1 | /* $Id: NEMR3Native-win.cpp 73282 2018-07-20 20:04:26Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * NEM - Native execution manager, native ring-3 Windows backend.
|
---|
4 | *
|
---|
5 | * Log group 2: Exit logging.
|
---|
6 | * Log group 3: Log context on exit.
|
---|
7 | * Log group 5: Ring-3 memory management
|
---|
8 | * Log group 6: Ring-0 memory management
|
---|
9 | * Log group 12: API intercepts.
|
---|
10 | */
|
---|
11 |
|
---|
12 | /*
|
---|
13 | * Copyright (C) 2018 Oracle Corporation
|
---|
14 | *
|
---|
15 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
16 | * available from http://www.virtualbox.org. This file is free software;
|
---|
17 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
18 | * General Public License (GPL) as published by the Free Software
|
---|
19 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
20 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
21 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
22 | */
|
---|
23 |
|
---|
24 |
|
---|
25 | /*********************************************************************************************************************************
|
---|
26 | * Header Files *
|
---|
27 | *********************************************************************************************************************************/
|
---|
28 | #define LOG_GROUP LOG_GROUP_NEM
|
---|
29 | #define VMCPU_INCL_CPUM_GST_CTX
|
---|
30 | #include <iprt/nt/nt-and-windows.h>
|
---|
31 | #include <iprt/nt/hyperv.h>
|
---|
32 | #include <iprt/nt/vid.h>
|
---|
33 | #include <WinHvPlatform.h>
|
---|
34 |
|
---|
35 | #ifndef _WIN32_WINNT_WIN10
|
---|
36 | # error "Missing _WIN32_WINNT_WIN10"
|
---|
37 | #endif
|
---|
38 | #ifndef _WIN32_WINNT_WIN10_RS1 /* Missing define, causing trouble for us. */
|
---|
39 | # define _WIN32_WINNT_WIN10_RS1 (_WIN32_WINNT_WIN10 + 1)
|
---|
40 | #endif
|
---|
41 | #include <sysinfoapi.h>
|
---|
42 | #include <debugapi.h>
|
---|
43 | #include <errhandlingapi.h>
|
---|
44 | #include <fileapi.h>
|
---|
45 | #include <winerror.h> /* no api header for this. */
|
---|
46 |
|
---|
47 | #include <VBox/vmm/nem.h>
|
---|
48 | #include <VBox/vmm/iem.h>
|
---|
49 | #include <VBox/vmm/em.h>
|
---|
50 | #include <VBox/vmm/apic.h>
|
---|
51 | #include <VBox/vmm/pdm.h>
|
---|
52 | #include <VBox/vmm/dbgftrace.h>
|
---|
53 | #include "NEMInternal.h"
|
---|
54 | #include <VBox/vmm/vm.h>
|
---|
55 |
|
---|
56 | #include <iprt/ldr.h>
|
---|
57 | #include <iprt/path.h>
|
---|
58 | #include <iprt/string.h>
|
---|
59 | #include <iprt/system.h>
|
---|
60 |
|
---|
61 |
|
---|
62 | /*********************************************************************************************************************************
|
---|
63 | * Defined Constants And Macros *
|
---|
64 | *********************************************************************************************************************************/
|
---|
65 | #ifdef LOG_ENABLED
|
---|
66 | # define NEM_WIN_INTERCEPT_NT_IO_CTLS
|
---|
67 | #endif
|
---|
68 |
|
---|
69 | /** VID I/O control detection: Fake partition handle input. */
|
---|
70 | #define NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE ((HANDLE)(uintptr_t)38479125)
|
---|
71 | /** VID I/O control detection: Fake partition ID return. */
|
---|
72 | #define NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_ID UINT64_C(0xfa1e000042424242)
|
---|
73 | /** VID I/O control detection: Fake CPU index input. */
|
---|
74 | #define NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX UINT32_C(42)
|
---|
75 | /** VID I/O control detection: Fake timeout input. */
|
---|
76 | #define NEM_WIN_IOCTL_DETECTOR_FAKE_TIMEOUT UINT32_C(0x00080286)
|
---|
77 |
|
---|
78 |
|
---|
79 | /*********************************************************************************************************************************
|
---|
80 | * Global Variables *
|
---|
81 | *********************************************************************************************************************************/
|
---|
82 | /** @name APIs imported from WinHvPlatform.dll
|
---|
83 | * @{ */
|
---|
84 | static decltype(WHvGetCapability) * g_pfnWHvGetCapability;
|
---|
85 | static decltype(WHvCreatePartition) * g_pfnWHvCreatePartition;
|
---|
86 | static decltype(WHvSetupPartition) * g_pfnWHvSetupPartition;
|
---|
87 | static decltype(WHvDeletePartition) * g_pfnWHvDeletePartition;
|
---|
88 | static decltype(WHvGetPartitionProperty) * g_pfnWHvGetPartitionProperty;
|
---|
89 | static decltype(WHvSetPartitionProperty) * g_pfnWHvSetPartitionProperty;
|
---|
90 | static decltype(WHvMapGpaRange) * g_pfnWHvMapGpaRange;
|
---|
91 | static decltype(WHvUnmapGpaRange) * g_pfnWHvUnmapGpaRange;
|
---|
92 | static decltype(WHvTranslateGva) * g_pfnWHvTranslateGva;
|
---|
93 | #ifndef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
94 | static decltype(WHvCreateVirtualProcessor) * g_pfnWHvCreateVirtualProcessor;
|
---|
95 | static decltype(WHvDeleteVirtualProcessor) * g_pfnWHvDeleteVirtualProcessor;
|
---|
96 | static decltype(WHvRunVirtualProcessor) * g_pfnWHvRunVirtualProcessor;
|
---|
97 | static decltype(WHvCancelRunVirtualProcessor) * g_pfnWHvCancelRunVirtualProcessor;
|
---|
98 | static decltype(WHvGetVirtualProcessorRegisters) * g_pfnWHvGetVirtualProcessorRegisters;
|
---|
99 | static decltype(WHvSetVirtualProcessorRegisters) * g_pfnWHvSetVirtualProcessorRegisters;
|
---|
100 | #endif
|
---|
101 | /** @} */
|
---|
102 |
|
---|
103 | /** @name APIs imported from Vid.dll
|
---|
104 | * @{ */
|
---|
105 | static decltype(VidGetHvPartitionId) *g_pfnVidGetHvPartitionId;
|
---|
106 | static decltype(VidStartVirtualProcessor) *g_pfnVidStartVirtualProcessor;
|
---|
107 | static decltype(VidStopVirtualProcessor) *g_pfnVidStopVirtualProcessor;
|
---|
108 | static decltype(VidMessageSlotMap) *g_pfnVidMessageSlotMap;
|
---|
109 | static decltype(VidMessageSlotHandleAndGetNext) *g_pfnVidMessageSlotHandleAndGetNext;
|
---|
110 | #ifdef LOG_ENABLED
|
---|
111 | static decltype(VidGetVirtualProcessorState) *g_pfnVidGetVirtualProcessorState;
|
---|
112 | static decltype(VidSetVirtualProcessorState) *g_pfnVidSetVirtualProcessorState;
|
---|
113 | static decltype(VidGetVirtualProcessorRunningStatus) *g_pfnVidGetVirtualProcessorRunningStatus;
|
---|
114 | #endif
|
---|
115 | /** @} */
|
---|
116 |
|
---|
117 | /** The Windows build number. */
|
---|
118 | static uint32_t g_uBuildNo = 17134;
|
---|
119 |
|
---|
120 |
|
---|
121 |
|
---|
122 | /**
|
---|
123 | * Import instructions.
|
---|
124 | */
|
---|
125 | static const struct
|
---|
126 | {
|
---|
127 | uint8_t idxDll; /**< 0 for WinHvPlatform.dll, 1 for vid.dll. */
|
---|
128 | bool fOptional; /**< Set if import is optional. */
|
---|
129 | PFNRT *ppfn; /**< The function pointer variable. */
|
---|
130 | const char *pszName; /**< The function name. */
|
---|
131 | } g_aImports[] =
|
---|
132 | {
|
---|
133 | #define NEM_WIN_IMPORT(a_idxDll, a_fOptional, a_Name) { (a_idxDll), (a_fOptional), (PFNRT *)&RT_CONCAT(g_pfn,a_Name), #a_Name }
|
---|
134 | NEM_WIN_IMPORT(0, false, WHvGetCapability),
|
---|
135 | NEM_WIN_IMPORT(0, false, WHvCreatePartition),
|
---|
136 | NEM_WIN_IMPORT(0, false, WHvSetupPartition),
|
---|
137 | NEM_WIN_IMPORT(0, false, WHvDeletePartition),
|
---|
138 | NEM_WIN_IMPORT(0, false, WHvGetPartitionProperty),
|
---|
139 | NEM_WIN_IMPORT(0, false, WHvSetPartitionProperty),
|
---|
140 | NEM_WIN_IMPORT(0, false, WHvMapGpaRange),
|
---|
141 | NEM_WIN_IMPORT(0, false, WHvUnmapGpaRange),
|
---|
142 | NEM_WIN_IMPORT(0, false, WHvTranslateGva),
|
---|
143 | #ifndef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
144 | NEM_WIN_IMPORT(0, false, WHvCreateVirtualProcessor),
|
---|
145 | NEM_WIN_IMPORT(0, false, WHvDeleteVirtualProcessor),
|
---|
146 | NEM_WIN_IMPORT(0, false, WHvRunVirtualProcessor),
|
---|
147 | NEM_WIN_IMPORT(0, false, WHvCancelRunVirtualProcessor),
|
---|
148 | NEM_WIN_IMPORT(0, false, WHvGetVirtualProcessorRegisters),
|
---|
149 | NEM_WIN_IMPORT(0, false, WHvSetVirtualProcessorRegisters),
|
---|
150 | #endif
|
---|
151 | NEM_WIN_IMPORT(1, false, VidGetHvPartitionId),
|
---|
152 | NEM_WIN_IMPORT(1, false, VidMessageSlotMap),
|
---|
153 | NEM_WIN_IMPORT(1, false, VidMessageSlotHandleAndGetNext),
|
---|
154 | NEM_WIN_IMPORT(1, false, VidStartVirtualProcessor),
|
---|
155 | NEM_WIN_IMPORT(1, false, VidStopVirtualProcessor),
|
---|
156 | #ifdef LOG_ENABLED
|
---|
157 | NEM_WIN_IMPORT(1, false, VidGetVirtualProcessorState),
|
---|
158 | NEM_WIN_IMPORT(1, false, VidSetVirtualProcessorState),
|
---|
159 | NEM_WIN_IMPORT(1, false, VidGetVirtualProcessorRunningStatus),
|
---|
160 | #endif
|
---|
161 | #undef NEM_WIN_IMPORT
|
---|
162 | };
|
---|
163 |
|
---|
164 |
|
---|
165 | /** The real NtDeviceIoControlFile API in NTDLL. */
|
---|
166 | static decltype(NtDeviceIoControlFile) *g_pfnNtDeviceIoControlFile;
|
---|
167 | /** Pointer to the NtDeviceIoControlFile import table entry. */
|
---|
168 | static decltype(NtDeviceIoControlFile) **g_ppfnVidNtDeviceIoControlFile;
|
---|
169 | /** Info about the VidGetHvPartitionId I/O control interface. */
|
---|
170 | static NEMWINIOCTL g_IoCtlGetHvPartitionId;
|
---|
171 | /** Info about the VidStartVirtualProcessor I/O control interface. */
|
---|
172 | static NEMWINIOCTL g_IoCtlStartVirtualProcessor;
|
---|
173 | /** Info about the VidStopVirtualProcessor I/O control interface. */
|
---|
174 | static NEMWINIOCTL g_IoCtlStopVirtualProcessor;
|
---|
175 | /** Info about the VidMessageSlotHandleAndGetNext I/O control interface. */
|
---|
176 | static NEMWINIOCTL g_IoCtlMessageSlotHandleAndGetNext;
|
---|
177 | #ifdef LOG_ENABLED
|
---|
178 | /** Info about the VidMessageSlotMap I/O control interface - for logging. */
|
---|
179 | static NEMWINIOCTL g_IoCtlMessageSlotMap;
|
---|
180 | /* Info about the VidGetVirtualProcessorState I/O control interface - for logging. */
|
---|
181 | static NEMWINIOCTL g_IoCtlGetVirtualProcessorState;
|
---|
182 | /* Info about the VidSetVirtualProcessorState I/O control interface - for logging. */
|
---|
183 | static NEMWINIOCTL g_IoCtlSetVirtualProcessorState;
|
---|
184 | /** Pointer to what nemR3WinIoctlDetector_ForLogging should fill in. */
|
---|
185 | static NEMWINIOCTL *g_pIoCtlDetectForLogging;
|
---|
186 | #endif
|
---|
187 |
|
---|
188 | #ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
|
---|
189 | /** Mapping slot for CPU #0.
|
---|
190 | * @{ */
|
---|
191 | static VID_MESSAGE_MAPPING_HEADER *g_pMsgSlotMapping = NULL;
|
---|
192 | static const HV_MESSAGE_HEADER *g_pHvMsgHdr;
|
---|
193 | static const HV_X64_INTERCEPT_MESSAGE_HEADER *g_pX64MsgHdr;
|
---|
194 | /** @} */
|
---|
195 | #endif
|
---|
196 |
|
---|
197 |
|
---|
198 | /*
|
---|
199 | * Let the preprocessor alias the APIs to import variables for better autocompletion.
|
---|
200 | */
|
---|
201 | #ifndef IN_SLICKEDIT
|
---|
202 | # define WHvGetCapability g_pfnWHvGetCapability
|
---|
203 | # define WHvCreatePartition g_pfnWHvCreatePartition
|
---|
204 | # define WHvSetupPartition g_pfnWHvSetupPartition
|
---|
205 | # define WHvDeletePartition g_pfnWHvDeletePartition
|
---|
206 | # define WHvGetPartitionProperty g_pfnWHvGetPartitionProperty
|
---|
207 | # define WHvSetPartitionProperty g_pfnWHvSetPartitionProperty
|
---|
208 | # define WHvMapGpaRange g_pfnWHvMapGpaRange
|
---|
209 | # define WHvUnmapGpaRange g_pfnWHvUnmapGpaRange
|
---|
210 | # define WHvTranslateGva g_pfnWHvTranslateGva
|
---|
211 | # define WHvCreateVirtualProcessor g_pfnWHvCreateVirtualProcessor
|
---|
212 | # define WHvDeleteVirtualProcessor g_pfnWHvDeleteVirtualProcessor
|
---|
213 | # define WHvRunVirtualProcessor g_pfnWHvRunVirtualProcessor
|
---|
214 | # define WHvGetRunExitContextSize g_pfnWHvGetRunExitContextSize
|
---|
215 | # define WHvCancelRunVirtualProcessor g_pfnWHvCancelRunVirtualProcessor
|
---|
216 | # define WHvGetVirtualProcessorRegisters g_pfnWHvGetVirtualProcessorRegisters
|
---|
217 | # define WHvSetVirtualProcessorRegisters g_pfnWHvSetVirtualProcessorRegisters
|
---|
218 |
|
---|
219 | # define VidMessageSlotHandleAndGetNext g_pfnVidMessageSlotHandleAndGetNext
|
---|
220 | # define VidStartVirtualProcessor g_pfnVidStartVirtualProcessor
|
---|
221 | # define VidStopVirtualProcessor g_pfnVidStopVirtualProcessor
|
---|
222 |
|
---|
223 | #endif
|
---|
224 |
|
---|
225 | /** WHV_MEMORY_ACCESS_TYPE names */
|
---|
226 | static const char * const g_apszWHvMemAccesstypes[4] = { "read", "write", "exec", "!undefined!" };
|
---|
227 |
|
---|
228 |
|
---|
229 | /*********************************************************************************************************************************
|
---|
230 | * Internal Functions *
|
---|
231 | *********************************************************************************************************************************/
|
---|
232 |
|
---|
233 | /*
|
---|
234 | * Instantate the code we share with ring-0.
|
---|
235 | */
|
---|
236 | #ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
237 | # define NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
238 | #else
|
---|
239 | # undef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
|
---|
240 | #endif
|
---|
241 | #include "../VMMAll/NEMAllNativeTemplate-win.cpp.h"
|
---|
242 |
|
---|
243 |
|
---|
244 |
|
---|
245 | #ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
|
---|
246 | /**
|
---|
247 | * Wrapper that logs the call from VID.DLL.
|
---|
248 | *
|
---|
249 | * This is very handy for figuring out why an API call fails.
|
---|
250 | */
|
---|
251 | static NTSTATUS WINAPI
|
---|
252 | nemR3WinLogWrapper_NtDeviceIoControlFile(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
|
---|
253 | PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
|
---|
254 | PVOID pvOutput, ULONG cbOutput)
|
---|
255 | {
|
---|
256 |
|
---|
257 | char szFunction[32];
|
---|
258 | const char *pszFunction;
|
---|
259 | if (uFunction == g_IoCtlMessageSlotHandleAndGetNext.uFunction)
|
---|
260 | pszFunction = "VidMessageSlotHandleAndGetNext";
|
---|
261 | else if (uFunction == g_IoCtlStartVirtualProcessor.uFunction)
|
---|
262 | pszFunction = "VidStartVirtualProcessor";
|
---|
263 | else if (uFunction == g_IoCtlStopVirtualProcessor.uFunction)
|
---|
264 | pszFunction = "VidStopVirtualProcessor";
|
---|
265 | else if (uFunction == g_IoCtlMessageSlotMap.uFunction)
|
---|
266 | pszFunction = "VidMessageSlotMap";
|
---|
267 | else if (uFunction == g_IoCtlGetVirtualProcessorState.uFunction)
|
---|
268 | pszFunction = "VidGetVirtualProcessorState";
|
---|
269 | else if (uFunction == g_IoCtlSetVirtualProcessorState.uFunction)
|
---|
270 | pszFunction = "VidSetVirtualProcessorState";
|
---|
271 | else
|
---|
272 | {
|
---|
273 | RTStrPrintf(szFunction, sizeof(szFunction), "%#x", uFunction);
|
---|
274 | pszFunction = szFunction;
|
---|
275 | }
|
---|
276 |
|
---|
277 | if (cbInput > 0 && pvInput)
|
---|
278 | Log12(("VID!NtDeviceIoControlFile: %s/input: %.*Rhxs\n", pszFunction, RT_MIN(cbInput, 32), pvInput));
|
---|
279 | NTSTATUS rcNt = g_pfnNtDeviceIoControlFile(hFile, hEvt, pfnApcCallback, pvApcCtx, pIos, uFunction,
|
---|
280 | pvInput, cbInput, pvOutput, cbOutput);
|
---|
281 | if (!hEvt && !pfnApcCallback && !pvApcCtx)
|
---|
282 | Log12(("VID!NtDeviceIoControlFile: hFile=%#zx pIos=%p->{s:%#x, i:%#zx} uFunction=%s Input=%p LB %#x Output=%p LB %#x) -> %#x; Caller=%p\n",
|
---|
283 | hFile, pIos, pIos->Status, pIos->Information, pszFunction, pvInput, cbInput, pvOutput, cbOutput, rcNt, ASMReturnAddress()));
|
---|
284 | else
|
---|
285 | Log12(("VID!NtDeviceIoControlFile: hFile=%#zx hEvt=%#zx Apc=%p/%p pIos=%p->{s:%#x, i:%#zx} uFunction=%s Input=%p LB %#x Output=%p LB %#x) -> %#x; Caller=%p\n",
|
---|
286 | hFile, hEvt, pfnApcCallback, pvApcCtx, pIos, pIos->Status, pIos->Information, pszFunction,
|
---|
287 | pvInput, cbInput, pvOutput, cbOutput, rcNt, ASMReturnAddress()));
|
---|
288 | if (cbOutput > 0 && pvOutput)
|
---|
289 | {
|
---|
290 | Log12(("VID!NtDeviceIoControlFile: %s/output: %.*Rhxs\n", pszFunction, RT_MIN(cbOutput, 32), pvOutput));
|
---|
291 | if (uFunction == 0x2210cc && g_pMsgSlotMapping == NULL && cbOutput >= sizeof(void *))
|
---|
292 | {
|
---|
293 | g_pMsgSlotMapping = *(VID_MESSAGE_MAPPING_HEADER **)pvOutput;
|
---|
294 | g_pHvMsgHdr = (const HV_MESSAGE_HEADER *)(g_pMsgSlotMapping + 1);
|
---|
295 | g_pX64MsgHdr = (const HV_X64_INTERCEPT_MESSAGE_HEADER *)(g_pHvMsgHdr + 1);
|
---|
296 | Log12(("VID!NtDeviceIoControlFile: Message slot mapping: %p\n", g_pMsgSlotMapping));
|
---|
297 | }
|
---|
298 | }
|
---|
299 | if ( g_pMsgSlotMapping
|
---|
300 | && ( uFunction == g_IoCtlMessageSlotHandleAndGetNext.uFunction
|
---|
301 | || uFunction == g_IoCtlStopVirtualProcessor.uFunction
|
---|
302 | || uFunction == g_IoCtlMessageSlotMap.uFunction
|
---|
303 | ))
|
---|
304 | Log12(("VID!NtDeviceIoControlFile: enmVidMsgType=%#x cb=%#x msg=%#x payload=%u cs:rip=%04x:%08RX64 (%s)\n",
|
---|
305 | g_pMsgSlotMapping->enmVidMsgType, g_pMsgSlotMapping->cbMessage,
|
---|
306 | g_pHvMsgHdr->MessageType, g_pHvMsgHdr->PayloadSize,
|
---|
307 | g_pX64MsgHdr->CsSegment.Selector, g_pX64MsgHdr->Rip, pszFunction));
|
---|
308 |
|
---|
309 | return rcNt;
|
---|
310 | }
|
---|
311 | #endif /* NEM_WIN_INTERCEPT_NT_IO_CTLS */
|
---|
312 |
|
---|
313 |
|
---|
314 | /**
|
---|
315 | * Patches the call table of VID.DLL so we can intercept NtDeviceIoControlFile.
|
---|
316 | *
|
---|
317 | * This is for used to figure out the I/O control codes and in logging builds
|
---|
318 | * for logging API calls that WinHvPlatform.dll does.
|
---|
319 | *
|
---|
320 | * @returns VBox status code.
|
---|
321 | * @param hLdrModVid The VID module handle.
|
---|
322 | * @param pErrInfo Where to return additional error information.
|
---|
323 | */
|
---|
324 | static int nemR3WinInitVidIntercepts(RTLDRMOD hLdrModVid, PRTERRINFO pErrInfo)
|
---|
325 | {
|
---|
326 | /*
|
---|
327 | * Locate the real API.
|
---|
328 | */
|
---|
329 | g_pfnNtDeviceIoControlFile = (decltype(NtDeviceIoControlFile) *)RTLdrGetSystemSymbol("NTDLL.DLL", "NtDeviceIoControlFile");
|
---|
330 | AssertReturn(g_pfnNtDeviceIoControlFile != NULL,
|
---|
331 | RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Failed to resolve NtDeviceIoControlFile from NTDLL.DLL"));
|
---|
332 |
|
---|
333 | /*
|
---|
334 | * Locate the PE header and get what we need from it.
|
---|
335 | */
|
---|
336 | uint8_t const *pbImage = (uint8_t const *)RTLdrGetNativeHandle(hLdrModVid);
|
---|
337 | IMAGE_DOS_HEADER const *pMzHdr = (IMAGE_DOS_HEADER const *)pbImage;
|
---|
338 | AssertReturn(pMzHdr->e_magic == IMAGE_DOS_SIGNATURE,
|
---|
339 | RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL mapping doesn't start with MZ signature: %#x", pMzHdr->e_magic));
|
---|
340 | IMAGE_NT_HEADERS const *pNtHdrs = (IMAGE_NT_HEADERS const *)&pbImage[pMzHdr->e_lfanew];
|
---|
341 | AssertReturn(pNtHdrs->Signature == IMAGE_NT_SIGNATURE,
|
---|
342 | RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL has invalid PE signaturre: %#x @%#x",
|
---|
343 | pNtHdrs->Signature, pMzHdr->e_lfanew));
|
---|
344 |
|
---|
345 | uint32_t const cbImage = pNtHdrs->OptionalHeader.SizeOfImage;
|
---|
346 | IMAGE_DATA_DIRECTORY const ImportDir = pNtHdrs->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];
|
---|
347 |
|
---|
348 | /*
|
---|
349 | * Walk the import descriptor table looking for NTDLL.DLL.
|
---|
350 | */
|
---|
351 | AssertReturn( ImportDir.Size > 0
|
---|
352 | && ImportDir.Size < cbImage,
|
---|
353 | RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad import directory size: %#x", ImportDir.Size));
|
---|
354 | AssertReturn( ImportDir.VirtualAddress > 0
|
---|
355 | && ImportDir.VirtualAddress <= cbImage - ImportDir.Size,
|
---|
356 | RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad import directory RVA: %#x", ImportDir.VirtualAddress));
|
---|
357 |
|
---|
358 | for (PIMAGE_IMPORT_DESCRIPTOR pImps = (PIMAGE_IMPORT_DESCRIPTOR)&pbImage[ImportDir.VirtualAddress];
|
---|
359 | pImps->Name != 0 && pImps->FirstThunk != 0;
|
---|
360 | pImps++)
|
---|
361 | {
|
---|
362 | AssertReturn(pImps->Name < cbImage,
|
---|
363 | RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad import directory entry name: %#x", pImps->Name));
|
---|
364 | const char *pszModName = (const char *)&pbImage[pImps->Name];
|
---|
365 | if (RTStrICmpAscii(pszModName, "ntdll.dll"))
|
---|
366 | continue;
|
---|
367 | AssertReturn(pImps->FirstThunk < cbImage,
|
---|
368 | RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad FirstThunk: %#x", pImps->FirstThunk));
|
---|
369 | AssertReturn(pImps->OriginalFirstThunk < cbImage,
|
---|
370 | RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad FirstThunk: %#x", pImps->FirstThunk));
|
---|
371 |
|
---|
372 | /*
|
---|
373 | * Walk the thunks table(s) looking for NtDeviceIoControlFile.
|
---|
374 | */
|
---|
375 | PIMAGE_THUNK_DATA pFirstThunk = (PIMAGE_THUNK_DATA)&pbImage[pImps->FirstThunk]; /* update this. */
|
---|
376 | PIMAGE_THUNK_DATA pThunk = pImps->OriginalFirstThunk == 0 /* read from this. */
|
---|
377 | ? (PIMAGE_THUNK_DATA)&pbImage[pImps->FirstThunk]
|
---|
378 | : (PIMAGE_THUNK_DATA)&pbImage[pImps->OriginalFirstThunk];
|
---|
379 | while (pThunk->u1.Ordinal != 0)
|
---|
380 | {
|
---|
381 | if (!(pThunk->u1.Ordinal & IMAGE_ORDINAL_FLAG32))
|
---|
382 | {
|
---|
383 | AssertReturn(pThunk->u1.Ordinal > 0 && pThunk->u1.Ordinal < cbImage,
|
---|
384 | RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad FirstThunk: %#x", pImps->FirstThunk));
|
---|
385 |
|
---|
386 | const char *pszSymbol = (const char *)&pbImage[(uintptr_t)pThunk->u1.AddressOfData + 2];
|
---|
387 | if (strcmp(pszSymbol, "NtDeviceIoControlFile") == 0)
|
---|
388 | {
|
---|
389 | DWORD fOldProt = PAGE_READONLY;
|
---|
390 | VirtualProtect(&pFirstThunk->u1.Function, sizeof(uintptr_t), PAGE_EXECUTE_READWRITE, &fOldProt);
|
---|
391 | g_ppfnVidNtDeviceIoControlFile = (decltype(NtDeviceIoControlFile) **)&pFirstThunk->u1.Function;
|
---|
392 | /* Don't restore the protection here, so we modify the NtDeviceIoControlFile pointer later. */
|
---|
393 | }
|
---|
394 | }
|
---|
395 |
|
---|
396 | pThunk++;
|
---|
397 | pFirstThunk++;
|
---|
398 | }
|
---|
399 | }
|
---|
400 |
|
---|
401 | if (*g_ppfnVidNtDeviceIoControlFile)
|
---|
402 | {
|
---|
403 | #ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
|
---|
404 | *g_ppfnVidNtDeviceIoControlFile = nemR3WinLogWrapper_NtDeviceIoControlFile;
|
---|
405 | #endif
|
---|
406 | return VINF_SUCCESS;
|
---|
407 | }
|
---|
408 | return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Failed to patch NtDeviceIoControlFile import in VID.DLL!");
|
---|
409 | }
|
---|
410 |
|
---|
411 |
|
---|
412 | /**
|
---|
413 | * Worker for nemR3NativeInit that probes and load the native API.
|
---|
414 | *
|
---|
415 | * @returns VBox status code.
|
---|
416 | * @param fForced Whether the HMForced flag is set and we should
|
---|
417 | * fail if we cannot initialize.
|
---|
418 | * @param pErrInfo Where to always return error info.
|
---|
419 | */
|
---|
420 | static int nemR3WinInitProbeAndLoad(bool fForced, PRTERRINFO pErrInfo)
|
---|
421 | {
|
---|
422 | /*
|
---|
423 | * Check that the DLL files we need are present, but without loading them.
|
---|
424 | * We'd like to avoid loading them unnecessarily.
|
---|
425 | */
|
---|
426 | WCHAR wszPath[MAX_PATH + 64];
|
---|
427 | UINT cwcPath = GetSystemDirectoryW(wszPath, MAX_PATH);
|
---|
428 | if (cwcPath >= MAX_PATH || cwcPath < 2)
|
---|
429 | return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "GetSystemDirectoryW failed (%#x / %u)", cwcPath, GetLastError());
|
---|
430 |
|
---|
431 | if (wszPath[cwcPath - 1] != '\\' || wszPath[cwcPath - 1] != '/')
|
---|
432 | wszPath[cwcPath++] = '\\';
|
---|
433 | RTUtf16CopyAscii(&wszPath[cwcPath], RT_ELEMENTS(wszPath) - cwcPath, "WinHvPlatform.dll");
|
---|
434 | if (GetFileAttributesW(wszPath) == INVALID_FILE_ATTRIBUTES)
|
---|
435 | return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "The native API dll was not found (%ls)", wszPath);
|
---|
436 |
|
---|
437 | /*
|
---|
438 | * Check that we're in a VM and that the hypervisor identifies itself as Hyper-V.
|
---|
439 | */
|
---|
440 | if (!ASMHasCpuId())
|
---|
441 | return RTErrInfoSet(pErrInfo, VERR_NEM_NOT_AVAILABLE, "No CPUID support");
|
---|
442 | if (!ASMIsValidStdRange(ASMCpuId_EAX(0)))
|
---|
443 | return RTErrInfoSet(pErrInfo, VERR_NEM_NOT_AVAILABLE, "No CPUID leaf #1");
|
---|
444 | if (!(ASMCpuId_ECX(1) & X86_CPUID_FEATURE_ECX_HVP))
|
---|
445 | return RTErrInfoSet(pErrInfo, VERR_NEM_NOT_AVAILABLE, "Not in a hypervisor partition (HVP=0)");
|
---|
446 |
|
---|
447 | uint32_t cMaxHyperLeaf = 0;
|
---|
448 | uint32_t uEbx = 0;
|
---|
449 | uint32_t uEcx = 0;
|
---|
450 | uint32_t uEdx = 0;
|
---|
451 | ASMCpuIdExSlow(0x40000000, 0, 0, 0, &cMaxHyperLeaf, &uEbx, &uEcx, &uEdx);
|
---|
452 | if (!ASMIsValidHypervisorRange(cMaxHyperLeaf))
|
---|
453 | return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "Invalid hypervisor CPUID range (%#x %#x %#x %#x)",
|
---|
454 | cMaxHyperLeaf, uEbx, uEcx, uEdx);
|
---|
455 | if ( uEbx != UINT32_C(0x7263694d) /* Micr */
|
---|
456 | || uEcx != UINT32_C(0x666f736f) /* osof */
|
---|
457 | || uEdx != UINT32_C(0x76482074) /* t Hv */)
|
---|
458 | return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE,
|
---|
459 | "Not Hyper-V CPUID signature: %#x %#x %#x (expected %#x %#x %#x)",
|
---|
460 | uEbx, uEcx, uEdx, UINT32_C(0x7263694d), UINT32_C(0x666f736f), UINT32_C(0x76482074));
|
---|
461 | if (cMaxHyperLeaf < UINT32_C(0x40000005))
|
---|
462 | return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "Too narrow hypervisor CPUID range (%#x)", cMaxHyperLeaf);
|
---|
463 |
|
---|
464 | /** @todo would be great if we could recognize a root partition from the
|
---|
465 | * CPUID info, but I currently don't dare do that. */
|
---|
466 |
|
---|
467 | /*
|
---|
468 | * Now try load the DLLs and resolve the APIs.
|
---|
469 | */
|
---|
470 | static const char * const s_apszDllNames[2] = { "WinHvPlatform.dll", "vid.dll" };
|
---|
471 | RTLDRMOD ahMods[2] = { NIL_RTLDRMOD, NIL_RTLDRMOD };
|
---|
472 | int rc = VINF_SUCCESS;
|
---|
473 | for (unsigned i = 0; i < RT_ELEMENTS(s_apszDllNames); i++)
|
---|
474 | {
|
---|
475 | int rc2 = RTLdrLoadSystem(s_apszDllNames[i], true /*fNoUnload*/, &ahMods[i]);
|
---|
476 | if (RT_FAILURE(rc2))
|
---|
477 | {
|
---|
478 | if (!RTErrInfoIsSet(pErrInfo))
|
---|
479 | RTErrInfoSetF(pErrInfo, rc2, "Failed to load API DLL: %s: %Rrc", s_apszDllNames[i], rc2);
|
---|
480 | else
|
---|
481 | RTErrInfoAddF(pErrInfo, rc2, "; %s: %Rrc", s_apszDllNames[i], rc2);
|
---|
482 | ahMods[i] = NIL_RTLDRMOD;
|
---|
483 | rc = VERR_NEM_INIT_FAILED;
|
---|
484 | }
|
---|
485 | }
|
---|
486 | if (RT_SUCCESS(rc))
|
---|
487 | rc = nemR3WinInitVidIntercepts(ahMods[1], pErrInfo);
|
---|
488 | if (RT_SUCCESS(rc))
|
---|
489 | {
|
---|
490 | for (unsigned i = 0; i < RT_ELEMENTS(g_aImports); i++)
|
---|
491 | {
|
---|
492 | int rc2 = RTLdrGetSymbol(ahMods[g_aImports[i].idxDll], g_aImports[i].pszName, (void **)g_aImports[i].ppfn);
|
---|
493 | if (RT_FAILURE(rc2))
|
---|
494 | {
|
---|
495 | *g_aImports[i].ppfn = NULL;
|
---|
496 |
|
---|
497 | LogRel(("NEM: %s: Failed to import %s!%s: %Rrc",
|
---|
498 | g_aImports[i].fOptional ? "info" : fForced ? "fatal" : "error",
|
---|
499 | s_apszDllNames[g_aImports[i].idxDll], g_aImports[i].pszName, rc2));
|
---|
500 | if (!g_aImports[i].fOptional)
|
---|
501 | {
|
---|
502 | if (RTErrInfoIsSet(pErrInfo))
|
---|
503 | RTErrInfoAddF(pErrInfo, rc2, ", %s!%s",
|
---|
504 | s_apszDllNames[g_aImports[i].idxDll], g_aImports[i].pszName);
|
---|
505 | else
|
---|
506 | rc = RTErrInfoSetF(pErrInfo, rc2, "Failed to import: %s!%s",
|
---|
507 | s_apszDllNames[g_aImports[i].idxDll], g_aImports[i].pszName);
|
---|
508 | Assert(RT_FAILURE(rc));
|
---|
509 | }
|
---|
510 | }
|
---|
511 | }
|
---|
512 | if (RT_SUCCESS(rc))
|
---|
513 | {
|
---|
514 | Assert(!RTErrInfoIsSet(pErrInfo));
|
---|
515 | }
|
---|
516 | }
|
---|
517 |
|
---|
518 | for (unsigned i = 0; i < RT_ELEMENTS(ahMods); i++)
|
---|
519 | RTLdrClose(ahMods[i]);
|
---|
520 | return rc;
|
---|
521 | }
|
---|
522 |
|
---|
523 |
|
---|
524 | /**
|
---|
525 | * Wrapper for different WHvGetCapability signatures.
|
---|
526 | */
|
---|
527 | DECLINLINE(HRESULT) WHvGetCapabilityWrapper(WHV_CAPABILITY_CODE enmCap, WHV_CAPABILITY *pOutput, uint32_t cbOutput)
|
---|
528 | {
|
---|
529 | return g_pfnWHvGetCapability(enmCap, pOutput, cbOutput, NULL);
|
---|
530 | }
|
---|
531 |
|
---|
532 |
|
---|
533 | /**
|
---|
534 | * Worker for nemR3NativeInit that gets the hypervisor capabilities.
|
---|
535 | *
|
---|
536 | * @returns VBox status code.
|
---|
537 | * @param pVM The cross context VM structure.
|
---|
538 | * @param pErrInfo Where to always return error info.
|
---|
539 | */
|
---|
540 | static int nemR3WinInitCheckCapabilities(PVM pVM, PRTERRINFO pErrInfo)
|
---|
541 | {
|
---|
542 | #define NEM_LOG_REL_CAP_EX(a_szField, a_szFmt, a_Value) LogRel(("NEM: %-38s= " a_szFmt "\n", a_szField, a_Value))
|
---|
543 | #define NEM_LOG_REL_CAP_SUB_EX(a_szField, a_szFmt, a_Value) LogRel(("NEM: %36s: " a_szFmt "\n", a_szField, a_Value))
|
---|
544 | #define NEM_LOG_REL_CAP_SUB(a_szField, a_Value) NEM_LOG_REL_CAP_SUB_EX(a_szField, "%d", a_Value)
|
---|
545 |
|
---|
546 | /*
|
---|
547 | * Is the hypervisor present with the desired capability?
|
---|
548 | *
|
---|
549 | * In build 17083 this translates into:
|
---|
550 | * - CPUID[0x00000001].HVP is set
|
---|
551 | * - CPUID[0x40000000] == "Microsoft Hv"
|
---|
552 | * - CPUID[0x40000001].eax == "Hv#1"
|
---|
553 | * - CPUID[0x40000003].ebx[12] is set.
|
---|
554 | * - VidGetExoPartitionProperty(INVALID_HANDLE_VALUE, 0x60000, &Ignored) returns
|
---|
555 | * a non-zero value.
|
---|
556 | */
|
---|
557 | /**
|
---|
558 | * @todo Someone at Microsoft please explain weird API design:
|
---|
559 | * 1. Pointless CapabilityCode duplication int the output;
|
---|
560 | * 2. No output size.
|
---|
561 | */
|
---|
562 | WHV_CAPABILITY Caps;
|
---|
563 | RT_ZERO(Caps);
|
---|
564 | SetLastError(0);
|
---|
565 | HRESULT hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeHypervisorPresent, &Caps, sizeof(Caps));
|
---|
566 | DWORD rcWin = GetLastError();
|
---|
567 | if (FAILED(hrc))
|
---|
568 | return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
|
---|
569 | "WHvGetCapability/WHvCapabilityCodeHypervisorPresent failed: %Rhrc (Last=%#x/%u)",
|
---|
570 | hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
|
---|
571 | if (!Caps.HypervisorPresent)
|
---|
572 | {
|
---|
573 | if (!RTPathExists(RTPATH_NT_PASSTHRU_PREFIX "Device\\VidExo"))
|
---|
574 | return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE,
|
---|
575 | "WHvCapabilityCodeHypervisorPresent is FALSE! Make sure you have enabled the 'Windows Hypervisor Platform' feature.");
|
---|
576 | return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "WHvCapabilityCodeHypervisorPresent is FALSE! (%u)", rcWin);
|
---|
577 | }
|
---|
578 | LogRel(("NEM: WHvCapabilityCodeHypervisorPresent is TRUE, so this might work...\n"));
|
---|
579 |
|
---|
580 |
|
---|
581 | /*
|
---|
582 | * Check what extended VM exits are supported.
|
---|
583 | */
|
---|
584 | RT_ZERO(Caps);
|
---|
585 | hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeExtendedVmExits, &Caps, sizeof(Caps));
|
---|
586 | if (FAILED(hrc))
|
---|
587 | return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
|
---|
588 | "WHvGetCapability/WHvCapabilityCodeExtendedVmExits failed: %Rhrc (Last=%#x/%u)",
|
---|
589 | hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
|
---|
590 | NEM_LOG_REL_CAP_EX("WHvCapabilityCodeExtendedVmExits", "%'#018RX64", Caps.ExtendedVmExits.AsUINT64);
|
---|
591 | pVM->nem.s.fExtendedMsrExit = RT_BOOL(Caps.ExtendedVmExits.X64MsrExit);
|
---|
592 | pVM->nem.s.fExtendedCpuIdExit = RT_BOOL(Caps.ExtendedVmExits.X64CpuidExit);
|
---|
593 | pVM->nem.s.fExtendedXcptExit = RT_BOOL(Caps.ExtendedVmExits.ExceptionExit);
|
---|
594 | NEM_LOG_REL_CAP_SUB("fExtendedMsrExit", pVM->nem.s.fExtendedMsrExit);
|
---|
595 | NEM_LOG_REL_CAP_SUB("fExtendedCpuIdExit", pVM->nem.s.fExtendedCpuIdExit);
|
---|
596 | NEM_LOG_REL_CAP_SUB("fExtendedXcptExit", pVM->nem.s.fExtendedXcptExit);
|
---|
597 | if (Caps.ExtendedVmExits.AsUINT64 & ~(uint64_t)7)
|
---|
598 | LogRel(("NEM: Warning! Unknown VM exit definitions: %#RX64\n", Caps.ExtendedVmExits.AsUINT64));
|
---|
599 | /** @todo RECHECK: WHV_EXTENDED_VM_EXITS typedef. */
|
---|
600 |
|
---|
601 | /*
|
---|
602 | * Check features in case they end up defining any.
|
---|
603 | */
|
---|
604 | RT_ZERO(Caps);
|
---|
605 | hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeFeatures, &Caps, sizeof(Caps));
|
---|
606 | if (FAILED(hrc))
|
---|
607 | return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
|
---|
608 | "WHvGetCapability/WHvCapabilityCodeFeatures failed: %Rhrc (Last=%#x/%u)",
|
---|
609 | hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
|
---|
610 | if (Caps.Features.AsUINT64 & ~(uint64_t)0)
|
---|
611 | LogRel(("NEM: Warning! Unknown feature definitions: %#RX64\n", Caps.Features.AsUINT64));
|
---|
612 | /** @todo RECHECK: WHV_CAPABILITY_FEATURES typedef. */
|
---|
613 |
|
---|
614 | /*
|
---|
615 | * Check supported exception exit bitmap bits.
|
---|
616 | * We don't currently require this, so we just log failure.
|
---|
617 | */
|
---|
618 | RT_ZERO(Caps);
|
---|
619 | hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeExceptionExitBitmap, &Caps, sizeof(Caps));
|
---|
620 | if (SUCCEEDED(hrc))
|
---|
621 | LogRel(("NEM: Supported exception exit bitmap: %#RX64\n", Caps.ExceptionExitBitmap));
|
---|
622 | else
|
---|
623 | LogRel(("NEM: Warning! WHvGetCapability/WHvCapabilityCodeExceptionExitBitmap failed: %Rhrc (Last=%#x/%u)",
|
---|
624 | hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
625 |
|
---|
626 | /*
|
---|
627 | * Check that the CPU vendor is supported.
|
---|
628 | */
|
---|
629 | RT_ZERO(Caps);
|
---|
630 | hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeProcessorVendor, &Caps, sizeof(Caps));
|
---|
631 | if (FAILED(hrc))
|
---|
632 | return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
|
---|
633 | "WHvGetCapability/WHvCapabilityCodeProcessorVendor failed: %Rhrc (Last=%#x/%u)",
|
---|
634 | hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
|
---|
635 | switch (Caps.ProcessorVendor)
|
---|
636 | {
|
---|
637 | /** @todo RECHECK: WHV_PROCESSOR_VENDOR typedef. */
|
---|
638 | case WHvProcessorVendorIntel:
|
---|
639 | NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorVendor", "%d - Intel", Caps.ProcessorVendor);
|
---|
640 | pVM->nem.s.enmCpuVendor = CPUMCPUVENDOR_INTEL;
|
---|
641 | break;
|
---|
642 | case WHvProcessorVendorAmd:
|
---|
643 | NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorVendor", "%d - AMD", Caps.ProcessorVendor);
|
---|
644 | pVM->nem.s.enmCpuVendor = CPUMCPUVENDOR_AMD;
|
---|
645 | break;
|
---|
646 | default:
|
---|
647 | NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorVendor", "%d", Caps.ProcessorVendor);
|
---|
648 | return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Unknown processor vendor: %d", Caps.ProcessorVendor);
|
---|
649 | }
|
---|
650 |
|
---|
651 | /*
|
---|
652 | * CPU features, guessing these are virtual CPU features?
|
---|
653 | */
|
---|
654 | RT_ZERO(Caps);
|
---|
655 | hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeProcessorFeatures, &Caps, sizeof(Caps));
|
---|
656 | if (FAILED(hrc))
|
---|
657 | return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
|
---|
658 | "WHvGetCapability/WHvCapabilityCodeProcessorFeatures failed: %Rhrc (Last=%#x/%u)",
|
---|
659 | hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
|
---|
660 | NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorFeatures", "%'#018RX64", Caps.ProcessorFeatures.AsUINT64);
|
---|
661 | #define NEM_LOG_REL_CPU_FEATURE(a_Field) NEM_LOG_REL_CAP_SUB(#a_Field, Caps.ProcessorFeatures.a_Field)
|
---|
662 | NEM_LOG_REL_CPU_FEATURE(Sse3Support);
|
---|
663 | NEM_LOG_REL_CPU_FEATURE(LahfSahfSupport);
|
---|
664 | NEM_LOG_REL_CPU_FEATURE(Ssse3Support);
|
---|
665 | NEM_LOG_REL_CPU_FEATURE(Sse4_1Support);
|
---|
666 | NEM_LOG_REL_CPU_FEATURE(Sse4_2Support);
|
---|
667 | NEM_LOG_REL_CPU_FEATURE(Sse4aSupport);
|
---|
668 | NEM_LOG_REL_CPU_FEATURE(XopSupport);
|
---|
669 | NEM_LOG_REL_CPU_FEATURE(PopCntSupport);
|
---|
670 | NEM_LOG_REL_CPU_FEATURE(Cmpxchg16bSupport);
|
---|
671 | NEM_LOG_REL_CPU_FEATURE(Altmovcr8Support);
|
---|
672 | NEM_LOG_REL_CPU_FEATURE(LzcntSupport);
|
---|
673 | NEM_LOG_REL_CPU_FEATURE(MisAlignSseSupport);
|
---|
674 | NEM_LOG_REL_CPU_FEATURE(MmxExtSupport);
|
---|
675 | NEM_LOG_REL_CPU_FEATURE(Amd3DNowSupport);
|
---|
676 | NEM_LOG_REL_CPU_FEATURE(ExtendedAmd3DNowSupport);
|
---|
677 | NEM_LOG_REL_CPU_FEATURE(Page1GbSupport);
|
---|
678 | NEM_LOG_REL_CPU_FEATURE(AesSupport);
|
---|
679 | NEM_LOG_REL_CPU_FEATURE(PclmulqdqSupport);
|
---|
680 | NEM_LOG_REL_CPU_FEATURE(PcidSupport);
|
---|
681 | NEM_LOG_REL_CPU_FEATURE(Fma4Support);
|
---|
682 | NEM_LOG_REL_CPU_FEATURE(F16CSupport);
|
---|
683 | NEM_LOG_REL_CPU_FEATURE(RdRandSupport);
|
---|
684 | NEM_LOG_REL_CPU_FEATURE(RdWrFsGsSupport);
|
---|
685 | NEM_LOG_REL_CPU_FEATURE(SmepSupport);
|
---|
686 | NEM_LOG_REL_CPU_FEATURE(EnhancedFastStringSupport);
|
---|
687 | NEM_LOG_REL_CPU_FEATURE(Bmi1Support);
|
---|
688 | NEM_LOG_REL_CPU_FEATURE(Bmi2Support);
|
---|
689 | /* two reserved bits here, see below */
|
---|
690 | NEM_LOG_REL_CPU_FEATURE(MovbeSupport);
|
---|
691 | NEM_LOG_REL_CPU_FEATURE(Npiep1Support);
|
---|
692 | NEM_LOG_REL_CPU_FEATURE(DepX87FPUSaveSupport);
|
---|
693 | NEM_LOG_REL_CPU_FEATURE(RdSeedSupport);
|
---|
694 | NEM_LOG_REL_CPU_FEATURE(AdxSupport);
|
---|
695 | NEM_LOG_REL_CPU_FEATURE(IntelPrefetchSupport);
|
---|
696 | NEM_LOG_REL_CPU_FEATURE(SmapSupport);
|
---|
697 | NEM_LOG_REL_CPU_FEATURE(HleSupport);
|
---|
698 | NEM_LOG_REL_CPU_FEATURE(RtmSupport);
|
---|
699 | NEM_LOG_REL_CPU_FEATURE(RdtscpSupport);
|
---|
700 | NEM_LOG_REL_CPU_FEATURE(ClflushoptSupport);
|
---|
701 | NEM_LOG_REL_CPU_FEATURE(ClwbSupport);
|
---|
702 | NEM_LOG_REL_CPU_FEATURE(ShaSupport);
|
---|
703 | NEM_LOG_REL_CPU_FEATURE(X87PointersSavedSupport);
|
---|
704 | #undef NEM_LOG_REL_CPU_FEATURE
|
---|
705 | if (Caps.ProcessorFeatures.AsUINT64 & (~(RT_BIT_64(43) - 1) | RT_BIT_64(27) | RT_BIT_64(28)))
|
---|
706 | LogRel(("NEM: Warning! Unknown CPU features: %#RX64\n", Caps.ProcessorFeatures.AsUINT64));
|
---|
707 | pVM->nem.s.uCpuFeatures.u64 = Caps.ProcessorFeatures.AsUINT64;
|
---|
708 | /** @todo RECHECK: WHV_PROCESSOR_FEATURES typedef. */
|
---|
709 |
|
---|
710 | /*
|
---|
711 | * The cache line flush size.
|
---|
712 | */
|
---|
713 | RT_ZERO(Caps);
|
---|
714 | hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeProcessorClFlushSize, &Caps, sizeof(Caps));
|
---|
715 | if (FAILED(hrc))
|
---|
716 | return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
|
---|
717 | "WHvGetCapability/WHvCapabilityCodeProcessorClFlushSize failed: %Rhrc (Last=%#x/%u)",
|
---|
718 | hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
|
---|
719 | NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorClFlushSize", "2^%u", Caps.ProcessorClFlushSize);
|
---|
720 | if (Caps.ProcessorClFlushSize < 8 && Caps.ProcessorClFlushSize > 9)
|
---|
721 | return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Unsupported cache line flush size: %u", Caps.ProcessorClFlushSize);
|
---|
722 | pVM->nem.s.cCacheLineFlushShift = Caps.ProcessorClFlushSize;
|
---|
723 |
|
---|
724 | /*
|
---|
725 | * See if they've added more properties that we're not aware of.
|
---|
726 | */
|
---|
727 | /** @todo RECHECK: WHV_CAPABILITY_CODE typedef. */
|
---|
728 | if (!IsDebuggerPresent()) /* Too noisy when in debugger, so skip. */
|
---|
729 | {
|
---|
730 | static const struct
|
---|
731 | {
|
---|
732 | uint32_t iMin, iMax; } s_aUnknowns[] =
|
---|
733 | {
|
---|
734 | { 0x0004, 0x000f },
|
---|
735 | { 0x1003, 0x100f },
|
---|
736 | { 0x2000, 0x200f },
|
---|
737 | { 0x3000, 0x300f },
|
---|
738 | { 0x4000, 0x400f },
|
---|
739 | };
|
---|
740 | for (uint32_t j = 0; j < RT_ELEMENTS(s_aUnknowns); j++)
|
---|
741 | for (uint32_t i = s_aUnknowns[j].iMin; i <= s_aUnknowns[j].iMax; i++)
|
---|
742 | {
|
---|
743 | RT_ZERO(Caps);
|
---|
744 | hrc = WHvGetCapabilityWrapper((WHV_CAPABILITY_CODE)i, &Caps, sizeof(Caps));
|
---|
745 | if (SUCCEEDED(hrc))
|
---|
746 | LogRel(("NEM: Warning! Unknown capability %#x returning: %.*Rhxs\n", i, sizeof(Caps), &Caps));
|
---|
747 | }
|
---|
748 | }
|
---|
749 |
|
---|
750 | /*
|
---|
751 | * For proper operation, we require CPUID exits.
|
---|
752 | */
|
---|
753 | if (!pVM->nem.s.fExtendedCpuIdExit)
|
---|
754 | return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Missing required extended CPUID exit support");
|
---|
755 | if (!pVM->nem.s.fExtendedMsrExit)
|
---|
756 | return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Missing required extended MSR exit support");
|
---|
757 | if (!pVM->nem.s.fExtendedXcptExit)
|
---|
758 | return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Missing required extended exception exit support");
|
---|
759 |
|
---|
760 | #undef NEM_LOG_REL_CAP_EX
|
---|
761 | #undef NEM_LOG_REL_CAP_SUB_EX
|
---|
762 | #undef NEM_LOG_REL_CAP_SUB
|
---|
763 | return VINF_SUCCESS;
|
---|
764 | }
|
---|
765 |
|
---|
766 |
|
---|
767 | /**
|
---|
768 | * Used to fill in g_IoCtlGetHvPartitionId.
|
---|
769 | */
|
---|
770 | static NTSTATUS WINAPI
|
---|
771 | nemR3WinIoctlDetector_GetHvPartitionId(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
|
---|
772 | PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
|
---|
773 | PVOID pvOutput, ULONG cbOutput)
|
---|
774 | {
|
---|
775 | AssertLogRelMsgReturn(hFile == NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, ("hFile=%p\n", hFile), STATUS_INVALID_PARAMETER_1);
|
---|
776 | RT_NOREF(hEvt); RT_NOREF(pfnApcCallback); RT_NOREF(pvApcCtx);
|
---|
777 | AssertLogRelMsgReturn(RT_VALID_PTR(pIos), ("pIos=%p\n", pIos), STATUS_INVALID_PARAMETER_5);
|
---|
778 | AssertLogRelMsgReturn(cbInput == 0, ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_8);
|
---|
779 | RT_NOREF(pvInput);
|
---|
780 |
|
---|
781 | AssertLogRelMsgReturn(RT_VALID_PTR(pvOutput), ("pvOutput=%p\n", pvOutput), STATUS_INVALID_PARAMETER_9);
|
---|
782 | AssertLogRelMsgReturn(cbOutput == sizeof(HV_PARTITION_ID), ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
|
---|
783 | *(HV_PARTITION_ID *)pvOutput = NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_ID;
|
---|
784 |
|
---|
785 | g_IoCtlGetHvPartitionId.cbInput = cbInput;
|
---|
786 | g_IoCtlGetHvPartitionId.cbOutput = cbOutput;
|
---|
787 | g_IoCtlGetHvPartitionId.uFunction = uFunction;
|
---|
788 |
|
---|
789 | return STATUS_SUCCESS;
|
---|
790 | }
|
---|
791 |
|
---|
792 |
|
---|
793 | /**
|
---|
794 | * Used to fill in g_IoCtlStartVirtualProcessor.
|
---|
795 | */
|
---|
796 | static NTSTATUS WINAPI
|
---|
797 | nemR3WinIoctlDetector_StartVirtualProcessor(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
|
---|
798 | PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
|
---|
799 | PVOID pvOutput, ULONG cbOutput)
|
---|
800 | {
|
---|
801 | AssertLogRelMsgReturn(hFile == NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, ("hFile=%p\n", hFile), STATUS_INVALID_PARAMETER_1);
|
---|
802 | RT_NOREF(hEvt); RT_NOREF(pfnApcCallback); RT_NOREF(pvApcCtx);
|
---|
803 | AssertLogRelMsgReturn(RT_VALID_PTR(pIos), ("pIos=%p\n", pIos), STATUS_INVALID_PARAMETER_5);
|
---|
804 | AssertLogRelMsgReturn(cbInput == sizeof(HV_VP_INDEX), ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_8);
|
---|
805 | AssertLogRelMsgReturn(RT_VALID_PTR(pvInput), ("pvInput=%p\n", pvInput), STATUS_INVALID_PARAMETER_9);
|
---|
806 | AssertLogRelMsgReturn(*(HV_VP_INDEX *)pvInput == NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX,
|
---|
807 | ("*piCpu=%u\n", *(HV_VP_INDEX *)pvInput), STATUS_INVALID_PARAMETER_9);
|
---|
808 | AssertLogRelMsgReturn(cbOutput == 0, ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
|
---|
809 | RT_NOREF(pvOutput);
|
---|
810 |
|
---|
811 | g_IoCtlStartVirtualProcessor.cbInput = cbInput;
|
---|
812 | g_IoCtlStartVirtualProcessor.cbOutput = cbOutput;
|
---|
813 | g_IoCtlStartVirtualProcessor.uFunction = uFunction;
|
---|
814 |
|
---|
815 | return STATUS_SUCCESS;
|
---|
816 | }
|
---|
817 |
|
---|
818 |
|
---|
819 | /**
|
---|
820 | * Used to fill in g_IoCtlStartVirtualProcessor.
|
---|
821 | */
|
---|
822 | static NTSTATUS WINAPI
|
---|
823 | nemR3WinIoctlDetector_StopVirtualProcessor(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
|
---|
824 | PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
|
---|
825 | PVOID pvOutput, ULONG cbOutput)
|
---|
826 | {
|
---|
827 | AssertLogRelMsgReturn(hFile == NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, ("hFile=%p\n", hFile), STATUS_INVALID_PARAMETER_1);
|
---|
828 | RT_NOREF(hEvt); RT_NOREF(pfnApcCallback); RT_NOREF(pvApcCtx);
|
---|
829 | AssertLogRelMsgReturn(RT_VALID_PTR(pIos), ("pIos=%p\n", pIos), STATUS_INVALID_PARAMETER_5);
|
---|
830 | AssertLogRelMsgReturn(cbInput == sizeof(HV_VP_INDEX), ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_8);
|
---|
831 | AssertLogRelMsgReturn(RT_VALID_PTR(pvInput), ("pvInput=%p\n", pvInput), STATUS_INVALID_PARAMETER_9);
|
---|
832 | AssertLogRelMsgReturn(*(HV_VP_INDEX *)pvInput == NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX,
|
---|
833 | ("*piCpu=%u\n", *(HV_VP_INDEX *)pvInput), STATUS_INVALID_PARAMETER_9);
|
---|
834 | AssertLogRelMsgReturn(cbOutput == 0, ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
|
---|
835 | RT_NOREF(pvOutput);
|
---|
836 |
|
---|
837 | g_IoCtlStopVirtualProcessor.cbInput = cbInput;
|
---|
838 | g_IoCtlStopVirtualProcessor.cbOutput = cbOutput;
|
---|
839 | g_IoCtlStopVirtualProcessor.uFunction = uFunction;
|
---|
840 |
|
---|
841 | return STATUS_SUCCESS;
|
---|
842 | }
|
---|
843 |
|
---|
844 |
|
---|
845 | /**
|
---|
846 | * Used to fill in g_IoCtlMessageSlotHandleAndGetNext
|
---|
847 | */
|
---|
848 | static NTSTATUS WINAPI
|
---|
849 | nemR3WinIoctlDetector_MessageSlotHandleAndGetNext(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
|
---|
850 | PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
|
---|
851 | PVOID pvOutput, ULONG cbOutput)
|
---|
852 | {
|
---|
853 | AssertLogRelMsgReturn(hFile == NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, ("hFile=%p\n", hFile), STATUS_INVALID_PARAMETER_1);
|
---|
854 | RT_NOREF(hEvt); RT_NOREF(pfnApcCallback); RT_NOREF(pvApcCtx);
|
---|
855 | AssertLogRelMsgReturn(RT_VALID_PTR(pIos), ("pIos=%p\n", pIos), STATUS_INVALID_PARAMETER_5);
|
---|
856 |
|
---|
857 | AssertLogRelMsgReturn(cbInput == sizeof(VID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT), ("cbInput=%#x\n", cbInput),
|
---|
858 | STATUS_INVALID_PARAMETER_8);
|
---|
859 | AssertLogRelMsgReturn(RT_VALID_PTR(pvInput), ("pvInput=%p\n", pvInput), STATUS_INVALID_PARAMETER_9);
|
---|
860 | PCVID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT pVidIn = (PCVID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT)pvInput;
|
---|
861 | AssertLogRelMsgReturn( pVidIn->iCpu == NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX
|
---|
862 | && pVidIn->fFlags == VID_MSHAGN_F_HANDLE_MESSAGE
|
---|
863 | && pVidIn->cMillies == NEM_WIN_IOCTL_DETECTOR_FAKE_TIMEOUT,
|
---|
864 | ("iCpu=%u fFlags=%#x cMillies=%#x\n", pVidIn->iCpu, pVidIn->fFlags, pVidIn->cMillies),
|
---|
865 | STATUS_INVALID_PARAMETER_9);
|
---|
866 | AssertLogRelMsgReturn(cbOutput == 0, ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
|
---|
867 | RT_NOREF(pvOutput);
|
---|
868 |
|
---|
869 | g_IoCtlMessageSlotHandleAndGetNext.cbInput = cbInput;
|
---|
870 | g_IoCtlMessageSlotHandleAndGetNext.cbOutput = cbOutput;
|
---|
871 | g_IoCtlMessageSlotHandleAndGetNext.uFunction = uFunction;
|
---|
872 |
|
---|
873 | return STATUS_SUCCESS;
|
---|
874 | }
|
---|
875 |
|
---|
876 |
|
---|
877 | #ifdef LOG_ENABLED
|
---|
878 | /**
|
---|
879 | * Used to fill in what g_pIoCtlDetectForLogging points to.
|
---|
880 | */
|
---|
881 | static NTSTATUS WINAPI nemR3WinIoctlDetector_ForLogging(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
|
---|
882 | PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
|
---|
883 | PVOID pvOutput, ULONG cbOutput)
|
---|
884 | {
|
---|
885 | RT_NOREF(hFile, hEvt, pfnApcCallback, pvApcCtx, pIos, pvInput, pvOutput);
|
---|
886 |
|
---|
887 | g_pIoCtlDetectForLogging->cbInput = cbInput;
|
---|
888 | g_pIoCtlDetectForLogging->cbOutput = cbOutput;
|
---|
889 | g_pIoCtlDetectForLogging->uFunction = uFunction;
|
---|
890 |
|
---|
891 | return STATUS_SUCCESS;
|
---|
892 | }
|
---|
893 | #endif
|
---|
894 |
|
---|
895 |
|
---|
896 | /**
|
---|
897 | * Worker for nemR3NativeInit that detect I/O control function numbers for VID.
|
---|
898 | *
|
---|
899 | * We use the function numbers directly in ring-0 and to name functions when
|
---|
900 | * logging NtDeviceIoControlFile calls.
|
---|
901 | *
|
---|
902 | * @note We could alternatively do this by disassembling the respective
|
---|
903 | * functions, but hooking NtDeviceIoControlFile and making fake calls
|
---|
904 | * more easily provides the desired information.
|
---|
905 | *
|
---|
906 | * @returns VBox status code.
|
---|
907 | * @param pVM The cross context VM structure. Will set I/O
|
---|
908 | * control info members.
|
---|
909 | * @param pErrInfo Where to always return error info.
|
---|
910 | */
|
---|
911 | static int nemR3WinInitDiscoverIoControlProperties(PVM pVM, PRTERRINFO pErrInfo)
|
---|
912 | {
|
---|
913 | /*
|
---|
914 | * Probe the I/O control information for select VID APIs so we can use
|
---|
915 | * them directly from ring-0 and better log them.
|
---|
916 | *
|
---|
917 | */
|
---|
918 | decltype(NtDeviceIoControlFile) * const pfnOrg = *g_ppfnVidNtDeviceIoControlFile;
|
---|
919 |
|
---|
920 | /* VidGetHvPartitionId */
|
---|
921 | *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_GetHvPartitionId;
|
---|
922 | HV_PARTITION_ID idHvPartition = HV_PARTITION_ID_INVALID;
|
---|
923 | BOOL fRet = g_pfnVidGetHvPartitionId(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, &idHvPartition);
|
---|
924 | *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
|
---|
925 | AssertReturn(fRet && idHvPartition == NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_ID && g_IoCtlGetHvPartitionId.uFunction != 0,
|
---|
926 | RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
|
---|
927 | "Problem figuring out VidGetHvPartitionId: fRet=%u idHvPartition=%#x dwErr=%u",
|
---|
928 | fRet, idHvPartition, GetLastError()) );
|
---|
929 | LogRel(("NEM: VidGetHvPartitionId -> fun:%#x in:%#x out:%#x\n",
|
---|
930 | g_IoCtlGetHvPartitionId.uFunction, g_IoCtlGetHvPartitionId.cbInput, g_IoCtlGetHvPartitionId.cbOutput));
|
---|
931 |
|
---|
932 | /* VidStartVirtualProcessor */
|
---|
933 | *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_StartVirtualProcessor;
|
---|
934 | fRet = g_pfnVidStartVirtualProcessor(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX);
|
---|
935 | *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
|
---|
936 | AssertReturn(fRet && g_IoCtlStartVirtualProcessor.uFunction != 0,
|
---|
937 | RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
|
---|
938 | "Problem figuring out VidStartVirtualProcessor: fRet=%u dwErr=%u",
|
---|
939 | fRet, GetLastError()) );
|
---|
940 | LogRel(("NEM: VidStartVirtualProcessor -> fun:%#x in:%#x out:%#x\n", g_IoCtlStartVirtualProcessor.uFunction,
|
---|
941 | g_IoCtlStartVirtualProcessor.cbInput, g_IoCtlStartVirtualProcessor.cbOutput));
|
---|
942 |
|
---|
943 | /* VidStopVirtualProcessor */
|
---|
944 | *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_StopVirtualProcessor;
|
---|
945 | fRet = g_pfnVidStopVirtualProcessor(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX);
|
---|
946 | *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
|
---|
947 | AssertReturn(fRet && g_IoCtlStopVirtualProcessor.uFunction != 0,
|
---|
948 | RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
|
---|
949 | "Problem figuring out VidStopVirtualProcessor: fRet=%u dwErr=%u",
|
---|
950 | fRet, GetLastError()) );
|
---|
951 | LogRel(("NEM: VidStopVirtualProcessor -> fun:%#x in:%#x out:%#x\n", g_IoCtlStopVirtualProcessor.uFunction,
|
---|
952 | g_IoCtlStopVirtualProcessor.cbInput, g_IoCtlStopVirtualProcessor.cbOutput));
|
---|
953 |
|
---|
954 | /* VidMessageSlotHandleAndGetNext */
|
---|
955 | *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_MessageSlotHandleAndGetNext;
|
---|
956 | fRet = g_pfnVidMessageSlotHandleAndGetNext(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE,
|
---|
957 | NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX, VID_MSHAGN_F_HANDLE_MESSAGE,
|
---|
958 | NEM_WIN_IOCTL_DETECTOR_FAKE_TIMEOUT);
|
---|
959 | *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
|
---|
960 | AssertReturn(fRet && g_IoCtlMessageSlotHandleAndGetNext.uFunction != 0,
|
---|
961 | RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
|
---|
962 | "Problem figuring out VidMessageSlotHandleAndGetNext: fRet=%u dwErr=%u",
|
---|
963 | fRet, GetLastError()) );
|
---|
964 | LogRel(("NEM: VidMessageSlotHandleAndGetNext -> fun:%#x in:%#x out:%#x\n",
|
---|
965 | g_IoCtlMessageSlotHandleAndGetNext.uFunction, g_IoCtlMessageSlotHandleAndGetNext.cbInput,
|
---|
966 | g_IoCtlMessageSlotHandleAndGetNext.cbOutput));
|
---|
967 |
|
---|
968 | #ifdef LOG_ENABLED
|
---|
969 | /* The following are only for logging: */
|
---|
970 | union
|
---|
971 | {
|
---|
972 | VID_MAPPED_MESSAGE_SLOT MapSlot;
|
---|
973 | HV_REGISTER_NAME Name;
|
---|
974 | HV_REGISTER_VALUE Value;
|
---|
975 | } uBuf;
|
---|
976 |
|
---|
977 | /* VidMessageSlotMap */
|
---|
978 | g_pIoCtlDetectForLogging = &g_IoCtlMessageSlotMap;
|
---|
979 | *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_ForLogging;
|
---|
980 | fRet = g_pfnVidMessageSlotMap(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, &uBuf.MapSlot, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX);
|
---|
981 | *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
|
---|
982 | Assert(fRet);
|
---|
983 | LogRel(("NEM: VidMessageSlotMap -> fun:%#x in:%#x out:%#x\n", g_pIoCtlDetectForLogging->uFunction,
|
---|
984 | g_pIoCtlDetectForLogging->cbInput, g_pIoCtlDetectForLogging->cbOutput));
|
---|
985 |
|
---|
986 | /* VidGetVirtualProcessorState */
|
---|
987 | uBuf.Name = HvRegisterExplicitSuspend;
|
---|
988 | g_pIoCtlDetectForLogging = &g_IoCtlGetVirtualProcessorState;
|
---|
989 | *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_ForLogging;
|
---|
990 | fRet = g_pfnVidGetVirtualProcessorState(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX,
|
---|
991 | &uBuf.Name, 1, &uBuf.Value);
|
---|
992 | *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
|
---|
993 | Assert(fRet);
|
---|
994 | LogRel(("NEM: VidGetVirtualProcessorState -> fun:%#x in:%#x out:%#x\n", g_pIoCtlDetectForLogging->uFunction,
|
---|
995 | g_pIoCtlDetectForLogging->cbInput, g_pIoCtlDetectForLogging->cbOutput));
|
---|
996 |
|
---|
997 | /* VidSetVirtualProcessorState */
|
---|
998 | uBuf.Name = HvRegisterExplicitSuspend;
|
---|
999 | g_pIoCtlDetectForLogging = &g_IoCtlSetVirtualProcessorState;
|
---|
1000 | *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_ForLogging;
|
---|
1001 | fRet = g_pfnVidSetVirtualProcessorState(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX,
|
---|
1002 | &uBuf.Name, 1, &uBuf.Value);
|
---|
1003 | *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
|
---|
1004 | Assert(fRet);
|
---|
1005 | LogRel(("NEM: VidSetVirtualProcessorState -> fun:%#x in:%#x out:%#x\n", g_pIoCtlDetectForLogging->uFunction,
|
---|
1006 | g_pIoCtlDetectForLogging->cbInput, g_pIoCtlDetectForLogging->cbOutput));
|
---|
1007 |
|
---|
1008 | g_pIoCtlDetectForLogging = NULL;
|
---|
1009 | #endif
|
---|
1010 |
|
---|
1011 | /* Done. */
|
---|
1012 | pVM->nem.s.IoCtlGetHvPartitionId = g_IoCtlGetHvPartitionId;
|
---|
1013 | pVM->nem.s.IoCtlStartVirtualProcessor = g_IoCtlStartVirtualProcessor;
|
---|
1014 | pVM->nem.s.IoCtlStopVirtualProcessor = g_IoCtlStopVirtualProcessor;
|
---|
1015 | pVM->nem.s.IoCtlMessageSlotHandleAndGetNext = g_IoCtlMessageSlotHandleAndGetNext;
|
---|
1016 | return VINF_SUCCESS;
|
---|
1017 | }
|
---|
1018 |
|
---|
1019 |
|
---|
1020 | /**
|
---|
1021 | * Creates and sets up a Hyper-V (exo) partition.
|
---|
1022 | *
|
---|
1023 | * @returns VBox status code.
|
---|
1024 | * @param pVM The cross context VM structure.
|
---|
1025 | * @param pErrInfo Where to always return error info.
|
---|
1026 | */
|
---|
1027 | static int nemR3WinInitCreatePartition(PVM pVM, PRTERRINFO pErrInfo)
|
---|
1028 | {
|
---|
1029 | AssertReturn(!pVM->nem.s.hPartition, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
|
---|
1030 | AssertReturn(!pVM->nem.s.hPartitionDevice, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
|
---|
1031 |
|
---|
1032 | /*
|
---|
1033 | * Create the partition.
|
---|
1034 | */
|
---|
1035 | WHV_PARTITION_HANDLE hPartition;
|
---|
1036 | HRESULT hrc = WHvCreatePartition(&hPartition);
|
---|
1037 | if (FAILED(hrc))
|
---|
1038 | return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "WHvCreatePartition failed with %Rhrc (Last=%#x/%u)",
|
---|
1039 | hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
|
---|
1040 |
|
---|
1041 | int rc;
|
---|
1042 |
|
---|
1043 | /*
|
---|
1044 | * Set partition properties, most importantly the CPU count.
|
---|
1045 | */
|
---|
1046 | /**
|
---|
1047 | * @todo Someone at Microsoft please explain another weird API:
|
---|
1048 | * - Why this API doesn't take the WHV_PARTITION_PROPERTY_CODE value as an
|
---|
1049 | * argument rather than as part of the struct. That is so weird if you've
|
---|
1050 | * used any other NT or windows API, including WHvGetCapability().
|
---|
1051 | * - Why use PVOID when WHV_PARTITION_PROPERTY is what's expected. We
|
---|
1052 | * technically only need 9 bytes for setting/getting
|
---|
1053 | * WHVPartitionPropertyCodeProcessorClFlushSize, but the API insists on 16. */
|
---|
1054 | WHV_PARTITION_PROPERTY Property;
|
---|
1055 | RT_ZERO(Property);
|
---|
1056 | Property.ProcessorCount = pVM->cCpus;
|
---|
1057 | hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeProcessorCount, &Property, sizeof(Property));
|
---|
1058 | if (SUCCEEDED(hrc))
|
---|
1059 | {
|
---|
1060 | RT_ZERO(Property);
|
---|
1061 | Property.ExtendedVmExits.X64CpuidExit = pVM->nem.s.fExtendedCpuIdExit; /** @todo Register fixed results and restrict cpuid exits */
|
---|
1062 | Property.ExtendedVmExits.X64MsrExit = pVM->nem.s.fExtendedMsrExit;
|
---|
1063 | Property.ExtendedVmExits.ExceptionExit = pVM->nem.s.fExtendedXcptExit;
|
---|
1064 | hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeExtendedVmExits, &Property, sizeof(Property));
|
---|
1065 | if (SUCCEEDED(hrc))
|
---|
1066 | {
|
---|
1067 | /*
|
---|
1068 | * We'll continue setup in nemR3NativeInitAfterCPUM.
|
---|
1069 | */
|
---|
1070 | pVM->nem.s.fCreatedEmts = false;
|
---|
1071 | pVM->nem.s.hPartition = hPartition;
|
---|
1072 | LogRel(("NEM: Created partition %p.\n", hPartition));
|
---|
1073 | return VINF_SUCCESS;
|
---|
1074 | }
|
---|
1075 |
|
---|
1076 | rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED,
|
---|
1077 | "Failed setting WHvPartitionPropertyCodeExtendedVmExits to %'#RX64: %Rhrc",
|
---|
1078 | Property.ExtendedVmExits.AsUINT64, hrc);
|
---|
1079 | }
|
---|
1080 | else
|
---|
1081 | rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED,
|
---|
1082 | "Failed setting WHvPartitionPropertyCodeProcessorCount to %u: %Rhrc (Last=%#x/%u)",
|
---|
1083 | pVM->cCpus, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
|
---|
1084 | WHvDeletePartition(hPartition);
|
---|
1085 |
|
---|
1086 | Assert(!pVM->nem.s.hPartitionDevice);
|
---|
1087 | Assert(!pVM->nem.s.hPartition);
|
---|
1088 | return rc;
|
---|
1089 | }
|
---|
1090 |
|
---|
1091 |
|
---|
1092 | /**
|
---|
1093 | * Makes sure APIC and firmware will not allow X2APIC mode.
|
---|
1094 | *
|
---|
1095 | * This is rather ugly.
|
---|
1096 | *
|
---|
1097 | * @returns VBox status code
|
---|
1098 | * @param pVM The cross context VM structure.
|
---|
1099 | */
|
---|
1100 | static int nemR3WinDisableX2Apic(PVM pVM)
|
---|
1101 | {
|
---|
1102 | /*
|
---|
1103 | * First make sure the 'Mode' config value of the APIC isn't set to X2APIC.
|
---|
1104 | * This defaults to APIC, so no need to change unless it's X2APIC.
|
---|
1105 | */
|
---|
1106 | PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/Devices/apic/0/Config");
|
---|
1107 | if (pCfg)
|
---|
1108 | {
|
---|
1109 | uint8_t bMode = 0;
|
---|
1110 | int rc = CFGMR3QueryU8(pCfg, "Mode", &bMode);
|
---|
1111 | AssertLogRelMsgReturn(RT_SUCCESS(rc) || rc == VERR_CFGM_VALUE_NOT_FOUND, ("%Rrc\n", rc), rc);
|
---|
1112 | if (RT_SUCCESS(rc) && bMode == PDMAPICMODE_X2APIC)
|
---|
1113 | {
|
---|
1114 | LogRel(("NEM: Adjusting APIC configuration from X2APIC to APIC max mode. X2APIC is not supported by the WinHvPlatform API!\n"));
|
---|
1115 | LogRel(("NEM: Disable Hyper-V if you need X2APIC for your guests!\n"));
|
---|
1116 | rc = CFGMR3RemoveValue(pCfg, "Mode");
|
---|
1117 | rc = CFGMR3InsertInteger(pCfg, "Mode", PDMAPICMODE_APIC);
|
---|
1118 | AssertLogRelRCReturn(rc, rc);
|
---|
1119 | }
|
---|
1120 | }
|
---|
1121 |
|
---|
1122 | /*
|
---|
1123 | * Now the firmwares.
|
---|
1124 | * These also defaults to APIC and only needs adjusting if configured to X2APIC (2).
|
---|
1125 | */
|
---|
1126 | static const char * const s_apszFirmwareConfigs[] =
|
---|
1127 | {
|
---|
1128 | "/Devices/efi/0/Config",
|
---|
1129 | "/Devices/pcbios/0/Config",
|
---|
1130 | };
|
---|
1131 | for (unsigned i = 0; i < RT_ELEMENTS(s_apszFirmwareConfigs); i++)
|
---|
1132 | {
|
---|
1133 | pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/Devices/APIC/0/Config");
|
---|
1134 | if (pCfg)
|
---|
1135 | {
|
---|
1136 | uint8_t bMode = 0;
|
---|
1137 | int rc = CFGMR3QueryU8(pCfg, "APIC", &bMode);
|
---|
1138 | AssertLogRelMsgReturn(RT_SUCCESS(rc) || rc == VERR_CFGM_VALUE_NOT_FOUND, ("%Rrc\n", rc), rc);
|
---|
1139 | if (RT_SUCCESS(rc) && bMode == 2)
|
---|
1140 | {
|
---|
1141 | LogRel(("NEM: Adjusting %s/Mode from 2 (X2APIC) to 1 (APIC).\n", s_apszFirmwareConfigs[i]));
|
---|
1142 | rc = CFGMR3RemoveValue(pCfg, "APIC");
|
---|
1143 | rc = CFGMR3InsertInteger(pCfg, "APIC", 1);
|
---|
1144 | AssertLogRelRCReturn(rc, rc);
|
---|
1145 | }
|
---|
1146 | }
|
---|
1147 | }
|
---|
1148 |
|
---|
1149 | return VINF_SUCCESS;
|
---|
1150 | }
|
---|
1151 |
|
---|
1152 |
|
---|
1153 | /**
|
---|
1154 | * Try initialize the native API.
|
---|
1155 | *
|
---|
1156 | * This may only do part of the job, more can be done in
|
---|
1157 | * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted().
|
---|
1158 | *
|
---|
1159 | * @returns VBox status code.
|
---|
1160 | * @param pVM The cross context VM structure.
|
---|
1161 | * @param fFallback Whether we're in fallback mode or use-NEM mode. In
|
---|
1162 | * the latter we'll fail if we cannot initialize.
|
---|
1163 | * @param fForced Whether the HMForced flag is set and we should
|
---|
1164 | * fail if we cannot initialize.
|
---|
1165 | */
|
---|
1166 | int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced)
|
---|
1167 | {
|
---|
1168 | g_uBuildNo = RTSystemGetNtBuildNo();
|
---|
1169 |
|
---|
1170 | /*
|
---|
1171 | * Some state init.
|
---|
1172 | */
|
---|
1173 | pVM->nem.s.fA20Enabled = true;
|
---|
1174 | #if 0
|
---|
1175 | for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
|
---|
1176 | {
|
---|
1177 | PNEMCPU pNemCpu = &pVM->aCpus[iCpu].nem.s;
|
---|
1178 | }
|
---|
1179 | #endif
|
---|
1180 |
|
---|
1181 | /*
|
---|
1182 | * Error state.
|
---|
1183 | * The error message will be non-empty on failure and 'rc' will be set too.
|
---|
1184 | */
|
---|
1185 | RTERRINFOSTATIC ErrInfo;
|
---|
1186 | PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo);
|
---|
1187 | int rc = nemR3WinInitProbeAndLoad(fForced, pErrInfo);
|
---|
1188 | if (RT_SUCCESS(rc))
|
---|
1189 | {
|
---|
1190 | /*
|
---|
1191 | * Check the capabilties of the hypervisor, starting with whether it's present.
|
---|
1192 | */
|
---|
1193 | rc = nemR3WinInitCheckCapabilities(pVM, pErrInfo);
|
---|
1194 | if (RT_SUCCESS(rc))
|
---|
1195 | {
|
---|
1196 | /*
|
---|
1197 | * Discover the VID I/O control function numbers we need.
|
---|
1198 | */
|
---|
1199 | rc = nemR3WinInitDiscoverIoControlProperties(pVM, pErrInfo);
|
---|
1200 | if (RT_SUCCESS(rc))
|
---|
1201 | {
|
---|
1202 | /*
|
---|
1203 | * Check out our ring-0 capabilities.
|
---|
1204 | */
|
---|
1205 | rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_NEM_INIT_VM, 0, NULL);
|
---|
1206 | if (RT_SUCCESS(rc))
|
---|
1207 | {
|
---|
1208 | /*
|
---|
1209 | * Create and initialize a partition.
|
---|
1210 | */
|
---|
1211 | rc = nemR3WinInitCreatePartition(pVM, pErrInfo);
|
---|
1212 | if (RT_SUCCESS(rc))
|
---|
1213 | {
|
---|
1214 | VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API);
|
---|
1215 | Log(("NEM: Marked active!\n"));
|
---|
1216 | nemR3WinDisableX2Apic(pVM);
|
---|
1217 |
|
---|
1218 | /* Register release statistics */
|
---|
1219 | for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
|
---|
1220 | {
|
---|
1221 | PNEMCPU pNemCpu = &pVM->aCpus[iCpu].nem.s;
|
---|
1222 | STAMR3RegisterF(pVM, &pNemCpu->StatExitPortIo, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of port I/O exits", "/NEM/CPU%u/ExitPortIo", iCpu);
|
---|
1223 | STAMR3RegisterF(pVM, &pNemCpu->StatExitMemUnmapped, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of unmapped memory exits", "/NEM/CPU%u/ExitMemUnmapped", iCpu);
|
---|
1224 | STAMR3RegisterF(pVM, &pNemCpu->StatExitMemIntercept, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of intercepted memory exits", "/NEM/CPU%u/ExitMemIntercept", iCpu);
|
---|
1225 | STAMR3RegisterF(pVM, &pNemCpu->StatExitHalt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of HLT exits", "/NEM/CPU%u/ExitHalt", iCpu);
|
---|
1226 | STAMR3RegisterF(pVM, &pNemCpu->StatExitInterruptWindow, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of HLT exits", "/NEM/CPU%u/ExitInterruptWindow", iCpu);
|
---|
1227 | STAMR3RegisterF(pVM, &pNemCpu->StatExitCpuId, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of CPUID exits", "/NEM/CPU%u/ExitCpuId", iCpu);
|
---|
1228 | STAMR3RegisterF(pVM, &pNemCpu->StatExitMsr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of MSR access exits", "/NEM/CPU%u/ExitMsr", iCpu);
|
---|
1229 | STAMR3RegisterF(pVM, &pNemCpu->StatExitException, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of exception exits", "/NEM/CPU%u/ExitException", iCpu);
|
---|
1230 | STAMR3RegisterF(pVM, &pNemCpu->StatExitExceptionBp, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of #BP exits", "/NEM/CPU%u/ExitExceptionBp", iCpu);
|
---|
1231 | STAMR3RegisterF(pVM, &pNemCpu->StatExitExceptionDb, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of #DB exits", "/NEM/CPU%u/ExitExceptionDb", iCpu);
|
---|
1232 | STAMR3RegisterF(pVM, &pNemCpu->StatExitExceptionUd, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of #UD exits", "/NEM/CPU%u/ExitExceptionUd", iCpu);
|
---|
1233 | STAMR3RegisterF(pVM, &pNemCpu->StatExitExceptionUdHandled, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of handled #UD exits", "/NEM/CPU%u/ExitExceptionUdHandled", iCpu);
|
---|
1234 | STAMR3RegisterF(pVM, &pNemCpu->StatExitUnrecoverable, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of unrecoverable exits", "/NEM/CPU%u/ExitUnrecoverable", iCpu);
|
---|
1235 | STAMR3RegisterF(pVM, &pNemCpu->StatGetMsgTimeout, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of get message timeouts/alerts", "/NEM/CPU%u/GetMsgTimeout", iCpu);
|
---|
1236 | STAMR3RegisterF(pVM, &pNemCpu->StatStopCpuSuccess, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of successful CPU stops", "/NEM/CPU%u/StopCpuSuccess", iCpu);
|
---|
1237 | STAMR3RegisterF(pVM, &pNemCpu->StatStopCpuPending, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of pending CPU stops", "/NEM/CPU%u/StopCpuPending", iCpu);
|
---|
1238 | STAMR3RegisterF(pVM, &pNemCpu->StatStopCpuPendingAlerts,STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of pending CPU stop alerts", "/NEM/CPU%u/StopCpuPendingAlerts", iCpu);
|
---|
1239 | STAMR3RegisterF(pVM, &pNemCpu->StatStopCpuPendingOdd, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of odd pending CPU stops (see code)", "/NEM/CPU%u/StopCpuPendingOdd", iCpu);
|
---|
1240 | STAMR3RegisterF(pVM, &pNemCpu->StatCancelChangedState, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of cancel changed state", "/NEM/CPU%u/CancelChangedState", iCpu);
|
---|
1241 | STAMR3RegisterF(pVM, &pNemCpu->StatCancelAlertedThread, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of cancel alerted EMT", "/NEM/CPU%u/CancelAlertedEMT", iCpu);
|
---|
1242 | STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnFFPre, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of pre execution FF breaks", "/NEM/CPU%u/BreakOnFFPre", iCpu);
|
---|
1243 | STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnFFPost, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of post execution FF breaks", "/NEM/CPU%u/BreakOnFFPost", iCpu);
|
---|
1244 | STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnCancel, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of cancel execution breaks", "/NEM/CPU%u/BreakOnCancel", iCpu);
|
---|
1245 | STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnStatus, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of status code breaks", "/NEM/CPU%u/BreakOnStatus", iCpu);
|
---|
1246 | STAMR3RegisterF(pVM, &pNemCpu->StatImportOnDemand, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of on-demand state imports", "/NEM/CPU%u/ImportOnDemand", iCpu);
|
---|
1247 | STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturn, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of state imports on loop return", "/NEM/CPU%u/ImportOnReturn", iCpu);
|
---|
1248 | STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturnSkipped, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of skipped state imports on loop return", "/NEM/CPU%u/ImportOnReturnSkipped", iCpu);
|
---|
1249 | STAMR3RegisterF(pVM, &pNemCpu->StatQueryCpuTick, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TSC queries", "/NEM/CPU%u/QueryCpuTick", iCpu);
|
---|
1250 | }
|
---|
1251 |
|
---|
1252 | PUVM pUVM = pVM->pUVM;
|
---|
1253 | STAMR3RegisterRefresh(pUVM, &pVM->nem.s.R0Stats.cPagesAvailable, STAMTYPE_U64, STAMVISIBILITY_ALWAYS,
|
---|
1254 | STAMUNIT_PAGES, STAM_REFRESH_GRP_NEM, "Free pages available to the hypervisor",
|
---|
1255 | "/NEM/R0Stats/cPagesAvailable");
|
---|
1256 | STAMR3RegisterRefresh(pUVM, &pVM->nem.s.R0Stats.cPagesInUse, STAMTYPE_U64, STAMVISIBILITY_ALWAYS,
|
---|
1257 | STAMUNIT_PAGES, STAM_REFRESH_GRP_NEM, "Pages in use by hypervisor",
|
---|
1258 | "/NEM/R0Stats/cPagesInUse");
|
---|
1259 | }
|
---|
1260 | }
|
---|
1261 | }
|
---|
1262 | }
|
---|
1263 | }
|
---|
1264 |
|
---|
1265 | /*
|
---|
1266 | * We only fail if in forced mode, otherwise just log the complaint and return.
|
---|
1267 | */
|
---|
1268 | Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API || RTErrInfoIsSet(pErrInfo));
|
---|
1269 | if ( (fForced || !fFallback)
|
---|
1270 | && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API)
|
---|
1271 | return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg);
|
---|
1272 |
|
---|
1273 | if (RTErrInfoIsSet(pErrInfo))
|
---|
1274 | LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg));
|
---|
1275 | return VINF_SUCCESS;
|
---|
1276 | }
|
---|
1277 |
|
---|
1278 |
|
---|
1279 | /**
|
---|
1280 | * This is called after CPUMR3Init is done.
|
---|
1281 | *
|
---|
1282 | * @returns VBox status code.
|
---|
1283 | * @param pVM The VM handle..
|
---|
1284 | */
|
---|
1285 | int nemR3NativeInitAfterCPUM(PVM pVM)
|
---|
1286 | {
|
---|
1287 | /*
|
---|
1288 | * Validate sanity.
|
---|
1289 | */
|
---|
1290 | WHV_PARTITION_HANDLE hPartition = pVM->nem.s.hPartition;
|
---|
1291 | AssertReturn(hPartition != NULL, VERR_WRONG_ORDER);
|
---|
1292 | AssertReturn(!pVM->nem.s.hPartitionDevice, VERR_WRONG_ORDER);
|
---|
1293 | AssertReturn(!pVM->nem.s.fCreatedEmts, VERR_WRONG_ORDER);
|
---|
1294 | AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER);
|
---|
1295 |
|
---|
1296 | /*
|
---|
1297 | * Continue setting up the partition now that we've got most of the CPUID feature stuff.
|
---|
1298 | */
|
---|
1299 | WHV_PARTITION_PROPERTY Property;
|
---|
1300 | HRESULT hrc;
|
---|
1301 |
|
---|
1302 | #if 0
|
---|
1303 | /* Not sure if we really need to set the vendor.
|
---|
1304 | Update: Apparently we don't. WHvPartitionPropertyCodeProcessorVendor was removed in 17110. */
|
---|
1305 | RT_ZERO(Property);
|
---|
1306 | Property.ProcessorVendor = pVM->nem.s.enmCpuVendor == CPUMCPUVENDOR_AMD ? WHvProcessorVendorAmd
|
---|
1307 | : WHvProcessorVendorIntel;
|
---|
1308 | hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeProcessorVendor, &Property, sizeof(Property));
|
---|
1309 | if (FAILED(hrc))
|
---|
1310 | return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
|
---|
1311 | "Failed to set WHvPartitionPropertyCodeProcessorVendor to %u: %Rhrc (Last=%#x/%u)",
|
---|
1312 | Property.ProcessorVendor, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
|
---|
1313 | #endif
|
---|
1314 |
|
---|
1315 | /* Not sure if we really need to set the cache line flush size. */
|
---|
1316 | RT_ZERO(Property);
|
---|
1317 | Property.ProcessorClFlushSize = pVM->nem.s.cCacheLineFlushShift;
|
---|
1318 | hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeProcessorClFlushSize, &Property, sizeof(Property));
|
---|
1319 | if (FAILED(hrc))
|
---|
1320 | return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
|
---|
1321 | "Failed to set WHvPartitionPropertyCodeProcessorClFlushSize to %u: %Rhrc (Last=%#x/%u)",
|
---|
1322 | pVM->nem.s.cCacheLineFlushShift, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
|
---|
1323 |
|
---|
1324 | /* Intercept #DB, #BP and #UD exceptions. */
|
---|
1325 | RT_ZERO(Property);
|
---|
1326 | Property.ExceptionExitBitmap = RT_BIT_64(WHvX64ExceptionTypeDebugTrapOrFault)
|
---|
1327 | | RT_BIT_64(WHvX64ExceptionTypeBreakpointTrap)
|
---|
1328 | | RT_BIT_64(WHvX64ExceptionTypeInvalidOpcodeFault);
|
---|
1329 | hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeExceptionExitBitmap, &Property, sizeof(Property));
|
---|
1330 | if (FAILED(hrc))
|
---|
1331 | return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
|
---|
1332 | "Failed to set WHvPartitionPropertyCodeExceptionExitBitmap to %#RX64: %Rhrc (Last=%#x/%u)",
|
---|
1333 | Property.ExceptionExitBitmap, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
|
---|
1334 |
|
---|
1335 |
|
---|
1336 | /*
|
---|
1337 | * Sync CPU features with CPUM.
|
---|
1338 | */
|
---|
1339 | /** @todo sync CPU features with CPUM. */
|
---|
1340 |
|
---|
1341 | /* Set the partition property. */
|
---|
1342 | RT_ZERO(Property);
|
---|
1343 | Property.ProcessorFeatures.AsUINT64 = pVM->nem.s.uCpuFeatures.u64;
|
---|
1344 | hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeProcessorFeatures, &Property, sizeof(Property));
|
---|
1345 | if (FAILED(hrc))
|
---|
1346 | return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
|
---|
1347 | "Failed to set WHvPartitionPropertyCodeProcessorFeatures to %'#RX64: %Rhrc (Last=%#x/%u)",
|
---|
1348 | pVM->nem.s.uCpuFeatures.u64, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
|
---|
1349 |
|
---|
1350 | /*
|
---|
1351 | * Set up the partition and create EMTs.
|
---|
1352 | *
|
---|
1353 | * Seems like this is where the partition is actually instantiated and we get
|
---|
1354 | * a handle to it.
|
---|
1355 | */
|
---|
1356 | hrc = WHvSetupPartition(hPartition);
|
---|
1357 | if (FAILED(hrc))
|
---|
1358 | return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
|
---|
1359 | "Call to WHvSetupPartition failed: %Rhrc (Last=%#x/%u)",
|
---|
1360 | hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
|
---|
1361 |
|
---|
1362 | /* Get the handle. */
|
---|
1363 | HANDLE hPartitionDevice;
|
---|
1364 | __try
|
---|
1365 | {
|
---|
1366 | hPartitionDevice = ((HANDLE *)hPartition)[1];
|
---|
1367 | }
|
---|
1368 | __except(EXCEPTION_EXECUTE_HANDLER)
|
---|
1369 | {
|
---|
1370 | hrc = GetExceptionCode();
|
---|
1371 | hPartitionDevice = NULL;
|
---|
1372 | }
|
---|
1373 | if ( hPartitionDevice == NULL
|
---|
1374 | || hPartitionDevice == (HANDLE)(intptr_t)-1)
|
---|
1375 | return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
|
---|
1376 | "Failed to get device handle for partition %p: %Rhrc", hPartition, hrc);
|
---|
1377 |
|
---|
1378 | HV_PARTITION_ID idHvPartition = HV_PARTITION_ID_INVALID;
|
---|
1379 | if (!g_pfnVidGetHvPartitionId(hPartitionDevice, &idHvPartition))
|
---|
1380 | return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
|
---|
1381 | "Failed to get device handle and/or partition ID for %p (hPartitionDevice=%p, Last=%#x/%u)",
|
---|
1382 | hPartition, hPartitionDevice, RTNtLastStatusValue(), RTNtLastErrorValue());
|
---|
1383 | pVM->nem.s.hPartitionDevice = hPartitionDevice;
|
---|
1384 | pVM->nem.s.idHvPartition = idHvPartition;
|
---|
1385 |
|
---|
1386 | /*
|
---|
1387 | * Setup the EMTs.
|
---|
1388 | */
|
---|
1389 | VMCPUID iCpu;
|
---|
1390 | for (iCpu = 0; iCpu < pVM->cCpus; iCpu++)
|
---|
1391 | {
|
---|
1392 | PVMCPU pVCpu = &pVM->aCpus[iCpu];
|
---|
1393 |
|
---|
1394 | pVCpu->nem.s.hNativeThreadHandle = (RTR3PTR)RTThreadGetNativeHandle(VMR3GetThreadHandle(pVCpu->pUVCpu));
|
---|
1395 | Assert((HANDLE)pVCpu->nem.s.hNativeThreadHandle != INVALID_HANDLE_VALUE);
|
---|
1396 |
|
---|
1397 | #ifndef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
1398 | # ifdef NEM_WIN_WITH_RING0_RUNLOOP
|
---|
1399 | if (!pVM->nem.s.fUseRing0Runloop)
|
---|
1400 | # endif
|
---|
1401 | {
|
---|
1402 | hrc = WHvCreateVirtualProcessor(hPartition, iCpu, 0 /*fFlags*/);
|
---|
1403 | if (FAILED(hrc))
|
---|
1404 | {
|
---|
1405 | NTSTATUS const rcNtLast = RTNtLastStatusValue();
|
---|
1406 | DWORD const dwErrLast = RTNtLastErrorValue();
|
---|
1407 | while (iCpu-- > 0)
|
---|
1408 | {
|
---|
1409 | HRESULT hrc2 = WHvDeleteVirtualProcessor(hPartition, iCpu);
|
---|
1410 | AssertLogRelMsg(SUCCEEDED(hrc2), ("WHvDeleteVirtualProcessor(%p, %u) -> %Rhrc (Last=%#x/%u)\n",
|
---|
1411 | hPartition, iCpu, hrc2, RTNtLastStatusValue(),
|
---|
1412 | RTNtLastErrorValue()));
|
---|
1413 | }
|
---|
1414 | return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
|
---|
1415 | "Call to WHvSetupPartition failed: %Rhrc (Last=%#x/%u)", hrc, rcNtLast, dwErrLast);
|
---|
1416 | }
|
---|
1417 | }
|
---|
1418 | # ifdef NEM_WIN_WITH_RING0_RUNLOOP
|
---|
1419 | else
|
---|
1420 | # endif
|
---|
1421 | #endif /* !NEM_WIN_USE_OUR_OWN_RUN_API */
|
---|
1422 | #if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_OUR_OWN_RUN_API)
|
---|
1423 | {
|
---|
1424 | VID_MAPPED_MESSAGE_SLOT MappedMsgSlot = { NULL, UINT32_MAX, UINT32_MAX };
|
---|
1425 | if (g_pfnVidMessageSlotMap(hPartitionDevice, &MappedMsgSlot, iCpu))
|
---|
1426 | {
|
---|
1427 | AssertLogRelMsg(MappedMsgSlot.iCpu == iCpu && MappedMsgSlot.uParentAdvisory == UINT32_MAX,
|
---|
1428 | ("%#x %#x (iCpu=%#x)\n", MappedMsgSlot.iCpu, MappedMsgSlot.uParentAdvisory, iCpu));
|
---|
1429 | pVCpu->nem.s.pvMsgSlotMapping = MappedMsgSlot.pMsgBlock;
|
---|
1430 | }
|
---|
1431 | else
|
---|
1432 | {
|
---|
1433 | NTSTATUS const rcNtLast = RTNtLastStatusValue();
|
---|
1434 | DWORD const dwErrLast = RTNtLastErrorValue();
|
---|
1435 | return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
|
---|
1436 | "Call to WHvSetupPartition failed: %Rhrc (Last=%#x/%u)", hrc, rcNtLast, dwErrLast);
|
---|
1437 | }
|
---|
1438 | }
|
---|
1439 | #endif
|
---|
1440 | }
|
---|
1441 | pVM->nem.s.fCreatedEmts = true;
|
---|
1442 |
|
---|
1443 | /*
|
---|
1444 | * Do some more ring-0 initialization now that we've got the partition handle.
|
---|
1445 | */
|
---|
1446 | int rc = VMMR3CallR0Emt(pVM, &pVM->aCpus[0], VMMR0_DO_NEM_INIT_VM_PART_2, 0, NULL);
|
---|
1447 | if (RT_SUCCESS(rc))
|
---|
1448 | {
|
---|
1449 | LogRel(("NEM: Successfully set up partition (device handle %p, partition ID %#llx)\n", hPartitionDevice, idHvPartition));
|
---|
1450 |
|
---|
1451 | #if 1
|
---|
1452 | VMMR3CallR0Emt(pVM, &pVM->aCpus[0], VMMR0_DO_NEM_UPDATE_STATISTICS, 0, NULL);
|
---|
1453 | LogRel(("NEM: Memory balance: %#RX64 out of %#RX64 pages in use\n",
|
---|
1454 | pVM->nem.s.R0Stats.cPagesInUse, pVM->nem.s.R0Stats.cPagesAvailable));
|
---|
1455 | #endif
|
---|
1456 |
|
---|
1457 | /*
|
---|
1458 | * Register statistics on shared pages.
|
---|
1459 | */
|
---|
1460 | /** @todo HvCallMapStatsPage */
|
---|
1461 |
|
---|
1462 | /*
|
---|
1463 | * Adjust features.
|
---|
1464 | * Note! We've already disabled X2APIC via CFGM during the first init call.
|
---|
1465 | */
|
---|
1466 |
|
---|
1467 | #if 0 && defined(DEBUG_bird)
|
---|
1468 | /*
|
---|
1469 | * Poke and probe a little.
|
---|
1470 | */
|
---|
1471 | PVMCPU pVCpu = &pVM->aCpus[0];
|
---|
1472 | uint32_t aRegNames[1024];
|
---|
1473 | HV_REGISTER_VALUE aRegValues[1024];
|
---|
1474 | uint32_t aPropCodes[128];
|
---|
1475 | uint64_t aPropValues[128];
|
---|
1476 | for (int iOuter = 0; iOuter < 5; iOuter++)
|
---|
1477 | {
|
---|
1478 | LogRel(("\niOuter %d\n", iOuter));
|
---|
1479 | # if 1
|
---|
1480 | /* registers */
|
---|
1481 | uint32_t iRegValue = 0;
|
---|
1482 | uint32_t cRegChanges = 0;
|
---|
1483 | for (uint32_t iReg = 0; iReg < 0x001101ff; iReg++)
|
---|
1484 | {
|
---|
1485 | if (iOuter != 0 && aRegNames[iRegValue] > iReg)
|
---|
1486 | continue;
|
---|
1487 | RT_ZERO(pVCpu->nem.s.Hypercall.Experiment);
|
---|
1488 | pVCpu->nem.s.Hypercall.Experiment.uItem = iReg;
|
---|
1489 | int rc2 = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_EXPERIMENT, 0, NULL);
|
---|
1490 | AssertLogRelRCBreak(rc2);
|
---|
1491 | if (pVCpu->nem.s.Hypercall.Experiment.fSuccess)
|
---|
1492 | {
|
---|
1493 | LogRel(("Register %#010x = %#18RX64, %#18RX64\n", iReg,
|
---|
1494 | pVCpu->nem.s.Hypercall.Experiment.uLoValue, pVCpu->nem.s.Hypercall.Experiment.uHiValue));
|
---|
1495 | if (iReg == HvX64RegisterTsc)
|
---|
1496 | {
|
---|
1497 | uint64_t uTsc = ASMReadTSC();
|
---|
1498 | LogRel(("TSC = %#18RX64; Delta %#18RX64 or %#18RX64\n",
|
---|
1499 | uTsc, pVCpu->nem.s.Hypercall.Experiment.uLoValue - uTsc, uTsc - pVCpu->nem.s.Hypercall.Experiment.uLoValue));
|
---|
1500 | }
|
---|
1501 |
|
---|
1502 | if (iOuter == 0)
|
---|
1503 | aRegNames[iRegValue] = iReg;
|
---|
1504 | else if( aRegValues[iRegValue].Reg128.Low64 != pVCpu->nem.s.Hypercall.Experiment.uLoValue
|
---|
1505 | || aRegValues[iRegValue].Reg128.High64 != pVCpu->nem.s.Hypercall.Experiment.uHiValue)
|
---|
1506 | {
|
---|
1507 | LogRel(("Changed from %#18RX64, %#18RX64 !!\n",
|
---|
1508 | aRegValues[iRegValue].Reg128.Low64, aRegValues[iRegValue].Reg128.High64));
|
---|
1509 | LogRel(("Delta %#18RX64, %#18RX64 !!\n",
|
---|
1510 | pVCpu->nem.s.Hypercall.Experiment.uLoValue - aRegValues[iRegValue].Reg128.Low64,
|
---|
1511 | pVCpu->nem.s.Hypercall.Experiment.uHiValue - aRegValues[iRegValue].Reg128.High64));
|
---|
1512 | cRegChanges++;
|
---|
1513 | }
|
---|
1514 | aRegValues[iRegValue].Reg128.Low64 = pVCpu->nem.s.Hypercall.Experiment.uLoValue;
|
---|
1515 | aRegValues[iRegValue].Reg128.High64 = pVCpu->nem.s.Hypercall.Experiment.uHiValue;
|
---|
1516 | iRegValue++;
|
---|
1517 | AssertBreak(iRegValue < RT_ELEMENTS(aRegValues));
|
---|
1518 | }
|
---|
1519 | }
|
---|
1520 | LogRel(("Found %u registers, %u changed\n", iRegValue, cRegChanges));
|
---|
1521 | # endif
|
---|
1522 | # if 1
|
---|
1523 | /* partition properties */
|
---|
1524 | uint32_t iPropValue = 0;
|
---|
1525 | uint32_t cPropChanges = 0;
|
---|
1526 | for (uint32_t iProp = 0; iProp < 0xc11ff; iProp++)
|
---|
1527 | {
|
---|
1528 | if (iProp == HvPartitionPropertyDebugChannelId /* hangs host */)
|
---|
1529 | continue;
|
---|
1530 | if (iOuter != 0 && aPropCodes[iPropValue] > iProp)
|
---|
1531 | continue;
|
---|
1532 | RT_ZERO(pVCpu->nem.s.Hypercall.Experiment);
|
---|
1533 | pVCpu->nem.s.Hypercall.Experiment.uItem = iProp;
|
---|
1534 | int rc2 = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_EXPERIMENT, 1, NULL);
|
---|
1535 | AssertLogRelRCBreak(rc2);
|
---|
1536 | if (pVCpu->nem.s.Hypercall.Experiment.fSuccess)
|
---|
1537 | {
|
---|
1538 | LogRel(("Property %#010x = %#18RX64\n", iProp, pVCpu->nem.s.Hypercall.Experiment.uLoValue));
|
---|
1539 | if (iOuter == 0)
|
---|
1540 | aPropCodes[iPropValue] = iProp;
|
---|
1541 | else if (aPropValues[iPropValue] != pVCpu->nem.s.Hypercall.Experiment.uLoValue)
|
---|
1542 | {
|
---|
1543 | LogRel(("Changed from %#18RX64, delta %#18RX64!!\n",
|
---|
1544 | aPropValues[iPropValue], pVCpu->nem.s.Hypercall.Experiment.uLoValue - aPropValues[iPropValue]));
|
---|
1545 | cRegChanges++;
|
---|
1546 | }
|
---|
1547 | aPropValues[iPropValue] = pVCpu->nem.s.Hypercall.Experiment.uLoValue;
|
---|
1548 | iPropValue++;
|
---|
1549 | AssertBreak(iPropValue < RT_ELEMENTS(aPropValues));
|
---|
1550 | }
|
---|
1551 | }
|
---|
1552 | LogRel(("Found %u properties, %u changed\n", iPropValue, cPropChanges));
|
---|
1553 | # endif
|
---|
1554 |
|
---|
1555 | /* Modify the TSC register value and see what changes. */
|
---|
1556 | if (iOuter != 0)
|
---|
1557 | {
|
---|
1558 | RT_ZERO(pVCpu->nem.s.Hypercall.Experiment);
|
---|
1559 | pVCpu->nem.s.Hypercall.Experiment.uItem = HvX64RegisterTsc;
|
---|
1560 | pVCpu->nem.s.Hypercall.Experiment.uHiValue = UINT64_C(0x00000fffffffffff) >> iOuter;
|
---|
1561 | pVCpu->nem.s.Hypercall.Experiment.uLoValue = UINT64_C(0x0011100000000000) << iOuter;
|
---|
1562 | VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_EXPERIMENT, 2, NULL);
|
---|
1563 | LogRel(("Setting HvX64RegisterTsc -> %RTbool (%#RX64)\n", pVCpu->nem.s.Hypercall.Experiment.fSuccess, pVCpu->nem.s.Hypercall.Experiment.uStatus));
|
---|
1564 | }
|
---|
1565 |
|
---|
1566 | RT_ZERO(pVCpu->nem.s.Hypercall.Experiment);
|
---|
1567 | pVCpu->nem.s.Hypercall.Experiment.uItem = HvX64RegisterTsc;
|
---|
1568 | VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_EXPERIMENT, 0, NULL);
|
---|
1569 | LogRel(("HvX64RegisterTsc = %#RX64, %#RX64\n", pVCpu->nem.s.Hypercall.Experiment.uLoValue, pVCpu->nem.s.Hypercall.Experiment.uHiValue));
|
---|
1570 | }
|
---|
1571 |
|
---|
1572 | #endif
|
---|
1573 | return VINF_SUCCESS;
|
---|
1574 | }
|
---|
1575 | return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Call to NEMR0InitVMPart2 failed: %Rrc", rc);
|
---|
1576 | }
|
---|
1577 |
|
---|
1578 |
|
---|
1579 | int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
|
---|
1580 | {
|
---|
1581 | //BOOL fRet = SetThreadPriority(GetCurrentThread(), 0);
|
---|
1582 | //AssertLogRel(fRet);
|
---|
1583 |
|
---|
1584 | NOREF(pVM); NOREF(enmWhat);
|
---|
1585 | return VINF_SUCCESS;
|
---|
1586 | }
|
---|
1587 |
|
---|
1588 |
|
---|
1589 | int nemR3NativeTerm(PVM pVM)
|
---|
1590 | {
|
---|
1591 | /*
|
---|
1592 | * Delete the partition.
|
---|
1593 | */
|
---|
1594 | WHV_PARTITION_HANDLE hPartition = pVM->nem.s.hPartition;
|
---|
1595 | pVM->nem.s.hPartition = NULL;
|
---|
1596 | pVM->nem.s.hPartitionDevice = NULL;
|
---|
1597 | if (hPartition != NULL)
|
---|
1598 | {
|
---|
1599 | VMCPUID iCpu = pVM->nem.s.fCreatedEmts ? pVM->cCpus : 0;
|
---|
1600 | LogRel(("NEM: Destroying partition %p with its %u VCpus...\n", hPartition, iCpu));
|
---|
1601 | while (iCpu-- > 0)
|
---|
1602 | {
|
---|
1603 | pVM->aCpus[iCpu].nem.s.pvMsgSlotMapping = NULL;
|
---|
1604 | #ifndef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
1605 | # ifdef NEM_WIN_WITH_RING0_RUNLOOP
|
---|
1606 | if (!pVM->nem.s.fUseRing0Runloop)
|
---|
1607 | # endif
|
---|
1608 | {
|
---|
1609 | HRESULT hrc = WHvDeleteVirtualProcessor(hPartition, iCpu);
|
---|
1610 | AssertLogRelMsg(SUCCEEDED(hrc), ("WHvDeleteVirtualProcessor(%p, %u) -> %Rhrc (Last=%#x/%u)\n",
|
---|
1611 | hPartition, iCpu, hrc, RTNtLastStatusValue(),
|
---|
1612 | RTNtLastErrorValue()));
|
---|
1613 | }
|
---|
1614 | #endif
|
---|
1615 | }
|
---|
1616 | WHvDeletePartition(hPartition);
|
---|
1617 | }
|
---|
1618 | pVM->nem.s.fCreatedEmts = false;
|
---|
1619 | return VINF_SUCCESS;
|
---|
1620 | }
|
---|
1621 |
|
---|
1622 |
|
---|
1623 | /**
|
---|
1624 | * VM reset notification.
|
---|
1625 | *
|
---|
1626 | * @param pVM The cross context VM structure.
|
---|
1627 | */
|
---|
1628 | void nemR3NativeReset(PVM pVM)
|
---|
1629 | {
|
---|
1630 | /* Unfix the A20 gate. */
|
---|
1631 | pVM->nem.s.fA20Fixed = false;
|
---|
1632 | }
|
---|
1633 |
|
---|
1634 |
|
---|
1635 | /**
|
---|
1636 | * Reset CPU due to INIT IPI or hot (un)plugging.
|
---|
1637 | *
|
---|
1638 | * @param pVCpu The cross context virtual CPU structure of the CPU being
|
---|
1639 | * reset.
|
---|
1640 | * @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case.
|
---|
1641 | */
|
---|
1642 | void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi)
|
---|
1643 | {
|
---|
1644 | /* Lock the A20 gate if INIT IPI, make sure it's enabled. */
|
---|
1645 | if (fInitIpi && pVCpu->idCpu > 0)
|
---|
1646 | {
|
---|
1647 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1648 | if (!pVM->nem.s.fA20Enabled)
|
---|
1649 | nemR3NativeNotifySetA20(pVCpu, true);
|
---|
1650 | pVM->nem.s.fA20Enabled = true;
|
---|
1651 | pVM->nem.s.fA20Fixed = true;
|
---|
1652 | }
|
---|
1653 | }
|
---|
1654 |
|
---|
1655 |
|
---|
1656 | VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu)
|
---|
1657 | {
|
---|
1658 | #ifdef NEM_WIN_WITH_RING0_RUNLOOP
|
---|
1659 | if (pVM->nem.s.fUseRing0Runloop)
|
---|
1660 | {
|
---|
1661 | for (;;)
|
---|
1662 | {
|
---|
1663 | VBOXSTRICTRC rcStrict = VMMR3CallR0EmtFast(pVM, pVCpu, VMMR0_DO_NEM_RUN);
|
---|
1664 | if (RT_SUCCESS(rcStrict))
|
---|
1665 | {
|
---|
1666 | /*
|
---|
1667 | * We deal with VINF_NEM_FLUSH_TLB here, since we're running the risk of
|
---|
1668 | * getting these while we already got another RC (I/O ports).
|
---|
1669 | */
|
---|
1670 | /* Status codes: */
|
---|
1671 | VBOXSTRICTRC rcPending = pVCpu->nem.s.rcPending;
|
---|
1672 | pVCpu->nem.s.rcPending = VINF_SUCCESS;
|
---|
1673 | if (rcStrict == VINF_NEM_FLUSH_TLB || rcPending == VINF_NEM_FLUSH_TLB)
|
---|
1674 | {
|
---|
1675 | LogFlow(("nemR3NativeRunGC: calling PGMFlushTLB...\n"));
|
---|
1676 | int rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true);
|
---|
1677 | AssertRCReturn(rc, rc);
|
---|
1678 | if (rcStrict == VINF_NEM_FLUSH_TLB)
|
---|
1679 | {
|
---|
1680 | if ( !VM_FF_IS_PENDING(pVM, VM_FF_HIGH_PRIORITY_POST_MASK | VM_FF_HP_R0_PRE_HM_MASK)
|
---|
1681 | && !VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_HIGH_PRIORITY_POST_MASK | VMCPU_FF_HP_R0_PRE_HM_MASK)
|
---|
1682 | & ~VMCPU_FF_RESUME_GUEST_MASK))
|
---|
1683 | {
|
---|
1684 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_RESUME_GUEST_MASK);
|
---|
1685 | continue;
|
---|
1686 | }
|
---|
1687 | rcStrict = VINF_SUCCESS;
|
---|
1688 | }
|
---|
1689 | }
|
---|
1690 | else
|
---|
1691 | AssertMsg(rcPending == VINF_SUCCESS, ("rcPending=%Rrc\n", VBOXSTRICTRC_VAL(rcPending) ));
|
---|
1692 | }
|
---|
1693 | LogFlow(("nemR3NativeRunGC: returns %Rrc\n", VBOXSTRICTRC_VAL(rcStrict) ));
|
---|
1694 | return rcStrict;
|
---|
1695 | }
|
---|
1696 | }
|
---|
1697 | #endif
|
---|
1698 | return nemHCWinRunGC(pVM, pVCpu, NULL /*pGVM*/, NULL /*pGVCpu*/);
|
---|
1699 | }
|
---|
1700 |
|
---|
1701 |
|
---|
1702 | bool nemR3NativeCanExecuteGuest(PVM pVM, PVMCPU pVCpu)
|
---|
1703 | {
|
---|
1704 | NOREF(pVM); NOREF(pVCpu);
|
---|
1705 | return true;
|
---|
1706 | }
|
---|
1707 |
|
---|
1708 |
|
---|
1709 | bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
|
---|
1710 | {
|
---|
1711 | NOREF(pVM); NOREF(pVCpu); NOREF(fEnable);
|
---|
1712 | return false;
|
---|
1713 | }
|
---|
1714 |
|
---|
1715 |
|
---|
1716 | /**
|
---|
1717 | * Forced flag notification call from VMEmt.h.
|
---|
1718 | *
|
---|
1719 | * This is only called when pVCpu is in the VMCPUSTATE_STARTED_EXEC_NEM state.
|
---|
1720 | *
|
---|
1721 | * @param pVM The cross context VM structure.
|
---|
1722 | * @param pVCpu The cross context virtual CPU structure of the CPU
|
---|
1723 | * to be notified.
|
---|
1724 | * @param fFlags Notification flags, VMNOTIFYFF_FLAGS_XXX.
|
---|
1725 | */
|
---|
1726 | void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
|
---|
1727 | {
|
---|
1728 | #ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
1729 | nemHCWinCancelRunVirtualProcessor(pVM, pVCpu);
|
---|
1730 | #else
|
---|
1731 | # ifdef NEM_WIN_WITH_RING0_RUNLOOP
|
---|
1732 | if (pVM->nem.s.fUseRing0Runloop)
|
---|
1733 | nemHCWinCancelRunVirtualProcessor(pVM, pVCpu);
|
---|
1734 | else
|
---|
1735 | # endif
|
---|
1736 | {
|
---|
1737 | Log8(("nemR3NativeNotifyFF: canceling %u\n", pVCpu->idCpu));
|
---|
1738 | HRESULT hrc = WHvCancelRunVirtualProcessor(pVM->nem.s.hPartition, pVCpu->idCpu, 0);
|
---|
1739 | AssertMsg(SUCCEEDED(hrc), ("WHvCancelRunVirtualProcessor -> hrc=%Rhrc\n", hrc));
|
---|
1740 | RT_NOREF_PV(hrc);
|
---|
1741 | }
|
---|
1742 | #endif
|
---|
1743 | RT_NOREF_PV(fFlags);
|
---|
1744 | }
|
---|
1745 |
|
---|
1746 |
|
---|
1747 | DECLINLINE(int) nemR3NativeGCPhys2R3PtrReadOnly(PVM pVM, RTGCPHYS GCPhys, const void **ppv)
|
---|
1748 | {
|
---|
1749 | PGMPAGEMAPLOCK Lock;
|
---|
1750 | int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, &Lock);
|
---|
1751 | if (RT_SUCCESS(rc))
|
---|
1752 | PGMPhysReleasePageMappingLock(pVM, &Lock);
|
---|
1753 | return rc;
|
---|
1754 | }
|
---|
1755 |
|
---|
1756 |
|
---|
1757 | DECLINLINE(int) nemR3NativeGCPhys2R3PtrWriteable(PVM pVM, RTGCPHYS GCPhys, void **ppv)
|
---|
1758 | {
|
---|
1759 | PGMPAGEMAPLOCK Lock;
|
---|
1760 | int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, &Lock);
|
---|
1761 | if (RT_SUCCESS(rc))
|
---|
1762 | PGMPhysReleasePageMappingLock(pVM, &Lock);
|
---|
1763 | return rc;
|
---|
1764 | }
|
---|
1765 |
|
---|
1766 |
|
---|
1767 | int nemR3NativeNotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
|
---|
1768 | {
|
---|
1769 | Log5(("nemR3NativeNotifyPhysRamRegister: %RGp LB %RGp\n", GCPhys, cb));
|
---|
1770 | NOREF(pVM); NOREF(GCPhys); NOREF(cb);
|
---|
1771 | return VINF_SUCCESS;
|
---|
1772 | }
|
---|
1773 |
|
---|
1774 |
|
---|
1775 | int nemR3NativeNotifyPhysMmioExMap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvMmio2)
|
---|
1776 | {
|
---|
1777 | Log5(("nemR3NativeNotifyPhysMmioExMap: %RGp LB %RGp fFlags=%#x pvMmio2=%p\n", GCPhys, cb, fFlags, pvMmio2));
|
---|
1778 | NOREF(pVM); NOREF(GCPhys); NOREF(cb); NOREF(fFlags); NOREF(pvMmio2);
|
---|
1779 | return VINF_SUCCESS;
|
---|
1780 | }
|
---|
1781 |
|
---|
1782 |
|
---|
1783 | int nemR3NativeNotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags)
|
---|
1784 | {
|
---|
1785 | Log5(("nemR3NativeNotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x\n", GCPhys, cb, fFlags));
|
---|
1786 | NOREF(pVM); NOREF(GCPhys); NOREF(cb); NOREF(fFlags);
|
---|
1787 | return VINF_SUCCESS;
|
---|
1788 | }
|
---|
1789 |
|
---|
1790 |
|
---|
1791 | /**
|
---|
1792 | * Called early during ROM registration, right after the pages have been
|
---|
1793 | * allocated and the RAM range updated.
|
---|
1794 | *
|
---|
1795 | * This will be succeeded by a number of NEMHCNotifyPhysPageProtChanged() calls
|
---|
1796 | * and finally a NEMR3NotifyPhysRomRegisterEarly().
|
---|
1797 | *
|
---|
1798 | * @returns VBox status code
|
---|
1799 | * @param pVM The cross context VM structure.
|
---|
1800 | * @param GCPhys The ROM address (page aligned).
|
---|
1801 | * @param cb The size (page aligned).
|
---|
1802 | * @param fFlags NEM_NOTIFY_PHYS_ROM_F_XXX.
|
---|
1803 | */
|
---|
1804 | int nemR3NativeNotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags)
|
---|
1805 | {
|
---|
1806 | Log5(("nemR3NativeNotifyPhysRomRegisterEarly: %RGp LB %RGp fFlags=%#x\n", GCPhys, cb, fFlags));
|
---|
1807 | #if 0 /* Let's not do this after all. We'll protection change notifications for each page and if not we'll map them lazily. */
|
---|
1808 | RTGCPHYS const cPages = cb >> X86_PAGE_SHIFT;
|
---|
1809 | for (RTGCPHYS iPage = 0; iPage < cPages; iPage++, GCPhys += X86_PAGE_SIZE)
|
---|
1810 | {
|
---|
1811 | const void *pvPage;
|
---|
1812 | int rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhys, &pvPage);
|
---|
1813 | if (RT_SUCCESS(rc))
|
---|
1814 | {
|
---|
1815 | HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, (void *)pvPage, GCPhys, X86_PAGE_SIZE,
|
---|
1816 | WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute);
|
---|
1817 | if (SUCCEEDED(hrc))
|
---|
1818 | { /* likely */ }
|
---|
1819 | else
|
---|
1820 | {
|
---|
1821 | LogRel(("nemR3NativeNotifyPhysRomRegisterEarly: GCPhys=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
1822 | GCPhys, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
1823 | return VERR_NEM_INIT_FAILED;
|
---|
1824 | }
|
---|
1825 | }
|
---|
1826 | else
|
---|
1827 | {
|
---|
1828 | LogRel(("nemR3NativeNotifyPhysRomRegisterEarly: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
|
---|
1829 | return rc;
|
---|
1830 | }
|
---|
1831 | }
|
---|
1832 | #else
|
---|
1833 | NOREF(pVM); NOREF(GCPhys); NOREF(cb);
|
---|
1834 | #endif
|
---|
1835 | RT_NOREF_PV(fFlags);
|
---|
1836 | return VINF_SUCCESS;
|
---|
1837 | }
|
---|
1838 |
|
---|
1839 |
|
---|
1840 | /**
|
---|
1841 | * Called after the ROM range has been fully completed.
|
---|
1842 | *
|
---|
1843 | * This will be preceeded by a NEMR3NotifyPhysRomRegisterEarly() call as well a
|
---|
1844 | * number of NEMHCNotifyPhysPageProtChanged calls.
|
---|
1845 | *
|
---|
1846 | * @returns VBox status code
|
---|
1847 | * @param pVM The cross context VM structure.
|
---|
1848 | * @param GCPhys The ROM address (page aligned).
|
---|
1849 | * @param cb The size (page aligned).
|
---|
1850 | * @param fFlags NEM_NOTIFY_PHYS_ROM_F_XXX.
|
---|
1851 | */
|
---|
1852 | int nemR3NativeNotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags)
|
---|
1853 | {
|
---|
1854 | Log5(("nemR3NativeNotifyPhysRomRegisterLate: %RGp LB %RGp fFlags=%#x\n", GCPhys, cb, fFlags));
|
---|
1855 | NOREF(pVM); NOREF(GCPhys); NOREF(cb); NOREF(fFlags);
|
---|
1856 | return VINF_SUCCESS;
|
---|
1857 | }
|
---|
1858 |
|
---|
1859 |
|
---|
1860 | /**
|
---|
1861 | * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE}
|
---|
1862 | */
|
---|
1863 | static DECLCALLBACK(int) nemR3WinUnsetForA20CheckerCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys,
|
---|
1864 | PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
|
---|
1865 | {
|
---|
1866 | /* We'll just unmap the memory. */
|
---|
1867 | if (pInfo->u2NemState > NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
1868 | {
|
---|
1869 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1870 | int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
|
---|
1871 | AssertRC(rc);
|
---|
1872 | if (RT_SUCCESS(rc))
|
---|
1873 | #else
|
---|
1874 | HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
|
---|
1875 | if (SUCCEEDED(hrc))
|
---|
1876 | #endif
|
---|
1877 | {
|
---|
1878 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
1879 | Log5(("NEM GPA unmapped/A20: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[pInfo->u2NemState], cMappedPages));
|
---|
1880 | pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
1881 | }
|
---|
1882 | else
|
---|
1883 | {
|
---|
1884 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1885 | LogRel(("nemR3WinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
|
---|
1886 | return rc;
|
---|
1887 | #else
|
---|
1888 | LogRel(("nemR3WinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
1889 | GCPhys, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
1890 | return VERR_INTERNAL_ERROR_2;
|
---|
1891 | #endif
|
---|
1892 | }
|
---|
1893 | }
|
---|
1894 | RT_NOREF(pVCpu, pvUser);
|
---|
1895 | return VINF_SUCCESS;
|
---|
1896 | }
|
---|
1897 |
|
---|
1898 |
|
---|
1899 | /**
|
---|
1900 | * Unmaps a page from Hyper-V for the purpose of emulating A20 gate behavior.
|
---|
1901 | *
|
---|
1902 | * @returns The PGMPhysNemQueryPageInfo result.
|
---|
1903 | * @param pVM The cross context VM structure.
|
---|
1904 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1905 | * @param GCPhys The page to unmap.
|
---|
1906 | */
|
---|
1907 | static int nemR3WinUnmapPageForA20Gate(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
|
---|
1908 | {
|
---|
1909 | PGMPHYSNEMPAGEINFO Info;
|
---|
1910 | return PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhys, false /*fMakeWritable*/, &Info,
|
---|
1911 | nemR3WinUnsetForA20CheckerCallback, NULL);
|
---|
1912 | }
|
---|
1913 |
|
---|
1914 |
|
---|
1915 | /**
|
---|
1916 | * Called when the A20 state changes.
|
---|
1917 | *
|
---|
1918 | * Hyper-V doesn't seem to offer a simple way of implementing the A20 line
|
---|
1919 | * features of PCs. So, we do a very minimal emulation of the HMA to make DOS
|
---|
1920 | * happy.
|
---|
1921 | *
|
---|
1922 | * @param pVCpu The CPU the A20 state changed on.
|
---|
1923 | * @param fEnabled Whether it was enabled (true) or disabled.
|
---|
1924 | */
|
---|
1925 | void nemR3NativeNotifySetA20(PVMCPU pVCpu, bool fEnabled)
|
---|
1926 | {
|
---|
1927 | Log(("nemR3NativeNotifySetA20: fEnabled=%RTbool\n", fEnabled));
|
---|
1928 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1929 | if (!pVM->nem.s.fA20Fixed)
|
---|
1930 | {
|
---|
1931 | pVM->nem.s.fA20Enabled = fEnabled;
|
---|
1932 | for (RTGCPHYS GCPhys = _1M; GCPhys < _1M + _64K; GCPhys += X86_PAGE_SIZE)
|
---|
1933 | nemR3WinUnmapPageForA20Gate(pVM, pVCpu, GCPhys);
|
---|
1934 | }
|
---|
1935 | }
|
---|
1936 |
|
---|
1937 |
|
---|
1938 | /** @page pg_nem_win NEM/win - Native Execution Manager, Windows.
|
---|
1939 | *
|
---|
1940 | * On Windows the Hyper-V root partition (dom0 in zen terminology) does not have
|
---|
1941 | * nested VT-x or AMD-V capabilities. For a while raw-mode worked inside it,
|
---|
1942 | * but for a while now we've been getting \#GP when trying to modify CR4 in the
|
---|
1943 | * world switcher. So, when Hyper-V is active on Windows we have little choice
|
---|
1944 | * but to use Hyper-V to run our VMs.
|
---|
1945 | *
|
---|
1946 | *
|
---|
1947 | * @section sub_nem_win_whv The WinHvPlatform API
|
---|
1948 | *
|
---|
1949 | * Since Windows 10 build 17083 there is a documented API for managing Hyper-V
|
---|
1950 | * VMs, header file WinHvPlatform.h and implementation in WinHvPlatform.dll.
|
---|
1951 | * This interface is a wrapper around the undocumented Virtualization
|
---|
1952 | * Infrastructure Driver (VID) API - VID.DLL and VID.SYS. The wrapper is
|
---|
1953 | * written in C++, namespaced, early versions (at least) was using standard C++
|
---|
1954 | * container templates in several places.
|
---|
1955 | *
|
---|
1956 | * When creating a VM using WHvCreatePartition, it will only create the
|
---|
1957 | * WinHvPlatform structures for it, to which you get an abstract pointer. The
|
---|
1958 | * VID API that actually creates the partition is first engaged when you call
|
---|
1959 | * WHvSetupPartition after first setting a lot of properties using
|
---|
1960 | * WHvSetPartitionProperty. Since the VID API is just a very thin wrapper
|
---|
1961 | * around CreateFile and NtDeviceIoControlFile, it returns an actual HANDLE for
|
---|
1962 | * the partition WinHvPlatform. We fish this HANDLE out of the WinHvPlatform
|
---|
1963 | * partition structures because we need to talk directly to VID for reasons
|
---|
1964 | * we'll get to in a bit. (Btw. we could also intercept the CreateFileW or
|
---|
1965 | * NtDeviceIoControlFile calls from VID.DLL to get the HANDLE should fishing in
|
---|
1966 | * the partition structures become difficult.)
|
---|
1967 | *
|
---|
1968 | * The WinHvPlatform API requires us to both set the number of guest CPUs before
|
---|
1969 | * setting up the partition and call WHvCreateVirtualProcessor for each of them.
|
---|
1970 | * The CPU creation function boils down to a VidMessageSlotMap call that sets up
|
---|
1971 | * and maps a message buffer into ring-3 for async communication with hyper-V
|
---|
1972 | * and/or the VID.SYS thread actually running the CPU thru
|
---|
1973 | * WinHvRunVpDispatchLoop(). When for instance a VMEXIT is encountered, hyper-V
|
---|
1974 | * sends a message that the WHvRunVirtualProcessor API retrieves (and later
|
---|
1975 | * acknowledges) via VidMessageSlotHandleAndGetNext. It should be noteded that
|
---|
1976 | * WHvDeleteVirtualProcessor doesn't do much as there seems to be no partner
|
---|
1977 | * function VidMessagesSlotMap that reverses what it did.
|
---|
1978 | *
|
---|
1979 | * Memory is managed thru calls to WHvMapGpaRange and WHvUnmapGpaRange (GPA does
|
---|
1980 | * not mean grade point average here, but rather guest physical addressspace),
|
---|
1981 | * which corresponds to VidCreateVaGpaRangeSpecifyUserVa and VidDestroyGpaRange
|
---|
1982 | * respectively. As 'UserVa' indicates, the functions works on user process
|
---|
1983 | * memory. The mappings are also subject to quota restrictions, so the number
|
---|
1984 | * of ranges are limited and probably their total size as well. Obviously
|
---|
1985 | * VID.SYS keeps track of the ranges, but so does WinHvPlatform, which means
|
---|
1986 | * there is a bit of overhead involved and quota restrctions makes sense. For
|
---|
1987 | * some reason though, regions are lazily mapped on VMEXIT/memory by
|
---|
1988 | * WHvRunVirtualProcessor.
|
---|
1989 | *
|
---|
1990 | * Running guest code is done thru the WHvRunVirtualProcessor function. It
|
---|
1991 | * asynchronously starts or resumes hyper-V CPU execution and then waits for an
|
---|
1992 | * VMEXIT message. Hyper-V / VID.SYS will return information about the message
|
---|
1993 | * in the message buffer mapping, and WHvRunVirtualProcessor will convert that
|
---|
1994 | * finto it's own WHV_RUN_VP_EXIT_CONTEXT format.
|
---|
1995 | *
|
---|
1996 | * Other threads can interrupt the execution by using WHvCancelVirtualProcessor,
|
---|
1997 | * which which case the thread in WHvRunVirtualProcessor is woken up via a dummy
|
---|
1998 | * QueueUserAPC and will call VidStopVirtualProcessor to asynchronously end
|
---|
1999 | * execution. The stop CPU call not immediately succeed if the CPU encountered
|
---|
2000 | * a VMEXIT before the stop was processed, in which case the VMEXIT needs to be
|
---|
2001 | * processed first, and the pending stop will be processed in a subsequent call
|
---|
2002 | * to WHvRunVirtualProcessor.
|
---|
2003 | *
|
---|
2004 | * Registers are retrieved and set via WHvGetVirtualProcessorRegisters and
|
---|
2005 | * WHvSetVirtualProcessorRegisters. In addition, several VMEXITs include
|
---|
2006 | * essential register state in the exit context information, potentially making
|
---|
2007 | * it possible to emulate the instruction causing the exit without involving
|
---|
2008 | * WHvGetVirtualProcessorRegisters.
|
---|
2009 | *
|
---|
2010 | *
|
---|
2011 | * @subsection subsec_nem_win_whv_cons Issues & Feedback
|
---|
2012 | *
|
---|
2013 | * Here are some observations (mostly against build 17101):
|
---|
2014 | *
|
---|
2015 | * - The VMEXIT performance is dismal (build 17134).
|
---|
2016 | *
|
---|
2017 | * Our proof of concept implementation with a kernel runloop (i.e. not using
|
---|
2018 | * WHvRunVirtualProcessor and friends, but calling VID.SYS fast I/O control
|
---|
2019 | * entry point directly) delivers 9-10% of the port I/O performance and only
|
---|
2020 | * 6-7% of the MMIO performance that we have with our own hypervisor.
|
---|
2021 | *
|
---|
2022 | * When using the offical WinHvPlatform API, the numbers are %3 for port I/O
|
---|
2023 | * and 5% for MMIO.
|
---|
2024 | *
|
---|
2025 | * While the tests we've done are using tight tight loops only doing port I/O
|
---|
2026 | * and MMIO, the problem is clearly visible when running regular guest OSes.
|
---|
2027 | * Anything that hammers the VGA device would be suffering, for example:
|
---|
2028 | *
|
---|
2029 | * - Windows 2000 boot screen animation overloads us with MMIO exits
|
---|
2030 | * and won't even boot because all the time is spent in interrupt
|
---|
2031 | * handlers and redrawin the screen.
|
---|
2032 | *
|
---|
2033 | * - DSL 4.4 and its bootmenu logo is slower than molasses in january.
|
---|
2034 | *
|
---|
2035 | * We have not found a workaround for this yet.
|
---|
2036 | *
|
---|
2037 | * Something that might improve the issue a little is to detect blocks with
|
---|
2038 | * excessive MMIO and port I/O exits and emulate instructions to cover
|
---|
2039 | * multiple exits before letting Hyper-V have a go at the guest execution
|
---|
2040 | * again. This will only improve the situation under some circumstances,
|
---|
2041 | * since emulating instructions without recompilation can be expensive, so
|
---|
2042 | * there will only be real gains if the exitting instructions are tightly
|
---|
2043 | * packed.
|
---|
2044 | *
|
---|
2045 | *
|
---|
2046 | * - We need a way to directly modify the TSC offset (or bias if you like).
|
---|
2047 | *
|
---|
2048 | * The current approach of setting the WHvX64RegisterTsc register one by one
|
---|
2049 | * on each virtual CPU in sequence will introduce random inaccuracies,
|
---|
2050 | * especially if the thread doing the job is reschduled at a bad time.
|
---|
2051 | *
|
---|
2052 | *
|
---|
2053 | * - Unable to access WHvX64RegisterMsrMtrrCap (build 17134).
|
---|
2054 | *
|
---|
2055 | *
|
---|
2056 | * - On AMD Ryzen grub/debian 9.0 ends up with a unrecoverable exception
|
---|
2057 | * when IA32_MTRR_PHYSMASK0 is written.
|
---|
2058 | *
|
---|
2059 | *
|
---|
2060 | * - The IA32_APIC_BASE register does not work right:
|
---|
2061 | *
|
---|
2062 | * - Attempts by the guest to clear bit 11 (EN) are ignored, both the
|
---|
2063 | * guest and the VMM reads back the old value.
|
---|
2064 | *
|
---|
2065 | * - Attempts to modify the base address (bits NN:12) seems to be ignored
|
---|
2066 | * in the same way.
|
---|
2067 | *
|
---|
2068 | * - The VMM can modify both the base address as well as the the EN and
|
---|
2069 | * BSP bits, however this is useless if we cannot intercept the WRMSR.
|
---|
2070 | *
|
---|
2071 | * - Attempts by the guest to set the EXTD bit (X2APIC) result in \#GP(0),
|
---|
2072 | * while the VMM ends up with with ERROR_HV_INVALID_PARAMETER. Seems
|
---|
2073 | * there is no way to support X2APIC.
|
---|
2074 | *
|
---|
2075 | *
|
---|
2076 | * - The WHvCancelVirtualProcessor API schedules a dummy usermode APC callback
|
---|
2077 | * in order to cancel any current or future alertable wait in VID.SYS during
|
---|
2078 | * the VidMessageSlotHandleAndGetNext call.
|
---|
2079 | *
|
---|
2080 | * IIRC this will make the kernel schedule the specified callback thru
|
---|
2081 | * NTDLL!KiUserApcDispatcher by modifying the thread context and quite
|
---|
2082 | * possibly the userland thread stack. When the APC callback returns to
|
---|
2083 | * KiUserApcDispatcher, it will call NtContinue to restore the old thread
|
---|
2084 | * context and resume execution from there. This naturally adds up to some
|
---|
2085 | * CPU cycles, ring transitions aren't for free, especially after Spectre &
|
---|
2086 | * Meltdown mitigations.
|
---|
2087 | *
|
---|
2088 | * Using NtAltertThread call could do the same without the thread context
|
---|
2089 | * modifications and the extra kernel call.
|
---|
2090 | *
|
---|
2091 | *
|
---|
2092 | * - Not sure if this is a thing, but WHvCancelVirtualProcessor seems to cause
|
---|
2093 | * cause a lot more spurious WHvRunVirtualProcessor returns that what we get
|
---|
2094 | * with the replacement code. By spurious returns we mean that the
|
---|
2095 | * subsequent call to WHvRunVirtualProcessor would return immediately.
|
---|
2096 | *
|
---|
2097 | *
|
---|
2098 | * - When WHvRunVirtualProcessor returns without a message, or on a terse
|
---|
2099 | * VID message like HLT, it will make a kernel call to get some registers.
|
---|
2100 | * This is potentially inefficient if the caller decides he needs more
|
---|
2101 | * register state.
|
---|
2102 | *
|
---|
2103 | * It would be better to just return what's available and let the caller fetch
|
---|
2104 | * what is missing from his point of view in a single kernel call.
|
---|
2105 | *
|
---|
2106 | *
|
---|
2107 | * - The WHvRunVirtualProcessor implementation does lazy GPA range mappings when
|
---|
2108 | * a unmapped GPA message is received from hyper-V.
|
---|
2109 | *
|
---|
2110 | * Since MMIO is currently realized as unmapped GPA, this will slow down all
|
---|
2111 | * MMIO accesses a tiny little bit as WHvRunVirtualProcessor looks up the
|
---|
2112 | * guest physical address to check if it is a pending lazy mapping.
|
---|
2113 | *
|
---|
2114 | * The lazy mapping feature makes no sense to us. We as API user have all the
|
---|
2115 | * information and can do lazy mapping ourselves if we want/have to (see next
|
---|
2116 | * point).
|
---|
2117 | *
|
---|
2118 | *
|
---|
2119 | * - There is no API for modifying protection of a page within a GPA range.
|
---|
2120 | *
|
---|
2121 | * From what we can tell, the only way to modify the protection (like readonly
|
---|
2122 | * -> writable, or vice versa) is to first unmap the range and then remap it
|
---|
2123 | * with the new protection.
|
---|
2124 | *
|
---|
2125 | * We are for instance doing this quite a bit in order to track dirty VRAM
|
---|
2126 | * pages. VRAM pages starts out as readonly, when the guest writes to a page
|
---|
2127 | * we take an exit, notes down which page it is, makes it writable and restart
|
---|
2128 | * the instruction. After refreshing the display, we reset all the writable
|
---|
2129 | * pages to readonly again, bulk fashion.
|
---|
2130 | *
|
---|
2131 | * Now to work around this issue, we do page sized GPA ranges. In addition to
|
---|
2132 | * add a lot of tracking overhead to WinHvPlatform and VID.SYS, this also
|
---|
2133 | * causes us to exceed our quota before we've even mapped a default sized
|
---|
2134 | * (128MB) VRAM page-by-page. So, to work around this quota issue we have to
|
---|
2135 | * lazily map pages and actively restrict the number of mappings.
|
---|
2136 | *
|
---|
2137 | * Our best workaround thus far is bypassing WinHvPlatform and VID entirely
|
---|
2138 | * when in comes to guest memory management and instead use the underlying
|
---|
2139 | * hypercalls (HvCallMapGpaPages, HvCallUnmapGpaPages) to do it ourselves.
|
---|
2140 | * (This also maps a whole lot better into our own guest page management
|
---|
2141 | * infrastructure.)
|
---|
2142 | *
|
---|
2143 | *
|
---|
2144 | * - Observed problems doing WHvUnmapGpaRange immediately followed by
|
---|
2145 | * WHvMapGpaRange.
|
---|
2146 | *
|
---|
2147 | * As mentioned above, we've been forced to use this sequence when modifying
|
---|
2148 | * page protection. However, when transitioning from readonly to writable,
|
---|
2149 | * we've ended up looping forever with the same write to readonly memory
|
---|
2150 | * VMEXIT. We're wondering if this issue might be related to the lazy mapping
|
---|
2151 | * logic in WinHvPlatform.
|
---|
2152 | *
|
---|
2153 | * Workaround: Insert a WHvRunVirtualProcessor call and make sure to get a GPA
|
---|
2154 | * unmapped exit between the two calls. Not entirely great performance wise
|
---|
2155 | * (or the santity of our code).
|
---|
2156 | *
|
---|
2157 | *
|
---|
2158 | * - Implementing A20 gate behavior is tedious, where as correctly emulating the
|
---|
2159 | * A20M# pin (present on 486 and later) is near impossible for SMP setups
|
---|
2160 | * (e.g. possiblity of two CPUs with different A20 status).
|
---|
2161 | *
|
---|
2162 | * Workaround: Only do A20 on CPU 0, restricting the emulation to HMA. We
|
---|
2163 | * unmap all pages related to HMA (0x100000..0x10ffff) when the A20 state
|
---|
2164 | * changes, lazily syncing the right pages back when accessed.
|
---|
2165 | *
|
---|
2166 | *
|
---|
2167 | * - WHVRunVirtualProcessor wastes time converting VID/Hyper-V messages to its
|
---|
2168 | * own format (WHV_RUN_VP_EXIT_CONTEXT).
|
---|
2169 | *
|
---|
2170 | * We understand this might be because Microsoft wishes to remain free to
|
---|
2171 | * modify the VID/Hyper-V messages, but it's still rather silly and does slow
|
---|
2172 | * things down a little. We'd much rather just process the messages directly.
|
---|
2173 | *
|
---|
2174 | *
|
---|
2175 | * - WHVRunVirtualProcessor would've benefited from using a callback interface:
|
---|
2176 | *
|
---|
2177 | * - The potential size changes of the exit context structure wouldn't be
|
---|
2178 | * an issue, since the function could manage that itself.
|
---|
2179 | *
|
---|
2180 | * - State handling could probably be simplified (like cancelation).
|
---|
2181 | *
|
---|
2182 | *
|
---|
2183 | * - WHvGetVirtualProcessorRegisters and WHvSetVirtualProcessorRegisters
|
---|
2184 | * internally converts register names, probably using temporary heap buffers.
|
---|
2185 | *
|
---|
2186 | * From the looks of things, they are converting from WHV_REGISTER_NAME to
|
---|
2187 | * HV_REGISTER_NAME from in the "Virtual Processor Register Names" section in
|
---|
2188 | * the "Hypervisor Top-Level Functional Specification" document. This feels
|
---|
2189 | * like an awful waste of time.
|
---|
2190 | *
|
---|
2191 | * We simply cannot understand why HV_REGISTER_NAME isn't used directly here,
|
---|
2192 | * or at least the same values, making any conversion reduntant. Restricting
|
---|
2193 | * access to certain registers could easily be implement by scanning the
|
---|
2194 | * inputs.
|
---|
2195 | *
|
---|
2196 | * To avoid the heap + conversion overhead, we're currently using the
|
---|
2197 | * HvCallGetVpRegisters and HvCallSetVpRegisters calls directly.
|
---|
2198 | *
|
---|
2199 | *
|
---|
2200 | * - The YMM and XCR0 registers are not yet named (17083). This probably
|
---|
2201 | * wouldn't be a problem if HV_REGISTER_NAME was used, see previous point.
|
---|
2202 | *
|
---|
2203 | *
|
---|
2204 | * - Why does VID.SYS only query/set 32 registers at the time thru the
|
---|
2205 | * HvCallGetVpRegisters and HvCallSetVpRegisters hypercalls?
|
---|
2206 | *
|
---|
2207 | * We've not trouble getting/setting all the registers defined by
|
---|
2208 | * WHV_REGISTER_NAME in one hypercall (around 80). Some kind of stack
|
---|
2209 | * buffering or similar?
|
---|
2210 | *
|
---|
2211 | *
|
---|
2212 | * - To handle the VMMCALL / VMCALL instructions, it seems we need to intercept
|
---|
2213 | * \#UD exceptions and inspect the opcodes. A dedicated exit for hypercalls
|
---|
2214 | * would be more efficient, esp. for guests using \#UD for other purposes..
|
---|
2215 | *
|
---|
2216 | *
|
---|
2217 | * - Wrong instruction length in the VpContext with unmapped GPA memory exit
|
---|
2218 | * contexts on 17115/AMD.
|
---|
2219 | *
|
---|
2220 | * One byte "PUSH CS" was reported as 2 bytes, while a two byte
|
---|
2221 | * "MOV [EBX],EAX" was reported with a 1 byte instruction length. Problem
|
---|
2222 | * naturally present in untranslated hyper-v messages.
|
---|
2223 | *
|
---|
2224 | *
|
---|
2225 | * - The I/O port exit context information seems to be missing the address size
|
---|
2226 | * information needed for correct string I/O emulation.
|
---|
2227 | *
|
---|
2228 | * VT-x provides this information in bits 7:9 in the instruction information
|
---|
2229 | * field on newer CPUs. AMD-V in bits 7:9 in the EXITINFO1 field in the VMCB.
|
---|
2230 | *
|
---|
2231 | * We can probably work around this by scanning the instruction bytes for
|
---|
2232 | * address size prefixes. Haven't investigated it any further yet.
|
---|
2233 | *
|
---|
2234 | *
|
---|
2235 | * - Querying WHvCapabilityCodeExceptionExitBitmap returns zero even when
|
---|
2236 | * intercepts demonstrably works (17134).
|
---|
2237 | *
|
---|
2238 | *
|
---|
2239 | * - Querying HvPartitionPropertyDebugChannelId via HvCallGetPartitionProperty
|
---|
2240 | * (hypercall) hangs the host (17134).
|
---|
2241 | *
|
---|
2242 | *
|
---|
2243 | * - The WHvGetCapability function has a weird design:
|
---|
2244 | * - The CapabilityCode parameter is pointlessly duplicated in the output
|
---|
2245 | * structure (WHV_CAPABILITY).
|
---|
2246 | *
|
---|
2247 | * - API takes void pointer, but everyone will probably be using
|
---|
2248 | * WHV_CAPABILITY due to WHV_CAPABILITY::CapabilityCode making it
|
---|
2249 | * impractical to use anything else.
|
---|
2250 | *
|
---|
2251 | * - No output size.
|
---|
2252 | *
|
---|
2253 | * - See GetFileAttributesEx, GetFileInformationByHandleEx,
|
---|
2254 | * FindFirstFileEx, and others for typical pattern for generic
|
---|
2255 | * information getters.
|
---|
2256 | *
|
---|
2257 | * Update: All concerns have been addressed in build 17110.
|
---|
2258 | *
|
---|
2259 | *
|
---|
2260 | * - The WHvGetPartitionProperty function uses the same weird design as
|
---|
2261 | * WHvGetCapability, see above.
|
---|
2262 | *
|
---|
2263 | * Update: All concerns have been addressed in build 17110.
|
---|
2264 | *
|
---|
2265 | *
|
---|
2266 | * - The WHvSetPartitionProperty function has a totally weird design too:
|
---|
2267 | * - In contrast to its partner WHvGetPartitionProperty, the property code
|
---|
2268 | * is not a separate input parameter here but part of the input
|
---|
2269 | * structure.
|
---|
2270 | *
|
---|
2271 | * - The input structure is a void pointer rather than a pointer to
|
---|
2272 | * WHV_PARTITION_PROPERTY which everyone probably will be using because
|
---|
2273 | * of the WHV_PARTITION_PROPERTY::PropertyCode field.
|
---|
2274 | *
|
---|
2275 | * - Really, why use PVOID for the input when the function isn't accepting
|
---|
2276 | * minimal sizes. E.g. WHVPartitionPropertyCodeProcessorClFlushSize only
|
---|
2277 | * requires a 9 byte input, but the function insists on 16 bytes (17083).
|
---|
2278 | *
|
---|
2279 | * - See GetFileAttributesEx, SetFileInformationByHandle, FindFirstFileEx,
|
---|
2280 | * and others for typical pattern for generic information setters and
|
---|
2281 | * getters.
|
---|
2282 | *
|
---|
2283 | * Update: All concerns have been addressed in build 17110.
|
---|
2284 | *
|
---|
2285 | *
|
---|
2286 | *
|
---|
2287 | * @section sec_nem_win_impl Our implementation.
|
---|
2288 | *
|
---|
2289 | * We set out with the goal of wanting to run as much as possible in ring-0,
|
---|
2290 | * reasoning that this would give use the best performance.
|
---|
2291 | *
|
---|
2292 | * This goal was approached gradually, starting out with a pure WinHvPlatform
|
---|
2293 | * implementation, gradually replacing parts: register access, guest memory
|
---|
2294 | * handling, running virtual processors. Then finally moving it all into
|
---|
2295 | * ring-0, while keeping most of it configurable so that we could make
|
---|
2296 | * comparisons (see NEMInternal.h and nemR3NativeRunGC()).
|
---|
2297 | *
|
---|
2298 | *
|
---|
2299 | * @subsection subsect_nem_win_impl_ioctl VID.SYS I/O control calls
|
---|
2300 | *
|
---|
2301 | * To run things in ring-0 we need to talk directly to VID.SYS thru its I/O
|
---|
2302 | * control interface. Looking at changes between like build 17083 and 17101 (if
|
---|
2303 | * memory serves) a set of the VID I/O control numbers shifted a little, which
|
---|
2304 | * means we need to determin them dynamically. We currently do this by hooking
|
---|
2305 | * the NtDeviceIoControlFile API call from VID.DLL and snooping up the
|
---|
2306 | * parameters when making dummy calls to relevant APIs. (We could also
|
---|
2307 | * disassemble the relevant APIs and try fish out the information from that, but
|
---|
2308 | * this is way simpler.)
|
---|
2309 | *
|
---|
2310 | * Issuing I/O control calls from ring-0 is facing a small challenge with
|
---|
2311 | * respect to direct buffering. When using direct buffering the device will
|
---|
2312 | * typically check that the buffer is actually in the user address space range
|
---|
2313 | * and reject kernel addresses. Fortunately, we've got the cross context VM
|
---|
2314 | * structure that is mapped into both kernel and user space, it's also locked
|
---|
2315 | * and safe to access from kernel space. So, we place the I/O control buffers
|
---|
2316 | * in the per-CPU part of it (NEMCPU::uIoCtlBuf) and give the driver the user
|
---|
2317 | * address if direct access buffering or kernel address if not.
|
---|
2318 | *
|
---|
2319 | * The I/O control calls are 'abstracted' in the support driver, see
|
---|
2320 | * SUPR0IoCtlSetupForHandle(), SUPR0IoCtlPerform() and SUPR0IoCtlCleanup().
|
---|
2321 | *
|
---|
2322 | *
|
---|
2323 | * @subsection subsect_nem_win_impl_cpumctx CPUMCTX
|
---|
2324 | *
|
---|
2325 | * Since the CPU state needs to live in Hyper-V when executing, we probably
|
---|
2326 | * should not transfer more than necessary when handling VMEXITs. To help us
|
---|
2327 | * manage this CPUMCTX got a new field CPUMCTX::fExtrn that to indicate which
|
---|
2328 | * part of the state is currently externalized (== in Hyper-V).
|
---|
2329 | *
|
---|
2330 | *
|
---|
2331 | * @subsection sec_nem_win_benchmarks Benchmarks.
|
---|
2332 | *
|
---|
2333 | * @subsubsection subsect_nem_win_benchmarks_bs2t1 Bootsector2-test1
|
---|
2334 | *
|
---|
2335 | * This is ValidationKit/bootsectors/bootsector2-test1.asm as of 2018-06-22
|
---|
2336 | * (internal r123172) running a the release build of VirtualBox from the same
|
---|
2337 | * source, though with exit optimizations disabled. Host is AMD Threadripper 1950X
|
---|
2338 | * running out an up to date 64-bit Windows 10 build 17134.
|
---|
2339 | *
|
---|
2340 | * The base line column is using the official WinHv API for everything but physical
|
---|
2341 | * memory mapping. The 2nd column is the default NEM/win configuration where we
|
---|
2342 | * put the main execution loop in ring-0, using hypercalls when we can and VID for
|
---|
2343 | * managing execution. The 3rd column is regular VirtualBox using AMD-V directly,
|
---|
2344 | * hyper-V is disabled, main execution loop in ring-0.
|
---|
2345 | *
|
---|
2346 | * @verbatim
|
---|
2347 | TESTING... WinHv API Hypercalls + VID VirtualBox AMD-V
|
---|
2348 | 32-bit paged protected mode, CPUID : 108 874 ins/sec 113% / 123 602 1198% / 1 305 113
|
---|
2349 | 32-bit pae protected mode, CPUID : 106 722 ins/sec 115% / 122 740 1232% / 1 315 201
|
---|
2350 | 64-bit long mode, CPUID : 106 798 ins/sec 114% / 122 111 1198% / 1 280 404
|
---|
2351 | 16-bit unpaged protected mode, CPUID : 106 835 ins/sec 114% / 121 994 1216% / 1 299 665
|
---|
2352 | 32-bit unpaged protected mode, CPUID : 105 257 ins/sec 115% / 121 772 1235% / 1 300 860
|
---|
2353 | real mode, CPUID : 104 507 ins/sec 116% / 121 800 1228% / 1 283 848
|
---|
2354 | CPUID EAX=1 : PASSED
|
---|
2355 | 32-bit paged protected mode, RDTSC : 99 581 834 ins/sec 100% / 100 323 307 93% / 93 473 299
|
---|
2356 | 32-bit pae protected mode, RDTSC : 99 620 585 ins/sec 100% / 99 960 952 84% / 83 968 839
|
---|
2357 | 64-bit long mode, RDTSC : 100 540 009 ins/sec 100% / 100 946 372 93% / 93 652 826
|
---|
2358 | 16-bit unpaged protected mode, RDTSC : 99 688 473 ins/sec 100% / 100 097 751 76% / 76 281 287
|
---|
2359 | 32-bit unpaged protected mode, RDTSC : 98 385 857 ins/sec 102% / 100 510 404 94% / 93 379 536
|
---|
2360 | real mode, RDTSC : 100 087 967 ins/sec 101% / 101 386 138 93% / 93 234 999
|
---|
2361 | RDTSC : PASSED
|
---|
2362 | 32-bit paged protected mode, Read CR4 : 2 156 102 ins/sec 98% / 2 121 967 17114% / 369 009 009
|
---|
2363 | 32-bit pae protected mode, Read CR4 : 2 163 820 ins/sec 98% / 2 133 804 17469% / 377 999 261
|
---|
2364 | 64-bit long mode, Read CR4 : 2 164 822 ins/sec 98% / 2 128 698 18875% / 408 619 313
|
---|
2365 | 16-bit unpaged protected mode, Read CR4 : 2 162 367 ins/sec 100% / 2 168 508 17132% / 370 477 568
|
---|
2366 | 32-bit unpaged protected mode, Read CR4 : 2 163 189 ins/sec 100% / 2 169 808 16768% / 362 734 679
|
---|
2367 | real mode, Read CR4 : 2 162 436 ins/sec 100% / 2 164 914 15551% / 336 288 998
|
---|
2368 | Read CR4 : PASSED
|
---|
2369 | real mode, 32-bit IN : 104 649 ins/sec 118% / 123 513 1028% / 1 075 831
|
---|
2370 | real mode, 32-bit OUT : 107 102 ins/sec 115% / 123 660 982% / 1 052 259
|
---|
2371 | real mode, 32-bit IN-to-ring-3 : 105 697 ins/sec 98% / 104 471 201% / 213 216
|
---|
2372 | real mode, 32-bit OUT-to-ring-3 : 105 830 ins/sec 98% / 104 598 198% / 210 495
|
---|
2373 | 16-bit unpaged protected mode, 32-bit IN : 104 855 ins/sec 117% / 123 174 1029% / 1 079 591
|
---|
2374 | 16-bit unpaged protected mode, 32-bit OUT : 107 529 ins/sec 115% / 124 250 992% / 1 067 053
|
---|
2375 | 16-bit unpaged protected mode, 32-bit IN-to-ring-3 : 106 337 ins/sec 103% / 109 565 196% / 209 367
|
---|
2376 | 16-bit unpaged protected mode, 32-bit OUT-to-ring-3 : 107 558 ins/sec 100% / 108 237 191% / 206 387
|
---|
2377 | 32-bit unpaged protected mode, 32-bit IN : 106 351 ins/sec 116% / 123 584 1016% / 1 081 325
|
---|
2378 | 32-bit unpaged protected mode, 32-bit OUT : 106 424 ins/sec 116% / 124 252 995% / 1 059 408
|
---|
2379 | 32-bit unpaged protected mode, 32-bit IN-to-ring-3 : 104 035 ins/sec 101% / 105 305 202% / 210 750
|
---|
2380 | 32-bit unpaged protected mode, 32-bit OUT-to-ring-3 : 103 831 ins/sec 102% / 106 919 205% / 213 198
|
---|
2381 | 32-bit paged protected mode, 32-bit IN : 103 356 ins/sec 119% / 123 870 1041% / 1 076 463
|
---|
2382 | 32-bit paged protected mode, 32-bit OUT : 107 177 ins/sec 115% / 124 302 998% / 1 069 655
|
---|
2383 | 32-bit paged protected mode, 32-bit IN-to-ring-3 : 104 491 ins/sec 100% / 104 744 200% / 209 264
|
---|
2384 | 32-bit paged protected mode, 32-bit OUT-to-ring-3 : 106 603 ins/sec 97% / 103 849 197% / 210 219
|
---|
2385 | 32-bit pae protected mode, 32-bit IN : 105 923 ins/sec 115% / 122 759 1041% / 1 103 261
|
---|
2386 | 32-bit pae protected mode, 32-bit OUT : 107 083 ins/sec 117% / 126 057 1024% / 1 096 667
|
---|
2387 | 32-bit pae protected mode, 32-bit IN-to-ring-3 : 106 114 ins/sec 97% / 103 496 199% / 211 312
|
---|
2388 | 32-bit pae protected mode, 32-bit OUT-to-ring-3 : 105 675 ins/sec 96% / 102 096 198% / 209 890
|
---|
2389 | 64-bit long mode, 32-bit IN : 105 800 ins/sec 113% / 120 006 1013% / 1 072 116
|
---|
2390 | 64-bit long mode, 32-bit OUT : 105 635 ins/sec 113% / 120 375 997% / 1 053 655
|
---|
2391 | 64-bit long mode, 32-bit IN-to-ring-3 : 105 274 ins/sec 95% / 100 763 197% / 208 026
|
---|
2392 | 64-bit long mode, 32-bit OUT-to-ring-3 : 106 262 ins/sec 94% / 100 749 196% / 209 288
|
---|
2393 | NOP I/O Port Access : PASSED
|
---|
2394 | 32-bit paged protected mode, 32-bit read : 57 687 ins/sec 119% / 69 136 1197% / 690 548
|
---|
2395 | 32-bit paged protected mode, 32-bit write : 57 957 ins/sec 118% / 68 935 1183% / 685 930
|
---|
2396 | 32-bit paged protected mode, 32-bit read-to-ring-3 : 57 958 ins/sec 95% / 55 432 276% / 160 505
|
---|
2397 | 32-bit paged protected mode, 32-bit write-to-ring-3 : 57 922 ins/sec 100% / 58 340 304% / 176 464
|
---|
2398 | 32-bit pae protected mode, 32-bit read : 57 478 ins/sec 119% / 68 453 1141% / 656 159
|
---|
2399 | 32-bit pae protected mode, 32-bit write : 57 226 ins/sec 118% / 68 097 1157% / 662 504
|
---|
2400 | 32-bit pae protected mode, 32-bit read-to-ring-3 : 57 582 ins/sec 94% / 54 651 268% / 154 867
|
---|
2401 | 32-bit pae protected mode, 32-bit write-to-ring-3 : 57 697 ins/sec 100% / 57 750 299% / 173 030
|
---|
2402 | 64-bit long mode, 32-bit read : 57 128 ins/sec 118% / 67 779 1071% / 611 949
|
---|
2403 | 64-bit long mode, 32-bit write : 57 127 ins/sec 118% / 67 632 1084% / 619 395
|
---|
2404 | 64-bit long mode, 32-bit read-to-ring-3 : 57 181 ins/sec 94% / 54 123 265% / 151 937
|
---|
2405 | 64-bit long mode, 32-bit write-to-ring-3 : 57 297 ins/sec 99% / 57 286 294% / 168 694
|
---|
2406 | 16-bit unpaged protected mode, 32-bit read : 58 827 ins/sec 118% / 69 545 1185% / 697 602
|
---|
2407 | 16-bit unpaged protected mode, 32-bit write : 58 678 ins/sec 118% / 69 442 1183% / 694 387
|
---|
2408 | 16-bit unpaged protected mode, 32-bit read-to-ring-3 : 57 841 ins/sec 96% / 55 730 275% / 159 163
|
---|
2409 | 16-bit unpaged protected mode, 32-bit write-to-ring-3 : 57 855 ins/sec 101% / 58 834 304% / 176 169
|
---|
2410 | 32-bit unpaged protected mode, 32-bit read : 58 063 ins/sec 120% / 69 690 1233% / 716 444
|
---|
2411 | 32-bit unpaged protected mode, 32-bit write : 57 936 ins/sec 120% / 69 633 1199% / 694 753
|
---|
2412 | 32-bit unpaged protected mode, 32-bit read-to-ring-3 : 58 451 ins/sec 96% / 56 183 273% / 159 972
|
---|
2413 | 32-bit unpaged protected mode, 32-bit write-to-ring-3 : 58 962 ins/sec 99% / 58 955 298% / 175 936
|
---|
2414 | real mode, 32-bit read : 58 571 ins/sec 118% / 69 478 1160% / 679 917
|
---|
2415 | real mode, 32-bit write : 58 418 ins/sec 118% / 69 320 1185% / 692 513
|
---|
2416 | real mode, 32-bit read-to-ring-3 : 58 072 ins/sec 96% / 55 751 274% / 159 145
|
---|
2417 | real mode, 32-bit write-to-ring-3 : 57 870 ins/sec 101% / 58 755 307% / 178 042
|
---|
2418 | NOP MMIO Access : PASSED
|
---|
2419 | SUCCESS
|
---|
2420 | * @endverbatim
|
---|
2421 | *
|
---|
2422 | * What we see here is:
|
---|
2423 | *
|
---|
2424 | * - The WinHv API approach is 10 to 12 times slower for exits we can
|
---|
2425 | * handle directly in ring-0 in the VBox AMD-V code.
|
---|
2426 | *
|
---|
2427 | * - The WinHv API approach is 2 to 3 times slower for exits we have to
|
---|
2428 | * go to ring-3 to handle with the VBox AMD-V code.
|
---|
2429 | *
|
---|
2430 | * - By using hypercalls and VID.SYS from ring-0 we gain between
|
---|
2431 | * 13% and 20% over the WinHv API on exits handled in ring-0.
|
---|
2432 | *
|
---|
2433 | * - For exits requiring ring-3 handling are between 6% slower and 3% faster
|
---|
2434 | * than the WinHv API.
|
---|
2435 | *
|
---|
2436 | *
|
---|
2437 | * As a side note, it looks like Hyper-V doesn't let the guest read CR4 but
|
---|
2438 | * triggers exits all the time. This isn't all that important these days since
|
---|
2439 | * OSes like Linux cache the CR4 value specifically to avoid these kinds of exits.
|
---|
2440 | *
|
---|
2441 | *
|
---|
2442 | * @subsubsection subsect_nem_win_benchmarks_w2k Windows 2000 Boot & Shutdown
|
---|
2443 | *
|
---|
2444 | * Timing the startup and automatic shutdown of a Windows 2000 SP4 guest serves
|
---|
2445 | * as a real world benchmark and example of why exit performance is import. When
|
---|
2446 | * Windows 2000 boots up is doing a lot of VGA redrawing of the boot animation,
|
---|
2447 | * which is very costly. Not having installed guest additions leaves it in a VGA
|
---|
2448 | * mode after the bootup sequence is done, keep up the screen access expenses,
|
---|
2449 | * though the graphics driver more economical than the bootvid code.
|
---|
2450 | *
|
---|
2451 | * The VM was configured to automatically logon. A startup script was installed
|
---|
2452 | * to perform the automatic shuting down and powering off the VM (thru
|
---|
2453 | * vts_shutdown.exe -f -p). An offline snapshot of the VM was taken an restored
|
---|
2454 | * before each test run. The test time run time is calculated from the monotonic
|
---|
2455 | * VBox.log timestamps, starting with the state change to 'RUNNING' and stopping
|
---|
2456 | * at 'POWERING_OFF'.
|
---|
2457 | *
|
---|
2458 | * The host OS and VirtualBox build is the same as for the bootsector2-test1
|
---|
2459 | * scenario.
|
---|
2460 | *
|
---|
2461 | * Results:
|
---|
2462 | *
|
---|
2463 | * - WinHv API for all but physical page mappings:
|
---|
2464 | * 32 min 12.19 seconds
|
---|
2465 | *
|
---|
2466 | * - The default NEM/win configuration where we put the main execution loop
|
---|
2467 | * in ring-0, using hypercalls when we can and VID for managing execution:
|
---|
2468 | * 3 min 23.18 seconds
|
---|
2469 | *
|
---|
2470 | * - Regular VirtualBox using AMD-V directly, hyper-V is disabled, main
|
---|
2471 | * execution loop in ring-0:
|
---|
2472 | * 58.09 seconds
|
---|
2473 | *
|
---|
2474 | * - WinHv API with exit history based optimizations:
|
---|
2475 | * 58.66 seconds
|
---|
2476 | *
|
---|
2477 | * - Hypercall + VID.SYS with exit history base optimizations:
|
---|
2478 | * 58.94 seconds
|
---|
2479 | *
|
---|
2480 | * With a well above average machine needing over half an hour for booting a
|
---|
2481 | * nearly 20 year old guest kind of says it all. The 13%-20% exit performance
|
---|
2482 | * increase we get by using hypercalls and VID.SYS directly pays off a lot here.
|
---|
2483 | * The 3m23s is almost acceptable in comparison to the half an hour.
|
---|
2484 | *
|
---|
2485 | * The similarity between the last three results strongly hits at windows 2000
|
---|
2486 | * doing a lot of waiting during boot and shutdown and isn't the best testcase
|
---|
2487 | * once a basic performance level is reached.
|
---|
2488 | *
|
---|
2489 | *
|
---|
2490 | * @subsubsection subsection_iem_win_benchmarks_deb9_nat Debian 9 NAT performance
|
---|
2491 | *
|
---|
2492 | * This benchmark is about network performance over NAT from a 64-bit Debian 9
|
---|
2493 | * VM with a single CPU. For network performance measurements, we use our own
|
---|
2494 | * NetPerf tool (ValidationKit/utils/network/NetPerf.cpp) to measure latency
|
---|
2495 | * and throughput.
|
---|
2496 | *
|
---|
2497 | * The setups, builds and configurations are as in the previous benchmarks
|
---|
2498 | * (release r123172 on 1950X running 64-bit W10/17134). Please note that the
|
---|
2499 | * exit optimizations hasn't yet been in tuned with NetPerf in mind.
|
---|
2500 | *
|
---|
2501 | * The NAT network setup was selected here since it's the default one and the
|
---|
2502 | * slowest one. There is quite a bit of IPC with worker threads and packet
|
---|
2503 | * processing involved.
|
---|
2504 | *
|
---|
2505 | * Latency test is first up. This is a classic back and forth between the two
|
---|
2506 | * NetPerf instances, where the key measurement is the roundrip latency. The
|
---|
2507 | * values here are the lowest result over 3-6 runs.
|
---|
2508 | *
|
---|
2509 | * Against host system:
|
---|
2510 | * - 152 258 ns/roundtrip - 100% - regular VirtualBox SVM
|
---|
2511 | * - 271 059 ns/roundtrip - 178% - Hypercalls + VID.SYS in ring-0 with exit optimizations.
|
---|
2512 | * - 280 149 ns/roundtrip - 184% - Hypercalls + VID.SYS in ring-0
|
---|
2513 | * - 317 735 ns/roundtrip - 209% - Win HV API with exit optimizations.
|
---|
2514 | * - 342 440 ns/roundtrip - 225% - Win HV API
|
---|
2515 | *
|
---|
2516 | * Against a remote Windows 10 system over a 10Gbps link:
|
---|
2517 | * - 243 969 ns/roundtrip - 100% - regular VirtualBox SVM
|
---|
2518 | * - 384 427 ns/roundtrip - 158% - Win HV API with exit optimizations.
|
---|
2519 | * - 402 411 ns/roundtrip - 165% - Hypercalls + VID.SYS in ring-0
|
---|
2520 | * - 406 313 ns/roundtrip - 167% - Win HV API
|
---|
2521 | * - 413 160 ns/roundtrip - 169% - Hypercalls + VID.SYS in ring-0 with exit optimizations.
|
---|
2522 | *
|
---|
2523 | * What we see here is:
|
---|
2524 | *
|
---|
2525 | * - Consistent and signficant latency increase using Hyper-V compared
|
---|
2526 | * to directly harnessing AMD-V ourselves.
|
---|
2527 | *
|
---|
2528 | * - When talking to the host, it's clear that the hypercalls + VID.SYS
|
---|
2529 | * in ring-0 method pays off.
|
---|
2530 | *
|
---|
2531 | * - When talking to a different host, the numbers are closer and it
|
---|
2532 | * is not longer clear which Hyper-V execution method is better.
|
---|
2533 | *
|
---|
2534 | *
|
---|
2535 | * Throughput benchmarks are performed by one side pushing data full throttle
|
---|
2536 | * for 10 seconds (minus a 1 second at each end of the test), then reversing
|
---|
2537 | * the roles and measuring it in the other direction. The tests ran 3-5 times
|
---|
2538 | * and below are the highest and lowest results in each direction.
|
---|
2539 | *
|
---|
2540 | * Receiving from host system:
|
---|
2541 | * - Regular VirtualBox SVM:
|
---|
2542 | * Max: 96 907 549 bytes/s - 100%
|
---|
2543 | * Min: 86 912 095 bytes/s - 100%
|
---|
2544 | * - Hypercalls + VID.SYS in ring-0:
|
---|
2545 | * Max: 84 036 544 bytes/s - 87%
|
---|
2546 | * Min: 64 978 112 bytes/s - 75%
|
---|
2547 | * - Hypercalls + VID.SYS in ring-0 with exit optimizations:
|
---|
2548 | * Max: 77 760 699 bytes/s - 80%
|
---|
2549 | * Min: 72 677 171 bytes/s - 84%
|
---|
2550 | * - Win HV API with exit optimizations:
|
---|
2551 | * Max: 64 465 905 bytes/s - 67%
|
---|
2552 | * Min: 62 286 369 bytes/s - 72%
|
---|
2553 | * - Win HV API:
|
---|
2554 | * Max: 62 466 631 bytes/s - 64%
|
---|
2555 | * Min: 61 362 782 bytes/s - 70%
|
---|
2556 | *
|
---|
2557 | * Sending to the host system:
|
---|
2558 | * - Regular VirtualBox SVM:
|
---|
2559 | * Max: 87 728 652 bytes/s - 100%
|
---|
2560 | * Min: 86 923 198 bytes/s - 100%
|
---|
2561 | * - Hypercalls + VID.SYS in ring-0:
|
---|
2562 | * Max: 84 280 749 bytes/s - 96%
|
---|
2563 | * Min: 78 369 842 bytes/s - 90%
|
---|
2564 | * - Hypercalls + VID.SYS in ring-0 with exit optimizations:
|
---|
2565 | * Max: 84 119 932 bytes/s - 96%
|
---|
2566 | * Min: 77 396 811 bytes/s - 89%
|
---|
2567 | * - Win HV API:
|
---|
2568 | * Max: 81 714 377 bytes/s - 93%
|
---|
2569 | * Min: 78 697 419 bytes/s - 91%
|
---|
2570 | * - Win HV API with exit optimizations:
|
---|
2571 | * Max: 80 502 488 bytes/s - 91%
|
---|
2572 | * Min: 71 164 978 bytes/s - 82%
|
---|
2573 | *
|
---|
2574 | * Receiving from a remote Windows 10 system over a 10Gbps link:
|
---|
2575 | * - Hypercalls + VID.SYS in ring-0:
|
---|
2576 | * Max: 115 346 922 bytes/s - 136%
|
---|
2577 | * Min: 112 912 035 bytes/s - 137%
|
---|
2578 | * - Regular VirtualBox SVM:
|
---|
2579 | * Max: 84 517 504 bytes/s - 100%
|
---|
2580 | * Min: 82 597 049 bytes/s - 100%
|
---|
2581 | * - Hypercalls + VID.SYS in ring-0 with exit optimizations:
|
---|
2582 | * Max: 77 736 251 bytes/s - 92%
|
---|
2583 | * Min: 73 813 784 bytes/s - 89%
|
---|
2584 | * - Win HV API with exit optimizations:
|
---|
2585 | * Max: 63 035 587 bytes/s - 75%
|
---|
2586 | * Min: 57 538 380 bytes/s - 70%
|
---|
2587 | * - Win HV API:
|
---|
2588 | * Max: 62 279 185 bytes/s - 74%
|
---|
2589 | * Min: 56 813 866 bytes/s - 69%
|
---|
2590 | *
|
---|
2591 | * Sending to a remote Windows 10 system over a 10Gbps link:
|
---|
2592 | * - Win HV API with exit optimizations:
|
---|
2593 | * Max: 116 502 357 bytes/s - 103%
|
---|
2594 | * Min: 49 046 550 bytes/s - 59%
|
---|
2595 | * - Regular VirtualBox SVM:
|
---|
2596 | * Max: 113 030 991 bytes/s - 100%
|
---|
2597 | * Min: 83 059 511 bytes/s - 100%
|
---|
2598 | * - Hypercalls + VID.SYS in ring-0:
|
---|
2599 | * Max: 106 435 031 bytes/s - 94%
|
---|
2600 | * Min: 47 253 510 bytes/s - 57%
|
---|
2601 | * - Hypercalls + VID.SYS in ring-0 with exit optimizations:
|
---|
2602 | * Max: 94 842 287 bytes/s - 84%
|
---|
2603 | * Min: 68 362 172 bytes/s - 82%
|
---|
2604 | * - Win HV API:
|
---|
2605 | * Max: 65 165 225 bytes/s - 58%
|
---|
2606 | * Min: 47 246 573 bytes/s - 57%
|
---|
2607 | *
|
---|
2608 | * What we see here is:
|
---|
2609 | *
|
---|
2610 | * - Again consistent numbers when talking to the host. Showing that the
|
---|
2611 | * ring-0 approach is preferable to the ring-3 one.
|
---|
2612 | *
|
---|
2613 | * - Again when talking to a remote host, things get more difficult to
|
---|
2614 | * make sense of. The spread is larger and direct AMD-V gets beaten by
|
---|
2615 | * a different the Hyper-V approaches in each direction.
|
---|
2616 | *
|
---|
2617 | * - However, if we treat the first entry (remote host) as weird spikes, the
|
---|
2618 | * other entries are consistently worse compared to direct AMD-V. For the
|
---|
2619 | * send case we get really bad results for WinHV.
|
---|
2620 | *
|
---|
2621 | */
|
---|
2622 |
|
---|