VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMPhys.cpp@ 55808

Last change on this file since 55808 was 55493, checked in by vboxsync, 10 years ago

PGM,++: Separated physical access handler callback function pointers from the access handler registrations to reduce footprint and simplify adding a couple of more callbacks.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 168.8 KB
Line 
1/* $Id: PGMPhys.cpp 55493 2015-04-28 16:51:35Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2014 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_PHYS
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/iom.h>
25#include <VBox/vmm/mm.h>
26#include <VBox/vmm/stam.h>
27#ifdef VBOX_WITH_REM
28# include <VBox/vmm/rem.h>
29#endif
30#include <VBox/vmm/pdmdev.h>
31#include "PGMInternal.h"
32#include <VBox/vmm/vm.h>
33#include <VBox/vmm/uvm.h>
34#include "PGMInline.h"
35#include <VBox/sup.h>
36#include <VBox/param.h>
37#include <VBox/err.h>
38#include <VBox/log.h>
39#include <iprt/assert.h>
40#include <iprt/alloc.h>
41#include <iprt/asm.h>
42#ifdef VBOX_STRICT
43# include <iprt/crc.h>
44#endif
45#include <iprt/thread.h>
46#include <iprt/string.h>
47#include <iprt/system.h>
48
49
50/*******************************************************************************
51* Defined Constants And Macros *
52*******************************************************************************/
53/** The number of pages to free in one batch. */
54#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
55
56
57/*
58 * PGMR3PhysReadU8-64
59 * PGMR3PhysWriteU8-64
60 */
61#define PGMPHYSFN_READNAME PGMR3PhysReadU8
62#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
63#define PGMPHYS_DATASIZE 1
64#define PGMPHYS_DATATYPE uint8_t
65#include "PGMPhysRWTmpl.h"
66
67#define PGMPHYSFN_READNAME PGMR3PhysReadU16
68#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
69#define PGMPHYS_DATASIZE 2
70#define PGMPHYS_DATATYPE uint16_t
71#include "PGMPhysRWTmpl.h"
72
73#define PGMPHYSFN_READNAME PGMR3PhysReadU32
74#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
75#define PGMPHYS_DATASIZE 4
76#define PGMPHYS_DATATYPE uint32_t
77#include "PGMPhysRWTmpl.h"
78
79#define PGMPHYSFN_READNAME PGMR3PhysReadU64
80#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
81#define PGMPHYS_DATASIZE 8
82#define PGMPHYS_DATATYPE uint64_t
83#include "PGMPhysRWTmpl.h"
84
85
86/**
87 * EMT worker for PGMR3PhysReadExternal.
88 */
89static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead)
90{
91 PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead);
92 return VINF_SUCCESS;
93}
94
95
96/**
97 * Read from physical memory, external users.
98 *
99 * @returns VBox status code.
100 * @retval VINF_SUCCESS.
101 *
102 * @param pVM Pointer to the VM.
103 * @param GCPhys Physical address to read from.
104 * @param pvBuf Where to read into.
105 * @param cbRead How many bytes to read.
106 *
107 * @thread Any but EMTs.
108 */
109VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
110{
111 VM_ASSERT_OTHER_THREAD(pVM);
112
113 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
114 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
115
116 pgmLock(pVM);
117
118 /*
119 * Copy loop on ram ranges.
120 */
121 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
122 for (;;)
123 {
124 /* Inside range or not? */
125 if (pRam && GCPhys >= pRam->GCPhys)
126 {
127 /*
128 * Must work our way thru this page by page.
129 */
130 RTGCPHYS off = GCPhys - pRam->GCPhys;
131 while (off < pRam->cb)
132 {
133 unsigned iPage = off >> PAGE_SHIFT;
134 PPGMPAGE pPage = &pRam->aPages[iPage];
135
136 /*
137 * If the page has an ALL access handler, we'll have to
138 * delegate the job to EMT.
139 */
140 if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
141 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
142 {
143 pgmUnlock(pVM);
144
145 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 4,
146 pVM, &GCPhys, pvBuf, cbRead);
147 }
148 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
149
150 /*
151 * Simple stuff, go ahead.
152 */
153 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
154 if (cb > cbRead)
155 cb = cbRead;
156 PGMPAGEMAPLOCK PgMpLck;
157 const void *pvSrc;
158 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck);
159 if (RT_SUCCESS(rc))
160 {
161 memcpy(pvBuf, pvSrc, cb);
162 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
163 }
164 else
165 {
166 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
167 pRam->GCPhys + off, pPage, rc));
168 memset(pvBuf, 0xff, cb);
169 }
170
171 /* next page */
172 if (cb >= cbRead)
173 {
174 pgmUnlock(pVM);
175 return VINF_SUCCESS;
176 }
177 cbRead -= cb;
178 off += cb;
179 GCPhys += cb;
180 pvBuf = (char *)pvBuf + cb;
181 } /* walk pages in ram range. */
182 }
183 else
184 {
185 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
186
187 /*
188 * Unassigned address space.
189 */
190 size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
191 if (cb >= cbRead)
192 {
193 memset(pvBuf, 0xff, cbRead);
194 break;
195 }
196 memset(pvBuf, 0xff, cb);
197
198 cbRead -= cb;
199 pvBuf = (char *)pvBuf + cb;
200 GCPhys += cb;
201 }
202
203 /* Advance range if necessary. */
204 while (pRam && GCPhys > pRam->GCPhysLast)
205 pRam = pRam->CTX_SUFF(pNext);
206 } /* Ram range walk */
207
208 pgmUnlock(pVM);
209
210 return VINF_SUCCESS;
211}
212
213
214/**
215 * EMT worker for PGMR3PhysWriteExternal.
216 */
217static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite)
218{
219 /** @todo VERR_EM_NO_MEMORY */
220 PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite);
221 return VINF_SUCCESS;
222}
223
224
225/**
226 * Write to physical memory, external users.
227 *
228 * @returns VBox status code.
229 * @retval VINF_SUCCESS.
230 * @retval VERR_EM_NO_MEMORY.
231 *
232 * @param pVM Pointer to the VM.
233 * @param GCPhys Physical address to write to.
234 * @param pvBuf What to write.
235 * @param cbWrite How many bytes to write.
236 * @param pszWho Who is writing. For tracking down who is writing
237 * after we've saved the state.
238 *
239 * @thread Any but EMTs.
240 */
241VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, const char *pszWho)
242{
243 VM_ASSERT_OTHER_THREAD(pVM);
244
245 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
246 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x pszWho=%s\n",
247 GCPhys, cbWrite, pszWho));
248 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
249 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
250
251 pgmLock(pVM);
252
253 /*
254 * Copy loop on ram ranges, stop when we hit something difficult.
255 */
256 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
257 for (;;)
258 {
259 /* Inside range or not? */
260 if (pRam && GCPhys >= pRam->GCPhys)
261 {
262 /*
263 * Must work our way thru this page by page.
264 */
265 RTGCPTR off = GCPhys - pRam->GCPhys;
266 while (off < pRam->cb)
267 {
268 RTGCPTR iPage = off >> PAGE_SHIFT;
269 PPGMPAGE pPage = &pRam->aPages[iPage];
270
271 /*
272 * Is the page problematic, we have to do the work on the EMT.
273 *
274 * Allocating writable pages and access handlers are
275 * problematic, write monitored pages are simple and can be
276 * dealt with here.
277 */
278 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
279 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
280 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
281 {
282 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
283 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
284 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
285 else
286 {
287 pgmUnlock(pVM);
288
289 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 4,
290 pVM, &GCPhys, pvBuf, cbWrite);
291 }
292 }
293 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
294
295 /*
296 * Simple stuff, go ahead.
297 */
298 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
299 if (cb > cbWrite)
300 cb = cbWrite;
301 PGMPAGEMAPLOCK PgMpLck;
302 void *pvDst;
303 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck);
304 if (RT_SUCCESS(rc))
305 {
306 memcpy(pvDst, pvBuf, cb);
307 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
308 }
309 else
310 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
311 pRam->GCPhys + off, pPage, rc));
312
313 /* next page */
314 if (cb >= cbWrite)
315 {
316 pgmUnlock(pVM);
317 return VINF_SUCCESS;
318 }
319
320 cbWrite -= cb;
321 off += cb;
322 GCPhys += cb;
323 pvBuf = (const char *)pvBuf + cb;
324 } /* walk pages in ram range */
325 }
326 else
327 {
328 /*
329 * Unassigned address space, skip it.
330 */
331 if (!pRam)
332 break;
333 size_t cb = pRam->GCPhys - GCPhys;
334 if (cb >= cbWrite)
335 break;
336 cbWrite -= cb;
337 pvBuf = (const char *)pvBuf + cb;
338 GCPhys += cb;
339 }
340
341 /* Advance range if necessary. */
342 while (pRam && GCPhys > pRam->GCPhysLast)
343 pRam = pRam->CTX_SUFF(pNext);
344 } /* Ram range walk */
345
346 pgmUnlock(pVM);
347 return VINF_SUCCESS;
348}
349
350
351/**
352 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
353 *
354 * @returns see PGMR3PhysGCPhys2CCPtrExternal
355 * @param pVM Pointer to the VM.
356 * @param pGCPhys Pointer to the guest physical address.
357 * @param ppv Where to store the mapping address.
358 * @param pLock Where to store the lock.
359 */
360static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
361{
362 /*
363 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
364 * an access handler after it succeeds.
365 */
366 int rc = pgmLock(pVM);
367 AssertRCReturn(rc, rc);
368
369 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
370 if (RT_SUCCESS(rc))
371 {
372 PPGMPAGEMAPTLBE pTlbe;
373 int rc2 = pgmPhysPageQueryTlbe(pVM, *pGCPhys, &pTlbe);
374 AssertFatalRC(rc2);
375 PPGMPAGE pPage = pTlbe->pPage;
376 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
377 {
378 PGMPhysReleasePageMappingLock(pVM, pLock);
379 rc = VERR_PGM_PHYS_PAGE_RESERVED;
380 }
381 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
382#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
383 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
384#endif
385 )
386 {
387 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
388 * not be informed about writes and keep bogus gst->shw mappings around.
389 */
390 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
391 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
392 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
393 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
394 }
395 }
396
397 pgmUnlock(pVM);
398 return rc;
399}
400
401
402/**
403 * Requests the mapping of a guest page into ring-3, external threads.
404 *
405 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
406 * release it.
407 *
408 * This API will assume your intention is to write to the page, and will
409 * therefore replace shared and zero pages. If you do not intend to modify the
410 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
411 *
412 * @returns VBox status code.
413 * @retval VINF_SUCCESS on success.
414 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
415 * backing or if the page has any active access handlers. The caller
416 * must fall back on using PGMR3PhysWriteExternal.
417 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
418 *
419 * @param pVM Pointer to the VM.
420 * @param GCPhys The guest physical address of the page that should be mapped.
421 * @param ppv Where to store the address corresponding to GCPhys.
422 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
423 *
424 * @remark Avoid calling this API from within critical sections (other than the
425 * PGM one) because of the deadlock risk when we have to delegating the
426 * task to an EMT.
427 * @thread Any.
428 */
429VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
430{
431 AssertPtr(ppv);
432 AssertPtr(pLock);
433
434 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
435
436 int rc = pgmLock(pVM);
437 AssertRCReturn(rc, rc);
438
439 /*
440 * Query the Physical TLB entry for the page (may fail).
441 */
442 PPGMPAGEMAPTLBE pTlbe;
443 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
444 if (RT_SUCCESS(rc))
445 {
446 PPGMPAGE pPage = pTlbe->pPage;
447 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
448 rc = VERR_PGM_PHYS_PAGE_RESERVED;
449 else
450 {
451 /*
452 * If the page is shared, the zero page, or being write monitored
453 * it must be converted to an page that's writable if possible.
454 * We can only deal with write monitored pages here, the rest have
455 * to be on an EMT.
456 */
457 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
458 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
459#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
460 || pgmPoolIsDirtyPage(pVM, GCPhys)
461#endif
462 )
463 {
464 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
465 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
466#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
467 && !pgmPoolIsDirtyPage(pVM, GCPhys)
468#endif
469 )
470 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
471 else
472 {
473 pgmUnlock(pVM);
474
475 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
476 pVM, &GCPhys, ppv, pLock);
477 }
478 }
479
480 /*
481 * Now, just perform the locking and calculate the return address.
482 */
483 PPGMPAGEMAP pMap = pTlbe->pMap;
484 if (pMap)
485 pMap->cRefs++;
486
487 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
488 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
489 {
490 if (cLocks == 0)
491 pVM->pgm.s.cWriteLockedPages++;
492 PGM_PAGE_INC_WRITE_LOCKS(pPage);
493 }
494 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
495 {
496 PGM_PAGE_INC_WRITE_LOCKS(pPage);
497 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
498 if (pMap)
499 pMap->cRefs++; /* Extra ref to prevent it from going away. */
500 }
501
502 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
503 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
504 pLock->pvMap = pMap;
505 }
506 }
507
508 pgmUnlock(pVM);
509 return rc;
510}
511
512
513/**
514 * Requests the mapping of a guest page into ring-3, external threads.
515 *
516 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
517 * release it.
518 *
519 * @returns VBox status code.
520 * @retval VINF_SUCCESS on success.
521 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
522 * backing or if the page as an active ALL access handler. The caller
523 * must fall back on using PGMPhysRead.
524 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
525 *
526 * @param pVM Pointer to the VM.
527 * @param GCPhys The guest physical address of the page that should be mapped.
528 * @param ppv Where to store the address corresponding to GCPhys.
529 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
530 *
531 * @remark Avoid calling this API from within critical sections (other than
532 * the PGM one) because of the deadlock risk.
533 * @thread Any.
534 */
535VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
536{
537 int rc = pgmLock(pVM);
538 AssertRCReturn(rc, rc);
539
540 /*
541 * Query the Physical TLB entry for the page (may fail).
542 */
543 PPGMPAGEMAPTLBE pTlbe;
544 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
545 if (RT_SUCCESS(rc))
546 {
547 PPGMPAGE pPage = pTlbe->pPage;
548#if 1
549 /* MMIO pages doesn't have any readable backing. */
550 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
551 rc = VERR_PGM_PHYS_PAGE_RESERVED;
552#else
553 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
554 rc = VERR_PGM_PHYS_PAGE_RESERVED;
555#endif
556 else
557 {
558 /*
559 * Now, just perform the locking and calculate the return address.
560 */
561 PPGMPAGEMAP pMap = pTlbe->pMap;
562 if (pMap)
563 pMap->cRefs++;
564
565 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
566 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
567 {
568 if (cLocks == 0)
569 pVM->pgm.s.cReadLockedPages++;
570 PGM_PAGE_INC_READ_LOCKS(pPage);
571 }
572 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
573 {
574 PGM_PAGE_INC_READ_LOCKS(pPage);
575 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
576 if (pMap)
577 pMap->cRefs++; /* Extra ref to prevent it from going away. */
578 }
579
580 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
581 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
582 pLock->pvMap = pMap;
583 }
584 }
585
586 pgmUnlock(pVM);
587 return rc;
588}
589
590
591#define MAKE_LEAF(a_pNode) \
592 do { \
593 (a_pNode)->pLeftR3 = NIL_RTR3PTR; \
594 (a_pNode)->pRightR3 = NIL_RTR3PTR; \
595 (a_pNode)->pLeftR0 = NIL_RTR0PTR; \
596 (a_pNode)->pRightR0 = NIL_RTR0PTR; \
597 (a_pNode)->pLeftRC = NIL_RTRCPTR; \
598 (a_pNode)->pRightRC = NIL_RTRCPTR; \
599 } while (0)
600
601#define INSERT_LEFT(a_pParent, a_pNode) \
602 do { \
603 (a_pParent)->pLeftR3 = (a_pNode); \
604 (a_pParent)->pLeftR0 = (a_pNode)->pSelfR0; \
605 (a_pParent)->pLeftRC = (a_pNode)->pSelfRC; \
606 } while (0)
607#define INSERT_RIGHT(a_pParent, a_pNode) \
608 do { \
609 (a_pParent)->pRightR3 = (a_pNode); \
610 (a_pParent)->pRightR0 = (a_pNode)->pSelfR0; \
611 (a_pParent)->pRightRC = (a_pNode)->pSelfRC; \
612 } while (0)
613
614
615/**
616 * Recursive tree builder.
617 *
618 * @param ppRam Pointer to the iterator variable.
619 * @param iHeight The hight about normal leaf nodes. Inserts a leaf
620 * node if 0.
621 */
622static PPGMRAMRANGE pgmR3PhysRebuildRamRangeSearchTreesRecursively(PPGMRAMRANGE *ppRam, int iDepth)
623{
624 PPGMRAMRANGE pRam;
625 if (iDepth <= 0)
626 {
627 /*
628 * Leaf node.
629 */
630 pRam = *ppRam;
631 if (pRam)
632 {
633 *ppRam = pRam->pNextR3;
634 MAKE_LEAF(pRam);
635 }
636 }
637 else
638 {
639
640 /*
641 * Intermediate node.
642 */
643 PPGMRAMRANGE pLeft = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
644
645 pRam = *ppRam;
646 if (!pRam)
647 return pLeft;
648 *ppRam = pRam->pNextR3;
649 MAKE_LEAF(pRam);
650 INSERT_LEFT(pRam, pLeft);
651
652 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
653 if (pRight)
654 INSERT_RIGHT(pRam, pRight);
655 }
656 return pRam;
657}
658
659
660/**
661 * Rebuilds the RAM range search trees.
662 *
663 * @param pVM Pointer to the VM.
664 */
665static void pgmR3PhysRebuildRamRangeSearchTrees(PVM pVM)
666{
667
668 /*
669 * Create the reasonably balanced tree in a sequential fashion.
670 * For simplicity (laziness) we use standard recursion here.
671 */
672 int iDepth = 0;
673 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
674 PPGMRAMRANGE pRoot = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, 0);
675 while (pRam)
676 {
677 PPGMRAMRANGE pLeft = pRoot;
678
679 pRoot = pRam;
680 pRam = pRam->pNextR3;
681 MAKE_LEAF(pRoot);
682 INSERT_LEFT(pRoot, pLeft);
683
684 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, iDepth);
685 if (pRight)
686 INSERT_RIGHT(pRoot, pRight);
687 /** @todo else: rotate the tree. */
688
689 iDepth++;
690 }
691
692 pVM->pgm.s.pRamRangeTreeR3 = pRoot;
693 pVM->pgm.s.pRamRangeTreeR0 = pRoot ? pRoot->pSelfR0 : NIL_RTR0PTR;
694 pVM->pgm.s.pRamRangeTreeRC = pRoot ? pRoot->pSelfRC : NIL_RTRCPTR;
695
696#ifdef VBOX_STRICT
697 /*
698 * Verify that the above code works.
699 */
700 unsigned cRanges = 0;
701 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
702 cRanges++;
703 Assert(cRanges > 0);
704
705 unsigned cMaxDepth = ASMBitLastSetU32(cRanges);
706 if ((1U << cMaxDepth) < cRanges)
707 cMaxDepth++;
708
709 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
710 {
711 unsigned cDepth = 0;
712 PPGMRAMRANGE pRam2 = pVM->pgm.s.pRamRangeTreeR3;
713 for (;;)
714 {
715 if (pRam == pRam2)
716 break;
717 Assert(pRam2);
718 if (pRam->GCPhys < pRam2->GCPhys)
719 pRam2 = pRam2->pLeftR3;
720 else
721 pRam2 = pRam2->pRightR3;
722 }
723 AssertMsg(cDepth <= cMaxDepth, ("cDepth=%d cMaxDepth=%d\n", cDepth, cMaxDepth));
724 }
725#endif /* VBOX_STRICT */
726}
727
728#undef MAKE_LEAF
729#undef INSERT_LEFT
730#undef INSERT_RIGHT
731
732/**
733 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
734 *
735 * Called when anything was relocated.
736 *
737 * @param pVM Pointer to the VM.
738 */
739void pgmR3PhysRelinkRamRanges(PVM pVM)
740{
741 PPGMRAMRANGE pCur;
742
743#ifdef VBOX_STRICT
744 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
745 {
746 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
747 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
748 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
749 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
750 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
751 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
752 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesXR3; pCur2; pCur2 = pCur2->pNextR3)
753 Assert( pCur2 == pCur
754 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
755 }
756#endif
757
758 pCur = pVM->pgm.s.pRamRangesXR3;
759 if (pCur)
760 {
761 pVM->pgm.s.pRamRangesXR0 = pCur->pSelfR0;
762 pVM->pgm.s.pRamRangesXRC = pCur->pSelfRC;
763
764 for (; pCur->pNextR3; pCur = pCur->pNextR3)
765 {
766 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
767 pCur->pNextRC = pCur->pNextR3->pSelfRC;
768 }
769
770 Assert(pCur->pNextR0 == NIL_RTR0PTR);
771 Assert(pCur->pNextRC == NIL_RTRCPTR);
772 }
773 else
774 {
775 Assert(pVM->pgm.s.pRamRangesXR0 == NIL_RTR0PTR);
776 Assert(pVM->pgm.s.pRamRangesXRC == NIL_RTRCPTR);
777 }
778 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
779
780 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
781}
782
783
784/**
785 * Links a new RAM range into the list.
786 *
787 * @param pVM Pointer to the VM.
788 * @param pNew Pointer to the new list entry.
789 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
790 */
791static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
792{
793 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
794 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
795 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));
796
797 pgmLock(pVM);
798
799 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesXR3;
800 pNew->pNextR3 = pRam;
801 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
802 pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;
803
804 if (pPrev)
805 {
806 pPrev->pNextR3 = pNew;
807 pPrev->pNextR0 = pNew->pSelfR0;
808 pPrev->pNextRC = pNew->pSelfRC;
809 }
810 else
811 {
812 pVM->pgm.s.pRamRangesXR3 = pNew;
813 pVM->pgm.s.pRamRangesXR0 = pNew->pSelfR0;
814 pVM->pgm.s.pRamRangesXRC = pNew->pSelfRC;
815 }
816 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
817
818 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
819 pgmUnlock(pVM);
820}
821
822
823/**
824 * Unlink an existing RAM range from the list.
825 *
826 * @param pVM Pointer to the VM.
827 * @param pRam Pointer to the new list entry.
828 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
829 */
830static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
831{
832 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesXR3 == pRam);
833 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
834 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));
835
836 pgmLock(pVM);
837
838 PPGMRAMRANGE pNext = pRam->pNextR3;
839 if (pPrev)
840 {
841 pPrev->pNextR3 = pNext;
842 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
843 pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
844 }
845 else
846 {
847 Assert(pVM->pgm.s.pRamRangesXR3 == pRam);
848 pVM->pgm.s.pRamRangesXR3 = pNext;
849 pVM->pgm.s.pRamRangesXR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
850 pVM->pgm.s.pRamRangesXRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
851 }
852 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
853
854 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
855 pgmUnlock(pVM);
856}
857
858
859/**
860 * Unlink an existing RAM range from the list.
861 *
862 * @param pVM Pointer to the VM.
863 * @param pRam Pointer to the new list entry.
864 */
865static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
866{
867 pgmLock(pVM);
868
869 /* find prev. */
870 PPGMRAMRANGE pPrev = NULL;
871 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3;
872 while (pCur != pRam)
873 {
874 pPrev = pCur;
875 pCur = pCur->pNextR3;
876 }
877 AssertFatal(pCur);
878
879 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
880 pgmUnlock(pVM);
881}
882
883
884/**
885 * Frees a range of pages, replacing them with ZERO pages of the specified type.
886 *
887 * @returns VBox status code.
888 * @param pVM Pointer to the VM.
889 * @param pRam The RAM range in which the pages resides.
890 * @param GCPhys The address of the first page.
891 * @param GCPhysLast The address of the last page.
892 * @param uType The page type to replace then with.
893 */
894static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, uint8_t uType)
895{
896 PGM_LOCK_ASSERT_OWNER(pVM);
897 uint32_t cPendingPages = 0;
898 PGMMFREEPAGESREQ pReq;
899 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
900 AssertLogRelRCReturn(rc, rc);
901
902 /* Iterate the pages. */
903 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
904 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
905 while (cPagesLeft-- > 0)
906 {
907 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
908 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
909
910 PGM_PAGE_SET_TYPE(pVM, pPageDst, uType);
911
912 GCPhys += PAGE_SIZE;
913 pPageDst++;
914 }
915
916 if (cPendingPages)
917 {
918 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
919 AssertLogRelRCReturn(rc, rc);
920 }
921 GMMR3FreePagesCleanup(pReq);
922
923 return rc;
924}
925
926#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
927
928/**
929 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
930 *
931 * This is only called on one of the EMTs while the other ones are waiting for
932 * it to complete this function.
933 *
934 * @returns VINF_SUCCESS (VBox strict status code).
935 * @param pVM Pointer to the VM.
936 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
937 * @param pvUser User parameter
938 */
939static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
940{
941 uintptr_t *paUser = (uintptr_t *)pvUser;
942 bool fInflate = !!paUser[0];
943 unsigned cPages = paUser[1];
944 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
945 uint32_t cPendingPages = 0;
946 PGMMFREEPAGESREQ pReq;
947 int rc;
948
949 Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
950 pgmLock(pVM);
951
952 if (fInflate)
953 {
954 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
955 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
956
957 /* Replace pages with ZERO pages. */
958 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
959 if (RT_FAILURE(rc))
960 {
961 pgmUnlock(pVM);
962 AssertLogRelRC(rc);
963 return rc;
964 }
965
966 /* Iterate the pages. */
967 for (unsigned i = 0; i < cPages; i++)
968 {
969 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
970 if ( pPage == NULL
971 || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM)
972 {
973 Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], pPage ? PGM_PAGE_GET_TYPE(pPage) : 0));
974 break;
975 }
976
977 LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
978
979 /* Flush the shadow PT if this page was previously used as a guest page table. */
980 pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);
981
982 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i]);
983 if (RT_FAILURE(rc))
984 {
985 pgmUnlock(pVM);
986 AssertLogRelRC(rc);
987 return rc;
988 }
989 Assert(PGM_PAGE_IS_ZERO(pPage));
990 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
991 }
992
993 if (cPendingPages)
994 {
995 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
996 if (RT_FAILURE(rc))
997 {
998 pgmUnlock(pVM);
999 AssertLogRelRC(rc);
1000 return rc;
1001 }
1002 }
1003 GMMR3FreePagesCleanup(pReq);
1004 }
1005 else
1006 {
1007 /* Iterate the pages. */
1008 for (unsigned i = 0; i < cPages; i++)
1009 {
1010 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
1011 AssertBreak(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
1012
1013 LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
1014
1015 Assert(PGM_PAGE_IS_BALLOONED(pPage));
1016
1017 /* Change back to zero page. */
1018 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
1019 }
1020
1021 /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
1022 }
1023
1024 /* Notify GMM about the balloon change. */
1025 rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
1026 if (RT_SUCCESS(rc))
1027 {
1028 if (!fInflate)
1029 {
1030 Assert(pVM->pgm.s.cBalloonedPages >= cPages);
1031 pVM->pgm.s.cBalloonedPages -= cPages;
1032 }
1033 else
1034 pVM->pgm.s.cBalloonedPages += cPages;
1035 }
1036
1037 pgmUnlock(pVM);
1038
1039 /* Flush the recompiler's TLB as well. */
1040 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1041 CPUMSetChangedFlags(&pVM->aCpus[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
1042
1043 AssertLogRelRC(rc);
1044 return rc;
1045}
1046
1047
1048/**
1049 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
1050 *
1051 * @returns VBox status code.
1052 * @param pVM Pointer to the VM.
1053 * @param fInflate Inflate or deflate memory balloon
1054 * @param cPages Number of pages to free
1055 * @param paPhysPage Array of guest physical addresses
1056 */
1057static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
1058{
1059 uintptr_t paUser[3];
1060
1061 paUser[0] = fInflate;
1062 paUser[1] = cPages;
1063 paUser[2] = (uintptr_t)paPhysPage;
1064 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
1065 AssertRC(rc);
1066
1067 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
1068 RTMemFree(paPhysPage);
1069}
1070
1071#endif /* 64-bit host && (Windows || Solaris || Linux || FreeBSD) */
1072
1073/**
1074 * Inflate or deflate a memory balloon
1075 *
1076 * @returns VBox status code.
1077 * @param pVM Pointer to the VM.
1078 * @param fInflate Inflate or deflate memory balloon
1079 * @param cPages Number of pages to free
1080 * @param paPhysPage Array of guest physical addresses
1081 */
1082VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
1083{
1084 /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */
1085#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
1086 int rc;
1087
1088 /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */
1089 AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER);
1090
1091 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
1092 * In the SMP case we post a request packet to postpone the job.
1093 */
1094 if (pVM->cCpus > 1)
1095 {
1096 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
1097 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
1098 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
1099
1100 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
1101
1102 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
1103 AssertRC(rc);
1104 }
1105 else
1106 {
1107 uintptr_t paUser[3];
1108
1109 paUser[0] = fInflate;
1110 paUser[1] = cPages;
1111 paUser[2] = (uintptr_t)paPhysPage;
1112 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
1113 AssertRC(rc);
1114 }
1115 return rc;
1116
1117#else
1118 NOREF(pVM); NOREF(fInflate); NOREF(cPages); NOREF(paPhysPage);
1119 return VERR_NOT_IMPLEMENTED;
1120#endif
1121}
1122
1123
1124/**
1125 * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all
1126 * physical RAM.
1127 *
1128 * This is only called on one of the EMTs while the other ones are waiting for
1129 * it to complete this function.
1130 *
1131 * @returns VINF_SUCCESS (VBox strict status code).
1132 * @param pVM Pointer to the VM.
1133 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
1134 * @param pvUser User parameter, unused.
1135 */
1136static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
1137{
1138 int rc = VINF_SUCCESS;
1139 NOREF(pvUser); NOREF(pVCpu);
1140
1141 pgmLock(pVM);
1142#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1143 pgmPoolResetDirtyPages(pVM);
1144#endif
1145
1146 /** @todo pointless to write protect the physical page pointed to by RSP. */
1147
1148 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1149 pRam;
1150 pRam = pRam->CTX_SUFF(pNext))
1151 {
1152 uint32_t cPages = pRam->cb >> PAGE_SHIFT;
1153 for (uint32_t iPage = 0; iPage < cPages; iPage++)
1154 {
1155 PPGMPAGE pPage = &pRam->aPages[iPage];
1156 PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
1157
1158 if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
1159 || enmPageType == PGMPAGETYPE_MMIO2)
1160 {
1161 /*
1162 * A RAM page.
1163 */
1164 switch (PGM_PAGE_GET_STATE(pPage))
1165 {
1166 case PGM_PAGE_STATE_ALLOCATED:
1167 /** @todo Optimize this: Don't always re-enable write
1168 * monitoring if the page is known to be very busy. */
1169 if (PGM_PAGE_IS_WRITTEN_TO(pPage))
1170 {
1171 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
1172 /* Remember this dirty page for the next (memory) sync. */
1173 PGM_PAGE_SET_FT_DIRTY(pPage);
1174 }
1175
1176 pgmPhysPageWriteMonitor(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1177 break;
1178
1179 case PGM_PAGE_STATE_SHARED:
1180 AssertFailed();
1181 break;
1182
1183 case PGM_PAGE_STATE_WRITE_MONITORED: /* nothing to change. */
1184 default:
1185 break;
1186 }
1187 }
1188 }
1189 }
1190 pgmR3PoolWriteProtectPages(pVM);
1191 PGM_INVL_ALL_VCPU_TLBS(pVM);
1192 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1193 CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
1194
1195 pgmUnlock(pVM);
1196 return rc;
1197}
1198
1199/**
1200 * Protect all physical RAM to monitor writes
1201 *
1202 * @returns VBox status code.
1203 * @param pVM Pointer to the VM.
1204 */
1205VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM)
1206{
1207 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1208
1209 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL);
1210 AssertRC(rc);
1211 return rc;
1212}
1213
1214/**
1215 * Enumerate all dirty FT pages.
1216 *
1217 * @returns VBox status code.
1218 * @param pVM Pointer to the VM.
1219 * @param pfnEnum Enumerate callback handler.
1220 * @param pvUser Enumerate callback handler parameter.
1221 */
1222VMMR3DECL(int) PGMR3PhysEnumDirtyFTPages(PVM pVM, PFNPGMENUMDIRTYFTPAGES pfnEnum, void *pvUser)
1223{
1224 int rc = VINF_SUCCESS;
1225
1226 pgmLock(pVM);
1227 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1228 pRam;
1229 pRam = pRam->CTX_SUFF(pNext))
1230 {
1231 uint32_t cPages = pRam->cb >> PAGE_SHIFT;
1232 for (uint32_t iPage = 0; iPage < cPages; iPage++)
1233 {
1234 PPGMPAGE pPage = &pRam->aPages[iPage];
1235 PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
1236
1237 if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
1238 || enmPageType == PGMPAGETYPE_MMIO2)
1239 {
1240 /*
1241 * A RAM page.
1242 */
1243 switch (PGM_PAGE_GET_STATE(pPage))
1244 {
1245 case PGM_PAGE_STATE_ALLOCATED:
1246 case PGM_PAGE_STATE_WRITE_MONITORED:
1247 if ( !PGM_PAGE_IS_WRITTEN_TO(pPage) /* not very recently updated? */
1248 && PGM_PAGE_IS_FT_DIRTY(pPage))
1249 {
1250 unsigned cbPageRange = PAGE_SIZE;
1251 unsigned iPageClean = iPage + 1;
1252 RTGCPHYS GCPhysPage = pRam->GCPhys + iPage * PAGE_SIZE;
1253 uint8_t *pu8Page = NULL;
1254 PGMPAGEMAPLOCK Lock;
1255
1256 /* Find the next clean page, so we can merge adjacent dirty pages. */
1257 for (; iPageClean < cPages; iPageClean++)
1258 {
1259 PPGMPAGE pPageNext = &pRam->aPages[iPageClean];
1260 if ( RT_UNLIKELY(PGM_PAGE_GET_TYPE(pPageNext) != PGMPAGETYPE_RAM)
1261 || PGM_PAGE_GET_STATE(pPageNext) != PGM_PAGE_STATE_ALLOCATED
1262 || PGM_PAGE_IS_WRITTEN_TO(pPageNext)
1263 || !PGM_PAGE_IS_FT_DIRTY(pPageNext)
1264 /* Crossing a chunk boundary? */
1265 || (GCPhysPage & GMM_PAGEID_IDX_MASK) != ((GCPhysPage + cbPageRange) & GMM_PAGEID_IDX_MASK)
1266 )
1267 break;
1268
1269 cbPageRange += PAGE_SIZE;
1270 }
1271
1272 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysPage, (const void **)&pu8Page, &Lock);
1273 if (RT_SUCCESS(rc))
1274 {
1275 /** @todo this is risky; the range might be changed, but little choice as the sync
1276 * costs a lot of time. */
1277 pgmUnlock(pVM);
1278 pfnEnum(pVM, GCPhysPage, pu8Page, cbPageRange, pvUser);
1279 pgmLock(pVM);
1280 PGMPhysReleasePageMappingLock(pVM, &Lock);
1281 }
1282
1283 for (iPage; iPage < iPageClean; iPage++)
1284 PGM_PAGE_CLEAR_FT_DIRTY(&pRam->aPages[iPage]);
1285
1286 iPage = iPageClean - 1;
1287 }
1288 break;
1289 }
1290 }
1291 }
1292 }
1293 pgmUnlock(pVM);
1294 return rc;
1295}
1296
1297
1298/**
1299 * Gets the number of ram ranges.
1300 *
1301 * @returns Number of ram ranges. Returns UINT32_MAX if @a pVM is invalid.
1302 * @param pVM Pointer to the VM.
1303 */
1304VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM)
1305{
1306 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
1307
1308 pgmLock(pVM);
1309 uint32_t cRamRanges = 0;
1310 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext))
1311 cRamRanges++;
1312 pgmUnlock(pVM);
1313 return cRamRanges;
1314}
1315
1316
1317/**
1318 * Get information about a range.
1319 *
1320 * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE.
1321 * @param pVM Pointer to the VM.
1322 * @param iRange The ordinal of the range.
1323 * @param pGCPhysStart Where to return the start of the range. Optional.
1324 * @param pGCPhysLast Where to return the address of the last byte in the
1325 * range. Optional.
1326 * @param pfIsMmio Where to indicate that this is a pure MMIO range.
1327 * Optional.
1328 */
1329VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast,
1330 const char **ppszDesc, bool *pfIsMmio)
1331{
1332 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1333
1334 pgmLock(pVM);
1335 uint32_t iCurRange = 0;
1336 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext), iCurRange++)
1337 if (iCurRange == iRange)
1338 {
1339 if (pGCPhysStart)
1340 *pGCPhysStart = pCur->GCPhys;
1341 if (pGCPhysLast)
1342 *pGCPhysLast = pCur->GCPhysLast;
1343 if (ppszDesc)
1344 *ppszDesc = pCur->pszDesc;
1345 if (pfIsMmio)
1346 *pfIsMmio = !!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO);
1347
1348 pgmUnlock(pVM);
1349 return VINF_SUCCESS;
1350 }
1351 pgmUnlock(pVM);
1352 return VERR_OUT_OF_RANGE;
1353}
1354
1355
1356/**
1357 * Query the amount of free memory inside VMMR0
1358 *
1359 * @returns VBox status code.
1360 * @param pUVM The user mode VM handle.
1361 * @param pcbAllocMem Where to return the amount of memory allocated
1362 * by VMs.
1363 * @param pcbFreeMem Where to return the amount of memory that is
1364 * allocated from the host but not currently used
1365 * by any VMs.
1366 * @param pcbBallonedMem Where to return the sum of memory that is
1367 * currently ballooned by the VMs.
1368 * @param pcbSharedMem Where to return the amount of memory that is
1369 * currently shared.
1370 */
1371VMMR3DECL(int) PGMR3QueryGlobalMemoryStats(PUVM pUVM, uint64_t *pcbAllocMem, uint64_t *pcbFreeMem,
1372 uint64_t *pcbBallonedMem, uint64_t *pcbSharedMem)
1373{
1374 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
1375 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, VERR_INVALID_VM_HANDLE);
1376
1377 uint64_t cAllocPages = 0;
1378 uint64_t cFreePages = 0;
1379 uint64_t cBalloonPages = 0;
1380 uint64_t cSharedPages = 0;
1381 int rc = GMMR3QueryHypervisorMemoryStats(pUVM->pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages);
1382 AssertRCReturn(rc, rc);
1383
1384 if (pcbAllocMem)
1385 *pcbAllocMem = cAllocPages * _4K;
1386
1387 if (pcbFreeMem)
1388 *pcbFreeMem = cFreePages * _4K;
1389
1390 if (pcbBallonedMem)
1391 *pcbBallonedMem = cBalloonPages * _4K;
1392
1393 if (pcbSharedMem)
1394 *pcbSharedMem = cSharedPages * _4K;
1395
1396 Log(("PGMR3QueryVMMMemoryStats: all=%llx free=%llx ballooned=%llx shared=%llx\n",
1397 cAllocPages, cFreePages, cBalloonPages, cSharedPages));
1398 return VINF_SUCCESS;
1399}
1400
1401
1402/**
1403 * Query memory stats for the VM.
1404 *
1405 * @returns VBox status code.
1406 * @param pUVM The user mode VM handle.
1407 * @param pcbTotalMem Where to return total amount memory the VM may
1408 * possibly use.
1409 * @param pcbPrivateMem Where to return the amount of private memory
1410 * currently allocated.
1411 * @param pcbSharedMem Where to return the amount of actually shared
1412 * memory currently used by the VM.
1413 * @param pcbZeroMem Where to return the amount of memory backed by
1414 * zero pages.
1415 *
1416 * @remarks The total mem is normally larger than the sum of the three
1417 * components. There are two reasons for this, first the amount of
1418 * shared memory is what we're sure is shared instead of what could
1419 * possibly be shared with someone. Secondly, because the total may
1420 * include some pure MMIO pages that doesn't go into any of the three
1421 * sub-counts.
1422 *
1423 * @todo Why do we return reused shared pages instead of anything that could
1424 * potentially be shared? Doesn't this mean the first VM gets a much
1425 * lower number of shared pages?
1426 */
1427VMMR3DECL(int) PGMR3QueryMemoryStats(PUVM pUVM, uint64_t *pcbTotalMem, uint64_t *pcbPrivateMem,
1428 uint64_t *pcbSharedMem, uint64_t *pcbZeroMem)
1429{
1430 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
1431 PVM pVM = pUVM->pVM;
1432 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1433
1434 if (pcbTotalMem)
1435 *pcbTotalMem = (uint64_t)pVM->pgm.s.cAllPages * PAGE_SIZE;
1436
1437 if (pcbPrivateMem)
1438 *pcbPrivateMem = (uint64_t)pVM->pgm.s.cPrivatePages * PAGE_SIZE;
1439
1440 if (pcbSharedMem)
1441 *pcbSharedMem = (uint64_t)pVM->pgm.s.cReusedSharedPages * PAGE_SIZE;
1442
1443 if (pcbZeroMem)
1444 *pcbZeroMem = (uint64_t)pVM->pgm.s.cZeroPages * PAGE_SIZE;
1445
1446 Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages));
1447 return VINF_SUCCESS;
1448}
1449
1450
1451/**
1452 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
1453 *
1454 * @param pVM Pointer to the VM.
1455 * @param pNew The new RAM range.
1456 * @param GCPhys The address of the RAM range.
1457 * @param GCPhysLast The last address of the RAM range.
1458 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
1459 * if in HMA.
1460 * @param R0PtrNew Ditto for R0.
1461 * @param pszDesc The description.
1462 * @param pPrev The previous RAM range (for linking).
1463 */
1464static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
1465 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
1466{
1467 /*
1468 * Initialize the range.
1469 */
1470 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
1471 pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
1472 pNew->GCPhys = GCPhys;
1473 pNew->GCPhysLast = GCPhysLast;
1474 pNew->cb = GCPhysLast - GCPhys + 1;
1475 pNew->pszDesc = pszDesc;
1476 pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
1477 pNew->pvR3 = NULL;
1478 pNew->paLSPages = NULL;
1479
1480 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
1481 RTGCPHYS iPage = cPages;
1482 while (iPage-- > 0)
1483 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
1484
1485 /* Update the page count stats. */
1486 pVM->pgm.s.cZeroPages += cPages;
1487 pVM->pgm.s.cAllPages += cPages;
1488
1489 /*
1490 * Link it.
1491 */
1492 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
1493}
1494
1495
1496/**
1497 * Relocate a floating RAM range.
1498 *
1499 * @copydoc FNPGMRELOCATE.
1500 */
1501static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser)
1502{
1503 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
1504 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
1505 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE);
1506
1507 switch (enmMode)
1508 {
1509 case PGMRELOCATECALL_SUGGEST:
1510 return true;
1511
1512 case PGMRELOCATECALL_RELOCATE:
1513 {
1514 /*
1515 * Update myself, then relink all the ranges and flush the RC TLB.
1516 */
1517 pgmLock(pVM);
1518
1519 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
1520
1521 pgmR3PhysRelinkRamRanges(pVM);
1522 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
1523 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
1524
1525 pgmUnlock(pVM);
1526 return true;
1527 }
1528
1529 default:
1530 AssertFailedReturn(false);
1531 }
1532}
1533
1534
1535/**
1536 * PGMR3PhysRegisterRam worker that registers a high chunk.
1537 *
1538 * @returns VBox status code.
1539 * @param pVM Pointer to the VM.
1540 * @param GCPhys The address of the RAM.
1541 * @param cRamPages The number of RAM pages to register.
1542 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
1543 * @param iChunk The chunk number.
1544 * @param pszDesc The RAM range description.
1545 * @param ppPrev Previous RAM range pointer. In/Out.
1546 */
1547static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
1548 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
1549 PPGMRAMRANGE *ppPrev)
1550{
1551 const char *pszDescChunk = iChunk == 0
1552 ? pszDesc
1553 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1554 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1555
1556 /*
1557 * Allocate memory for the new chunk.
1558 */
1559 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1560 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1561 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1562 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1563 void *pvChunk = NULL;
1564 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
1565#if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS)
1566 &R0PtrChunk,
1567#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE)
1568 HMIsEnabled(pVM) ? &R0PtrChunk : NULL,
1569#else
1570 NULL,
1571#endif
1572 paChunkPages);
1573 if (RT_SUCCESS(rc))
1574 {
1575#if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS)
1576 Assert(R0PtrChunk != NIL_RTR0PTR);
1577#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE)
1578 if (!HMIsEnabled(pVM))
1579 R0PtrChunk = NIL_RTR0PTR;
1580#else
1581 R0PtrChunk = (uintptr_t)pvChunk;
1582#endif
1583 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1584
1585 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1586
1587 /*
1588 * Create a mapping and map the pages into it.
1589 * We push these in below the HMA.
1590 */
1591 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
1592 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
1593 if (RT_SUCCESS(rc))
1594 {
1595 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
1596
1597 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
1598 RTGCPTR GCPtrPage = GCPtrChunk;
1599 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
1600 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
1601 if (RT_SUCCESS(rc))
1602 {
1603 /*
1604 * Ok, init and link the range.
1605 */
1606 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1607 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
1608 *ppPrev = pNew;
1609 }
1610 }
1611
1612 if (RT_FAILURE(rc))
1613 SUPR3PageFreeEx(pvChunk, cChunkPages);
1614 }
1615
1616 RTMemTmpFree(paChunkPages);
1617 return rc;
1618}
1619
1620
1621/**
1622 * Sets up a range RAM.
1623 *
1624 * This will check for conflicting registrations, make a resource
1625 * reservation for the memory (with GMM), and setup the per-page
1626 * tracking structures (PGMPAGE).
1627 *
1628 * @returns VBox status code.
1629 * @param pVM Pointer to the VM.
1630 * @param GCPhys The physical address of the RAM.
1631 * @param cb The size of the RAM.
1632 * @param pszDesc The description - not copied, so, don't free or change it.
1633 */
1634VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1635{
1636 /*
1637 * Validate input.
1638 */
1639 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1640 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1641 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1642 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1643 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1644 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1645 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1646 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1647
1648 pgmLock(pVM);
1649
1650 /*
1651 * Find range location and check for conflicts.
1652 * (We don't lock here because the locking by EMT is only required on update.)
1653 */
1654 PPGMRAMRANGE pPrev = NULL;
1655 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
1656 while (pRam && GCPhysLast >= pRam->GCPhys)
1657 {
1658 if ( GCPhysLast >= pRam->GCPhys
1659 && GCPhys <= pRam->GCPhysLast)
1660 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1661 GCPhys, GCPhysLast, pszDesc,
1662 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1663 VERR_PGM_RAM_CONFLICT);
1664
1665 /* next */
1666 pPrev = pRam;
1667 pRam = pRam->pNextR3;
1668 }
1669
1670 /*
1671 * Register it with GMM (the API bitches).
1672 */
1673 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1674 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1675 if (RT_FAILURE(rc))
1676 {
1677 pgmUnlock(pVM);
1678 return rc;
1679 }
1680
1681 if ( GCPhys >= _4G
1682 && cPages > 256)
1683 {
1684 /*
1685 * The PGMRAMRANGE structures for the high memory can get very big.
1686 * In order to avoid SUPR3PageAllocEx allocation failures due to the
1687 * allocation size limit there and also to avoid being unable to find
1688 * guest mapping space for them, we split this memory up into 4MB in
1689 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
1690 * mode.
1691 *
1692 * The first and last page of each mapping are guard pages and marked
1693 * not-present. So, we've got 4186112 and 16769024 bytes available for
1694 * the PGMRAMRANGE structure.
1695 *
1696 * Note! The sizes used here will influence the saved state.
1697 */
1698 uint32_t cbChunk;
1699 uint32_t cPagesPerChunk;
1700 if (HMIsEnabled(pVM))
1701 {
1702 cbChunk = 16U*_1M;
1703 cPagesPerChunk = 1048048; /* max ~1048059 */
1704 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
1705 }
1706 else
1707 {
1708 cbChunk = 4U*_1M;
1709 cPagesPerChunk = 261616; /* max ~261627 */
1710 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
1711 }
1712 AssertRelease(RT_UOFFSETOF(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
1713
1714 RTGCPHYS cPagesLeft = cPages;
1715 RTGCPHYS GCPhysChunk = GCPhys;
1716 uint32_t iChunk = 0;
1717 while (cPagesLeft > 0)
1718 {
1719 uint32_t cPagesInChunk = cPagesLeft;
1720 if (cPagesInChunk > cPagesPerChunk)
1721 cPagesInChunk = cPagesPerChunk;
1722
1723 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
1724 AssertRCReturn(rc, rc);
1725
1726 /* advance */
1727 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1728 cPagesLeft -= cPagesInChunk;
1729 iChunk++;
1730 }
1731 }
1732 else
1733 {
1734 /*
1735 * Allocate, initialize and link the new RAM range.
1736 */
1737 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1738 PPGMRAMRANGE pNew;
1739 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1740 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1741
1742 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
1743 }
1744 pgmPhysInvalidatePageMapTLB(pVM);
1745 pgmUnlock(pVM);
1746
1747#ifdef VBOX_WITH_REM
1748 /*
1749 * Notify REM.
1750 */
1751 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
1752#endif
1753
1754 return VINF_SUCCESS;
1755}
1756
1757
1758/**
1759 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1760 *
1761 * We do this late in the init process so that all the ROM and MMIO ranges have
1762 * been registered already and we don't go wasting memory on them.
1763 *
1764 * @returns VBox status code.
1765 *
1766 * @param pVM Pointer to the VM.
1767 */
1768int pgmR3PhysRamPreAllocate(PVM pVM)
1769{
1770 Assert(pVM->pgm.s.fRamPreAlloc);
1771 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1772
1773 /*
1774 * Walk the RAM ranges and allocate all RAM pages, halt at
1775 * the first allocation error.
1776 */
1777 uint64_t cPages = 0;
1778 uint64_t NanoTS = RTTimeNanoTS();
1779 pgmLock(pVM);
1780 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1781 {
1782 PPGMPAGE pPage = &pRam->aPages[0];
1783 RTGCPHYS GCPhys = pRam->GCPhys;
1784 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1785 while (cLeft-- > 0)
1786 {
1787 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1788 {
1789 switch (PGM_PAGE_GET_STATE(pPage))
1790 {
1791 case PGM_PAGE_STATE_ZERO:
1792 {
1793 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1794 if (RT_FAILURE(rc))
1795 {
1796 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1797 pgmUnlock(pVM);
1798 return rc;
1799 }
1800 cPages++;
1801 break;
1802 }
1803
1804 case PGM_PAGE_STATE_BALLOONED:
1805 case PGM_PAGE_STATE_ALLOCATED:
1806 case PGM_PAGE_STATE_WRITE_MONITORED:
1807 case PGM_PAGE_STATE_SHARED:
1808 /* nothing to do here. */
1809 break;
1810 }
1811 }
1812
1813 /* next */
1814 pPage++;
1815 GCPhys += PAGE_SIZE;
1816 }
1817 }
1818 pgmUnlock(pVM);
1819 NanoTS = RTTimeNanoTS() - NanoTS;
1820
1821 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1822 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1823 return VINF_SUCCESS;
1824}
1825
1826
1827/**
1828 * Checks shared page checksums.
1829 *
1830 * @param pVM Pointer to the shared VM structure.
1831 */
1832void pgmR3PhysAssertSharedPageChecksums(PVM pVM)
1833{
1834#ifdef VBOX_STRICT
1835 pgmLock(pVM);
1836
1837 if (pVM->pgm.s.cSharedPages > 0)
1838 {
1839 /*
1840 * Walk the ram ranges.
1841 */
1842 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1843 {
1844 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1845 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1846
1847 while (iPage-- > 0)
1848 {
1849 PPGMPAGE pPage = &pRam->aPages[iPage];
1850 if (PGM_PAGE_IS_SHARED(pPage))
1851 {
1852 uint32_t u32Checksum = pPage->s.u2Unused0 | ((uint32_t)pPage->s.u2Unused1 << 8);
1853 if (!u32Checksum)
1854 {
1855 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1856 void const *pvPage;
1857 int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhysPage, &pvPage);
1858 if (RT_SUCCESS(rc))
1859 {
1860 uint32_t u32Checksum2 = RTCrc32(pvPage, PAGE_SIZE);
1861# if 0
1862 AssertMsg((u32Checksum2 & UINT32_C(0x00000303)) == u32Checksum, ("GCPhysPage=%RGp\n", GCPhysPage));
1863# else
1864 if ((u32Checksum2 & UINT32_C(0x00000303)) == u32Checksum)
1865 LogFlow(("shpg %#x @ %RGp %#x [OK]\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
1866 else
1867 AssertMsgFailed(("shpg %#x @ %RGp %#x\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
1868# endif
1869 }
1870 else
1871 AssertRC(rc);
1872 }
1873 }
1874
1875 } /* for each page */
1876
1877 } /* for each ram range */
1878 }
1879
1880 pgmUnlock(pVM);
1881#endif /* VBOX_STRICT */
1882 NOREF(pVM);
1883}
1884
1885
1886/**
1887 * Resets the physical memory state.
1888 *
1889 * ASSUMES that the caller owns the PGM lock.
1890 *
1891 * @returns VBox status code.
1892 * @param pVM Pointer to the VM.
1893 */
1894int pgmR3PhysRamReset(PVM pVM)
1895{
1896 PGM_LOCK_ASSERT_OWNER(pVM);
1897
1898 /* Reset the memory balloon. */
1899 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
1900 AssertRC(rc);
1901
1902#ifdef VBOX_WITH_PAGE_SHARING
1903 /* Clear all registered shared modules. */
1904 pgmR3PhysAssertSharedPageChecksums(pVM);
1905 rc = GMMR3ResetSharedModules(pVM);
1906 AssertRC(rc);
1907#endif
1908 /* Reset counters. */
1909 pVM->pgm.s.cReusedSharedPages = 0;
1910 pVM->pgm.s.cBalloonedPages = 0;
1911
1912 return VINF_SUCCESS;
1913}
1914
1915
1916/**
1917 * Resets (zeros) the RAM after all devices and components have been reset.
1918 *
1919 * ASSUMES that the caller owns the PGM lock.
1920 *
1921 * @returns VBox status code.
1922 * @param pVM Pointer to the VM.
1923 */
1924int pgmR3PhysRamZeroAll(PVM pVM)
1925{
1926 PGM_LOCK_ASSERT_OWNER(pVM);
1927
1928 /*
1929 * We batch up pages that should be freed instead of calling GMM for
1930 * each and every one of them.
1931 */
1932 uint32_t cPendingPages = 0;
1933 PGMMFREEPAGESREQ pReq;
1934 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1935 AssertLogRelRCReturn(rc, rc);
1936
1937 /*
1938 * Walk the ram ranges.
1939 */
1940 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1941 {
1942 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1943 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1944
1945#ifndef NO_RAM_RESET
1946 if (!pVM->pgm.s.fRamPreAlloc)
1947#else
1948 if (0)
1949#endif
1950 {
1951 /* Replace all RAM pages by ZERO pages. */
1952 while (iPage-- > 0)
1953 {
1954 PPGMPAGE pPage = &pRam->aPages[iPage];
1955 switch (PGM_PAGE_GET_TYPE(pPage))
1956 {
1957 case PGMPAGETYPE_RAM:
1958 /* Do not replace pages part of a 2 MB continuous range
1959 with zero pages, but zero them instead. */
1960 if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE
1961 || PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
1962 {
1963 void *pvPage;
1964 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1965 AssertLogRelRCReturn(rc, rc);
1966 ASMMemZeroPage(pvPage);
1967 }
1968 else if (PGM_PAGE_IS_BALLOONED(pPage))
1969 {
1970 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
1971 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
1972 }
1973 else if (!PGM_PAGE_IS_ZERO(pPage))
1974 {
1975 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1976 AssertLogRelRCReturn(rc, rc);
1977 }
1978 break;
1979
1980 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1981 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
1982 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
1983 true /*fDoAccounting*/);
1984 break;
1985
1986 case PGMPAGETYPE_MMIO2:
1987 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
1988 case PGMPAGETYPE_ROM:
1989 case PGMPAGETYPE_MMIO:
1990 break;
1991 default:
1992 AssertFailed();
1993 }
1994 } /* for each page */
1995 }
1996 else
1997 {
1998 /* Zero the memory. */
1999 while (iPage-- > 0)
2000 {
2001 PPGMPAGE pPage = &pRam->aPages[iPage];
2002 switch (PGM_PAGE_GET_TYPE(pPage))
2003 {
2004 case PGMPAGETYPE_RAM:
2005 switch (PGM_PAGE_GET_STATE(pPage))
2006 {
2007 case PGM_PAGE_STATE_ZERO:
2008 break;
2009
2010 case PGM_PAGE_STATE_BALLOONED:
2011 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
2012 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2013 break;
2014
2015 case PGM_PAGE_STATE_SHARED:
2016 case PGM_PAGE_STATE_WRITE_MONITORED:
2017 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
2018 AssertLogRelRCReturn(rc, rc);
2019 /* no break */
2020
2021 case PGM_PAGE_STATE_ALLOCATED:
2022 {
2023 void *pvPage;
2024 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
2025 AssertLogRelRCReturn(rc, rc);
2026#ifndef NO_RAM_RESET
2027 ASMMemZeroPage(pvPage);
2028#endif
2029 break;
2030 }
2031 }
2032 break;
2033
2034 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2035 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
2036 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2037 true /*fDoAccounting*/);
2038 break;
2039
2040 case PGMPAGETYPE_MMIO2:
2041 case PGMPAGETYPE_ROM_SHADOW:
2042 case PGMPAGETYPE_ROM:
2043 case PGMPAGETYPE_MMIO:
2044 break;
2045 default:
2046 AssertFailed();
2047
2048 }
2049 } /* for each page */
2050 }
2051
2052 }
2053
2054 /*
2055 * Finish off any pages pending freeing.
2056 */
2057 if (cPendingPages)
2058 {
2059 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2060 AssertLogRelRCReturn(rc, rc);
2061 }
2062 GMMR3FreePagesCleanup(pReq);
2063 return VINF_SUCCESS;
2064}
2065
2066
2067/**
2068 * Frees all RAM during VM termination
2069 *
2070 * ASSUMES that the caller owns the PGM lock.
2071 *
2072 * @returns VBox status code.
2073 * @param pVM Pointer to the VM.
2074 */
2075int pgmR3PhysRamTerm(PVM pVM)
2076{
2077 PGM_LOCK_ASSERT_OWNER(pVM);
2078
2079 /* Reset the memory balloon. */
2080 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
2081 AssertRC(rc);
2082
2083#ifdef VBOX_WITH_PAGE_SHARING
2084 /*
2085 * Clear all registered shared modules.
2086 */
2087 pgmR3PhysAssertSharedPageChecksums(pVM);
2088 rc = GMMR3ResetSharedModules(pVM);
2089 AssertRC(rc);
2090
2091 /*
2092 * Flush the handy pages updates to make sure no shared pages are hiding
2093 * in there. (No unlikely if the VM shuts down, apparently.)
2094 */
2095 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_FLUSH_HANDY_PAGES, 0, NULL);
2096#endif
2097
2098 /*
2099 * We batch up pages that should be freed instead of calling GMM for
2100 * each and every one of them.
2101 */
2102 uint32_t cPendingPages = 0;
2103 PGMMFREEPAGESREQ pReq;
2104 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2105 AssertLogRelRCReturn(rc, rc);
2106
2107 /*
2108 * Walk the ram ranges.
2109 */
2110 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2111 {
2112 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2113 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2114
2115 while (iPage-- > 0)
2116 {
2117 PPGMPAGE pPage = &pRam->aPages[iPage];
2118 switch (PGM_PAGE_GET_TYPE(pPage))
2119 {
2120 case PGMPAGETYPE_RAM:
2121 /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */
2122 /** @todo change this to explicitly free private pages here. */
2123 if (PGM_PAGE_IS_SHARED(pPage))
2124 {
2125 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
2126 AssertLogRelRCReturn(rc, rc);
2127 }
2128 break;
2129
2130 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2131 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
2132 case PGMPAGETYPE_MMIO2:
2133 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
2134 case PGMPAGETYPE_ROM:
2135 case PGMPAGETYPE_MMIO:
2136 break;
2137 default:
2138 AssertFailed();
2139 }
2140 } /* for each page */
2141 }
2142
2143 /*
2144 * Finish off any pages pending freeing.
2145 */
2146 if (cPendingPages)
2147 {
2148 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2149 AssertLogRelRCReturn(rc, rc);
2150 }
2151 GMMR3FreePagesCleanup(pReq);
2152 return VINF_SUCCESS;
2153}
2154
2155
2156/**
2157 * This is the interface IOM is using to register an MMIO region.
2158 *
2159 * It will check for conflicts and ensure that a RAM range structure
2160 * is present before calling the PGMR3HandlerPhysicalRegister API to
2161 * register the callbacks.
2162 *
2163 * @returns VBox status code.
2164 *
2165 * @param pVM Pointer to the VM.
2166 * @param GCPhys The start of the MMIO region.
2167 * @param cb The size of the MMIO region.
2168 * @param hType The physical access handler type registration.
2169 * @param pvUserR3 The user argument for R3.
2170 * @param pvUserR0 The user argument for R0.
2171 * @param pvUserRC The user argument for RC.
2172 * @param pszDesc The description of the MMIO region.
2173 */
2174VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMPHYSHANDLERTYPE hType,
2175 RTR3PTR pvUserR3, RTR0PTR pvUserR0, RTRCPTR pvUserRC, const char *pszDesc)
2176{
2177 /*
2178 * Assert on some assumption.
2179 */
2180 VM_ASSERT_EMT(pVM);
2181 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2182 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2183 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2184 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
2185 Assert(((PPGMPHYSHANDLERTYPEINT)MMHyperHeapOffsetToPtr(pVM, hType))->enmKind == PGMPHYSHANDLERKIND_MMIO);
2186
2187 int rc = pgmLock(pVM);
2188 AssertRCReturn(rc, rc);
2189
2190 /*
2191 * Make sure there's a RAM range structure for the region.
2192 */
2193 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2194 bool fRamExists = false;
2195 PPGMRAMRANGE pRamPrev = NULL;
2196 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2197 while (pRam && GCPhysLast >= pRam->GCPhys)
2198 {
2199 if ( GCPhysLast >= pRam->GCPhys
2200 && GCPhys <= pRam->GCPhysLast)
2201 {
2202 /* Simplification: all within the same range. */
2203 AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
2204 && GCPhysLast <= pRam->GCPhysLast,
2205 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
2206 GCPhys, GCPhysLast, pszDesc,
2207 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2208 pgmUnlock(pVM),
2209 VERR_PGM_RAM_CONFLICT);
2210
2211 /* Check that it's all RAM or MMIO pages. */
2212 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2213 uint32_t cLeft = cb >> PAGE_SHIFT;
2214 while (cLeft-- > 0)
2215 {
2216 AssertLogRelMsgReturnStmt( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2217 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
2218 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
2219 GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
2220 pgmUnlock(pVM),
2221 VERR_PGM_RAM_CONFLICT);
2222 pPage++;
2223 }
2224
2225 /* Looks good. */
2226 fRamExists = true;
2227 break;
2228 }
2229
2230 /* next */
2231 pRamPrev = pRam;
2232 pRam = pRam->pNextR3;
2233 }
2234 PPGMRAMRANGE pNew;
2235 if (fRamExists)
2236 {
2237 pNew = NULL;
2238
2239 /*
2240 * Make all the pages in the range MMIO/ZERO pages, freeing any
2241 * RAM pages currently mapped here. This might not be 100% correct
2242 * for PCI memory, but we're doing the same thing for MMIO2 pages.
2243 */
2244 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
2245 AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
2246
2247 /* Force a PGM pool flush as guest ram references have been changed. */
2248 /** @todo not entirely SMP safe; assuming for now the guest takes
2249 * care of this internally (not touch mapped mmio while changing the
2250 * mapping). */
2251 PVMCPU pVCpu = VMMGetCpu(pVM);
2252 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2253 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2254 }
2255 else
2256 {
2257
2258 /*
2259 * No RAM range, insert an ad hoc one.
2260 *
2261 * Note that we don't have to tell REM about this range because
2262 * PGMHandlerPhysicalRegisterEx will do that for us.
2263 */
2264 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
2265
2266 const uint32_t cPages = cb >> PAGE_SHIFT;
2267 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
2268 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
2269 AssertLogRelMsgRCReturnStmt(rc, ("cbRamRange=%zu\n", cbRamRange), pgmUnlock(pVM), rc);
2270
2271 /* Initialize the range. */
2272 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
2273 pNew->pSelfRC = MMHyperCCToRC(pVM, pNew);
2274 pNew->GCPhys = GCPhys;
2275 pNew->GCPhysLast = GCPhysLast;
2276 pNew->cb = cb;
2277 pNew->pszDesc = pszDesc;
2278 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
2279 pNew->pvR3 = NULL;
2280 pNew->paLSPages = NULL;
2281
2282 uint32_t iPage = cPages;
2283 while (iPage-- > 0)
2284 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
2285 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
2286
2287 /* update the page count stats. */
2288 pVM->pgm.s.cPureMmioPages += cPages;
2289 pVM->pgm.s.cAllPages += cPages;
2290
2291 /* link it */
2292 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
2293 }
2294
2295 /*
2296 * Register the access handler.
2297 */
2298 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, hType, pvUserR3, pvUserR0, pvUserRC, pszDesc);
2299 if ( RT_FAILURE(rc)
2300 && !fRamExists)
2301 {
2302 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
2303 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
2304
2305 /* remove the ad hoc range. */
2306 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
2307 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
2308 MMHyperFree(pVM, pRam);
2309 }
2310 pgmPhysInvalidatePageMapTLB(pVM);
2311
2312 pgmUnlock(pVM);
2313 return rc;
2314}
2315
2316
2317/**
2318 * This is the interface IOM is using to register an MMIO region.
2319 *
2320 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
2321 * any ad hoc PGMRAMRANGE left behind.
2322 *
2323 * @returns VBox status code.
2324 * @param pVM Pointer to the VM.
2325 * @param GCPhys The start of the MMIO region.
2326 * @param cb The size of the MMIO region.
2327 */
2328VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
2329{
2330 VM_ASSERT_EMT(pVM);
2331
2332 int rc = pgmLock(pVM);
2333 AssertRCReturn(rc, rc);
2334
2335 /*
2336 * First deregister the handler, then check if we should remove the ram range.
2337 */
2338 rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2339 if (RT_SUCCESS(rc))
2340 {
2341 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2342 PPGMRAMRANGE pRamPrev = NULL;
2343 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2344 while (pRam && GCPhysLast >= pRam->GCPhys)
2345 {
2346 /** @todo We're being a bit too careful here. rewrite. */
2347 if ( GCPhysLast == pRam->GCPhysLast
2348 && GCPhys == pRam->GCPhys)
2349 {
2350 Assert(pRam->cb == cb);
2351
2352 /*
2353 * See if all the pages are dead MMIO pages.
2354 */
2355 uint32_t const cPages = cb >> PAGE_SHIFT;
2356 bool fAllMMIO = true;
2357 uint32_t iPage = 0;
2358 uint32_t cLeft = cPages;
2359 while (cLeft-- > 0)
2360 {
2361 PPGMPAGE pPage = &pRam->aPages[iPage];
2362 if ( !PGM_PAGE_IS_MMIO_OR_ALIAS(pPage)
2363 /*|| not-out-of-action later */)
2364 {
2365 fAllMMIO = false;
2366 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2367 break;
2368 }
2369 Assert( PGM_PAGE_IS_ZERO(pPage)
2370 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2371 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO);
2372 pPage++;
2373 }
2374 if (fAllMMIO)
2375 {
2376 /*
2377 * Ad-hoc range, unlink and free it.
2378 */
2379 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
2380 GCPhys, GCPhysLast, pRam->pszDesc));
2381
2382 pVM->pgm.s.cAllPages -= cPages;
2383 pVM->pgm.s.cPureMmioPages -= cPages;
2384
2385 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
2386 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
2387 MMHyperFree(pVM, pRam);
2388 break;
2389 }
2390 }
2391
2392 /*
2393 * Range match? It will all be within one range (see PGMAllHandler.cpp).
2394 */
2395 if ( GCPhysLast >= pRam->GCPhys
2396 && GCPhys <= pRam->GCPhysLast)
2397 {
2398 Assert(GCPhys >= pRam->GCPhys);
2399 Assert(GCPhysLast <= pRam->GCPhysLast);
2400
2401 /*
2402 * Turn the pages back into RAM pages.
2403 */
2404 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2405 uint32_t cLeft = cb >> PAGE_SHIFT;
2406 while (cLeft--)
2407 {
2408 PPGMPAGE pPage = &pRam->aPages[iPage];
2409 AssertMsg( (PGM_PAGE_IS_MMIO(pPage) && PGM_PAGE_IS_ZERO(pPage))
2410 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2411 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO,
2412 ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2413 if (PGM_PAGE_IS_MMIO_OR_ALIAS(pPage))
2414 PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_RAM);
2415 }
2416 break;
2417 }
2418
2419 /* next */
2420 pRamPrev = pRam;
2421 pRam = pRam->pNextR3;
2422 }
2423 }
2424
2425 /* Force a PGM pool flush as guest ram references have been changed. */
2426 /** @todo Not entirely SMP safe; assuming for now the guest takes care of
2427 * this internally (not touch mapped mmio while changing the mapping). */
2428 PVMCPU pVCpu = VMMGetCpu(pVM);
2429 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2430 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2431
2432 pgmPhysInvalidatePageMapTLB(pVM);
2433 pgmPhysInvalidRamRangeTlbs(pVM);
2434 pgmUnlock(pVM);
2435 return rc;
2436}
2437
2438
2439/**
2440 * Locate a MMIO2 range.
2441 *
2442 * @returns Pointer to the MMIO2 range.
2443 * @param pVM Pointer to the VM.
2444 * @param pDevIns The device instance owning the region.
2445 * @param iRegion The region.
2446 */
2447DECLINLINE(PPGMMMIO2RANGE) pgmR3PhysMMIO2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
2448{
2449 /*
2450 * Search the list.
2451 */
2452 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2453 if ( pCur->pDevInsR3 == pDevIns
2454 && pCur->iRegion == iRegion)
2455 return pCur;
2456 return NULL;
2457}
2458
2459
2460/**
2461 * Allocate and register an MMIO2 region.
2462 *
2463 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's RAM
2464 * associated with a device. It is also non-shared memory with a permanent
2465 * ring-3 mapping and page backing (presently).
2466 *
2467 * A MMIO2 range may overlap with base memory if a lot of RAM is configured for
2468 * the VM, in which case we'll drop the base memory pages. Presently we will
2469 * make no attempt to preserve anything that happens to be present in the base
2470 * memory that is replaced, this is of course incorrect but it's too much
2471 * effort.
2472 *
2473 * @returns VBox status code.
2474 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
2475 * memory.
2476 * @retval VERR_ALREADY_EXISTS if the region already exists.
2477 *
2478 * @param pVM Pointer to the VM.
2479 * @param pDevIns The device instance owning the region.
2480 * @param iRegion The region number. If the MMIO2 memory is a PCI
2481 * I/O region this number has to be the number of that
2482 * region. Otherwise it can be any number safe
2483 * UINT8_MAX.
2484 * @param cb The size of the region. Must be page aligned.
2485 * @param fFlags Reserved for future use, must be zero.
2486 * @param ppv Where to store the pointer to the ring-3 mapping of
2487 * the memory.
2488 * @param pszDesc The description.
2489 */
2490VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags,
2491 void **ppv, const char *pszDesc)
2492{
2493 /*
2494 * Validate input.
2495 */
2496 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2497 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2498 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2499 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
2500 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2501 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
2502 AssertReturn(pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion) == NULL, VERR_ALREADY_EXISTS);
2503 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2504 AssertReturn(cb, VERR_INVALID_PARAMETER);
2505 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
2506
2507 const uint32_t cPages = cb >> PAGE_SHIFT;
2508 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
2509 AssertLogRelReturn(cPages <= PGM_MMIO2_MAX_PAGE_COUNT, VERR_NO_MEMORY);
2510
2511 /*
2512 * For the 2nd+ instance, mangle the description string so it's unique.
2513 */
2514 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
2515 {
2516 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
2517 if (!pszDesc)
2518 return VERR_NO_MEMORY;
2519 }
2520
2521 /*
2522 * Allocate an MMIO2 range ID (not freed on failure).
2523 * The zero ID is not used as it could be confused with NIL_GMM_PAGEID.
2524 */
2525 pgmLock(pVM);
2526 uint8_t idMmio2 = pVM->pgm.s.cMmio2Regions + 1;
2527 if (idMmio2 > PGM_MMIO2_MAX_RANGES)
2528 {
2529 pgmUnlock(pVM);
2530 AssertLogRelFailedReturn(VERR_PGM_TOO_MANY_MMIO2_RANGES);
2531 }
2532 pVM->pgm.s.cMmio2Regions = idMmio2;
2533 pgmUnlock(pVM);
2534
2535 /*
2536 * Try reserve and allocate the backing memory first as this is what is
2537 * most likely to fail.
2538 */
2539 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
2540 if (RT_SUCCESS(rc))
2541 {
2542 void *pvPages;
2543 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
2544 if (RT_SUCCESS(rc))
2545 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
2546 if (RT_SUCCESS(rc))
2547 {
2548 memset(pvPages, 0, cPages * PAGE_SIZE);
2549
2550 /*
2551 * Create the MMIO2 range record for it.
2552 */
2553 const size_t cbRange = RT_OFFSETOF(PGMMMIO2RANGE, RamRange.aPages[cPages]);
2554 PPGMMMIO2RANGE pNew;
2555 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
2556 AssertLogRelMsgRC(rc, ("cbRamRange=%zu\n", cbRange));
2557 if (RT_SUCCESS(rc))
2558 {
2559 pNew->pDevInsR3 = pDevIns;
2560 pNew->pvR3 = pvPages;
2561 //pNew->pNext = NULL;
2562 //pNew->fMapped = false;
2563 //pNew->fOverlapping = false;
2564 pNew->iRegion = iRegion;
2565 pNew->idSavedState = UINT8_MAX;
2566 pNew->idMmio2 = idMmio2;
2567 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
2568 pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange);
2569 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
2570 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
2571 pNew->RamRange.pszDesc = pszDesc;
2572 pNew->RamRange.cb = cb;
2573 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO2;
2574 pNew->RamRange.pvR3 = pvPages;
2575 //pNew->RamRange.paLSPages = NULL;
2576
2577 uint32_t iPage = cPages;
2578 while (iPage-- > 0)
2579 {
2580 PGM_PAGE_INIT(&pNew->RamRange.aPages[iPage],
2581 paPages[iPage].Phys,
2582 PGM_MMIO2_PAGEID_MAKE(idMmio2, iPage),
2583 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
2584 }
2585
2586 /* update page count stats */
2587 pVM->pgm.s.cAllPages += cPages;
2588 pVM->pgm.s.cPrivatePages += cPages;
2589
2590 /*
2591 * Link it into the list.
2592 * Since there is no particular order, just push it.
2593 */
2594 /** @todo we can save us the linked list now, just search the lookup table... */
2595 pgmLock(pVM);
2596 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == NULL);
2597 Assert(pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] == NIL_RTR0PTR);
2598 pNew->pNextR3 = pVM->pgm.s.pMmio2RangesR3;
2599 pVM->pgm.s.pMmio2RangesR3 = pNew;
2600 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = pNew;
2601 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = MMHyperCCToR0(pVM, pNew);
2602 pgmUnlock(pVM);
2603
2604 *ppv = pvPages;
2605 RTMemTmpFree(paPages);
2606 pgmPhysInvalidatePageMapTLB(pVM);
2607 return VINF_SUCCESS;
2608 }
2609
2610 SUPR3PageFreeEx(pvPages, cPages);
2611 }
2612 RTMemTmpFree(paPages);
2613 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
2614 }
2615 if (pDevIns->iInstance > 0)
2616 MMR3HeapFree((void *)pszDesc);
2617 return rc;
2618}
2619
2620
2621/**
2622 * Deregisters and frees an MMIO2 region.
2623 *
2624 * Any physical (and virtual) access handlers registered for the region must
2625 * be deregistered before calling this function.
2626 *
2627 * @returns VBox status code.
2628 * @param pVM Pointer to the VM.
2629 * @param pDevIns The device instance owning the region.
2630 * @param iRegion The region. If it's UINT32_MAX it'll be a wildcard match.
2631 */
2632VMMR3DECL(int) PGMR3PhysMMIO2Deregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
2633{
2634 /*
2635 * Validate input.
2636 */
2637 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2638 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2639 AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
2640
2641 pgmLock(pVM);
2642 int rc = VINF_SUCCESS;
2643 unsigned cFound = 0;
2644 PPGMMMIO2RANGE pPrev = NULL;
2645 PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3;
2646 while (pCur)
2647 {
2648 if ( pCur->pDevInsR3 == pDevIns
2649 && ( iRegion == UINT32_MAX
2650 || pCur->iRegion == iRegion))
2651 {
2652 cFound++;
2653
2654 /*
2655 * Unmap it if it's mapped.
2656 */
2657 if (pCur->fMapped)
2658 {
2659 int rc2 = PGMR3PhysMMIO2Unmap(pVM, pCur->pDevInsR3, pCur->iRegion, pCur->RamRange.GCPhys);
2660 AssertRC(rc2);
2661 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
2662 rc = rc2;
2663 }
2664
2665 /*
2666 * Unlink it
2667 */
2668 PPGMMMIO2RANGE pNext = pCur->pNextR3;
2669 if (pPrev)
2670 pPrev->pNextR3 = pNext;
2671 else
2672 pVM->pgm.s.pMmio2RangesR3 = pNext;
2673 pCur->pNextR3 = NULL;
2674
2675 uint8_t idMmio2 = pCur->idMmio2;
2676 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == pCur);
2677 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = NULL;
2678 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = NIL_RTR0PTR;
2679
2680 /*
2681 * Free the memory.
2682 */
2683 int rc2 = SUPR3PageFreeEx(pCur->pvR3, pCur->RamRange.cb >> PAGE_SHIFT);
2684 AssertRC(rc2);
2685 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
2686 rc = rc2;
2687
2688 uint32_t const cPages = pCur->RamRange.cb >> PAGE_SHIFT;
2689 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
2690 AssertRC(rc2);
2691 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
2692 rc = rc2;
2693
2694 /* we're leaking hyper memory here if done at runtime. */
2695#ifdef VBOX_STRICT
2696 VMSTATE const enmState = VMR3GetState(pVM);
2697 AssertMsg( enmState == VMSTATE_POWERING_OFF
2698 || enmState == VMSTATE_POWERING_OFF_LS
2699 || enmState == VMSTATE_OFF
2700 || enmState == VMSTATE_OFF_LS
2701 || enmState == VMSTATE_DESTROYING
2702 || enmState == VMSTATE_TERMINATED
2703 || enmState == VMSTATE_CREATING
2704 , ("%s\n", VMR3GetStateName(enmState)));
2705#endif
2706 /*rc = MMHyperFree(pVM, pCur);
2707 AssertRCReturn(rc, rc); - not safe, see the alloc call. */
2708
2709
2710 /* update page count stats */
2711 pVM->pgm.s.cAllPages -= cPages;
2712 pVM->pgm.s.cPrivatePages -= cPages;
2713
2714 /* next */
2715 pCur = pNext;
2716 }
2717 else
2718 {
2719 pPrev = pCur;
2720 pCur = pCur->pNextR3;
2721 }
2722 }
2723 pgmPhysInvalidatePageMapTLB(pVM);
2724 pgmUnlock(pVM);
2725 return !cFound && iRegion != UINT32_MAX ? VERR_NOT_FOUND : rc;
2726}
2727
2728
2729/**
2730 * Maps a MMIO2 region.
2731 *
2732 * This is done when a guest / the bios / state loading changes the
2733 * PCI config. The replacing of base memory has the same restrictions
2734 * as during registration, of course.
2735 *
2736 * @returns VBox status code.
2737 *
2738 * @param pVM Pointer to the VM.
2739 * @param pDevIns The device instance owning the region.
2740 * @param iRegion The index of the registered region.
2741 * @param GCPhys The guest-physical address to be remapped.
2742 */
2743VMMR3DECL(int) PGMR3PhysMMIO2Map(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2744{
2745 /*
2746 * Validate input
2747 */
2748 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2749 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2750 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2751 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2752 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2753 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2754
2755 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2756 AssertReturn(pCur, VERR_NOT_FOUND);
2757 AssertReturn(!pCur->fMapped, VERR_WRONG_ORDER);
2758 Assert(pCur->RamRange.GCPhys == NIL_RTGCPHYS);
2759 Assert(pCur->RamRange.GCPhysLast == NIL_RTGCPHYS);
2760
2761 const RTGCPHYS GCPhysLast = GCPhys + pCur->RamRange.cb - 1;
2762 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2763
2764 /*
2765 * Find our location in the ram range list, checking for
2766 * restriction we don't bother implementing yet (partially overlapping).
2767 */
2768 bool fRamExists = false;
2769 PPGMRAMRANGE pRamPrev = NULL;
2770 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2771 while (pRam && GCPhysLast >= pRam->GCPhys)
2772 {
2773 if ( GCPhys <= pRam->GCPhysLast
2774 && GCPhysLast >= pRam->GCPhys)
2775 {
2776 /* completely within? */
2777 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2778 && GCPhysLast <= pRam->GCPhysLast,
2779 ("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
2780 GCPhys, GCPhysLast, pCur->RamRange.pszDesc,
2781 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2782 VERR_PGM_RAM_CONFLICT);
2783 fRamExists = true;
2784 break;
2785 }
2786
2787 /* next */
2788 pRamPrev = pRam;
2789 pRam = pRam->pNextR3;
2790 }
2791 if (fRamExists)
2792 {
2793 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2794 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2795 while (cPagesLeft-- > 0)
2796 {
2797 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2798 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
2799 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pCur->RamRange.pszDesc),
2800 VERR_PGM_RAM_CONFLICT);
2801 pPage++;
2802 }
2803 }
2804 Log(("PGMR3PhysMMIO2Map: %RGp-%RGp fRamExists=%RTbool %s\n",
2805 GCPhys, GCPhysLast, fRamExists, pCur->RamRange.pszDesc));
2806
2807 /*
2808 * Make the changes.
2809 */
2810 pgmLock(pVM);
2811
2812 pCur->RamRange.GCPhys = GCPhys;
2813 pCur->RamRange.GCPhysLast = GCPhysLast;
2814 pCur->fMapped = true;
2815 pCur->fOverlapping = fRamExists;
2816
2817 if (fRamExists)
2818 {
2819/** @todo use pgmR3PhysFreePageRange here. */
2820 uint32_t cPendingPages = 0;
2821 PGMMFREEPAGESREQ pReq;
2822 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2823 AssertLogRelRCReturn(rc, rc);
2824
2825 /* replace the pages, freeing all present RAM pages. */
2826 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
2827 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2828 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2829 while (cPagesLeft-- > 0)
2830 {
2831 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
2832 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
2833
2834 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
2835 uint32_t const idPage = PGM_PAGE_GET_PAGEID(pPageSrc);
2836 PGM_PAGE_SET_PAGEID(pVM, pPageDst, idPage);
2837 PGM_PAGE_SET_HCPHYS(pVM, pPageDst, HCPhys);
2838 PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO2);
2839 PGM_PAGE_SET_STATE(pVM, pPageDst, PGM_PAGE_STATE_ALLOCATED);
2840 PGM_PAGE_SET_PDE_TYPE(pVM, pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
2841 PGM_PAGE_SET_PTE_INDEX(pVM, pPageDst, 0);
2842 PGM_PAGE_SET_TRACKING(pVM, pPageDst, 0);
2843
2844 pVM->pgm.s.cZeroPages--;
2845 GCPhys += PAGE_SIZE;
2846 pPageSrc++;
2847 pPageDst++;
2848 }
2849
2850 /* Flush physical page map TLB. */
2851 pgmPhysInvalidatePageMapTLB(pVM);
2852
2853 if (cPendingPages)
2854 {
2855 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2856 AssertLogRelRCReturn(rc, rc);
2857 }
2858 GMMR3FreePagesCleanup(pReq);
2859
2860 /* Force a PGM pool flush as guest ram references have been changed. */
2861 /** @todo not entirely SMP safe; assuming for now the guest takes care of
2862 * this internally (not touch mapped mmio while changing the mapping). */
2863 PVMCPU pVCpu = VMMGetCpu(pVM);
2864 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2865 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2866
2867 pgmUnlock(pVM);
2868 }
2869 else
2870 {
2871 RTGCPHYS cb = pCur->RamRange.cb;
2872
2873 /* Clear the tracking data of pages we're going to reactivate. */
2874 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
2875 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2876 while (cPagesLeft-- > 0)
2877 {
2878 PGM_PAGE_SET_TRACKING(pVM, pPageSrc, 0);
2879 PGM_PAGE_SET_PTE_INDEX(pVM, pPageSrc, 0);
2880 pPageSrc++;
2881 }
2882
2883 /* link in the ram range */
2884 pgmR3PhysLinkRamRange(pVM, &pCur->RamRange, pRamPrev);
2885 pgmUnlock(pVM);
2886
2887#ifdef VBOX_WITH_REM
2888 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
2889#endif
2890 }
2891
2892 pgmPhysInvalidatePageMapTLB(pVM);
2893 return VINF_SUCCESS;
2894}
2895
2896
2897/**
2898 * Unmaps a MMIO2 region.
2899 *
2900 * This is done when a guest / the bios / state loading changes the
2901 * PCI config. The replacing of base memory has the same restrictions
2902 * as during registration, of course.
2903 */
2904VMMR3DECL(int) PGMR3PhysMMIO2Unmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2905{
2906 /*
2907 * Validate input
2908 */
2909 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2910 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2911 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2912 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2913 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2914 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2915
2916 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2917 AssertReturn(pCur, VERR_NOT_FOUND);
2918 AssertReturn(pCur->fMapped, VERR_WRONG_ORDER);
2919 AssertReturn(pCur->RamRange.GCPhys == GCPhys, VERR_INVALID_PARAMETER);
2920 Assert(pCur->RamRange.GCPhysLast != NIL_RTGCPHYS);
2921
2922 Log(("PGMR3PhysMMIO2Unmap: %RGp-%RGp %s\n",
2923 pCur->RamRange.GCPhys, pCur->RamRange.GCPhysLast, pCur->RamRange.pszDesc));
2924
2925 /*
2926 * Unmap it.
2927 */
2928 pgmLock(pVM);
2929
2930#ifdef VBOX_WITH_REM
2931 RTGCPHYS GCPhysRangeREM;
2932 RTGCPHYS cbRangeREM;
2933 bool fInformREM;
2934#endif
2935 if (pCur->fOverlapping)
2936 {
2937 /* Restore the RAM pages we've replaced. */
2938 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2939 while (pRam->GCPhys > pCur->RamRange.GCPhysLast)
2940 pRam = pRam->pNextR3;
2941
2942 PPGMPAGE pPageDst = &pRam->aPages[(pCur->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2943 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2944 while (cPagesLeft-- > 0)
2945 {
2946 PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
2947 pVM->pgm.s.cZeroPages++;
2948 pPageDst++;
2949 }
2950
2951 /* Flush physical page map TLB. */
2952 pgmPhysInvalidatePageMapTLB(pVM);
2953#ifdef VBOX_WITH_REM
2954 GCPhysRangeREM = NIL_RTGCPHYS; /* shuts up gcc */
2955 cbRangeREM = RTGCPHYS_MAX; /* ditto */
2956 fInformREM = false;
2957#endif
2958 }
2959 else
2960 {
2961#ifdef VBOX_WITH_REM
2962 GCPhysRangeREM = pCur->RamRange.GCPhys;
2963 cbRangeREM = pCur->RamRange.cb;
2964 fInformREM = true;
2965#endif
2966 pgmR3PhysUnlinkRamRange(pVM, &pCur->RamRange);
2967 }
2968
2969 pCur->RamRange.GCPhys = NIL_RTGCPHYS;
2970 pCur->RamRange.GCPhysLast = NIL_RTGCPHYS;
2971 pCur->fOverlapping = false;
2972 pCur->fMapped = false;
2973
2974 /* Force a PGM pool flush as guest ram references have been changed. */
2975 /** @todo not entirely SMP safe; assuming for now the guest takes care
2976 * of this internally (not touch mapped mmio while changing the
2977 * mapping). */
2978 PVMCPU pVCpu = VMMGetCpu(pVM);
2979 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2980 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2981
2982 pgmPhysInvalidatePageMapTLB(pVM);
2983 pgmPhysInvalidRamRangeTlbs(pVM);
2984 pgmUnlock(pVM);
2985
2986#ifdef VBOX_WITH_REM
2987 if (fInformREM)
2988 REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeREM, cbRangeREM);
2989#endif
2990
2991 return VINF_SUCCESS;
2992}
2993
2994
2995/**
2996 * Checks if the given address is an MMIO2 base address or not.
2997 *
2998 * @returns true/false accordingly.
2999 * @param pVM Pointer to the VM.
3000 * @param pDevIns The owner of the memory, optional.
3001 * @param GCPhys The address to check.
3002 */
3003VMMR3DECL(bool) PGMR3PhysMMIO2IsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
3004{
3005 /*
3006 * Validate input
3007 */
3008 VM_ASSERT_EMT_RETURN(pVM, false);
3009 AssertPtrReturn(pDevIns, false);
3010 AssertReturn(GCPhys != NIL_RTGCPHYS, false);
3011 AssertReturn(GCPhys != 0, false);
3012 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
3013
3014 /*
3015 * Search the list.
3016 */
3017 pgmLock(pVM);
3018 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
3019 if (pCur->RamRange.GCPhys == GCPhys)
3020 {
3021 Assert(pCur->fMapped);
3022 pgmUnlock(pVM);
3023 return true;
3024 }
3025 pgmUnlock(pVM);
3026 return false;
3027}
3028
3029
3030/**
3031 * Gets the HC physical address of a page in the MMIO2 region.
3032 *
3033 * This is API is intended for MMHyper and shouldn't be called
3034 * by anyone else...
3035 *
3036 * @returns VBox status code.
3037 * @param pVM Pointer to the VM.
3038 * @param pDevIns The owner of the memory, optional.
3039 * @param iRegion The region.
3040 * @param off The page expressed an offset into the MMIO2 region.
3041 * @param pHCPhys Where to store the result.
3042 */
3043VMMR3DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, PRTHCPHYS pHCPhys)
3044{
3045 /*
3046 * Validate input
3047 */
3048 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3049 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3050 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3051
3052 pgmLock(pVM);
3053 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
3054 AssertReturn(pCur, VERR_NOT_FOUND);
3055 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
3056
3057 PCPGMPAGE pPage = &pCur->RamRange.aPages[off >> PAGE_SHIFT];
3058 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3059 pgmUnlock(pVM);
3060 return VINF_SUCCESS;
3061}
3062
3063
3064/**
3065 * Maps a portion of an MMIO2 region into kernel space (host).
3066 *
3067 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
3068 * or the VM is terminated.
3069 *
3070 * @return VBox status code.
3071 *
3072 * @param pVM Pointer to the VM.
3073 * @param pDevIns The device owning the MMIO2 memory.
3074 * @param iRegion The region.
3075 * @param off The offset into the region. Must be page aligned.
3076 * @param cb The number of bytes to map. Must be page aligned.
3077 * @param pszDesc Mapping description.
3078 * @param pR0Ptr Where to store the R0 address.
3079 */
3080VMMR3DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb,
3081 const char *pszDesc, PRTR0PTR pR0Ptr)
3082{
3083 /*
3084 * Validate input.
3085 */
3086 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3087 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3088 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3089
3090 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
3091 AssertReturn(pCur, VERR_NOT_FOUND);
3092 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
3093 AssertReturn(cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
3094 AssertReturn(off + cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
3095 NOREF(pszDesc);
3096
3097 /*
3098 * Pass the request on to the support library/driver.
3099 */
3100 int rc = SUPR3PageMapKernel(pCur->pvR3, off, cb, 0, pR0Ptr);
3101
3102 return rc;
3103}
3104
3105
3106/**
3107 * Worker for PGMR3PhysRomRegister.
3108 *
3109 * This is here to simplify lock management, i.e. the caller does all the
3110 * locking and we can simply return without needing to remember to unlock
3111 * anything first.
3112 *
3113 * @returns VBox status.
3114 * @param pVM Pointer to the VM.
3115 * @param pDevIns The device instance owning the ROM.
3116 * @param GCPhys First physical address in the range.
3117 * Must be page aligned!
3118 * @param cb The size of the range (in bytes).
3119 * Must be page aligned!
3120 * @param pvBinary Pointer to the binary data backing the ROM image.
3121 * @param cbBinary The size of the binary data pvBinary points to.
3122 * This must be less or equal to @a cb.
3123 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
3124 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
3125 * @param pszDesc Pointer to description string. This must not be freed.
3126 */
3127static int pgmR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
3128 const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
3129{
3130 /*
3131 * Validate input.
3132 */
3133 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3134 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
3135 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
3136 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
3137 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
3138 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
3139 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
3140 AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
3141 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
3142
3143 const uint32_t cPages = cb >> PAGE_SHIFT;
3144
3145 /*
3146 * Find the ROM location in the ROM list first.
3147 */
3148 PPGMROMRANGE pRomPrev = NULL;
3149 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
3150 while (pRom && GCPhysLast >= pRom->GCPhys)
3151 {
3152 if ( GCPhys <= pRom->GCPhysLast
3153 && GCPhysLast >= pRom->GCPhys)
3154 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
3155 GCPhys, GCPhysLast, pszDesc,
3156 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
3157 VERR_PGM_RAM_CONFLICT);
3158 /* next */
3159 pRomPrev = pRom;
3160 pRom = pRom->pNextR3;
3161 }
3162
3163 /*
3164 * Find the RAM location and check for conflicts.
3165 *
3166 * Conflict detection is a bit different than for RAM
3167 * registration since a ROM can be located within a RAM
3168 * range. So, what we have to check for is other memory
3169 * types (other than RAM that is) and that we don't span
3170 * more than one RAM range (layz).
3171 */
3172 bool fRamExists = false;
3173 PPGMRAMRANGE pRamPrev = NULL;
3174 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3175 while (pRam && GCPhysLast >= pRam->GCPhys)
3176 {
3177 if ( GCPhys <= pRam->GCPhysLast
3178 && GCPhysLast >= pRam->GCPhys)
3179 {
3180 /* completely within? */
3181 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
3182 && GCPhysLast <= pRam->GCPhysLast,
3183 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
3184 GCPhys, GCPhysLast, pszDesc,
3185 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
3186 VERR_PGM_RAM_CONFLICT);
3187 fRamExists = true;
3188 break;
3189 }
3190
3191 /* next */
3192 pRamPrev = pRam;
3193 pRam = pRam->pNextR3;
3194 }
3195 if (fRamExists)
3196 {
3197 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3198 uint32_t cPagesLeft = cPages;
3199 while (cPagesLeft-- > 0)
3200 {
3201 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
3202 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
3203 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
3204 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
3205 Assert(PGM_PAGE_IS_ZERO(pPage));
3206 pPage++;
3207 }
3208 }
3209
3210 /*
3211 * Update the base memory reservation if necessary.
3212 */
3213 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
3214 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3215 cExtraBaseCost += cPages;
3216 if (cExtraBaseCost)
3217 {
3218 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
3219 if (RT_FAILURE(rc))
3220 return rc;
3221 }
3222
3223 /*
3224 * Allocate memory for the virgin copy of the RAM.
3225 */
3226 PGMMALLOCATEPAGESREQ pReq;
3227 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
3228 AssertRCReturn(rc, rc);
3229
3230 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3231 {
3232 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
3233 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
3234 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
3235 }
3236
3237 rc = GMMR3AllocatePagesPerform(pVM, pReq);
3238 if (RT_FAILURE(rc))
3239 {
3240 GMMR3AllocatePagesCleanup(pReq);
3241 return rc;
3242 }
3243
3244 /*
3245 * Allocate the new ROM range and RAM range (if necessary).
3246 */
3247 PPGMROMRANGE pRomNew;
3248 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
3249 if (RT_SUCCESS(rc))
3250 {
3251 PPGMRAMRANGE pRamNew = NULL;
3252 if (!fRamExists)
3253 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
3254 if (RT_SUCCESS(rc))
3255 {
3256 /*
3257 * Initialize and insert the RAM range (if required).
3258 */
3259 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
3260 if (!fRamExists)
3261 {
3262 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
3263 pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew);
3264 pRamNew->GCPhys = GCPhys;
3265 pRamNew->GCPhysLast = GCPhysLast;
3266 pRamNew->cb = cb;
3267 pRamNew->pszDesc = pszDesc;
3268 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
3269 pRamNew->pvR3 = NULL;
3270 pRamNew->paLSPages = NULL;
3271
3272 PPGMPAGE pPage = &pRamNew->aPages[0];
3273 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
3274 {
3275 PGM_PAGE_INIT(pPage,
3276 pReq->aPages[iPage].HCPhysGCPhys,
3277 pReq->aPages[iPage].idPage,
3278 PGMPAGETYPE_ROM,
3279 PGM_PAGE_STATE_ALLOCATED);
3280
3281 pRomPage->Virgin = *pPage;
3282 }
3283
3284 pVM->pgm.s.cAllPages += cPages;
3285 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
3286 }
3287 else
3288 {
3289 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3290 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
3291 {
3292 PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_ROM);
3293 PGM_PAGE_SET_HCPHYS(pVM, pPage, pReq->aPages[iPage].HCPhysGCPhys);
3294 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
3295 PGM_PAGE_SET_PAGEID(pVM, pPage, pReq->aPages[iPage].idPage);
3296 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
3297 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
3298 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
3299
3300 pRomPage->Virgin = *pPage;
3301 }
3302
3303 pRamNew = pRam;
3304
3305 pVM->pgm.s.cZeroPages -= cPages;
3306 }
3307 pVM->pgm.s.cPrivatePages += cPages;
3308
3309 /* Flush physical page map TLB. */
3310 pgmPhysInvalidatePageMapTLB(pVM);
3311
3312
3313 /*
3314 * !HACK ALERT! REM + (Shadowed) ROM ==> mess.
3315 *
3316 * If it's shadowed we'll register the handler after the ROM notification
3317 * so we get the access handler callbacks that we should. If it isn't
3318 * shadowed we'll do it the other way around to make REM use the built-in
3319 * ROM behavior and not the handler behavior (which is to route all access
3320 * to PGM atm).
3321 */
3322 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3323 {
3324#ifdef VBOX_WITH_REM
3325 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
3326#endif
3327 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType,
3328 pRomNew, MMHyperCCToR0(pVM, pRomNew), MMHyperCCToRC(pVM, pRomNew),
3329 pszDesc);
3330 }
3331 else
3332 {
3333 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType,
3334 pRomNew, MMHyperCCToR0(pVM, pRomNew), MMHyperCCToRC(pVM, pRomNew),
3335 pszDesc);
3336#ifdef VBOX_WITH_REM
3337 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
3338#endif
3339 }
3340 if (RT_SUCCESS(rc))
3341 {
3342 /*
3343 * Copy the image over to the virgin pages.
3344 * This must be done after linking in the RAM range.
3345 */
3346 size_t cbBinaryLeft = cbBinary;
3347 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
3348 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
3349 {
3350 void *pvDstPage;
3351 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
3352 if (RT_FAILURE(rc))
3353 {
3354 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
3355 break;
3356 }
3357 if (cbBinaryLeft >= PAGE_SIZE)
3358 {
3359 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), PAGE_SIZE);
3360 cbBinaryLeft -= PAGE_SIZE;
3361 }
3362 else
3363 {
3364 ASMMemZeroPage(pvDstPage); /* (shouldn't be necessary, but can't hurt either) */
3365 if (cbBinaryLeft > 0)
3366 {
3367 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), cbBinaryLeft);
3368 cbBinaryLeft = 0;
3369 }
3370 }
3371 }
3372 if (RT_SUCCESS(rc))
3373 {
3374 /*
3375 * Initialize the ROM range.
3376 * Note that the Virgin member of the pages has already been initialized above.
3377 */
3378 pRomNew->GCPhys = GCPhys;
3379 pRomNew->GCPhysLast = GCPhysLast;
3380 pRomNew->cb = cb;
3381 pRomNew->fFlags = fFlags;
3382 pRomNew->idSavedState = UINT8_MAX;
3383 pRomNew->cbOriginal = cbBinary;
3384#ifdef VBOX_STRICT
3385 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY
3386 ? pvBinary : RTMemDup(pvBinary, cbBinary);
3387#else
3388 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY ? pvBinary : NULL;
3389#endif
3390 pRomNew->pszDesc = pszDesc;
3391
3392 for (unsigned iPage = 0; iPage < cPages; iPage++)
3393 {
3394 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
3395 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
3396 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
3397 }
3398
3399 /* update the page count stats for the shadow pages. */
3400 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3401 {
3402 pVM->pgm.s.cZeroPages += cPages;
3403 pVM->pgm.s.cAllPages += cPages;
3404 }
3405
3406 /*
3407 * Insert the ROM range, tell REM and return successfully.
3408 */
3409 pRomNew->pNextR3 = pRom;
3410 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
3411 pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;
3412
3413 if (pRomPrev)
3414 {
3415 pRomPrev->pNextR3 = pRomNew;
3416 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
3417 pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
3418 }
3419 else
3420 {
3421 pVM->pgm.s.pRomRangesR3 = pRomNew;
3422 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
3423 pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
3424 }
3425
3426 pgmPhysInvalidatePageMapTLB(pVM);
3427 GMMR3AllocatePagesCleanup(pReq);
3428 return VINF_SUCCESS;
3429 }
3430
3431 /* bail out */
3432
3433 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
3434 AssertRC(rc2);
3435 }
3436
3437 if (!fRamExists)
3438 {
3439 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
3440 MMHyperFree(pVM, pRamNew);
3441 }
3442 }
3443 MMHyperFree(pVM, pRomNew);
3444 }
3445
3446 /** @todo Purge the mapping cache or something... */
3447 GMMR3FreeAllocatedPages(pVM, pReq);
3448 GMMR3AllocatePagesCleanup(pReq);
3449 return rc;
3450}
3451
3452
3453/**
3454 * Registers a ROM image.
3455 *
3456 * Shadowed ROM images requires double the amount of backing memory, so,
3457 * don't use that unless you have to. Shadowing of ROM images is process
3458 * where we can select where the reads go and where the writes go. On real
3459 * hardware the chipset provides means to configure this. We provide
3460 * PGMR3PhysProtectROM() for this purpose.
3461 *
3462 * A read-only copy of the ROM image will always be kept around while we
3463 * will allocate RAM pages for the changes on demand (unless all memory
3464 * is configured to be preallocated).
3465 *
3466 * @returns VBox status.
3467 * @param pVM Pointer to the VM.
3468 * @param pDevIns The device instance owning the ROM.
3469 * @param GCPhys First physical address in the range.
3470 * Must be page aligned!
3471 * @param cb The size of the range (in bytes).
3472 * Must be page aligned!
3473 * @param pvBinary Pointer to the binary data backing the ROM image.
3474 * @param cbBinary The size of the binary data pvBinary points to.
3475 * This must be less or equal to @a cb.
3476 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
3477 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
3478 * @param pszDesc Pointer to description string. This must not be freed.
3479 *
3480 * @remark There is no way to remove the rom, automatically on device cleanup or
3481 * manually from the device yet. This isn't difficult in any way, it's
3482 * just not something we expect to be necessary for a while.
3483 */
3484VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
3485 const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
3486{
3487 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p cbBinary=%#x fFlags=%#x pszDesc=%s\n",
3488 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, cbBinary, fFlags, pszDesc));
3489 pgmLock(pVM);
3490 int rc = pgmR3PhysRomRegister(pVM, pDevIns, GCPhys, cb, pvBinary, cbBinary, fFlags, pszDesc);
3491 pgmUnlock(pVM);
3492 return rc;
3493}
3494
3495
3496/**
3497 * \#PF Handler callback for ROM write accesses.
3498 *
3499 * @returns VINF_SUCCESS if the handler have carried out the operation.
3500 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
3501 * @param pVM Pointer to the VM.
3502 * @param GCPhys The physical address the guest is writing to.
3503 * @param pvPhys The HC mapping of that address.
3504 * @param pvBuf What the guest is reading/writing.
3505 * @param cbBuf How much it's reading/writing.
3506 * @param enmAccessType The access type.
3507 * @param pvUser User argument.
3508 */
3509DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf,
3510 PGMACCESSTYPE enmAccessType, void *pvUser)
3511{
3512 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
3513 const uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
3514 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
3515 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
3516 Log5(("pgmR3PhysRomWriteHandler: %d %c %#08RGp %#04zx\n", pRomPage->enmProt, enmAccessType == PGMACCESSTYPE_READ ? 'R' : 'W', GCPhys, cbBuf));
3517 NOREF(pvPhys);
3518
3519 if (enmAccessType == PGMACCESSTYPE_READ)
3520 {
3521 switch (pRomPage->enmProt)
3522 {
3523 /*
3524 * Take the default action.
3525 */
3526 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
3527 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
3528 case PGMROMPROT_READ_ROM_WRITE_RAM:
3529 case PGMROMPROT_READ_RAM_WRITE_RAM:
3530 return VINF_PGM_HANDLER_DO_DEFAULT;
3531
3532 default:
3533 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
3534 pRom->aPages[iPage].enmProt, iPage, GCPhys),
3535 VERR_IPE_NOT_REACHED_DEFAULT_CASE);
3536 }
3537 }
3538 else
3539 {
3540 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
3541 switch (pRomPage->enmProt)
3542 {
3543 /*
3544 * Ignore writes.
3545 */
3546 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
3547 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
3548 return VINF_SUCCESS;
3549
3550 /*
3551 * Write to the RAM page.
3552 */
3553 case PGMROMPROT_READ_ROM_WRITE_RAM:
3554 case PGMROMPROT_READ_RAM_WRITE_RAM: /* yes this will get here too, it's *way* simpler that way. */
3555 {
3556 /* This should be impossible now, pvPhys doesn't work cross page anylonger. */
3557 Assert(((GCPhys - pRom->GCPhys + cbBuf - 1) >> PAGE_SHIFT) == iPage);
3558
3559 /*
3560 * Take the lock, do lazy allocation, map the page and copy the data.
3561 *
3562 * Note that we have to bypass the mapping TLB since it works on
3563 * guest physical addresses and entering the shadow page would
3564 * kind of screw things up...
3565 */
3566 int rc = pgmLock(pVM);
3567 AssertRC(rc);
3568
3569 PPGMPAGE pShadowPage = &pRomPage->Shadow;
3570 if (!PGMROMPROT_IS_ROM(pRomPage->enmProt))
3571 {
3572 pShadowPage = pgmPhysGetPage(pVM, GCPhys);
3573 AssertLogRelReturn(pShadowPage, VERR_PGM_PHYS_PAGE_GET_IPE);
3574 }
3575
3576 void *pvDstPage;
3577 rc = pgmPhysPageMakeWritableAndMap(pVM, pShadowPage, GCPhys & X86_PTE_PG_MASK, &pvDstPage);
3578 if (RT_SUCCESS(rc))
3579 {
3580 memcpy((uint8_t *)pvDstPage + (GCPhys & PAGE_OFFSET_MASK), pvBuf, cbBuf);
3581 pRomPage->LiveSave.fWrittenTo = true;
3582 }
3583
3584 pgmUnlock(pVM);
3585 return rc;
3586 }
3587
3588 default:
3589 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
3590 pRom->aPages[iPage].enmProt, iPage, GCPhys),
3591 VERR_IPE_NOT_REACHED_DEFAULT_CASE);
3592 }
3593 }
3594}
3595
3596
3597/**
3598 * Called by PGMR3MemSetup to reset the shadow, switch to the virgin, and verify
3599 * that the virgin part is untouched.
3600 *
3601 * This is done after the normal memory has been cleared.
3602 *
3603 * ASSUMES that the caller owns the PGM lock.
3604 *
3605 * @param pVM Pointer to the VM.
3606 */
3607int pgmR3PhysRomReset(PVM pVM)
3608{
3609 PGM_LOCK_ASSERT_OWNER(pVM);
3610 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
3611 {
3612 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
3613
3614 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3615 {
3616 /*
3617 * Reset the physical handler.
3618 */
3619 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
3620 AssertRCReturn(rc, rc);
3621
3622 /*
3623 * What we do with the shadow pages depends on the memory
3624 * preallocation option. If not enabled, we'll just throw
3625 * out all the dirty pages and replace them by the zero page.
3626 */
3627 if (!pVM->pgm.s.fRamPreAlloc)
3628 {
3629 /* Free the dirty pages. */
3630 uint32_t cPendingPages = 0;
3631 PGMMFREEPAGESREQ pReq;
3632 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
3633 AssertRCReturn(rc, rc);
3634
3635 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3636 if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
3637 && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
3638 {
3639 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
3640 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow,
3641 pRom->GCPhys + (iPage << PAGE_SHIFT));
3642 AssertLogRelRCReturn(rc, rc);
3643 }
3644
3645 if (cPendingPages)
3646 {
3647 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
3648 AssertLogRelRCReturn(rc, rc);
3649 }
3650 GMMR3FreePagesCleanup(pReq);
3651 }
3652 else
3653 {
3654 /* clear all the shadow pages. */
3655 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3656 {
3657 if (PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow))
3658 continue;
3659 Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
3660 void *pvDstPage;
3661 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
3662 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
3663 if (RT_FAILURE(rc))
3664 break;
3665 ASMMemZeroPage(pvDstPage);
3666 }
3667 AssertRCReturn(rc, rc);
3668 }
3669 }
3670
3671#ifdef VBOX_STRICT
3672 /*
3673 * Verify that the virgin page is unchanged if possible.
3674 */
3675 if (pRom->pvOriginal)
3676 {
3677 size_t cbSrcLeft = pRom->cbOriginal;
3678 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
3679 for (uint32_t iPage = 0; iPage < cPages && cbSrcLeft > 0; iPage++, pbSrcPage += PAGE_SIZE)
3680 {
3681 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
3682 void const *pvDstPage;
3683 int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
3684 if (RT_FAILURE(rc))
3685 break;
3686
3687 if (memcmp(pvDstPage, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE)))
3688 {
3689# ifdef DEBUG_bird /* This is darn handy for EFI debugging w/ snapshots, should be made default later. */
3690 void *pvDstPageW;
3691 rc = pgmPhysPageMap(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPageW);
3692 AssertRCReturn(rc, rc);
3693 memcpy(pvDstPageW, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE));
3694# else
3695 LogRel(("pgmR3PhysRomReset: %RGp rom page changed (%s) - loaded saved state?\n",
3696 GCPhys, pRom->pszDesc));
3697# endif
3698 }
3699 cbSrcLeft -= RT_MIN(cbSrcLeft, PAGE_SIZE);
3700 }
3701 }
3702#endif
3703 }
3704
3705 return VINF_SUCCESS;
3706}
3707
3708
3709/**
3710 * Called by PGMR3Term to free resources.
3711 *
3712 * ASSUMES that the caller owns the PGM lock.
3713 *
3714 * @param pVM Pointer to the VM.
3715 */
3716void pgmR3PhysRomTerm(PVM pVM)
3717{
3718#ifdef RT_STRICT
3719 /*
3720 * Free the heap copy of the original bits.
3721 */
3722 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
3723 {
3724 if ( pRom->pvOriginal
3725 && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY))
3726 {
3727 RTMemFree((void *)pRom->pvOriginal);
3728 pRom->pvOriginal = NULL;
3729 }
3730 }
3731#endif
3732}
3733
3734
3735/**
3736 * Change the shadowing of a range of ROM pages.
3737 *
3738 * This is intended for implementing chipset specific memory registers
3739 * and will not be very strict about the input. It will silently ignore
3740 * any pages that are not the part of a shadowed ROM.
3741 *
3742 * @returns VBox status code.
3743 * @retval VINF_PGM_SYNC_CR3
3744 *
3745 * @param pVM Pointer to the VM.
3746 * @param GCPhys Where to start. Page aligned.
3747 * @param cb How much to change. Page aligned.
3748 * @param enmProt The new ROM protection.
3749 */
3750VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
3751{
3752 /*
3753 * Check input
3754 */
3755 if (!cb)
3756 return VINF_SUCCESS;
3757 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3758 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3759 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
3760 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
3761 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
3762
3763 /*
3764 * Process the request.
3765 */
3766 pgmLock(pVM);
3767 int rc = VINF_SUCCESS;
3768 bool fFlushTLB = false;
3769 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
3770 {
3771 if ( GCPhys <= pRom->GCPhysLast
3772 && GCPhysLast >= pRom->GCPhys
3773 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
3774 {
3775 /*
3776 * Iterate the relevant pages and make necessary the changes.
3777 */
3778 bool fChanges = false;
3779 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
3780 ? pRom->cb >> PAGE_SHIFT
3781 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
3782 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
3783 iPage < cPages;
3784 iPage++)
3785 {
3786 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
3787 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
3788 {
3789 fChanges = true;
3790
3791 /* flush references to the page. */
3792 PPGMPAGE pRamPage = pgmPhysGetPage(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT));
3793 int rc2 = pgmPoolTrackUpdateGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage,
3794 true /*fFlushPTEs*/, &fFlushTLB);
3795 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
3796 rc = rc2;
3797
3798 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
3799 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
3800
3801 *pOld = *pRamPage;
3802 *pRamPage = *pNew;
3803 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
3804 }
3805 pRomPage->enmProt = enmProt;
3806 }
3807
3808 /*
3809 * Reset the access handler if we made changes, no need
3810 * to optimize this.
3811 */
3812 if (fChanges)
3813 {
3814 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
3815 if (RT_FAILURE(rc2))
3816 {
3817 pgmUnlock(pVM);
3818 AssertRC(rc);
3819 return rc2;
3820 }
3821 }
3822
3823 /* Advance - cb isn't updated. */
3824 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
3825 }
3826 }
3827 pgmUnlock(pVM);
3828 if (fFlushTLB)
3829 PGM_INVL_ALL_VCPU_TLBS(pVM);
3830
3831 return rc;
3832}
3833
3834
3835/**
3836 * Sets the Address Gate 20 state.
3837 *
3838 * @param pVCpu Pointer to the VMCPU.
3839 * @param fEnable True if the gate should be enabled.
3840 * False if the gate should be disabled.
3841 */
3842VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
3843{
3844 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
3845 if (pVCpu->pgm.s.fA20Enabled != fEnable)
3846 {
3847 pVCpu->pgm.s.fA20Enabled = fEnable;
3848 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!fEnable << 20);
3849#ifdef VBOX_WITH_REM
3850 REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
3851#endif
3852#ifdef PGM_WITH_A20
3853 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3854 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3855 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
3856 HMFlushTLB(pVCpu);
3857#endif
3858 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cA20Changes);
3859 }
3860}
3861
3862
3863/**
3864 * Tree enumeration callback for dealing with age rollover.
3865 * It will perform a simple compression of the current age.
3866 */
3867static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
3868{
3869 /* Age compression - ASSUMES iNow == 4. */
3870 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3871 if (pChunk->iLastUsed >= UINT32_C(0xffffff00))
3872 pChunk->iLastUsed = 3;
3873 else if (pChunk->iLastUsed >= UINT32_C(0xfffff000))
3874 pChunk->iLastUsed = 2;
3875 else if (pChunk->iLastUsed)
3876 pChunk->iLastUsed = 1;
3877 else /* iLastUsed = 0 */
3878 pChunk->iLastUsed = 4;
3879
3880 NOREF(pvUser);
3881 return 0;
3882}
3883
3884
3885/**
3886 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
3887 */
3888typedef struct PGMR3PHYSCHUNKUNMAPCB
3889{
3890 PVM pVM; /**< Pointer to the VM. */
3891 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
3892} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
3893
3894
3895/**
3896 * Callback used to find the mapping that's been unused for
3897 * the longest time.
3898 */
3899static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser)
3900{
3901 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3902 PPGMR3PHYSCHUNKUNMAPCB pArg = (PPGMR3PHYSCHUNKUNMAPCB)pvUser;
3903
3904 /*
3905 * Check for locks and compare when last used.
3906 */
3907 if (pChunk->cRefs)
3908 return 0;
3909 if (pChunk->cPermRefs)
3910 return 0;
3911 if ( pArg->pChunk
3912 && pChunk->iLastUsed >= pArg->pChunk->iLastUsed)
3913 return 0;
3914
3915 /*
3916 * Check that it's not in any of the TLBs.
3917 */
3918 PVM pVM = pArg->pVM;
3919 if ( pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(pChunk->Core.Key)].idChunk
3920 == pChunk->Core.Key)
3921 {
3922 pChunk = NULL;
3923 return 0;
3924 }
3925#ifdef VBOX_STRICT
3926 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3927 {
3928 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk != pChunk);
3929 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk != pChunk->Core.Key);
3930 }
3931#endif
3932
3933 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
3934 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
3935 return 0;
3936
3937 pArg->pChunk = pChunk;
3938 return 0;
3939}
3940
3941
3942/**
3943 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
3944 *
3945 * The candidate will not be part of any TLBs, so no need to flush
3946 * anything afterwards.
3947 *
3948 * @returns Chunk id.
3949 * @param pVM Pointer to the VM.
3950 */
3951static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
3952{
3953 PGM_LOCK_ASSERT_OWNER(pVM);
3954
3955 /*
3956 * Enumerate the age tree starting with the left most node.
3957 */
3958 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
3959 PGMR3PHYSCHUNKUNMAPCB Args;
3960 Args.pVM = pVM;
3961 Args.pChunk = NULL;
3962 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args);
3963 Assert(Args.pChunk);
3964 if (Args.pChunk)
3965 {
3966 Assert(Args.pChunk->cRefs == 0);
3967 Assert(Args.pChunk->cPermRefs == 0);
3968 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
3969 return Args.pChunk->Core.Key;
3970 }
3971
3972 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
3973 return INT32_MAX;
3974}
3975
3976
3977/**
3978 * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk
3979 *
3980 * This is only called on one of the EMTs while the other ones are waiting for
3981 * it to complete this function.
3982 *
3983 * @returns VINF_SUCCESS (VBox strict status code).
3984 * @param pVM Pointer to the VM.
3985 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
3986 * @param pvUser User pointer. Unused
3987 *
3988 */
3989static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
3990{
3991 int rc = VINF_SUCCESS;
3992 pgmLock(pVM);
3993 NOREF(pVCpu); NOREF(pvUser);
3994
3995 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
3996 {
3997 /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */
3998 /** @todo also not really efficient to unmap a chunk that contains PD
3999 * or PT pages. */
4000 pgmR3PoolClearAllRendezvous(pVM, &pVM->aCpus[0], NULL /* no need to flush the REM TLB as we already did that above */);
4001
4002 /*
4003 * Request the ring-0 part to unmap a chunk to make space in the mapping cache.
4004 */
4005 GMMMAPUNMAPCHUNKREQ Req;
4006 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
4007 Req.Hdr.cbReq = sizeof(Req);
4008 Req.pvR3 = NULL;
4009 Req.idChunkMap = NIL_GMM_CHUNKID;
4010 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
4011 if (Req.idChunkUnmap != INT32_MAX)
4012 {
4013 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
4014 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
4015 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
4016 if (RT_SUCCESS(rc))
4017 {
4018 /*
4019 * Remove the unmapped one.
4020 */
4021 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
4022 AssertRelease(pUnmappedChunk);
4023 AssertRelease(!pUnmappedChunk->cRefs);
4024 AssertRelease(!pUnmappedChunk->cPermRefs);
4025 pUnmappedChunk->pv = NULL;
4026 pUnmappedChunk->Core.Key = UINT32_MAX;
4027#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
4028 MMR3HeapFree(pUnmappedChunk);
4029#else
4030 MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
4031#endif
4032 pVM->pgm.s.ChunkR3Map.c--;
4033 pVM->pgm.s.cUnmappedChunks++;
4034
4035 /*
4036 * Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses).
4037 */
4038 /** @todo We should not flush chunks which include cr3 mappings. */
4039 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4040 {
4041 PPGMCPU pPGM = &pVM->aCpus[idCpu].pgm.s;
4042
4043 pPGM->pGst32BitPdR3 = NULL;
4044 pPGM->pGstPaePdptR3 = NULL;
4045 pPGM->pGstAmd64Pml4R3 = NULL;
4046#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4047 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
4048 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
4049 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
4050#endif
4051 for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++)
4052 {
4053 pPGM->apGstPaePDsR3[i] = NULL;
4054#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4055 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
4056#endif
4057 }
4058
4059 /* Flush REM TLBs. */
4060 CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
4061 }
4062#ifdef VBOX_WITH_REM
4063 /* Flush REM translation blocks. */
4064 REMFlushTBs(pVM);
4065#endif
4066 }
4067 }
4068 }
4069 pgmUnlock(pVM);
4070 return rc;
4071}
4072
4073/**
4074 * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap)
4075 *
4076 * @returns VBox status code.
4077 * @param pVM Pointer to the VM.
4078 */
4079void pgmR3PhysUnmapChunk(PVM pVM)
4080{
4081 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL);
4082 AssertRC(rc);
4083}
4084
4085
4086/**
4087 * Maps the given chunk into the ring-3 mapping cache.
4088 *
4089 * This will call ring-0.
4090 *
4091 * @returns VBox status code.
4092 * @param pVM Pointer to the VM.
4093 * @param idChunk The chunk in question.
4094 * @param ppChunk Where to store the chunk tracking structure.
4095 *
4096 * @remarks Called from within the PGM critical section.
4097 * @remarks Can be called from any thread!
4098 */
4099int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
4100{
4101 int rc;
4102
4103 PGM_LOCK_ASSERT_OWNER(pVM);
4104
4105 /*
4106 * Move the chunk time forward.
4107 */
4108 pVM->pgm.s.ChunkR3Map.iNow++;
4109 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
4110 {
4111 pVM->pgm.s.ChunkR3Map.iNow = 4;
4112 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, NULL);
4113 }
4114
4115 /*
4116 * Allocate a new tracking structure first.
4117 */
4118#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
4119 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
4120#else
4121 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
4122#endif
4123 AssertReturn(pChunk, VERR_NO_MEMORY);
4124 pChunk->Core.Key = idChunk;
4125 pChunk->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
4126
4127 /*
4128 * Request the ring-0 part to map the chunk in question.
4129 */
4130 GMMMAPUNMAPCHUNKREQ Req;
4131 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
4132 Req.Hdr.cbReq = sizeof(Req);
4133 Req.pvR3 = NULL;
4134 Req.idChunkMap = idChunk;
4135 Req.idChunkUnmap = NIL_GMM_CHUNKID;
4136
4137 /* Must be callable from any thread, so can't use VMMR3CallR0. */
4138 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
4139 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
4140 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
4141 if (RT_SUCCESS(rc))
4142 {
4143 pChunk->pv = Req.pvR3;
4144
4145 /*
4146 * If we're running out of virtual address space, then we should
4147 * unmap another chunk.
4148 *
4149 * Currently, an unmap operation requires that all other virtual CPUs
4150 * are idling and not by chance making use of the memory we're
4151 * unmapping. So, we create an async unmap operation here.
4152 *
4153 * Now, when creating or restoring a saved state this wont work very
4154 * well since we may want to restore all guest RAM + a little something.
4155 * So, we have to do the unmap synchronously. Fortunately for us
4156 * though, during these operations the other virtual CPUs are inactive
4157 * and it should be safe to do this.
4158 */
4159 /** @todo Eventually we should lock all memory when used and do
4160 * map+unmap as one kernel call without any rendezvous or
4161 * other precautions. */
4162 if (pVM->pgm.s.ChunkR3Map.c + 1 >= pVM->pgm.s.ChunkR3Map.cMax)
4163 {
4164 switch (VMR3GetState(pVM))
4165 {
4166 case VMSTATE_LOADING:
4167 case VMSTATE_SAVING:
4168 {
4169 PVMCPU pVCpu = VMMGetCpu(pVM);
4170 if ( pVCpu
4171 && pVM->pgm.s.cDeprecatedPageLocks == 0)
4172 {
4173 pgmR3PhysUnmapChunkRendezvous(pVM, pVCpu, NULL);
4174 break;
4175 }
4176 /* fall thru */
4177 }
4178 default:
4179 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM);
4180 AssertRC(rc);
4181 break;
4182 }
4183 }
4184
4185 /*
4186 * Update the tree. We must do this after any unmapping to make sure
4187 * the chunk we're going to return isn't unmapped by accident.
4188 */
4189 AssertPtr(Req.pvR3);
4190 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
4191 AssertRelease(fRc);
4192 pVM->pgm.s.ChunkR3Map.c++;
4193 pVM->pgm.s.cMappedChunks++;
4194 }
4195 else
4196 {
4197 /** @todo this may fail because of /proc/sys/vm/max_map_count, so we
4198 * should probably restrict ourselves on linux. */
4199 AssertRC(rc);
4200#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
4201 MMR3HeapFree(pChunk);
4202#else
4203 MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
4204#endif
4205 pChunk = NULL;
4206 }
4207
4208 *ppChunk = pChunk;
4209 return rc;
4210}
4211
4212
4213/**
4214 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
4215 *
4216 * @returns see pgmR3PhysChunkMap.
4217 * @param pVM Pointer to the VM.
4218 * @param idChunk The chunk to map.
4219 */
4220VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
4221{
4222 PPGMCHUNKR3MAP pChunk;
4223 int rc;
4224
4225 pgmLock(pVM);
4226 rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
4227 pgmUnlock(pVM);
4228 return rc;
4229}
4230
4231
4232/**
4233 * Invalidates the TLB for the ring-3 mapping cache.
4234 *
4235 * @param pVM Pointer to the VM.
4236 */
4237VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
4238{
4239 pgmLock(pVM);
4240 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
4241 {
4242 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
4243 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
4244 }
4245 /* The page map TLB references chunks, so invalidate that one too. */
4246 pgmPhysInvalidatePageMapTLB(pVM);
4247 pgmUnlock(pVM);
4248}
4249
4250
4251/**
4252 * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE to allocate a large
4253 * (2MB) page for use with a nested paging PDE.
4254 *
4255 * @returns The following VBox status codes.
4256 * @retval VINF_SUCCESS on success.
4257 * @retval VINF_EM_NO_MEMORY if we're out of memory.
4258 *
4259 * @param pVM Pointer to the VM.
4260 * @param GCPhys GC physical start address of the 2 MB range
4261 */
4262VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
4263{
4264#ifdef PGM_WITH_LARGE_PAGES
4265 uint64_t u64TimeStamp1, u64TimeStamp2;
4266
4267 pgmLock(pVM);
4268
4269 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
4270 u64TimeStamp1 = RTTimeMilliTS();
4271 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
4272 u64TimeStamp2 = RTTimeMilliTS();
4273 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
4274 if (RT_SUCCESS(rc))
4275 {
4276 Assert(pVM->pgm.s.cLargeHandyPages == 1);
4277
4278 uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
4279 RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
4280
4281 void *pv;
4282
4283 /* Map the large page into our address space.
4284 *
4285 * Note: assuming that within the 2 MB range:
4286 * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
4287 * - user space mapping is continuous as well
4288 * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
4289 */
4290 rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
4291 AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n", idPage, HCPhys, rc));
4292
4293 if (RT_SUCCESS(rc))
4294 {
4295 /*
4296 * Clear the pages.
4297 */
4298 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
4299 for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
4300 {
4301 ASMMemZeroPage(pv);
4302
4303 PPGMPAGE pPage;
4304 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
4305 AssertRC(rc);
4306
4307 Assert(PGM_PAGE_IS_ZERO(pPage));
4308 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRZPageReplaceZero);
4309 pVM->pgm.s.cZeroPages--;
4310
4311 /*
4312 * Do the PGMPAGE modifications.
4313 */
4314 pVM->pgm.s.cPrivatePages++;
4315 PGM_PAGE_SET_HCPHYS(pVM, pPage, HCPhys);
4316 PGM_PAGE_SET_PAGEID(pVM, pPage, idPage);
4317 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
4318 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE);
4319 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
4320 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
4321
4322 /* Somewhat dirty assumption that page ids are increasing. */
4323 idPage++;
4324
4325 HCPhys += PAGE_SIZE;
4326 GCPhys += PAGE_SIZE;
4327
4328 pv = (void *)((uintptr_t)pv + PAGE_SIZE);
4329
4330 Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
4331 }
4332 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
4333
4334 /* Flush all TLBs. */
4335 PGM_INVL_ALL_VCPU_TLBS(pVM);
4336 pgmPhysInvalidatePageMapTLB(pVM);
4337 }
4338 pVM->pgm.s.cLargeHandyPages = 0;
4339 }
4340
4341 if (RT_SUCCESS(rc))
4342 {
4343 static uint32_t cTimeOut = 0;
4344 uint64_t u64TimeStampDelta = u64TimeStamp2 - u64TimeStamp1;
4345
4346 if (u64TimeStampDelta > 100)
4347 {
4348 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatLargePageOverflow);
4349 if ( ++cTimeOut > 10
4350 || u64TimeStampDelta > 1000 /* more than one second forces an early retirement from allocating large pages. */)
4351 {
4352 /* If repeated attempts to allocate a large page takes more than 100 ms, then we fall back to normal 4k pages.
4353 * E.g. Vista 64 tries to move memory around, which takes a huge amount of time.
4354 */
4355 LogRel(("PGMR3PhysAllocateLargePage: allocating large pages takes too long (last attempt %d ms; nr of timeouts %d); DISABLE\n", u64TimeStampDelta, cTimeOut));
4356 PGMSetLargePageUsage(pVM, false);
4357 }
4358 }
4359 else
4360 if (cTimeOut > 0)
4361 cTimeOut--;
4362 }
4363
4364 pgmUnlock(pVM);
4365 return rc;
4366#else
4367 return VERR_NOT_IMPLEMENTED;
4368#endif /* PGM_WITH_LARGE_PAGES */
4369}
4370
4371
4372/**
4373 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
4374 *
4375 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
4376 * signal and clear the out of memory condition. When contracted, this API is
4377 * used to try clear the condition when the user wants to resume.
4378 *
4379 * @returns The following VBox status codes.
4380 * @retval VINF_SUCCESS on success. FFs cleared.
4381 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
4382 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
4383 *
4384 * @param pVM Pointer to the VM.
4385 *
4386 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
4387 * in EM.cpp and shouldn't be propagated outside TRPM, HM, EM and
4388 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
4389 * handler.
4390 */
4391VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
4392{
4393 pgmLock(pVM);
4394
4395 /*
4396 * Allocate more pages, noting down the index of the first new page.
4397 */
4398 uint32_t iClear = pVM->pgm.s.cHandyPages;
4399 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_PGM_HANDY_PAGE_IPE);
4400 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
4401 int rcAlloc = VINF_SUCCESS;
4402 int rcSeed = VINF_SUCCESS;
4403 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
4404 while (rc == VERR_GMM_SEED_ME)
4405 {
4406 void *pvChunk;
4407 rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
4408 if (RT_SUCCESS(rc))
4409 {
4410 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
4411 if (RT_FAILURE(rc))
4412 SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
4413 }
4414 if (RT_SUCCESS(rc))
4415 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
4416 }
4417
4418 /* todo: we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */
4419 if ( rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT
4420 && pVM->pgm.s.cHandyPages > 0)
4421 {
4422 /* Still handy pages left, so don't panic. */
4423 rc = VINF_SUCCESS;
4424 }
4425
4426 if (RT_SUCCESS(rc))
4427 {
4428 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
4429 Assert(pVM->pgm.s.cHandyPages > 0);
4430 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
4431 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
4432
4433#ifdef VBOX_STRICT
4434 uint32_t i;
4435 for (i = iClear; i < pVM->pgm.s.cHandyPages; i++)
4436 if ( pVM->pgm.s.aHandyPages[i].idPage == NIL_GMM_PAGEID
4437 || pVM->pgm.s.aHandyPages[i].idSharedPage != NIL_GMM_PAGEID
4438 || (pVM->pgm.s.aHandyPages[i].HCPhysGCPhys & PAGE_OFFSET_MASK))
4439 break;
4440 if (i != pVM->pgm.s.cHandyPages)
4441 {
4442 RTAssertMsg1Weak(NULL, __LINE__, __FILE__, __FUNCTION__);
4443 RTAssertMsg2Weak("i=%d iClear=%d cHandyPages=%d\n", i, iClear, pVM->pgm.s.cHandyPages);
4444 for (uint32_t j = iClear; j < pVM->pgm.s.cHandyPages; j++)
4445 RTAssertMsg2Add(("%03d: idPage=%d HCPhysGCPhys=%RHp idSharedPage=%d%\n", j,
4446 pVM->pgm.s.aHandyPages[j].idPage,
4447 pVM->pgm.s.aHandyPages[j].HCPhysGCPhys,
4448 pVM->pgm.s.aHandyPages[j].idSharedPage,
4449 j == i ? " <---" : ""));
4450 RTAssertPanic();
4451 }
4452#endif
4453 /*
4454 * Clear the pages.
4455 */
4456 while (iClear < pVM->pgm.s.cHandyPages)
4457 {
4458 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
4459 void *pv;
4460 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
4461 AssertLogRelMsgBreak(RT_SUCCESS(rc),
4462 ("%u/%u: idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n",
4463 iClear, pVM->pgm.s.cHandyPages, pPage->idPage, pPage->HCPhysGCPhys, rc));
4464 ASMMemZeroPage(pv);
4465 iClear++;
4466 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
4467 }
4468 }
4469 else
4470 {
4471 uint64_t cAllocPages, cMaxPages, cBalloonPages;
4472
4473 /*
4474 * We should never get here unless there is a genuine shortage of
4475 * memory (or some internal error). Flag the error so the VM can be
4476 * suspended ASAP and the user informed. If we're totally out of
4477 * handy pages we will return failure.
4478 */
4479 /* Report the failure. */
4480 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
4481 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
4482 rc, rcAlloc, rcSeed,
4483 pVM->pgm.s.cHandyPages,
4484 pVM->pgm.s.cAllPages,
4485 pVM->pgm.s.cPrivatePages,
4486 pVM->pgm.s.cSharedPages,
4487 pVM->pgm.s.cZeroPages));
4488
4489 if (GMMR3QueryMemoryStats(pVM, &cAllocPages, &cMaxPages, &cBalloonPages) == VINF_SUCCESS)
4490 {
4491 LogRel(("GMM: Statistics:\n"
4492 " Allocated pages: %RX64\n"
4493 " Maximum pages: %RX64\n"
4494 " Ballooned pages: %RX64\n", cAllocPages, cMaxPages, cBalloonPages));
4495 }
4496
4497 if ( rc != VERR_NO_MEMORY
4498 && rc != VERR_NO_PHYS_MEMORY
4499 && rc != VERR_LOCK_FAILED)
4500 {
4501 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
4502 {
4503 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
4504 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
4505 pVM->pgm.s.aHandyPages[i].idSharedPage));
4506 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
4507 if (idPage != NIL_GMM_PAGEID)
4508 {
4509 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
4510 pRam;
4511 pRam = pRam->pNextR3)
4512 {
4513 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
4514 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4515 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
4516 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
4517 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
4518 }
4519 }
4520 }
4521 }
4522
4523 /* Set the FFs and adjust rc. */
4524 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
4525 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
4526 if ( rc == VERR_NO_MEMORY
4527 || rc == VERR_NO_PHYS_MEMORY
4528 || rc == VERR_LOCK_FAILED)
4529 rc = VINF_EM_NO_MEMORY;
4530 }
4531
4532 pgmUnlock(pVM);
4533 return rc;
4534}
4535
4536
4537/**
4538 * Frees the specified RAM page and replaces it with the ZERO page.
4539 *
4540 * This is used by ballooning, remapping MMIO2, RAM reset and state loading.
4541 *
4542 * @param pVM Pointer to the VM.
4543 * @param pReq Pointer to the request.
4544 * @param pcPendingPages Where the number of pages waiting to be freed are
4545 * kept. This will normally be incremented.
4546 * @param pPage Pointer to the page structure.
4547 * @param GCPhys The guest physical address of the page, if applicable.
4548 *
4549 * @remarks The caller must own the PGM lock.
4550 */
4551int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys)
4552{
4553 /*
4554 * Assert sanity.
4555 */
4556 PGM_LOCK_ASSERT_OWNER(pVM);
4557 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
4558 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
4559 {
4560 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
4561 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
4562 }
4563
4564 /** @todo What about ballooning of large pages??! */
4565 Assert( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
4566 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED);
4567
4568 if ( PGM_PAGE_IS_ZERO(pPage)
4569 || PGM_PAGE_IS_BALLOONED(pPage))
4570 return VINF_SUCCESS;
4571
4572 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
4573 Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage));
4574 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
4575 || idPage > GMM_PAGEID_LAST
4576 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
4577 {
4578 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
4579 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
4580 }
4581
4582 /* update page count stats. */
4583 if (PGM_PAGE_IS_SHARED(pPage))
4584 pVM->pgm.s.cSharedPages--;
4585 else
4586 pVM->pgm.s.cPrivatePages--;
4587 pVM->pgm.s.cZeroPages++;
4588
4589 /* Deal with write monitored pages. */
4590 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
4591 {
4592 PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
4593 pVM->pgm.s.cWrittenToPages++;
4594 }
4595
4596 /*
4597 * pPage = ZERO page.
4598 */
4599 PGM_PAGE_SET_HCPHYS(pVM, pPage, pVM->pgm.s.HCPhysZeroPg);
4600 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
4601 PGM_PAGE_SET_PAGEID(pVM, pPage, NIL_GMM_PAGEID);
4602 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
4603 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
4604 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
4605
4606 /* Flush physical page map TLB entry. */
4607 pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
4608
4609 /*
4610 * Make sure it's not in the handy page array.
4611 */
4612 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
4613 {
4614 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
4615 {
4616 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
4617 break;
4618 }
4619 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
4620 {
4621 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
4622 break;
4623 }
4624 }
4625
4626 /*
4627 * Push it onto the page array.
4628 */
4629 uint32_t iPage = *pcPendingPages;
4630 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
4631 *pcPendingPages += 1;
4632
4633 pReq->aPages[iPage].idPage = idPage;
4634
4635 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
4636 return VINF_SUCCESS;
4637
4638 /*
4639 * Flush the pages.
4640 */
4641 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
4642 if (RT_SUCCESS(rc))
4643 {
4644 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
4645 *pcPendingPages = 0;
4646 }
4647 return rc;
4648}
4649
4650
4651/**
4652 * Converts a GC physical address to a HC ring-3 pointer, with some
4653 * additional checks.
4654 *
4655 * @returns VBox status code.
4656 * @retval VINF_SUCCESS on success.
4657 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
4658 * access handler of some kind.
4659 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
4660 * accesses or is odd in any way.
4661 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
4662 *
4663 * @param pVM Pointer to the VM.
4664 * @param GCPhys The GC physical address to convert. Since this is only
4665 * used for filling the REM TLB, the A20 mask must be
4666 * applied before calling this API.
4667 * @param fWritable Whether write access is required.
4668 * @param ppv Where to store the pointer corresponding to GCPhys on
4669 * success.
4670 */
4671VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
4672{
4673 pgmLock(pVM);
4674 PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);
4675
4676 PPGMRAMRANGE pRam;
4677 PPGMPAGE pPage;
4678 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
4679 if (RT_SUCCESS(rc))
4680 {
4681 if (PGM_PAGE_IS_BALLOONED(pPage))
4682 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
4683 else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
4684 rc = VINF_SUCCESS;
4685 else
4686 {
4687 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
4688 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4689 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
4690 {
4691 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
4692 * in -norawr0 mode. */
4693 if (fWritable)
4694 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
4695 }
4696 else
4697 {
4698 /* Temporarily disabled physical handler(s), since the recompiler
4699 doesn't get notified when it's reset we'll have to pretend it's
4700 operating normally. */
4701 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
4702 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4703 else
4704 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
4705 }
4706 }
4707 if (RT_SUCCESS(rc))
4708 {
4709 int rc2;
4710
4711 /* Make sure what we return is writable. */
4712 if (fWritable)
4713 switch (PGM_PAGE_GET_STATE(pPage))
4714 {
4715 case PGM_PAGE_STATE_ALLOCATED:
4716 break;
4717 case PGM_PAGE_STATE_BALLOONED:
4718 AssertFailed();
4719 break;
4720 case PGM_PAGE_STATE_ZERO:
4721 case PGM_PAGE_STATE_SHARED:
4722 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
4723 break;
4724 case PGM_PAGE_STATE_WRITE_MONITORED:
4725 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
4726 AssertLogRelRCReturn(rc2, rc2);
4727 break;
4728 }
4729
4730 /* Get a ring-3 mapping of the address. */
4731 PPGMPAGER3MAPTLBE pTlbe;
4732 rc2 = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
4733 AssertLogRelRCReturn(rc2, rc2);
4734 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
4735 /** @todo mapping/locking hell; this isn't horribly efficient since
4736 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
4737
4738 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
4739 }
4740 else
4741 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
4742
4743 /* else: handler catching all access, no pointer returned. */
4744 }
4745 else
4746 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
4747
4748 pgmUnlock(pVM);
4749 return rc;
4750}
4751
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette