOXSTRICTRC rcStrict;
12869 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
12870 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
12871 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
12872 if (!pExitRec)
12873 {
12874 /*
12875 * If we succeed, resume guest execution.
12876 * If we fail in interpreting the instruction because we couldn't get the guest physical address
12877 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
12878 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
12879 * weird case. See @bugref{6043}.
12880 */
12881 PVM pVM = pVCpu->CTX_SUFF(pVM);
12882 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12883 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX);
12884 Log4Func(("At %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pCtx->rip, VBOXSTRICTRC_VAL(rcStrict)));
12885 if ( rcStrict == VINF_SUCCESS
12886 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
12887 || rcStrict == VERR_PAGE_NOT_PRESENT)
12888 {
12889 /* Successfully handled MMIO operation. */
12890 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
12891 | HM_CHANGED_GUEST_APIC_TPR);
12892 rcStrict = VINF_SUCCESS;
12893 }
12894 }
12895 else
12896 {
12897 /*
12898 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
12899 */
12900 int rc2 = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12901 AssertRCReturn(rc2, rc2);
12902
12903 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
12904 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhys));
12905
12906 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
12907 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
12908
12909 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
12910 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
12911 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
12912 }
12913 return VBOXSTRICTRC_TODO(rcStrict);
12914}
12915
12916
12917/**
12918 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
12919 * VM-exit.
12920 */
12921HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12922{
12923 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
12924 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12925
12926 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12927 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
12928 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12929 {
12930 /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
12931 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12932 Log4Func(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
12933 }
12934 else
12935 {
12936 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12937 rcStrict1 = VINF_SUCCESS;
12938 return rcStrict1;
12939 }
12940
12941 RTGCPHYS GCPhys;
12942 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &GCPhys);
12943 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
12944 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
12945 AssertRCReturn(rc, rc);
12946
12947 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
12948 AssertMsg(((pVmxTransient->uExitQual >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQual));
12949
12950 RTGCUINT uErrorCode = 0;
12951 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_INSTR_FETCH)
12952 uErrorCode |= X86_TRAP_PF_ID;
12953 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_DATA_WRITE)
12954 uErrorCode |= X86_TRAP_PF_RW;
12955 if (pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ENTRY_PRESENT)
12956 uErrorCode |= X86_TRAP_PF_P;
12957
12958 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
12959
12960
12961 /* Handle the pagefault trap for the nested shadow table. */
12962 PVM pVM = pVCpu->CTX_SUFF(pVM);
12963 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12964
12965 Log4Func(("EPT violation %#x at %#RX64 ErrorCode %#x CS:RIP=%04x:%08RX64\n", pVmxTransient->uExitQual, GCPhys, uErrorCode,
12966 pCtx->cs.Sel, pCtx->rip));
12967
12968 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pCtx), GCPhys);
12969 TRPMResetTrap(pVCpu);
12970
12971 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
12972 if ( rcStrict2 == VINF_SUCCESS
12973 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12974 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12975 {
12976 /* Successfully synced our nested page tables. */
12977 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
12978 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
12979 return VINF_SUCCESS;
12980 }
12981
12982 Log4Func(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
12983 return rcStrict2;
12984}
12985
12986/** @} */
12987
12988/** @name VM-exit exception handlers.
12989 * @{
12990 */
12991/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12992/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= VM-exit exception handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
12993/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12994
12995/**
12996 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
12997 */
12998static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
12999{
13000 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13001 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
13002
13003 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
13004 AssertRCReturn(rc, rc);
13005
13006 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE))
13007 {
13008 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
13009 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
13010
13011 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
13012 * provides VM-exit instruction length. If this causes problem later,
13013 * disassemble the instruction like it's done on AMD-V. */
13014 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13015 AssertRCReturn(rc2, rc2);
13016 return rc;
13017 }
13018
13019 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13020 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13021 return rc;
13022}
13023
13024
13025/**
13026 * VM-exit exception handler for \#BP (Breakpoint exception).
13027 */
13028static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13029{
13030 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13031 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
13032
13033 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13034 AssertRCReturn(rc, rc);
13035
13036 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13037 rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
13038 if (rc == VINF_EM_RAW_GUEST_TRAP)
13039 {
13040 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13041 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13042 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13043 AssertRCReturn(rc, rc);
13044
13045 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13046 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13047 }
13048
13049 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
13050 return rc;
13051}
13052
13053
13054/**
13055 * VM-exit exception handler for \#AC (alignment check exception).
13056 */
13057static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13058{
13059 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13060
13061 /*
13062 * Re-inject it. We'll detect any nesting before getting here.
13063 */
13064 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13065 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13066 AssertRCReturn(rc, rc);
13067 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
13068
13069 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13070 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13071 return VINF_SUCCESS;
13072}
13073
13074
13075/**
13076 * VM-exit exception handler for \#DB (Debug exception).
13077 */
13078static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13079{
13080 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13081 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
13082
13083 /*
13084 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
13085 * for processing.
13086 */
13087 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13088
13089 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
13090 uint64_t uDR6 = X86_DR6_INIT_VAL;
13091 uDR6 |= (pVmxTransient->uExitQual & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
13092
13093 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13094 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
13095 Log6Func(("rc=%Rrc\n", rc));
13096 if (rc == VINF_EM_RAW_GUEST_TRAP)
13097 {
13098 /*
13099 * The exception was for the guest. Update DR6, DR7.GD and
13100 * IA32_DEBUGCTL.LBR before forwarding it.
13101 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
13102 */
13103 VMMRZCallRing3Disable(pVCpu);
13104 HM_DISABLE_PREEMPT(pVCpu);
13105
13106 pCtx->dr[6] &= ~X86_DR6_B_MASK;
13107 pCtx->dr[6] |= uDR6;
13108 if (CPUMIsGuestDebugStateActive(pVCpu))
13109 ASMSetDR6(pCtx->dr[6]);
13110
13111 HM_RESTORE_PREEMPT();
13112 VMMRZCallRing3Enable(pVCpu);
13113
13114 rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
13115 AssertRCReturn(rc, rc);
13116
13117 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
13118 pCtx->dr[7] &= ~X86_DR7_GD;
13119
13120 /* Paranoia. */
13121 pCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
13122 pCtx->dr[7] |= X86_DR7_RA1_MASK;
13123
13124 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pCtx->dr[7]);
13125 AssertRCReturn(rc, rc);
13126
13127 /*
13128 * Raise #DB in the guest.
13129 *
13130 * It is important to reflect exactly what the VM-exit gave us (preserving the
13131 * interruption-type) rather than use hmR0VmxSetPendingXcptDB() as the #DB could've
13132 * been raised while executing ICEBP (INT1) and not the regular #DB. Thus it may
13133 * trigger different handling in the CPU (like skipping DPL checks), see @bugref{6398}.
13134 *
13135 * Intel re-documented ICEBP/INT1 on May 2018 previously documented as part of
13136 * Intel 386, see Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
13137 */
13138 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13139 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13140 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13141 AssertRCReturn(rc, rc);
13142 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13143 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13144 return VINF_SUCCESS;
13145 }
13146
13147 /*
13148 * Not a guest trap, must be a hypervisor related debug event then.
13149 * Update DR6 in case someone is interested in it.
13150 */
13151 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
13152 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
13153 CPUMSetHyperDR6(pVCpu, uDR6);
13154
13155 return rc;
13156}
13157
13158
13159/**
13160 * Hacks its way around the lovely mesa driver's backdoor accesses.
13161 *
13162 * @sa hmR0SvmHandleMesaDrvGp
13163 */
13164static int hmR0VmxHandleMesaDrvGp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
13165{
13166 Log(("hmR0VmxHandleMesaDrvGp: at %04x:%08RX64 rcx=%RX64 rbx=%RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->rcx, pCtx->rbx));
13167 RT_NOREF(pCtx);
13168
13169 /* For now we'll just skip the instruction. */
13170 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13171}
13172
13173
13174/**
13175 * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
13176 * backdoor logging w/o checking what it is running inside.
13177 *
13178 * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
13179 * backdoor port and magic numbers loaded in registers.
13180 *
13181 * @returns true if it is, false if it isn't.
13182 * @sa hmR0SvmIsMesaDrvGp
13183 */
13184DECLINLINE(bool) hmR0VmxIsMesaDrvGp(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
13185{
13186 /* 0xed: IN eAX,dx */
13187 uint8_t abInstr[1];
13188 if (pVmxTransient->cbInstr != sizeof(abInstr))
13189 return false;
13190
13191 /* Check that it is #GP(0). */
13192 if (pVmxTransient->uExitIntErrorCode != 0)
13193 return false;
13194
13195 /* Check magic and port. */
13196 Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
13197 /*Log(("hmR0VmxIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->rax, pCtx->rdx));*/
13198 if (pCtx->rax != UINT32_C(0x564d5868))
13199 return false;
13200 if (pCtx->dx != UINT32_C(0x5658))
13201 return false;
13202
13203 /* Flat ring-3 CS. */
13204 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_CS);
13205 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_CS));
13206 /*Log(("hmR0VmxIsMesaDrvGp: cs.Attr.n.u2Dpl=%d base=%Rx64\n", pCtx->cs.Attr.n.u2Dpl, pCtx->cs.u64Base));*/
13207 if (pCtx->cs.Attr.n.u2Dpl != 3)
13208 return false;
13209 if (pCtx->cs.u64Base != 0)
13210 return false;
13211
13212 /* Check opcode. */
13213 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_RIP);
13214 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_RIP));
13215 int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
13216 /*Log(("hmR0VmxIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0]));*/
13217 if (RT_FAILURE(rc))
13218 return false;
13219 if (abInstr[0] != 0xed)
13220 return false;
13221
13222 return true;
13223}
13224
13225
13226/**
13227 * VM-exit exception handler for \#GP (General-protection exception).
13228 *
13229 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
13230 */
13231static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13232{
13233 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13234 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
13235
13236 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13237 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
13238 { /* likely */ }
13239 else
13240 {
13241#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13242 Assert(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv);
13243#endif
13244 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
13245 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13246 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13247 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13248 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13249 AssertRCReturn(rc, rc);
13250 Log4Func(("Gst: CS:RIP %04x:%08RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u TR=%#04x\n", pCtx->cs.Sel, pCtx->rip,
13251 pVmxTransient->uExitIntErrorCode, pCtx->cr0, CPUMGetGuestCPL(pVCpu), pCtx->tr.Sel));
13252
13253 if ( !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
13254 || !hmR0VmxIsMesaDrvGp(pVCpu, pVmxTransient, pCtx))
13255 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13256 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13257 else
13258 rc = hmR0VmxHandleMesaDrvGp(pVCpu, pVmxTransient, pCtx);
13259 return rc;
13260 }
13261
13262 Assert(CPUMIsGuestInRealModeEx(pCtx));
13263 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
13264
13265 int rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13266 AssertRCReturn(rc, rc);
13267
13268 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
13269 if (rcStrict == VINF_SUCCESS)
13270 {
13271 if (!CPUMIsGuestInRealModeEx(pCtx))
13272 {
13273 /*
13274 * The guest is no longer in real-mode, check if we can continue executing the
13275 * guest using hardware-assisted VMX. Otherwise, fall back to emulation.
13276 */
13277 if (HMCanExecuteVmxGuest(pVCpu, pCtx))
13278 {
13279 Log4Func(("Mode changed but guest still suitable for executing using VT-x\n"));
13280 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
13281 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13282 }
13283 else
13284 {
13285 Log4Func(("Mode changed -> VINF_EM_RESCHEDULE\n"));
13286 rcStrict = VINF_EM_RESCHEDULE;
13287 }
13288 }
13289 else
13290 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13291 }
13292 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13293 {
13294 rcStrict = VINF_SUCCESS;
13295 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13296 }
13297 return VBOXSTRICTRC_VAL(rcStrict);
13298}
13299
13300
13301/**
13302 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
13303 * the exception reported in the VMX transient structure back into the VM.
13304 *
13305 * @remarks Requires uExitIntInfo in the VMX transient structure to be
13306 * up-to-date.
13307 */
13308static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13309{
13310 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13311#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13312 AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.vmx.RealMode.fRealOnV86Active,
13313 ("uVector=%#x u32XcptBitmap=%#X32\n",
13314 VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVCpu->hm.s.vmx.u32XcptBitmap));
13315#endif
13316
13317 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
13318 hmR0VmxCheckExitDueToEventDelivery(). */
13319 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13320 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13321 AssertRCReturn(rc, rc);
13322 Assert(ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead) & HMVMX_READ_EXIT_INTERRUPTION_INFO);
13323
13324#ifdef DEBUG_ramshankar
13325 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
13326 uint8_t uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
13327 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
13328#endif
13329
13330 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbInstr,
13331 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13332 return VINF_SUCCESS;
13333}
13334
13335
13336/**
13337 * VM-exit exception handler for \#PF (Page-fault exception).
13338 */
13339static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13340{
13341 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13342 PVM pVM = pVCpu->CTX_SUFF(pVM);
13343 int rc = hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13344 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13345 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13346 AssertRCReturn(rc, rc);
13347
13348 if (!pVM->hm.s.fNestedPaging)
13349 { /* likely */ }
13350 else
13351 {
13352#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
13353 Assert(pVCpu->hm.s.fUsingDebugLoop);
13354#endif
13355 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
13356 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
13357 {
13358 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13359 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual);
13360 }
13361 else
13362 {
13363 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13364 hmR0VmxSetPendingXcptDF(pVCpu);
13365 Log4Func(("Pending #DF due to vectoring #PF w/ NestedPaging\n"));
13366 }
13367 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13368 return rc;
13369 }
13370
13371 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
13372 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
13373 if (pVmxTransient->fVectoringPF)
13374 {
13375 Assert(pVCpu->hm.s.Event.fPending);
13376 return VINF_EM_RAW_INJECT_TRPM_EVENT;
13377 }
13378
13379 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13380 rc = HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
13381 AssertRCReturn(rc, rc);
13382
13383 Log4Func(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQual, pCtx->cs.Sel,
13384 pCtx->rip, pVmxTransient->uExitIntErrorCode, pCtx->cr3));
13385
13386 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQual, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
13387 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pCtx), (RTGCPTR)pVmxTransient->uExitQual);
13388
13389 Log4Func(("#PF: rc=%Rrc\n", rc));
13390 if (rc == VINF_SUCCESS)
13391 {
13392 /*
13393 * This is typically a shadow page table sync or a MMIO instruction. But we may have
13394 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
13395 */
13396 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13397 TRPMResetTrap(pVCpu);
13398 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
13399 return rc;
13400 }
13401
13402 if (rc == VINF_EM_RAW_GUEST_TRAP)
13403 {
13404 if (!pVmxTransient->fVectoringDoublePF)
13405 {
13406 /* It's a guest page fault and needs to be reflected to the guest. */
13407 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
13408 TRPMResetTrap(pVCpu);
13409 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
13410 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13411 uGstErrorCode, pVmxTransient->uExitQual);
13412 }
13413 else
13414 {
13415 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13416 TRPMResetTrap(pVCpu);
13417 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
13418 hmR0VmxSetPendingXcptDF(pVCpu);
13419 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
13420 }
13421
13422 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13423 return VINF_SUCCESS;
13424 }
13425
13426 TRPMResetTrap(pVCpu);
13427 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
13428 return rc;
13429}
13430
13431/** @} */
13432
13433#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
13434/** @name Nested-guest VM-exit handlers.
13435 * @{
13436 */
13437/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13438/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Nested-guest VM-exit handlers =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13439/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13440
13441/**
13442 * VM-exit handler for VMCLEAR (VMX_EXIT_VMCLEAR). Unconditional VM-exit.
13443 */
13444HMVMX_EXIT_DECL hmR0VmxExitVmclear(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13445{
13446 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13447
13448 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13449 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13450 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13451 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13452 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13453 AssertRCReturn(rc, rc);
13454
13455 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13456
13457 VMXVEXITINFO ExitInfo;
13458 RT_ZERO(ExitInfo);
13459 ExitInfo.uReason = pVmxTransient->uExitReason;
13460 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13461 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13462 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13463 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
13464
13465 VBOXSTRICTRC rcStrict = IEMExecDecodedVmclear(pVCpu, &ExitInfo);
13466 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13467 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13468 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13469 {
13470 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13471 rcStrict = VINF_SUCCESS;
13472 }
13473 return rcStrict;
13474}
13475
13476
13477/**
13478 * VM-exit handler for VMLAUNCH (VMX_EXIT_VMLAUNCH). Unconditional VM-exit.
13479 */
13480HMVMX_EXIT_DECL hmR0VmxExitVmlaunch(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13481{
13482 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13483
13484 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13485 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK);
13486 AssertRCReturn(rc, rc);
13487
13488 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13489
13490 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbInstr, VMXINSTRID_VMLAUNCH);
13491 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13492 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13493 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
13494 return rcStrict;
13495}
13496
13497
13498/**
13499 * VM-exit handler for VMPTRLD (VMX_EXIT_VMPTRLD). Unconditional VM-exit.
13500 */
13501HMVMX_EXIT_DECL hmR0VmxExitVmptrld(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13502{
13503 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13504
13505 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13506 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13507 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13508 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13509 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13510 AssertRCReturn(rc, rc);
13511
13512 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13513
13514 VMXVEXITINFO ExitInfo;
13515 RT_ZERO(ExitInfo);
13516 ExitInfo.uReason = pVmxTransient->uExitReason;
13517 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13518 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13519 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13520 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
13521
13522 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrld(pVCpu, &ExitInfo);
13523 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13524 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13525 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13526 {
13527 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13528 rcStrict = VINF_SUCCESS;
13529 }
13530 return rcStrict;
13531}
13532
13533
13534/**
13535 * VM-exit handler for VMPTRST (VMX_EXIT_VMPTRST). Unconditional VM-exit.
13536 */
13537HMVMX_EXIT_DECL hmR0VmxExitVmptrst(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13538{
13539 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13540
13541 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13542 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13543 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13544 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13545 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13546 AssertRCReturn(rc, rc);
13547
13548 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13549
13550 VMXVEXITINFO ExitInfo;
13551 RT_ZERO(ExitInfo);
13552 ExitInfo.uReason = pVmxTransient->uExitReason;
13553 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13554 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13555 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13556 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
13557
13558 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrst(pVCpu, &ExitInfo);
13559 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13560 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13561 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13562 {
13563 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13564 rcStrict = VINF_SUCCESS;
13565 }
13566 return rcStrict;
13567}
13568
13569
13570/**
13571 * VM-exit handler for VMREAD (VMX_EXIT_VMREAD). Unconditional VM-exit.
13572 */
13573HMVMX_EXIT_DECL hmR0VmxExitVmread(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13574{
13575 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13576
13577 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13578 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13579 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13580 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13581 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13582 AssertRCReturn(rc, rc);
13583
13584 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13585
13586 VMXVEXITINFO ExitInfo;
13587 RT_ZERO(ExitInfo);
13588 ExitInfo.uReason = pVmxTransient->uExitReason;
13589 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13590 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13591 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13592 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
13593 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
13594
13595 VBOXSTRICTRC rcStrict = IEMExecDecodedVmread(pVCpu, &ExitInfo);
13596 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13597 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13598 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13599 {
13600 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13601 rcStrict = VINF_SUCCESS;
13602 }
13603 return rcStrict;
13604}
13605
13606
13607/**
13608 * VM-exit handler for VMRESUME (VMX_EXIT_VMRESUME). Unconditional VM-exit.
13609 */
13610HMVMX_EXIT_DECL hmR0VmxExitVmresume(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13611{
13612 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13613
13614 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13615 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK);
13616 AssertRCReturn(rc, rc);
13617
13618 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13619
13620 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbInstr, VMXINSTRID_VMRESUME);
13621 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13622 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13623 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
13624 return rcStrict;
13625}
13626
13627
13628/**
13629 * VM-exit handler for VMWRITE (VMX_EXIT_VMWRITE). Unconditional VM-exit.
13630 */
13631HMVMX_EXIT_DECL hmR0VmxExitVmwrite(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13632{
13633 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13634
13635 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13636 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13637 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13638 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13639 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13640 AssertRCReturn(rc, rc);
13641
13642 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13643
13644 VMXVEXITINFO ExitInfo;
13645 RT_ZERO(ExitInfo);
13646 ExitInfo.uReason = pVmxTransient->uExitReason;
13647 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13648 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13649 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13650 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
13651 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
13652
13653 VBOXSTRICTRC rcStrict = IEMExecDecodedVmwrite(pVCpu, &ExitInfo);
13654 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13655 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13656 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13657 {
13658 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13659 rcStrict = VINF_SUCCESS;
13660 }
13661 return rcStrict;
13662}
13663
13664
13665/**
13666 * VM-exit handler for VMXOFF (VMX_EXIT_VMXOFF). Unconditional VM-exit.
13667 */
13668HMVMX_EXIT_DECL hmR0VmxExitVmxoff(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13669{
13670 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13671
13672 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13673 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR4 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
13674 AssertRCReturn(rc, rc);
13675
13676 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13677
13678 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxoff(pVCpu, pVmxTransient->cbInstr);
13679 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13680 {
13681 /* VMXOFF changes the internal hwvirt. state but not anything that's visible to the guest other than RIP. */
13682 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_HWVIRT);
13683 }
13684 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13685 {
13686 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13687 rcStrict = VINF_SUCCESS;
13688 }
13689 return rcStrict;
13690}
13691
13692
13693/**
13694 * VM-exit handler for VMXON (VMX_EXIT_VMXON). Unconditional VM-exit.
13695 */
13696HMVMX_EXIT_DECL hmR0VmxExitVmxon(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
13697{
13698 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13699
13700 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13701 rc |= HMVMX_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
13702 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
13703 rc |= hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
13704 rc |= hmR0VmxReadExitQualVmcs(pVCpu, pVmxTransient);
13705 AssertRCReturn(rc, rc);
13706
13707 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
13708
13709 VMXVEXITINFO ExitInfo;
13710 RT_ZERO(ExitInfo);
13711 ExitInfo.uReason = pVmxTransient->uExitReason;
13712 ExitInfo.u64Qual = pVmxTransient->uExitQual;
13713 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
13714 ExitInfo.cbInstr = pVmxTransient->cbInstr;
13715 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
13716
13717 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxon(pVCpu, &ExitInfo);
13718 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
13719 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
13720 else if (rcStrict == VINF_IEM_RAISED_XCPT)
13721 {
13722 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13723 rcStrict = VINF_SUCCESS;
13724 }
13725 return rcStrict;
13726}
13727
13728/** @} */
13729#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
13730
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette