VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 76397

Last change on this file since 76397 was 76310, checked in by vboxsync, 6 years ago

VMM/CPUM: Nested VMX: bugref:9180 Initialize VMX CPU features as part of CPUMR3Init now.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 204.6 KB
Line 
1/* $Id: CPUM.cpp 76310 2018-12-20 09:57:15Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 *
33 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
34 *
35 * TODO: proper write up, currently just some notes.
36 *
37 * The ring-0 FPU handling per OS:
38 *
39 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
40 * convention (Visual C++ doesn't seem to have a way to disable
41 * generating such code either), so CR0.TS/EM are always zero from what I
42 * can tell. We are also forced to always load/save the guest XMM0-XMM15
43 * registers when entering/leaving guest context. Interrupt handlers
44 * using FPU/SSE will offically have call save and restore functions
45 * exported by the kernel, if the really really have to use the state.
46 *
47 * - 32-bit windows does lazy FPU handling, I think, probably including
48 * lazying saving. The Windows Internals book states that it's a bad
49 * idea to use the FPU in kernel space. However, it looks like it will
50 * restore the FPU state of the current thread in case of a kernel \#NM.
51 * Interrupt handlers should be same as for 64-bit.
52 *
53 * - Darwin allows taking \#NM in kernel space, restoring current thread's
54 * state if I read the code correctly. It saves the FPU state of the
55 * outgoing thread, and uses CR0.TS to lazily load the state of the
56 * incoming one. No idea yet how the FPU is treated by interrupt
57 * handlers, i.e. whether they are allowed to disable the state or
58 * something.
59 *
60 * - Linux also allows \#NM in kernel space (don't know since when), and
61 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
62 * loads the incoming unless configured to agressivly load it. Interrupt
63 * handlers can ask whether they're allowed to use the FPU, and may
64 * freely trash the state if Linux thinks it has saved the thread's state
65 * already. This is a problem.
66 *
67 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
68 * context. When switching threads, the kernel will save the state of
69 * the outgoing thread and lazy load the incoming one using CR0.TS.
70 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
71 * to do stuff, HAT are among the users. The routines there will
72 * manually clear CR0.TS and save the XMM registers they use only if
73 * CR0.TS was zero upon entry. They will skip it when not, because as
74 * mentioned above, the FPU state is saved when switching away from a
75 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
76 * preserve. This is a problem if we restore CR0.TS to 1 after loading
77 * the guest state.
78 *
79 * - FreeBSD - no idea yet.
80 *
81 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
82 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
83 * FPU states.
84 *
85 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
86 * saving and restoring the host and guest states. The motivation for this
87 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
88 *
89 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
90 * state and only restore it once we've restore the host FPU state. This has the
91 * accidental side effect of triggering Solaris to preserve XMM registers in
92 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
93 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
94 *
95 *
96 * @section sec_cpum_logging Logging Level Assignments.
97 *
98 * Following log level assignments:
99 * - Log6 is used for FPU state management.
100 * - Log7 is used for FPU state actualization.
101 *
102 */
103
104
105/*********************************************************************************************************************************
106* Header Files *
107*********************************************************************************************************************************/
108#define LOG_GROUP LOG_GROUP_CPUM
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/cpumdis.h>
111#include <VBox/vmm/cpumctx-v1_6.h>
112#include <VBox/vmm/pgm.h>
113#include <VBox/vmm/apic.h>
114#include <VBox/vmm/mm.h>
115#include <VBox/vmm/em.h>
116#include <VBox/vmm/iem.h>
117#include <VBox/vmm/selm.h>
118#include <VBox/vmm/dbgf.h>
119#include <VBox/vmm/patm.h>
120#include <VBox/vmm/hm.h>
121#include <VBox/vmm/ssm.h>
122#include "CPUMInternal.h"
123#include <VBox/vmm/vm.h>
124
125#include <VBox/param.h>
126#include <VBox/dis.h>
127#include <VBox/err.h>
128#include <VBox/log.h>
129#include <iprt/asm-amd64-x86.h>
130#include <iprt/assert.h>
131#include <iprt/cpuset.h>
132#include <iprt/mem.h>
133#include <iprt/mp.h>
134#include <iprt/string.h>
135
136
137/*********************************************************************************************************************************
138* Defined Constants And Macros *
139*********************************************************************************************************************************/
140/**
141 * This was used in the saved state up to the early life of version 14.
142 *
143 * It indicates that we may have some out-of-sync hidden segement registers.
144 * It is only relevant for raw-mode.
145 */
146#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
147
148
149/*********************************************************************************************************************************
150* Structures and Typedefs *
151*********************************************************************************************************************************/
152
153/**
154 * What kind of cpu info dump to perform.
155 */
156typedef enum CPUMDUMPTYPE
157{
158 CPUMDUMPTYPE_TERSE,
159 CPUMDUMPTYPE_DEFAULT,
160 CPUMDUMPTYPE_VERBOSE
161} CPUMDUMPTYPE;
162/** Pointer to a cpu info dump type. */
163typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
164
165
166/*********************************************************************************************************************************
167* Internal Functions *
168*********************************************************************************************************************************/
169static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
170static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
171static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
172static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
173static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
174static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
175static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
176static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
177static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
179static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
180
181
182/*********************************************************************************************************************************
183* Global Variables *
184*********************************************************************************************************************************/
185/** Saved state field descriptors for CPUMCTX. */
186static const SSMFIELD g_aCpumCtxFields[] =
187{
188 SSMFIELD_ENTRY( CPUMCTX, rdi),
189 SSMFIELD_ENTRY( CPUMCTX, rsi),
190 SSMFIELD_ENTRY( CPUMCTX, rbp),
191 SSMFIELD_ENTRY( CPUMCTX, rax),
192 SSMFIELD_ENTRY( CPUMCTX, rbx),
193 SSMFIELD_ENTRY( CPUMCTX, rdx),
194 SSMFIELD_ENTRY( CPUMCTX, rcx),
195 SSMFIELD_ENTRY( CPUMCTX, rsp),
196 SSMFIELD_ENTRY( CPUMCTX, rflags),
197 SSMFIELD_ENTRY( CPUMCTX, rip),
198 SSMFIELD_ENTRY( CPUMCTX, r8),
199 SSMFIELD_ENTRY( CPUMCTX, r9),
200 SSMFIELD_ENTRY( CPUMCTX, r10),
201 SSMFIELD_ENTRY( CPUMCTX, r11),
202 SSMFIELD_ENTRY( CPUMCTX, r12),
203 SSMFIELD_ENTRY( CPUMCTX, r13),
204 SSMFIELD_ENTRY( CPUMCTX, r14),
205 SSMFIELD_ENTRY( CPUMCTX, r15),
206 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
207 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
208 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
209 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
210 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
211 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
212 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
213 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
214 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
215 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
216 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
217 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
218 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
219 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
220 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
221 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
222 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
223 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
224 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
225 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
226 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
227 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
228 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
229 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
230 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
231 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
232 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
233 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
234 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
235 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
236 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
237 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
238 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
239 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
240 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
241 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
242 SSMFIELD_ENTRY( CPUMCTX, cr0),
243 SSMFIELD_ENTRY( CPUMCTX, cr2),
244 SSMFIELD_ENTRY( CPUMCTX, cr3),
245 SSMFIELD_ENTRY( CPUMCTX, cr4),
246 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
247 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
248 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
249 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
250 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
251 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
252 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
253 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
254 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
255 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
256 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
257 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
258 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
259 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
260 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
261 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
262 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
263 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
264 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
265 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
266 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
267 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
268 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
269 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
270 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
271 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
272 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
273 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
274 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
275 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
276 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
277 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
278 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
279 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
280 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
281 SSMFIELD_ENTRY_TERM()
282};
283
284/** Saved state field descriptors for SVM nested hardware-virtualization
285 * Host State. */
286static const SSMFIELD g_aSvmHwvirtHostState[] =
287{
288 SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
289 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
290 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
291 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
292 SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
293 SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
294 SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
295 SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
296 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
297 SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
298 SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
299 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
300 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
301 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
302 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
303 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
304 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
305 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
306 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
307 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
308 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
309 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
310 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
311 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
312 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
313 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
314 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
315 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
316 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
317 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
318 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
319 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
320 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
321 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
322 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
323 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
324 SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
325 SSMFIELD_ENTRY_TERM()
326};
327
328/** Saved state field descriptors for CPUMCTX. */
329static const SSMFIELD g_aCpumX87Fields[] =
330{
331 SSMFIELD_ENTRY( X86FXSTATE, FCW),
332 SSMFIELD_ENTRY( X86FXSTATE, FSW),
333 SSMFIELD_ENTRY( X86FXSTATE, FTW),
334 SSMFIELD_ENTRY( X86FXSTATE, FOP),
335 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
336 SSMFIELD_ENTRY( X86FXSTATE, CS),
337 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
338 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
339 SSMFIELD_ENTRY( X86FXSTATE, DS),
340 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
341 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
342 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
343 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
344 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
345 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
346 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
347 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
348 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
349 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
350 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
351 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
352 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
353 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
354 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
355 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
356 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
357 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
358 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
359 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
360 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
361 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
362 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
363 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
364 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
365 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
366 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
367 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
368 SSMFIELD_ENTRY_TERM()
369};
370
371/** Saved state field descriptors for X86XSAVEHDR. */
372static const SSMFIELD g_aCpumXSaveHdrFields[] =
373{
374 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
375 SSMFIELD_ENTRY_TERM()
376};
377
378/** Saved state field descriptors for X86XSAVEYMMHI. */
379static const SSMFIELD g_aCpumYmmHiFields[] =
380{
381 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
382 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
383 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
384 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
385 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
386 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
387 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
388 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
389 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
390 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
391 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
392 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
393 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
394 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
395 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
396 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
397 SSMFIELD_ENTRY_TERM()
398};
399
400/** Saved state field descriptors for X86XSAVEBNDREGS. */
401static const SSMFIELD g_aCpumBndRegsFields[] =
402{
403 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
404 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
405 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
406 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
407 SSMFIELD_ENTRY_TERM()
408};
409
410/** Saved state field descriptors for X86XSAVEBNDCFG. */
411static const SSMFIELD g_aCpumBndCfgFields[] =
412{
413 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
414 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
415 SSMFIELD_ENTRY_TERM()
416};
417
418#if 0 /** @todo */
419/** Saved state field descriptors for X86XSAVEOPMASK. */
420static const SSMFIELD g_aCpumOpmaskFields[] =
421{
422 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
423 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
424 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
425 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
426 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
427 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
428 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
429 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
430 SSMFIELD_ENTRY_TERM()
431};
432#endif
433
434/** Saved state field descriptors for X86XSAVEZMMHI256. */
435static const SSMFIELD g_aCpumZmmHi256Fields[] =
436{
437 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
438 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
439 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
440 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
441 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
442 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
443 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
444 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
445 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
446 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
447 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
448 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
449 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
450 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
451 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
452 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
453 SSMFIELD_ENTRY_TERM()
454};
455
456/** Saved state field descriptors for X86XSAVEZMM16HI. */
457static const SSMFIELD g_aCpumZmm16HiFields[] =
458{
459 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
460 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
461 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
462 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
463 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
464 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
465 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
466 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
467 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
468 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
469 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
470 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
471 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
472 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
473 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
474 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
475 SSMFIELD_ENTRY_TERM()
476};
477
478
479
480/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
481 * registeres changed. */
482static const SSMFIELD g_aCpumX87FieldsMem[] =
483{
484 SSMFIELD_ENTRY( X86FXSTATE, FCW),
485 SSMFIELD_ENTRY( X86FXSTATE, FSW),
486 SSMFIELD_ENTRY( X86FXSTATE, FTW),
487 SSMFIELD_ENTRY( X86FXSTATE, FOP),
488 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
489 SSMFIELD_ENTRY( X86FXSTATE, CS),
490 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
491 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
492 SSMFIELD_ENTRY( X86FXSTATE, DS),
493 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
494 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
495 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
496 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
497 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
498 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
499 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
500 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
501 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
502 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
503 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
504 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
505 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
506 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
507 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
508 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
509 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
510 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
511 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
512 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
513 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
514 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
515 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
516 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
517 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
518 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
519 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
520 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
521 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
522};
523
524/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
525 * registeres changed. */
526static const SSMFIELD g_aCpumCtxFieldsMem[] =
527{
528 SSMFIELD_ENTRY( CPUMCTX, rdi),
529 SSMFIELD_ENTRY( CPUMCTX, rsi),
530 SSMFIELD_ENTRY( CPUMCTX, rbp),
531 SSMFIELD_ENTRY( CPUMCTX, rax),
532 SSMFIELD_ENTRY( CPUMCTX, rbx),
533 SSMFIELD_ENTRY( CPUMCTX, rdx),
534 SSMFIELD_ENTRY( CPUMCTX, rcx),
535 SSMFIELD_ENTRY( CPUMCTX, rsp),
536 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
537 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
538 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
539 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
540 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
541 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
542 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
543 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
544 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
545 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
546 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
547 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
548 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
549 SSMFIELD_ENTRY( CPUMCTX, rflags),
550 SSMFIELD_ENTRY( CPUMCTX, rip),
551 SSMFIELD_ENTRY( CPUMCTX, r8),
552 SSMFIELD_ENTRY( CPUMCTX, r9),
553 SSMFIELD_ENTRY( CPUMCTX, r10),
554 SSMFIELD_ENTRY( CPUMCTX, r11),
555 SSMFIELD_ENTRY( CPUMCTX, r12),
556 SSMFIELD_ENTRY( CPUMCTX, r13),
557 SSMFIELD_ENTRY( CPUMCTX, r14),
558 SSMFIELD_ENTRY( CPUMCTX, r15),
559 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
560 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
561 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
562 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
563 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
564 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
565 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
566 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
567 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
568 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
569 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
570 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
571 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
572 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
573 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
574 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
575 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
576 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
577 SSMFIELD_ENTRY( CPUMCTX, cr0),
578 SSMFIELD_ENTRY( CPUMCTX, cr2),
579 SSMFIELD_ENTRY( CPUMCTX, cr3),
580 SSMFIELD_ENTRY( CPUMCTX, cr4),
581 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
582 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
583 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
584 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
585 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
586 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
587 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
588 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
589 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
590 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
591 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
592 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
593 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
594 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
595 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
596 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
597 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
598 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
599 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
600 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
601 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
602 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
603 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
604 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
605 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
606 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
607 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
608 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
609 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
610 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
611 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
612 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
613 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
614 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
615 SSMFIELD_ENTRY_TERM()
616};
617
618/** Saved state field descriptors for CPUMCTX_VER1_6. */
619static const SSMFIELD g_aCpumX87FieldsV16[] =
620{
621 SSMFIELD_ENTRY( X86FXSTATE, FCW),
622 SSMFIELD_ENTRY( X86FXSTATE, FSW),
623 SSMFIELD_ENTRY( X86FXSTATE, FTW),
624 SSMFIELD_ENTRY( X86FXSTATE, FOP),
625 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
626 SSMFIELD_ENTRY( X86FXSTATE, CS),
627 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
628 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
629 SSMFIELD_ENTRY( X86FXSTATE, DS),
630 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
631 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
632 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
633 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
634 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
635 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
636 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
637 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
638 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
639 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
640 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
641 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
642 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
643 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
644 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
645 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
646 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
647 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
648 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
649 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
650 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
651 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
652 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
653 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
654 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
655 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
656 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
657 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
658 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
659 SSMFIELD_ENTRY_TERM()
660};
661
662/** Saved state field descriptors for CPUMCTX_VER1_6. */
663static const SSMFIELD g_aCpumCtxFieldsV16[] =
664{
665 SSMFIELD_ENTRY( CPUMCTX, rdi),
666 SSMFIELD_ENTRY( CPUMCTX, rsi),
667 SSMFIELD_ENTRY( CPUMCTX, rbp),
668 SSMFIELD_ENTRY( CPUMCTX, rax),
669 SSMFIELD_ENTRY( CPUMCTX, rbx),
670 SSMFIELD_ENTRY( CPUMCTX, rdx),
671 SSMFIELD_ENTRY( CPUMCTX, rcx),
672 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
673 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
674 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
675 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
676 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
677 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
678 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
679 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
680 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
681 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
682 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
683 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
684 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
685 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
686 SSMFIELD_ENTRY( CPUMCTX, rflags),
687 SSMFIELD_ENTRY( CPUMCTX, rip),
688 SSMFIELD_ENTRY( CPUMCTX, r8),
689 SSMFIELD_ENTRY( CPUMCTX, r9),
690 SSMFIELD_ENTRY( CPUMCTX, r10),
691 SSMFIELD_ENTRY( CPUMCTX, r11),
692 SSMFIELD_ENTRY( CPUMCTX, r12),
693 SSMFIELD_ENTRY( CPUMCTX, r13),
694 SSMFIELD_ENTRY( CPUMCTX, r14),
695 SSMFIELD_ENTRY( CPUMCTX, r15),
696 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
697 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
698 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
699 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
700 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
701 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
702 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
703 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
704 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
705 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
706 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
707 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
708 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
709 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
710 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
711 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
712 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
713 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
714 SSMFIELD_ENTRY( CPUMCTX, cr0),
715 SSMFIELD_ENTRY( CPUMCTX, cr2),
716 SSMFIELD_ENTRY( CPUMCTX, cr3),
717 SSMFIELD_ENTRY( CPUMCTX, cr4),
718 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
719 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
720 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
721 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
722 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
723 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
724 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
725 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
726 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
727 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
728 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
729 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
730 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
731 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
732 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
733 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
734 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
735 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
736 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
737 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
738 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
739 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
740 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
741 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
742 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
743 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
744 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
745 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
746 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
747 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
748 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
749 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
750 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
751 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
752 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
753 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
754 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
755 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
756 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
757 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
758 SSMFIELD_ENTRY_TERM()
759};
760
761
762/**
763 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
764 *
765 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
766 * (last instruction pointer, last data pointer, last opcode) except when the ES
767 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
768 * clear these registers there is potential, local FPU leakage from a process
769 * using the FPU to another.
770 *
771 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
772 *
773 * @param pVM The cross context VM structure.
774 */
775static void cpumR3CheckLeakyFpu(PVM pVM)
776{
777 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
778 uint32_t const u32Family = u32CpuVersion >> 8;
779 if ( u32Family >= 6 /* K7 and higher */
780 && ASMIsAmdCpu())
781 {
782 uint32_t cExt = ASMCpuId_EAX(0x80000000);
783 if (ASMIsValidExtRange(cExt))
784 {
785 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
786 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
787 {
788 for (VMCPUID i = 0; i < pVM->cCpus; i++)
789 pVM->aCpus[i].cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
790 Log(("CPUMR3Init: host CPU has leaky fxsave/fxrstor behaviour\n"));
791 }
792 }
793 }
794}
795
796
797/**
798 * Frees memory allocated for the SVM hardware virtualization state.
799 *
800 * @param pVM The cross context VM structure.
801 */
802static void cpumR3FreeSvmHwVirtState(PVM pVM)
803{
804 Assert(pVM->cpum.s.GuestFeatures.fSvm);
805 for (VMCPUID i = 0; i < pVM->cCpus; i++)
806 {
807 PVMCPU pVCpu = &pVM->aCpus[i];
808 if (pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3)
809 {
810 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES);
811 pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3 = NULL;
812 }
813 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = NIL_RTHCPHYS;
814
815 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3)
816 {
817 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES);
818 pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3 = NULL;
819 }
820
821 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3)
822 {
823 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES);
824 pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3 = NULL;
825 }
826 }
827}
828
829
830/**
831 * Allocates memory for the SVM hardware virtualization state.
832 *
833 * @returns VBox status code.
834 * @param pVM The cross context VM structure.
835 */
836static int cpumR3AllocSvmHwVirtState(PVM pVM)
837{
838 Assert(pVM->cpum.s.GuestFeatures.fSvm);
839
840 int rc = VINF_SUCCESS;
841 LogRel(("CPUM: Allocating %u pages for the nested-guest SVM MSR and IO permission bitmaps\n",
842 pVM->cCpus * (SVM_MSRPM_PAGES + SVM_IOPM_PAGES)));
843 for (VMCPUID i = 0; i < pVM->cCpus; i++)
844 {
845 PVMCPU pVCpu = &pVM->aCpus[i];
846 pVCpu->cpum.s.Guest.hwvirt.enmHwvirt = CPUMHWVIRT_SVM;
847
848 /*
849 * Allocate the nested-guest VMCB.
850 */
851 SUPPAGE SupNstGstVmcbPage;
852 RT_ZERO(SupNstGstVmcbPage);
853 SupNstGstVmcbPage.Phys = NIL_RTHCPHYS;
854 Assert(SVM_VMCB_PAGES == 1);
855 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
856 rc = SUPR3PageAllocEx(SVM_VMCB_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3,
857 &pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR0, &SupNstGstVmcbPage);
858 if (RT_FAILURE(rc))
859 {
860 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
861 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCB\n", pVCpu->idCpu, SVM_VMCB_PAGES));
862 break;
863 }
864 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = SupNstGstVmcbPage.Phys;
865
866 /*
867 * Allocate the MSRPM (MSR Permission bitmap).
868 */
869 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
870 rc = SUPR3PageAllocEx(SVM_MSRPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3,
871 &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR0, NULL /* paPages */);
872 if (RT_FAILURE(rc))
873 {
874 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
875 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR permission bitmap\n", pVCpu->idCpu,
876 SVM_MSRPM_PAGES));
877 break;
878 }
879
880 /*
881 * Allocate the IOPM (IO Permission bitmap).
882 */
883 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
884 rc = SUPR3PageAllocEx(SVM_IOPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3,
885 &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR0, NULL /* paPages */);
886 if (RT_FAILURE(rc))
887 {
888 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
889 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's IO permission bitmap\n", pVCpu->idCpu,
890 SVM_IOPM_PAGES));
891 break;
892 }
893 }
894
895 /* On any failure, cleanup. */
896 if (RT_FAILURE(rc))
897 cpumR3FreeSvmHwVirtState(pVM);
898
899 return rc;
900}
901
902
903/**
904 * Initializes (or re-initializes) per-VCPU SVM hardware virtualization state.
905 *
906 * @param pVCpu The cross context virtual CPU structure.
907 */
908DECLINLINE(void) cpumR3InitSvmHwVirtState(PVMCPU pVCpu)
909{
910 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
911 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_SVM);
912 Assert(pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
913
914 memset(pCtx->hwvirt.svm.CTX_SUFF(pVmcb), 0, SVM_VMCB_PAGES << PAGE_SHIFT);
915 pCtx->hwvirt.svm.uMsrHSavePa = 0;
916 pCtx->hwvirt.svm.uPrevPauseTick = 0;
917}
918
919
920/**
921 * Frees memory allocated for the VMX hardware virtualization state.
922 *
923 * @param pVM The cross context VM structure.
924 */
925static void cpumR3FreeVmxHwVirtState(PVM pVM)
926{
927 Assert(pVM->cpum.s.GuestFeatures.fVmx);
928 for (VMCPUID i = 0; i < pVM->cCpus; i++)
929 {
930 PVMCPU pVCpu = &pVM->aCpus[i];
931 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3)
932 {
933 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3, VMX_V_VMCS_PAGES);
934 pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3 = NULL;
935 }
936 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3)
937 {
938 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3, VMX_V_VMCS_PAGES);
939 pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3 = NULL;
940 }
941 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3)
942 {
943 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3, VMX_V_VIRT_APIC_PAGES);
944 pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3 = NULL;
945 }
946 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3)
947 {
948 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
949 pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3 = NULL;
950 }
951 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3)
952 {
953 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
954 pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3 = NULL;
955 }
956 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3)
957 {
958 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
959 pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3 = NULL;
960 }
961 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3)
962 {
963 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_PAGES);
964 pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3 = NULL;
965 }
966 if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3)
967 {
968 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES);
969 pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3 = NULL;
970 }
971 }
972}
973
974
975/**
976 * Allocates memory for the VMX hardware virtualization state.
977 *
978 * @returns VBox status code.
979 * @param pVM The cross context VM structure.
980 */
981static int cpumR3AllocVmxHwVirtState(PVM pVM)
982{
983 int rc = VINF_SUCCESS;
984 LogRel(("CPUM: Allocating %u pages for the nested-guest VMCS and related structures\n",
985 pVM->cCpus * ( VMX_V_VMCS_PAGES + VMX_V_VIRT_APIC_PAGES + VMX_V_VMREAD_VMWRITE_BITMAP_PAGES * 2
986 + VMX_V_AUTOMSR_AREA_PAGES)));
987 for (VMCPUID i = 0; i < pVM->cCpus; i++)
988 {
989 PVMCPU pVCpu = &pVM->aCpus[i];
990 pVCpu->cpum.s.Guest.hwvirt.enmHwvirt = CPUMHWVIRT_VMX;
991
992 /*
993 * Allocate the nested-guest current VMCS.
994 */
995 Assert(VMX_V_VMCS_PAGES == 1);
996 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3);
997 rc = SUPR3PageAllocEx(VMX_V_VMCS_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3,
998 &pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR0, NULL /* paPages */);
999 if (RT_FAILURE(rc))
1000 {
1001 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3);
1002 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
1003 break;
1004 }
1005
1006 /*
1007 * Allocate the nested-guest shadow VMCS.
1008 */
1009 Assert(VMX_V_VMCS_PAGES == 1);
1010 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3);
1011 rc = SUPR3PageAllocEx(VMX_V_VMCS_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3,
1012 &pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR0, NULL /* paPages */);
1013 if (RT_FAILURE(rc))
1014 {
1015 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3);
1016 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's shadow VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
1017 break;
1018 }
1019
1020 /*
1021 * Allocate the Virtual-APIC page.
1022 */
1023 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3);
1024 rc = SUPR3PageAllocEx(VMX_V_VIRT_APIC_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3,
1025 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR0, NULL /* paPages */);
1026 if (RT_FAILURE(rc))
1027 {
1028 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3);
1029 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's Virtual-APIC page\n", pVCpu->idCpu,
1030 VMX_V_VIRT_APIC_PAGES));
1031 break;
1032 }
1033
1034 /*
1035 * Allocate the VMREAD-bitmap.
1036 */
1037 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3);
1038 rc = SUPR3PageAllocEx(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3,
1039 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR0, NULL /* paPages */);
1040 if (RT_FAILURE(rc))
1041 {
1042 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3);
1043 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMREAD-bitmap\n", pVCpu->idCpu,
1044 VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
1045 break;
1046 }
1047
1048 /*
1049 * Allocatge the VMWRITE-bitmap.
1050 */
1051 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3);
1052 rc = SUPR3PageAllocEx(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES, 0 /* fFlags */,
1053 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3,
1054 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR0, NULL /* paPages */);
1055 if (RT_FAILURE(rc))
1056 {
1057 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3);
1058 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMWRITE-bitmap\n", pVCpu->idCpu,
1059 VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
1060 break;
1061 }
1062
1063 /*
1064 * Allocate the MSR auto-load/store area.
1065 */
1066 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3);
1067 rc = SUPR3PageAllocEx(VMX_V_AUTOMSR_AREA_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3,
1068 &pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR0, NULL /* paPages */);
1069 if (RT_FAILURE(rc))
1070 {
1071 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3);
1072 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's auto-load/store MSR area\n", pVCpu->idCpu,
1073 VMX_V_AUTOMSR_AREA_PAGES));
1074 break;
1075 }
1076
1077 /*
1078 * Allocate the MSR bitmap.
1079 */
1080 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3);
1081 rc = SUPR3PageAllocEx(VMX_V_MSR_BITMAP_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3,
1082 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR0, NULL /* paPages */);
1083 if (RT_FAILURE(rc))
1084 {
1085 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3);
1086 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR bitmap\n", pVCpu->idCpu,
1087 VMX_V_MSR_BITMAP_PAGES));
1088 break;
1089 }
1090
1091 /*
1092 * Allocate the I/O bitmaps (A and B).
1093 */
1094 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3);
1095 rc = SUPR3PageAllocEx(VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES, 0 /* fFlags */,
1096 (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3,
1097 &pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR0, NULL /* paPages */);
1098 if (RT_FAILURE(rc))
1099 {
1100 Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3);
1101 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's I/O bitmaps\n", pVCpu->idCpu,
1102 VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES));
1103 break;
1104 }
1105 }
1106
1107 /* On any failure, cleanup. */
1108 if (RT_FAILURE(rc))
1109 cpumR3FreeVmxHwVirtState(pVM);
1110
1111 return rc;
1112}
1113
1114
1115/**
1116 * Initializes (or re-initializes) per-VCPU VMX hardware virtualization state.
1117 *
1118 * @param pVCpu The cross context virtual CPU structure.
1119 */
1120DECLINLINE(void) cpumR3InitVmxHwVirtState(PVMCPU pVCpu)
1121{
1122 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1123 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_VMX);
1124 Assert(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs));
1125 Assert(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs));
1126
1127 memset(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs), 0, VMX_V_VMCS_SIZE);
1128 memset(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs), 0, VMX_V_VMCS_SIZE);
1129 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1130 pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS;
1131 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1132 pCtx->hwvirt.vmx.fInVmxRootMode = false;
1133 pCtx->hwvirt.vmx.fInVmxNonRootMode = false;
1134 /* Don't reset diagnostics here. */
1135}
1136
1137
1138/**
1139 * Displays the host and guest VMX features.
1140 *
1141 * @param pVM The cross context VM structure.
1142 * @param pHlp The info helper functions.
1143 * @param pszArgs "terse", "default" or "verbose".
1144 */
1145DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1146{
1147 RT_NOREF(pszArgs);
1148 PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures;
1149 PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
1150 if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL
1151 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA)
1152 {
1153#define VMXFEATDUMP(a_szDesc, a_Var) \
1154 pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var)
1155
1156 pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n");
1157 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
1158 VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx);
1159 if (!pGuestFeatures->fVmx)
1160 return;
1161 /* Basic. */
1162 VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo);
1163 /* Pin-based controls. */
1164 VMXFEATDUMP("ExtIntExit - External interrupt VM-exit ", fVmxExtIntExit);
1165 VMXFEATDUMP("NmiExit - NMI VM-exit ", fVmxNmiExit);
1166 VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi);
1167 VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer);
1168 VMXFEATDUMP("PostedInt - Posted interrupts ", fVmxPostedInt);
1169 /* Processor-based controls. */
1170 VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit);
1171 VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting);
1172 VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit);
1173 VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit);
1174 VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit);
1175 VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit);
1176 VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit);
1177 VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit);
1178 VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit);
1179 VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit);
1180 VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit);
1181 VMXFEATDUMP("UseTprShadow - Use TPR shadow ", fVmxUseTprShadow);
1182 VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit);
1183 VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit);
1184 VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit);
1185 VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps);
1186 VMXFEATDUMP("MonitorTrapFlag - Monitor trap flag ", fVmxMonitorTrapFlag);
1187 VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps);
1188 VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit);
1189 VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit);
1190 VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls);
1191 /* Secondary processor-based controls. */
1192 VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess);
1193 VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt);
1194 VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit);
1195 VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp);
1196 VMXFEATDUMP("VirtX2ApicMode - Virtualize-x2APIC mode ", fVmxVirtX2ApicMode);
1197 VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid);
1198 VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit);
1199 VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest);
1200 VMXFEATDUMP("ApicRegVirt - APIC-register virtualization ", fVmxApicRegVirt);
1201 VMXFEATDUMP("VirtIntDelivery - Virtual-interrupt delivery ", fVmxVirtIntDelivery);
1202 VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit);
1203 VMXFEATDUMP("RdrandExit - RDRAND exiting ", fVmxRdrandExit);
1204 VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid);
1205 VMXFEATDUMP("VmFuncs - Enable VM Functions ", fVmxVmFunc);
1206 VMXFEATDUMP("VmcsShadowing - VMCS shadowing ", fVmxVmcsShadowing);
1207 VMXFEATDUMP("RdseedExiting - RDSEED exiting ", fVmxRdseedExit);
1208 VMXFEATDUMP("PML - Supports Page-Modification Log (PML) ", fVmxPml);
1209 VMXFEATDUMP("EptVe - EPT violations can cause #VE ", fVmxEptXcptVe);
1210 VMXFEATDUMP("XsavesXRstors - Enable XSAVES/XRSTORS ", fVmxXsavesXrstors);
1211 /* VM-entry controls. */
1212 VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls);
1213 VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest);
1214 VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER on VM-entry ", fVmxEntryLoadEferMsr);
1215 VMXFEATDUMP("EntryLoadPatMsr - Load IA32_PAT on VM-entry ", fVmxEntryLoadPatMsr);
1216 /* VM-exit controls. */
1217 VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls);
1218 VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize);
1219 VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt);
1220 VMXFEATDUMP("ExitSavePatMsr - Save IA32_PAT on VM-exit ", fVmxExitSavePatMsr);
1221 VMXFEATDUMP("ExitLoadPatMsr - Load IA32_PAT on VM-exit ", fVmxExitLoadPatMsr);
1222 VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER on VM-exit ", fVmxExitSaveEferMsr);
1223 VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER on VM-exit ", fVmxExitLoadEferMsr);
1224 VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer);
1225 /* Miscellaneous data. */
1226 VMXFEATDUMP("ExitSaveEferLma - Save EFER.LMA on VM-exit ", fVmxExitSaveEferLma);
1227 VMXFEATDUMP("IntelPt - Intel PT (Processor Trace) in VMX operation ", fVmxIntelPt);
1228 VMXFEATDUMP("VmwriteAll - Inject softint. with 0-len instr. ", fVmxVmwriteAll);
1229 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
1230#undef VMXFEATDUMP
1231 }
1232 else
1233 pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n");
1234}
1235
1236
1237/**
1238 * Checks whether VMX nested-guest may be executed using hardware-assisted VMX (e.g,
1239 * using HM or NEM).
1240 *
1241 * @returns @c true if hardware-assisted VMX nested-guest is allowed, @c false
1242 * otherwise.
1243 * @param pVM The cross context VM structure.
1244 */
1245static bool cpumR3IsHwAssistVmxNstGstExecAllowed(PVM pVM)
1246{
1247 AssertMsg(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET, ("Calling this function too early!\n"));
1248#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
1249 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT
1250 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
1251 return true;
1252#endif
1253 return false;
1254}
1255
1256
1257/**
1258 * Initializes the guest VMX MSRs from guest-CPU features.
1259 *
1260 * @param pVM The cross context VM structure.
1261 */
1262static void cpumR3InitGuestVmxMsrs(PVM pVM)
1263{
1264 PVMCPU pVCpu0 = &pVM->aCpus[0];
1265 PCCPUMFEATURES pFeatures = &pVM->cpum.s.GuestFeatures;
1266 PVMXMSRS pVmxMsrs = &pVCpu0->cpum.s.Guest.hwvirt.vmx.Msrs;
1267
1268 Assert(pFeatures->fVmx);
1269 RT_ZERO(*pVmxMsrs);
1270
1271 /* Feature control. */
1272 pVmxMsrs->u64FeatCtrl = MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON;
1273
1274 /* Basic information. */
1275 {
1276 uint64_t const u64Basic = RT_BF_MAKE(VMX_BF_BASIC_VMCS_ID, VMX_V_VMCS_REVISION_ID )
1277 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_SIZE, VMX_V_VMCS_SIZE )
1278 | RT_BF_MAKE(VMX_BF_BASIC_PHYSADDR_WIDTH, !pFeatures->fLongMode )
1279 | RT_BF_MAKE(VMX_BF_BASIC_DUAL_MON, 0 )
1280 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_MEM_TYPE, VMX_BASIC_MEM_TYPE_WB )
1281 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_INS_OUTS, pFeatures->fVmxInsOutInfo)
1282 | RT_BF_MAKE(VMX_BF_BASIC_TRUE_CTLS, 0 );
1283 pVmxMsrs->u64Basic = u64Basic;
1284 }
1285
1286 /* Pin-based VM-execution controls. */
1287 {
1288 uint32_t const fFeatures = (pFeatures->fVmxExtIntExit << VMX_BF_PIN_CTLS_EXT_INT_EXIT_SHIFT )
1289 | (pFeatures->fVmxNmiExit << VMX_BF_PIN_CTLS_NMI_EXIT_SHIFT )
1290 | (pFeatures->fVmxVirtNmi << VMX_BF_PIN_CTLS_VIRT_NMI_SHIFT )
1291 | (pFeatures->fVmxPreemptTimer << VMX_BF_PIN_CTLS_PREEMPT_TIMER_SHIFT)
1292 | (pFeatures->fVmxPostedInt << VMX_BF_PIN_CTLS_POSTED_INT_SHIFT );
1293 uint32_t const fAllowed0 = VMX_PIN_CTLS_DEFAULT1;
1294 uint32_t const fAllowed1 = fFeatures | VMX_PIN_CTLS_DEFAULT1;
1295 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n",
1296 fAllowed0, fAllowed1, fFeatures));
1297 pVmxMsrs->PinCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1298 }
1299
1300 /* Processor-based VM-execution controls. */
1301 {
1302 uint32_t const fFeatures = (pFeatures->fVmxIntWindowExit << VMX_BF_PROC_CTLS_INT_WINDOW_EXIT_SHIFT )
1303 | (pFeatures->fVmxTscOffsetting << VMX_BF_PROC_CTLS_USE_TSC_OFFSETTING_SHIFT)
1304 | (pFeatures->fVmxHltExit << VMX_BF_PROC_CTLS_HLT_EXIT_SHIFT )
1305 | (pFeatures->fVmxInvlpgExit << VMX_BF_PROC_CTLS_INVLPG_EXIT_SHIFT )
1306 | (pFeatures->fVmxMwaitExit << VMX_BF_PROC_CTLS_MWAIT_EXIT_SHIFT )
1307 | (pFeatures->fVmxRdpmcExit << VMX_BF_PROC_CTLS_RDPMC_EXIT_SHIFT )
1308 | (pFeatures->fVmxRdtscExit << VMX_BF_PROC_CTLS_RDTSC_EXIT_SHIFT )
1309 | (pFeatures->fVmxCr3LoadExit << VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_SHIFT )
1310 | (pFeatures->fVmxCr3StoreExit << VMX_BF_PROC_CTLS_CR3_STORE_EXIT_SHIFT )
1311 | (pFeatures->fVmxCr8LoadExit << VMX_BF_PROC_CTLS_CR8_LOAD_EXIT_SHIFT )
1312 | (pFeatures->fVmxCr8StoreExit << VMX_BF_PROC_CTLS_CR8_STORE_EXIT_SHIFT )
1313 | (pFeatures->fVmxUseTprShadow << VMX_BF_PROC_CTLS_USE_TPR_SHADOW_SHIFT )
1314 | (pFeatures->fVmxNmiWindowExit << VMX_BF_PROC_CTLS_NMI_WINDOW_EXIT_SHIFT )
1315 | (pFeatures->fVmxMovDRxExit << VMX_BF_PROC_CTLS_MOV_DR_EXIT_SHIFT )
1316 | (pFeatures->fVmxUncondIoExit << VMX_BF_PROC_CTLS_UNCOND_IO_EXIT_SHIFT )
1317 | (pFeatures->fVmxUseIoBitmaps << VMX_BF_PROC_CTLS_USE_IO_BITMAPS_SHIFT )
1318 | (pFeatures->fVmxMonitorTrapFlag << VMX_BF_PROC_CTLS_MONITOR_TRAP_FLAG_SHIFT )
1319 | (pFeatures->fVmxUseMsrBitmaps << VMX_BF_PROC_CTLS_USE_MSR_BITMAPS_SHIFT )
1320 | (pFeatures->fVmxMonitorExit << VMX_BF_PROC_CTLS_MONITOR_EXIT_SHIFT )
1321 | (pFeatures->fVmxPauseExit << VMX_BF_PROC_CTLS_PAUSE_EXIT_SHIFT )
1322 | (pFeatures->fVmxSecondaryExecCtls << VMX_BF_PROC_CTLS_USE_SECONDARY_CTLS_SHIFT);
1323 uint32_t const fAllowed0 = VMX_PROC_CTLS_DEFAULT1;
1324 uint32_t const fAllowed1 = fFeatures | VMX_PROC_CTLS_DEFAULT1;
1325 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1326 fAllowed1, fFeatures));
1327 pVmxMsrs->ProcCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1328 }
1329
1330 /* Secondary processor-based VM-execution controls. */
1331 if (pFeatures->fVmxSecondaryExecCtls)
1332 {
1333 uint32_t const fFeatures = (pFeatures->fVmxVirtApicAccess << VMX_BF_PROC_CTLS2_VIRT_APIC_ACCESS_SHIFT )
1334 | (pFeatures->fVmxEpt << VMX_BF_PROC_CTLS2_EPT_SHIFT )
1335 | (pFeatures->fVmxDescTableExit << VMX_BF_PROC_CTLS2_DESC_TABLE_EXIT_SHIFT )
1336 | (pFeatures->fVmxRdtscp << VMX_BF_PROC_CTLS2_RDTSCP_SHIFT )
1337 | (pFeatures->fVmxVirtX2ApicMode << VMX_BF_PROC_CTLS2_VIRT_X2APIC_MODE_SHIFT )
1338 | (pFeatures->fVmxVpid << VMX_BF_PROC_CTLS2_VPID_SHIFT )
1339 | (pFeatures->fVmxWbinvdExit << VMX_BF_PROC_CTLS2_WBINVD_EXIT_SHIFT )
1340 | (pFeatures->fVmxUnrestrictedGuest << VMX_BF_PROC_CTLS2_UNRESTRICTED_GUEST_SHIFT)
1341 | (pFeatures->fVmxApicRegVirt << VMX_BF_PROC_CTLS2_APIC_REG_VIRT_SHIFT )
1342 | (pFeatures->fVmxVirtIntDelivery << VMX_BF_PROC_CTLS2_VIRT_INT_DELIVERY_SHIFT )
1343 | (pFeatures->fVmxPauseLoopExit << VMX_BF_PROC_CTLS2_PAUSE_LOOP_EXIT_SHIFT )
1344 | (pFeatures->fVmxRdrandExit << VMX_BF_PROC_CTLS2_RDRAND_EXIT_SHIFT )
1345 | (pFeatures->fVmxInvpcid << VMX_BF_PROC_CTLS2_INVPCID_SHIFT )
1346 | (pFeatures->fVmxVmFunc << VMX_BF_PROC_CTLS2_VMFUNC_SHIFT )
1347 | (pFeatures->fVmxVmcsShadowing << VMX_BF_PROC_CTLS2_VMCS_SHADOWING_SHIFT )
1348 | (pFeatures->fVmxRdseedExit << VMX_BF_PROC_CTLS2_RDSEED_EXIT_SHIFT )
1349 | (pFeatures->fVmxPml << VMX_BF_PROC_CTLS2_PML_SHIFT )
1350 | (pFeatures->fVmxEptXcptVe << VMX_BF_PROC_CTLS2_EPT_VE_SHIFT )
1351 | (pFeatures->fVmxXsavesXrstors << VMX_BF_PROC_CTLS2_XSAVES_XRSTORS_SHIFT )
1352 | (pFeatures->fVmxUseTscScaling << VMX_BF_PROC_CTLS2_TSC_SCALING_SHIFT );
1353 uint32_t const fAllowed0 = 0;
1354 uint32_t const fAllowed1 = fFeatures;
1355 pVmxMsrs->ProcCtls2.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1356 }
1357
1358 /* VM-exit controls. */
1359 {
1360 uint32_t const fFeatures = (pFeatures->fVmxExitSaveDebugCtls << VMX_BF_EXIT_CTLS_SAVE_DEBUG_SHIFT )
1361 | (pFeatures->fVmxHostAddrSpaceSize << VMX_BF_EXIT_CTLS_HOST_ADDR_SPACE_SIZE_SHIFT)
1362 | (pFeatures->fVmxExitAckExtInt << VMX_BF_EXIT_CTLS_ACK_EXT_INT_SHIFT )
1363 | (pFeatures->fVmxExitSavePatMsr << VMX_BF_EXIT_CTLS_SAVE_PAT_MSR_SHIFT )
1364 | (pFeatures->fVmxExitLoadPatMsr << VMX_BF_EXIT_CTLS_LOAD_PAT_MSR_SHIFT )
1365 | (pFeatures->fVmxExitSaveEferMsr << VMX_BF_EXIT_CTLS_SAVE_EFER_MSR_SHIFT )
1366 | (pFeatures->fVmxExitLoadEferMsr << VMX_BF_EXIT_CTLS_LOAD_EFER_MSR_SHIFT )
1367 | (pFeatures->fVmxSavePreemptTimer << VMX_BF_EXIT_CTLS_SAVE_PREEMPT_TIMER_SHIFT );
1368 /* Set the default1 class bits. See Intel spec. A.4 "VM-exit Controls". */
1369 uint32_t const fAllowed0 = VMX_EXIT_CTLS_DEFAULT1;
1370 uint32_t const fAllowed1 = fFeatures | VMX_EXIT_CTLS_DEFAULT1;
1371 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1372 fAllowed1, fFeatures));
1373 pVmxMsrs->ExitCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1374 }
1375
1376 /* VM-entry controls. */
1377 {
1378 uint32_t const fFeatures = (pFeatures->fVmxEntryLoadDebugCtls << VMX_BF_ENTRY_CTLS_LOAD_DEBUG_SHIFT )
1379 | (pFeatures->fVmxIa32eModeGuest << VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_SHIFT)
1380 | (pFeatures->fVmxEntryLoadEferMsr << VMX_BF_ENTRY_CTLS_LOAD_EFER_MSR_SHIFT )
1381 | (pFeatures->fVmxEntryLoadPatMsr << VMX_BF_ENTRY_CTLS_LOAD_PAT_MSR_SHIFT );
1382 uint32_t const fAllowed0 = VMX_ENTRY_CTLS_DEFAULT1;
1383 uint32_t const fAllowed1 = fFeatures | VMX_ENTRY_CTLS_DEFAULT1;
1384 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed0=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1385 fAllowed1, fFeatures));
1386 pVmxMsrs->EntryCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1387 }
1388
1389 /* Miscellaneous data. */
1390 {
1391 uint64_t uHostMsr = 0;
1392 if (cpumR3IsHwAssistVmxNstGstExecAllowed(pVM))
1393 HMVmxGetHostMsr(pVM, MSR_IA32_VMX_MISC, &uHostMsr);
1394 uint8_t const cMaxMsrs = RT_MIN(RT_BF_GET(uHostMsr, VMX_BF_MISC_MAX_MSRS), VMX_V_AUTOMSR_COUNT_MAX);
1395 uint8_t const fActivityState = RT_BF_GET(uHostMsr, VMX_BF_MISC_ACTIVITY_STATES) & VMX_V_GUEST_ACTIVITY_STATE_MASK;
1396 pVmxMsrs->u64Misc = RT_BF_MAKE(VMX_BF_MISC_PREEMPT_TIMER_TSC, VMX_V_PREEMPT_TIMER_SHIFT )
1397 | RT_BF_MAKE(VMX_BF_MISC_EXIT_SAVE_EFER_LMA, pFeatures->fVmxExitSaveEferLma )
1398 | RT_BF_MAKE(VMX_BF_MISC_ACTIVITY_STATES, fActivityState )
1399 | RT_BF_MAKE(VMX_BF_MISC_INTEL_PT, pFeatures->fVmxIntelPt )
1400 | RT_BF_MAKE(VMX_BF_MISC_SMM_READ_SMBASE_MSR, 0 )
1401 | RT_BF_MAKE(VMX_BF_MISC_CR3_TARGET, VMX_V_CR3_TARGET_COUNT )
1402 | RT_BF_MAKE(VMX_BF_MISC_MAX_MSRS, cMaxMsrs )
1403 | RT_BF_MAKE(VMX_BF_MISC_VMXOFF_BLOCK_SMI, 0 )
1404 | RT_BF_MAKE(VMX_BF_MISC_VMWRITE_ALL, pFeatures->fVmxVmwriteAll )
1405 | RT_BF_MAKE(VMX_BF_MISC_ENTRY_INJECT_SOFT_INT, pFeatures->fVmxEntryInjectSoftInt)
1406 | RT_BF_MAKE(VMX_BF_MISC_MSEG_ID, VMX_V_MSEG_REV_ID );
1407 }
1408
1409 /* CR0 Fixed-0. */
1410 pVmxMsrs->u64Cr0Fixed0 = pFeatures->fVmxUnrestrictedGuest ? VMX_V_CR0_FIXED0_UX: VMX_V_CR0_FIXED0;
1411
1412 /* CR0 Fixed-1. */
1413 {
1414 uint64_t uHostMsr = 0;
1415 if (cpumR3IsHwAssistVmxNstGstExecAllowed(pVM))
1416 HMVmxGetHostMsr(pVM, MSR_IA32_VMX_CR0_FIXED1, &uHostMsr);
1417 pVmxMsrs->u64Cr0Fixed1 = uHostMsr | VMX_V_CR0_FIXED0; /* Make sure the CR0 MB1 bits are not clear. */
1418 }
1419
1420 /* CR4 Fixed-0. */
1421 pVmxMsrs->u64Cr4Fixed0 = VMX_V_CR4_FIXED0;
1422
1423 /* CR4 Fixed-1. */
1424 {
1425 uint64_t uHostMsr = 0;
1426 if (cpumR3IsHwAssistVmxNstGstExecAllowed(pVM))
1427 HMVmxGetHostMsr(pVM, MSR_IA32_VMX_CR4_FIXED1, &uHostMsr);
1428 pVmxMsrs->u64Cr4Fixed1 = uHostMsr | VMX_V_CR4_FIXED0; /* Make sure the CR4 MB1 bits are not clear. */
1429 }
1430
1431 /* VMCS Enumeration. */
1432 pVmxMsrs->u64VmcsEnum = VMX_V_VMCS_MAX_INDEX << VMX_BF_VMCS_ENUM_HIGHEST_IDX_SHIFT;
1433
1434 /* VM Functions. */
1435 if (pFeatures->fVmxVmFunc)
1436 pVmxMsrs->u64VmFunc = RT_BF_MAKE(VMX_BF_VMFUNC_EPTP_SWITCHING, 1);
1437
1438 /*
1439 * We don't support the following MSRs yet:
1440 * - True Pin-based VM-execution controls.
1441 * - True Processor-based VM-execution controls.
1442 * - True VM-entry VM-execution controls.
1443 * - True VM-exit VM-execution controls.
1444 * - EPT/VPID capabilities.
1445 */
1446
1447 /*
1448 * Copy the MSRs values initialized in VCPU 0 to all other VCPUs.
1449 */
1450 for (VMCPUID idCpu = 1; idCpu < pVM->cCpus; idCpu++)
1451 {
1452 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1453 Assert(pVCpu);
1454 memcpy(&pVCpu->cpum.s.Guest.hwvirt.vmx.Msrs, pVmxMsrs, sizeof(*pVmxMsrs));
1455 }
1456}
1457
1458
1459/**
1460 * Explode VMX features from the provided MSRs.
1461 *
1462 * @param pVmxMsrs Pointer to the VMX MSRs.
1463 * @param pFeatures Pointer to the features struct. to populate.
1464 */
1465static void cpumR3ExplodeVmxFeatures(PCVMXMSRS pVmxMsrs, PCPUMFEATURES pFeatures)
1466{
1467 Assert(pVmxMsrs);
1468 Assert(pFeatures);
1469 Assert(pFeatures->fVmx);
1470
1471 /* Basic information. */
1472 {
1473 uint64_t const u64Basic = pVmxMsrs->u64Basic;
1474 pFeatures->fVmxInsOutInfo = RT_BF_GET(u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
1475 }
1476
1477 /* Pin-based VM-execution controls. */
1478 {
1479 uint32_t const fPinCtls = pVmxMsrs->PinCtls.n.allowed1;
1480 pFeatures->fVmxExtIntExit = RT_BOOL(fPinCtls & VMX_PIN_CTLS_EXT_INT_EXIT);
1481 pFeatures->fVmxNmiExit = RT_BOOL(fPinCtls & VMX_PIN_CTLS_NMI_EXIT);
1482 pFeatures->fVmxVirtNmi = RT_BOOL(fPinCtls & VMX_PIN_CTLS_VIRT_NMI);
1483 pFeatures->fVmxPreemptTimer = RT_BOOL(fPinCtls & VMX_PIN_CTLS_PREEMPT_TIMER);
1484 pFeatures->fVmxPostedInt = RT_BOOL(fPinCtls & VMX_PIN_CTLS_POSTED_INT);
1485 }
1486
1487 /* Processor-based VM-execution controls. */
1488 {
1489 uint32_t const fProcCtls = pVmxMsrs->ProcCtls.n.allowed1;
1490 pFeatures->fVmxIntWindowExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT);
1491 pFeatures->fVmxTscOffsetting = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING);
1492 pFeatures->fVmxHltExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_HLT_EXIT);
1493 pFeatures->fVmxInvlpgExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_INVLPG_EXIT);
1494 pFeatures->fVmxMwaitExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MWAIT_EXIT);
1495 pFeatures->fVmxRdpmcExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_RDPMC_EXIT);
1496 pFeatures->fVmxRdtscExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_RDTSC_EXIT);
1497 pFeatures->fVmxCr3LoadExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR3_LOAD_EXIT);
1498 pFeatures->fVmxCr3StoreExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR3_STORE_EXIT);
1499 pFeatures->fVmxCr8LoadExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR8_LOAD_EXIT);
1500 pFeatures->fVmxCr8StoreExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR8_STORE_EXIT);
1501 pFeatures->fVmxUseTprShadow = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
1502 pFeatures->fVmxNmiWindowExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT);
1503 pFeatures->fVmxMovDRxExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
1504 pFeatures->fVmxUncondIoExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_UNCOND_IO_EXIT);
1505 pFeatures->fVmxUseIoBitmaps = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS);
1506 pFeatures->fVmxMonitorTrapFlag = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
1507 pFeatures->fVmxUseMsrBitmaps = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS);
1508 pFeatures->fVmxMonitorExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MONITOR_EXIT);
1509 pFeatures->fVmxPauseExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_PAUSE_EXIT);
1510 pFeatures->fVmxSecondaryExecCtls = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
1511 }
1512
1513 /* Secondary processor-based VM-execution controls. */
1514 {
1515 uint32_t const fProcCtls2 = pFeatures->fVmxSecondaryExecCtls ? pVmxMsrs->ProcCtls2.n.allowed1 : 0;
1516 pFeatures->fVmxVirtApicAccess = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
1517 pFeatures->fVmxEpt = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_EPT);
1518 pFeatures->fVmxDescTableExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_DESC_TABLE_EXIT);
1519 pFeatures->fVmxRdtscp = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_RDTSCP);
1520 pFeatures->fVmxVirtX2ApicMode = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
1521 pFeatures->fVmxVpid = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VPID);
1522 pFeatures->fVmxWbinvdExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_WBINVD_EXIT);
1523 pFeatures->fVmxUnrestrictedGuest = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
1524 pFeatures->fVmxApicRegVirt = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT);
1525 pFeatures->fVmxVirtIntDelivery = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
1526 pFeatures->fVmxPauseLoopExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
1527 pFeatures->fVmxRdrandExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_RDRAND_EXIT);
1528 pFeatures->fVmxInvpcid = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_INVPCID);
1529 pFeatures->fVmxVmFunc = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VMFUNC);
1530 pFeatures->fVmxVmcsShadowing = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING);
1531 pFeatures->fVmxRdseedExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_RDSEED_EXIT);
1532 pFeatures->fVmxPml = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_PML);
1533 pFeatures->fVmxEptXcptVe = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_EPT_VE);
1534 pFeatures->fVmxXsavesXrstors = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_XSAVES_XRSTORS);
1535 pFeatures->fVmxUseTscScaling = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_TSC_SCALING);
1536 }
1537
1538 /* VM-exit controls. */
1539 {
1540 uint32_t const fExitCtls = pVmxMsrs->ExitCtls.n.allowed1;
1541 pFeatures->fVmxExitSaveDebugCtls = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_DEBUG);
1542 pFeatures->fVmxHostAddrSpaceSize = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1543 pFeatures->fVmxExitAckExtInt = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT);
1544 pFeatures->fVmxExitSavePatMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_PAT_MSR);
1545 pFeatures->fVmxExitLoadPatMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR);
1546 pFeatures->fVmxExitSaveEferMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_EFER_MSR);
1547 pFeatures->fVmxExitLoadEferMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR);
1548 pFeatures->fVmxSavePreemptTimer = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER);
1549 }
1550
1551 /* VM-entry controls. */
1552 {
1553 uint32_t const fEntryCtls = pVmxMsrs->EntryCtls.n.allowed1;
1554 pFeatures->fVmxEntryLoadDebugCtls = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG);
1555 pFeatures->fVmxIa32eModeGuest = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
1556 pFeatures->fVmxEntryLoadEferMsr = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR);
1557 pFeatures->fVmxEntryLoadPatMsr = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR);
1558 }
1559
1560 /* Miscellaneous data. */
1561 {
1562 uint32_t const fMiscData = pVmxMsrs->u64Misc;
1563 pFeatures->fVmxExitSaveEferLma = RT_BOOL(fMiscData & VMX_MISC_EXIT_SAVE_EFER_LMA);
1564 pFeatures->fVmxIntelPt = RT_BOOL(fMiscData & VMX_MISC_INTEL_PT);
1565 pFeatures->fVmxVmwriteAll = RT_BOOL(fMiscData & VMX_MISC_VMWRITE_ALL);
1566 pFeatures->fVmxEntryInjectSoftInt = RT_BOOL(fMiscData & VMX_MISC_ENTRY_INJECT_SOFT_INT);
1567 }
1568}
1569
1570
1571#if 0
1572/**
1573 * Checks whether the given guest CPU VMX features are compatible with the provided
1574 * base features.
1575 *
1576 * @returns @c true if compatible, @c false otherwise.
1577 * @param pVM The cross context VM structure.
1578 * @param pBase The base VMX CPU features.
1579 * @param pGst The guest VMX CPU features.
1580 *
1581 * @remarks Only VMX feature bits are examined.
1582 */
1583static bool cpumR3AreVmxCpuFeaturesCompatible(PVM pVM, PCCPUMFEATURES pBase, PCCPUMFEATURES pGst)
1584{
1585 if (cpumR3IsHwAssistVmxNstGstExecAllowed(pVM))
1586 {
1587 uint64_t const fBase = ((uint64_t)pBase->fVmxInsOutInfo << 0) | ((uint64_t)pBase->fVmxExtIntExit << 1)
1588 | ((uint64_t)pBase->fVmxNmiExit << 2) | ((uint64_t)pBase->fVmxVirtNmi << 3)
1589 | ((uint64_t)pBase->fVmxPreemptTimer << 4) | ((uint64_t)pBase->fVmxPostedInt << 5)
1590 | ((uint64_t)pBase->fVmxIntWindowExit << 6) | ((uint64_t)pBase->fVmxTscOffsetting << 7)
1591 | ((uint64_t)pBase->fVmxHltExit << 8) | ((uint64_t)pBase->fVmxInvlpgExit << 9)
1592 | ((uint64_t)pBase->fVmxMwaitExit << 10) | ((uint64_t)pBase->fVmxRdpmcExit << 11)
1593 | ((uint64_t)pBase->fVmxRdtscExit << 12) | ((uint64_t)pBase->fVmxCr3LoadExit << 13)
1594 | ((uint64_t)pBase->fVmxCr3StoreExit << 14) | ((uint64_t)pBase->fVmxCr8LoadExit << 15)
1595 | ((uint64_t)pBase->fVmxCr8StoreExit << 16) | ((uint64_t)pBase->fVmxUseTprShadow << 17)
1596 | ((uint64_t)pBase->fVmxNmiWindowExit << 18) | ((uint64_t)pBase->fVmxMovDRxExit << 19)
1597 | ((uint64_t)pBase->fVmxUncondIoExit << 20) | ((uint64_t)pBase->fVmxUseIoBitmaps << 21)
1598 | ((uint64_t)pBase->fVmxMonitorTrapFlag << 22) | ((uint64_t)pBase->fVmxUseMsrBitmaps << 23)
1599 | ((uint64_t)pBase->fVmxMonitorExit << 24) | ((uint64_t)pBase->fVmxPauseExit << 25)
1600 | ((uint64_t)pBase->fVmxSecondaryExecCtls << 26) | ((uint64_t)pBase->fVmxVirtApicAccess << 27)
1601 | ((uint64_t)pBase->fVmxEpt << 28) | ((uint64_t)pBase->fVmxDescTableExit << 29)
1602 | ((uint64_t)pBase->fVmxRdtscp << 30) | ((uint64_t)pBase->fVmxVirtX2ApicMode << 31)
1603 | ((uint64_t)pBase->fVmxVpid << 32) | ((uint64_t)pBase->fVmxWbinvdExit << 33)
1604 | ((uint64_t)pBase->fVmxUnrestrictedGuest << 34) | ((uint64_t)pBase->fVmxApicRegVirt << 35)
1605 | ((uint64_t)pBase->fVmxVirtIntDelivery << 36) | ((uint64_t)pBase->fVmxPauseLoopExit << 37)
1606 | ((uint64_t)pBase->fVmxRdrandExit << 38) | ((uint64_t)pBase->fVmxInvpcid << 39)
1607 | ((uint64_t)pBase->fVmxVmFunc << 40) | ((uint64_t)pBase->fVmxVmcsShadowing << 41)
1608 | ((uint64_t)pBase->fVmxRdseedExit << 42) | ((uint64_t)pBase->fVmxPml << 43)
1609 | ((uint64_t)pBase->fVmxEptXcptVe << 44) | ((uint64_t)pBase->fVmxXsavesXrstors << 45)
1610 | ((uint64_t)pBase->fVmxUseTscScaling << 46) | ((uint64_t)pBase->fVmxEntryLoadDebugCtls << 47)
1611 | ((uint64_t)pBase->fVmxIa32eModeGuest << 48) | ((uint64_t)pBase->fVmxEntryLoadEferMsr << 49)
1612 | ((uint64_t)pBase->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pBase->fVmxExitSaveDebugCtls << 51)
1613 | ((uint64_t)pBase->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pBase->fVmxExitAckExtInt << 53)
1614 | ((uint64_t)pBase->fVmxExitSavePatMsr << 54) | ((uint64_t)pBase->fVmxExitLoadPatMsr << 55)
1615 | ((uint64_t)pBase->fVmxExitSaveEferMsr << 56) | ((uint64_t)pBase->fVmxExitLoadEferMsr << 57)
1616 | ((uint64_t)pBase->fVmxSavePreemptTimer << 58) | ((uint64_t)pBase->fVmxExitSaveEferLma << 59)
1617 | ((uint64_t)pBase->fVmxIntelPt << 60) | ((uint64_t)pBase->fVmxVmwriteAll << 61)
1618 | ((uint64_t)pBase->fVmxEntryInjectSoftInt << 62);
1619
1620 uint64_t const fGst = ((uint64_t)pGst->fVmxInsOutInfo << 0) | ((uint64_t)pGst->fVmxExtIntExit << 1)
1621 | ((uint64_t)pGst->fVmxNmiExit << 2) | ((uint64_t)pGst->fVmxVirtNmi << 3)
1622 | ((uint64_t)pGst->fVmxPreemptTimer << 4) | ((uint64_t)pGst->fVmxPostedInt << 5)
1623 | ((uint64_t)pGst->fVmxIntWindowExit << 6) | ((uint64_t)pGst->fVmxTscOffsetting << 7)
1624 | ((uint64_t)pGst->fVmxHltExit << 8) | ((uint64_t)pGst->fVmxInvlpgExit << 9)
1625 | ((uint64_t)pGst->fVmxMwaitExit << 10) | ((uint64_t)pGst->fVmxRdpmcExit << 11)
1626 | ((uint64_t)pGst->fVmxRdtscExit << 12) | ((uint64_t)pGst->fVmxCr3LoadExit << 13)
1627 | ((uint64_t)pGst->fVmxCr3StoreExit << 14) | ((uint64_t)pGst->fVmxCr8LoadExit << 15)
1628 | ((uint64_t)pGst->fVmxCr8StoreExit << 16) | ((uint64_t)pGst->fVmxUseTprShadow << 17)
1629 | ((uint64_t)pGst->fVmxNmiWindowExit << 18) | ((uint64_t)pGst->fVmxMovDRxExit << 19)
1630 | ((uint64_t)pGst->fVmxUncondIoExit << 20) | ((uint64_t)pGst->fVmxUseIoBitmaps << 21)
1631 | ((uint64_t)pGst->fVmxMonitorTrapFlag << 22) | ((uint64_t)pGst->fVmxUseMsrBitmaps << 23)
1632 | ((uint64_t)pGst->fVmxMonitorExit << 24) | ((uint64_t)pGst->fVmxPauseExit << 25)
1633 | ((uint64_t)pGst->fVmxSecondaryExecCtls << 26) | ((uint64_t)pGst->fVmxVirtApicAccess << 27)
1634 | ((uint64_t)pGst->fVmxEpt << 28) | ((uint64_t)pGst->fVmxDescTableExit << 29)
1635 | ((uint64_t)pGst->fVmxRdtscp << 30) | ((uint64_t)pGst->fVmxVirtX2ApicMode << 31)
1636 | ((uint64_t)pGst->fVmxVpid << 32) | ((uint64_t)pGst->fVmxWbinvdExit << 33)
1637 | ((uint64_t)pGst->fVmxUnrestrictedGuest << 34) | ((uint64_t)pGst->fVmxApicRegVirt << 35)
1638 | ((uint64_t)pGst->fVmxVirtIntDelivery << 36) | ((uint64_t)pGst->fVmxPauseLoopExit << 37)
1639 | ((uint64_t)pGst->fVmxRdrandExit << 38) | ((uint64_t)pGst->fVmxInvpcid << 39)
1640 | ((uint64_t)pGst->fVmxVmFunc << 40) | ((uint64_t)pGst->fVmxVmcsShadowing << 41)
1641 | ((uint64_t)pGst->fVmxRdseedExit << 42) | ((uint64_t)pGst->fVmxPml << 43)
1642 | ((uint64_t)pGst->fVmxEptXcptVe << 44) | ((uint64_t)pGst->fVmxXsavesXrstors << 45)
1643 | ((uint64_t)pGst->fVmxUseTscScaling << 46) | ((uint64_t)pGst->fVmxEntryLoadDebugCtls << 47)
1644 | ((uint64_t)pGst->fVmxIa32eModeGuest << 48) | ((uint64_t)pGst->fVmxEntryLoadEferMsr << 49)
1645 | ((uint64_t)pGst->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pGst->fVmxExitSaveDebugCtls << 51)
1646 | ((uint64_t)pGst->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pGst->fVmxExitAckExtInt << 53)
1647 | ((uint64_t)pGst->fVmxExitSavePatMsr << 54) | ((uint64_t)pGst->fVmxExitLoadPatMsr << 55)
1648 | ((uint64_t)pGst->fVmxExitSaveEferMsr << 56) | ((uint64_t)pGst->fVmxExitLoadEferMsr << 57)
1649 | ((uint64_t)pGst->fVmxSavePreemptTimer << 58) | ((uint64_t)pGst->fVmxExitSaveEferLma << 59)
1650 | ((uint64_t)pGst->fVmxIntelPt << 60) | ((uint64_t)pGst->fVmxVmwriteAll << 61)
1651 | ((uint64_t)pGst->fVmxEntryInjectSoftInt << 62);
1652
1653 if ((fBase | fGst) != fBase)
1654 return false;
1655 return true;
1656 }
1657 return true;
1658}
1659#endif
1660
1661/**
1662 * Initializes VMX host and guest features.
1663 *
1664 * @param pVM The cross context VM structure.
1665 *
1666 * @remarks This must be called only after HM has fully initialized since it calls
1667 * into HM to retrieve VMX and related MSRs.
1668 */
1669static void cpumR3InitVmxCpuFeatures(PVM pVM)
1670{
1671 /*
1672 * Init. host features.
1673 */
1674 PCPUMFEATURES pHostFeat = &pVM->cpum.s.HostFeatures;
1675 VMXMSRS VmxMsrs;
1676 if (cpumR3IsHwAssistVmxNstGstExecAllowed(pVM))
1677 {
1678 /** @todo NSTVMX: When NEM support for nested-VMX is there, we'll need to fetch
1679 * the MSRs from NEM or do the support driver IOCTL route, see patch in
1680 * @bugref{9180}. */
1681 if (HMIsEnabled(pVM))
1682 {
1683 int rc = HMVmxGetHostMsrs(pVM, &VmxMsrs);
1684 if (RT_SUCCESS(rc))
1685 cpumR3ExplodeVmxFeatures(&VmxMsrs, pHostFeat);
1686 }
1687 else
1688 AssertMsgFailed(("NEM support for nested-VMX is not implemented yet\n"));
1689 }
1690
1691 /*
1692 * Initialize the set of VMX features we emulate.
1693 * Note! Some bits might be reported as 1 always if they fall under the default1 class bits
1694 * (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}.
1695 */
1696 CPUMFEATURES EmuFeat;
1697 RT_ZERO(EmuFeat);
1698 EmuFeat.fVmx = 1;
1699 EmuFeat.fVmxInsOutInfo = 0;
1700 EmuFeat.fVmxExtIntExit = 1;
1701 EmuFeat.fVmxNmiExit = 1;
1702 EmuFeat.fVmxVirtNmi = 0;
1703 EmuFeat.fVmxPreemptTimer = 0; /** @todo NSTVMX: enable this. */
1704 EmuFeat.fVmxPostedInt = 0;
1705 EmuFeat.fVmxIntWindowExit = 1;
1706 EmuFeat.fVmxTscOffsetting = 1;
1707 EmuFeat.fVmxHltExit = 1;
1708 EmuFeat.fVmxInvlpgExit = 1;
1709 EmuFeat.fVmxMwaitExit = 1;
1710 EmuFeat.fVmxRdpmcExit = 1;
1711 EmuFeat.fVmxRdtscExit = 1;
1712 EmuFeat.fVmxCr3LoadExit = 1;
1713 EmuFeat.fVmxCr3StoreExit = 1;
1714 EmuFeat.fVmxCr8LoadExit = 1;
1715 EmuFeat.fVmxCr8StoreExit = 1;
1716 EmuFeat.fVmxUseTprShadow = 0;
1717 EmuFeat.fVmxNmiWindowExit = 0;
1718 EmuFeat.fVmxMovDRxExit = 1;
1719 EmuFeat.fVmxUncondIoExit = 1;
1720 EmuFeat.fVmxUseIoBitmaps = 1;
1721 EmuFeat.fVmxMonitorTrapFlag = 0;
1722 EmuFeat.fVmxUseMsrBitmaps = 0;
1723 EmuFeat.fVmxMonitorExit = 1;
1724 EmuFeat.fVmxPauseExit = 1;
1725 EmuFeat.fVmxSecondaryExecCtls = 1;
1726 EmuFeat.fVmxVirtApicAccess = 0;
1727 EmuFeat.fVmxEpt = 0;
1728 EmuFeat.fVmxDescTableExit = 1;
1729 EmuFeat.fVmxRdtscp = 1;
1730 EmuFeat.fVmxVirtX2ApicMode = 0;
1731 EmuFeat.fVmxVpid = 0;
1732 EmuFeat.fVmxWbinvdExit = 1;
1733 EmuFeat.fVmxUnrestrictedGuest = 0;
1734 EmuFeat.fVmxApicRegVirt = 0;
1735 EmuFeat.fVmxVirtIntDelivery = 0;
1736 EmuFeat.fVmxPauseLoopExit = 0;
1737 EmuFeat.fVmxRdrandExit = 0;
1738 EmuFeat.fVmxInvpcid = 1;
1739 EmuFeat.fVmxVmFunc = 0;
1740 EmuFeat.fVmxVmcsShadowing = 0;
1741 EmuFeat.fVmxRdseedExit = 0;
1742 EmuFeat.fVmxPml = 0;
1743 EmuFeat.fVmxEptXcptVe = 0;
1744 EmuFeat.fVmxXsavesXrstors = 0;
1745 EmuFeat.fVmxUseTscScaling = 0;
1746 EmuFeat.fVmxEntryLoadDebugCtls = 1;
1747 EmuFeat.fVmxIa32eModeGuest = 1;
1748 EmuFeat.fVmxEntryLoadEferMsr = 1;
1749 EmuFeat.fVmxEntryLoadPatMsr = 0;
1750 EmuFeat.fVmxExitSaveDebugCtls = 1;
1751 EmuFeat.fVmxHostAddrSpaceSize = 1;
1752 EmuFeat.fVmxExitAckExtInt = 0;
1753 EmuFeat.fVmxExitSavePatMsr = 0;
1754 EmuFeat.fVmxExitLoadPatMsr = 0;
1755 EmuFeat.fVmxExitSaveEferMsr = 1;
1756 EmuFeat.fVmxExitLoadEferMsr = 1;
1757 EmuFeat.fVmxSavePreemptTimer = 0;
1758 EmuFeat.fVmxExitSaveEferLma = 1;
1759 EmuFeat.fVmxIntelPt = 0;
1760 EmuFeat.fVmxVmwriteAll = 0;
1761 EmuFeat.fVmxEntryInjectSoftInt = 0;
1762
1763 /*
1764 * Merge guest features.
1765 *
1766 * When hardware-assisted VMX may be used, any feature we emulate must also be supported
1767 * by the hardware, hence we merge our emulated features with the host features below.
1768 */
1769 PCCPUMFEATURES pBaseFeat = cpumR3IsHwAssistVmxNstGstExecAllowed(pVM) ? pHostFeat : &EmuFeat;
1770 PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures;
1771 pGuestFeat->fVmx = (pBaseFeat->fVmx & EmuFeat.fVmx );
1772 pGuestFeat->fVmxInsOutInfo = (pBaseFeat->fVmxInsOutInfo & EmuFeat.fVmxInsOutInfo );
1773 pGuestFeat->fVmxExtIntExit = (pBaseFeat->fVmxExtIntExit & EmuFeat.fVmxExtIntExit );
1774 pGuestFeat->fVmxNmiExit = (pBaseFeat->fVmxNmiExit & EmuFeat.fVmxNmiExit );
1775 pGuestFeat->fVmxVirtNmi = (pBaseFeat->fVmxVirtNmi & EmuFeat.fVmxVirtNmi );
1776 pGuestFeat->fVmxPreemptTimer = (pBaseFeat->fVmxPreemptTimer & EmuFeat.fVmxPreemptTimer );
1777 pGuestFeat->fVmxPostedInt = (pBaseFeat->fVmxPostedInt & EmuFeat.fVmxPostedInt );
1778 pGuestFeat->fVmxIntWindowExit = (pBaseFeat->fVmxIntWindowExit & EmuFeat.fVmxIntWindowExit );
1779 pGuestFeat->fVmxTscOffsetting = (pBaseFeat->fVmxTscOffsetting & EmuFeat.fVmxTscOffsetting );
1780 pGuestFeat->fVmxHltExit = (pBaseFeat->fVmxHltExit & EmuFeat.fVmxHltExit );
1781 pGuestFeat->fVmxInvlpgExit = (pBaseFeat->fVmxInvlpgExit & EmuFeat.fVmxInvlpgExit );
1782 pGuestFeat->fVmxMwaitExit = (pBaseFeat->fVmxMwaitExit & EmuFeat.fVmxMwaitExit );
1783 pGuestFeat->fVmxRdpmcExit = (pBaseFeat->fVmxRdpmcExit & EmuFeat.fVmxRdpmcExit );
1784 pGuestFeat->fVmxRdtscExit = (pBaseFeat->fVmxRdtscExit & EmuFeat.fVmxRdtscExit );
1785 pGuestFeat->fVmxCr3LoadExit = (pBaseFeat->fVmxCr3LoadExit & EmuFeat.fVmxCr3LoadExit );
1786 pGuestFeat->fVmxCr3StoreExit = (pBaseFeat->fVmxCr3StoreExit & EmuFeat.fVmxCr3StoreExit );
1787 pGuestFeat->fVmxCr8LoadExit = (pBaseFeat->fVmxCr8LoadExit & EmuFeat.fVmxCr8LoadExit );
1788 pGuestFeat->fVmxCr8StoreExit = (pBaseFeat->fVmxCr8StoreExit & EmuFeat.fVmxCr8StoreExit );
1789 pGuestFeat->fVmxUseTprShadow = (pBaseFeat->fVmxUseTprShadow & EmuFeat.fVmxUseTprShadow );
1790 pGuestFeat->fVmxNmiWindowExit = (pBaseFeat->fVmxNmiWindowExit & EmuFeat.fVmxNmiWindowExit );
1791 pGuestFeat->fVmxMovDRxExit = (pBaseFeat->fVmxMovDRxExit & EmuFeat.fVmxMovDRxExit );
1792 pGuestFeat->fVmxUncondIoExit = (pBaseFeat->fVmxUncondIoExit & EmuFeat.fVmxUncondIoExit );
1793 pGuestFeat->fVmxUseIoBitmaps = (pBaseFeat->fVmxUseIoBitmaps & EmuFeat.fVmxUseIoBitmaps );
1794 pGuestFeat->fVmxMonitorTrapFlag = (pBaseFeat->fVmxMonitorTrapFlag & EmuFeat.fVmxMonitorTrapFlag );
1795 pGuestFeat->fVmxUseMsrBitmaps = (pBaseFeat->fVmxUseMsrBitmaps & EmuFeat.fVmxUseMsrBitmaps );
1796 pGuestFeat->fVmxMonitorExit = (pBaseFeat->fVmxMonitorExit & EmuFeat.fVmxMonitorExit );
1797 pGuestFeat->fVmxPauseExit = (pBaseFeat->fVmxPauseExit & EmuFeat.fVmxPauseExit );
1798 pGuestFeat->fVmxSecondaryExecCtls = (pBaseFeat->fVmxSecondaryExecCtls & EmuFeat.fVmxSecondaryExecCtls );
1799 pGuestFeat->fVmxVirtApicAccess = (pBaseFeat->fVmxVirtApicAccess & EmuFeat.fVmxVirtApicAccess );
1800 pGuestFeat->fVmxEpt = (pBaseFeat->fVmxEpt & EmuFeat.fVmxEpt );
1801 pGuestFeat->fVmxDescTableExit = (pBaseFeat->fVmxDescTableExit & EmuFeat.fVmxDescTableExit );
1802 pGuestFeat->fVmxRdtscp = (pBaseFeat->fVmxRdtscp & EmuFeat.fVmxRdtscp );
1803 pGuestFeat->fVmxVirtX2ApicMode = (pBaseFeat->fVmxVirtX2ApicMode & EmuFeat.fVmxVirtX2ApicMode );
1804 pGuestFeat->fVmxVpid = (pBaseFeat->fVmxVpid & EmuFeat.fVmxVpid );
1805 pGuestFeat->fVmxWbinvdExit = (pBaseFeat->fVmxWbinvdExit & EmuFeat.fVmxWbinvdExit );
1806 pGuestFeat->fVmxUnrestrictedGuest = (pBaseFeat->fVmxUnrestrictedGuest & EmuFeat.fVmxUnrestrictedGuest );
1807 pGuestFeat->fVmxApicRegVirt = (pBaseFeat->fVmxApicRegVirt & EmuFeat.fVmxApicRegVirt );
1808 pGuestFeat->fVmxVirtIntDelivery = (pBaseFeat->fVmxVirtIntDelivery & EmuFeat.fVmxVirtIntDelivery );
1809 pGuestFeat->fVmxPauseLoopExit = (pBaseFeat->fVmxPauseLoopExit & EmuFeat.fVmxPauseLoopExit );
1810 pGuestFeat->fVmxRdrandExit = (pBaseFeat->fVmxRdrandExit & EmuFeat.fVmxRdrandExit );
1811 pGuestFeat->fVmxInvpcid = (pBaseFeat->fVmxInvpcid & EmuFeat.fVmxInvpcid );
1812 pGuestFeat->fVmxVmFunc = (pBaseFeat->fVmxVmFunc & EmuFeat.fVmxVmFunc );
1813 pGuestFeat->fVmxVmcsShadowing = (pBaseFeat->fVmxVmcsShadowing & EmuFeat.fVmxVmcsShadowing );
1814 pGuestFeat->fVmxRdseedExit = (pBaseFeat->fVmxRdseedExit & EmuFeat.fVmxRdseedExit );
1815 pGuestFeat->fVmxPml = (pBaseFeat->fVmxPml & EmuFeat.fVmxPml );
1816 pGuestFeat->fVmxEptXcptVe = (pBaseFeat->fVmxEptXcptVe & EmuFeat.fVmxEptXcptVe );
1817 pGuestFeat->fVmxXsavesXrstors = (pBaseFeat->fVmxXsavesXrstors & EmuFeat.fVmxXsavesXrstors );
1818 pGuestFeat->fVmxUseTscScaling = (pBaseFeat->fVmxUseTscScaling & EmuFeat.fVmxUseTscScaling );
1819 pGuestFeat->fVmxEntryLoadDebugCtls = (pBaseFeat->fVmxEntryLoadDebugCtls & EmuFeat.fVmxEntryLoadDebugCtls );
1820 pGuestFeat->fVmxIa32eModeGuest = (pBaseFeat->fVmxIa32eModeGuest & EmuFeat.fVmxIa32eModeGuest );
1821 pGuestFeat->fVmxEntryLoadEferMsr = (pBaseFeat->fVmxEntryLoadEferMsr & EmuFeat.fVmxEntryLoadEferMsr );
1822 pGuestFeat->fVmxEntryLoadPatMsr = (pBaseFeat->fVmxEntryLoadPatMsr & EmuFeat.fVmxEntryLoadPatMsr );
1823 pGuestFeat->fVmxExitSaveDebugCtls = (pBaseFeat->fVmxExitSaveDebugCtls & EmuFeat.fVmxExitSaveDebugCtls );
1824 pGuestFeat->fVmxHostAddrSpaceSize = (pBaseFeat->fVmxHostAddrSpaceSize & EmuFeat.fVmxHostAddrSpaceSize );
1825 pGuestFeat->fVmxExitAckExtInt = (pBaseFeat->fVmxExitAckExtInt & EmuFeat.fVmxExitAckExtInt );
1826 pGuestFeat->fVmxExitSavePatMsr = (pBaseFeat->fVmxExitSavePatMsr & EmuFeat.fVmxExitSavePatMsr );
1827 pGuestFeat->fVmxExitLoadPatMsr = (pBaseFeat->fVmxExitLoadPatMsr & EmuFeat.fVmxExitLoadPatMsr );
1828 pGuestFeat->fVmxExitSaveEferMsr = (pBaseFeat->fVmxExitSaveEferMsr & EmuFeat.fVmxExitSaveEferMsr );
1829 pGuestFeat->fVmxExitLoadEferMsr = (pBaseFeat->fVmxExitLoadEferMsr & EmuFeat.fVmxExitLoadEferMsr );
1830 pGuestFeat->fVmxSavePreemptTimer = (pBaseFeat->fVmxSavePreemptTimer & EmuFeat.fVmxSavePreemptTimer );
1831 pGuestFeat->fVmxExitSaveEferLma = (pBaseFeat->fVmxExitSaveEferLma & EmuFeat.fVmxExitSaveEferLma );
1832 pGuestFeat->fVmxIntelPt = (pBaseFeat->fVmxIntelPt & EmuFeat.fVmxIntelPt );
1833 pGuestFeat->fVmxVmwriteAll = (pBaseFeat->fVmxVmwriteAll & EmuFeat.fVmxVmwriteAll );
1834 pGuestFeat->fVmxEntryInjectSoftInt = (pBaseFeat->fVmxEntryInjectSoftInt & EmuFeat.fVmxEntryInjectSoftInt );
1835
1836 /* Paranoia. */
1837 if (!pGuestFeat->fVmxSecondaryExecCtls)
1838 {
1839 Assert(!pGuestFeat->fVmxVirtApicAccess);
1840 Assert(!pGuestFeat->fVmxEpt);
1841 Assert(!pGuestFeat->fVmxDescTableExit);
1842 Assert(!pGuestFeat->fVmxRdtscp);
1843 Assert(!pGuestFeat->fVmxVirtX2ApicMode);
1844 Assert(!pGuestFeat->fVmxVpid);
1845 Assert(!pGuestFeat->fVmxWbinvdExit);
1846 Assert(!pGuestFeat->fVmxUnrestrictedGuest);
1847 Assert(!pGuestFeat->fVmxApicRegVirt);
1848 Assert(!pGuestFeat->fVmxVirtIntDelivery);
1849 Assert(!pGuestFeat->fVmxPauseLoopExit);
1850 Assert(!pGuestFeat->fVmxRdrandExit);
1851 Assert(!pGuestFeat->fVmxInvpcid);
1852 Assert(!pGuestFeat->fVmxVmFunc);
1853 Assert(!pGuestFeat->fVmxVmcsShadowing);
1854 Assert(!pGuestFeat->fVmxRdseedExit);
1855 Assert(!pGuestFeat->fVmxPml);
1856 Assert(!pGuestFeat->fVmxEptXcptVe);
1857 Assert(!pGuestFeat->fVmxXsavesXrstors);
1858 Assert(!pGuestFeat->fVmxUseTscScaling);
1859 }
1860
1861 /*
1862 * Finally initialize the VMX guest MSRs after merging the guest features.
1863 */
1864 cpumR3InitGuestVmxMsrs(pVM);
1865}
1866
1867
1868/**
1869 * Initializes the CPUM.
1870 *
1871 * @returns VBox status code.
1872 * @param pVM The cross context VM structure.
1873 */
1874VMMR3DECL(int) CPUMR3Init(PVM pVM)
1875{
1876 LogFlow(("CPUMR3Init\n"));
1877
1878 /*
1879 * Assert alignment, sizes and tables.
1880 */
1881 AssertCompileMemberAlignment(VM, cpum.s, 32);
1882 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
1883 AssertCompileSizeAlignment(CPUMCTX, 64);
1884 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
1885 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
1886 AssertCompileMemberAlignment(VM, cpum, 64);
1887 AssertCompileMemberAlignment(VM, aCpus, 64);
1888 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
1889 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
1890#ifdef VBOX_STRICT
1891 int rc2 = cpumR3MsrStrictInitChecks();
1892 AssertRCReturn(rc2, rc2);
1893#endif
1894
1895 /*
1896 * Initialize offsets.
1897 */
1898
1899 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
1900 pVM->cpum.s.offCPUMCPU0 = RT_UOFFSETOF(VM, aCpus[0].cpum) - RT_UOFFSETOF(VM, cpum);
1901 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
1902
1903
1904 /* Calculate the offset from CPUMCPU to CPUM. */
1905 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1906 {
1907 PVMCPU pVCpu = &pVM->aCpus[i];
1908
1909 pVCpu->cpum.s.offCPUM = RT_UOFFSETOF_DYN(VM, aCpus[i].cpum) - RT_UOFFSETOF(VM, cpum);
1910 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
1911 }
1912
1913 /*
1914 * Gather info about the host CPU.
1915 */
1916 if (!ASMHasCpuId())
1917 {
1918 Log(("The CPU doesn't support CPUID!\n"));
1919 return VERR_UNSUPPORTED_CPU;
1920 }
1921
1922 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
1923
1924 PCPUMCPUIDLEAF paLeaves;
1925 uint32_t cLeaves;
1926 int rc = CPUMR3CpuIdCollectLeaves(&paLeaves, &cLeaves);
1927 AssertLogRelRCReturn(rc, rc);
1928
1929 rc = cpumR3CpuIdExplodeFeatures(paLeaves, cLeaves, &pVM->cpum.s.HostFeatures);
1930 RTMemFree(paLeaves);
1931 AssertLogRelRCReturn(rc, rc);
1932 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
1933
1934 /*
1935 * Check that the CPU supports the minimum features we require.
1936 */
1937 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
1938 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
1939 if (!pVM->cpum.s.HostFeatures.fMmx)
1940 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
1941 if (!pVM->cpum.s.HostFeatures.fTsc)
1942 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
1943
1944 /*
1945 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
1946 */
1947 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
1948 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
1949
1950 /*
1951 * Figure out which XSAVE/XRSTOR features are available on the host.
1952 */
1953 uint64_t fXcr0Host = 0;
1954 uint64_t fXStateHostMask = 0;
1955 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
1956 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
1957 {
1958 fXStateHostMask = fXcr0Host = ASMGetXcr0();
1959 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
1960 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
1961 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
1962 }
1963 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
1964 if (VM_IS_RAW_MODE_ENABLED(pVM)) /* For raw-mode, we only use XSAVE/XRSTOR when the guest starts using it (CPUID/CR4 visibility). */
1965 fXStateHostMask = 0;
1966 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
1967 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
1968
1969 /*
1970 * Allocate memory for the extended CPU state and initialize the host XSAVE/XRSTOR mask.
1971 */
1972 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
1973 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
1974 AssertLogRelReturn(cbMaxXState >= sizeof(X86FXSTATE) && cbMaxXState <= _8K, VERR_CPUM_IPE_2);
1975
1976 uint8_t *pbXStates;
1977 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbMaxXState * 3 * pVM->cCpus, PAGE_SIZE, MM_TAG_CPUM_CTX,
1978 MMHYPER_AONR_FLAGS_KERNEL_MAPPING, (void **)&pbXStates);
1979 AssertLogRelRCReturn(rc, rc);
1980
1981 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1982 {
1983 PVMCPU pVCpu = &pVM->aCpus[i];
1984
1985 pVCpu->cpum.s.Guest.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1986 pVCpu->cpum.s.Guest.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1987 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1988 pbXStates += cbMaxXState;
1989
1990 pVCpu->cpum.s.Host.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1991 pVCpu->cpum.s.Host.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1992 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1993 pbXStates += cbMaxXState;
1994
1995 pVCpu->cpum.s.Hyper.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1996 pVCpu->cpum.s.Hyper.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1997 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1998 pbXStates += cbMaxXState;
1999
2000 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
2001 }
2002
2003 /*
2004 * Register saved state data item.
2005 */
2006 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
2007 NULL, cpumR3LiveExec, NULL,
2008 NULL, cpumR3SaveExec, NULL,
2009 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
2010 if (RT_FAILURE(rc))
2011 return rc;
2012
2013 /*
2014 * Register info handlers and registers with the debugger facility.
2015 */
2016 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
2017 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
2018 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
2019 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
2020 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
2021 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
2022 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
2023 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
2024 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
2025 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
2026 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
2027 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
2028 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
2029 DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.",
2030 &cpumR3InfoVmxFeatures);
2031
2032 rc = cpumR3DbgInit(pVM);
2033 if (RT_FAILURE(rc))
2034 return rc;
2035
2036 /*
2037 * Check if we need to workaround partial/leaky FPU handling.
2038 */
2039 cpumR3CheckLeakyFpu(pVM);
2040
2041 /*
2042 * Initialize the Guest CPUID and MSR states.
2043 */
2044 rc = cpumR3InitCpuIdAndMsrs(pVM);
2045 if (RT_FAILURE(rc))
2046 return rc;
2047
2048 /*
2049 * Allocate memory required by the guest hardware virtualization state.
2050 */
2051 if (pVM->cpum.s.GuestFeatures.fVmx)
2052 rc = cpumR3AllocVmxHwVirtState(pVM);
2053 else if (pVM->cpum.s.GuestFeatures.fSvm)
2054 rc = cpumR3AllocSvmHwVirtState(pVM);
2055 else
2056 Assert(pVM->aCpus[0].cpum.s.Guest.hwvirt.enmHwvirt == CPUMHWVIRT_NONE);
2057 if (RT_FAILURE(rc))
2058 return rc;
2059
2060 /*
2061 * Initialize guest hardware virtualization state.
2062 */
2063 CPUMHWVIRT const enmHwvirt = pVM->aCpus[0].cpum.s.Guest.hwvirt.enmHwvirt;
2064 if (enmHwvirt == CPUMHWVIRT_VMX)
2065 {
2066 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2067 cpumR3InitVmxHwVirtState(&pVM->aCpus[i]);
2068
2069 /* Initialize VMX features. */
2070 cpumR3InitVmxCpuFeatures(pVM);
2071 DBGFR3Info(pVM->pUVM, "cpumvmxfeat", "default", DBGFR3InfoLogRelHlp());
2072 }
2073 else if (enmHwvirt == CPUMHWVIRT_SVM)
2074 {
2075 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2076 cpumR3InitSvmHwVirtState(&pVM->aCpus[i]);
2077 }
2078
2079 /*
2080 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestInfo.DefCpuId:
2081 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
2082 * of processors from (cpuid(4).eax >> 26) + 1.
2083 *
2084 * Note: this code is obsolete, but let's keep it here for reference.
2085 * Purpose is valid when we artificially cap the max std id to less than 4.
2086 *
2087 * Note: This used to be a separate function CPUMR3SetHwVirt that was called
2088 * after VMINITCOMPLETED_HM.
2089 */
2090 if (VM_IS_RAW_MODE_ENABLED(pVM))
2091 {
2092 Assert( (pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax & UINT32_C(0xffffc000)) == 0
2093 || pVM->cpum.s.aGuestCpuIdPatmStd[0].uEax < 0x4);
2094 pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax &= UINT32_C(0x00003fff);
2095 }
2096
2097 CPUMR3Reset(pVM);
2098 return VINF_SUCCESS;
2099}
2100
2101
2102/**
2103 * Applies relocations to data and code managed by this
2104 * component. This function will be called at init and
2105 * whenever the VMM need to relocate it self inside the GC.
2106 *
2107 * The CPUM will update the addresses used by the switcher.
2108 *
2109 * @param pVM The cross context VM structure.
2110 */
2111VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
2112{
2113 LogFlow(("CPUMR3Relocate\n"));
2114
2115 pVM->cpum.s.GuestInfo.paMsrRangesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paMsrRangesR3);
2116 pVM->cpum.s.GuestInfo.paCpuIdLeavesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paCpuIdLeavesR3);
2117
2118 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2119 {
2120 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2121 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Guest.pXStateR3);
2122 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Host.pXStateR3);
2123 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Hyper.pXStateR3); /** @todo remove me */
2124
2125 /* Recheck the guest DRx values in raw-mode. */
2126 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX, false);
2127 }
2128}
2129
2130
2131/**
2132 * Terminates the CPUM.
2133 *
2134 * Termination means cleaning up and freeing all resources,
2135 * the VM it self is at this point powered off or suspended.
2136 *
2137 * @returns VBox status code.
2138 * @param pVM The cross context VM structure.
2139 */
2140VMMR3DECL(int) CPUMR3Term(PVM pVM)
2141{
2142#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2143 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2144 {
2145 PVMCPU pVCpu = &pVM->aCpus[i];
2146 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2147
2148 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
2149 pVCpu->cpum.s.uMagic = 0;
2150 pCtx->dr[5] = 0;
2151 }
2152#endif
2153
2154 if (pVM->cpum.s.GuestFeatures.fVmx)
2155 cpumR3FreeVmxHwVirtState(pVM);
2156 else if (pVM->cpum.s.GuestFeatures.fSvm)
2157 cpumR3FreeSvmHwVirtState(pVM);
2158 return VINF_SUCCESS;
2159}
2160
2161
2162/**
2163 * Resets a virtual CPU.
2164 *
2165 * Used by CPUMR3Reset and CPU hot plugging.
2166 *
2167 * @param pVM The cross context VM structure.
2168 * @param pVCpu The cross context virtual CPU structure of the CPU that is
2169 * being reset. This may differ from the current EMT.
2170 */
2171VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2172{
2173 /** @todo anything different for VCPU > 0? */
2174 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2175
2176 /*
2177 * Initialize everything to ZERO first.
2178 */
2179 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
2180
2181 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateR3));
2182 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateRC));
2183 memset(pCtx, 0, RT_UOFFSETOF(CPUMCTX, pXStateR0));
2184
2185 pVCpu->cpum.s.fUseFlags = fUseFlags;
2186
2187 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
2188 pCtx->eip = 0x0000fff0;
2189 pCtx->edx = 0x00000600; /* P6 processor */
2190 pCtx->eflags.Bits.u1Reserved0 = 1;
2191
2192 pCtx->cs.Sel = 0xf000;
2193 pCtx->cs.ValidSel = 0xf000;
2194 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2195 pCtx->cs.u64Base = UINT64_C(0xffff0000);
2196 pCtx->cs.u32Limit = 0x0000ffff;
2197 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
2198 pCtx->cs.Attr.n.u1Present = 1;
2199 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
2200
2201 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
2202 pCtx->ds.u32Limit = 0x0000ffff;
2203 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
2204 pCtx->ds.Attr.n.u1Present = 1;
2205 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2206
2207 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
2208 pCtx->es.u32Limit = 0x0000ffff;
2209 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
2210 pCtx->es.Attr.n.u1Present = 1;
2211 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2212
2213 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
2214 pCtx->fs.u32Limit = 0x0000ffff;
2215 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
2216 pCtx->fs.Attr.n.u1Present = 1;
2217 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2218
2219 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
2220 pCtx->gs.u32Limit = 0x0000ffff;
2221 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
2222 pCtx->gs.Attr.n.u1Present = 1;
2223 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2224
2225 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
2226 pCtx->ss.u32Limit = 0x0000ffff;
2227 pCtx->ss.Attr.n.u1Present = 1;
2228 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
2229 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2230
2231 pCtx->idtr.cbIdt = 0xffff;
2232 pCtx->gdtr.cbGdt = 0xffff;
2233
2234 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2235 pCtx->ldtr.u32Limit = 0xffff;
2236 pCtx->ldtr.Attr.n.u1Present = 1;
2237 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
2238
2239 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2240 pCtx->tr.u32Limit = 0xffff;
2241 pCtx->tr.Attr.n.u1Present = 1;
2242 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
2243
2244 pCtx->dr[6] = X86_DR6_INIT_VAL;
2245 pCtx->dr[7] = X86_DR7_INIT_VAL;
2246
2247 PX86FXSTATE pFpuCtx = &pCtx->pXStateR3->x87; AssertReleaseMsg(RT_VALID_PTR(pFpuCtx), ("%p\n", pFpuCtx));
2248 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
2249 pFpuCtx->FCW = 0x37f;
2250
2251 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
2252 IA-32 Processor States Following Power-up, Reset, or INIT */
2253 pFpuCtx->MXCSR = 0x1F80;
2254 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
2255
2256 pCtx->aXcr[0] = XSAVE_C_X87;
2257 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr))
2258 {
2259 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
2260 as we don't know what happened before. (Bother optimize later?) */
2261 pCtx->pXStateR3->Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
2262 }
2263
2264 /*
2265 * MSRs.
2266 */
2267 /* Init PAT MSR */
2268 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
2269
2270 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
2271 * The Intel docs don't mention it. */
2272 Assert(!pCtx->msrEFER);
2273
2274 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
2275 is supposed to be here, just trying provide useful/sensible values. */
2276 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
2277 if (pRange)
2278 {
2279 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2280 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
2281 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
2282 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
2283 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2284 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
2285 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
2286 }
2287
2288 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
2289
2290 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
2291 * called from each EMT while we're getting called by CPUMR3Reset()
2292 * iteratively on the same thread. Fix later. */
2293#if 0 /** @todo r=bird: This we will do in TM, not here. */
2294 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
2295 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
2296#endif
2297
2298
2299 /* C-state control. Guesses. */
2300 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
2301 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
2302 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
2303 * functionality. The default value must be different due to incompatible write mask.
2304 */
2305 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
2306 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
2307 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
2308 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
2309
2310 /*
2311 * Hardware virtualization state.
2312 */
2313 CPUMSetGuestGif(pCtx, true);
2314 Assert(!pVM->cpum.s.GuestFeatures.fVmx || !pVM->cpum.s.GuestFeatures.fSvm); /* Paranoia. */
2315 if (pVM->cpum.s.GuestFeatures.fVmx)
2316 cpumR3InitVmxHwVirtState(pVCpu);
2317 else if (pVM->cpum.s.GuestFeatures.fSvm)
2318 cpumR3InitSvmHwVirtState(pVCpu);
2319}
2320
2321
2322/**
2323 * Resets the CPU.
2324 *
2325 * @returns VINF_SUCCESS.
2326 * @param pVM The cross context VM structure.
2327 */
2328VMMR3DECL(void) CPUMR3Reset(PVM pVM)
2329{
2330 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2331 {
2332 CPUMR3ResetCpu(pVM, &pVM->aCpus[i]);
2333
2334#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2335 PCPUMCTX pCtx = &pVM->aCpus[i].cpum.s.Guest;
2336
2337 /* Magic marker for searching in crash dumps. */
2338 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
2339 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
2340 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
2341#endif
2342 }
2343}
2344
2345
2346
2347
2348/**
2349 * Pass 0 live exec callback.
2350 *
2351 * @returns VINF_SSM_DONT_CALL_AGAIN.
2352 * @param pVM The cross context VM structure.
2353 * @param pSSM The saved state handle.
2354 * @param uPass The pass (0).
2355 */
2356static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2357{
2358 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
2359 cpumR3SaveCpuId(pVM, pSSM);
2360 return VINF_SSM_DONT_CALL_AGAIN;
2361}
2362
2363
2364/**
2365 * Execute state save operation.
2366 *
2367 * @returns VBox status code.
2368 * @param pVM The cross context VM structure.
2369 * @param pSSM SSM operation handle.
2370 */
2371static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2372{
2373 /*
2374 * Save.
2375 */
2376 SSMR3PutU32(pSSM, pVM->cCpus);
2377 SSMR3PutU32(pSSM, sizeof(pVM->aCpus[0].cpum.s.GuestMsrs.msr));
2378 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2379 {
2380 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2381
2382 SSMR3PutStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
2383
2384 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2385 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2386 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
2387 if (pGstCtx->fXStateMask != 0)
2388 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr), 0, g_aCpumXSaveHdrFields, NULL);
2389 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2390 {
2391 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2392 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2393 }
2394 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2395 {
2396 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2397 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2398 }
2399 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2400 {
2401 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2402 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2403 }
2404 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2405 {
2406 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2407 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2408 }
2409 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2410 {
2411 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2412 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2413 }
2414 if (pVM->cpum.s.GuestFeatures.fSvm)
2415 {
2416 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
2417 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
2418 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
2419 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
2420 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
2421 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2422 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
2423 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
2424 g_aSvmHwvirtHostState, NULL /* pvUser */);
2425 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
2426 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
2427 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
2428 SSMR3PutU32(pSSM, pGstCtx->hwvirt.fLocalForcedActions);
2429 SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
2430 }
2431 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
2432 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
2433 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
2434 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
2435 }
2436
2437 cpumR3SaveCpuId(pVM, pSSM);
2438 return VINF_SUCCESS;
2439}
2440
2441
2442/**
2443 * @callback_method_impl{FNSSMINTLOADPREP}
2444 */
2445static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2446{
2447 NOREF(pSSM);
2448 pVM->cpum.s.fPendingRestore = true;
2449 return VINF_SUCCESS;
2450}
2451
2452
2453/**
2454 * @callback_method_impl{FNSSMINTLOADEXEC}
2455 */
2456static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2457{
2458 int rc; /* Only for AssertRCReturn use. */
2459
2460 /*
2461 * Validate version.
2462 */
2463 if ( uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
2464 && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
2465 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
2466 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
2467 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
2468 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
2469 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
2470 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2471 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2472 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2473 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2474 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2475 {
2476 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2477 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2478 }
2479
2480 if (uPass == SSM_PASS_FINAL)
2481 {
2482 /*
2483 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2484 * really old SSM file versions.)
2485 */
2486 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2487 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2488 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2489 SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
2490
2491 /*
2492 * Figure x86 and ctx field definitions to use for older states.
2493 */
2494 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
2495 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
2496 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
2497 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2498 {
2499 paCpumCtx1Fields = g_aCpumX87FieldsV16;
2500 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
2501 }
2502 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2503 {
2504 paCpumCtx1Fields = g_aCpumX87FieldsMem;
2505 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
2506 }
2507
2508 /*
2509 * The hyper state used to preceed the CPU count. Starting with
2510 * XSAVE it was moved down till after we've got the count.
2511 */
2512 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
2513 {
2514 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2515 {
2516 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2517 X86FXSTATE Ign;
2518 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2519 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
2520 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
2521 SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper),
2522 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2523 pVCpu->cpum.s.Hyper.cr3 = uCR3;
2524 pVCpu->cpum.s.Hyper.rsp = uRSP;
2525 }
2526 }
2527
2528 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2529 {
2530 uint32_t cCpus;
2531 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2532 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2533 VERR_SSM_UNEXPECTED_DATA);
2534 }
2535 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
2536 || pVM->cCpus == 1,
2537 ("cCpus=%u\n", pVM->cCpus),
2538 VERR_SSM_UNEXPECTED_DATA);
2539
2540 uint32_t cbMsrs = 0;
2541 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2542 {
2543 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
2544 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
2545 VERR_SSM_UNEXPECTED_DATA);
2546 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
2547 VERR_SSM_UNEXPECTED_DATA);
2548 }
2549
2550 /*
2551 * Do the per-CPU restoring.
2552 */
2553 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2554 {
2555 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2556 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2557
2558 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
2559 {
2560 /*
2561 * The XSAVE saved state layout moved the hyper state down here.
2562 */
2563 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
2564 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
2565 rc = SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
2566 pVCpu->cpum.s.Hyper.cr3 = uCR3;
2567 pVCpu->cpum.s.Hyper.rsp = uRSP;
2568 AssertRCReturn(rc, rc);
2569
2570 /*
2571 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
2572 */
2573 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2574 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
2575 AssertRCReturn(rc, rc);
2576
2577 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
2578 if (pGstCtx->fXStateMask != 0)
2579 {
2580 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
2581 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
2582 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
2583 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
2584 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
2585 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2586 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2587 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2588 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2589 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2590 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2591 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2592 }
2593
2594 /* Check that the XCR0 mask is valid (invalid results in #GP). */
2595 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
2596 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
2597 {
2598 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
2599 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
2600 VERR_CPUM_INVALID_XCR0);
2601 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
2602 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2603 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2604 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2605 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2606 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2607 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2608 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2609 }
2610
2611 /* Check that the XCR1 is zero, as we don't implement it yet. */
2612 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2613
2614 /*
2615 * Restore the individual extended state components we support.
2616 */
2617 if (pGstCtx->fXStateMask != 0)
2618 {
2619 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr),
2620 0, g_aCpumXSaveHdrFields, NULL);
2621 AssertRCReturn(rc, rc);
2622 AssertLogRelMsgReturn(!(pGstCtx->pXStateR3->Hdr.bmXState & ~pGstCtx->fXStateMask),
2623 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
2624 pGstCtx->pXStateR3->Hdr.bmXState, pGstCtx->fXStateMask),
2625 VERR_CPUM_INVALID_XSAVE_HDR);
2626 }
2627 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2628 {
2629 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
2630 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2631 }
2632 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2633 {
2634 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
2635 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2636 }
2637 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2638 {
2639 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
2640 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2641 }
2642 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2643 {
2644 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
2645 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2646 }
2647 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2648 {
2649 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
2650 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2651 }
2652 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
2653 {
2654 if (pVM->cpum.s.GuestFeatures.fSvm)
2655 {
2656 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
2657 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
2658 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
2659 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
2660 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
2661 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2662 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
2663 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
2664 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
2665 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
2666 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
2667 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
2668 SSMR3GetU32(pSSM, &pGstCtx->hwvirt.fLocalForcedActions);
2669 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
2670 }
2671 }
2672 }
2673 else
2674 {
2675 /*
2676 * Pre XSAVE saved state.
2677 */
2678 SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87),
2679 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2680 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2681 }
2682
2683 /*
2684 * Restore a couple of flags and the MSRs.
2685 */
2686 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fUseFlags);
2687 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
2688
2689 rc = VINF_SUCCESS;
2690 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2691 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
2692 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2693 {
2694 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
2695 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
2696 }
2697 AssertRCReturn(rc, rc);
2698
2699 /* REM and other may have cleared must-be-one fields in DR6 and
2700 DR7, fix these. */
2701 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
2702 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
2703 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
2704 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
2705 }
2706
2707 /* Older states does not have the internal selector register flags
2708 and valid selector value. Supply those. */
2709 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2710 {
2711 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2712 {
2713 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2714 bool const fValid = !VM_IS_RAW_MODE_ENABLED(pVM)
2715 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2716 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
2717 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
2718 if (fValid)
2719 {
2720 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2721 {
2722 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
2723 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
2724 }
2725
2726 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2727 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2728 }
2729 else
2730 {
2731 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2732 {
2733 paSelReg[iSelReg].fFlags = 0;
2734 paSelReg[iSelReg].ValidSel = 0;
2735 }
2736
2737 /* This might not be 104% correct, but I think it's close
2738 enough for all practical purposes... (REM always loaded
2739 LDTR registers.) */
2740 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2741 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2742 }
2743 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
2744 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
2745 }
2746 }
2747
2748 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
2749 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2750 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2751 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2752 pVM->aCpus[iCpu].cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2753
2754 /*
2755 * A quick sanity check.
2756 */
2757 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2758 {
2759 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2760 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2761 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2762 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2763 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2764 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2765 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2766 }
2767 }
2768
2769 pVM->cpum.s.fPendingRestore = false;
2770
2771 /*
2772 * Guest CPUIDs.
2773 */
2774 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
2775 return cpumR3LoadCpuId(pVM, pSSM, uVersion);
2776 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
2777}
2778
2779
2780/**
2781 * @callback_method_impl{FNSSMINTLOADDONE}
2782 */
2783static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
2784{
2785 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
2786 return VINF_SUCCESS;
2787
2788 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
2789 if (pVM->cpum.s.fPendingRestore)
2790 {
2791 LogRel(("CPUM: Missing state!\n"));
2792 return VERR_INTERNAL_ERROR_2;
2793 }
2794
2795 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
2796 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2797 {
2798 PVMCPU pVCpu = &pVM->aCpus[idCpu];
2799
2800 /* Notify PGM of the NXE states in case they've changed. */
2801 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
2802
2803 /* During init. this is done in CPUMR3InitCompleted(). */
2804 if (fSupportsLongMode)
2805 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
2806 }
2807 return VINF_SUCCESS;
2808}
2809
2810
2811/**
2812 * Checks if the CPUM state restore is still pending.
2813 *
2814 * @returns true / false.
2815 * @param pVM The cross context VM structure.
2816 */
2817VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
2818{
2819 return pVM->cpum.s.fPendingRestore;
2820}
2821
2822
2823/**
2824 * Formats the EFLAGS value into mnemonics.
2825 *
2826 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
2827 * @param efl The EFLAGS value.
2828 */
2829static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
2830{
2831 /*
2832 * Format the flags.
2833 */
2834 static const struct
2835 {
2836 const char *pszSet; const char *pszClear; uint32_t fFlag;
2837 } s_aFlags[] =
2838 {
2839 { "vip",NULL, X86_EFL_VIP },
2840 { "vif",NULL, X86_EFL_VIF },
2841 { "ac", NULL, X86_EFL_AC },
2842 { "vm", NULL, X86_EFL_VM },
2843 { "rf", NULL, X86_EFL_RF },
2844 { "nt", NULL, X86_EFL_NT },
2845 { "ov", "nv", X86_EFL_OF },
2846 { "dn", "up", X86_EFL_DF },
2847 { "ei", "di", X86_EFL_IF },
2848 { "tf", NULL, X86_EFL_TF },
2849 { "nt", "pl", X86_EFL_SF },
2850 { "nz", "zr", X86_EFL_ZF },
2851 { "ac", "na", X86_EFL_AF },
2852 { "po", "pe", X86_EFL_PF },
2853 { "cy", "nc", X86_EFL_CF },
2854 };
2855 char *psz = pszEFlags;
2856 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
2857 {
2858 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
2859 if (pszAdd)
2860 {
2861 strcpy(psz, pszAdd);
2862 psz += strlen(pszAdd);
2863 *psz++ = ' ';
2864 }
2865 }
2866 psz[-1] = '\0';
2867}
2868
2869
2870/**
2871 * Formats a full register dump.
2872 *
2873 * @param pVM The cross context VM structure.
2874 * @param pCtx The context to format.
2875 * @param pCtxCore The context core to format.
2876 * @param pHlp Output functions.
2877 * @param enmType The dump type.
2878 * @param pszPrefix Register name prefix.
2879 */
2880static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
2881 const char *pszPrefix)
2882{
2883 NOREF(pVM);
2884
2885 /*
2886 * Format the EFLAGS.
2887 */
2888 uint32_t efl = pCtxCore->eflags.u32;
2889 char szEFlags[80];
2890 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2891
2892 /*
2893 * Format the registers.
2894 */
2895 switch (enmType)
2896 {
2897 case CPUMDUMPTYPE_TERSE:
2898 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2899 pHlp->pfnPrintf(pHlp,
2900 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2901 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2902 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2903 "%sr14=%016RX64 %sr15=%016RX64\n"
2904 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2905 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2906 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2907 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2908 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2909 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2910 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2911 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
2912 else
2913 pHlp->pfnPrintf(pHlp,
2914 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2915 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2916 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2917 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2918 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2919 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2920 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
2921 break;
2922
2923 case CPUMDUMPTYPE_DEFAULT:
2924 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2925 pHlp->pfnPrintf(pHlp,
2926 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2927 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2928 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2929 "%sr14=%016RX64 %sr15=%016RX64\n"
2930 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2931 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2932 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
2933 ,
2934 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2935 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2936 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2937 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2938 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2939 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
2940 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2941 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
2942 else
2943 pHlp->pfnPrintf(pHlp,
2944 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2945 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2946 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2947 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
2948 ,
2949 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2950 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2951 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2952 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
2953 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2954 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
2955 break;
2956
2957 case CPUMDUMPTYPE_VERBOSE:
2958 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2959 pHlp->pfnPrintf(pHlp,
2960 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2961 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2962 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2963 "%sr14=%016RX64 %sr15=%016RX64\n"
2964 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2965 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2966 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2967 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2968 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2969 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2970 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2971 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
2972 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
2973 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
2974 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2975 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2976 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2977 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
2978 ,
2979 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2980 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2981 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2982 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2983 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
2984 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
2985 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
2986 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
2987 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
2988 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
2989 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2990 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2991 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2992 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2993 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2994 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2995 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2996 else
2997 pHlp->pfnPrintf(pHlp,
2998 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2999 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3000 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
3001 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
3002 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
3003 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
3004 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
3005 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
3006 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3007 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3008 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3009 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
3010 ,
3011 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3012 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3013 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
3014 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3015 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
3016 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3017 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
3018 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3019 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3020 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3021 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3022 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3023
3024 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
3025 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
3026 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
3027 if (pCtx->CTX_SUFF(pXState))
3028 {
3029 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
3030 pHlp->pfnPrintf(pHlp,
3031 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
3032 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
3033 ,
3034 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
3035 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
3036 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
3037 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
3038 );
3039 /*
3040 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
3041 * not (FP)R0-7 as Intel SDM suggests.
3042 */
3043 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
3044 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
3045 {
3046 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
3047 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
3048 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
3049 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
3050 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
3051 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
3052 iExponent -= 16383; /* subtract bias */
3053 /** @todo This isn't entirenly correct and needs more work! */
3054 pHlp->pfnPrintf(pHlp,
3055 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
3056 pszPrefix, iST, pszPrefix, iFPR,
3057 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
3058 uTag, chSign, iInteger, u64Fraction, iExponent);
3059 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
3060 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
3061 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
3062 else
3063 pHlp->pfnPrintf(pHlp, "\n");
3064 }
3065
3066 /* XMM/YMM/ZMM registers. */
3067 if (pCtx->fXStateMask & XSAVE_C_YMM)
3068 {
3069 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
3070 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
3071 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3072 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3073 pszPrefix, i, i < 10 ? " " : "",
3074 pYmmHiCtx->aYmmHi[i].au32[3],
3075 pYmmHiCtx->aYmmHi[i].au32[2],
3076 pYmmHiCtx->aYmmHi[i].au32[1],
3077 pYmmHiCtx->aYmmHi[i].au32[0],
3078 pFpuCtx->aXMM[i].au32[3],
3079 pFpuCtx->aXMM[i].au32[2],
3080 pFpuCtx->aXMM[i].au32[1],
3081 pFpuCtx->aXMM[i].au32[0]);
3082 else
3083 {
3084 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
3085 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3086 pHlp->pfnPrintf(pHlp,
3087 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3088 pszPrefix, i, i < 10 ? " " : "",
3089 pZmmHi256->aHi256Regs[i].au32[7],
3090 pZmmHi256->aHi256Regs[i].au32[6],
3091 pZmmHi256->aHi256Regs[i].au32[5],
3092 pZmmHi256->aHi256Regs[i].au32[4],
3093 pZmmHi256->aHi256Regs[i].au32[3],
3094 pZmmHi256->aHi256Regs[i].au32[2],
3095 pZmmHi256->aHi256Regs[i].au32[1],
3096 pZmmHi256->aHi256Regs[i].au32[0],
3097 pYmmHiCtx->aYmmHi[i].au32[3],
3098 pYmmHiCtx->aYmmHi[i].au32[2],
3099 pYmmHiCtx->aYmmHi[i].au32[1],
3100 pYmmHiCtx->aYmmHi[i].au32[0],
3101 pFpuCtx->aXMM[i].au32[3],
3102 pFpuCtx->aXMM[i].au32[2],
3103 pFpuCtx->aXMM[i].au32[1],
3104 pFpuCtx->aXMM[i].au32[0]);
3105
3106 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
3107 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
3108 pHlp->pfnPrintf(pHlp,
3109 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3110 pszPrefix, i + 16,
3111 pZmm16Hi->aRegs[i].au32[15],
3112 pZmm16Hi->aRegs[i].au32[14],
3113 pZmm16Hi->aRegs[i].au32[13],
3114 pZmm16Hi->aRegs[i].au32[12],
3115 pZmm16Hi->aRegs[i].au32[11],
3116 pZmm16Hi->aRegs[i].au32[10],
3117 pZmm16Hi->aRegs[i].au32[9],
3118 pZmm16Hi->aRegs[i].au32[8],
3119 pZmm16Hi->aRegs[i].au32[7],
3120 pZmm16Hi->aRegs[i].au32[6],
3121 pZmm16Hi->aRegs[i].au32[5],
3122 pZmm16Hi->aRegs[i].au32[4],
3123 pZmm16Hi->aRegs[i].au32[3],
3124 pZmm16Hi->aRegs[i].au32[2],
3125 pZmm16Hi->aRegs[i].au32[1],
3126 pZmm16Hi->aRegs[i].au32[0]);
3127 }
3128 }
3129 else
3130 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3131 pHlp->pfnPrintf(pHlp,
3132 i & 1
3133 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
3134 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
3135 pszPrefix, i, i < 10 ? " " : "",
3136 pFpuCtx->aXMM[i].au32[3],
3137 pFpuCtx->aXMM[i].au32[2],
3138 pFpuCtx->aXMM[i].au32[1],
3139 pFpuCtx->aXMM[i].au32[0]);
3140
3141 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
3142 {
3143 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
3144 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
3145 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
3146 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
3147 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
3148 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
3149 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
3150 }
3151
3152 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
3153 {
3154 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
3155 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
3156 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
3157 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
3158 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
3159 }
3160
3161 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
3162 {
3163 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
3164 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
3165 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
3166 }
3167
3168 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
3169 if (pFpuCtx->au32RsrvdRest[i])
3170 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
3171 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) );
3172 }
3173
3174 pHlp->pfnPrintf(pHlp,
3175 "%sEFER =%016RX64\n"
3176 "%sPAT =%016RX64\n"
3177 "%sSTAR =%016RX64\n"
3178 "%sCSTAR =%016RX64\n"
3179 "%sLSTAR =%016RX64\n"
3180 "%sSFMASK =%016RX64\n"
3181 "%sKERNELGSBASE =%016RX64\n",
3182 pszPrefix, pCtx->msrEFER,
3183 pszPrefix, pCtx->msrPAT,
3184 pszPrefix, pCtx->msrSTAR,
3185 pszPrefix, pCtx->msrCSTAR,
3186 pszPrefix, pCtx->msrLSTAR,
3187 pszPrefix, pCtx->msrSFMASK,
3188 pszPrefix, pCtx->msrKERNELGSBASE);
3189 break;
3190 }
3191}
3192
3193
3194/**
3195 * Display all cpu states and any other cpum info.
3196 *
3197 * @param pVM The cross context VM structure.
3198 * @param pHlp The info helper functions.
3199 * @param pszArgs Arguments, ignored.
3200 */
3201static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3202{
3203 cpumR3InfoGuest(pVM, pHlp, pszArgs);
3204 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
3205 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
3206 cpumR3InfoHyper(pVM, pHlp, pszArgs);
3207 cpumR3InfoHost(pVM, pHlp, pszArgs);
3208}
3209
3210
3211/**
3212 * Parses the info argument.
3213 *
3214 * The argument starts with 'verbose', 'terse' or 'default' and then
3215 * continues with the comment string.
3216 *
3217 * @param pszArgs The pointer to the argument string.
3218 * @param penmType Where to store the dump type request.
3219 * @param ppszComment Where to store the pointer to the comment string.
3220 */
3221static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
3222{
3223 if (!pszArgs)
3224 {
3225 *penmType = CPUMDUMPTYPE_DEFAULT;
3226 *ppszComment = "";
3227 }
3228 else
3229 {
3230 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
3231 {
3232 pszArgs += 7;
3233 *penmType = CPUMDUMPTYPE_VERBOSE;
3234 }
3235 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
3236 {
3237 pszArgs += 5;
3238 *penmType = CPUMDUMPTYPE_TERSE;
3239 }
3240 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
3241 {
3242 pszArgs += 7;
3243 *penmType = CPUMDUMPTYPE_DEFAULT;
3244 }
3245 else
3246 *penmType = CPUMDUMPTYPE_DEFAULT;
3247 *ppszComment = RTStrStripL(pszArgs);
3248 }
3249}
3250
3251
3252/**
3253 * Display the guest cpu state.
3254 *
3255 * @param pVM The cross context VM structure.
3256 * @param pHlp The info helper functions.
3257 * @param pszArgs Arguments.
3258 */
3259static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3260{
3261 CPUMDUMPTYPE enmType;
3262 const char *pszComment;
3263 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3264
3265 PVMCPU pVCpu = VMMGetCpu(pVM);
3266 if (!pVCpu)
3267 pVCpu = &pVM->aCpus[0];
3268
3269 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
3270
3271 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3272 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
3273}
3274
3275
3276/**
3277 * Displays an SVM VMCB control area.
3278 *
3279 * @param pHlp The info helper functions.
3280 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
3281 * @param pszPrefix Caller specified string prefix.
3282 */
3283static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
3284{
3285 AssertReturnVoid(pHlp);
3286 AssertReturnVoid(pVmcbCtrl);
3287
3288 pHlp->pfnPrintf(pHlp, "%su16InterceptRdCRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
3289 pHlp->pfnPrintf(pHlp, "%su16InterceptWrCRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
3290 pHlp->pfnPrintf(pHlp, "%su16InterceptRdDRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
3291 pHlp->pfnPrintf(pHlp, "%su16InterceptWrDRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
3292 pHlp->pfnPrintf(pHlp, "%su32InterceptXcpt = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
3293 pHlp->pfnPrintf(pHlp, "%su64InterceptCtrl = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
3294 pHlp->pfnPrintf(pHlp, "%su16PauseFilterThreshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
3295 pHlp->pfnPrintf(pHlp, "%su16PauseFilterCount = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
3296 pHlp->pfnPrintf(pHlp, "%su64IOPMPhysAddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
3297 pHlp->pfnPrintf(pHlp, "%su64MSRPMPhysAddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
3298 pHlp->pfnPrintf(pHlp, "%su64TSCOffset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
3299 pHlp->pfnPrintf(pHlp, "%sTLBCtrl\n", pszPrefix);
3300 pHlp->pfnPrintf(pHlp, "%s u32ASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
3301 pHlp->pfnPrintf(pHlp, "%s u8TLBFlush = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
3302 pHlp->pfnPrintf(pHlp, "%sIntCtrl\n", pszPrefix);
3303 pHlp->pfnPrintf(pHlp, "%s u8VTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
3304 pHlp->pfnPrintf(pHlp, "%s u1VIrqPending = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
3305 pHlp->pfnPrintf(pHlp, "%s u1VGif = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
3306 pHlp->pfnPrintf(pHlp, "%s u4VIntrPrio = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
3307 pHlp->pfnPrintf(pHlp, "%s u1IgnoreTPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
3308 pHlp->pfnPrintf(pHlp, "%s u1VIntrMasking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
3309 pHlp->pfnPrintf(pHlp, "%s u1VGifEnable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
3310 pHlp->pfnPrintf(pHlp, "%s u1AvicEnable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
3311 pHlp->pfnPrintf(pHlp, "%s u8VIntrVector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
3312 pHlp->pfnPrintf(pHlp, "%sIntShadow\n", pszPrefix);
3313 pHlp->pfnPrintf(pHlp, "%s u1IntShadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
3314 pHlp->pfnPrintf(pHlp, "%s u1GuestIntMask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
3315 pHlp->pfnPrintf(pHlp, "%su64ExitCode = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
3316 pHlp->pfnPrintf(pHlp, "%su64ExitInfo1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
3317 pHlp->pfnPrintf(pHlp, "%su64ExitInfo2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
3318 pHlp->pfnPrintf(pHlp, "%sExitIntInfo\n", pszPrefix);
3319 pHlp->pfnPrintf(pHlp, "%s u8Vector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
3320 pHlp->pfnPrintf(pHlp, "%s u3Type = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
3321 pHlp->pfnPrintf(pHlp, "%s u1ErrorCodeValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
3322 pHlp->pfnPrintf(pHlp, "%s u1Valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
3323 pHlp->pfnPrintf(pHlp, "%s u32ErrorCode = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
3324 pHlp->pfnPrintf(pHlp, "%sNestedPaging and SEV\n", pszPrefix);
3325 pHlp->pfnPrintf(pHlp, "%s u1NestedPaging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
3326 pHlp->pfnPrintf(pHlp, "%s u1Sev = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
3327 pHlp->pfnPrintf(pHlp, "%s u1SevEs = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
3328 pHlp->pfnPrintf(pHlp, "%sAvicBar\n", pszPrefix);
3329 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
3330 pHlp->pfnPrintf(pHlp, "%sEventInject\n", pszPrefix);
3331 pHlp->pfnPrintf(pHlp, "%s EventInject\n", pszPrefix);
3332 pHlp->pfnPrintf(pHlp, "%s u8Vector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
3333 pHlp->pfnPrintf(pHlp, "%s u3Type = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
3334 pHlp->pfnPrintf(pHlp, "%s u1ErrorCodeValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
3335 pHlp->pfnPrintf(pHlp, "%s u1Valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
3336 pHlp->pfnPrintf(pHlp, "%s u32ErrorCode = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
3337 pHlp->pfnPrintf(pHlp, "%su64NestedPagingCR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
3338 pHlp->pfnPrintf(pHlp, "%sLBR virtualization\n", pszPrefix);
3339 pHlp->pfnPrintf(pHlp, "%s u1LbrVirt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
3340 pHlp->pfnPrintf(pHlp, "%s u1VirtVmsaveVmload = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
3341 pHlp->pfnPrintf(pHlp, "%su32VmcbCleanBits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
3342 pHlp->pfnPrintf(pHlp, "%su64NextRIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
3343 pHlp->pfnPrintf(pHlp, "%scbInstrFetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
3344 pHlp->pfnPrintf(pHlp, "%sabInstr = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
3345 pHlp->pfnPrintf(pHlp, "%sAvicBackingPagePtr\n", pszPrefix);
3346 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
3347 pHlp->pfnPrintf(pHlp, "%sAvicLogicalTablePtr\n", pszPrefix);
3348 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
3349 pHlp->pfnPrintf(pHlp, "%sAvicPhysicalTablePtr\n", pszPrefix);
3350 pHlp->pfnPrintf(pHlp, "%s u8LastGuestCoreId = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
3351 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
3352}
3353
3354
3355/**
3356 * Helper for dumping the SVM VMCB selector registers.
3357 *
3358 * @param pHlp The info helper functions.
3359 * @param pSel Pointer to the SVM selector register.
3360 * @param pszName Name of the selector.
3361 * @param pszPrefix Caller specified string prefix.
3362 */
3363DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
3364{
3365 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
3366 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
3367 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
3368}
3369
3370
3371/**
3372 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
3373 *
3374 * @param pHlp The info helper functions.
3375 * @param pXdtr Pointer to the descriptor table register.
3376 * @param pszName Name of the descriptor table register.
3377 * @param pszPrefix Caller specified string prefix.
3378 */
3379DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
3380{
3381 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
3382 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
3383}
3384
3385
3386/**
3387 * Displays an SVM VMCB state-save area.
3388 *
3389 * @param pHlp The info helper functions.
3390 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
3391 * @param pszPrefix Caller specified string prefix.
3392 */
3393static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
3394{
3395 AssertReturnVoid(pHlp);
3396 AssertReturnVoid(pVmcbStateSave);
3397
3398 char szEFlags[80];
3399 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
3400
3401 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
3402 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
3403 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
3404 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
3405 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
3406 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
3407 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
3408 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
3409 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
3410 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
3411 pHlp->pfnPrintf(pHlp, "%su8CPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
3412 pHlp->pfnPrintf(pHlp, "%su64EFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
3413 pHlp->pfnPrintf(pHlp, "%su64CR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
3414 pHlp->pfnPrintf(pHlp, "%su64CR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
3415 pHlp->pfnPrintf(pHlp, "%su64CR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
3416 pHlp->pfnPrintf(pHlp, "%su64DR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
3417 pHlp->pfnPrintf(pHlp, "%su64DR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
3418 pHlp->pfnPrintf(pHlp, "%su64RFlags = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
3419 pHlp->pfnPrintf(pHlp, "%su64RIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
3420 pHlp->pfnPrintf(pHlp, "%su64RSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
3421 pHlp->pfnPrintf(pHlp, "%su64RAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
3422 pHlp->pfnPrintf(pHlp, "%su64STAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
3423 pHlp->pfnPrintf(pHlp, "%su64LSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
3424 pHlp->pfnPrintf(pHlp, "%su64CSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
3425 pHlp->pfnPrintf(pHlp, "%su64SFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
3426 pHlp->pfnPrintf(pHlp, "%su64KernelGSBase = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
3427 pHlp->pfnPrintf(pHlp, "%su64SysEnterCS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
3428 pHlp->pfnPrintf(pHlp, "%su64SysEnterEIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
3429 pHlp->pfnPrintf(pHlp, "%su64SysEnterESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
3430 pHlp->pfnPrintf(pHlp, "%su64CR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
3431 pHlp->pfnPrintf(pHlp, "%su64PAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
3432 pHlp->pfnPrintf(pHlp, "%su64DBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
3433 pHlp->pfnPrintf(pHlp, "%su64BR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
3434 pHlp->pfnPrintf(pHlp, "%su64BR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
3435 pHlp->pfnPrintf(pHlp, "%su64LASTEXCPFROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
3436 pHlp->pfnPrintf(pHlp, "%su64LASTEXCPTO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
3437}
3438
3439
3440/**
3441 * Display the guest's hardware-virtualization cpu state.
3442 *
3443 * @param pVM The cross context VM structure.
3444 * @param pHlp The info helper functions.
3445 * @param pszArgs Arguments, ignored.
3446 */
3447static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3448{
3449 RT_NOREF(pszArgs);
3450
3451 PVMCPU pVCpu = VMMGetCpu(pVM);
3452 if (!pVCpu)
3453 pVCpu = &pVM->aCpus[0];
3454
3455 /*
3456 * Figure out what to dump.
3457 *
3458 * In the future we may need to dump everything whether or not we're actively in nested-guest mode
3459 * or not, hence the reason why we use a mask to determine what needs dumping. Currently, we only
3460 * dump hwvirt. state when the guest CPU is executing a nested-guest.
3461 */
3462 /** @todo perhaps make this configurable through pszArgs, depending on how much
3463 * noise we wish to accept when nested hwvirt. isn't used. */
3464#define CPUMHWVIRTDUMP_NONE (0)
3465#define CPUMHWVIRTDUMP_SVM RT_BIT(0)
3466#define CPUMHWVIRTDUMP_VMX RT_BIT(1)
3467#define CPUMHWVIRTDUMP_COMMON RT_BIT(2)
3468#define CPUMHWVIRTDUMP_LAST CPUMHWVIRTDUMP_VMX
3469
3470 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3471 static const char *const s_aHwvirtModes[] = { "No/inactive", "SVM", "VMX", "Common" };
3472 bool const fSvm = pVM->cpum.s.GuestFeatures.fSvm;
3473 bool const fVmx = pVM->cpum.s.GuestFeatures.fVmx;
3474 uint8_t const idxHwvirtState = fSvm ? CPUMHWVIRTDUMP_SVM : (fVmx ? CPUMHWVIRTDUMP_VMX : CPUMHWVIRTDUMP_NONE);
3475 AssertCompile(CPUMHWVIRTDUMP_LAST <= RT_ELEMENTS(s_aHwvirtModes));
3476 Assert(idxHwvirtState < RT_ELEMENTS(s_aHwvirtModes));
3477 const char *pcszHwvirtMode = s_aHwvirtModes[idxHwvirtState];
3478 uint32_t fDumpState = idxHwvirtState | CPUMHWVIRTDUMP_COMMON;
3479
3480 /*
3481 * Dump it.
3482 */
3483 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
3484
3485 if (fDumpState & CPUMHWVIRTDUMP_COMMON)
3486 pHlp->pfnPrintf(pHlp, "fLocalForcedActions = %#RX32\n", pCtx->hwvirt.fLocalForcedActions);
3487
3488 pHlp->pfnPrintf(pHlp, "%s hwvirt state%s\n", pcszHwvirtMode, (fDumpState & (CPUMHWVIRTDUMP_SVM | CPUMHWVIRTDUMP_VMX)) ?
3489 ":" : "");
3490 if (fDumpState & CPUMHWVIRTDUMP_SVM)
3491 {
3492 pHlp->pfnPrintf(pHlp, " fGif = %RTbool\n", pCtx->hwvirt.fGif);
3493
3494 char szEFlags[80];
3495 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
3496 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
3497 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
3498 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
3499 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.pVmcbR3->ctrl, " " /* pszPrefix */);
3500 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
3501 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.pVmcbR3->guest, " " /* pszPrefix */);
3502 pHlp->pfnPrintf(pHlp, " HostState:\n");
3503 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
3504 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
3505 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
3506 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
3507 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
3508 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
3509 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
3510 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
3511 PCPUMSELREG pSel = &pCtx->hwvirt.svm.HostState.es;
3512 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3513 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
3514 pSel = &pCtx->hwvirt.svm.HostState.cs;
3515 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3516 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
3517 pSel = &pCtx->hwvirt.svm.HostState.ss;
3518 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3519 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
3520 pSel = &pCtx->hwvirt.svm.HostState.ds;
3521 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3522 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
3523 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
3524 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
3525 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
3526 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
3527 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
3528 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
3529 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
3530 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR3 = %p\n", pCtx->hwvirt.svm.pvMsrBitmapR3);
3531 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvMsrBitmapR0);
3532 pHlp->pfnPrintf(pHlp, " pvIoBitmapR3 = %p\n", pCtx->hwvirt.svm.pvIoBitmapR3);
3533 pHlp->pfnPrintf(pHlp, " pvIoBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvIoBitmapR0);
3534 }
3535
3536 if (fDumpState & CPUMHWVIRTDUMP_VMX)
3537 {
3538 pHlp->pfnPrintf(pHlp, " GCPhysVmxon = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmxon);
3539 pHlp->pfnPrintf(pHlp, " GCPhysVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmcs);
3540 pHlp->pfnPrintf(pHlp, " GCPhysShadowVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysShadowVmcs);
3541 pHlp->pfnPrintf(pHlp, " enmDiag = %u (%s)\n", pCtx->hwvirt.vmx.enmDiag, HMVmxGetDiagDesc(pCtx->hwvirt.vmx.enmDiag));
3542 pHlp->pfnPrintf(pHlp, " enmAbort = %u (%s)\n", pCtx->hwvirt.vmx.enmAbort, HMVmxGetAbortDesc(pCtx->hwvirt.vmx.enmAbort));
3543 pHlp->pfnPrintf(pHlp, " uAbortAux = %u (%#x)\n", pCtx->hwvirt.vmx.uAbortAux, pCtx->hwvirt.vmx.uAbortAux);
3544 pHlp->pfnPrintf(pHlp, " fInVmxRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxRootMode);
3545 pHlp->pfnPrintf(pHlp, " fInVmxNonRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxNonRootMode);
3546 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %RTbool\n", pCtx->hwvirt.vmx.fInterceptEvents);
3547 pHlp->pfnPrintf(pHlp, " uFirstPauseLoopTick = %RX64\n", pCtx->hwvirt.vmx.uFirstPauseLoopTick);
3548 pHlp->pfnPrintf(pHlp, " uPrevPauseTick = %RX64\n", pCtx->hwvirt.vmx.uPrevPauseTick);
3549
3550 /** @todo NSTVMX: Dump remaining/new fields. */
3551 }
3552
3553#undef CPUMHWVIRTDUMP_NONE
3554#undef CPUMHWVIRTDUMP_COMMON
3555#undef CPUMHWVIRTDUMP_SVM
3556#undef CPUMHWVIRTDUMP_VMX
3557#undef CPUMHWVIRTDUMP_LAST
3558#undef CPUMHWVIRTDUMP_ALL
3559}
3560
3561/**
3562 * Display the current guest instruction
3563 *
3564 * @param pVM The cross context VM structure.
3565 * @param pHlp The info helper functions.
3566 * @param pszArgs Arguments, ignored.
3567 */
3568static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3569{
3570 NOREF(pszArgs);
3571
3572 PVMCPU pVCpu = VMMGetCpu(pVM);
3573 if (!pVCpu)
3574 pVCpu = &pVM->aCpus[0];
3575
3576 char szInstruction[256];
3577 szInstruction[0] = '\0';
3578 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
3579 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
3580}
3581
3582
3583/**
3584 * Display the hypervisor cpu state.
3585 *
3586 * @param pVM The cross context VM structure.
3587 * @param pHlp The info helper functions.
3588 * @param pszArgs Arguments, ignored.
3589 */
3590static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3591{
3592 PVMCPU pVCpu = VMMGetCpu(pVM);
3593 if (!pVCpu)
3594 pVCpu = &pVM->aCpus[0];
3595
3596 CPUMDUMPTYPE enmType;
3597 const char *pszComment;
3598 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3599 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
3600 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper), pHlp, enmType, ".");
3601 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
3602}
3603
3604
3605/**
3606 * Display the host cpu state.
3607 *
3608 * @param pVM The cross context VM structure.
3609 * @param pHlp The info helper functions.
3610 * @param pszArgs Arguments, ignored.
3611 */
3612static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3613{
3614 CPUMDUMPTYPE enmType;
3615 const char *pszComment;
3616 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3617 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
3618
3619 PVMCPU pVCpu = VMMGetCpu(pVM);
3620 if (!pVCpu)
3621 pVCpu = &pVM->aCpus[0];
3622 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
3623
3624 /*
3625 * Format the EFLAGS.
3626 */
3627#if HC_ARCH_BITS == 32
3628 uint32_t efl = pCtx->eflags.u32;
3629#else
3630 uint64_t efl = pCtx->rflags;
3631#endif
3632 char szEFlags[80];
3633 cpumR3InfoFormatFlags(&szEFlags[0], efl);
3634
3635 /*
3636 * Format the registers.
3637 */
3638#if HC_ARCH_BITS == 32
3639 pHlp->pfnPrintf(pHlp,
3640 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
3641 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
3642 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
3643 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
3644 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
3645 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
3646 ,
3647 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
3648 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
3649 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
3650 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
3651 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
3652 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->ldtr,
3653 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3654#else
3655 pHlp->pfnPrintf(pHlp,
3656 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
3657 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
3658 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
3659 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
3660 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
3661 "r14=%016RX64 r15=%016RX64\n"
3662 "iopl=%d %31s\n"
3663 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
3664 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
3665 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
3666 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
3667 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
3668 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
3669 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
3670 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
3671 ,
3672 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
3673 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
3674 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
3675 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
3676 pCtx->r11, pCtx->r12, pCtx->r13,
3677 pCtx->r14, pCtx->r15,
3678 X86_EFL_GET_IOPL(efl), szEFlags,
3679 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
3680 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
3681 pCtx->cr4, pCtx->ldtr, pCtx->tr,
3682 pCtx->dr0, pCtx->dr1, pCtx->dr2,
3683 pCtx->dr3, pCtx->dr6, pCtx->dr7,
3684 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
3685 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
3686 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
3687#endif
3688}
3689
3690/**
3691 * Structure used when disassembling and instructions in DBGF.
3692 * This is used so the reader function can get the stuff it needs.
3693 */
3694typedef struct CPUMDISASSTATE
3695{
3696 /** Pointer to the CPU structure. */
3697 PDISCPUSTATE pCpu;
3698 /** Pointer to the VM. */
3699 PVM pVM;
3700 /** Pointer to the VMCPU. */
3701 PVMCPU pVCpu;
3702 /** Pointer to the first byte in the segment. */
3703 RTGCUINTPTR GCPtrSegBase;
3704 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
3705 RTGCUINTPTR GCPtrSegEnd;
3706 /** The size of the segment minus 1. */
3707 RTGCUINTPTR cbSegLimit;
3708 /** Pointer to the current page - R3 Ptr. */
3709 void const *pvPageR3;
3710 /** Pointer to the current page - GC Ptr. */
3711 RTGCPTR pvPageGC;
3712 /** The lock information that PGMPhysReleasePageMappingLock needs. */
3713 PGMPAGEMAPLOCK PageMapLock;
3714 /** Whether the PageMapLock is valid or not. */
3715 bool fLocked;
3716 /** 64 bits mode or not. */
3717 bool f64Bits;
3718} CPUMDISASSTATE, *PCPUMDISASSTATE;
3719
3720
3721/**
3722 * @callback_method_impl{FNDISREADBYTES}
3723 */
3724static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
3725{
3726 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
3727 for (;;)
3728 {
3729 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
3730
3731 /*
3732 * Need to update the page translation?
3733 */
3734 if ( !pState->pvPageR3
3735 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
3736 {
3737 int rc = VINF_SUCCESS;
3738
3739 /* translate the address */
3740 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
3741 if ( VM_IS_RAW_MODE_ENABLED(pState->pVM)
3742 && MMHyperIsInsideArea(pState->pVM, pState->pvPageGC))
3743 {
3744 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
3745 if (!pState->pvPageR3)
3746 rc = VERR_INVALID_POINTER;
3747 }
3748 else
3749 {
3750 /* Release mapping lock previously acquired. */
3751 if (pState->fLocked)
3752 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
3753 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
3754 pState->fLocked = RT_SUCCESS_NP(rc);
3755 }
3756 if (RT_FAILURE(rc))
3757 {
3758 pState->pvPageR3 = NULL;
3759 return rc;
3760 }
3761 }
3762
3763 /*
3764 * Check the segment limit.
3765 */
3766 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
3767 return VERR_OUT_OF_SELECTOR_BOUNDS;
3768
3769 /*
3770 * Calc how much we can read.
3771 */
3772 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
3773 if (!pState->f64Bits)
3774 {
3775 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
3776 if (cb > cbSeg && cbSeg)
3777 cb = cbSeg;
3778 }
3779 if (cb > cbMaxRead)
3780 cb = cbMaxRead;
3781
3782 /*
3783 * Read and advance or exit.
3784 */
3785 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
3786 offInstr += (uint8_t)cb;
3787 if (cb >= cbMinRead)
3788 {
3789 pDis->cbCachedInstr = offInstr;
3790 return VINF_SUCCESS;
3791 }
3792 cbMinRead -= (uint8_t)cb;
3793 cbMaxRead -= (uint8_t)cb;
3794 }
3795}
3796
3797
3798/**
3799 * Disassemble an instruction and return the information in the provided structure.
3800 *
3801 * @returns VBox status code.
3802 * @param pVM The cross context VM structure.
3803 * @param pVCpu The cross context virtual CPU structure.
3804 * @param pCtx Pointer to the guest CPU context.
3805 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
3806 * @param pCpu Disassembly state.
3807 * @param pszPrefix String prefix for logging (debug only).
3808 *
3809 */
3810VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
3811 const char *pszPrefix)
3812{
3813 CPUMDISASSTATE State;
3814 int rc;
3815
3816 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
3817 State.pCpu = pCpu;
3818 State.pvPageGC = 0;
3819 State.pvPageR3 = NULL;
3820 State.pVM = pVM;
3821 State.pVCpu = pVCpu;
3822 State.fLocked = false;
3823 State.f64Bits = false;
3824
3825 /*
3826 * Get selector information.
3827 */
3828 DISCPUMODE enmDisCpuMode;
3829 if ( (pCtx->cr0 & X86_CR0_PE)
3830 && pCtx->eflags.Bits.u1VM == 0)
3831 {
3832 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
3833 {
3834# ifdef VBOX_WITH_RAW_MODE_NOT_R0
3835 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, &pCtx->cs);
3836# endif
3837 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
3838 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
3839 }
3840 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
3841 State.GCPtrSegBase = pCtx->cs.u64Base;
3842 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
3843 State.cbSegLimit = pCtx->cs.u32Limit;
3844 enmDisCpuMode = (State.f64Bits)
3845 ? DISCPUMODE_64BIT
3846 : pCtx->cs.Attr.n.u1DefBig
3847 ? DISCPUMODE_32BIT
3848 : DISCPUMODE_16BIT;
3849 }
3850 else
3851 {
3852 /* real or V86 mode */
3853 enmDisCpuMode = DISCPUMODE_16BIT;
3854 State.GCPtrSegBase = pCtx->cs.Sel * 16;
3855 State.GCPtrSegEnd = 0xFFFFFFFF;
3856 State.cbSegLimit = 0xFFFFFFFF;
3857 }
3858
3859 /*
3860 * Disassemble the instruction.
3861 */
3862 uint32_t cbInstr;
3863#ifndef LOG_ENABLED
3864 RT_NOREF_PV(pszPrefix);
3865 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
3866 if (RT_SUCCESS(rc))
3867 {
3868#else
3869 char szOutput[160];
3870 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
3871 pCpu, &cbInstr, szOutput, sizeof(szOutput));
3872 if (RT_SUCCESS(rc))
3873 {
3874 /* log it */
3875 if (pszPrefix)
3876 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
3877 else
3878 Log(("%s", szOutput));
3879#endif
3880 rc = VINF_SUCCESS;
3881 }
3882 else
3883 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
3884
3885 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
3886 if (State.fLocked)
3887 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
3888
3889 return rc;
3890}
3891
3892
3893
3894/**
3895 * API for controlling a few of the CPU features found in CR4.
3896 *
3897 * Currently only X86_CR4_TSD is accepted as input.
3898 *
3899 * @returns VBox status code.
3900 *
3901 * @param pVM The cross context VM structure.
3902 * @param fOr The CR4 OR mask.
3903 * @param fAnd The CR4 AND mask.
3904 */
3905VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
3906{
3907 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
3908 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
3909
3910 pVM->cpum.s.CR4.OrMask &= fAnd;
3911 pVM->cpum.s.CR4.OrMask |= fOr;
3912
3913 return VINF_SUCCESS;
3914}
3915
3916
3917/**
3918 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
3919 *
3920 * Only REM should ever call this function!
3921 *
3922 * @returns The changed flags.
3923 * @param pVCpu The cross context virtual CPU structure.
3924 * @param puCpl Where to return the current privilege level (CPL).
3925 */
3926VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
3927{
3928 Assert(!pVCpu->cpum.s.fRawEntered);
3929 Assert(!pVCpu->cpum.s.fRemEntered);
3930
3931 /*
3932 * Get the CPL first.
3933 */
3934 *puCpl = CPUMGetGuestCPL(pVCpu);
3935
3936 /*
3937 * Get and reset the flags.
3938 */
3939 uint32_t fFlags = pVCpu->cpum.s.fChanged;
3940 pVCpu->cpum.s.fChanged = 0;
3941
3942 /** @todo change the switcher to use the fChanged flags. */
3943 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
3944 {
3945 fFlags |= CPUM_CHANGED_FPU_REM;
3946 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
3947 }
3948
3949 pVCpu->cpum.s.fRemEntered = true;
3950 return fFlags;
3951}
3952
3953
3954/**
3955 * Leaves REM.
3956 *
3957 * @param pVCpu The cross context virtual CPU structure.
3958 * @param fNoOutOfSyncSels This is @c false if there are out of sync
3959 * registers.
3960 */
3961VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
3962{
3963 Assert(!pVCpu->cpum.s.fRawEntered);
3964 Assert(pVCpu->cpum.s.fRemEntered);
3965
3966 RT_NOREF_PV(fNoOutOfSyncSels);
3967
3968 pVCpu->cpum.s.fRemEntered = false;
3969}
3970
3971
3972/**
3973 * Called when the ring-3 init phase completes.
3974 *
3975 * @returns VBox status code.
3976 * @param pVM The cross context VM structure.
3977 * @param enmWhat Which init phase.
3978 */
3979VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
3980{
3981 switch (enmWhat)
3982 {
3983 case VMINITCOMPLETED_RING3:
3984 {
3985 /*
3986 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
3987 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
3988 */
3989 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
3990 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3991 {
3992 PVMCPU pVCpu = &pVM->aCpus[i];
3993 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
3994 if (fSupportsLongMode)
3995 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
3996 }
3997
3998 /* Register statistic counters for MSRs. */
3999 cpumR3MsrRegStats(pVM);
4000 break;
4001 }
4002
4003 default:
4004 break;
4005 }
4006 return VINF_SUCCESS;
4007}
4008
4009
4010/**
4011 * Called when the ring-0 init phases completed.
4012 *
4013 * @param pVM The cross context VM structure.
4014 */
4015VMMR3DECL(void) CPUMR3LogCpuIds(PVM pVM)
4016{
4017 /*
4018 * Log the cpuid.
4019 */
4020 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
4021 RTCPUSET OnlineSet;
4022 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
4023 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
4024 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
4025 RTCPUID cCores = RTMpGetCoreCount();
4026 if (cCores)
4027 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
4028 LogRel(("************************* CPUID dump ************************\n"));
4029 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
4030 LogRel(("\n"));
4031 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
4032 RTLogRelSetBuffering(fOldBuffered);
4033 LogRel(("******************** End of CPUID dump **********************\n"));
4034}
4035
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette