VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 74183

Last change on this file since 74183 was 73481, checked in by vboxsync, 6 years ago

VMM,DBGF: Improved unwinding of ring-0 assertion stacks, making the new unwind info stuff deal correctly with ring-0 pointers and such. bugref:3897 [build fix]

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 121.5 KB
Line 
1/* $Id: VMM.cpp 73481 2018-08-03 12:32:03Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually, maybe.
27 *
28 * VMM is made up of these components:
29 * - @subpage pg_cfgm
30 * - @subpage pg_cpum
31 * - @subpage pg_csam
32 * - @subpage pg_dbgf
33 * - @subpage pg_em
34 * - @subpage pg_gim
35 * - @subpage pg_gmm
36 * - @subpage pg_gvmm
37 * - @subpage pg_hm
38 * - @subpage pg_iem
39 * - @subpage pg_iom
40 * - @subpage pg_mm
41 * - @subpage pg_patm
42 * - @subpage pg_pdm
43 * - @subpage pg_pgm
44 * - @subpage pg_rem
45 * - @subpage pg_selm
46 * - @subpage pg_ssm
47 * - @subpage pg_stam
48 * - @subpage pg_tm
49 * - @subpage pg_trpm
50 * - @subpage pg_vm
51 *
52 *
53 * @see @ref grp_vmm @ref grp_vm @subpage pg_vmm_guideline @subpage pg_raw
54 *
55 *
56 * @section sec_vmmstate VMM State
57 *
58 * @image html VM_Statechart_Diagram.gif
59 *
60 * To be written.
61 *
62 *
63 * @subsection subsec_vmm_init VMM Initialization
64 *
65 * To be written.
66 *
67 *
68 * @subsection subsec_vmm_term VMM Termination
69 *
70 * To be written.
71 *
72 *
73 * @section sec_vmm_limits VMM Limits
74 *
75 * There are various resource limits imposed by the VMM and it's
76 * sub-components. We'll list some of them here.
77 *
78 * On 64-bit hosts:
79 * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES),
80 * can be increased up to 64K - 1.
81 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
82 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
83 * - A VM can be assigned all the memory we can use (16TB), however, the
84 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
85 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
86 *
87 * On 32-bit hosts:
88 * - Max 127 VMs. Imposed by GMM's per page structure.
89 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
90 * ROM pages. The limit is imposed by the 28-bit page ID used
91 * internally in GMM. It is also limited by PAE.
92 * - A VM can be assigned all the memory GMM can allocate, however, the
93 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
94 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
95 *
96 */
97
98
99/*********************************************************************************************************************************
100* Header Files *
101*********************************************************************************************************************************/
102#define LOG_GROUP LOG_GROUP_VMM
103#include <VBox/vmm/vmm.h>
104#include <VBox/vmm/vmapi.h>
105#include <VBox/vmm/pgm.h>
106#include <VBox/vmm/cfgm.h>
107#include <VBox/vmm/pdmqueue.h>
108#include <VBox/vmm/pdmcritsect.h>
109#include <VBox/vmm/pdmcritsectrw.h>
110#include <VBox/vmm/pdmapi.h>
111#include <VBox/vmm/cpum.h>
112#include <VBox/vmm/gim.h>
113#include <VBox/vmm/mm.h>
114#include <VBox/vmm/nem.h>
115#include <VBox/vmm/iom.h>
116#include <VBox/vmm/trpm.h>
117#include <VBox/vmm/selm.h>
118#include <VBox/vmm/em.h>
119#include <VBox/sup.h>
120#include <VBox/vmm/dbgf.h>
121#include <VBox/vmm/csam.h>
122#include <VBox/vmm/patm.h>
123#include <VBox/vmm/apic.h>
124#ifdef VBOX_WITH_REM
125# include <VBox/vmm/rem.h>
126#endif
127#include <VBox/vmm/ssm.h>
128#include <VBox/vmm/ftm.h>
129#include <VBox/vmm/tm.h>
130#include "VMMInternal.h"
131#include "VMMSwitcher.h"
132#include <VBox/vmm/vm.h>
133#include <VBox/vmm/uvm.h>
134
135#include <VBox/err.h>
136#include <VBox/param.h>
137#include <VBox/version.h>
138#include <VBox/vmm/hm.h>
139#include <iprt/assert.h>
140#include <iprt/alloc.h>
141#include <iprt/asm.h>
142#include <iprt/time.h>
143#include <iprt/semaphore.h>
144#include <iprt/stream.h>
145#include <iprt/string.h>
146#include <iprt/stdarg.h>
147#include <iprt/ctype.h>
148#include <iprt/x86.h>
149
150
151/*********************************************************************************************************************************
152* Defined Constants And Macros *
153*********************************************************************************************************************************/
154/** The saved state version. */
155#define VMM_SAVED_STATE_VERSION 4
156/** The saved state version used by v3.0 and earlier. (Teleportation) */
157#define VMM_SAVED_STATE_VERSION_3_0 3
158
159/** Macro for flushing the ring-0 logging. */
160#define VMM_FLUSH_R0_LOG(a_pR0Logger, a_pR3Logger) \
161 do { \
162 PVMMR0LOGGER pVmmLogger = (a_pR0Logger); \
163 if (!pVmmLogger || pVmmLogger->Logger.offScratch == 0) \
164 { /* likely? */ } \
165 else \
166 RTLogFlushR0(a_pR3Logger, &pVmmLogger->Logger); \
167 } while (0)
168
169
170/*********************************************************************************************************************************
171* Internal Functions *
172*********************************************************************************************************************************/
173static int vmmR3InitStacks(PVM pVM);
174static int vmmR3InitLoggers(PVM pVM);
175static void vmmR3InitRegisterStats(PVM pVM);
176static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
177static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
178static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
179static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
180 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser);
181static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
182static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
183
184
185/**
186 * Initializes the VMM.
187 *
188 * @returns VBox status code.
189 * @param pVM The cross context VM structure.
190 */
191VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
192{
193 LogFlow(("VMMR3Init\n"));
194
195 /*
196 * Assert alignment, sizes and order.
197 */
198 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
199 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
200 AssertCompile(sizeof(pVM->aCpus[0].vmm.s) <= sizeof(pVM->aCpus[0].vmm.padding));
201
202 /*
203 * Init basic VM VMM members.
204 */
205 pVM->vmm.s.offVM = RT_UOFFSETOF(VM, vmm);
206 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
207 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
208 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
209 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
210 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
211 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
212 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
213 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
214 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
215
216 /** @cfgm{/YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
217 * The EMT yield interval. The EMT yielding is a hack we employ to play a
218 * bit nicer with the rest of the system (like for instance the GUI).
219 */
220 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
221 23 /* Value arrived at after experimenting with the grub boot prompt. */);
222 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
223
224
225 /** @cfgm{/VMM/UsePeriodicPreemptionTimers, boolean, true}
226 * Controls whether we employ per-cpu preemption timers to limit the time
227 * spent executing guest code. This option is not available on all
228 * platforms and we will silently ignore this setting then. If we are
229 * running in VT-x mode, we will use the VMX-preemption timer instead of
230 * this one when possible.
231 */
232 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
233 rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
234 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
235
236 /*
237 * Initialize the VMM rendezvous semaphores.
238 */
239 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
240 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
241 return VERR_NO_MEMORY;
242 for (VMCPUID i = 0; i < pVM->cCpus; i++)
243 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
244 for (VMCPUID i = 0; i < pVM->cCpus; i++)
245 {
246 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
247 AssertRCReturn(rc, rc);
248 }
249 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
250 AssertRCReturn(rc, rc);
251 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
252 AssertRCReturn(rc, rc);
253 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
254 AssertRCReturn(rc, rc);
255 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
256 AssertRCReturn(rc, rc);
257 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPush);
258 AssertRCReturn(rc, rc);
259 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPop);
260 AssertRCReturn(rc, rc);
261 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
262 AssertRCReturn(rc, rc);
263 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
264 AssertRCReturn(rc, rc);
265
266 /*
267 * Register the saved state data unit.
268 */
269 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
270 NULL, NULL, NULL,
271 NULL, vmmR3Save, NULL,
272 NULL, vmmR3Load, NULL);
273 if (RT_FAILURE(rc))
274 return rc;
275
276 /*
277 * Register the Ring-0 VM handle with the session for fast ioctl calls.
278 */
279 rc = SUPR3SetVMForFastIOCtl(pVM->pVMR0);
280 if (RT_FAILURE(rc))
281 return rc;
282
283 /*
284 * Init various sub-components.
285 */
286 rc = vmmR3SwitcherInit(pVM);
287 if (RT_SUCCESS(rc))
288 {
289 rc = vmmR3InitStacks(pVM);
290 if (RT_SUCCESS(rc))
291 {
292 rc = vmmR3InitLoggers(pVM);
293
294#ifdef VBOX_WITH_NMI
295 /*
296 * Allocate mapping for the host APIC.
297 */
298 if (RT_SUCCESS(rc))
299 {
300 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
301 AssertRC(rc);
302 }
303#endif
304 if (RT_SUCCESS(rc))
305 {
306 /*
307 * Debug info and statistics.
308 */
309 DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF);
310 vmmR3InitRegisterStats(pVM);
311 vmmInitFormatTypes();
312
313 return VINF_SUCCESS;
314 }
315 }
316 /** @todo Need failure cleanup. */
317
318 //more todo in here?
319 //if (RT_SUCCESS(rc))
320 //{
321 //}
322 //int rc2 = vmmR3TermCoreCode(pVM);
323 //AssertRC(rc2));
324 }
325
326 return rc;
327}
328
329
330/**
331 * Allocate & setup the VMM RC stack(s) (for EMTs).
332 *
333 * The stacks are also used for long jumps in Ring-0.
334 *
335 * @returns VBox status code.
336 * @param pVM The cross context VM structure.
337 *
338 * @remarks The optional guard page gets it protection setup up during R3 init
339 * completion because of init order issues.
340 */
341static int vmmR3InitStacks(PVM pVM)
342{
343 int rc = VINF_SUCCESS;
344#ifdef VMM_R0_SWITCH_STACK
345 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
346#else
347 uint32_t fFlags = 0;
348#endif
349
350 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
351 {
352 PVMCPU pVCpu = &pVM->aCpus[idCpu];
353
354#ifdef VBOX_STRICT_VMM_STACK
355 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
356#else
357 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
358#endif
359 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
360 if (RT_SUCCESS(rc))
361 {
362#ifdef VBOX_STRICT_VMM_STACK
363 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
364#endif
365#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
366 /* MMHyperR3ToR0 returns R3 when not doing hardware assisted virtualization. */
367 if (VM_IS_RAW_MODE_ENABLED(pVM))
368 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = NIL_RTR0PTR;
369 else
370#endif
371 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
372 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
373 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
374 AssertRelease(pVCpu->vmm.s.pbEMTStackRC);
375
376 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
377 }
378 }
379
380 return rc;
381}
382
383
384/**
385 * Initialize the loggers.
386 *
387 * @returns VBox status code.
388 * @param pVM The cross context VM structure.
389 */
390static int vmmR3InitLoggers(PVM pVM)
391{
392 int rc;
393#define RTLogCalcSizeForR0(cGroups, fFlags) (RT_UOFFSETOF_DYN(VMMR0LOGGER, Logger.afGroups[cGroups]) + PAGE_SIZE)
394
395 /*
396 * Allocate RC & R0 Logger instances (they are finalized in the relocator).
397 */
398#ifdef LOG_ENABLED
399 PRTLOGGER pLogger = RTLogDefaultInstance();
400 if (pLogger)
401 {
402 if (VM_IS_RAW_MODE_ENABLED(pVM))
403 {
404 pVM->vmm.s.cbRCLogger = RT_UOFFSETOF_DYN(RTLOGGERRC, afGroups[pLogger->cGroups]);
405 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCLoggerR3);
406 if (RT_FAILURE(rc))
407 return rc;
408 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
409 }
410
411# ifdef VBOX_WITH_R0_LOGGING
412 size_t const cbLogger = RTLogCalcSizeForR0(pLogger->cGroups, 0);
413 for (VMCPUID i = 0; i < pVM->cCpus; i++)
414 {
415 PVMCPU pVCpu = &pVM->aCpus[i];
416 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
417 (void **)&pVCpu->vmm.s.pR0LoggerR3);
418 if (RT_FAILURE(rc))
419 return rc;
420 pVCpu->vmm.s.pR0LoggerR3->pVM = pVM->pVMR0;
421 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
422 pVCpu->vmm.s.pR0LoggerR3->cbLogger = (uint32_t)cbLogger;
423 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
424 }
425# endif
426 }
427#endif /* LOG_ENABLED */
428
429 /*
430 * Release logging.
431 */
432 PRTLOGGER pRelLogger = RTLogRelGetDefaultInstance();
433 if (pRelLogger)
434 {
435#ifdef VBOX_WITH_RC_RELEASE_LOGGING
436 /*
437 * Allocate RC release logger instances (finalized in the relocator).
438 */
439 if (VM_IS_RAW_MODE_ENABLED(pVM))
440 {
441 pVM->vmm.s.cbRCRelLogger = RT_UOFFSETOF_DYN(RTLOGGERRC, afGroups[pRelLogger->cGroups]);
442 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCRelLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCRelLoggerR3);
443 if (RT_FAILURE(rc))
444 return rc;
445 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
446 }
447#endif
448
449 /*
450 * Ring-0 release logger.
451 */
452 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
453 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
454 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
455
456 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
457 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
458 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
459
460 size_t const cbLogger = RTLogCalcSizeForR0(pRelLogger->cGroups, 0);
461
462 for (VMCPUID i = 0; i < pVM->cCpus; i++)
463 {
464 PVMCPU pVCpu = &pVM->aCpus[i];
465 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
466 (void **)&pVCpu->vmm.s.pR0RelLoggerR3);
467 if (RT_FAILURE(rc))
468 return rc;
469 PVMMR0LOGGER pVmmLogger = pVCpu->vmm.s.pR0RelLoggerR3;
470 RTR0PTR R0PtrVmmLogger = MMHyperR3ToR0(pVM, pVmmLogger);
471 pVCpu->vmm.s.pR0RelLoggerR0 = R0PtrVmmLogger;
472 pVmmLogger->pVM = pVM->pVMR0;
473 pVmmLogger->cbLogger = (uint32_t)cbLogger;
474 pVmmLogger->fCreated = false;
475 pVmmLogger->fFlushingDisabled = false;
476 pVmmLogger->fRegistered = false;
477 pVmmLogger->idCpu = i;
478
479 char szR0ThreadName[16];
480 RTStrPrintf(szR0ThreadName, sizeof(szR0ThreadName), "EMT-%u-R0", i);
481 rc = RTLogCreateForR0(&pVmmLogger->Logger, pVmmLogger->cbLogger, R0PtrVmmLogger + RT_UOFFSETOF(VMMR0LOGGER, Logger),
482 pfnLoggerWrapper, pfnLoggerFlush,
483 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY, szR0ThreadName);
484 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
485
486 /* We only update the release log instance here. */
487 rc = RTLogCopyGroupsAndFlagsForR0(&pVmmLogger->Logger, R0PtrVmmLogger + RT_UOFFSETOF(VMMR0LOGGER, Logger),
488 pRelLogger, RTLOGFLAGS_BUFFERED, UINT32_MAX);
489 AssertReleaseMsgRCReturn(rc, ("RTLogCopyGroupsAndFlagsForR0 failed! rc=%Rra\n", rc), rc);
490
491 pVmmLogger->fCreated = true;
492 }
493 }
494
495 return VINF_SUCCESS;
496}
497
498
499/**
500 * VMMR3Init worker that register the statistics with STAM.
501 *
502 * @param pVM The cross context VM structure.
503 */
504static void vmmR3InitRegisterStats(PVM pVM)
505{
506 RT_NOREF_PV(pVM);
507
508 /*
509 * Statistics.
510 */
511 STAM_REG(pVM, &pVM->vmm.s.StatRunRC, STAMTYPE_COUNTER, "/VMM/RunRC", STAMUNIT_OCCURENCES, "Number of context switches.");
512 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
513 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
514 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
515 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
516 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
517 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
518 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
519 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
520 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
521 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
522 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns.");
523 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns.");
524 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_COMMIT_WRITE returns.");
525 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns.");
526 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns.");
527 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_COMMIT_WRITE returns.");
528 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns.");
529 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
530 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
531 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRRead, STAMTYPE_COUNTER, "/VMM/RZRet/MSRRead", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_READ returns.");
532 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MSRWrite", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_WRITE returns.");
533 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
534 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
535 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
536 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
537 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
538 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
539 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
540 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
541 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
542 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
543 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
544 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
545 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Total, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
546 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns without responsible force flag.");
547 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3FF, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TO_R3.");
548 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_TM_VIRTUAL_SYNC.");
549 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PGM_NEED_HANDY_PAGES.");
550 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_QUEUES.");
551 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_EMT_RENDEZVOUS.");
552 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TIMER.");
553 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_DMA.");
554 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_PDM_CRITSECT.");
555 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iem, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IEM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IEM.");
556 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iom, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IOM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IOM.");
557 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
558 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
559 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
560 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
561 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
562 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
563 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HM_PATCH_TPR_INSTR returns.");
564 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
565 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
566 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMCritSectEnter, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMCritSectEnter", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_CRITSECT_ENTER calls.");
567 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
568 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
569 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
570 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
571 STAM_REG(pVM, &pVM->vmm.s.StatRZCallRemReplay, STAMTYPE_COUNTER, "/VMM/RZCallR3/REMReplay", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS calls.");
572 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
573 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
574 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
575
576#ifdef VBOX_WITH_STATISTICS
577 for (VMCPUID i = 0; i < pVM->cCpus; i++)
578 {
579 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
580 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
581 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
582 }
583#endif
584}
585
586
587/**
588 * Worker for VMMR3InitR0 that calls ring-0 to do EMT specific initialization.
589 *
590 * @returns VBox status code.
591 * @param pVM The cross context VM structure.
592 * @param pVCpu The cross context per CPU structure.
593 * @thread EMT(pVCpu)
594 */
595static DECLCALLBACK(int) vmmR3InitR0Emt(PVM pVM, PVMCPU pVCpu)
596{
597 return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_INIT_EMT, 0, NULL);
598}
599
600
601/**
602 * Initializes the R0 VMM.
603 *
604 * @returns VBox status code.
605 * @param pVM The cross context VM structure.
606 */
607VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
608{
609 int rc;
610 PVMCPU pVCpu = VMMGetCpu(pVM);
611 Assert(pVCpu && pVCpu->idCpu == 0);
612
613#ifdef LOG_ENABLED
614 /*
615 * Initialize the ring-0 logger if we haven't done so yet.
616 */
617 if ( pVCpu->vmm.s.pR0LoggerR3
618 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
619 {
620 rc = VMMR3UpdateLoggers(pVM);
621 if (RT_FAILURE(rc))
622 return rc;
623 }
624#endif
625
626 /*
627 * Call Ring-0 entry with init code.
628 */
629 for (;;)
630 {
631#ifdef NO_SUPCALLR0VMM
632 //rc = VERR_GENERAL_FAILURE;
633 rc = VINF_SUCCESS;
634#else
635 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, RT_MAKE_U64(VMMGetSvnRev(), vmmGetBuildType()), NULL);
636#endif
637 /*
638 * Flush the logs.
639 */
640#ifdef LOG_ENABLED
641 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
642#endif
643 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
644 if (rc != VINF_VMM_CALL_HOST)
645 break;
646 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
647 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
648 break;
649 /* Resume R0 */
650 }
651
652 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
653 {
654 LogRel(("VMM: R0 init failed, rc=%Rra\n", rc));
655 if (RT_SUCCESS(rc))
656 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
657 }
658
659 /* Log whether thread-context hooks are used (on Linux this can depend on how the kernel is configured). */
660 if (pVM->aCpus[0].vmm.s.hCtxHook != NIL_RTTHREADCTXHOOK)
661 LogRel(("VMM: Enabled thread-context hooks\n"));
662 else
663 LogRel(("VMM: Thread-context hooks unavailable\n"));
664
665 /* Log RTThreadPreemptIsPendingTrusty() and RTThreadPreemptIsPossible() results. */
666 if (pVM->vmm.s.fIsPreemptPendingApiTrusty)
667 LogRel(("VMM: RTThreadPreemptIsPending() can be trusted\n"));
668 else
669 LogRel(("VMM: Warning! RTThreadPreemptIsPending() cannot be trusted! Need to update kernel info?\n"));
670 if (pVM->vmm.s.fIsPreemptPossible)
671 LogRel(("VMM: Kernel preemption is possible\n"));
672 else
673 LogRel(("VMM: Kernel preemption is not possible it seems\n"));
674
675 /*
676 * Send all EMTs to ring-0 to get their logger initialized.
677 */
678 for (VMCPUID idCpu = 0; RT_SUCCESS(rc) && idCpu < pVM->cCpus; idCpu++)
679 rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)vmmR3InitR0Emt, 2, pVM, &pVM->aCpus[idCpu]);
680
681 return rc;
682}
683
684
685#ifdef VBOX_WITH_RAW_MODE
686/**
687 * Initializes the RC VMM.
688 *
689 * @returns VBox status code.
690 * @param pVM The cross context VM structure.
691 */
692VMMR3_INT_DECL(int) VMMR3InitRC(PVM pVM)
693{
694 PVMCPU pVCpu = VMMGetCpu(pVM);
695 Assert(pVCpu && pVCpu->idCpu == 0);
696
697 /* In VMX mode, there's no need to init RC. */
698 if (!VM_IS_RAW_MODE_ENABLED(pVM))
699 return VINF_SUCCESS;
700
701 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
702
703 /*
704 * Call VMMRCInit():
705 * -# resolve the address.
706 * -# setup stackframe and EIP to use the trampoline.
707 * -# do a generic hypervisor call.
708 */
709 RTRCPTR RCPtrEP;
710 int rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "VMMRCEntry", &RCPtrEP);
711 if (RT_SUCCESS(rc))
712 {
713 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC); /* Clear the stack. */
714 uint64_t u64TS = RTTimeProgramStartNanoTS();
715 CPUMPushHyper(pVCpu, RT_HI_U32(u64TS)); /* Param 4: The program startup TS - Hi. */
716 CPUMPushHyper(pVCpu, RT_LO_U32(u64TS)); /* Param 4: The program startup TS - Lo. */
717 CPUMPushHyper(pVCpu, vmmGetBuildType()); /* Param 3: Version argument. */
718 CPUMPushHyper(pVCpu, VMMGetSvnRev()); /* Param 2: Version argument. */
719 CPUMPushHyper(pVCpu, VMMRC_DO_VMMRC_INIT); /* Param 1: Operation. */
720 CPUMPushHyper(pVCpu, pVM->pVMRC); /* Param 0: pVM */
721 CPUMPushHyper(pVCpu, 6 * sizeof(RTRCPTR)); /* trampoline param: stacksize. */
722 CPUMPushHyper(pVCpu, RCPtrEP); /* Call EIP. */
723 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
724 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
725
726 for (;;)
727 {
728#ifdef NO_SUPCALLR0VMM
729 //rc = VERR_GENERAL_FAILURE;
730 rc = VINF_SUCCESS;
731#else
732 rc = SUPR3CallVMMR0(pVM->pVMR0, 0 /* VCPU 0 */, VMMR0_DO_CALL_HYPERVISOR, NULL);
733#endif
734#ifdef LOG_ENABLED
735 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
736 if ( pLogger
737 && pLogger->offScratch > 0)
738 RTLogFlushRC(NULL, pLogger);
739#endif
740#ifdef VBOX_WITH_RC_RELEASE_LOGGING
741 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
742 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
743 RTLogFlushRC(RTLogRelGetDefaultInstance(), pRelLogger);
744#endif
745 if (rc != VINF_VMM_CALL_HOST)
746 break;
747 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
748 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
749 break;
750 }
751
752 /* Don't trigger assertions or guru if raw-mode is unavailable. */
753 if (rc != VERR_SUPDRV_NO_RAW_MODE_HYPER_V_ROOT)
754 {
755 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
756 {
757 VMMR3FatalDump(pVM, pVCpu, rc);
758 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
759 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
760 }
761 AssertRC(rc);
762 }
763 }
764 return rc;
765}
766#endif /* VBOX_WITH_RAW_MODE */
767
768
769/**
770 * Called when an init phase completes.
771 *
772 * @returns VBox status code.
773 * @param pVM The cross context VM structure.
774 * @param enmWhat Which init phase.
775 */
776VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
777{
778 int rc = VINF_SUCCESS;
779
780 switch (enmWhat)
781 {
782 case VMINITCOMPLETED_RING3:
783 {
784 /*
785 * Set page attributes to r/w for stack pages.
786 */
787 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
788 {
789 rc = PGMMapSetPage(pVM, pVM->aCpus[idCpu].vmm.s.pbEMTStackRC, VMM_STACK_SIZE,
790 X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
791 AssertRCReturn(rc, rc);
792 }
793
794 /*
795 * Create the EMT yield timer.
796 */
797 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
798 AssertRCReturn(rc, rc);
799
800 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
801 AssertRCReturn(rc, rc);
802
803#ifdef VBOX_WITH_NMI
804 /*
805 * Map the host APIC into GC - This is AMD/Intel + Host OS specific!
806 */
807 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
808 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
809 AssertRCReturn(rc, rc);
810#endif
811
812#ifdef VBOX_STRICT_VMM_STACK
813 /*
814 * Setup the stack guard pages: Two inaccessible pages at each sides of the
815 * stack to catch over/under-flows.
816 */
817 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
818 {
819 uint8_t *pbEMTStackR3 = pVM->aCpus[idCpu].vmm.s.pbEMTStackR3;
820
821 memset(pbEMTStackR3 - PAGE_SIZE, 0xcc, PAGE_SIZE);
822 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, true /*fSet*/);
823
824 memset(pbEMTStackR3 + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
825 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, true /*fSet*/);
826 }
827 pVM->vmm.s.fStackGuardsStationed = true;
828#endif
829 break;
830 }
831
832 case VMINITCOMPLETED_HM:
833 {
834 /*
835 * Disable the periodic preemption timers if we can use the
836 * VMX-preemption timer instead.
837 */
838 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
839 && HMR3IsVmxPreemptionTimerUsed(pVM))
840 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
841 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
842
843 /*
844 * Last chance for GIM to update its CPUID leaves if it requires
845 * knowledge/information from HM initialization.
846 */
847 rc = GIMR3InitCompleted(pVM);
848 AssertRCReturn(rc, rc);
849
850 /*
851 * CPUM's post-initialization (print CPUIDs).
852 */
853 CPUMR3LogCpuIds(pVM);
854 break;
855 }
856
857 default: /* shuts up gcc */
858 break;
859 }
860
861 return rc;
862}
863
864
865/**
866 * Terminate the VMM bits.
867 *
868 * @returns VBox status code.
869 * @param pVM The cross context VM structure.
870 */
871VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
872{
873 PVMCPU pVCpu = VMMGetCpu(pVM);
874 Assert(pVCpu && pVCpu->idCpu == 0);
875
876 /*
877 * Call Ring-0 entry with termination code.
878 */
879 int rc;
880 for (;;)
881 {
882#ifdef NO_SUPCALLR0VMM
883 //rc = VERR_GENERAL_FAILURE;
884 rc = VINF_SUCCESS;
885#else
886 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
887#endif
888 /*
889 * Flush the logs.
890 */
891#ifdef LOG_ENABLED
892 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
893#endif
894 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
895 if (rc != VINF_VMM_CALL_HOST)
896 break;
897 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
898 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
899 break;
900 /* Resume R0 */
901 }
902 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
903 {
904 LogRel(("VMM: VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
905 if (RT_SUCCESS(rc))
906 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
907 }
908
909 for (VMCPUID i = 0; i < pVM->cCpus; i++)
910 {
911 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
912 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
913 }
914 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
915 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
916 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
917 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
918 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
919 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
920 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
921 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
922 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
923 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
924 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
925 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
926 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
927 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
928 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
929 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
930
931#ifdef VBOX_STRICT_VMM_STACK
932 /*
933 * Make the two stack guard pages present again.
934 */
935 if (pVM->vmm.s.fStackGuardsStationed)
936 {
937 for (VMCPUID i = 0; i < pVM->cCpus; i++)
938 {
939 uint8_t *pbEMTStackR3 = pVM->aCpus[i].vmm.s.pbEMTStackR3;
940 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, false /*fSet*/);
941 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, false /*fSet*/);
942 }
943 pVM->vmm.s.fStackGuardsStationed = false;
944 }
945#endif
946
947 vmmTermFormatTypes();
948 return rc;
949}
950
951
952/**
953 * Applies relocations to data and code managed by this
954 * component. This function will be called at init and
955 * whenever the VMM need to relocate it self inside the GC.
956 *
957 * The VMM will need to apply relocations to the core code.
958 *
959 * @param pVM The cross context VM structure.
960 * @param offDelta The relocation delta.
961 */
962VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
963{
964 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
965
966 /*
967 * Recalc the RC address.
968 */
969#ifdef VBOX_WITH_RAW_MODE
970 pVM->vmm.s.pvCoreCodeRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pvCoreCodeR3);
971#endif
972
973 /*
974 * The stack.
975 */
976 for (VMCPUID i = 0; i < pVM->cCpus; i++)
977 {
978 PVMCPU pVCpu = &pVM->aCpus[i];
979
980 CPUMSetHyperESP(pVCpu, CPUMGetHyperESP(pVCpu) + offDelta);
981
982 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
983 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
984 }
985
986 /*
987 * All the switchers.
988 */
989 vmmR3SwitcherRelocate(pVM, offDelta);
990
991 /*
992 * Get other RC entry points.
993 */
994 if (VM_IS_RAW_MODE_ENABLED(pVM))
995 {
996 int rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMRCResumeGuest);
997 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Rra\n", rc));
998
999 rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMRCResumeGuestV86);
1000 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Rra\n", rc));
1001 }
1002
1003 /*
1004 * Update the logger.
1005 */
1006 VMMR3UpdateLoggers(pVM);
1007}
1008
1009
1010/**
1011 * Updates the settings for the RC and R0 loggers.
1012 *
1013 * @returns VBox status code.
1014 * @param pVM The cross context VM structure.
1015 */
1016VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
1017{
1018 /*
1019 * Simply clone the logger instance (for RC).
1020 */
1021 int rc = VINF_SUCCESS;
1022 RTRCPTR RCPtrLoggerFlush = 0;
1023
1024 if ( pVM->vmm.s.pRCLoggerR3
1025#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1026 || pVM->vmm.s.pRCRelLoggerR3
1027#endif
1028 )
1029 {
1030 Assert(VM_IS_RAW_MODE_ENABLED(pVM));
1031 rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &RCPtrLoggerFlush);
1032 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Rra\n", rc));
1033 }
1034
1035 if (pVM->vmm.s.pRCLoggerR3)
1036 {
1037 Assert(VM_IS_RAW_MODE_ENABLED(pVM));
1038 RTRCPTR RCPtrLoggerWrapper = 0;
1039 rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &RCPtrLoggerWrapper);
1040 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Rra\n", rc));
1041
1042 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
1043 rc = RTLogCloneRC(NULL /* default */, pVM->vmm.s.pRCLoggerR3, pVM->vmm.s.cbRCLogger,
1044 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
1045 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
1046 }
1047
1048#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1049 if (pVM->vmm.s.pRCRelLoggerR3)
1050 {
1051 Assert(VM_IS_RAW_MODE_ENABLED(pVM));
1052 RTRCPTR RCPtrLoggerWrapper = 0;
1053 rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &RCPtrLoggerWrapper);
1054 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Rra\n", rc));
1055
1056 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
1057 rc = RTLogCloneRC(RTLogRelGetDefaultInstance(), pVM->vmm.s.pRCRelLoggerR3, pVM->vmm.s.cbRCRelLogger,
1058 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
1059 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
1060 }
1061#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
1062
1063#ifdef LOG_ENABLED
1064 /*
1065 * For the ring-0 EMT logger, we use a per-thread logger instance
1066 * in ring-0. Only initialize it once.
1067 */
1068 PRTLOGGER const pDefault = RTLogDefaultInstance();
1069 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1070 {
1071 PVMCPU pVCpu = &pVM->aCpus[i];
1072 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
1073 if (pR0LoggerR3)
1074 {
1075 if (!pR0LoggerR3->fCreated)
1076 {
1077 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
1078 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
1079 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
1080
1081 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
1082 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
1083 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
1084
1085 char szR0ThreadName[16];
1086 RTStrPrintf(szR0ThreadName, sizeof(szR0ThreadName), "EMT-%u-R0", i);
1087 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger,
1088 pVCpu->vmm.s.pR0LoggerR0 + RT_UOFFSETOF(VMMR0LOGGER, Logger),
1089 pfnLoggerWrapper, pfnLoggerFlush,
1090 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY, szR0ThreadName);
1091 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
1092
1093 pR0LoggerR3->idCpu = i;
1094 pR0LoggerR3->fCreated = true;
1095 pR0LoggerR3->fFlushingDisabled = false;
1096 }
1097
1098 rc = RTLogCopyGroupsAndFlagsForR0(&pR0LoggerR3->Logger, pVCpu->vmm.s.pR0LoggerR0 + RT_UOFFSETOF(VMMR0LOGGER, Logger),
1099 pDefault, RTLOGFLAGS_BUFFERED, UINT32_MAX);
1100 AssertRC(rc);
1101 }
1102 }
1103#endif
1104 return rc;
1105}
1106
1107
1108/**
1109 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
1110 *
1111 * @returns Pointer to the buffer.
1112 * @param pVM The cross context VM structure.
1113 */
1114VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
1115{
1116 if (!VM_IS_RAW_MODE_ENABLED(pVM))
1117 return pVM->vmm.s.szRing0AssertMsg1;
1118
1119 RTRCPTR RCPtr;
1120 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg1", &RCPtr);
1121 if (RT_SUCCESS(rc))
1122 return (const char *)MMHyperRCToR3(pVM, RCPtr);
1123
1124 return NULL;
1125}
1126
1127
1128/**
1129 * Returns the VMCPU of the specified virtual CPU.
1130 *
1131 * @returns The VMCPU pointer. NULL if @a idCpu or @a pUVM is invalid.
1132 *
1133 * @param pUVM The user mode VM handle.
1134 * @param idCpu The ID of the virtual CPU.
1135 */
1136VMMR3DECL(PVMCPU) VMMR3GetCpuByIdU(PUVM pUVM, RTCPUID idCpu)
1137{
1138 UVM_ASSERT_VALID_EXT_RETURN(pUVM, NULL);
1139 AssertReturn(idCpu < pUVM->cCpus, NULL);
1140 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, NULL);
1141 return &pUVM->pVM->aCpus[idCpu];
1142}
1143
1144
1145/**
1146 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
1147 *
1148 * @returns Pointer to the buffer.
1149 * @param pVM The cross context VM structure.
1150 */
1151VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
1152{
1153 if (!VM_IS_RAW_MODE_ENABLED(pVM))
1154 return pVM->vmm.s.szRing0AssertMsg2;
1155
1156 RTRCPTR RCPtr;
1157 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg2", &RCPtr);
1158 if (RT_SUCCESS(rc))
1159 return (const char *)MMHyperRCToR3(pVM, RCPtr);
1160
1161 return NULL;
1162}
1163
1164
1165/**
1166 * Execute state save operation.
1167 *
1168 * @returns VBox status code.
1169 * @param pVM The cross context VM structure.
1170 * @param pSSM SSM operation handle.
1171 */
1172static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
1173{
1174 LogFlow(("vmmR3Save:\n"));
1175
1176 /*
1177 * Save the started/stopped state of all CPUs except 0 as it will always
1178 * be running. This avoids breaking the saved state version. :-)
1179 */
1180 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1181 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(&pVM->aCpus[i])));
1182
1183 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
1184}
1185
1186
1187/**
1188 * Execute state load operation.
1189 *
1190 * @returns VBox status code.
1191 * @param pVM The cross context VM structure.
1192 * @param pSSM SSM operation handle.
1193 * @param uVersion Data layout version.
1194 * @param uPass The data pass.
1195 */
1196static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1197{
1198 LogFlow(("vmmR3Load:\n"));
1199 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1200
1201 /*
1202 * Validate version.
1203 */
1204 if ( uVersion != VMM_SAVED_STATE_VERSION
1205 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
1206 {
1207 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
1208 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1209 }
1210
1211 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
1212 {
1213 /* Ignore the stack bottom, stack pointer and stack bits. */
1214 RTRCPTR RCPtrIgnored;
1215 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1216 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1217#ifdef RT_OS_DARWIN
1218 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
1219 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
1220 && SSMR3HandleRevision(pSSM) >= 48858
1221 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
1222 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
1223 )
1224 SSMR3Skip(pSSM, 16384);
1225 else
1226 SSMR3Skip(pSSM, 8192);
1227#else
1228 SSMR3Skip(pSSM, 8192);
1229#endif
1230 }
1231
1232 /*
1233 * Restore the VMCPU states. VCPU 0 is always started.
1234 */
1235 VMCPU_SET_STATE(&pVM->aCpus[0], VMCPUSTATE_STARTED);
1236 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1237 {
1238 bool fStarted;
1239 int rc = SSMR3GetBool(pSSM, &fStarted);
1240 if (RT_FAILURE(rc))
1241 return rc;
1242 VMCPU_SET_STATE(&pVM->aCpus[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
1243 }
1244
1245 /* terminator */
1246 uint32_t u32;
1247 int rc = SSMR3GetU32(pSSM, &u32);
1248 if (RT_FAILURE(rc))
1249 return rc;
1250 if (u32 != UINT32_MAX)
1251 {
1252 AssertMsgFailed(("u32=%#x\n", u32));
1253 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1254 }
1255 return VINF_SUCCESS;
1256}
1257
1258
1259#ifdef VBOX_WITH_RAW_MODE
1260/**
1261 * Resolve a builtin RC symbol.
1262 *
1263 * Called by PDM when loading or relocating RC modules.
1264 *
1265 * @returns VBox status
1266 * @param pVM The cross context VM structure.
1267 * @param pszSymbol Symbol to resolve.
1268 * @param pRCPtrValue Where to store the symbol value.
1269 *
1270 * @remark This has to work before VMMR3Relocate() is called.
1271 */
1272VMMR3_INT_DECL(int) VMMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1273{
1274 if (!strcmp(pszSymbol, "g_Logger"))
1275 {
1276 if (pVM->vmm.s.pRCLoggerR3)
1277 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
1278 *pRCPtrValue = pVM->vmm.s.pRCLoggerRC;
1279 }
1280 else if (!strcmp(pszSymbol, "g_RelLogger"))
1281 {
1282# ifdef VBOX_WITH_RC_RELEASE_LOGGING
1283 if (pVM->vmm.s.pRCRelLoggerR3)
1284 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
1285 *pRCPtrValue = pVM->vmm.s.pRCRelLoggerRC;
1286# else
1287 *pRCPtrValue = NIL_RTRCPTR;
1288# endif
1289 }
1290 else
1291 return VERR_SYMBOL_NOT_FOUND;
1292 return VINF_SUCCESS;
1293}
1294#endif /* VBOX_WITH_RAW_MODE */
1295
1296
1297/**
1298 * Suspends the CPU yielder.
1299 *
1300 * @param pVM The cross context VM structure.
1301 */
1302VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
1303{
1304 VMCPU_ASSERT_EMT(&pVM->aCpus[0]);
1305 if (!pVM->vmm.s.cYieldResumeMillies)
1306 {
1307 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1308 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1309 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1310 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1311 else
1312 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1313 TMTimerStop(pVM->vmm.s.pYieldTimer);
1314 }
1315 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1316}
1317
1318
1319/**
1320 * Stops the CPU yielder.
1321 *
1322 * @param pVM The cross context VM structure.
1323 */
1324VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1325{
1326 if (!pVM->vmm.s.cYieldResumeMillies)
1327 TMTimerStop(pVM->vmm.s.pYieldTimer);
1328 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1329 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1330}
1331
1332
1333/**
1334 * Resumes the CPU yielder when it has been a suspended or stopped.
1335 *
1336 * @param pVM The cross context VM structure.
1337 */
1338VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1339{
1340 if (pVM->vmm.s.cYieldResumeMillies)
1341 {
1342 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1343 pVM->vmm.s.cYieldResumeMillies = 0;
1344 }
1345}
1346
1347
1348/**
1349 * Internal timer callback function.
1350 *
1351 * @param pVM The cross context VM structure.
1352 * @param pTimer The timer handle.
1353 * @param pvUser User argument specified upon timer creation.
1354 */
1355static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1356{
1357 NOREF(pvUser);
1358
1359 /*
1360 * This really needs some careful tuning. While we shouldn't be too greedy since
1361 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1362 * because that'll cause us to stop up.
1363 *
1364 * The current logic is to use the default interval when there is no lag worth
1365 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1366 *
1367 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1368 * so the lag is up to date.)
1369 */
1370 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1371 if ( u64Lag < 50000000 /* 50ms */
1372 || ( u64Lag < 1000000000 /* 1s */
1373 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1374 )
1375 {
1376 uint64_t u64Elapsed = RTTimeNanoTS();
1377 pVM->vmm.s.u64LastYield = u64Elapsed;
1378
1379 RTThreadYield();
1380
1381#ifdef LOG_ENABLED
1382 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1383 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1384#endif
1385 }
1386 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1387}
1388
1389
1390#ifdef VBOX_WITH_RAW_MODE
1391/**
1392 * Executes guest code in the raw-mode context.
1393 *
1394 * @param pVM The cross context VM structure.
1395 * @param pVCpu The cross context virtual CPU structure.
1396 */
1397VMMR3_INT_DECL(int) VMMR3RawRunGC(PVM pVM, PVMCPU pVCpu)
1398{
1399 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1400
1401 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1402
1403 /*
1404 * Set the hypervisor to resume executing a CPUM resume function
1405 * in CPUMRCA.asm.
1406 */
1407 CPUMSetHyperState(pVCpu,
1408 CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM
1409 ? pVM->vmm.s.pfnCPUMRCResumeGuestV86
1410 : pVM->vmm.s.pfnCPUMRCResumeGuest, /* eip */
1411 pVCpu->vmm.s.pbEMTStackBottomRC, /* esp */
1412 0, /* eax */
1413 VM_RC_ADDR(pVM, &pVCpu->cpum) /* edx */);
1414
1415 /*
1416 * We hide log flushes (outer) and hypervisor interrupts (inner).
1417 */
1418 for (;;)
1419 {
1420#ifdef VBOX_STRICT
1421 if (RT_UNLIKELY(!CPUMGetHyperCR3(pVCpu) || CPUMGetHyperCR3(pVCpu) != PGMGetHyperCR3(pVCpu)))
1422 EMR3FatalError(pVCpu, VERR_VMM_HYPER_CR3_MISMATCH);
1423 PGMMapCheck(pVM);
1424# ifdef VBOX_WITH_SAFE_STR
1425 SELMR3CheckShadowTR(pVM);
1426# endif
1427#endif
1428 int rc;
1429 do
1430 {
1431#ifdef NO_SUPCALLR0VMM
1432 rc = VERR_GENERAL_FAILURE;
1433#else
1434 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1435 if (RT_LIKELY(rc == VINF_SUCCESS))
1436 rc = pVCpu->vmm.s.iLastGZRc;
1437#endif
1438 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1439
1440 /*
1441 * Flush the logs.
1442 */
1443#ifdef LOG_ENABLED
1444 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1445 if ( pLogger
1446 && pLogger->offScratch > 0)
1447 RTLogFlushRC(NULL, pLogger);
1448#endif
1449#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1450 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1451 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1452 RTLogFlushRC(RTLogRelGetDefaultInstance(), pRelLogger);
1453#endif
1454 if (rc != VINF_VMM_CALL_HOST)
1455 {
1456 Log2(("VMMR3RawRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1457 return rc;
1458 }
1459 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1460 if (RT_FAILURE(rc))
1461 return rc;
1462 /* Resume GC */
1463 }
1464}
1465#endif /* VBOX_WITH_RAW_MODE */
1466
1467
1468/**
1469 * Executes guest code (Intel VT-x and AMD-V).
1470 *
1471 * @param pVM The cross context VM structure.
1472 * @param pVCpu The cross context virtual CPU structure.
1473 */
1474VMMR3_INT_DECL(int) VMMR3HmRunGC(PVM pVM, PVMCPU pVCpu)
1475{
1476 Log2(("VMMR3HmRunGC: (cs:rip=%04x:%RX64)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1477
1478 for (;;)
1479 {
1480 int rc;
1481 do
1482 {
1483#ifdef NO_SUPCALLR0VMM
1484 rc = VERR_GENERAL_FAILURE;
1485#else
1486 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HM_RUN, pVCpu->idCpu);
1487 if (RT_LIKELY(rc == VINF_SUCCESS))
1488 rc = pVCpu->vmm.s.iLastGZRc;
1489#endif
1490 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1491
1492#if 0 /** @todo triggers too often */
1493 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3));
1494#endif
1495
1496 /*
1497 * Flush the logs
1498 */
1499#ifdef LOG_ENABLED
1500 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
1501#endif
1502 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
1503 if (rc != VINF_VMM_CALL_HOST)
1504 {
1505 Log2(("VMMR3HmRunGC: returns %Rrc (cs:rip=%04x:%RX64)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1506 return rc;
1507 }
1508 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1509 if (RT_FAILURE(rc))
1510 return rc;
1511 /* Resume R0 */
1512 }
1513}
1514
1515
1516/**
1517 * Perform one of the fast I/O control VMMR0 operation.
1518 *
1519 * @returns VBox strict status code.
1520 * @param pVM The cross context VM structure.
1521 * @param pVCpu The cross context virtual CPU structure.
1522 * @param enmOperation The operation to perform.
1523 */
1524VMMR3_INT_DECL(VBOXSTRICTRC) VMMR3CallR0EmtFast(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation)
1525{
1526 for (;;)
1527 {
1528 VBOXSTRICTRC rcStrict;
1529 do
1530 {
1531#ifdef NO_SUPCALLR0VMM
1532 rcStrict = VERR_GENERAL_FAILURE;
1533#else
1534 rcStrict = SUPR3CallVMMR0Fast(pVM->pVMR0, enmOperation, pVCpu->idCpu);
1535 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
1536 rcStrict = pVCpu->vmm.s.iLastGZRc;
1537#endif
1538 } while (rcStrict == VINF_EM_RAW_INTERRUPT_HYPER);
1539
1540 /*
1541 * Flush the logs
1542 */
1543#ifdef LOG_ENABLED
1544 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
1545#endif
1546 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
1547 if (rcStrict != VINF_VMM_CALL_HOST)
1548 return rcStrict;
1549 int rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1550 if (RT_FAILURE(rc))
1551 return rc;
1552 /* Resume R0 */
1553 }
1554}
1555
1556
1557/**
1558 * VCPU worker for VMMSendStartupIpi.
1559 *
1560 * @param pVM The cross context VM structure.
1561 * @param idCpu Virtual CPU to perform SIPI on.
1562 * @param uVector The SIPI vector.
1563 */
1564static DECLCALLBACK(int) vmmR3SendStarupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1565{
1566 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1567 VMCPU_ASSERT_EMT(pVCpu);
1568
1569 /*
1570 * Active, halt and shutdown states of the processor all block SIPIs.
1571 * So we can safely discard the SIPI. See Intel spec. 26.6.2 "Activity State".
1572 */
1573 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1574 return VERR_ACCESS_DENIED;
1575
1576
1577 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1578
1579 pCtx->cs.Sel = uVector << 8;
1580 pCtx->cs.ValidSel = uVector << 8;
1581 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1582 pCtx->cs.u64Base = uVector << 12;
1583 pCtx->cs.u32Limit = UINT32_C(0x0000ffff);
1584 pCtx->rip = 0;
1585
1586 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", idCpu, uVector));
1587
1588# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1589 EMSetState(pVCpu, EMSTATE_HALTED);
1590 return VINF_EM_RESCHEDULE;
1591# else /* And if we go the VMCPU::enmState way it can stay here. */
1592 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1593 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1594 return VINF_SUCCESS;
1595# endif
1596}
1597
1598
1599static DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1600{
1601 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1602 VMCPU_ASSERT_EMT(pVCpu);
1603
1604 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1605
1606 /** @todo Figure out how to handle a nested-guest intercepts here for INIT
1607 * IPI (e.g. SVM_EXIT_INIT). */
1608
1609 PGMR3ResetCpu(pVM, pVCpu);
1610 PDMR3ResetCpu(pVCpu); /* Only clears pending interrupts force flags */
1611 APICR3InitIpi(pVCpu);
1612 TRPMR3ResetCpu(pVCpu);
1613 CPUMR3ResetCpu(pVM, pVCpu);
1614 EMR3ResetCpu(pVCpu);
1615 HMR3ResetCpu(pVCpu);
1616 NEMR3ResetCpu(pVCpu, true /*fInitIpi*/);
1617
1618 /* This will trickle up on the target EMT. */
1619 return VINF_EM_WAIT_SIPI;
1620}
1621
1622
1623/**
1624 * Sends a Startup IPI to the virtual CPU by setting CS:EIP into
1625 * vector-dependent state and unhalting processor.
1626 *
1627 * @param pVM The cross context VM structure.
1628 * @param idCpu Virtual CPU to perform SIPI on.
1629 * @param uVector SIPI vector.
1630 */
1631VMMR3_INT_DECL(void) VMMR3SendStartupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1632{
1633 AssertReturnVoid(idCpu < pVM->cCpus);
1634
1635 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendStarupIpi, 3, pVM, idCpu, uVector);
1636 AssertRC(rc);
1637}
1638
1639
1640/**
1641 * Sends init IPI to the virtual CPU.
1642 *
1643 * @param pVM The cross context VM structure.
1644 * @param idCpu Virtual CPU to perform int IPI on.
1645 */
1646VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1647{
1648 AssertReturnVoid(idCpu < pVM->cCpus);
1649
1650 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1651 AssertRC(rc);
1652}
1653
1654
1655/**
1656 * Registers the guest memory range that can be used for patching.
1657 *
1658 * @returns VBox status code.
1659 * @param pVM The cross context VM structure.
1660 * @param pPatchMem Patch memory range.
1661 * @param cbPatchMem Size of the memory range.
1662 */
1663VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1664{
1665 VM_ASSERT_EMT(pVM);
1666 if (HMIsEnabled(pVM))
1667 return HMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1668
1669 return VERR_NOT_SUPPORTED;
1670}
1671
1672
1673/**
1674 * Deregisters the guest memory range that can be used for patching.
1675 *
1676 * @returns VBox status code.
1677 * @param pVM The cross context VM structure.
1678 * @param pPatchMem Patch memory range.
1679 * @param cbPatchMem Size of the memory range.
1680 */
1681VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1682{
1683 if (HMIsEnabled(pVM))
1684 return HMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1685
1686 return VINF_SUCCESS;
1687}
1688
1689
1690/**
1691 * Common recursion handler for the other EMTs.
1692 *
1693 * @returns Strict VBox status code.
1694 * @param pVM The cross context VM structure.
1695 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1696 * @param rcStrict Current status code to be combined with the one
1697 * from this recursion and returned.
1698 */
1699static VBOXSTRICTRC vmmR3EmtRendezvousCommonRecursion(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict)
1700{
1701 int rc2;
1702
1703 /*
1704 * We wait here while the initiator of this recursion reconfigures
1705 * everything. The last EMT to get in signals the initiator.
1706 */
1707 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) == pVM->cCpus)
1708 {
1709 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1710 AssertLogRelRC(rc2);
1711 }
1712
1713 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPush, RT_INDEFINITE_WAIT);
1714 AssertLogRelRC(rc2);
1715
1716 /*
1717 * Do the normal rendezvous processing.
1718 */
1719 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1720 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1721
1722 /*
1723 * Wait for the initiator to restore everything.
1724 */
1725 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPop, RT_INDEFINITE_WAIT);
1726 AssertLogRelRC(rc2);
1727
1728 /*
1729 * Last thread out of here signals the initiator.
1730 */
1731 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) == pVM->cCpus)
1732 {
1733 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1734 AssertLogRelRC(rc2);
1735 }
1736
1737 /*
1738 * Merge status codes and return.
1739 */
1740 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
1741 if ( rcStrict2 != VINF_SUCCESS
1742 && ( rcStrict == VINF_SUCCESS
1743 || rcStrict > rcStrict2))
1744 rcStrict = rcStrict2;
1745 return rcStrict;
1746}
1747
1748
1749/**
1750 * Count returns and have the last non-caller EMT wake up the caller.
1751 *
1752 * @returns VBox strict informational status code for EM scheduling. No failures
1753 * will be returned here, those are for the caller only.
1754 *
1755 * @param pVM The cross context VM structure.
1756 * @param rcStrict The current accumulated recursive status code,
1757 * to be merged with i32RendezvousStatus and
1758 * returned.
1759 */
1760DECL_FORCE_INLINE(VBOXSTRICTRC) vmmR3EmtRendezvousNonCallerReturn(PVM pVM, VBOXSTRICTRC rcStrict)
1761{
1762 VBOXSTRICTRC rcStrict2 = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1763
1764 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1765 if (cReturned == pVM->cCpus - 1U)
1766 {
1767 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1768 AssertLogRelRC(rc);
1769 }
1770
1771 /*
1772 * Merge the status codes, ignoring error statuses in this code path.
1773 */
1774 AssertLogRelMsgReturn( rcStrict2 <= VINF_SUCCESS
1775 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1776 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)),
1777 VERR_IPE_UNEXPECTED_INFO_STATUS);
1778
1779 if (RT_SUCCESS(rcStrict2))
1780 {
1781 if ( rcStrict2 != VINF_SUCCESS
1782 && ( rcStrict == VINF_SUCCESS
1783 || rcStrict > rcStrict2))
1784 rcStrict = rcStrict2;
1785 }
1786 return rcStrict;
1787}
1788
1789
1790/**
1791 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1792 *
1793 * @returns VBox strict informational status code for EM scheduling. No failures
1794 * will be returned here, those are for the caller only. When
1795 * fIsCaller is set, VINF_SUCCESS is always returned.
1796 *
1797 * @param pVM The cross context VM structure.
1798 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1799 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1800 * not.
1801 * @param fFlags The flags.
1802 * @param pfnRendezvous The callback.
1803 * @param pvUser The user argument for the callback.
1804 */
1805static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1806 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1807{
1808 int rc;
1809 VBOXSTRICTRC rcStrictRecursion = VINF_SUCCESS;
1810
1811 /*
1812 * Enter, the last EMT triggers the next callback phase.
1813 */
1814 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1815 if (cEntered != pVM->cCpus)
1816 {
1817 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1818 {
1819 /* Wait for our turn. */
1820 for (;;)
1821 {
1822 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1823 AssertLogRelRC(rc);
1824 if (!pVM->vmm.s.fRendezvousRecursion)
1825 break;
1826 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1827 }
1828 }
1829 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1830 {
1831 /* Wait for the last EMT to arrive and wake everyone up. */
1832 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1833 AssertLogRelRC(rc);
1834 Assert(!pVM->vmm.s.fRendezvousRecursion);
1835 }
1836 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1837 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1838 {
1839 /* Wait for our turn. */
1840 for (;;)
1841 {
1842 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1843 AssertLogRelRC(rc);
1844 if (!pVM->vmm.s.fRendezvousRecursion)
1845 break;
1846 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1847 }
1848 }
1849 else
1850 {
1851 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1852
1853 /*
1854 * The execute once is handled specially to optimize the code flow.
1855 *
1856 * The last EMT to arrive will perform the callback and the other
1857 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1858 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1859 * returns, that EMT will initiate the normal return sequence.
1860 */
1861 if (!fIsCaller)
1862 {
1863 for (;;)
1864 {
1865 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1866 AssertLogRelRC(rc);
1867 if (!pVM->vmm.s.fRendezvousRecursion)
1868 break;
1869 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1870 }
1871
1872 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1873 }
1874 return VINF_SUCCESS;
1875 }
1876 }
1877 else
1878 {
1879 /*
1880 * All EMTs are waiting, clear the FF and take action according to the
1881 * execution method.
1882 */
1883 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1884
1885 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1886 {
1887 /* Wake up everyone. */
1888 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1889 AssertLogRelRC(rc);
1890 }
1891 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1892 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1893 {
1894 /* Figure out who to wake up and wake it up. If it's ourself, then
1895 it's easy otherwise wait for our turn. */
1896 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1897 ? 0
1898 : pVM->cCpus - 1U;
1899 if (pVCpu->idCpu != iFirst)
1900 {
1901 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1902 AssertLogRelRC(rc);
1903 for (;;)
1904 {
1905 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1906 AssertLogRelRC(rc);
1907 if (!pVM->vmm.s.fRendezvousRecursion)
1908 break;
1909 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1910 }
1911 }
1912 }
1913 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1914 }
1915
1916
1917 /*
1918 * Do the callback and update the status if necessary.
1919 */
1920 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1921 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1922 {
1923 VBOXSTRICTRC rcStrict2 = pfnRendezvous(pVM, pVCpu, pvUser);
1924 if (rcStrict2 != VINF_SUCCESS)
1925 {
1926 AssertLogRelMsg( rcStrict2 <= VINF_SUCCESS
1927 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1928 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
1929 int32_t i32RendezvousStatus;
1930 do
1931 {
1932 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1933 if ( rcStrict2 == i32RendezvousStatus
1934 || RT_FAILURE(i32RendezvousStatus)
1935 || ( i32RendezvousStatus != VINF_SUCCESS
1936 && rcStrict2 > i32RendezvousStatus))
1937 break;
1938 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict2), i32RendezvousStatus));
1939 }
1940 }
1941
1942 /*
1943 * Increment the done counter and take action depending on whether we're
1944 * the last to finish callback execution.
1945 */
1946 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1947 if ( cDone != pVM->cCpus
1948 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1949 {
1950 /* Signal the next EMT? */
1951 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1952 {
1953 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1954 AssertLogRelRC(rc);
1955 }
1956 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1957 {
1958 Assert(cDone == pVCpu->idCpu + 1U);
1959 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1960 AssertLogRelRC(rc);
1961 }
1962 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1963 {
1964 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1965 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1966 AssertLogRelRC(rc);
1967 }
1968
1969 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1970 if (!fIsCaller)
1971 {
1972 for (;;)
1973 {
1974 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1975 AssertLogRelRC(rc);
1976 if (!pVM->vmm.s.fRendezvousRecursion)
1977 break;
1978 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1979 }
1980 }
1981 }
1982 else
1983 {
1984 /* Callback execution is all done, tell the rest to return. */
1985 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1986 AssertLogRelRC(rc);
1987 }
1988
1989 if (!fIsCaller)
1990 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1991 return rcStrictRecursion;
1992}
1993
1994
1995/**
1996 * Called in response to VM_FF_EMT_RENDEZVOUS.
1997 *
1998 * @returns VBox strict status code - EM scheduling. No errors will be returned
1999 * here, nor will any non-EM scheduling status codes be returned.
2000 *
2001 * @param pVM The cross context VM structure.
2002 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2003 *
2004 * @thread EMT
2005 */
2006VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
2007{
2008 Assert(!pVCpu->vmm.s.fInRendezvous);
2009 Log(("VMMR3EmtRendezvousFF: EMT%#u\n", pVCpu->idCpu));
2010 pVCpu->vmm.s.fInRendezvous = true;
2011 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
2012 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
2013 pVCpu->vmm.s.fInRendezvous = false;
2014 Log(("VMMR3EmtRendezvousFF: EMT%#u returns %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
2015 return VBOXSTRICTRC_TODO(rcStrict);
2016}
2017
2018
2019/**
2020 * Helper for resetting an single wakeup event sempahore.
2021 *
2022 * @returns VERR_TIMEOUT on success, RTSemEventWait status otherwise.
2023 * @param hEvt The event semaphore to reset.
2024 */
2025static int vmmR3HlpResetEvent(RTSEMEVENT hEvt)
2026{
2027 for (uint32_t cLoops = 0; ; cLoops++)
2028 {
2029 int rc = RTSemEventWait(hEvt, 0 /*cMsTimeout*/);
2030 if (rc != VINF_SUCCESS || cLoops > _4K)
2031 return rc;
2032 }
2033}
2034
2035
2036/**
2037 * Worker for VMMR3EmtRendezvous that handles recursion.
2038 *
2039 * @returns VBox strict status code. This will be the first error,
2040 * VINF_SUCCESS, or an EM scheduling status code.
2041 *
2042 * @param pVM The cross context VM structure.
2043 * @param pVCpu The cross context virtual CPU structure of the
2044 * calling EMT.
2045 * @param fFlags Flags indicating execution methods. See
2046 * grp_VMMR3EmtRendezvous_fFlags.
2047 * @param pfnRendezvous The callback.
2048 * @param pvUser User argument for the callback.
2049 *
2050 * @thread EMT(pVCpu)
2051 */
2052static VBOXSTRICTRC vmmR3EmtRendezvousRecursive(PVM pVM, PVMCPU pVCpu, uint32_t fFlags,
2053 PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
2054{
2055 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d\n", fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions));
2056 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
2057 Assert(pVCpu->vmm.s.fInRendezvous);
2058
2059 /*
2060 * Save the current state.
2061 */
2062 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
2063 uint32_t const cParentDone = pVM->vmm.s.cRendezvousEmtsDone;
2064 int32_t const iParentStatus = pVM->vmm.s.i32RendezvousStatus;
2065 PFNVMMEMTRENDEZVOUS const pfnParent = pVM->vmm.s.pfnRendezvous;
2066 void * const pvParentUser = pVM->vmm.s.pvRendezvousUser;
2067
2068 /*
2069 * Check preconditions and save the current state.
2070 */
2071 AssertReturn( (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2072 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2073 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2074 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
2075 VERR_INTERNAL_ERROR);
2076 AssertReturn(pVM->vmm.s.cRendezvousEmtsEntered == pVM->cCpus, VERR_INTERNAL_ERROR_2);
2077 AssertReturn(pVM->vmm.s.cRendezvousEmtsReturned == 0, VERR_INTERNAL_ERROR_3);
2078
2079 /*
2080 * Reset the recursion prep and pop semaphores.
2081 */
2082 int rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
2083 AssertLogRelRCReturn(rc, rc);
2084 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
2085 AssertLogRelRCReturn(rc, rc);
2086 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
2087 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
2088 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
2089 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
2090
2091 /*
2092 * Usher the other thread into the recursion routine.
2093 */
2094 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush, 0);
2095 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, true);
2096
2097 uint32_t cLeft = pVM->cCpus - (cParentDone + 1U);
2098 if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
2099 while (cLeft-- > 0)
2100 {
2101 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
2102 AssertLogRelRC(rc);
2103 }
2104 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
2105 {
2106 Assert(cLeft == pVM->cCpus - (pVCpu->idCpu + 1U));
2107 for (VMCPUID iCpu = pVCpu->idCpu + 1U; iCpu < pVM->cCpus; iCpu++)
2108 {
2109 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu]);
2110 AssertLogRelRC(rc);
2111 }
2112 }
2113 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
2114 {
2115 Assert(cLeft == pVCpu->idCpu);
2116 for (VMCPUID iCpu = pVCpu->idCpu; iCpu > 0; iCpu--)
2117 {
2118 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu - 1U]);
2119 AssertLogRelRC(rc);
2120 }
2121 }
2122 else
2123 AssertLogRelReturn((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
2124 VERR_INTERNAL_ERROR_4);
2125
2126 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
2127 AssertLogRelRC(rc);
2128 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
2129 AssertLogRelRC(rc);
2130
2131
2132 /*
2133 * Wait for the EMTs to wake up and get out of the parent rendezvous code.
2134 */
2135 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) != pVM->cCpus)
2136 {
2137 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPushCaller, RT_INDEFINITE_WAIT);
2138 AssertLogRelRC(rc);
2139 }
2140
2141 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, false);
2142
2143 /*
2144 * Clear the slate and setup the new rendezvous.
2145 */
2146 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2147 {
2148 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
2149 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2150 }
2151 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2152 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2153 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2154 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2155
2156 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
2157 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
2158 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2159 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
2160 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
2161 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
2162 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
2163 ASMAtomicIncU32(&pVM->vmm.s.cRendezvousRecursions);
2164
2165 /*
2166 * We're ready to go now, do normal rendezvous processing.
2167 */
2168 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
2169 AssertLogRelRC(rc);
2170
2171 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /*fIsCaller*/, fFlags, pfnRendezvous, pvUser);
2172
2173 /*
2174 * The caller waits for the other EMTs to be done, return and waiting on the
2175 * pop semaphore.
2176 */
2177 for (;;)
2178 {
2179 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
2180 AssertLogRelRC(rc);
2181 if (!pVM->vmm.s.fRendezvousRecursion)
2182 break;
2183 rcStrict = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict);
2184 }
2185
2186 /*
2187 * Get the return code and merge it with the above recursion status.
2188 */
2189 VBOXSTRICTRC rcStrict2 = pVM->vmm.s.i32RendezvousStatus;
2190 if ( rcStrict2 != VINF_SUCCESS
2191 && ( rcStrict == VINF_SUCCESS
2192 || rcStrict > rcStrict2))
2193 rcStrict = rcStrict2;
2194
2195 /*
2196 * Restore the parent rendezvous state.
2197 */
2198 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2199 {
2200 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
2201 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2202 }
2203 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2204 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2205 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2206 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2207
2208 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, pVM->cCpus);
2209 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2210 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, cParentDone);
2211 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, iParentStatus);
2212 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fParentFlags);
2213 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvParentUser);
2214 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnParent);
2215
2216 /*
2217 * Usher the other EMTs back to their parent recursion routine, waiting
2218 * for them to all get there before we return (makes sure they've been
2219 * scheduled and are past the pop event sem, see below).
2220 */
2221 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop, 0);
2222 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
2223 AssertLogRelRC(rc);
2224
2225 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) != pVM->cCpus)
2226 {
2227 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPopCaller, RT_INDEFINITE_WAIT);
2228 AssertLogRelRC(rc);
2229 }
2230
2231 /*
2232 * We must reset the pop semaphore on the way out (doing the pop caller too,
2233 * just in case). The parent may be another recursion.
2234 */
2235 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop); AssertLogRelRC(rc);
2236 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2237
2238 ASMAtomicDecU32(&pVM->vmm.s.cRendezvousRecursions);
2239
2240 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d returns %Rrc\n",
2241 fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions, VBOXSTRICTRC_VAL(rcStrict)));
2242 return rcStrict;
2243}
2244
2245
2246/**
2247 * EMT rendezvous.
2248 *
2249 * Gathers all the EMTs and execute some code on each of them, either in a one
2250 * by one fashion or all at once.
2251 *
2252 * @returns VBox strict status code. This will be the first error,
2253 * VINF_SUCCESS, or an EM scheduling status code.
2254 *
2255 * @retval VERR_DEADLOCK if recursion is attempted using a rendezvous type that
2256 * doesn't support it or if the recursion is too deep.
2257 *
2258 * @param pVM The cross context VM structure.
2259 * @param fFlags Flags indicating execution methods. See
2260 * grp_VMMR3EmtRendezvous_fFlags. The one-by-one,
2261 * descending and ascending rendezvous types support
2262 * recursion from inside @a pfnRendezvous.
2263 * @param pfnRendezvous The callback.
2264 * @param pvUser User argument for the callback.
2265 *
2266 * @thread Any.
2267 */
2268VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
2269{
2270 /*
2271 * Validate input.
2272 */
2273 AssertReturn(pVM, VERR_INVALID_VM_HANDLE);
2274 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
2275 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2276 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
2277 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
2278 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
2279 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
2280 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
2281
2282 VBOXSTRICTRC rcStrict;
2283 PVMCPU pVCpu = VMMGetCpu(pVM);
2284 if (!pVCpu)
2285 {
2286 /*
2287 * Forward the request to an EMT thread.
2288 */
2289 Log(("VMMR3EmtRendezvous: %#x non-EMT\n", fFlags));
2290 if (!(fFlags & VMMEMTRENDEZVOUS_FLAGS_PRIORITY))
2291 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
2292 else
2293 rcStrict = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
2294 Log(("VMMR3EmtRendezvous: %#x non-EMT returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
2295 }
2296 else if ( pVM->cCpus == 1
2297 || ( pVM->enmVMState == VMSTATE_DESTROYING
2298 && VMR3GetActiveEmts(pVM->pUVM) < pVM->cCpus ) )
2299 {
2300 /*
2301 * Shortcut for the single EMT case.
2302 *
2303 * We also ends up here if EMT(0) (or others) tries to issue a rendezvous
2304 * during vmR3Destroy after other emulation threads have started terminating.
2305 */
2306 if (!pVCpu->vmm.s.fInRendezvous)
2307 {
2308 Log(("VMMR3EmtRendezvous: %#x EMT (uni)\n", fFlags));
2309 pVCpu->vmm.s.fInRendezvous = true;
2310 pVM->vmm.s.fRendezvousFlags = fFlags;
2311 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
2312 pVCpu->vmm.s.fInRendezvous = false;
2313 }
2314 else
2315 {
2316 /* Recursion. Do the same checks as in the SMP case. */
2317 Log(("VMMR3EmtRendezvous: %#x EMT (uni), recursion depth=%d\n", fFlags, pVM->vmm.s.cRendezvousRecursions));
2318 uint32_t fType = pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK;
2319 AssertLogRelReturn( !pVCpu->vmm.s.fInRendezvous
2320 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2321 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2322 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2323 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2324 , VERR_DEADLOCK);
2325
2326 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
2327 pVM->vmm.s.cRendezvousRecursions++;
2328 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
2329 pVM->vmm.s.fRendezvousFlags = fFlags;
2330
2331 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
2332
2333 pVM->vmm.s.fRendezvousFlags = fParentFlags;
2334 pVM->vmm.s.cRendezvousRecursions--;
2335 }
2336 Log(("VMMR3EmtRendezvous: %#x EMT (uni) returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
2337 }
2338 else
2339 {
2340 /*
2341 * Spin lock. If busy, check for recursion, if not recursing wait for
2342 * the other EMT to finish while keeping a lookout for the RENDEZVOUS FF.
2343 */
2344 int rc;
2345 rcStrict = VINF_SUCCESS;
2346 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
2347 {
2348 /* Allow recursion in some cases. */
2349 if ( pVCpu->vmm.s.fInRendezvous
2350 && ( (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2351 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2352 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2353 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2354 ))
2355 return VBOXSTRICTRC_TODO(vmmR3EmtRendezvousRecursive(pVM, pVCpu, fFlags, pfnRendezvous, pvUser));
2356
2357 AssertLogRelMsgReturn(!pVCpu->vmm.s.fInRendezvous, ("fRendezvousFlags=%#x\n", pVM->vmm.s.fRendezvousFlags),
2358 VERR_DEADLOCK);
2359
2360 Log(("VMMR3EmtRendezvous: %#x EMT#%u, waiting for lock...\n", fFlags, pVCpu->idCpu));
2361 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
2362 {
2363 if (VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS))
2364 {
2365 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
2366 if ( rc != VINF_SUCCESS
2367 && ( rcStrict == VINF_SUCCESS
2368 || rcStrict > rc))
2369 rcStrict = rc;
2370 /** @todo Perhaps deal with termination here? */
2371 }
2372 ASMNopPause();
2373 }
2374 }
2375
2376 Log(("VMMR3EmtRendezvous: %#x EMT#%u\n", fFlags, pVCpu->idCpu));
2377 Assert(!VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS));
2378 Assert(!pVCpu->vmm.s.fInRendezvous);
2379 pVCpu->vmm.s.fInRendezvous = true;
2380
2381 /*
2382 * Clear the slate and setup the rendezvous. This is a semaphore ping-pong orgy. :-)
2383 */
2384 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2385 {
2386 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
2387 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2388 }
2389 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2390 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2391 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2392 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2393 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
2394 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
2395 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2396 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
2397 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
2398 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
2399 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
2400
2401 /*
2402 * Set the FF and poke the other EMTs.
2403 */
2404 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
2405 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
2406
2407 /*
2408 * Do the same ourselves.
2409 */
2410 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
2411
2412 /*
2413 * The caller waits for the other EMTs to be done and return before doing
2414 * the cleanup. This makes away with wakeup / reset races we would otherwise
2415 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
2416 */
2417 for (;;)
2418 {
2419 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
2420 AssertLogRelRC(rc);
2421 if (!pVM->vmm.s.fRendezvousRecursion)
2422 break;
2423 rcStrict2 = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict2);
2424 }
2425
2426 /*
2427 * Get the return code and clean up a little bit.
2428 */
2429 VBOXSTRICTRC rcStrict3 = pVM->vmm.s.i32RendezvousStatus;
2430 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
2431
2432 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
2433 pVCpu->vmm.s.fInRendezvous = false;
2434
2435 /*
2436 * Merge rcStrict, rcStrict2 and rcStrict3.
2437 */
2438 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
2439 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
2440 if ( rcStrict2 != VINF_SUCCESS
2441 && ( rcStrict == VINF_SUCCESS
2442 || rcStrict > rcStrict2))
2443 rcStrict = rcStrict2;
2444 if ( rcStrict3 != VINF_SUCCESS
2445 && ( rcStrict == VINF_SUCCESS
2446 || rcStrict > rcStrict3))
2447 rcStrict = rcStrict3;
2448 Log(("VMMR3EmtRendezvous: %#x EMT#%u returns %Rrc\n", fFlags, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
2449 }
2450
2451 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
2452 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
2453 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
2454 VERR_IPE_UNEXPECTED_INFO_STATUS);
2455 return VBOXSTRICTRC_VAL(rcStrict);
2456}
2457
2458
2459/**
2460 * Read from the ring 0 jump buffer stack.
2461 *
2462 * @returns VBox status code.
2463 *
2464 * @param pVM The cross context VM structure.
2465 * @param idCpu The ID of the source CPU context (for the address).
2466 * @param R0Addr Where to start reading.
2467 * @param pvBuf Where to store the data we've read.
2468 * @param cbRead The number of bytes to read.
2469 */
2470VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
2471{
2472 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
2473 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
2474 AssertReturn(cbRead < ~(size_t)0 / 2, VERR_INVALID_PARAMETER);
2475
2476 int rc;
2477#ifdef VMM_R0_SWITCH_STACK
2478 RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
2479#else
2480 RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr);
2481#endif
2482 if ( off < VMM_STACK_SIZE
2483 && off + cbRead <= VMM_STACK_SIZE)
2484 {
2485 memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead);
2486 rc = VINF_SUCCESS;
2487 }
2488 else
2489 rc = VERR_INVALID_POINTER;
2490
2491 /* Supply the setjmp return RIP/EIP. */
2492 if ( pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation + sizeof(RTR0UINTPTR) > R0Addr
2493 && pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation < R0Addr + cbRead)
2494 {
2495 uint8_t const *pbSrc = (uint8_t const *)&pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue;
2496 size_t cbSrc = sizeof(pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue);
2497 size_t offDst = 0;
2498 if (R0Addr < pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2499 offDst = pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation - R0Addr;
2500 else if (R0Addr > pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2501 {
2502 size_t offSrc = R0Addr - pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation;
2503 Assert(offSrc < cbSrc);
2504 pbSrc -= offSrc;
2505 cbSrc -= offSrc;
2506 }
2507 if (cbSrc > cbRead - offDst)
2508 cbSrc = cbRead - offDst;
2509 memcpy((uint8_t *)pvBuf + offDst, pbSrc, cbSrc);
2510
2511 if (cbSrc == cbRead)
2512 rc = VINF_SUCCESS;
2513 }
2514
2515 return rc;
2516}
2517
2518
2519/**
2520 * Used by the DBGF stack unwinder to initialize the register state.
2521 *
2522 * @param pUVM The user mode VM handle.
2523 * @param idCpu The ID of the CPU being unwound.
2524 * @param pState The unwind state to initialize.
2525 */
2526VMMR3_INT_DECL(void) VMMR3InitR0StackUnwindState(PUVM pUVM, VMCPUID idCpu, struct RTDBGUNWINDSTATE *pState)
2527{
2528 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, idCpu);
2529 AssertReturnVoid(pVCpu);
2530
2531 /*
2532 * Locate the resume point on the stack.
2533 */
2534#ifdef VMM_R0_SWITCH_STACK
2535 uintptr_t off = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume - MMHyperCCToR0(pVCpu->pVMR3, pVCpu->vmm.s.pbEMTStackR3);
2536 AssertReturnVoid(off < VMM_STACK_SIZE);
2537#else
2538 uintptr_t off = 0;
2539#endif
2540
2541#ifdef RT_ARCH_AMD64
2542 /*
2543 * This code must match the .resume stuff in VMMR0JmpA-amd64.asm exactly.
2544 */
2545# ifdef VBOX_STRICT
2546 Assert(*(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2547 off += 8; /* RESUME_MAGIC */
2548# endif
2549# ifdef RT_OS_WINDOWS
2550 off += 0xa0; /* XMM6 thru XMM15 */
2551# endif
2552 pState->u.x86.uRFlags = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2553 off += 8;
2554 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2555 off += 8;
2556# ifdef RT_OS_WINDOWS
2557 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2558 off += 8;
2559 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2560 off += 8;
2561# endif
2562 pState->u.x86.auRegs[X86_GREG_x12] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2563 off += 8;
2564 pState->u.x86.auRegs[X86_GREG_x13] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2565 off += 8;
2566 pState->u.x86.auRegs[X86_GREG_x14] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2567 off += 8;
2568 pState->u.x86.auRegs[X86_GREG_x15] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2569 off += 8;
2570 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2571 off += 8;
2572 pState->uPc = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2573 off += 8;
2574
2575#elif defined(RT_ARCH_X86)
2576 /*
2577 * This code must match the .resume stuff in VMMR0JmpA-x86.asm exactly.
2578 */
2579# ifdef VBOX_STRICT
2580 Assert(*(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2581 off += 4; /* RESUME_MAGIC */
2582# endif
2583 pState->u.x86.uRFlags = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2584 off += 4;
2585 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2586 off += 4;
2587 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2588 off += 4;
2589 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2590 off += 4;
2591 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2592 off += 4;
2593 pState->uPc = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2594 off += 4;
2595#else
2596# error "Port me"
2597#endif
2598
2599 /*
2600 * This is all we really need here, though the above helps if the assembly
2601 * doesn't contain unwind info (currently only on win/64, so that is useful).
2602 */
2603 pState->u.x86.auRegs[X86_GREG_xBP] = pVCpu->vmm.s.CallRing3JmpBufR0.SavedEbp;
2604 pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume;
2605}
2606
2607#ifdef VBOX_WITH_RAW_MODE
2608
2609/**
2610 * Calls a RC function.
2611 *
2612 * @param pVM The cross context VM structure.
2613 * @param RCPtrEntry The address of the RC function.
2614 * @param cArgs The number of arguments in the ....
2615 * @param ... Arguments to the function.
2616 */
2617VMMR3DECL(int) VMMR3CallRC(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, ...)
2618{
2619 va_list args;
2620 va_start(args, cArgs);
2621 int rc = VMMR3CallRCV(pVM, RCPtrEntry, cArgs, args);
2622 va_end(args);
2623 return rc;
2624}
2625
2626
2627/**
2628 * Calls a RC function.
2629 *
2630 * @param pVM The cross context VM structure.
2631 * @param RCPtrEntry The address of the RC function.
2632 * @param cArgs The number of arguments in the ....
2633 * @param args Arguments to the function.
2634 */
2635VMMR3DECL(int) VMMR3CallRCV(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, va_list args)
2636{
2637 /* Raw mode implies 1 VCPU. */
2638 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
2639 PVMCPU pVCpu = &pVM->aCpus[0];
2640
2641 Log2(("VMMR3CallGCV: RCPtrEntry=%RRv cArgs=%d\n", RCPtrEntry, cArgs));
2642
2643 /*
2644 * Setup the call frame using the trampoline.
2645 */
2646 CPUMSetHyperState(pVCpu,
2647 pVM->vmm.s.pfnCallTrampolineRC, /* eip */
2648 pVCpu->vmm.s.pbEMTStackBottomRC - cArgs * sizeof(RTGCUINTPTR32), /* esp */
2649 RCPtrEntry, /* eax */
2650 cArgs /* edx */
2651 );
2652
2653#if 0
2654 memset(pVCpu->vmm.s.pbEMTStackR3, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
2655#endif
2656 PRTGCUINTPTR32 pFrame = (PRTGCUINTPTR32)(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE) - cArgs;
2657 int i = cArgs;
2658 while (i-- > 0)
2659 *pFrame++ = va_arg(args, RTGCUINTPTR32);
2660
2661 CPUMPushHyper(pVCpu, cArgs * sizeof(RTGCUINTPTR32)); /* stack frame size */
2662 CPUMPushHyper(pVCpu, RCPtrEntry); /* what to call */
2663
2664 /*
2665 * We hide log flushes (outer) and hypervisor interrupts (inner).
2666 */
2667 for (;;)
2668 {
2669 int rc;
2670 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
2671 do
2672 {
2673#ifdef NO_SUPCALLR0VMM
2674 rc = VERR_GENERAL_FAILURE;
2675#else
2676 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
2677 if (RT_LIKELY(rc == VINF_SUCCESS))
2678 rc = pVCpu->vmm.s.iLastGZRc;
2679#endif
2680 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2681
2682 /*
2683 * Flush the loggers.
2684 */
2685#ifdef LOG_ENABLED
2686 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
2687 if ( pLogger
2688 && pLogger->offScratch > 0)
2689 RTLogFlushRC(NULL, pLogger);
2690#endif
2691#ifdef VBOX_WITH_RC_RELEASE_LOGGING
2692 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
2693 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2694 RTLogFlushRC(RTLogRelGetDefaultInstance(), pRelLogger);
2695#endif
2696 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2697 VMMR3FatalDump(pVM, pVCpu, rc);
2698 if (rc != VINF_VMM_CALL_HOST)
2699 {
2700 Log2(("VMMR3CallGCV: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
2701 return rc;
2702 }
2703 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2704 if (RT_FAILURE(rc))
2705 return rc;
2706 }
2707}
2708
2709#endif /* VBOX_WITH_RAW_MODE */
2710
2711/**
2712 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2713 *
2714 * @returns VBox status code.
2715 * @param pVM The cross context VM structure.
2716 * @param uOperation Operation to execute.
2717 * @param u64Arg Constant argument.
2718 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2719 * details.
2720 */
2721VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2722{
2723 PVMCPU pVCpu = VMMGetCpu(pVM);
2724 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
2725 return VMMR3CallR0Emt(pVM, pVCpu, (VMMR0OPERATION)uOperation, u64Arg, pReqHdr);
2726}
2727
2728
2729/**
2730 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2731 *
2732 * @returns VBox status code.
2733 * @param pVM The cross context VM structure.
2734 * @param pVCpu The cross context VM structure.
2735 * @param enmOperation Operation to execute.
2736 * @param u64Arg Constant argument.
2737 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2738 * details.
2739 */
2740VMMR3_INT_DECL(int) VMMR3CallR0Emt(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2741{
2742 int rc;
2743 for (;;)
2744 {
2745#ifdef NO_SUPCALLR0VMM
2746 rc = VERR_GENERAL_FAILURE;
2747#else
2748 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, pVCpu->idCpu, enmOperation, u64Arg, pReqHdr);
2749#endif
2750 /*
2751 * Flush the logs.
2752 */
2753#ifdef LOG_ENABLED
2754 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
2755#endif
2756 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
2757 if (rc != VINF_VMM_CALL_HOST)
2758 break;
2759 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2760 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
2761 break;
2762 /* Resume R0 */
2763 }
2764
2765 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
2766 ("enmOperation=%u rc=%Rrc\n", enmOperation, rc),
2767 VERR_IPE_UNEXPECTED_INFO_STATUS);
2768 return rc;
2769}
2770
2771
2772#ifdef VBOX_WITH_RAW_MODE
2773/**
2774 * Resumes executing hypervisor code when interrupted by a queue flush or a
2775 * debug event.
2776 *
2777 * @returns VBox status code.
2778 * @param pVM The cross context VM structure.
2779 * @param pVCpu The cross context virtual CPU structure.
2780 */
2781VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM, PVMCPU pVCpu)
2782{
2783 Log(("VMMR3ResumeHyper: eip=%RRv esp=%RRv\n", CPUMGetHyperEIP(pVCpu), CPUMGetHyperESP(pVCpu)));
2784 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
2785
2786 /*
2787 * We hide log flushes (outer) and hypervisor interrupts (inner).
2788 */
2789 for (;;)
2790 {
2791 int rc;
2792 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
2793 do
2794 {
2795# ifdef NO_SUPCALLR0VMM
2796 rc = VERR_GENERAL_FAILURE;
2797# else
2798 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
2799 if (RT_LIKELY(rc == VINF_SUCCESS))
2800 rc = pVCpu->vmm.s.iLastGZRc;
2801# endif
2802 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2803
2804 /*
2805 * Flush the loggers.
2806 */
2807# ifdef LOG_ENABLED
2808 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
2809 if ( pLogger
2810 && pLogger->offScratch > 0)
2811 RTLogFlushRC(NULL, pLogger);
2812# endif
2813# ifdef VBOX_WITH_RC_RELEASE_LOGGING
2814 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
2815 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2816 RTLogFlushRC(RTLogRelGetDefaultInstance(), pRelLogger);
2817# endif
2818 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2819 VMMR3FatalDump(pVM, pVCpu, rc);
2820 if (rc != VINF_VMM_CALL_HOST)
2821 {
2822 Log(("VMMR3ResumeHyper: returns %Rrc\n", rc));
2823 return rc;
2824 }
2825 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2826 if (RT_FAILURE(rc))
2827 return rc;
2828 }
2829}
2830#endif /* VBOX_WITH_RAW_MODE */
2831
2832
2833/**
2834 * Service a call to the ring-3 host code.
2835 *
2836 * @returns VBox status code.
2837 * @param pVM The cross context VM structure.
2838 * @param pVCpu The cross context virtual CPU structure.
2839 * @remarks Careful with critsects.
2840 */
2841static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2842{
2843 /*
2844 * We must also check for pending critsect exits or else we can deadlock
2845 * when entering other critsects here.
2846 */
2847 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PDM_CRITSECT))
2848 PDMCritSectBothFF(pVCpu);
2849
2850 switch (pVCpu->vmm.s.enmCallRing3Operation)
2851 {
2852 /*
2853 * Acquire a critical section.
2854 */
2855 case VMMCALLRING3_PDM_CRIT_SECT_ENTER:
2856 {
2857 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectEnterEx((PPDMCRITSECT)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2858 true /*fCallRing3*/);
2859 break;
2860 }
2861
2862 /*
2863 * Enter a r/w critical section exclusively.
2864 */
2865 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_EXCL:
2866 {
2867 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterExclEx((PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2868 true /*fCallRing3*/);
2869 break;
2870 }
2871
2872 /*
2873 * Enter a r/w critical section shared.
2874 */
2875 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_SHARED:
2876 {
2877 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterSharedEx((PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2878 true /*fCallRing3*/);
2879 break;
2880 }
2881
2882 /*
2883 * Acquire the PDM lock.
2884 */
2885 case VMMCALLRING3_PDM_LOCK:
2886 {
2887 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
2888 break;
2889 }
2890
2891 /*
2892 * Grow the PGM pool.
2893 */
2894 case VMMCALLRING3_PGM_POOL_GROW:
2895 {
2896 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM);
2897 break;
2898 }
2899
2900 /*
2901 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2902 */
2903 case VMMCALLRING3_PGM_MAP_CHUNK:
2904 {
2905 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2906 break;
2907 }
2908
2909 /*
2910 * Allocates more handy pages.
2911 */
2912 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2913 {
2914 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2915 break;
2916 }
2917
2918 /*
2919 * Allocates a large page.
2920 */
2921 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2922 {
2923 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2924 break;
2925 }
2926
2927 /*
2928 * Acquire the PGM lock.
2929 */
2930 case VMMCALLRING3_PGM_LOCK:
2931 {
2932 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
2933 break;
2934 }
2935
2936 /*
2937 * Acquire the MM hypervisor heap lock.
2938 */
2939 case VMMCALLRING3_MMHYPER_LOCK:
2940 {
2941 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
2942 break;
2943 }
2944
2945#ifdef VBOX_WITH_REM
2946 /*
2947 * Flush REM handler notifications.
2948 */
2949 case VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS:
2950 {
2951 REMR3ReplayHandlerNotifications(pVM);
2952 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2953 break;
2954 }
2955#endif
2956
2957 /*
2958 * This is a noop. We just take this route to avoid unnecessary
2959 * tests in the loops.
2960 */
2961 case VMMCALLRING3_VMM_LOGGER_FLUSH:
2962 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2963 LogAlways(("*FLUSH*\n"));
2964 break;
2965
2966 /*
2967 * Set the VM error message.
2968 */
2969 case VMMCALLRING3_VM_SET_ERROR:
2970 VMR3SetErrorWorker(pVM);
2971 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2972 break;
2973
2974 /*
2975 * Set the VM runtime error message.
2976 */
2977 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
2978 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
2979 break;
2980
2981 /*
2982 * Signal a ring 0 hypervisor assertion.
2983 * Cancel the longjmp operation that's in progress.
2984 */
2985 case VMMCALLRING3_VM_R0_ASSERTION:
2986 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2987 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2988#ifdef RT_ARCH_X86
2989 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2990#else
2991 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2992#endif
2993#ifdef VMM_R0_SWITCH_STACK
2994 *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */
2995#endif
2996 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg1));
2997 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg2));
2998 return VERR_VMM_RING0_ASSERTION;
2999
3000 /*
3001 * A forced switch to ring 0 for preemption purposes.
3002 */
3003 case VMMCALLRING3_VM_R0_PREEMPT:
3004 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
3005 break;
3006
3007 case VMMCALLRING3_FTM_SET_CHECKPOINT:
3008 pVCpu->vmm.s.rcCallRing3 = FTMR3SetCheckpoint(pVM, (FTMCHECKPOINTTYPE)pVCpu->vmm.s.u64CallRing3Arg);
3009 break;
3010
3011 default:
3012 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
3013 return VERR_VMM_UNKNOWN_RING3_CALL;
3014 }
3015
3016 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
3017 return VINF_SUCCESS;
3018}
3019
3020
3021/**
3022 * Displays the Force action Flags.
3023 *
3024 * @param pVM The cross context VM structure.
3025 * @param pHlp The output helpers.
3026 * @param pszArgs The additional arguments (ignored).
3027 */
3028static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3029{
3030 int c;
3031 uint32_t f;
3032 NOREF(pszArgs);
3033
3034#define PRINT_FLAG(prf,flag) do { \
3035 if (f & (prf##flag)) \
3036 { \
3037 static const char *s_psz = #flag; \
3038 if (!(c % 6)) \
3039 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
3040 else \
3041 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
3042 c++; \
3043 f &= ~(prf##flag); \
3044 } \
3045 } while (0)
3046
3047#define PRINT_GROUP(prf,grp,sfx) do { \
3048 if (f & (prf##grp##sfx)) \
3049 { \
3050 static const char *s_psz = #grp; \
3051 if (!(c % 5)) \
3052 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
3053 else \
3054 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
3055 c++; \
3056 } \
3057 } while (0)
3058
3059 /*
3060 * The global flags.
3061 */
3062 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
3063 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
3064
3065 /* show the flag mnemonics */
3066 c = 0;
3067 f = fGlobalForcedActions;
3068 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
3069 PRINT_FLAG(VM_FF_,PDM_QUEUES);
3070 PRINT_FLAG(VM_FF_,PDM_DMA);
3071 PRINT_FLAG(VM_FF_,DBGF);
3072 PRINT_FLAG(VM_FF_,REQUEST);
3073 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
3074 PRINT_FLAG(VM_FF_,RESET);
3075 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
3076 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
3077 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
3078 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
3079 PRINT_FLAG(VM_FF_,REM_HANDLER_NOTIFY);
3080 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
3081 if (f)
3082 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
3083 else
3084 pHlp->pfnPrintf(pHlp, "\n");
3085
3086 /* the groups */
3087 c = 0;
3088 f = fGlobalForcedActions;
3089 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
3090 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
3091 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
3092 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
3093 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
3094 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
3095 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
3096 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
3097 if (c)
3098 pHlp->pfnPrintf(pHlp, "\n");
3099
3100 /*
3101 * Per CPU flags.
3102 */
3103 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3104 {
3105 const uint32_t fLocalForcedActions = pVM->aCpus[i].fLocalForcedActions;
3106 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX32", i, fLocalForcedActions);
3107
3108 /* show the flag mnemonics */
3109 c = 0;
3110 f = fLocalForcedActions;
3111 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
3112 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
3113 PRINT_FLAG(VMCPU_FF_,TIMER);
3114 PRINT_FLAG(VMCPU_FF_,INTERRUPT_NMI);
3115 PRINT_FLAG(VMCPU_FF_,INTERRUPT_SMI);
3116 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
3117 PRINT_FLAG(VMCPU_FF_,UNHALT);
3118 PRINT_FLAG(VMCPU_FF_,IEM);
3119 PRINT_FLAG(VMCPU_FF_,UPDATE_APIC);
3120 PRINT_FLAG(VMCPU_FF_,DBGF);
3121 PRINT_FLAG(VMCPU_FF_,REQUEST);
3122 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_CR3);
3123 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_PAE_PDPES);
3124 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
3125 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
3126 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
3127 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
3128 PRINT_FLAG(VMCPU_FF_,BLOCK_NMIS);
3129 PRINT_FLAG(VMCPU_FF_,TO_R3);
3130 PRINT_FLAG(VMCPU_FF_,IOM);
3131#ifdef VBOX_WITH_RAW_MODE
3132 PRINT_FLAG(VMCPU_FF_,TRPM_SYNC_IDT);
3133 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_TSS);
3134 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_GDT);
3135 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_LDT);
3136 PRINT_FLAG(VMCPU_FF_,CSAM_SCAN_PAGE);
3137 PRINT_FLAG(VMCPU_FF_,CSAM_PENDING_ACTION);
3138 PRINT_FLAG(VMCPU_FF_,CPUM);
3139#endif
3140 if (f)
3141 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
3142 else
3143 pHlp->pfnPrintf(pHlp, "\n");
3144
3145 if (fLocalForcedActions & VMCPU_FF_INHIBIT_INTERRUPTS)
3146 pHlp->pfnPrintf(pHlp, " intr inhibit RIP: %RGp\n", EMGetInhibitInterruptsPC(&pVM->aCpus[i]));
3147
3148 /* the groups */
3149 c = 0;
3150 f = fLocalForcedActions;
3151 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
3152 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
3153 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
3154 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
3155 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
3156 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
3157 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
3158 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
3159 PRINT_GROUP(VMCPU_FF_,HM_TO_R3,_MASK);
3160 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
3161 if (c)
3162 pHlp->pfnPrintf(pHlp, "\n");
3163 }
3164
3165#undef PRINT_FLAG
3166#undef PRINT_GROUP
3167}
3168
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette