VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGM.cpp@ 96335

Last change on this file since 96335 was 95404, checked in by vboxsync, 2 years ago

VMM: Nested VMX: bugref:10092 Shadow reserved bits that trigger EPT misconfigs while shadowing guest EPT tables.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 143.5 KB
Line 
1/* $Id: PGM.cpp 95404 2022-06-28 07:05:49Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2022 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @sa @ref grp_pgm
22 * @subpage pg_pgm_pool
23 * @subpage pg_pgm_phys
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be referred
30 * to as "host paging", and GC referred to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 * Note! The intermediate memory context is also used for 64-bit guest
85 * execution on 32-bit hosts. Because we need to load 64-bit registers
86 * prior to switching to guest context, we need to be in 64-bit mode
87 * first. So, HM has some 64-bit worker routines in VMMRC.rc that get
88 * invoked via the special world switcher code in LegacyToAMD64.asm.
89 *
90 *
91 * @subsection subsec_pgm_int_gc Guest Context Mappings
92 *
93 * During assignment and relocation of a guest context mapping the intermediate
94 * memory context is used to verify the new location.
95 *
96 * Guest context mappings are currently restricted to below 4GB, for reasons
97 * of simplicity. This may change when we implement AMD64 support.
98 *
99 *
100 *
101 *
102 * @section sec_pgm_misc Misc
103 *
104 *
105 * @subsection sec_pgm_misc_A20 The A20 Gate
106 *
107 * PGM implements the A20 gate masking when translating a virtual guest address
108 * into a physical address for CPU access, i.e. PGMGstGetPage (and friends) and
109 * the code reading the guest page table entries during shadowing. The masking
110 * is done consistenly for all CPU modes, paged ones included. Large pages are
111 * also masked correctly. (On current CPUs, experiments indicates that AMD does
112 * not apply A20M in paged modes and intel only does it for the 2nd MB of
113 * memory.)
114 *
115 * The A20 gate implementation is per CPU core. It can be configured on a per
116 * core basis via the keyboard device and PC architecture device. This is
117 * probably not exactly how real CPUs do it, but SMP and A20 isn't a place where
118 * guest OSes try pushing things anyway, so who cares. (On current real systems
119 * the A20M signal is probably only sent to the boot CPU and it affects all
120 * thread and probably all cores in that package.)
121 *
122 * The keyboard device and the PC architecture device doesn't OR their A20
123 * config bits together, rather they are currently implemented such that they
124 * mirror the CPU state. So, flipping the bit in either of them will change the
125 * A20 state. (On real hardware the bits of the two devices should probably be
126 * ORed together to indicate enabled, i.e. both needs to be cleared to disable
127 * A20 masking.)
128 *
129 * The A20 state will change immediately, transmeta fashion. There is no delays
130 * due to buses, wiring or other physical stuff. (On real hardware there are
131 * normally delays, the delays differs between the two devices and probably also
132 * between chipsets and CPU generations. Note that it's said that transmeta CPUs
133 * does the change immediately like us, they apparently intercept/handles the
134 * port accesses in microcode. Neat.)
135 *
136 * @sa http://en.wikipedia.org/wiki/A20_line#The_80286_and_the_high_memory_area
137 *
138 *
139 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
140 *
141 * The differences between legacy PAE and long mode PAE are:
142 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
143 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
144 * usual meanings while 6 is ignored (AMD). This means that upon switching to
145 * legacy PAE mode we'll have to clear these bits and when going to long mode
146 * they must be set. This applies to both intermediate and shadow contexts,
147 * however we don't need to do it for the intermediate one since we're
148 * executing with CR0.WP at that time.
149 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
150 * a page aligned one is required.
151 *
152 *
153 * @section sec_pgm_handlers Access Handlers
154 *
155 * Placeholder.
156 *
157 *
158 * @subsection sec_pgm_handlers_phys Physical Access Handlers
159 *
160 * Placeholder.
161 *
162 *
163 * @subsection sec_pgm_handlers_virt Virtual Access Handlers (obsolete)
164 *
165 * We currently implement three types of virtual access handlers: ALL, WRITE
166 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERKIND for some more details.
167 *
168 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
169 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
170 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
171 * rest of this section is going to be about these handlers.
172 *
173 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
174 * how successful this is gonna be...
175 *
176 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
177 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
178 * and create a new node that is inserted into the AVL tree (range key). Then
179 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
180 *
181 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
182 *
183 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
184 * via the current guest CR3 and update the physical page -> virtual handler
185 * translation. Needless to say, this doesn't exactly scale very well. If any changes
186 * are detected, it will flag a virtual bit update just like we did on registration.
187 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
188 *
189 * 2b. The virtual bit update process will iterate all the pages covered by all the
190 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
191 * virtual handlers on that page.
192 *
193 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
194 * we don't miss any alias mappings of the monitored pages.
195 *
196 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
197 *
198 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
199 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
200 * will call the handlers like in the next step. If the physical mapping has
201 * changed we will - some time in the future - perform a handler callback
202 * (optional) and update the physical -> virtual handler cache.
203 *
204 * 4. \#PF(,write) on a page in the range. This will cause the handler to
205 * be invoked.
206 *
207 * 5. The guest invalidates the page and changes the physical backing or
208 * unmaps it. This should cause the invalidation callback to be invoked
209 * (it might not yet be 100% perfect). Exactly what happens next... is
210 * this where we mess up and end up out of sync for a while?
211 *
212 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
213 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
214 * this handler to NONE and trigger a full PGM resync (basically the same
215 * as int step 1). Which means 2 is executed again.
216 *
217 *
218 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
219 *
220 * There is a bunch of things that needs to be done to make the virtual handlers
221 * work 100% correctly and work more efficiently.
222 *
223 * The first bit hasn't been implemented yet because it's going to slow the
224 * whole mess down even more, and besides it seems to be working reliably for
225 * our current uses. OTOH, some of the optimizations might end up more or less
226 * implementing the missing bits, so we'll see.
227 *
228 * On the optimization side, the first thing to do is to try avoid unnecessary
229 * cache flushing. Then try team up with the shadowing code to track changes
230 * in mappings by means of access to them (shadow in), updates to shadows pages,
231 * invlpg, and shadow PT discarding (perhaps).
232 *
233 * Some idea that have popped up for optimization for current and new features:
234 * - bitmap indicating where there are virtual handlers installed.
235 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
236 * - Further optimize this by min/max (needs min/max avl getters).
237 * - Shadow page table entry bit (if any left)?
238 *
239 */
240
241
242/** @page pg_pgm_phys PGM Physical Guest Memory Management
243 *
244 *
245 * Objectives:
246 * - Guest RAM over-commitment using memory ballooning,
247 * zero pages and general page sharing.
248 * - Moving or mirroring a VM onto a different physical machine.
249 *
250 *
251 * @section sec_pgmPhys_Definitions Definitions
252 *
253 * Allocation chunk - A RTR0MemObjAllocPhysNC or RTR0MemObjAllocPhys allocate
254 * memory object and the tracking machinery associated with it.
255 *
256 *
257 *
258 *
259 * @section sec_pgmPhys_AllocPage Allocating a page.
260 *
261 * Initially we map *all* guest memory to the (per VM) zero page, which
262 * means that none of the read functions will cause pages to be allocated.
263 *
264 * Exception, access bit in page tables that have been shared. This must
265 * be handled, but we must also make sure PGMGst*Modify doesn't make
266 * unnecessary modifications.
267 *
268 * Allocation points:
269 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
270 * - Replacing a zero page mapping at \#PF.
271 * - Replacing a shared page mapping at \#PF.
272 * - ROM registration (currently MMR3RomRegister).
273 * - VM restore (pgmR3Load).
274 *
275 * For the first three it would make sense to keep a few pages handy
276 * until we've reached the max memory commitment for the VM.
277 *
278 * For the ROM registration, we know exactly how many pages we need
279 * and will request these from ring-0. For restore, we will save
280 * the number of non-zero pages in the saved state and allocate
281 * them up front. This would allow the ring-0 component to refuse
282 * the request if the isn't sufficient memory available for VM use.
283 *
284 * Btw. for both ROM and restore allocations we won't be requiring
285 * zeroed pages as they are going to be filled instantly.
286 *
287 *
288 * @section sec_pgmPhys_FreePage Freeing a page
289 *
290 * There are a few points where a page can be freed:
291 * - After being replaced by the zero page.
292 * - After being replaced by a shared page.
293 * - After being ballooned by the guest additions.
294 * - At reset.
295 * - At restore.
296 *
297 * When freeing one or more pages they will be returned to the ring-0
298 * component and replaced by the zero page.
299 *
300 * The reasoning for clearing out all the pages on reset is that it will
301 * return us to the exact same state as on power on, and may thereby help
302 * us reduce the memory load on the system. Further it might have a
303 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
304 *
305 * On restore, as mention under the allocation topic, pages should be
306 * freed / allocated depending on how many is actually required by the
307 * new VM state. The simplest approach is to do like on reset, and free
308 * all non-ROM pages and then allocate what we need.
309 *
310 * A measure to prevent some fragmentation, would be to let each allocation
311 * chunk have some affinity towards the VM having allocated the most pages
312 * from it. Also, try make sure to allocate from allocation chunks that
313 * are almost full. Admittedly, both these measures might work counter to
314 * our intentions and its probably not worth putting a lot of effort,
315 * cpu time or memory into this.
316 *
317 *
318 * @section sec_pgmPhys_SharePage Sharing a page
319 *
320 * The basic idea is that there there will be a idle priority kernel
321 * thread walking the non-shared VM pages hashing them and looking for
322 * pages with the same checksum. If such pages are found, it will compare
323 * them byte-by-byte to see if they actually are identical. If found to be
324 * identical it will allocate a shared page, copy the content, check that
325 * the page didn't change while doing this, and finally request both the
326 * VMs to use the shared page instead. If the page is all zeros (special
327 * checksum and byte-by-byte check) it will request the VM that owns it
328 * to replace it with the zero page.
329 *
330 * To make this efficient, we will have to make sure not to try share a page
331 * that will change its contents soon. This part requires the most work.
332 * A simple idea would be to request the VM to write monitor the page for
333 * a while to make sure it isn't modified any time soon. Also, it may
334 * make sense to skip pages that are being write monitored since this
335 * information is readily available to the thread if it works on the
336 * per-VM guest memory structures (presently called PGMRAMRANGE).
337 *
338 *
339 * @section sec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
340 *
341 * The pages are organized in allocation chunks in ring-0, this is a necessity
342 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
343 * could easily work on a page-by-page basis if we liked. Whether this is possible
344 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
345 * become a problem as part of the idea here is that we wish to return memory to
346 * the host system.
347 *
348 * For instance, starting two VMs at the same time, they will both allocate the
349 * guest memory on-demand and if permitted their page allocations will be
350 * intermixed. Shut down one of the two VMs and it will be difficult to return
351 * any memory to the host system because the page allocation for the two VMs are
352 * mixed up in the same allocation chunks.
353 *
354 * To further complicate matters, when pages are freed because they have been
355 * ballooned or become shared/zero the whole idea is that the page is supposed
356 * to be reused by another VM or returned to the host system. This will cause
357 * allocation chunks to contain pages belonging to different VMs and prevent
358 * returning memory to the host when one of those VM shuts down.
359 *
360 * The only way to really deal with this problem is to move pages. This can
361 * either be done at VM shutdown and or by the idle priority worker thread
362 * that will be responsible for finding sharable/zero pages. The mechanisms
363 * involved for coercing a VM to move a page (or to do it for it) will be
364 * the same as when telling it to share/zero a page.
365 *
366 *
367 * @section sec_pgmPhys_Tracking Tracking Structures And Their Cost
368 *
369 * There's a difficult balance between keeping the per-page tracking structures
370 * (global and guest page) easy to use and keeping them from eating too much
371 * memory. We have limited virtual memory resources available when operating in
372 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
373 * tracking structures will be attempted designed such that we can deal with up
374 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
375 *
376 *
377 * @subsection subsec_pgmPhys_Tracking_Kernel Kernel Space
378 *
379 * @see pg_GMM
380 *
381 * @subsection subsec_pgmPhys_Tracking_PerVM Per-VM
382 *
383 * Fixed info is the physical address of the page (HCPhys) and the page id
384 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
385 * Today we've restricting ourselves to 40(-12) bits because this is the current
386 * restrictions of all AMD64 implementations (I think Barcelona will up this
387 * to 48(-12) bits, not that it really matters) and I needed the bits for
388 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
389 * decent range for the page id: 2^(28+12) = 1024TB.
390 *
391 * In additions to these, we'll have to keep maintaining the page flags as we
392 * currently do. Although it wouldn't harm to optimize these quite a bit, like
393 * for instance the ROM shouldn't depend on having a write handler installed
394 * in order for it to become read-only. A RO/RW bit should be considered so
395 * that the page syncing code doesn't have to mess about checking multiple
396 * flag combinations (ROM || RW handler || write monitored) in order to
397 * figure out how to setup a shadow PTE. But this of course, is second
398 * priority at present. Current this requires 12 bits, but could probably
399 * be optimized to ~8.
400 *
401 * Then there's the 24 bits used to track which shadow page tables are
402 * currently mapping a page for the purpose of speeding up physical
403 * access handlers, and thereby the page pool cache. More bit for this
404 * purpose wouldn't hurt IIRC.
405 *
406 * Then there is a new bit in which we need to record what kind of page
407 * this is, shared, zero, normal or write-monitored-normal. This'll
408 * require 2 bits. One bit might be needed for indicating whether a
409 * write monitored page has been written to. And yet another one or
410 * two for tracking migration status. 3-4 bits total then.
411 *
412 * Whatever is left will can be used to record the sharabilitiy of a
413 * page. The page checksum will not be stored in the per-VM table as
414 * the idle thread will not be permitted to do modifications to it.
415 * It will instead have to keep its own working set of potentially
416 * shareable pages and their check sums and stuff.
417 *
418 * For the present we'll keep the current packing of the
419 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
420 * we'll have to change it to a struct with a total of 128-bits at
421 * our disposal.
422 *
423 * The initial layout will be like this:
424 * @verbatim
425 RTHCPHYS HCPhys; The current stuff.
426 63:40 Current shadow PT tracking stuff.
427 39:12 The physical page frame number.
428 11:0 The current flags.
429 uint32_t u28PageId : 28; The page id.
430 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
431 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
432 uint32_t u1Reserved : 1; Reserved for later.
433 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
434 @endverbatim
435 *
436 * The final layout will be something like this:
437 * @verbatim
438 RTHCPHYS HCPhys; The current stuff.
439 63:48 High page id (12+).
440 47:12 The physical page frame number.
441 11:0 Low page id.
442 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
443 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
444 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
445 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
446 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
447 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
448 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
449 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
450 @endverbatim
451 *
452 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
453 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
454 * to one or more VMs is: (32GB >> GUEST_PAGE_SHIFT) * 16 bytes, or 128MBs. Or
455 * another example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
456 *
457 * A couple of cost examples for the total cost per-VM + kernel.
458 * 32-bit Windows and 32-bit linux:
459 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
460 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
461 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
462 * 64-bit Windows and 64-bit linux:
463 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
464 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
465 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
466 *
467 * UPDATE - 2007-09-27:
468 * Will need a ballooned flag/state too because we cannot
469 * trust the guest 100% and reporting the same page as ballooned more
470 * than once will put the GMM off balance.
471 *
472 *
473 * @section sec_pgmPhys_Serializing Serializing Access
474 *
475 * Initially, we'll try a simple scheme:
476 *
477 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
478 * by the EMT thread of that VM while in the pgm critsect.
479 * - Other threads in the VM process that needs to make reliable use of
480 * the per-VM RAM tracking structures will enter the critsect.
481 * - No process external thread or kernel thread will ever try enter
482 * the pgm critical section, as that just won't work.
483 * - The idle thread (and similar threads) doesn't not need 100% reliable
484 * data when performing it tasks as the EMT thread will be the one to
485 * do the actual changes later anyway. So, as long as it only accesses
486 * the main ram range, it can do so by somehow preventing the VM from
487 * being destroyed while it works on it...
488 *
489 * - The over-commitment management, including the allocating/freeing
490 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
491 * more mundane mutex implementation is broken on Linux).
492 * - A separate mutex is protecting the set of allocation chunks so
493 * that pages can be shared or/and freed up while some other VM is
494 * allocating more chunks. This mutex can be take from under the other
495 * one, but not the other way around.
496 *
497 *
498 * @section sec_pgmPhys_Request VM Request interface
499 *
500 * When in ring-0 it will become necessary to send requests to a VM so it can
501 * for instance move a page while defragmenting during VM destroy. The idle
502 * thread will make use of this interface to request VMs to setup shared
503 * pages and to perform write monitoring of pages.
504 *
505 * I would propose an interface similar to the current VMReq interface, similar
506 * in that it doesn't require locking and that the one sending the request may
507 * wait for completion if it wishes to. This shouldn't be very difficult to
508 * realize.
509 *
510 * The requests themselves are also pretty simple. They are basically:
511 * -# Check that some precondition is still true.
512 * -# Do the update.
513 * -# Update all shadow page tables involved with the page.
514 *
515 * The 3rd step is identical to what we're already doing when updating a
516 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
517 *
518 *
519 *
520 * @section sec_pgmPhys_MappingCaches Mapping Caches
521 *
522 * In order to be able to map in and out memory and to be able to support
523 * guest with more RAM than we've got virtual address space, we'll employing
524 * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
525 * however on 32-bit darwin the ring-0 code is running in a different memory
526 * context and therefore needs a separate cache. In raw-mode context we also
527 * need a separate cache. The 32-bit darwin mapping cache and the one for
528 * raw-mode context share a lot of code, see PGMRZDYNMAP.
529 *
530 *
531 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
532 *
533 * We've considered implementing the ring-3 mapping cache page based but found
534 * that this was bother some when one had to take into account TLBs+SMP and
535 * portability (missing the necessary APIs on several platforms). There were
536 * also some performance concerns with this approach which hadn't quite been
537 * worked out.
538 *
539 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
540 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
541 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
542 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
543 * costly than a single page, although how much more costly is uncertain. We'll
544 * try address this by using a very big cache, preferably bigger than the actual
545 * VM RAM size if possible. The current VM RAM sizes should give some idea for
546 * 32-bit boxes, while on 64-bit we can probably get away with employing an
547 * unlimited cache.
548 *
549 * The cache have to parts, as already indicated, the ring-3 side and the
550 * ring-0 side.
551 *
552 * The ring-0 will be tied to the page allocator since it will operate on the
553 * memory objects it contains. It will therefore require the first ring-0 mutex
554 * discussed in @ref sec_pgmPhys_Serializing. We some double house keeping wrt
555 * to who has mapped what I think, since both VMMR0.r0 and RTR0MemObj will keep
556 * track of mapping relations
557 *
558 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
559 * require anyone that desires to do changes to the mapping cache to do that
560 * from within this critsect. Alternatively, we could employ a separate critsect
561 * for serializing changes to the mapping cache as this would reduce potential
562 * contention with other threads accessing mappings unrelated to the changes
563 * that are in process. We can see about this later, contention will show
564 * up in the statistics anyway, so it'll be simple to tell.
565 *
566 * The organization of the ring-3 part will be very much like how the allocation
567 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
568 * having to walk the tree all the time, we'll have a couple of lookaside entries
569 * like in we do for I/O ports and MMIO in IOM.
570 *
571 * The simplified flow of a PGMPhysRead/Write function:
572 * -# Enter the PGM critsect.
573 * -# Lookup GCPhys in the ram ranges and get the Page ID.
574 * -# Calc the Allocation Chunk ID from the Page ID.
575 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
576 * If not found in cache:
577 * -# Call ring-0 and request it to be mapped and supply
578 * a chunk to be unmapped if the cache is maxed out already.
579 * -# Insert the new mapping into the AVL tree (id + R3 address).
580 * -# Update the relevant lookaside entry and return the mapping address.
581 * -# Do the read/write according to monitoring flags and everything.
582 * -# Leave the critsect.
583 *
584 *
585 * @section sec_pgmPhys_Changes Changes
586 *
587 * Breakdown of the changes involved?
588 */
589
590
591/*********************************************************************************************************************************
592* Header Files *
593*********************************************************************************************************************************/
594#define LOG_GROUP LOG_GROUP_PGM
595#define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */
596#include <VBox/vmm/dbgf.h>
597#include <VBox/vmm/pgm.h>
598#include <VBox/vmm/cpum.h>
599#include <VBox/vmm/iom.h>
600#include <VBox/sup.h>
601#include <VBox/vmm/mm.h>
602#include <VBox/vmm/em.h>
603#include <VBox/vmm/stam.h>
604#include <VBox/vmm/selm.h>
605#include <VBox/vmm/ssm.h>
606#include <VBox/vmm/hm.h>
607#include "PGMInternal.h"
608#include <VBox/vmm/vmcc.h>
609#include <VBox/vmm/uvm.h>
610#include "PGMInline.h"
611
612#include <VBox/dbg.h>
613#include <VBox/param.h>
614#include <VBox/err.h>
615
616#include <iprt/asm.h>
617#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
618# include <iprt/asm-amd64-x86.h>
619#endif
620#include <iprt/assert.h>
621#include <iprt/env.h>
622#include <iprt/file.h>
623#include <iprt/mem.h>
624#include <iprt/rand.h>
625#include <iprt/string.h>
626#include <iprt/thread.h>
627#ifdef RT_OS_LINUX
628# include <iprt/linux/sysfs.h>
629#endif
630
631
632/*********************************************************************************************************************************
633* Structures and Typedefs *
634*********************************************************************************************************************************/
635/**
636 * Argument package for pgmR3RElocatePhysHnadler, pgmR3RelocateVirtHandler and
637 * pgmR3RelocateHyperVirtHandler.
638 */
639typedef struct PGMRELOCHANDLERARGS
640{
641 RTGCINTPTR offDelta;
642 PVM pVM;
643} PGMRELOCHANDLERARGS;
644/** Pointer to a page access handlere relocation argument package. */
645typedef PGMRELOCHANDLERARGS const *PCPGMRELOCHANDLERARGS;
646
647
648/*********************************************************************************************************************************
649* Internal Functions *
650*********************************************************************************************************************************/
651static int pgmR3InitPaging(PVM pVM);
652static int pgmR3InitStats(PVM pVM);
653static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
654static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
655static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
656#ifdef VBOX_STRICT
657static FNVMATSTATE pgmR3ResetNoMorePhysWritesFlag;
658#endif
659
660#ifdef VBOX_WITH_DEBUGGER
661static FNDBGCCMD pgmR3CmdError;
662static FNDBGCCMD pgmR3CmdSync;
663static FNDBGCCMD pgmR3CmdSyncAlways;
664# ifdef VBOX_STRICT
665static FNDBGCCMD pgmR3CmdAssertCR3;
666# endif
667static FNDBGCCMD pgmR3CmdPhysToFile;
668#endif
669
670
671/*********************************************************************************************************************************
672* Global Variables *
673*********************************************************************************************************************************/
674#ifdef VBOX_WITH_DEBUGGER
675/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
676static const DBGCVARDESC g_aPgmErrorArgs[] =
677{
678 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
679 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
680};
681
682static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
683{
684 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
685 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
686 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
687};
688
689# ifdef DEBUG_sandervl
690static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
691{
692 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
693 { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
694 { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
695};
696# endif
697
698/** Command descriptors. */
699static const DBGCCMD g_aCmds[] =
700{
701 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
702 { "pgmsync", 0, 0, NULL, 0, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
703 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
704 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
705# ifdef VBOX_STRICT
706 { "pgmassertcr3", 0, 0, NULL, 0, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
707# ifdef VBOX_WITH_PAGE_SHARING
708 { "pgmcheckduppages", 0, 0, NULL, 0, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
709 { "pgmsharedmodules", 0, 0, NULL, 0, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
710# endif
711# endif
712 { "pgmsyncalways", 0, 0, NULL, 0, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
713 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
714};
715#endif
716
717#ifdef VBOX_WITH_PGM_NEM_MODE
718
719/**
720 * Interface that NEM uses to switch PGM into simplified memory managment mode.
721 *
722 * This call occurs before PGMR3Init.
723 *
724 * @param pVM The cross context VM structure.
725 */
726VMMR3_INT_DECL(void) PGMR3EnableNemMode(PVM pVM)
727{
728 AssertFatal(!PDMCritSectIsInitialized(&pVM->pgm.s.CritSectX));
729 pVM->pgm.s.fNemMode = true;
730}
731
732
733/**
734 * Checks whether the simplificed memory management mode for NEM is enabled.
735 *
736 * @returns true if enabled, false if not.
737 * @param pVM The cross context VM structure.
738 */
739VMMR3_INT_DECL(bool) PGMR3IsNemModeEnabled(PVM pVM)
740{
741 return pVM->pgm.s.fNemMode;
742}
743
744#endif /* VBOX_WITH_PGM_NEM_MODE */
745
746/**
747 * Initiates the paging of VM.
748 *
749 * @returns VBox status code.
750 * @param pVM The cross context VM structure.
751 */
752VMMR3DECL(int) PGMR3Init(PVM pVM)
753{
754 LogFlow(("PGMR3Init:\n"));
755 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
756 int rc;
757
758 /*
759 * Assert alignment and sizes.
760 */
761 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
762 AssertCompile(sizeof(pVM->apCpusR3[0]->pgm.s) <= sizeof(pVM->apCpusR3[0]->pgm.padding));
763 AssertCompileMemberAlignment(PGM, CritSectX, sizeof(uintptr_t));
764
765 /*
766 * If we're in driveless mode we have to use the simplified memory mode.
767 */
768 bool const fDriverless = SUPR3IsDriverless();
769 if (fDriverless)
770 {
771#ifdef VBOX_WITH_PGM_NEM_MODE
772 if (!pVM->pgm.s.fNemMode)
773 pVM->pgm.s.fNemMode = true;
774#else
775 return VMR3SetError(pVM->pUVM, VERR_SUP_DRIVERLESS, RT_SRC_POS,
776 "Driverless requires that VBox is built with VBOX_WITH_PGM_NEM_MODE defined");
777#endif
778 }
779
780 /*
781 * Init the structure.
782 */
783 /*pVM->pgm.s.fRestoreRomPagesAtReset = false;*/
784
785 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
786 {
787 pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_GMMPAGEDESC_PHYS;
788 pVM->pgm.s.aHandyPages[i].fZeroed = false;
789 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
790 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
791 }
792
793 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aLargeHandyPage); i++)
794 {
795 pVM->pgm.s.aLargeHandyPage[i].HCPhysGCPhys = NIL_GMMPAGEDESC_PHYS;
796 pVM->pgm.s.aLargeHandyPage[i].fZeroed = false;
797 pVM->pgm.s.aLargeHandyPage[i].idPage = NIL_GMM_PAGEID;
798 pVM->pgm.s.aLargeHandyPage[i].idSharedPage = NIL_GMM_PAGEID;
799 }
800
801 AssertReleaseReturn(pVM->pgm.s.cPhysHandlerTypes == 0, VERR_WRONG_ORDER);
802 for (size_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aPhysHandlerTypes); i++)
803 {
804 if (fDriverless)
805 pVM->pgm.s.aPhysHandlerTypes[i].hType = i | (RTRandU64() & ~(uint64_t)PGMPHYSHANDLERTYPE_IDX_MASK);
806 pVM->pgm.s.aPhysHandlerTypes[i].enmKind = PGMPHYSHANDLERKIND_INVALID;
807 pVM->pgm.s.aPhysHandlerTypes[i].pfnHandler = pgmR3HandlerPhysicalHandlerInvalid;
808 }
809
810 /* Init the per-CPU part. */
811 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
812 {
813 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
814 PPGMCPU pPGM = &pVCpu->pgm.s;
815
816 pPGM->enmShadowMode = PGMMODE_INVALID;
817 pPGM->enmGuestMode = PGMMODE_INVALID;
818 pPGM->enmGuestSlatMode = PGMSLAT_INVALID;
819 pPGM->idxGuestModeData = UINT8_MAX;
820 pPGM->idxShadowModeData = UINT8_MAX;
821 pPGM->idxBothModeData = UINT8_MAX;
822
823 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
824 pPGM->GCPhysNstGstCR3 = NIL_RTGCPHYS;
825 pPGM->GCPhysPaeCR3 = NIL_RTGCPHYS;
826
827 pPGM->pGst32BitPdR3 = NULL;
828 pPGM->pGstPaePdptR3 = NULL;
829 pPGM->pGstAmd64Pml4R3 = NULL;
830 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
831 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
832 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
833#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
834 pPGM->pGstEptPml4R3 = NULL;
835 pPGM->pGstEptPml4R0 = NIL_RTR0PTR;
836 pPGM->uEptPtr = 0;
837#endif
838 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
839 {
840 pPGM->apGstPaePDsR3[i] = NULL;
841 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
842 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
843 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
844 }
845
846 pPGM->fA20Enabled = true;
847 pPGM->GCPhysA20Mask = ~((RTGCPHYS)!pPGM->fA20Enabled << 20);
848 }
849
850 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
851 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
852
853 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
854#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
855 true
856#else
857 false
858#endif
859 );
860 AssertLogRelRCReturn(rc, rc);
861
862#if HC_ARCH_BITS == 32
863# ifdef RT_OS_DARWIN
864 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE * 3);
865# else
866 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
867# endif
868#else
869 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
870#endif
871 AssertLogRelRCReturn(rc, rc);
872 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
873 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
874
875 /*
876 * Get the configured RAM size - to estimate saved state size.
877 */
878 uint64_t cbRam;
879 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
880 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
881 cbRam = 0;
882 else if (RT_SUCCESS(rc))
883 {
884 if (cbRam < GUEST_PAGE_SIZE)
885 cbRam = 0;
886 cbRam = RT_ALIGN_64(cbRam, GUEST_PAGE_SIZE);
887 }
888 else
889 {
890 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
891 return rc;
892 }
893
894 /*
895 * Check for PCI pass-through and other configurables.
896 */
897 rc = CFGMR3QueryBoolDef(pCfgPGM, "PciPassThrough", &pVM->pgm.s.fPciPassthrough, false);
898 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"PciPassThrough\", rc=%Rrc.\n", rc), rc);
899 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough || pVM->pgm.s.fRamPreAlloc, VERR_INVALID_PARAMETER);
900
901 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "PageFusionAllowed", &pVM->pgm.s.fPageFusionAllowed, false);
902 AssertLogRelRCReturn(rc, rc);
903
904 /** @cfgm{/PGM/ZeroRamPagesOnReset, boolean, true}
905 * Whether to clear RAM pages on (hard) reset. */
906 rc = CFGMR3QueryBoolDef(pCfgPGM, "ZeroRamPagesOnReset", &pVM->pgm.s.fZeroRamPagesOnReset, true);
907 AssertLogRelRCReturn(rc, rc);
908
909 /*
910 * Register callbacks, string formatters and the saved state data unit.
911 */
912#ifdef VBOX_STRICT
913 VMR3AtStateRegister(pVM->pUVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
914#endif
915 PGMRegisterStringFormatTypes();
916
917 rc = pgmR3InitSavedState(pVM, cbRam);
918 if (RT_FAILURE(rc))
919 return rc;
920
921 /*
922 * Initialize the PGM critical section and flush the phys TLBs
923 */
924 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSectX, RT_SRC_POS, "PGM");
925 AssertRCReturn(rc, rc);
926
927 PGMR3PhysChunkInvalidateTLB(pVM);
928 pgmPhysInvalidatePageMapTLB(pVM);
929
930 /*
931 * For the time being we sport a full set of handy pages in addition to the base
932 * memory to simplify things.
933 */
934 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
935 AssertRCReturn(rc, rc);
936
937 /*
938 * Setup the zero page (HCPHysZeroPg is set by ring-0).
939 */
940 RT_ZERO(pVM->pgm.s.abZeroPg); /* paranoia */
941 if (fDriverless)
942 pVM->pgm.s.HCPhysZeroPg = _4G - GUEST_PAGE_SIZE * 2 /* fake to avoid PGM_PAGE_INIT_ZERO assertion */;
943 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
944 AssertRelease(pVM->pgm.s.HCPhysZeroPg != 0);
945
946 /*
947 * Setup the invalid MMIO page (HCPhysMmioPg is set by ring-0).
948 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
949 */
950 ASMMemFill32(pVM->pgm.s.abMmioPg, sizeof(pVM->pgm.s.abMmioPg), 0xfeedface);
951 if (fDriverless)
952 pVM->pgm.s.HCPhysMmioPg = _4G - GUEST_PAGE_SIZE * 3 /* fake to avoid PGM_PAGE_INIT_ZERO assertion */;
953 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
954 AssertRelease(pVM->pgm.s.HCPhysMmioPg != 0);
955 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
956
957 /*
958 * Initialize physical access handlers.
959 */
960 /** @cfgm{/PGM/MaxPhysicalAccessHandlers, uint32_t, 32, 65536, 6144}
961 * Number of physical access handlers allowed (subject to rounding). This is
962 * managed as one time allocation during initializations. The default is
963 * lower for a driverless setup. */
964 /** @todo can lower it for nested paging too, at least when there is no
965 * nested guest involved. */
966 uint32_t cAccessHandlers = 0;
967 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxPhysicalAccessHandlers", &cAccessHandlers, !fDriverless ? 6144 : 640);
968 AssertLogRelRCReturn(rc, rc);
969 AssertLogRelMsgStmt(cAccessHandlers >= 32, ("cAccessHandlers=%#x, min 32\n", cAccessHandlers), cAccessHandlers = 32);
970 AssertLogRelMsgStmt(cAccessHandlers <= _64K, ("cAccessHandlers=%#x, max 65536\n", cAccessHandlers), cAccessHandlers = _64K);
971 if (!fDriverless)
972 {
973 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_HANDLER_INIT, cAccessHandlers, NULL);
974 AssertRCReturn(rc, rc);
975 AssertPtr(pVM->pgm.s.pPhysHandlerTree);
976 AssertPtr(pVM->pgm.s.PhysHandlerAllocator.m_paNodes);
977 AssertPtr(pVM->pgm.s.PhysHandlerAllocator.m_pbmAlloc);
978 }
979 else
980 {
981 uint32_t cbTreeAndBitmap = 0;
982 uint32_t const cbTotalAligned = pgmHandlerPhysicalCalcTableSizes(&cAccessHandlers, &cbTreeAndBitmap);
983 uint8_t *pb = NULL;
984 rc = SUPR3PageAlloc(cbTotalAligned >> HOST_PAGE_SHIFT, 0, (void **)&pb);
985 AssertLogRelRCReturn(rc, rc);
986
987 pVM->pgm.s.PhysHandlerAllocator.initSlabAllocator(cAccessHandlers, (PPGMPHYSHANDLER)&pb[cbTreeAndBitmap],
988 (uint64_t *)&pb[sizeof(PGMPHYSHANDLERTREE)]);
989 pVM->pgm.s.pPhysHandlerTree = (PPGMPHYSHANDLERTREE)pb;
990 pVM->pgm.s.pPhysHandlerTree->initWithAllocator(&pVM->pgm.s.PhysHandlerAllocator);
991 }
992
993 /*
994 * Register the physical access handler protecting ROMs.
995 */
996 if (RT_SUCCESS(rc))
997 /** @todo why isn't pgmPhysRomWriteHandler registered for ring-0? */
998 rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE, 0 /*fFlags*/, pgmPhysRomWriteHandler,
999 "ROM write protection", &pVM->pgm.s.hRomPhysHandlerType);
1000
1001 /*
1002 * Register the physical access handler doing dirty MMIO2 tracing.
1003 */
1004 if (RT_SUCCESS(rc))
1005 rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE, PGMPHYSHANDLER_F_KEEP_PGM_LOCK,
1006 pgmPhysMmio2WriteHandler, "MMIO2 dirty page tracing",
1007 &pVM->pgm.s.hMmio2DirtyPhysHandlerType);
1008
1009 /*
1010 * Init the paging.
1011 */
1012 if (RT_SUCCESS(rc))
1013 rc = pgmR3InitPaging(pVM);
1014
1015 /*
1016 * Init the page pool.
1017 */
1018 if (RT_SUCCESS(rc))
1019 rc = pgmR3PoolInit(pVM);
1020
1021 if (RT_SUCCESS(rc))
1022 {
1023 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1024 {
1025 PVMCPU pVCpu = pVM->apCpusR3[i];
1026 rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL, false /* fForce */);
1027 if (RT_FAILURE(rc))
1028 break;
1029 }
1030 }
1031
1032 if (RT_SUCCESS(rc))
1033 {
1034 /*
1035 * Info & statistics
1036 */
1037 DBGFR3InfoRegisterInternalEx(pVM, "mode",
1038 "Shows the current paging mode. "
1039 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
1040 pgmR3InfoMode,
1041 DBGFINFO_FLAGS_ALL_EMTS);
1042 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1043 "Dumps all the entries in the top level paging table. No arguments.",
1044 pgmR3InfoCr3);
1045 DBGFR3InfoRegisterInternal(pVM, "phys",
1046 "Dumps all the physical address ranges. Pass 'verbose' to get more details.",
1047 pgmR3PhysInfo);
1048 DBGFR3InfoRegisterInternal(pVM, "handlers",
1049 "Dumps physical, virtual and hyper virtual handlers. "
1050 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1051 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1052 pgmR3InfoHandlers);
1053
1054 pgmR3InitStats(pVM);
1055
1056#ifdef VBOX_WITH_DEBUGGER
1057 /*
1058 * Debugger commands.
1059 */
1060 static bool s_fRegisteredCmds = false;
1061 if (!s_fRegisteredCmds)
1062 {
1063 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1064 if (RT_SUCCESS(rc2))
1065 s_fRegisteredCmds = true;
1066 }
1067#endif
1068
1069#ifdef RT_OS_LINUX
1070 /*
1071 * Log the /proc/sys/vm/max_map_count value on linux as that is
1072 * frequently giving us grief when too low.
1073 */
1074 int64_t const cGuessNeeded = MMR3PhysGetRamSize(pVM) / _2M + 16384 /*guesstimate*/;
1075 int64_t cMaxMapCount = 0;
1076 int rc2 = RTLinuxSysFsReadIntFile(10, &cMaxMapCount, "/proc/sys/vm/max_map_count");
1077 LogRel(("PGM: /proc/sys/vm/max_map_count = %RI64 (rc2=%Rrc); cGuessNeeded=%RI64\n", cMaxMapCount, rc2, cGuessNeeded));
1078 if (RT_SUCCESS(rc2) && cMaxMapCount < cGuessNeeded)
1079 LogRel(("PGM: WARNING!!\n"
1080 "PGM: WARNING!! Please increase /proc/sys/vm/max_map_count to at least %RI64 (or reduce the amount of RAM assigned to the VM)!\n"
1081 "PGM: WARNING!!\n", cMaxMapCount));
1082
1083#endif
1084
1085 return VINF_SUCCESS;
1086 }
1087
1088 /* Almost no cleanup necessary, MM frees all memory. */
1089 PDMR3CritSectDelete(pVM, &pVM->pgm.s.CritSectX);
1090
1091 return rc;
1092}
1093
1094
1095/**
1096 * Init paging.
1097 *
1098 * Since we need to check what mode the host is operating in before we can choose
1099 * the right paging functions for the host we have to delay this until R0 has
1100 * been initialized.
1101 *
1102 * @returns VBox status code.
1103 * @param pVM The cross context VM structure.
1104 */
1105static int pgmR3InitPaging(PVM pVM)
1106{
1107 /*
1108 * Force a recalculation of modes and switcher so everyone gets notified.
1109 */
1110 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1111 {
1112 PVMCPU pVCpu = pVM->apCpusR3[i];
1113
1114 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1115 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1116 pVCpu->pgm.s.enmGuestSlatMode = PGMSLAT_INVALID;
1117 pVCpu->pgm.s.idxGuestModeData = UINT8_MAX;
1118 pVCpu->pgm.s.idxShadowModeData = UINT8_MAX;
1119 pVCpu->pgm.s.idxBothModeData = UINT8_MAX;
1120 }
1121
1122 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1123
1124 /*
1125 * Initialize paging workers and mode from current host mode
1126 * and the guest running in real mode.
1127 */
1128 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1129 switch (pVM->pgm.s.enmHostMode)
1130 {
1131 case SUPPAGINGMODE_32_BIT:
1132 case SUPPAGINGMODE_32_BIT_GLOBAL:
1133 case SUPPAGINGMODE_PAE:
1134 case SUPPAGINGMODE_PAE_GLOBAL:
1135 case SUPPAGINGMODE_PAE_NX:
1136 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1137
1138 case SUPPAGINGMODE_AMD64:
1139 case SUPPAGINGMODE_AMD64_GLOBAL:
1140 case SUPPAGINGMODE_AMD64_NX:
1141 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1142 if (ARCH_BITS != 64)
1143 {
1144 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1145 LogRel(("PGM: Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1146 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1147 }
1148 break;
1149#if !defined(RT_ARCH_AMD64) && !defined(RT_ARCH_X86)
1150 case SUPPAGINGMODE_INVALID:
1151 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_AMD64_GLOBAL_NX;
1152 break;
1153#endif
1154 default:
1155 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1156 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1157 }
1158
1159 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1160#if HC_ARCH_BITS == 64 && 0
1161 LogRel(("PGM: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1162 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1163 LogRel(("PGM: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1164 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1165 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1166 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1167 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1168#endif
1169
1170 /*
1171 * Log the host paging mode. It may come in handy.
1172 */
1173 const char *pszHostMode;
1174 switch (pVM->pgm.s.enmHostMode)
1175 {
1176 case SUPPAGINGMODE_32_BIT: pszHostMode = "32-bit"; break;
1177 case SUPPAGINGMODE_32_BIT_GLOBAL: pszHostMode = "32-bit+PGE"; break;
1178 case SUPPAGINGMODE_PAE: pszHostMode = "PAE"; break;
1179 case SUPPAGINGMODE_PAE_GLOBAL: pszHostMode = "PAE+PGE"; break;
1180 case SUPPAGINGMODE_PAE_NX: pszHostMode = "PAE+NXE"; break;
1181 case SUPPAGINGMODE_PAE_GLOBAL_NX: pszHostMode = "PAE+PGE+NXE"; break;
1182 case SUPPAGINGMODE_AMD64: pszHostMode = "AMD64"; break;
1183 case SUPPAGINGMODE_AMD64_GLOBAL: pszHostMode = "AMD64+PGE"; break;
1184 case SUPPAGINGMODE_AMD64_NX: pszHostMode = "AMD64+NX"; break;
1185 case SUPPAGINGMODE_AMD64_GLOBAL_NX: pszHostMode = "AMD64+PGE+NX"; break;
1186 default: pszHostMode = "???"; break;
1187 }
1188 LogRel(("PGM: Host paging mode: %s\n", pszHostMode));
1189
1190 return VINF_SUCCESS;
1191}
1192
1193
1194/**
1195 * Init statistics
1196 * @returns VBox status code.
1197 */
1198static int pgmR3InitStats(PVM pVM)
1199{
1200 PPGM pPGM = &pVM->pgm.s;
1201 int rc;
1202
1203 /*
1204 * Release statistics.
1205 */
1206 /* Common - misc variables */
1207 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1208 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1209 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1210 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1211 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1212 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1213 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1214 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1215 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1216 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1217 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1218 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1219 STAM_REL_REG(pVM, &pPGM->cLargePages, STAMTYPE_U32, "/PGM/Page/cLargePages", STAMUNIT_COUNT, "The number of large pages allocated (includes disabled).");
1220 STAM_REL_REG(pVM, &pPGM->cLargePagesDisabled, STAMTYPE_U32, "/PGM/Page/cLargePagesDisabled", STAMUNIT_COUNT, "The number of disabled large pages.");
1221 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1222 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1223 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1224 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1225
1226 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1227 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1228 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1229
1230 STAM_REL_REG(pVM, &pPGM->StatShModCheck, STAMTYPE_PROFILE, "/PGM/ShMod/Check", STAMUNIT_TICKS_PER_CALL, "Profiles the shared module checking.");
1231 STAM_REL_REG(pVM, &pPGM->StatMmio2QueryAndResetDirtyBitmap, STAMTYPE_PROFILE, "/PGM/Mmio2QueryAndResetDirtyBitmap", STAMUNIT_TICKS_PER_CALL, "Profiles calls to PGMR3PhysMmio2QueryAndResetDirtyBitmap (sans locking).");
1232
1233 /* Live save */
1234 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1235 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1236 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1237 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1238 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1239 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1240 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1241 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1242 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1243 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1244 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1245 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1246 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1247 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1248 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1249 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1250 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1251 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1252
1253#define PGM_REG_COUNTER(a, b, c) \
1254 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1255 AssertRC(rc);
1256
1257#define PGM_REG_U64(a, b, c) \
1258 rc = STAMR3RegisterF(pVM, a, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1259 AssertRC(rc);
1260
1261#define PGM_REG_U64_RESET(a, b, c) \
1262 rc = STAMR3RegisterF(pVM, a, STAMTYPE_U64_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1263 AssertRC(rc);
1264
1265#define PGM_REG_U32(a, b, c) \
1266 rc = STAMR3RegisterF(pVM, a, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1267 AssertRC(rc);
1268
1269#define PGM_REG_COUNTER_BYTES(a, b, c) \
1270 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1271 AssertRC(rc);
1272
1273#define PGM_REG_PROFILE(a, b, c) \
1274 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1275 AssertRC(rc);
1276#define PGM_REG_PROFILE_NS(a, b, c) \
1277 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, c, b); \
1278 AssertRC(rc);
1279
1280#ifdef VBOX_WITH_STATISTICS
1281 PGMSTATS *pStats = &pPGM->Stats;
1282#endif
1283
1284 PGM_REG_PROFILE_NS(&pPGM->StatLargePageAlloc, "/PGM/LargePage/Alloc", "Time spent by the host OS for large page allocation.");
1285 PGM_REG_COUNTER(&pPGM->StatLargePageAllocFailed, "/PGM/LargePage/AllocFailed", "Number of allocation failures.");
1286 PGM_REG_COUNTER(&pPGM->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
1287 PGM_REG_COUNTER(&pPGM->StatLargePageTlbFlush, "/PGM/LargePage/TlbFlush", "The number of times a full VCPU TLB flush was required after a large allocation.");
1288 PGM_REG_COUNTER(&pPGM->StatLargePageZeroEvict, "/PGM/LargePage/ZeroEvict", "The number of zero page mappings we had to evict when allocating a large page.");
1289#ifdef VBOX_WITH_STATISTICS
1290 PGM_REG_PROFILE(&pStats->StatLargePageAlloc2, "/PGM/LargePage/Alloc2", "Time spent allocating large pages.");
1291 PGM_REG_PROFILE(&pStats->StatLargePageSetup, "/PGM/LargePage/Setup", "Time spent setting up the newly allocated large pages.");
1292 PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/IsValidR3", "pgmPhysIsValidLargePage profiling - R3.");
1293 PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/IsValidRZ", "pgmPhysIsValidLargePage profiling - RZ.");
1294
1295 PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1296 PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1297 PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1298 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1299 PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1300 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1301 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1302 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1303 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1304 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1305
1306 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1307 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1308 PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
1309 PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
1310 PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
1311 PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
1312
1313 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1314 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1315 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1316 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1317 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1318 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1319 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1320 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1321
1322 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbHits, "/PGM/RZ/RamRange/TlbHits", "TLB hits.");
1323 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbMisses, "/PGM/RZ/RamRange/TlbMisses", "TLB misses.");
1324 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbHits, "/PGM/R3/RamRange/TlbHits", "TLB hits.");
1325 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbMisses, "/PGM/R3/RamRange/TlbMisses", "TLB misses.");
1326
1327 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1328 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1329 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1330 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1331 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1332 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1333#endif /* VBOX_WITH_STATISTICS */
1334 PPGMPHYSHANDLERTREE pPhysHndlTree = pVM->pgm.s.pPhysHandlerTree;
1335 PGM_REG_U32(&pPhysHndlTree->m_cErrors, "/PGM/PhysHandlerTree/ErrorsTree", "Physical access handler tree errors.");
1336 PGM_REG_U32(&pVM->pgm.s.PhysHandlerAllocator.m_cErrors, "/PGM/PhysHandlerTree/ErrorsAllocatorR3", "Physical access handler tree allocator errors (ring-3 only).");
1337 PGM_REG_U64_RESET(&pPhysHndlTree->m_cInserts, "/PGM/PhysHandlerTree/Inserts", "Physical access handler tree inserts.");
1338 PGM_REG_U32(&pVM->pgm.s.PhysHandlerAllocator.m_cNodes, "/PGM/PhysHandlerTree/MaxHandlers", "Max physical access handlers.");
1339 PGM_REG_U64_RESET(&pPhysHndlTree->m_cRemovals, "/PGM/PhysHandlerTree/Removals", "Physical access handler tree removals.");
1340 PGM_REG_U64_RESET(&pPhysHndlTree->m_cRebalancingOperations, "/PGM/PhysHandlerTree/RebalancingOperations", "Physical access handler tree rebalancing transformations.");
1341
1342#ifdef VBOX_WITH_STATISTICS
1343 PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1344 PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1345/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1346 PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1347 PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1348/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1349
1350 PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1351 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1352 PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1353 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1354 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1355 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1356 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1357 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1358
1359 /* GC only: */
1360 PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1361 PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1362
1363 PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1364 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1365 PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1366 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1367 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1368 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1369 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1370 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1371
1372 PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1373 PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1374 PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1375 PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1376 PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1377 PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1378 PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1379#endif
1380
1381#undef PGM_REG_COUNTER
1382#undef PGM_REG_U64
1383#undef PGM_REG_U64_RESET
1384#undef PGM_REG_U32
1385#undef PGM_REG_PROFILE
1386#undef PGM_REG_PROFILE_NS
1387
1388 /*
1389 * Note! The layout below matches the member layout exactly!
1390 */
1391
1392 /*
1393 * Common - stats
1394 */
1395 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1396 {
1397 PPGMCPU pPgmCpu = &pVM->apCpusR3[idCpu]->pgm.s;
1398
1399#define PGM_REG_COUNTER(a, b, c) \
1400 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1401 AssertRC(rc);
1402#define PGM_REG_PROFILE(a, b, c) \
1403 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1404 AssertRC(rc);
1405
1406 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1407 PGM_REG_COUNTER(&pPgmCpu->cA20Changes, "/PGM/CPU%u/cA20Changes", "Number of A20 gate changes.");
1408
1409#ifdef VBOX_WITH_STATISTICS
1410 PGMCPUSTATS *pCpuStats = &pVM->apCpusR3[idCpu]->pgm.s.Stats;
1411
1412# if 0 /* rarely useful; leave for debugging. */
1413 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1414 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1415 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1416 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
1417 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1418 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1419# endif
1420 /* R0 only: */
1421 PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
1422 PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
1423
1424 /* RZ only: */
1425 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1426 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
1427 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1428 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1429 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1430 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1431 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1432 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
1433 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
1434 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1435 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1436 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1437 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1438 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1439 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
1440 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsHack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USHack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be enabled.");
1441 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsUnhack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USUnhack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be disabled.");
1442 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1443 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1444 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
1445 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
1446 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
1447 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1448 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1449 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1450 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1451 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1452 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1453 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1454 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1455 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1456 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1457 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1458 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1459 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1460 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1461 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1462 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1463#if 0 /* rarely useful; leave for debugging. */
1464 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
1465 STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1466 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1467#endif
1468 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1469 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1470 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1471 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1472 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1473
1474 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
1475 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1476 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
1477 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
1478 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
1479 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1480 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
1481 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
1482 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
1483 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
1484 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
1485 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
1486 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
1487 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
1488 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
1489 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
1490 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
1491 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
1492 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1493 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1494 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
1495 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1496 //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
1497 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
1498 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
1499 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
1500 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
1501 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
1502 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
1503 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
1504 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
1505 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
1506 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
1507 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
1508 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
1509 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
1510
1511 /* HC only: */
1512
1513 /* RZ & R3: */
1514 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1515 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1516 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1517 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1518 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1519 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1520 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1521 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1522 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1523 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1524 PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1525 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1526 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1527 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1528 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1529 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1530 PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1531 PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1532 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1533 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1534 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1535 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1536 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1537 PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1538 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1539 PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1540 PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1541 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1542 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1543 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1544 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1545 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1546 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1547 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSizeChanges, "/PGM/CPU%u/RZ/InvalidatePage/SizeChanges", "The number of times PGMInvalidatePage() was called on a page size change (4KB <-> 2/4MB).");
1548 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1549 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1550 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1551 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1552 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1553 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1554 PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
1555 PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1556 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1557 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1558 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1559 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1560 PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1561
1562 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1563 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1564 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1565 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1566 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1567 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1568 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1569 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1570 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1571 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1572 PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1573 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1574 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
1575 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
1576 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1577 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1578 PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1579 PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1580 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1581 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1582 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1583 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1584 PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1585 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1586 PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1587 PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1588 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1589 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1590 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1591 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1592 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1593 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1594 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSizeChanges, "/PGM/CPU%u/R3/InvalidatePage/SizeChanges", "The number of times PGMInvalidatePage() was called on a page size change (4KB <-> 2/4MB).");
1595 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1596 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1597 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1598 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1599 PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
1600 PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1601 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1602 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1603 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1604 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1605 PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1606#endif /* VBOX_WITH_STATISTICS */
1607
1608#undef PGM_REG_PROFILE
1609#undef PGM_REG_COUNTER
1610
1611 }
1612
1613 return VINF_SUCCESS;
1614}
1615
1616
1617/**
1618 * Ring-3 init finalizing.
1619 *
1620 * @returns VBox status code.
1621 * @param pVM The cross context VM structure.
1622 */
1623VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1624{
1625 /*
1626 * Determine the max physical address width (MAXPHYADDR) and apply it to
1627 * all the mask members and stuff.
1628 */
1629#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
1630 uint32_t cMaxPhysAddrWidth;
1631 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
1632 if ( uMaxExtLeaf >= 0x80000008
1633 && uMaxExtLeaf <= 0x80000fff)
1634 {
1635 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
1636 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
1637 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
1638 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
1639 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
1640 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
1641 }
1642 else
1643 {
1644 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
1645 cMaxPhysAddrWidth = 48;
1646 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
1647 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
1648 }
1649 /* Disabled the below assertion -- triggers 24 vs 39 on my Intel Skylake box for a 32-bit (Guest-type Other/Unknown) VM. */
1650 //AssertMsg(pVM->cpum.ro.GuestFeatures.cMaxPhysAddrWidth == cMaxPhysAddrWidth,
1651 // ("CPUM %u - PGM %u\n", pVM->cpum.ro.GuestFeatures.cMaxPhysAddrWidth, cMaxPhysAddrWidth));
1652#else
1653 uint32_t const cMaxPhysAddrWidth = pVM->cpum.ro.GuestFeatures.cMaxPhysAddrWidth;
1654 LogRel(("PGM: The (guest) CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
1655#endif
1656
1657 /** @todo query from CPUM. */
1658 pVM->pgm.s.GCPhysInvAddrMask = 0;
1659 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
1660 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
1661
1662 /*
1663 * Initialize the invalid paging entry masks, assuming NX is disabled.
1664 */
1665 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
1666#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
1667 uint64_t const fEptVpidCap = CPUMGetGuestIa32VmxEptVpidCap(pVM->apCpusR3[0]); /* should be identical for all VCPUs */
1668 uint64_t const fGstEptMbzBigPdeMask = EPT_PDE2M_MBZ_MASK
1669 | (RT_BF_GET(fEptVpidCap, VMX_BF_EPT_VPID_CAP_PDE_2M) ^ 1) << EPT_E_BIT_LEAF;
1670 uint64_t const fGstEptMbzBigPdpteMask = EPT_PDPTE1G_MBZ_MASK
1671 | (RT_BF_GET(fEptVpidCap, VMX_BF_EPT_VPID_CAP_PDPTE_1G) ^ 1) << EPT_E_BIT_LEAF;
1672 uint64_t const GCPhysRsvdAddrMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000fffffffffffff); /* bits 63:52 ignored */
1673#endif
1674 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1675 {
1676 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1677
1678 /** @todo The manuals are not entirely clear whether the physical
1679 * address width is relevant. See table 5-9 in the intel
1680 * manual vs the PDE4M descriptions. Write testcase (NP). */
1681 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
1682 | X86_PDE4M_MBZ_MASK;
1683
1684 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
1685 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
1686 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
1687 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
1688
1689 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
1690 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
1691 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
1692 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
1693 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
1694 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
1695
1696 pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
1697 pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
1698 pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
1699 pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask
1700 = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
1701 pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
1702 pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
1703
1704#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
1705 pVCpu->pgm.s.uEptVpidCapMsr = fEptVpidCap;
1706 pVCpu->pgm.s.fGstEptMbzPteMask = fMbzPageFrameMask | EPT_PTE_MBZ_MASK;
1707 pVCpu->pgm.s.fGstEptMbzPdeMask = fMbzPageFrameMask | EPT_PDE_MBZ_MASK;
1708 pVCpu->pgm.s.fGstEptMbzBigPdeMask = fMbzPageFrameMask | fGstEptMbzBigPdeMask;
1709 pVCpu->pgm.s.fGstEptMbzPdpteMask = fMbzPageFrameMask | EPT_PDPTE_MBZ_MASK;
1710 pVCpu->pgm.s.fGstEptMbzBigPdpteMask = fMbzPageFrameMask | fGstEptMbzBigPdpteMask;
1711 pVCpu->pgm.s.fGstEptMbzPml4eMask = fMbzPageFrameMask | EPT_PML4E_MBZ_MASK;
1712 pVCpu->pgm.s.fGstEptPresentMask = EPT_PRESENT_MASK;
1713
1714 /* If any of the features (in the assert below) are enabled, we would have to shadow the relevant bits. */
1715 Assert( !pVM->cpum.ro.GuestFeatures.fVmxModeBasedExecuteEpt
1716 && !pVM->cpum.ro.GuestFeatures.fVmxSppEpt
1717 && !pVM->cpum.ro.GuestFeatures.fVmxEptXcptVe
1718 && !(fEptVpidCap & MSR_IA32_VMX_EPT_VPID_CAP_ACCESS_DIRTY));
1719 /* We need to shadow reserved bits as guest EPT tables can set them to trigger EPT misconfigs. */
1720 pVCpu->pgm.s.fGstEptShadowedPteMask = GCPhysRsvdAddrMask | EPT_PRESENT_MASK | EPT_E_MEMTYPE_MASK;
1721 pVCpu->pgm.s.fGstEptShadowedPdeMask = GCPhysRsvdAddrMask | EPT_PRESENT_MASK | EPT_E_MEMTYPE_MASK | EPT_E_LEAF;
1722 pVCpu->pgm.s.fGstEptShadowedPdpteMask = GCPhysRsvdAddrMask | EPT_PRESENT_MASK | EPT_E_MEMTYPE_MASK | EPT_E_LEAF;
1723 pVCpu->pgm.s.fGstEptShadowedPml4eMask = GCPhysRsvdAddrMask | EPT_PRESENT_MASK | EPT_PML4E_MBZ_MASK;
1724#endif
1725 }
1726
1727 /*
1728 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1729 * Intel only goes up to 36 bits, so we stick to 36 as well.
1730 * Update: More recent intel manuals specifies 40 bits just like AMD.
1731 */
1732 uint32_t u32Dummy, u32Features;
1733 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, 0, -1 /*f64BitMode*/, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1734 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1735 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
1736 else
1737 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1738
1739 /*
1740 * Allocate memory if we're supposed to do that.
1741 */
1742 int rc = VINF_SUCCESS;
1743 if (pVM->pgm.s.fRamPreAlloc)
1744 rc = pgmR3PhysRamPreAllocate(pVM);
1745
1746 //pgmLogState(pVM);
1747 LogRel(("PGM: PGMR3InitFinalize: 4 MB PSE mask %RGp -> %Rrc\n", pVM->pgm.s.GCPhys4MBPSEMask, rc));
1748 return rc;
1749}
1750
1751
1752/**
1753 * Init phase completed callback.
1754 *
1755 * @returns VBox status code.
1756 * @param pVM The cross context VM structure.
1757 * @param enmWhat What has been completed.
1758 * @thread EMT(0)
1759 */
1760VMMR3_INT_DECL(int) PGMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
1761{
1762 switch (enmWhat)
1763 {
1764 case VMINITCOMPLETED_HM:
1765#ifdef VBOX_WITH_PCI_PASSTHROUGH
1766 if (pVM->pgm.s.fPciPassthrough)
1767 {
1768 AssertLogRelReturn(pVM->pgm.s.fRamPreAlloc, VERR_PCI_PASSTHROUGH_NO_RAM_PREALLOC);
1769 AssertLogRelReturn(HMIsEnabled(pVM), VERR_PCI_PASSTHROUGH_NO_HM);
1770 AssertLogRelReturn(HMIsNestedPagingActive(pVM), VERR_PCI_PASSTHROUGH_NO_NESTED_PAGING);
1771
1772 /*
1773 * Report assignments to the IOMMU (hope that's good enough for now).
1774 */
1775 if (pVM->pgm.s.fPciPassthrough)
1776 {
1777 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_SETUP_IOMMU, 0, NULL);
1778 AssertRCReturn(rc, rc);
1779 }
1780 }
1781#else
1782 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough, VERR_PGM_PCI_PASSTHRU_MISCONFIG);
1783#endif
1784 break;
1785
1786 default:
1787 /* shut up gcc */
1788 break;
1789 }
1790
1791 return VINF_SUCCESS;
1792}
1793
1794
1795/**
1796 * Applies relocations to data and code managed by this component.
1797 *
1798 * This function will be called at init and whenever the VMM need to relocate it
1799 * self inside the GC.
1800 *
1801 * @param pVM The cross context VM structure.
1802 * @param offDelta Relocation delta relative to old location.
1803 */
1804VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1805{
1806 LogFlow(("PGMR3Relocate: offDelta=%RGv\n", offDelta));
1807
1808 /*
1809 * Paging stuff.
1810 */
1811
1812 /* Shadow, guest and both mode switch & relocation for each VCPU. */
1813 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1814 {
1815 PVMCPU pVCpu = pVM->apCpusR3[i];
1816
1817 uintptr_t idxShw = pVCpu->pgm.s.idxShadowModeData;
1818 if ( idxShw < RT_ELEMENTS(g_aPgmShadowModeData)
1819 && g_aPgmShadowModeData[idxShw].pfnRelocate)
1820 g_aPgmShadowModeData[idxShw].pfnRelocate(pVCpu, offDelta);
1821 else
1822 AssertFailed();
1823
1824 uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
1825 if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
1826 && g_aPgmGuestModeData[idxGst].pfnRelocate)
1827 g_aPgmGuestModeData[idxGst].pfnRelocate(pVCpu, offDelta);
1828 else
1829 AssertFailed();
1830 }
1831
1832 /*
1833 * Ram ranges.
1834 */
1835 if (pVM->pgm.s.pRamRangesXR3)
1836 pgmR3PhysRelinkRamRanges(pVM);
1837
1838 /*
1839 * The page pool.
1840 */
1841 pgmR3PoolRelocate(pVM);
1842}
1843
1844
1845/**
1846 * Resets a virtual CPU when unplugged.
1847 *
1848 * @param pVM The cross context VM structure.
1849 * @param pVCpu The cross context virtual CPU structure.
1850 */
1851VMMR3DECL(void) PGMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
1852{
1853 uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
1854 if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
1855 && g_aPgmGuestModeData[idxGst].pfnExit)
1856 {
1857 int rc = g_aPgmGuestModeData[idxGst].pfnExit(pVCpu);
1858 AssertReleaseRC(rc);
1859 }
1860 pVCpu->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1861 pVCpu->pgm.s.GCPhysNstGstCR3 = NIL_RTGCPHYS;
1862 pVCpu->pgm.s.GCPhysPaeCR3 = NIL_RTGCPHYS;
1863
1864 int rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL, false /* fForce */);
1865 AssertReleaseRC(rc);
1866
1867 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
1868
1869 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
1870
1871 /*
1872 * Re-init other members.
1873 */
1874 pVCpu->pgm.s.fA20Enabled = true;
1875 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
1876
1877 /*
1878 * Clear the FFs PGM owns.
1879 */
1880 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1881 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
1882}
1883
1884
1885/**
1886 * The VM is being reset.
1887 *
1888 * For the PGM component this means that any PD write monitors
1889 * needs to be removed.
1890 *
1891 * @param pVM The cross context VM structure.
1892 */
1893VMMR3_INT_DECL(void) PGMR3Reset(PVM pVM)
1894{
1895 LogFlow(("PGMR3Reset:\n"));
1896 VM_ASSERT_EMT(pVM);
1897
1898 PGM_LOCK_VOID(pVM);
1899
1900 /*
1901 * Exit the guest paging mode before the pgm pool gets reset.
1902 * Important to clean up the amd64 case.
1903 */
1904 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1905 {
1906 PVMCPU pVCpu = pVM->apCpusR3[i];
1907 uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
1908 if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
1909 && g_aPgmGuestModeData[idxGst].pfnExit)
1910 {
1911 int rc = g_aPgmGuestModeData[idxGst].pfnExit(pVCpu);
1912 AssertReleaseRC(rc);
1913 }
1914 pVCpu->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1915 pVCpu->pgm.s.GCPhysNstGstCR3 = NIL_RTGCPHYS;
1916 }
1917
1918#ifdef DEBUG
1919 DBGFR3_INFO_LOG_SAFE(pVM, "mappings", NULL);
1920 DBGFR3_INFO_LOG_SAFE(pVM, "handlers", "all nostat");
1921#endif
1922
1923 /*
1924 * Switch mode back to real mode. (Before resetting the pgm pool!)
1925 */
1926 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1927 {
1928 PVMCPU pVCpu = pVM->apCpusR3[i];
1929
1930 int rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL, false /* fForce */);
1931 AssertReleaseRC(rc);
1932
1933 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
1934 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cA20Changes);
1935 }
1936
1937 /*
1938 * Reset the shadow page pool.
1939 */
1940 pgmR3PoolReset(pVM);
1941
1942 /*
1943 * Re-init various other members and clear the FFs that PGM owns.
1944 */
1945 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1946 {
1947 PVMCPU pVCpu = pVM->apCpusR3[i];
1948
1949 pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
1950 PGMNotifyNxeChanged(pVCpu, false);
1951
1952 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1953 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
1954
1955 if (!pVCpu->pgm.s.fA20Enabled)
1956 {
1957 pVCpu->pgm.s.fA20Enabled = true;
1958 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
1959#ifdef PGM_WITH_A20
1960 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1961 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
1962 HMFlushTlb(pVCpu);
1963#endif
1964 }
1965 }
1966
1967 //pgmLogState(pVM);
1968 PGM_UNLOCK(pVM);
1969}
1970
1971
1972/**
1973 * Memory setup after VM construction or reset.
1974 *
1975 * @param pVM The cross context VM structure.
1976 * @param fAtReset Indicates the context, after reset if @c true or after
1977 * construction if @c false.
1978 */
1979VMMR3_INT_DECL(void) PGMR3MemSetup(PVM pVM, bool fAtReset)
1980{
1981 if (fAtReset)
1982 {
1983 PGM_LOCK_VOID(pVM);
1984
1985 int rc = pgmR3PhysRamZeroAll(pVM);
1986 AssertReleaseRC(rc);
1987
1988 rc = pgmR3PhysRomReset(pVM);
1989 AssertReleaseRC(rc);
1990
1991 PGM_UNLOCK(pVM);
1992 }
1993}
1994
1995
1996#ifdef VBOX_STRICT
1997/**
1998 * VM state change callback for clearing fNoMorePhysWrites after
1999 * a snapshot has been created.
2000 */
2001static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PUVM pUVM, PCVMMR3VTABLE pVMM, VMSTATE enmState,
2002 VMSTATE enmOldState, void *pvUser)
2003{
2004 if ( enmState == VMSTATE_RUNNING
2005 || enmState == VMSTATE_RESUMING)
2006 pUVM->pVM->pgm.s.fNoMorePhysWrites = false;
2007 RT_NOREF(pVMM, enmOldState, pvUser);
2008}
2009#endif
2010
2011/**
2012 * Private API to reset fNoMorePhysWrites.
2013 */
2014VMMR3_INT_DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
2015{
2016 pVM->pgm.s.fNoMorePhysWrites = false;
2017}
2018
2019/**
2020 * Terminates the PGM.
2021 *
2022 * @returns VBox status code.
2023 * @param pVM The cross context VM structure.
2024 */
2025VMMR3DECL(int) PGMR3Term(PVM pVM)
2026{
2027 /* Must free shared pages here. */
2028 PGM_LOCK_VOID(pVM);
2029 pgmR3PhysRamTerm(pVM);
2030 pgmR3PhysRomTerm(pVM);
2031 PGM_UNLOCK(pVM);
2032
2033 PGMDeregisterStringFormatTypes();
2034 return PDMR3CritSectDelete(pVM, &pVM->pgm.s.CritSectX);
2035}
2036
2037
2038/**
2039 * Show paging mode.
2040 *
2041 * @param pVM The cross context VM structure.
2042 * @param pHlp The info helpers.
2043 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2044 */
2045static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2046{
2047 /* digest argument. */
2048 bool fGuest, fShadow, fHost;
2049 if (pszArgs)
2050 pszArgs = RTStrStripL(pszArgs);
2051 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2052 fShadow = fHost = fGuest = true;
2053 else
2054 {
2055 fShadow = fHost = fGuest = false;
2056 if (strstr(pszArgs, "guest"))
2057 fGuest = true;
2058 if (strstr(pszArgs, "shadow"))
2059 fShadow = true;
2060 if (strstr(pszArgs, "host"))
2061 fHost = true;
2062 }
2063
2064 PVMCPU pVCpu = VMMGetCpu(pVM);
2065 if (!pVCpu)
2066 pVCpu = pVM->apCpusR3[0];
2067
2068
2069 /* print info. */
2070 if (fGuest)
2071 {
2072 pHlp->pfnPrintf(pHlp, "Guest paging mode (VCPU #%u): %s (changed %RU64 times), A20 %s (changed %RU64 times)\n",
2073 pVCpu->idCpu, PGMGetModeName(pVCpu->pgm.s.enmGuestMode), pVCpu->pgm.s.cGuestModeChanges.c,
2074 pVCpu->pgm.s.fA20Enabled ? "enabled" : "disabled", pVCpu->pgm.s.cA20Changes.c);
2075#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
2076 if (pVCpu->pgm.s.enmGuestSlatMode != PGMSLAT_INVALID)
2077 pHlp->pfnPrintf(pHlp, "Guest SLAT mode (VCPU #%u): %s\n", pVCpu->idCpu,
2078 PGMGetSlatModeName(pVCpu->pgm.s.enmGuestSlatMode));
2079#endif
2080 }
2081 if (fShadow)
2082 pHlp->pfnPrintf(pHlp, "Shadow paging mode (VCPU #%u): %s\n", pVCpu->idCpu, PGMGetModeName(pVCpu->pgm.s.enmShadowMode));
2083 if (fHost)
2084 {
2085 const char *psz;
2086 switch (pVM->pgm.s.enmHostMode)
2087 {
2088 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2089 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2090 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2091 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2092 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2093 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2094 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2095 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2096 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2097 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2098 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2099 default: psz = "unknown"; break;
2100 }
2101 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2102 }
2103}
2104
2105
2106/**
2107 * Dump registered MMIO ranges to the log.
2108 *
2109 * @param pVM The cross context VM structure.
2110 * @param pHlp The info helpers.
2111 * @param pszArgs Arguments, ignored.
2112 */
2113static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2114{
2115 bool const fVerbose = pszArgs && strstr(pszArgs, "verbose") != NULL;
2116
2117 pHlp->pfnPrintf(pHlp,
2118 "RAM ranges (pVM=%p)\n"
2119 "%.*s %.*s\n",
2120 pVM,
2121 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2122 sizeof(RTHCPTR) * 2, "pvHC ");
2123
2124 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2125 {
2126 pHlp->pfnPrintf(pHlp,
2127 "%RGp-%RGp %RHv %s\n",
2128 pCur->GCPhys,
2129 pCur->GCPhysLast,
2130 pCur->pvR3,
2131 pCur->pszDesc);
2132 if (fVerbose)
2133 {
2134 RTGCPHYS const cPages = pCur->cb >> X86_PAGE_SHIFT;
2135 RTGCPHYS iPage = 0;
2136 while (iPage < cPages)
2137 {
2138 RTGCPHYS const iFirstPage = iPage;
2139 PGMPAGETYPE const enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]);
2140 do
2141 iPage++;
2142 while (iPage < cPages && (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) == enmType);
2143 const char *pszType;
2144 const char *pszMore = NULL;
2145 switch (enmType)
2146 {
2147 case PGMPAGETYPE_RAM:
2148 pszType = "RAM";
2149 break;
2150
2151 case PGMPAGETYPE_MMIO2:
2152 pszType = "MMIO2";
2153 break;
2154
2155 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2156 pszType = "MMIO2-alias-MMIO";
2157 break;
2158
2159 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
2160 pszType = "special-alias-MMIO";
2161 break;
2162
2163 case PGMPAGETYPE_ROM_SHADOW:
2164 case PGMPAGETYPE_ROM:
2165 {
2166 pszType = enmType == PGMPAGETYPE_ROM_SHADOW ? "ROM-shadowed" : "ROM";
2167
2168 RTGCPHYS const GCPhysFirstPg = iFirstPage * X86_PAGE_SIZE;
2169 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
2170 while (pRom && GCPhysFirstPg > pRom->GCPhysLast)
2171 pRom = pRom->pNextR3;
2172 if (pRom && GCPhysFirstPg - pRom->GCPhys < pRom->cb)
2173 pszMore = pRom->pszDesc;
2174 break;
2175 }
2176
2177 case PGMPAGETYPE_MMIO:
2178 {
2179 pszType = "MMIO";
2180 PGM_LOCK_VOID(pVM);
2181 PPGMPHYSHANDLER pHandler;
2182 int rc = pgmHandlerPhysicalLookup(pVM, iFirstPage * X86_PAGE_SIZE, &pHandler);
2183 if (RT_SUCCESS(rc))
2184 pszMore = pHandler->pszDesc;
2185 PGM_UNLOCK(pVM);
2186 break;
2187 }
2188
2189 case PGMPAGETYPE_INVALID:
2190 pszType = "invalid";
2191 break;
2192
2193 default:
2194 pszType = "bad";
2195 break;
2196 }
2197 if (pszMore)
2198 pHlp->pfnPrintf(pHlp, " %RGp-%RGp %-20s %s\n",
2199 pCur->GCPhys + iFirstPage * X86_PAGE_SIZE,
2200 pCur->GCPhys + iPage * X86_PAGE_SIZE - 1,
2201 pszType, pszMore);
2202 else
2203 pHlp->pfnPrintf(pHlp, " %RGp-%RGp %s\n",
2204 pCur->GCPhys + iFirstPage * X86_PAGE_SIZE,
2205 pCur->GCPhys + iPage * X86_PAGE_SIZE - 1,
2206 pszType);
2207
2208 }
2209 }
2210 }
2211}
2212
2213
2214/**
2215 * Dump the page directory to the log.
2216 *
2217 * @param pVM The cross context VM structure.
2218 * @param pHlp The info helpers.
2219 * @param pszArgs Arguments, ignored.
2220 */
2221static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2222{
2223 /** @todo SMP support!! */
2224 PVMCPU pVCpu = pVM->apCpusR3[0];
2225
2226/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2227 /* Big pages supported? */
2228 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2229
2230 /* Global pages supported? */
2231 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2232
2233 NOREF(pszArgs);
2234
2235 /*
2236 * Get page directory addresses.
2237 */
2238 PGM_LOCK_VOID(pVM);
2239 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
2240 Assert(pPDSrc);
2241
2242 /*
2243 * Iterate the page directory.
2244 */
2245 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2246 {
2247 X86PDE PdeSrc = pPDSrc->a[iPD];
2248 if (PdeSrc.u & X86_PDE_P)
2249 {
2250 if ((PdeSrc.u & X86_PDE_PS) && fPSE)
2251 pHlp->pfnPrintf(pHlp,
2252 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2253 iPD,
2254 pgmGstGet4MBPhysPage(pVM, PdeSrc), PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_US),
2255 !!(PdeSrc.u & X86_PDE_RW), (PdeSrc.u & X86_PDE4M_G) && fPGE);
2256 else
2257 pHlp->pfnPrintf(pHlp,
2258 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2259 iPD,
2260 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK), PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_US),
2261 !!(PdeSrc.u & X86_PDE_RW), (PdeSrc.u & X86_PDE4M_G) && fPGE);
2262 }
2263 }
2264 PGM_UNLOCK(pVM);
2265}
2266
2267
2268/**
2269 * Called by pgmPoolFlushAllInt prior to flushing the pool.
2270 *
2271 * @returns VBox status code, fully asserted.
2272 * @param pVCpu The cross context virtual CPU structure.
2273 */
2274int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu)
2275{
2276 /* Unmap the old CR3 value before flushing everything. */
2277 int rc = VINF_SUCCESS;
2278 uintptr_t idxBth = pVCpu->pgm.s.idxBothModeData;
2279 if ( idxBth < RT_ELEMENTS(g_aPgmBothModeData)
2280 && g_aPgmBothModeData[idxBth].pfnUnmapCR3)
2281 {
2282 rc = g_aPgmBothModeData[idxBth].pfnUnmapCR3(pVCpu);
2283 AssertRC(rc);
2284 }
2285
2286 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
2287 uintptr_t idxShw = pVCpu->pgm.s.idxShadowModeData;
2288 if ( idxShw < RT_ELEMENTS(g_aPgmShadowModeData)
2289 && g_aPgmShadowModeData[idxShw].pfnExit)
2290 {
2291 rc = g_aPgmShadowModeData[idxShw].pfnExit(pVCpu);
2292 AssertMsgRCReturn(rc, ("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc), rc);
2293 }
2294
2295 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
2296 return rc;
2297}
2298
2299
2300/**
2301 * Called by pgmPoolFlushAllInt after flushing the pool.
2302 *
2303 * @returns VBox status code, fully asserted.
2304 * @param pVM The cross context VM structure.
2305 * @param pVCpu The cross context virtual CPU structure.
2306 */
2307int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
2308{
2309 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
2310 int rc = PGMHCChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu), false /* fForce */);
2311 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
2312 AssertRCReturn(rc, rc);
2313 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
2314
2315 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL || pVCpu->pgm.s.enmShadowMode == PGMMODE_NONE);
2316 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED_32BIT
2317 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
2318 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
2319 return rc;
2320}
2321
2322
2323/**
2324 * Called by PGMR3PhysSetA20 after changing the A20 state.
2325 *
2326 * @param pVCpu The cross context virtual CPU structure.
2327 */
2328void pgmR3RefreshShadowModeAfterA20Change(PVMCPU pVCpu)
2329{
2330 /** @todo Probably doing a bit too much here. */
2331 int rc = pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
2332 AssertReleaseRC(rc);
2333 rc = pgmR3ReEnterShadowModeAfterPoolFlush(pVCpu->CTX_SUFF(pVM), pVCpu);
2334 AssertReleaseRC(rc);
2335}
2336
2337
2338#ifdef VBOX_WITH_DEBUGGER
2339
2340/**
2341 * @callback_method_impl{FNDBGCCMD, The '.pgmerror' and '.pgmerroroff' commands.}
2342 */
2343static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2344{
2345 /*
2346 * Validate input.
2347 */
2348 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2349 PVM pVM = pUVM->pVM;
2350 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING));
2351
2352 if (!cArgs)
2353 {
2354 /*
2355 * Print the list of error injection locations with status.
2356 */
2357 DBGCCmdHlpPrintf(pCmdHlp, "PGM error inject locations:\n");
2358 DBGCCmdHlpPrintf(pCmdHlp, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
2359 }
2360 else
2361 {
2362 /*
2363 * String switch on where to inject the error.
2364 */
2365 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
2366 const char *pszWhere = paArgs[0].u.pszString;
2367 if (!strcmp(pszWhere, "handy"))
2368 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
2369 else
2370 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid 'where' value: %s.\n", pszWhere);
2371 DBGCCmdHlpPrintf(pCmdHlp, "done\n");
2372 }
2373 return VINF_SUCCESS;
2374}
2375
2376
2377/**
2378 * @callback_method_impl{FNDBGCCMD, The '.pgmsync' command.}
2379 */
2380static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2381{
2382 /*
2383 * Validate input.
2384 */
2385 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2386 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2387 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
2388 if (!pVCpu)
2389 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
2390
2391 /*
2392 * Force page directory sync.
2393 */
2394 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2395
2396 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Forcing page directory sync.\n");
2397 if (RT_FAILURE(rc))
2398 return rc;
2399
2400 return VINF_SUCCESS;
2401}
2402
2403#ifdef VBOX_STRICT
2404
2405/**
2406 * EMT callback for pgmR3CmdAssertCR3.
2407 *
2408 * @returns VBox status code.
2409 * @param pUVM The user mode VM handle.
2410 * @param pcErrors Where to return the error count.
2411 */
2412static DECLCALLBACK(int) pgmR3CmdAssertCR3EmtWorker(PUVM pUVM, unsigned *pcErrors)
2413{
2414 PVM pVM = pUVM->pVM;
2415 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
2416 PVMCPU pVCpu = VMMGetCpu(pVM);
2417
2418 *pcErrors = PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
2419
2420 return VINF_SUCCESS;
2421}
2422
2423
2424/**
2425 * @callback_method_impl{FNDBGCCMD, The '.pgmassertcr3' command.}
2426 */
2427static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2428{
2429 /*
2430 * Validate input.
2431 */
2432 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2433 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2434
2435 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Checking shadow CR3 page tables for consistency.\n");
2436 if (RT_FAILURE(rc))
2437 return rc;
2438
2439 unsigned cErrors = 0;
2440 rc = VMR3ReqCallWaitU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp), (PFNRT)pgmR3CmdAssertCR3EmtWorker, 2, pUVM, &cErrors);
2441 if (RT_FAILURE(rc))
2442 return DBGCCmdHlpFail(pCmdHlp, pCmd, "VMR3ReqCallWaitU failed: %Rrc", rc);
2443 if (cErrors > 0)
2444 return DBGCCmdHlpFail(pCmdHlp, pCmd, "PGMAssertCR3: %u error(s)", cErrors);
2445 return DBGCCmdHlpPrintf(pCmdHlp, "PGMAssertCR3: OK\n");
2446}
2447
2448#endif /* VBOX_STRICT */
2449
2450/**
2451 * @callback_method_impl{FNDBGCCMD, The '.pgmsyncalways' command.}
2452 */
2453static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2454{
2455 /*
2456 * Validate input.
2457 */
2458 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2459 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2460 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
2461 if (!pVCpu)
2462 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
2463
2464 /*
2465 * Force page directory sync.
2466 */
2467 int rc;
2468 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
2469 {
2470 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
2471 rc = DBGCCmdHlpPrintf(pCmdHlp, "Disabled permanent forced page directory syncing.\n");
2472 }
2473 else
2474 {
2475 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
2476 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2477 rc = DBGCCmdHlpPrintf(pCmdHlp, "Enabled permanent forced page directory syncing.\n");
2478 }
2479 return rc;
2480}
2481
2482
2483/**
2484 * @callback_method_impl{FNDBGCCMD, The '.pgmphystofile' command.}
2485 */
2486static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2487{
2488 /*
2489 * Validate input.
2490 */
2491 NOREF(pCmd);
2492 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2493 PVM pVM = pUVM->pVM;
2494 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
2495 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
2496 if (cArgs == 2)
2497 {
2498 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
2499 if (strcmp(paArgs[1].u.pszString, "nozero"))
2500 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
2501 }
2502 bool fIncZeroPgs = cArgs < 2;
2503
2504 /*
2505 * Open the output file and get the ram parameters.
2506 */
2507 RTFILE hFile;
2508 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
2509 if (RT_FAILURE(rc))
2510 return DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
2511
2512 uint32_t cbRamHole = 0;
2513 CFGMR3QueryU32Def(CFGMR3GetRootU(pUVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
2514 uint64_t cbRam = 0;
2515 CFGMR3QueryU64Def(CFGMR3GetRootU(pUVM), "RamSize", &cbRam, 0);
2516 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
2517
2518 /*
2519 * Dump the physical memory, page by page.
2520 */
2521 RTGCPHYS GCPhys = 0;
2522 char abZeroPg[GUEST_PAGE_SIZE];
2523 RT_ZERO(abZeroPg);
2524
2525 PGM_LOCK_VOID(pVM);
2526 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2527 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
2528 pRam = pRam->pNextR3)
2529 {
2530 /* fill the gap */
2531 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
2532 {
2533 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
2534 {
2535 rc = RTFileWrite(hFile, abZeroPg, GUEST_PAGE_SIZE, NULL);
2536 GCPhys += GUEST_PAGE_SIZE;
2537 }
2538 }
2539
2540 PCPGMPAGE pPage = &pRam->aPages[0];
2541 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
2542 {
2543 if ( PGM_PAGE_IS_ZERO(pPage)
2544 || PGM_PAGE_IS_BALLOONED(pPage))
2545 {
2546 if (fIncZeroPgs)
2547 {
2548 rc = RTFileWrite(hFile, abZeroPg, GUEST_PAGE_SIZE, NULL);
2549 if (RT_FAILURE(rc))
2550 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
2551 }
2552 }
2553 else
2554 {
2555 switch (PGM_PAGE_GET_TYPE(pPage))
2556 {
2557 case PGMPAGETYPE_RAM:
2558 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
2559 case PGMPAGETYPE_ROM:
2560 case PGMPAGETYPE_MMIO2:
2561 {
2562 void const *pvPage;
2563 PGMPAGEMAPLOCK Lock;
2564 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
2565 if (RT_SUCCESS(rc))
2566 {
2567 rc = RTFileWrite(hFile, pvPage, GUEST_PAGE_SIZE, NULL);
2568 PGMPhysReleasePageMappingLock(pVM, &Lock);
2569 if (RT_FAILURE(rc))
2570 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
2571 }
2572 else
2573 DBGCCmdHlpPrintf(pCmdHlp, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
2574 break;
2575 }
2576
2577 default:
2578 AssertFailed();
2579 RT_FALL_THRU();
2580 case PGMPAGETYPE_MMIO:
2581 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2582 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
2583 if (fIncZeroPgs)
2584 {
2585 rc = RTFileWrite(hFile, abZeroPg, GUEST_PAGE_SIZE, NULL);
2586 if (RT_FAILURE(rc))
2587 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
2588 }
2589 break;
2590 }
2591 }
2592
2593
2594 /* advance */
2595 GCPhys += GUEST_PAGE_SIZE;
2596 pPage++;
2597 }
2598 }
2599 PGM_UNLOCK(pVM);
2600
2601 RTFileClose(hFile);
2602 if (RT_SUCCESS(rc))
2603 return DBGCCmdHlpPrintf(pCmdHlp, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
2604 return VINF_SUCCESS;
2605}
2606
2607#endif /* VBOX_WITH_DEBUGGER */
2608
2609/**
2610 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
2611 */
2612typedef struct PGMCHECKINTARGS
2613{
2614 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
2615 uint32_t cErrors;
2616 PPGMPHYSHANDLER pPrevPhys;
2617 PVM pVM;
2618} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
2619
2620/**
2621 * Validate a node in the physical handler tree.
2622 *
2623 * @returns 0 on if ok, other wise 1.
2624 * @param pNode The handler node.
2625 * @param pvUser pVM.
2626 */
2627static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PPGMPHYSHANDLER pNode, void *pvUser)
2628{
2629 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
2630
2631 AssertLogRelMsgReturnStmt(!((uintptr_t)pNode & 7), ("pNode=%p\n", pNode), pArgs->cErrors++, VERR_INVALID_POINTER);
2632
2633 AssertLogRelMsgStmt(pNode->Key <= pNode->KeyLast,
2634 ("pNode=%p %RGp-%RGp %s\n", pNode, pNode->Key, pNode->KeyLast, pNode->pszDesc),
2635 pArgs->cErrors++);
2636
2637 AssertLogRelMsgStmt( !pArgs->pPrevPhys
2638 || ( pArgs->fLeftToRight
2639 ? pArgs->pPrevPhys->KeyLast < pNode->Key
2640 : pArgs->pPrevPhys->KeyLast > pNode->Key),
2641 ("pPrevPhys=%p %RGp-%RGp %s\n"
2642 " pNode=%p %RGp-%RGp %s\n",
2643 pArgs->pPrevPhys, pArgs->pPrevPhys->Key, pArgs->pPrevPhys->KeyLast, pArgs->pPrevPhys->pszDesc,
2644 pNode, pNode->Key, pNode->KeyLast, pNode->pszDesc),
2645 pArgs->cErrors++);
2646
2647 pArgs->pPrevPhys = pNode;
2648 return 0;
2649}
2650
2651
2652/**
2653 * Perform an integrity check on the PGM component.
2654 *
2655 * @returns VINF_SUCCESS if everything is fine.
2656 * @returns VBox error status after asserting on integrity breach.
2657 * @param pVM The cross context VM structure.
2658 */
2659VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
2660{
2661 /*
2662 * Check the trees.
2663 */
2664 PGMCHECKINTARGS Args = { true, 0, NULL, pVM };
2665 int rc = pVM->pgm.s.pPhysHandlerTree->doWithAllFromLeft(&pVM->pgm.s.PhysHandlerAllocator,
2666 pgmR3CheckIntegrityPhysHandlerNode, &Args);
2667 AssertLogRelRCReturn(rc, rc);
2668
2669 Args.fLeftToRight = false;
2670 Args.pPrevPhys = NULL;
2671 rc = pVM->pgm.s.pPhysHandlerTree->doWithAllFromRight(&pVM->pgm.s.PhysHandlerAllocator,
2672 pgmR3CheckIntegrityPhysHandlerNode, &Args);
2673 AssertLogRelMsgReturn(pVM->pgm.s.pPhysHandlerTree->m_cErrors == 0,
2674 ("m_cErrors=%#x\n", pVM->pgm.s.pPhysHandlerTree->m_cErrors == 0),
2675 VERR_INTERNAL_ERROR);
2676
2677 return Args.cErrors == 0 ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
2678}
2679
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette