VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInline.h@ 96403

Last change on this file since 96403 was 95410, checked in by vboxsync, 3 years ago

VMM/IEM: Alignment checks (#AC(0)/#GP(0)). bugref:9898

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 84.6 KB
Line 
1/* $Id: IEMInline.h 95410 2022-06-28 18:33:26Z vboxsync $ */
2/** @file
3 * IEM - Interpreted Execution Manager - Inlined Functions.
4 */
5
6/*
7 * Copyright (C) 2011-2022 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18#ifndef VMM_INCLUDED_SRC_include_IEMInline_h
19#define VMM_INCLUDED_SRC_include_IEMInline_h
20#ifndef RT_WITHOUT_PRAGMA_ONCE
21# pragma once
22#endif
23
24
25
26/**
27 * Makes status code addjustments (pass up from I/O and access handler)
28 * as well as maintaining statistics.
29 *
30 * @returns Strict VBox status code to pass up.
31 * @param pVCpu The cross context virtual CPU structure of the calling thread.
32 * @param rcStrict The status from executing an instruction.
33 */
34DECL_FORCE_INLINE(VBOXSTRICTRC) iemExecStatusCodeFiddling(PVMCPUCC pVCpu, VBOXSTRICTRC rcStrict)
35{
36 if (rcStrict != VINF_SUCCESS)
37 {
38 if (RT_SUCCESS(rcStrict))
39 {
40 AssertMsg( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
41 || rcStrict == VINF_IOM_R3_IOPORT_READ
42 || rcStrict == VINF_IOM_R3_IOPORT_WRITE
43 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
44 || rcStrict == VINF_IOM_R3_MMIO_READ
45 || rcStrict == VINF_IOM_R3_MMIO_READ_WRITE
46 || rcStrict == VINF_IOM_R3_MMIO_WRITE
47 || rcStrict == VINF_IOM_R3_MMIO_COMMIT_WRITE
48 || rcStrict == VINF_CPUM_R3_MSR_READ
49 || rcStrict == VINF_CPUM_R3_MSR_WRITE
50 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
51 || rcStrict == VINF_EM_RAW_TO_R3
52 || rcStrict == VINF_EM_TRIPLE_FAULT
53 || rcStrict == VINF_GIM_R3_HYPERCALL
54 /* raw-mode / virt handlers only: */
55 || rcStrict == VINF_EM_RAW_EMULATE_INSTR_GDT_FAULT
56 || rcStrict == VINF_EM_RAW_EMULATE_INSTR_TSS_FAULT
57 || rcStrict == VINF_EM_RAW_EMULATE_INSTR_LDT_FAULT
58 || rcStrict == VINF_EM_RAW_EMULATE_INSTR_IDT_FAULT
59 || rcStrict == VINF_SELM_SYNC_GDT
60 || rcStrict == VINF_CSAM_PENDING_ACTION
61 || rcStrict == VINF_PATM_CHECK_PATCH_PAGE
62 /* nested hw.virt codes: */
63 || rcStrict == VINF_VMX_VMEXIT
64 || rcStrict == VINF_VMX_INTERCEPT_NOT_ACTIVE
65 || rcStrict == VINF_VMX_MODIFIES_BEHAVIOR
66 || rcStrict == VINF_SVM_VMEXIT
67 , ("rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
68/** @todo adjust for VINF_EM_RAW_EMULATE_INSTR. */
69 int32_t const rcPassUp = pVCpu->iem.s.rcPassUp;
70#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
71 if ( rcStrict == VINF_VMX_VMEXIT
72 && rcPassUp == VINF_SUCCESS)
73 rcStrict = VINF_SUCCESS;
74 else
75#endif
76#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
77 if ( rcStrict == VINF_SVM_VMEXIT
78 && rcPassUp == VINF_SUCCESS)
79 rcStrict = VINF_SUCCESS;
80 else
81#endif
82 if (rcPassUp == VINF_SUCCESS)
83 pVCpu->iem.s.cRetInfStatuses++;
84 else if ( rcPassUp < VINF_EM_FIRST
85 || rcPassUp > VINF_EM_LAST
86 || rcPassUp < VBOXSTRICTRC_VAL(rcStrict))
87 {
88 Log(("IEM: rcPassUp=%Rrc! rcStrict=%Rrc\n", rcPassUp, VBOXSTRICTRC_VAL(rcStrict)));
89 pVCpu->iem.s.cRetPassUpStatus++;
90 rcStrict = rcPassUp;
91 }
92 else
93 {
94 Log(("IEM: rcPassUp=%Rrc rcStrict=%Rrc!\n", rcPassUp, VBOXSTRICTRC_VAL(rcStrict)));
95 pVCpu->iem.s.cRetInfStatuses++;
96 }
97 }
98 else if (rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED)
99 pVCpu->iem.s.cRetAspectNotImplemented++;
100 else if (rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED)
101 pVCpu->iem.s.cRetInstrNotImplemented++;
102 else
103 pVCpu->iem.s.cRetErrStatuses++;
104 }
105 else if (pVCpu->iem.s.rcPassUp != VINF_SUCCESS)
106 {
107 pVCpu->iem.s.cRetPassUpStatus++;
108 rcStrict = pVCpu->iem.s.rcPassUp;
109 }
110
111 return rcStrict;
112}
113
114
115/**
116 * Sets the pass up status.
117 *
118 * @returns VINF_SUCCESS.
119 * @param pVCpu The cross context virtual CPU structure of the
120 * calling thread.
121 * @param rcPassUp The pass up status. Must be informational.
122 * VINF_SUCCESS is not allowed.
123 */
124DECLINLINE(int) iemSetPassUpStatus(PVMCPUCC pVCpu, VBOXSTRICTRC rcPassUp)
125{
126 AssertRC(VBOXSTRICTRC_VAL(rcPassUp)); Assert(rcPassUp != VINF_SUCCESS);
127
128 int32_t const rcOldPassUp = pVCpu->iem.s.rcPassUp;
129 if (rcOldPassUp == VINF_SUCCESS)
130 pVCpu->iem.s.rcPassUp = VBOXSTRICTRC_VAL(rcPassUp);
131 /* If both are EM scheduling codes, use EM priority rules. */
132 else if ( rcOldPassUp >= VINF_EM_FIRST && rcOldPassUp <= VINF_EM_LAST
133 && rcPassUp >= VINF_EM_FIRST && rcPassUp <= VINF_EM_LAST)
134 {
135 if (rcPassUp < rcOldPassUp)
136 {
137 Log(("IEM: rcPassUp=%Rrc! rcOldPassUp=%Rrc\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
138 pVCpu->iem.s.rcPassUp = VBOXSTRICTRC_VAL(rcPassUp);
139 }
140 else
141 Log(("IEM: rcPassUp=%Rrc rcOldPassUp=%Rrc!\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
142 }
143 /* Override EM scheduling with specific status code. */
144 else if (rcOldPassUp >= VINF_EM_FIRST && rcOldPassUp <= VINF_EM_LAST)
145 {
146 Log(("IEM: rcPassUp=%Rrc! rcOldPassUp=%Rrc\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
147 pVCpu->iem.s.rcPassUp = VBOXSTRICTRC_VAL(rcPassUp);
148 }
149 /* Don't override specific status code, first come first served. */
150 else
151 Log(("IEM: rcPassUp=%Rrc rcOldPassUp=%Rrc!\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
152 return VINF_SUCCESS;
153}
154
155
156/**
157 * Calculates the CPU mode.
158 *
159 * This is mainly for updating IEMCPU::enmCpuMode.
160 *
161 * @returns CPU mode.
162 * @param pVCpu The cross context virtual CPU structure of the
163 * calling thread.
164 */
165DECLINLINE(IEMMODE) iemCalcCpuMode(PVMCPUCC pVCpu)
166{
167 if (CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx))
168 return IEMMODE_64BIT;
169 if (pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig) /** @todo check if this is correct... */
170 return IEMMODE_32BIT;
171 return IEMMODE_16BIT;
172}
173
174
175/**
176 * Initializes the execution state.
177 *
178 * @param pVCpu The cross context virtual CPU structure of the
179 * calling thread.
180 * @param fBypassHandlers Whether to bypass access handlers.
181 *
182 * @remarks Callers of this must call iemUninitExec() to undo potentially fatal
183 * side-effects in strict builds.
184 */
185DECLINLINE(void) iemInitExec(PVMCPUCC pVCpu, bool fBypassHandlers)
186{
187 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
188 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IEM));
189 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
190 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
191 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.es));
192 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ds));
193 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.fs));
194 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.gs));
195 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ldtr));
196 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.tr));
197
198 pVCpu->iem.s.uCpl = CPUMGetGuestCPL(pVCpu);
199 pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
200#ifdef VBOX_STRICT
201 pVCpu->iem.s.enmDefAddrMode = (IEMMODE)0xfe;
202 pVCpu->iem.s.enmEffAddrMode = (IEMMODE)0xfe;
203 pVCpu->iem.s.enmDefOpSize = (IEMMODE)0xfe;
204 pVCpu->iem.s.enmEffOpSize = (IEMMODE)0xfe;
205 pVCpu->iem.s.fPrefixes = 0xfeedbeef;
206 pVCpu->iem.s.uRexReg = 127;
207 pVCpu->iem.s.uRexB = 127;
208 pVCpu->iem.s.offModRm = 127;
209 pVCpu->iem.s.uRexIndex = 127;
210 pVCpu->iem.s.iEffSeg = 127;
211 pVCpu->iem.s.idxPrefix = 127;
212 pVCpu->iem.s.uVex3rdReg = 127;
213 pVCpu->iem.s.uVexLength = 127;
214 pVCpu->iem.s.fEvexStuff = 127;
215 pVCpu->iem.s.uFpuOpcode = UINT16_MAX;
216# ifdef IEM_WITH_CODE_TLB
217 pVCpu->iem.s.offInstrNextByte = UINT16_MAX;
218 pVCpu->iem.s.pbInstrBuf = NULL;
219 pVCpu->iem.s.cbInstrBuf = UINT16_MAX;
220 pVCpu->iem.s.cbInstrBufTotal = UINT16_MAX;
221 pVCpu->iem.s.offCurInstrStart = INT16_MAX;
222 pVCpu->iem.s.uInstrBufPc = UINT64_C(0xc0ffc0ffcff0c0ff);
223# else
224 pVCpu->iem.s.offOpcode = 127;
225 pVCpu->iem.s.cbOpcode = 127;
226# endif
227#endif
228
229 pVCpu->iem.s.cActiveMappings = 0;
230 pVCpu->iem.s.iNextMapping = 0;
231 pVCpu->iem.s.rcPassUp = VINF_SUCCESS;
232 pVCpu->iem.s.fBypassHandlers = fBypassHandlers;
233#if 0
234#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
235 if ( CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx)
236 && CPUMIsGuestVmxProcCtls2Set(pVCpu, &pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
237 {
238 PCVMXVVMCS pVmcs = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
239 Assert(pVmcs);
240 RTGCPHYS const GCPhysApicAccess = pVmcs->u64AddrApicAccess.u;
241 if (!PGMHandlerPhysicalIsRegistered(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess))
242 {
243 int rc = PGMHandlerPhysicalRegister(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess, GCPhysApicAccess + X86_PAGE_4K_SIZE - 1,
244 pVCpu->iem.s.hVmxApicAccessPage, NIL_RTR3PTR /* pvUserR3 */,
245 NIL_RTR0PTR /* pvUserR0 */, NIL_RTRCPTR /* pvUserRC */, NULL /* pszDesc */);
246 AssertRC(rc);
247 }
248 }
249#endif
250#endif
251}
252
253#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
254/**
255 * Performs a minimal reinitialization of the execution state.
256 *
257 * This is intended to be used by VM-exits, SMM, LOADALL and other similar
258 * 'world-switch' types operations on the CPU. Currently only nested
259 * hardware-virtualization uses it.
260 *
261 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
262 */
263DECLINLINE(void) iemReInitExec(PVMCPUCC pVCpu)
264{
265 IEMMODE const enmMode = iemCalcCpuMode(pVCpu);
266 uint8_t const uCpl = CPUMGetGuestCPL(pVCpu);
267
268 pVCpu->iem.s.uCpl = uCpl;
269 pVCpu->iem.s.enmCpuMode = enmMode;
270 pVCpu->iem.s.enmDefAddrMode = enmMode; /** @todo check if this is correct... */
271 pVCpu->iem.s.enmEffAddrMode = enmMode;
272 if (enmMode != IEMMODE_64BIT)
273 {
274 pVCpu->iem.s.enmDefOpSize = enmMode; /** @todo check if this is correct... */
275 pVCpu->iem.s.enmEffOpSize = enmMode;
276 }
277 else
278 {
279 pVCpu->iem.s.enmDefOpSize = IEMMODE_32BIT;
280 pVCpu->iem.s.enmEffOpSize = enmMode;
281 }
282 pVCpu->iem.s.iEffSeg = X86_SREG_DS;
283#ifndef IEM_WITH_CODE_TLB
284 /** @todo Shouldn't we be doing this in IEMTlbInvalidateAll()? */
285 pVCpu->iem.s.offOpcode = 0;
286 pVCpu->iem.s.cbOpcode = 0;
287#endif
288 pVCpu->iem.s.rcPassUp = VINF_SUCCESS;
289}
290#endif
291
292/**
293 * Counterpart to #iemInitExec that undoes evil strict-build stuff.
294 *
295 * @param pVCpu The cross context virtual CPU structure of the
296 * calling thread.
297 */
298DECLINLINE(void) iemUninitExec(PVMCPUCC pVCpu)
299{
300 /* Note! do not touch fInPatchCode here! (see iemUninitExecAndFiddleStatusAndMaybeReenter) */
301#ifdef VBOX_STRICT
302# ifdef IEM_WITH_CODE_TLB
303 NOREF(pVCpu);
304# else
305 pVCpu->iem.s.cbOpcode = 0;
306# endif
307#else
308 NOREF(pVCpu);
309#endif
310}
311
312
313/**
314 * Calls iemUninitExec, iemExecStatusCodeFiddling and iemRCRawMaybeReenter.
315 *
316 * Only calling iemRCRawMaybeReenter in raw-mode, obviously.
317 *
318 * @returns Fiddled strict vbox status code, ready to return to non-IEM caller.
319 * @param pVCpu The cross context virtual CPU structure of the calling thread.
320 * @param rcStrict The status code to fiddle.
321 */
322DECLINLINE(VBOXSTRICTRC) iemUninitExecAndFiddleStatusAndMaybeReenter(PVMCPUCC pVCpu, VBOXSTRICTRC rcStrict)
323{
324 iemUninitExec(pVCpu);
325 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
326}
327
328
329/**
330 * Macro used by the IEMExec* method to check the given instruction length.
331 *
332 * Will return on failure!
333 *
334 * @param a_cbInstr The given instruction length.
335 * @param a_cbMin The minimum length.
336 */
337#define IEMEXEC_ASSERT_INSTR_LEN_RETURN(a_cbInstr, a_cbMin) \
338 AssertMsgReturn((unsigned)(a_cbInstr) - (unsigned)(a_cbMin) <= (unsigned)15 - (unsigned)(a_cbMin), \
339 ("cbInstr=%u cbMin=%u\n", (a_cbInstr), (a_cbMin)), VERR_IEM_INVALID_INSTR_LENGTH)
340
341
342
343#ifndef IEM_WITH_SETJMP
344
345/**
346 * Fetches the next opcode byte.
347 *
348 * @returns Strict VBox status code.
349 * @param pVCpu The cross context virtual CPU structure of the
350 * calling thread.
351 * @param pu8 Where to return the opcode byte.
352 */
353DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU8(PVMCPUCC pVCpu, uint8_t *pu8)
354{
355 uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
356 if (RT_LIKELY((uint8_t)offOpcode < pVCpu->iem.s.cbOpcode))
357 {
358 pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 1;
359 *pu8 = pVCpu->iem.s.abOpcode[offOpcode];
360 return VINF_SUCCESS;
361 }
362 return iemOpcodeGetNextU8Slow(pVCpu, pu8);
363}
364
365#else /* IEM_WITH_SETJMP */
366
367/**
368 * Fetches the next opcode byte, longjmp on error.
369 *
370 * @returns The opcode byte.
371 * @param pVCpu The cross context virtual CPU structure of the calling thread.
372 */
373DECLINLINE(uint8_t) iemOpcodeGetNextU8Jmp(PVMCPUCC pVCpu)
374{
375# ifdef IEM_WITH_CODE_TLB
376 uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
377 uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
378 if (RT_LIKELY( pbBuf != NULL
379 && offBuf < pVCpu->iem.s.cbInstrBuf))
380 {
381 pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 1;
382 return pbBuf[offBuf];
383 }
384# else
385 uintptr_t offOpcode = pVCpu->iem.s.offOpcode;
386 if (RT_LIKELY((uint8_t)offOpcode < pVCpu->iem.s.cbOpcode))
387 {
388 pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 1;
389 return pVCpu->iem.s.abOpcode[offOpcode];
390 }
391# endif
392 return iemOpcodeGetNextU8SlowJmp(pVCpu);
393}
394
395#endif /* IEM_WITH_SETJMP */
396
397/**
398 * Fetches the next opcode byte, returns automatically on failure.
399 *
400 * @param a_pu8 Where to return the opcode byte.
401 * @remark Implicitly references pVCpu.
402 */
403#ifndef IEM_WITH_SETJMP
404# define IEM_OPCODE_GET_NEXT_U8(a_pu8) \
405 do \
406 { \
407 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU8(pVCpu, (a_pu8)); \
408 if (rcStrict2 == VINF_SUCCESS) \
409 { /* likely */ } \
410 else \
411 return rcStrict2; \
412 } while (0)
413#else
414# define IEM_OPCODE_GET_NEXT_U8(a_pu8) (*(a_pu8) = iemOpcodeGetNextU8Jmp(pVCpu))
415#endif /* IEM_WITH_SETJMP */
416
417
418#ifndef IEM_WITH_SETJMP
419/**
420 * Fetches the next signed byte from the opcode stream.
421 *
422 * @returns Strict VBox status code.
423 * @param pVCpu The cross context virtual CPU structure of the calling thread.
424 * @param pi8 Where to return the signed byte.
425 */
426DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8(PVMCPUCC pVCpu, int8_t *pi8)
427{
428 return iemOpcodeGetNextU8(pVCpu, (uint8_t *)pi8);
429}
430#endif /* !IEM_WITH_SETJMP */
431
432
433/**
434 * Fetches the next signed byte from the opcode stream, returning automatically
435 * on failure.
436 *
437 * @param a_pi8 Where to return the signed byte.
438 * @remark Implicitly references pVCpu.
439 */
440#ifndef IEM_WITH_SETJMP
441# define IEM_OPCODE_GET_NEXT_S8(a_pi8) \
442 do \
443 { \
444 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8(pVCpu, (a_pi8)); \
445 if (rcStrict2 != VINF_SUCCESS) \
446 return rcStrict2; \
447 } while (0)
448#else /* IEM_WITH_SETJMP */
449# define IEM_OPCODE_GET_NEXT_S8(a_pi8) (*(a_pi8) = (int8_t)iemOpcodeGetNextU8Jmp(pVCpu))
450
451#endif /* IEM_WITH_SETJMP */
452
453
454#ifndef IEM_WITH_SETJMP
455/**
456 * Fetches the next signed byte from the opcode stream, extending it to
457 * unsigned 16-bit.
458 *
459 * @returns Strict VBox status code.
460 * @param pVCpu The cross context virtual CPU structure of the calling thread.
461 * @param pu16 Where to return the unsigned word.
462 */
463DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8SxU16(PVMCPUCC pVCpu, uint16_t *pu16)
464{
465 uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
466 if (RT_UNLIKELY(offOpcode >= pVCpu->iem.s.cbOpcode))
467 return iemOpcodeGetNextS8SxU16Slow(pVCpu, pu16);
468
469 *pu16 = (int8_t)pVCpu->iem.s.abOpcode[offOpcode];
470 pVCpu->iem.s.offOpcode = offOpcode + 1;
471 return VINF_SUCCESS;
472}
473#endif /* !IEM_WITH_SETJMP */
474
475/**
476 * Fetches the next signed byte from the opcode stream and sign-extending it to
477 * a word, returning automatically on failure.
478 *
479 * @param a_pu16 Where to return the word.
480 * @remark Implicitly references pVCpu.
481 */
482#ifndef IEM_WITH_SETJMP
483# define IEM_OPCODE_GET_NEXT_S8_SX_U16(a_pu16) \
484 do \
485 { \
486 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8SxU16(pVCpu, (a_pu16)); \
487 if (rcStrict2 != VINF_SUCCESS) \
488 return rcStrict2; \
489 } while (0)
490#else
491# define IEM_OPCODE_GET_NEXT_S8_SX_U16(a_pu16) (*(a_pu16) = (int8_t)iemOpcodeGetNextU8Jmp(pVCpu))
492#endif
493
494#ifndef IEM_WITH_SETJMP
495/**
496 * Fetches the next signed byte from the opcode stream, extending it to
497 * unsigned 32-bit.
498 *
499 * @returns Strict VBox status code.
500 * @param pVCpu The cross context virtual CPU structure of the calling thread.
501 * @param pu32 Where to return the unsigned dword.
502 */
503DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8SxU32(PVMCPUCC pVCpu, uint32_t *pu32)
504{
505 uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
506 if (RT_UNLIKELY(offOpcode >= pVCpu->iem.s.cbOpcode))
507 return iemOpcodeGetNextS8SxU32Slow(pVCpu, pu32);
508
509 *pu32 = (int8_t)pVCpu->iem.s.abOpcode[offOpcode];
510 pVCpu->iem.s.offOpcode = offOpcode + 1;
511 return VINF_SUCCESS;
512}
513#endif /* !IEM_WITH_SETJMP */
514
515/**
516 * Fetches the next signed byte from the opcode stream and sign-extending it to
517 * a word, returning automatically on failure.
518 *
519 * @param a_pu32 Where to return the word.
520 * @remark Implicitly references pVCpu.
521 */
522#ifndef IEM_WITH_SETJMP
523#define IEM_OPCODE_GET_NEXT_S8_SX_U32(a_pu32) \
524 do \
525 { \
526 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8SxU32(pVCpu, (a_pu32)); \
527 if (rcStrict2 != VINF_SUCCESS) \
528 return rcStrict2; \
529 } while (0)
530#else
531# define IEM_OPCODE_GET_NEXT_S8_SX_U32(a_pu32) (*(a_pu32) = (int8_t)iemOpcodeGetNextU8Jmp(pVCpu))
532#endif
533
534
535#ifndef IEM_WITH_SETJMP
536/**
537 * Fetches the next signed byte from the opcode stream, extending it to
538 * unsigned 64-bit.
539 *
540 * @returns Strict VBox status code.
541 * @param pVCpu The cross context virtual CPU structure of the calling thread.
542 * @param pu64 Where to return the unsigned qword.
543 */
544DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8SxU64(PVMCPUCC pVCpu, uint64_t *pu64)
545{
546 uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
547 if (RT_UNLIKELY(offOpcode >= pVCpu->iem.s.cbOpcode))
548 return iemOpcodeGetNextS8SxU64Slow(pVCpu, pu64);
549
550 *pu64 = (int8_t)pVCpu->iem.s.abOpcode[offOpcode];
551 pVCpu->iem.s.offOpcode = offOpcode + 1;
552 return VINF_SUCCESS;
553}
554#endif /* !IEM_WITH_SETJMP */
555
556/**
557 * Fetches the next signed byte from the opcode stream and sign-extending it to
558 * a word, returning automatically on failure.
559 *
560 * @param a_pu64 Where to return the word.
561 * @remark Implicitly references pVCpu.
562 */
563#ifndef IEM_WITH_SETJMP
564# define IEM_OPCODE_GET_NEXT_S8_SX_U64(a_pu64) \
565 do \
566 { \
567 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8SxU64(pVCpu, (a_pu64)); \
568 if (rcStrict2 != VINF_SUCCESS) \
569 return rcStrict2; \
570 } while (0)
571#else
572# define IEM_OPCODE_GET_NEXT_S8_SX_U64(a_pu64) (*(a_pu64) = (int8_t)iemOpcodeGetNextU8Jmp(pVCpu))
573#endif
574
575
576#ifndef IEM_WITH_SETJMP
577/**
578 * Fetches the next opcode byte.
579 *
580 * @returns Strict VBox status code.
581 * @param pVCpu The cross context virtual CPU structure of the
582 * calling thread.
583 * @param pu8 Where to return the opcode byte.
584 */
585DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextRm(PVMCPUCC pVCpu, uint8_t *pu8)
586{
587 uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
588 pVCpu->iem.s.offModRm = offOpcode;
589 if (RT_LIKELY((uint8_t)offOpcode < pVCpu->iem.s.cbOpcode))
590 {
591 pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 1;
592 *pu8 = pVCpu->iem.s.abOpcode[offOpcode];
593 return VINF_SUCCESS;
594 }
595 return iemOpcodeGetNextU8Slow(pVCpu, pu8);
596}
597#else /* IEM_WITH_SETJMP */
598/**
599 * Fetches the next opcode byte, longjmp on error.
600 *
601 * @returns The opcode byte.
602 * @param pVCpu The cross context virtual CPU structure of the calling thread.
603 */
604DECLINLINE(uint8_t) iemOpcodeGetNextRmJmp(PVMCPUCC pVCpu)
605{
606# ifdef IEM_WITH_CODE_TLB
607 uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
608 pVCpu->iem.s.offModRm = offBuf;
609 uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
610 if (RT_LIKELY( pbBuf != NULL
611 && offBuf < pVCpu->iem.s.cbInstrBuf))
612 {
613 pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 1;
614 return pbBuf[offBuf];
615 }
616# else
617 uintptr_t offOpcode = pVCpu->iem.s.offOpcode;
618 pVCpu->iem.s.offModRm = offOpcode;
619 if (RT_LIKELY((uint8_t)offOpcode < pVCpu->iem.s.cbOpcode))
620 {
621 pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 1;
622 return pVCpu->iem.s.abOpcode[offOpcode];
623 }
624# endif
625 return iemOpcodeGetNextU8SlowJmp(pVCpu);
626}
627#endif /* IEM_WITH_SETJMP */
628
629/**
630 * Fetches the next opcode byte, which is a ModR/M byte, returns automatically
631 * on failure.
632 *
633 * Will note down the position of the ModR/M byte for VT-x exits.
634 *
635 * @param a_pbRm Where to return the RM opcode byte.
636 * @remark Implicitly references pVCpu.
637 */
638#ifndef IEM_WITH_SETJMP
639# define IEM_OPCODE_GET_NEXT_RM(a_pbRm) \
640 do \
641 { \
642 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextRm(pVCpu, (a_pbRm)); \
643 if (rcStrict2 == VINF_SUCCESS) \
644 { /* likely */ } \
645 else \
646 return rcStrict2; \
647 } while (0)
648#else
649# define IEM_OPCODE_GET_NEXT_RM(a_pbRm) (*(a_pbRm) = iemOpcodeGetNextRmJmp(pVCpu))
650#endif /* IEM_WITH_SETJMP */
651
652
653#ifndef IEM_WITH_SETJMP
654
655/**
656 * Fetches the next opcode word.
657 *
658 * @returns Strict VBox status code.
659 * @param pVCpu The cross context virtual CPU structure of the calling thread.
660 * @param pu16 Where to return the opcode word.
661 */
662DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU16(PVMCPUCC pVCpu, uint16_t *pu16)
663{
664 uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
665 if (RT_LIKELY((uint8_t)offOpcode + 2 <= pVCpu->iem.s.cbOpcode))
666 {
667 pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 2;
668# ifdef IEM_USE_UNALIGNED_DATA_ACCESS
669 *pu16 = *(uint16_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
670# else
671 *pu16 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
672# endif
673 return VINF_SUCCESS;
674 }
675 return iemOpcodeGetNextU16Slow(pVCpu, pu16);
676}
677
678#else /* IEM_WITH_SETJMP */
679
680/**
681 * Fetches the next opcode word, longjmp on error.
682 *
683 * @returns The opcode word.
684 * @param pVCpu The cross context virtual CPU structure of the calling thread.
685 */
686DECLINLINE(uint16_t) iemOpcodeGetNextU16Jmp(PVMCPUCC pVCpu)
687{
688# ifdef IEM_WITH_CODE_TLB
689 uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
690 uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
691 if (RT_LIKELY( pbBuf != NULL
692 && offBuf + 2 <= pVCpu->iem.s.cbInstrBuf))
693 {
694 pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 2;
695# ifdef IEM_USE_UNALIGNED_DATA_ACCESS
696 return *(uint16_t const *)&pbBuf[offBuf];
697# else
698 return RT_MAKE_U16(pbBuf[offBuf], pbBuf[offBuf + 1]);
699# endif
700 }
701# else
702 uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
703 if (RT_LIKELY((uint8_t)offOpcode + 2 <= pVCpu->iem.s.cbOpcode))
704 {
705 pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 2;
706# ifdef IEM_USE_UNALIGNED_DATA_ACCESS
707 return *(uint16_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
708# else
709 return RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
710# endif
711 }
712# endif
713 return iemOpcodeGetNextU16SlowJmp(pVCpu);
714}
715
716#endif /* IEM_WITH_SETJMP */
717
718/**
719 * Fetches the next opcode word, returns automatically on failure.
720 *
721 * @param a_pu16 Where to return the opcode word.
722 * @remark Implicitly references pVCpu.
723 */
724#ifndef IEM_WITH_SETJMP
725# define IEM_OPCODE_GET_NEXT_U16(a_pu16) \
726 do \
727 { \
728 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU16(pVCpu, (a_pu16)); \
729 if (rcStrict2 != VINF_SUCCESS) \
730 return rcStrict2; \
731 } while (0)
732#else
733# define IEM_OPCODE_GET_NEXT_U16(a_pu16) (*(a_pu16) = iemOpcodeGetNextU16Jmp(pVCpu))
734#endif
735
736#ifndef IEM_WITH_SETJMP
737/**
738 * Fetches the next opcode word, zero extending it to a double word.
739 *
740 * @returns Strict VBox status code.
741 * @param pVCpu The cross context virtual CPU structure of the calling thread.
742 * @param pu32 Where to return the opcode double word.
743 */
744DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU16ZxU32(PVMCPUCC pVCpu, uint32_t *pu32)
745{
746 uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
747 if (RT_UNLIKELY(offOpcode + 2 > pVCpu->iem.s.cbOpcode))
748 return iemOpcodeGetNextU16ZxU32Slow(pVCpu, pu32);
749
750 *pu32 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
751 pVCpu->iem.s.offOpcode = offOpcode + 2;
752 return VINF_SUCCESS;
753}
754#endif /* !IEM_WITH_SETJMP */
755
756/**
757 * Fetches the next opcode word and zero extends it to a double word, returns
758 * automatically on failure.
759 *
760 * @param a_pu32 Where to return the opcode double word.
761 * @remark Implicitly references pVCpu.
762 */
763#ifndef IEM_WITH_SETJMP
764# define IEM_OPCODE_GET_NEXT_U16_ZX_U32(a_pu32) \
765 do \
766 { \
767 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU16ZxU32(pVCpu, (a_pu32)); \
768 if (rcStrict2 != VINF_SUCCESS) \
769 return rcStrict2; \
770 } while (0)
771#else
772# define IEM_OPCODE_GET_NEXT_U16_ZX_U32(a_pu32) (*(a_pu32) = iemOpcodeGetNextU16Jmp(pVCpu))
773#endif
774
775#ifndef IEM_WITH_SETJMP
776/**
777 * Fetches the next opcode word, zero extending it to a quad word.
778 *
779 * @returns Strict VBox status code.
780 * @param pVCpu The cross context virtual CPU structure of the calling thread.
781 * @param pu64 Where to return the opcode quad word.
782 */
783DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU16ZxU64(PVMCPUCC pVCpu, uint64_t *pu64)
784{
785 uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
786 if (RT_UNLIKELY(offOpcode + 2 > pVCpu->iem.s.cbOpcode))
787 return iemOpcodeGetNextU16ZxU64Slow(pVCpu, pu64);
788
789 *pu64 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
790 pVCpu->iem.s.offOpcode = offOpcode + 2;
791 return VINF_SUCCESS;
792}
793#endif /* !IEM_WITH_SETJMP */
794
795/**
796 * Fetches the next opcode word and zero extends it to a quad word, returns
797 * automatically on failure.
798 *
799 * @param a_pu64 Where to return the opcode quad word.
800 * @remark Implicitly references pVCpu.
801 */
802#ifndef IEM_WITH_SETJMP
803# define IEM_OPCODE_GET_NEXT_U16_ZX_U64(a_pu64) \
804 do \
805 { \
806 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU16ZxU64(pVCpu, (a_pu64)); \
807 if (rcStrict2 != VINF_SUCCESS) \
808 return rcStrict2; \
809 } while (0)
810#else
811# define IEM_OPCODE_GET_NEXT_U16_ZX_U64(a_pu64) (*(a_pu64) = iemOpcodeGetNextU16Jmp(pVCpu))
812#endif
813
814
815#ifndef IEM_WITH_SETJMP
816/**
817 * Fetches the next signed word from the opcode stream.
818 *
819 * @returns Strict VBox status code.
820 * @param pVCpu The cross context virtual CPU structure of the calling thread.
821 * @param pi16 Where to return the signed word.
822 */
823DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS16(PVMCPUCC pVCpu, int16_t *pi16)
824{
825 return iemOpcodeGetNextU16(pVCpu, (uint16_t *)pi16);
826}
827#endif /* !IEM_WITH_SETJMP */
828
829
830/**
831 * Fetches the next signed word from the opcode stream, returning automatically
832 * on failure.
833 *
834 * @param a_pi16 Where to return the signed word.
835 * @remark Implicitly references pVCpu.
836 */
837#ifndef IEM_WITH_SETJMP
838# define IEM_OPCODE_GET_NEXT_S16(a_pi16) \
839 do \
840 { \
841 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS16(pVCpu, (a_pi16)); \
842 if (rcStrict2 != VINF_SUCCESS) \
843 return rcStrict2; \
844 } while (0)
845#else
846# define IEM_OPCODE_GET_NEXT_S16(a_pi16) (*(a_pi16) = (int16_t)iemOpcodeGetNextU16Jmp(pVCpu))
847#endif
848
849#ifndef IEM_WITH_SETJMP
850
851/**
852 * Fetches the next opcode dword.
853 *
854 * @returns Strict VBox status code.
855 * @param pVCpu The cross context virtual CPU structure of the calling thread.
856 * @param pu32 Where to return the opcode double word.
857 */
858DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU32(PVMCPUCC pVCpu, uint32_t *pu32)
859{
860 uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
861 if (RT_LIKELY((uint8_t)offOpcode + 4 <= pVCpu->iem.s.cbOpcode))
862 {
863 pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 4;
864# ifdef IEM_USE_UNALIGNED_DATA_ACCESS
865 *pu32 = *(uint32_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
866# else
867 *pu32 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
868 pVCpu->iem.s.abOpcode[offOpcode + 1],
869 pVCpu->iem.s.abOpcode[offOpcode + 2],
870 pVCpu->iem.s.abOpcode[offOpcode + 3]);
871# endif
872 return VINF_SUCCESS;
873 }
874 return iemOpcodeGetNextU32Slow(pVCpu, pu32);
875}
876
877#else /* IEM_WITH_SETJMP */
878
879/**
880 * Fetches the next opcode dword, longjmp on error.
881 *
882 * @returns The opcode dword.
883 * @param pVCpu The cross context virtual CPU structure of the calling thread.
884 */
885DECLINLINE(uint32_t) iemOpcodeGetNextU32Jmp(PVMCPUCC pVCpu)
886{
887# ifdef IEM_WITH_CODE_TLB
888 uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
889 uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
890 if (RT_LIKELY( pbBuf != NULL
891 && offBuf + 4 <= pVCpu->iem.s.cbInstrBuf))
892 {
893 pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 4;
894# ifdef IEM_USE_UNALIGNED_DATA_ACCESS
895 return *(uint32_t const *)&pbBuf[offBuf];
896# else
897 return RT_MAKE_U32_FROM_U8(pbBuf[offBuf],
898 pbBuf[offBuf + 1],
899 pbBuf[offBuf + 2],
900 pbBuf[offBuf + 3]);
901# endif
902 }
903# else
904 uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
905 if (RT_LIKELY((uint8_t)offOpcode + 4 <= pVCpu->iem.s.cbOpcode))
906 {
907 pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 4;
908# ifdef IEM_USE_UNALIGNED_DATA_ACCESS
909 return *(uint32_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
910# else
911 return RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
912 pVCpu->iem.s.abOpcode[offOpcode + 1],
913 pVCpu->iem.s.abOpcode[offOpcode + 2],
914 pVCpu->iem.s.abOpcode[offOpcode + 3]);
915# endif
916 }
917# endif
918 return iemOpcodeGetNextU32SlowJmp(pVCpu);
919}
920
921#endif /* IEM_WITH_SETJMP */
922
923/**
924 * Fetches the next opcode dword, returns automatically on failure.
925 *
926 * @param a_pu32 Where to return the opcode dword.
927 * @remark Implicitly references pVCpu.
928 */
929#ifndef IEM_WITH_SETJMP
930# define IEM_OPCODE_GET_NEXT_U32(a_pu32) \
931 do \
932 { \
933 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU32(pVCpu, (a_pu32)); \
934 if (rcStrict2 != VINF_SUCCESS) \
935 return rcStrict2; \
936 } while (0)
937#else
938# define IEM_OPCODE_GET_NEXT_U32(a_pu32) (*(a_pu32) = iemOpcodeGetNextU32Jmp(pVCpu))
939#endif
940
941#ifndef IEM_WITH_SETJMP
942/**
943 * Fetches the next opcode dword, zero extending it to a quad word.
944 *
945 * @returns Strict VBox status code.
946 * @param pVCpu The cross context virtual CPU structure of the calling thread.
947 * @param pu64 Where to return the opcode quad word.
948 */
949DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU32ZxU64(PVMCPUCC pVCpu, uint64_t *pu64)
950{
951 uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
952 if (RT_UNLIKELY(offOpcode + 4 > pVCpu->iem.s.cbOpcode))
953 return iemOpcodeGetNextU32ZxU64Slow(pVCpu, pu64);
954
955 *pu64 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
956 pVCpu->iem.s.abOpcode[offOpcode + 1],
957 pVCpu->iem.s.abOpcode[offOpcode + 2],
958 pVCpu->iem.s.abOpcode[offOpcode + 3]);
959 pVCpu->iem.s.offOpcode = offOpcode + 4;
960 return VINF_SUCCESS;
961}
962#endif /* !IEM_WITH_SETJMP */
963
964/**
965 * Fetches the next opcode dword and zero extends it to a quad word, returns
966 * automatically on failure.
967 *
968 * @param a_pu64 Where to return the opcode quad word.
969 * @remark Implicitly references pVCpu.
970 */
971#ifndef IEM_WITH_SETJMP
972# define IEM_OPCODE_GET_NEXT_U32_ZX_U64(a_pu64) \
973 do \
974 { \
975 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU32ZxU64(pVCpu, (a_pu64)); \
976 if (rcStrict2 != VINF_SUCCESS) \
977 return rcStrict2; \
978 } while (0)
979#else
980# define IEM_OPCODE_GET_NEXT_U32_ZX_U64(a_pu64) (*(a_pu64) = iemOpcodeGetNextU32Jmp(pVCpu))
981#endif
982
983
984#ifndef IEM_WITH_SETJMP
985/**
986 * Fetches the next signed double word from the opcode stream.
987 *
988 * @returns Strict VBox status code.
989 * @param pVCpu The cross context virtual CPU structure of the calling thread.
990 * @param pi32 Where to return the signed double word.
991 */
992DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS32(PVMCPUCC pVCpu, int32_t *pi32)
993{
994 return iemOpcodeGetNextU32(pVCpu, (uint32_t *)pi32);
995}
996#endif
997
998/**
999 * Fetches the next signed double word from the opcode stream, returning
1000 * automatically on failure.
1001 *
1002 * @param a_pi32 Where to return the signed double word.
1003 * @remark Implicitly references pVCpu.
1004 */
1005#ifndef IEM_WITH_SETJMP
1006# define IEM_OPCODE_GET_NEXT_S32(a_pi32) \
1007 do \
1008 { \
1009 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS32(pVCpu, (a_pi32)); \
1010 if (rcStrict2 != VINF_SUCCESS) \
1011 return rcStrict2; \
1012 } while (0)
1013#else
1014# define IEM_OPCODE_GET_NEXT_S32(a_pi32) (*(a_pi32) = (int32_t)iemOpcodeGetNextU32Jmp(pVCpu))
1015#endif
1016
1017#ifndef IEM_WITH_SETJMP
1018/**
1019 * Fetches the next opcode dword, sign extending it into a quad word.
1020 *
1021 * @returns Strict VBox status code.
1022 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1023 * @param pu64 Where to return the opcode quad word.
1024 */
1025DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS32SxU64(PVMCPUCC pVCpu, uint64_t *pu64)
1026{
1027 uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
1028 if (RT_UNLIKELY(offOpcode + 4 > pVCpu->iem.s.cbOpcode))
1029 return iemOpcodeGetNextS32SxU64Slow(pVCpu, pu64);
1030
1031 int32_t i32 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
1032 pVCpu->iem.s.abOpcode[offOpcode + 1],
1033 pVCpu->iem.s.abOpcode[offOpcode + 2],
1034 pVCpu->iem.s.abOpcode[offOpcode + 3]);
1035 *pu64 = i32;
1036 pVCpu->iem.s.offOpcode = offOpcode + 4;
1037 return VINF_SUCCESS;
1038}
1039#endif /* !IEM_WITH_SETJMP */
1040
1041/**
1042 * Fetches the next opcode double word and sign extends it to a quad word,
1043 * returns automatically on failure.
1044 *
1045 * @param a_pu64 Where to return the opcode quad word.
1046 * @remark Implicitly references pVCpu.
1047 */
1048#ifndef IEM_WITH_SETJMP
1049# define IEM_OPCODE_GET_NEXT_S32_SX_U64(a_pu64) \
1050 do \
1051 { \
1052 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS32SxU64(pVCpu, (a_pu64)); \
1053 if (rcStrict2 != VINF_SUCCESS) \
1054 return rcStrict2; \
1055 } while (0)
1056#else
1057# define IEM_OPCODE_GET_NEXT_S32_SX_U64(a_pu64) (*(a_pu64) = (int32_t)iemOpcodeGetNextU32Jmp(pVCpu))
1058#endif
1059
1060#ifndef IEM_WITH_SETJMP
1061
1062/**
1063 * Fetches the next opcode qword.
1064 *
1065 * @returns Strict VBox status code.
1066 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1067 * @param pu64 Where to return the opcode qword.
1068 */
1069DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU64(PVMCPUCC pVCpu, uint64_t *pu64)
1070{
1071 uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
1072 if (RT_LIKELY((uint8_t)offOpcode + 8 <= pVCpu->iem.s.cbOpcode))
1073 {
1074# ifdef IEM_USE_UNALIGNED_DATA_ACCESS
1075 *pu64 = *(uint64_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
1076# else
1077 *pu64 = RT_MAKE_U64_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
1078 pVCpu->iem.s.abOpcode[offOpcode + 1],
1079 pVCpu->iem.s.abOpcode[offOpcode + 2],
1080 pVCpu->iem.s.abOpcode[offOpcode + 3],
1081 pVCpu->iem.s.abOpcode[offOpcode + 4],
1082 pVCpu->iem.s.abOpcode[offOpcode + 5],
1083 pVCpu->iem.s.abOpcode[offOpcode + 6],
1084 pVCpu->iem.s.abOpcode[offOpcode + 7]);
1085# endif
1086 pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 8;
1087 return VINF_SUCCESS;
1088 }
1089 return iemOpcodeGetNextU64Slow(pVCpu, pu64);
1090}
1091
1092#else /* IEM_WITH_SETJMP */
1093
1094/**
1095 * Fetches the next opcode qword, longjmp on error.
1096 *
1097 * @returns The opcode qword.
1098 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1099 */
1100DECLINLINE(uint64_t) iemOpcodeGetNextU64Jmp(PVMCPUCC pVCpu)
1101{
1102# ifdef IEM_WITH_CODE_TLB
1103 uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
1104 uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
1105 if (RT_LIKELY( pbBuf != NULL
1106 && offBuf + 8 <= pVCpu->iem.s.cbInstrBuf))
1107 {
1108 pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 8;
1109# ifdef IEM_USE_UNALIGNED_DATA_ACCESS
1110 return *(uint64_t const *)&pbBuf[offBuf];
1111# else
1112 return RT_MAKE_U64_FROM_U8(pbBuf[offBuf],
1113 pbBuf[offBuf + 1],
1114 pbBuf[offBuf + 2],
1115 pbBuf[offBuf + 3],
1116 pbBuf[offBuf + 4],
1117 pbBuf[offBuf + 5],
1118 pbBuf[offBuf + 6],
1119 pbBuf[offBuf + 7]);
1120# endif
1121 }
1122# else
1123 uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
1124 if (RT_LIKELY((uint8_t)offOpcode + 8 <= pVCpu->iem.s.cbOpcode))
1125 {
1126 pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 8;
1127# ifdef IEM_USE_UNALIGNED_DATA_ACCESS
1128 return *(uint64_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
1129# else
1130 return RT_MAKE_U64_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
1131 pVCpu->iem.s.abOpcode[offOpcode + 1],
1132 pVCpu->iem.s.abOpcode[offOpcode + 2],
1133 pVCpu->iem.s.abOpcode[offOpcode + 3],
1134 pVCpu->iem.s.abOpcode[offOpcode + 4],
1135 pVCpu->iem.s.abOpcode[offOpcode + 5],
1136 pVCpu->iem.s.abOpcode[offOpcode + 6],
1137 pVCpu->iem.s.abOpcode[offOpcode + 7]);
1138# endif
1139 }
1140# endif
1141 return iemOpcodeGetNextU64SlowJmp(pVCpu);
1142}
1143
1144#endif /* IEM_WITH_SETJMP */
1145
1146/**
1147 * Fetches the next opcode quad word, returns automatically on failure.
1148 *
1149 * @param a_pu64 Where to return the opcode quad word.
1150 * @remark Implicitly references pVCpu.
1151 */
1152#ifndef IEM_WITH_SETJMP
1153# define IEM_OPCODE_GET_NEXT_U64(a_pu64) \
1154 do \
1155 { \
1156 VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU64(pVCpu, (a_pu64)); \
1157 if (rcStrict2 != VINF_SUCCESS) \
1158 return rcStrict2; \
1159 } while (0)
1160#else
1161# define IEM_OPCODE_GET_NEXT_U64(a_pu64) ( *(a_pu64) = iemOpcodeGetNextU64Jmp(pVCpu) )
1162#endif
1163
1164
1165/** @name Misc Worker Functions.
1166 * @{
1167 */
1168
1169/**
1170 * Gets the correct EFLAGS regardless of whether PATM stores parts of them or
1171 * not (kind of obsolete now).
1172 *
1173 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1174 */
1175#define IEMMISC_GET_EFL(a_pVCpu) ( (a_pVCpu)->cpum.GstCtx.eflags.u )
1176
1177/**
1178 * Updates the EFLAGS in the correct manner wrt. PATM (kind of obsolete).
1179 *
1180 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1181 * @param a_fEfl The new EFLAGS.
1182 */
1183#define IEMMISC_SET_EFL(a_pVCpu, a_fEfl) do { (a_pVCpu)->cpum.GstCtx.eflags.u = (a_fEfl); } while (0)
1184
1185
1186/**
1187 * Loads a NULL data selector into a selector register, both the hidden and
1188 * visible parts, in protected mode.
1189 *
1190 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1191 * @param pSReg Pointer to the segment register.
1192 * @param uRpl The RPL.
1193 */
1194DECLINLINE(void) iemHlpLoadNullDataSelectorProt(PVMCPUCC pVCpu, PCPUMSELREG pSReg, RTSEL uRpl)
1195{
1196 /** @todo Testcase: write a testcase checking what happends when loading a NULL
1197 * data selector in protected mode. */
1198 pSReg->Sel = uRpl;
1199 pSReg->ValidSel = uRpl;
1200 pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
1201 if (IEM_IS_GUEST_CPU_INTEL(pVCpu))
1202 {
1203 /* VT-x (Intel 3960x) observed doing something like this. */
1204 pSReg->Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D | (pVCpu->iem.s.uCpl << X86DESCATTR_DPL_SHIFT);
1205 pSReg->u32Limit = UINT32_MAX;
1206 pSReg->u64Base = 0;
1207 }
1208 else
1209 {
1210 pSReg->Attr.u = X86DESCATTR_UNUSABLE;
1211 pSReg->u32Limit = 0;
1212 pSReg->u64Base = 0;
1213 }
1214}
1215
1216/** @} */
1217
1218
1219/*
1220 *
1221 * Helpers routines.
1222 * Helpers routines.
1223 * Helpers routines.
1224 *
1225 */
1226
1227/**
1228 * Recalculates the effective operand size.
1229 *
1230 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1231 */
1232DECLINLINE(void) iemRecalEffOpSize(PVMCPUCC pVCpu)
1233{
1234 switch (pVCpu->iem.s.enmCpuMode)
1235 {
1236 case IEMMODE_16BIT:
1237 pVCpu->iem.s.enmEffOpSize = pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SIZE_OP ? IEMMODE_32BIT : IEMMODE_16BIT;
1238 break;
1239 case IEMMODE_32BIT:
1240 pVCpu->iem.s.enmEffOpSize = pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SIZE_OP ? IEMMODE_16BIT : IEMMODE_32BIT;
1241 break;
1242 case IEMMODE_64BIT:
1243 switch (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_SIZE_REX_W | IEM_OP_PRF_SIZE_OP))
1244 {
1245 case 0:
1246 pVCpu->iem.s.enmEffOpSize = pVCpu->iem.s.enmDefOpSize;
1247 break;
1248 case IEM_OP_PRF_SIZE_OP:
1249 pVCpu->iem.s.enmEffOpSize = IEMMODE_16BIT;
1250 break;
1251 case IEM_OP_PRF_SIZE_REX_W:
1252 case IEM_OP_PRF_SIZE_REX_W | IEM_OP_PRF_SIZE_OP:
1253 pVCpu->iem.s.enmEffOpSize = IEMMODE_64BIT;
1254 break;
1255 }
1256 break;
1257 default:
1258 AssertFailed();
1259 }
1260}
1261
1262
1263/**
1264 * Sets the default operand size to 64-bit and recalculates the effective
1265 * operand size.
1266 *
1267 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1268 */
1269DECLINLINE(void) iemRecalEffOpSize64Default(PVMCPUCC pVCpu)
1270{
1271 Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT);
1272 pVCpu->iem.s.enmDefOpSize = IEMMODE_64BIT;
1273 if ((pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_SIZE_REX_W | IEM_OP_PRF_SIZE_OP)) != IEM_OP_PRF_SIZE_OP)
1274 pVCpu->iem.s.enmEffOpSize = IEMMODE_64BIT;
1275 else
1276 pVCpu->iem.s.enmEffOpSize = IEMMODE_16BIT;
1277}
1278
1279
1280
1281
1282/** @name Register Access.
1283 * @{
1284 */
1285
1286/**
1287 * Gets a reference (pointer) to the specified hidden segment register.
1288 *
1289 * @returns Hidden register reference.
1290 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1291 * @param iSegReg The segment register.
1292 */
1293DECLINLINE(PCPUMSELREG) iemSRegGetHid(PVMCPUCC pVCpu, uint8_t iSegReg)
1294{
1295 Assert(iSegReg < X86_SREG_COUNT);
1296 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
1297 PCPUMSELREG pSReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
1298
1299 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
1300 return pSReg;
1301}
1302
1303
1304/**
1305 * Ensures that the given hidden segment register is up to date.
1306 *
1307 * @returns Hidden register reference.
1308 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1309 * @param pSReg The segment register.
1310 */
1311DECLINLINE(PCPUMSELREG) iemSRegUpdateHid(PVMCPUCC pVCpu, PCPUMSELREG pSReg)
1312{
1313 Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
1314 NOREF(pVCpu);
1315 return pSReg;
1316}
1317
1318
1319/**
1320 * Gets a reference (pointer) to the specified segment register (the selector
1321 * value).
1322 *
1323 * @returns Pointer to the selector variable.
1324 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1325 * @param iSegReg The segment register.
1326 */
1327DECLINLINE(uint16_t *) iemSRegRef(PVMCPUCC pVCpu, uint8_t iSegReg)
1328{
1329 Assert(iSegReg < X86_SREG_COUNT);
1330 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
1331 return &pVCpu->cpum.GstCtx.aSRegs[iSegReg].Sel;
1332}
1333
1334
1335/**
1336 * Fetches the selector value of a segment register.
1337 *
1338 * @returns The selector value.
1339 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1340 * @param iSegReg The segment register.
1341 */
1342DECLINLINE(uint16_t) iemSRegFetchU16(PVMCPUCC pVCpu, uint8_t iSegReg)
1343{
1344 Assert(iSegReg < X86_SREG_COUNT);
1345 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
1346 return pVCpu->cpum.GstCtx.aSRegs[iSegReg].Sel;
1347}
1348
1349
1350/**
1351 * Fetches the base address value of a segment register.
1352 *
1353 * @returns The selector value.
1354 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1355 * @param iSegReg The segment register.
1356 */
1357DECLINLINE(uint64_t) iemSRegBaseFetchU64(PVMCPUCC pVCpu, uint8_t iSegReg)
1358{
1359 Assert(iSegReg < X86_SREG_COUNT);
1360 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
1361 return pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
1362}
1363
1364
1365/**
1366 * Gets a reference (pointer) to the specified general purpose register.
1367 *
1368 * @returns Register reference.
1369 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1370 * @param iReg The general purpose register.
1371 */
1372DECLINLINE(void *) iemGRegRef(PVMCPUCC pVCpu, uint8_t iReg)
1373{
1374 Assert(iReg < 16);
1375 return &pVCpu->cpum.GstCtx.aGRegs[iReg];
1376}
1377
1378
1379/**
1380 * Gets a reference (pointer) to the specified 8-bit general purpose register.
1381 *
1382 * Because of AH, CH, DH and BH we cannot use iemGRegRef directly here.
1383 *
1384 * @returns Register reference.
1385 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1386 * @param iReg The register.
1387 */
1388DECLINLINE(uint8_t *) iemGRegRefU8(PVMCPUCC pVCpu, uint8_t iReg)
1389{
1390 if (iReg < 4 || (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX))
1391 {
1392 Assert(iReg < 16);
1393 return &pVCpu->cpum.GstCtx.aGRegs[iReg].u8;
1394 }
1395 /* high 8-bit register. */
1396 Assert(iReg < 8);
1397 return &pVCpu->cpum.GstCtx.aGRegs[iReg & 3].bHi;
1398}
1399
1400
1401/**
1402 * Gets a reference (pointer) to the specified 16-bit general purpose register.
1403 *
1404 * @returns Register reference.
1405 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1406 * @param iReg The register.
1407 */
1408DECLINLINE(uint16_t *) iemGRegRefU16(PVMCPUCC pVCpu, uint8_t iReg)
1409{
1410 Assert(iReg < 16);
1411 return &pVCpu->cpum.GstCtx.aGRegs[iReg].u16;
1412}
1413
1414
1415/**
1416 * Gets a reference (pointer) to the specified 32-bit general purpose register.
1417 *
1418 * @returns Register reference.
1419 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1420 * @param iReg The register.
1421 */
1422DECLINLINE(uint32_t *) iemGRegRefU32(PVMCPUCC pVCpu, uint8_t iReg)
1423{
1424 Assert(iReg < 16);
1425 return &pVCpu->cpum.GstCtx.aGRegs[iReg].u32;
1426}
1427
1428
1429/**
1430 * Gets a reference (pointer) to the specified 64-bit general purpose register.
1431 *
1432 * @returns Register reference.
1433 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1434 * @param iReg The register.
1435 */
1436DECLINLINE(uint64_t *) iemGRegRefU64(PVMCPUCC pVCpu, uint8_t iReg)
1437{
1438 Assert(iReg < 64);
1439 return &pVCpu->cpum.GstCtx.aGRegs[iReg].u64;
1440}
1441
1442
1443/**
1444 * Gets a reference (pointer) to the specified segment register's base address.
1445 *
1446 * @returns Segment register base address reference.
1447 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1448 * @param iSegReg The segment selector.
1449 */
1450DECLINLINE(uint64_t *) iemSRegBaseRefU64(PVMCPUCC pVCpu, uint8_t iSegReg)
1451{
1452 Assert(iSegReg < X86_SREG_COUNT);
1453 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
1454 return &pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
1455}
1456
1457
1458/**
1459 * Fetches the value of a 8-bit general purpose register.
1460 *
1461 * @returns The register value.
1462 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1463 * @param iReg The register.
1464 */
1465DECLINLINE(uint8_t) iemGRegFetchU8(PVMCPUCC pVCpu, uint8_t iReg)
1466{
1467 return *iemGRegRefU8(pVCpu, iReg);
1468}
1469
1470
1471/**
1472 * Fetches the value of a 16-bit general purpose register.
1473 *
1474 * @returns The register value.
1475 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1476 * @param iReg The register.
1477 */
1478DECLINLINE(uint16_t) iemGRegFetchU16(PVMCPUCC pVCpu, uint8_t iReg)
1479{
1480 Assert(iReg < 16);
1481 return pVCpu->cpum.GstCtx.aGRegs[iReg].u16;
1482}
1483
1484
1485/**
1486 * Fetches the value of a 32-bit general purpose register.
1487 *
1488 * @returns The register value.
1489 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1490 * @param iReg The register.
1491 */
1492DECLINLINE(uint32_t) iemGRegFetchU32(PVMCPUCC pVCpu, uint8_t iReg)
1493{
1494 Assert(iReg < 16);
1495 return pVCpu->cpum.GstCtx.aGRegs[iReg].u32;
1496}
1497
1498
1499/**
1500 * Fetches the value of a 64-bit general purpose register.
1501 *
1502 * @returns The register value.
1503 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1504 * @param iReg The register.
1505 */
1506DECLINLINE(uint64_t) iemGRegFetchU64(PVMCPUCC pVCpu, uint8_t iReg)
1507{
1508 Assert(iReg < 16);
1509 return pVCpu->cpum.GstCtx.aGRegs[iReg].u64;
1510}
1511
1512
1513/**
1514 * Get the address of the top of the stack.
1515 *
1516 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1517 */
1518DECLINLINE(RTGCPTR) iemRegGetEffRsp(PCVMCPU pVCpu)
1519{
1520 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1521 return pVCpu->cpum.GstCtx.rsp;
1522 if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
1523 return pVCpu->cpum.GstCtx.esp;
1524 return pVCpu->cpum.GstCtx.sp;
1525}
1526
1527
1528/**
1529 * Updates the RIP/EIP/IP to point to the next instruction.
1530 *
1531 * This function leaves the EFLAGS.RF flag alone.
1532 *
1533 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1534 * @param cbInstr The number of bytes to add.
1535 */
1536DECLINLINE(void) iemRegAddToRipKeepRF(PVMCPUCC pVCpu, uint8_t cbInstr)
1537{
1538 switch (pVCpu->iem.s.enmCpuMode)
1539 {
1540 case IEMMODE_16BIT:
1541 Assert(pVCpu->cpum.GstCtx.rip <= UINT16_MAX);
1542 pVCpu->cpum.GstCtx.eip += cbInstr;
1543 pVCpu->cpum.GstCtx.eip &= UINT32_C(0xffff);
1544 break;
1545
1546 case IEMMODE_32BIT:
1547 pVCpu->cpum.GstCtx.eip += cbInstr;
1548 Assert(pVCpu->cpum.GstCtx.rip <= UINT32_MAX);
1549 break;
1550
1551 case IEMMODE_64BIT:
1552 pVCpu->cpum.GstCtx.rip += cbInstr;
1553 break;
1554 default: AssertFailed();
1555 }
1556}
1557
1558
1559#if 0
1560/**
1561 * Updates the RIP/EIP/IP to point to the next instruction.
1562 *
1563 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1564 */
1565DECLINLINE(void) iemRegUpdateRipKeepRF(PVMCPUCC pVCpu)
1566{
1567 return iemRegAddToRipKeepRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu));
1568}
1569#endif
1570
1571
1572
1573/**
1574 * Updates the RIP/EIP/IP to point to the next instruction and clears EFLAGS.RF.
1575 *
1576 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1577 * @param cbInstr The number of bytes to add.
1578 */
1579DECLINLINE(void) iemRegAddToRipAndClearRF(PVMCPUCC pVCpu, uint8_t cbInstr)
1580{
1581 pVCpu->cpum.GstCtx.eflags.Bits.u1RF = 0;
1582
1583 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
1584#if ARCH_BITS >= 64
1585 static uint64_t const s_aRipMasks[] = { UINT64_C(0xffffffff), UINT64_C(0xffffffff), UINT64_MAX };
1586 Assert(pVCpu->cpum.GstCtx.rip <= s_aRipMasks[(unsigned)pVCpu->iem.s.enmCpuMode]);
1587 pVCpu->cpum.GstCtx.rip = (pVCpu->cpum.GstCtx.rip + cbInstr) & s_aRipMasks[(unsigned)pVCpu->iem.s.enmCpuMode];
1588#else
1589 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1590 pVCpu->cpum.GstCtx.rip += cbInstr;
1591 else
1592 pVCpu->cpum.GstCtx.eip += cbInstr;
1593#endif
1594}
1595
1596
1597/**
1598 * Updates the RIP/EIP/IP to point to the next instruction and clears EFLAGS.RF.
1599 *
1600 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1601 */
1602DECLINLINE(void) iemRegUpdateRipAndClearRF(PVMCPUCC pVCpu)
1603{
1604 return iemRegAddToRipAndClearRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu));
1605}
1606
1607
1608/**
1609 * Adds to the stack pointer.
1610 *
1611 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1612 * @param cbToAdd The number of bytes to add (8-bit!).
1613 */
1614DECLINLINE(void) iemRegAddToRsp(PVMCPUCC pVCpu, uint8_t cbToAdd)
1615{
1616 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1617 pVCpu->cpum.GstCtx.rsp += cbToAdd;
1618 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
1619 pVCpu->cpum.GstCtx.esp += cbToAdd;
1620 else
1621 pVCpu->cpum.GstCtx.sp += cbToAdd;
1622}
1623
1624
1625/**
1626 * Subtracts from the stack pointer.
1627 *
1628 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1629 * @param cbToSub The number of bytes to subtract (8-bit!).
1630 */
1631DECLINLINE(void) iemRegSubFromRsp(PVMCPUCC pVCpu, uint8_t cbToSub)
1632{
1633 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1634 pVCpu->cpum.GstCtx.rsp -= cbToSub;
1635 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
1636 pVCpu->cpum.GstCtx.esp -= cbToSub;
1637 else
1638 pVCpu->cpum.GstCtx.sp -= cbToSub;
1639}
1640
1641
1642/**
1643 * Adds to the temporary stack pointer.
1644 *
1645 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1646 * @param pTmpRsp The temporary SP/ESP/RSP to update.
1647 * @param cbToAdd The number of bytes to add (16-bit).
1648 */
1649DECLINLINE(void) iemRegAddToRspEx(PCVMCPU pVCpu, PRTUINT64U pTmpRsp, uint16_t cbToAdd)
1650{
1651 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1652 pTmpRsp->u += cbToAdd;
1653 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
1654 pTmpRsp->DWords.dw0 += cbToAdd;
1655 else
1656 pTmpRsp->Words.w0 += cbToAdd;
1657}
1658
1659
1660/**
1661 * Subtracts from the temporary stack pointer.
1662 *
1663 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1664 * @param pTmpRsp The temporary SP/ESP/RSP to update.
1665 * @param cbToSub The number of bytes to subtract.
1666 * @remarks The @a cbToSub argument *MUST* be 16-bit, iemCImpl_enter is
1667 * expecting that.
1668 */
1669DECLINLINE(void) iemRegSubFromRspEx(PCVMCPU pVCpu, PRTUINT64U pTmpRsp, uint16_t cbToSub)
1670{
1671 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1672 pTmpRsp->u -= cbToSub;
1673 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
1674 pTmpRsp->DWords.dw0 -= cbToSub;
1675 else
1676 pTmpRsp->Words.w0 -= cbToSub;
1677}
1678
1679
1680/**
1681 * Calculates the effective stack address for a push of the specified size as
1682 * well as the new RSP value (upper bits may be masked).
1683 *
1684 * @returns Effective stack addressf for the push.
1685 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1686 * @param cbItem The size of the stack item to pop.
1687 * @param puNewRsp Where to return the new RSP value.
1688 */
1689DECLINLINE(RTGCPTR) iemRegGetRspForPush(PCVMCPU pVCpu, uint8_t cbItem, uint64_t *puNewRsp)
1690{
1691 RTUINT64U uTmpRsp;
1692 RTGCPTR GCPtrTop;
1693 uTmpRsp.u = pVCpu->cpum.GstCtx.rsp;
1694
1695 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1696 GCPtrTop = uTmpRsp.u -= cbItem;
1697 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
1698 GCPtrTop = uTmpRsp.DWords.dw0 -= cbItem;
1699 else
1700 GCPtrTop = uTmpRsp.Words.w0 -= cbItem;
1701 *puNewRsp = uTmpRsp.u;
1702 return GCPtrTop;
1703}
1704
1705
1706/**
1707 * Gets the current stack pointer and calculates the value after a pop of the
1708 * specified size.
1709 *
1710 * @returns Current stack pointer.
1711 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1712 * @param cbItem The size of the stack item to pop.
1713 * @param puNewRsp Where to return the new RSP value.
1714 */
1715DECLINLINE(RTGCPTR) iemRegGetRspForPop(PCVMCPU pVCpu, uint8_t cbItem, uint64_t *puNewRsp)
1716{
1717 RTUINT64U uTmpRsp;
1718 RTGCPTR GCPtrTop;
1719 uTmpRsp.u = pVCpu->cpum.GstCtx.rsp;
1720
1721 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1722 {
1723 GCPtrTop = uTmpRsp.u;
1724 uTmpRsp.u += cbItem;
1725 }
1726 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
1727 {
1728 GCPtrTop = uTmpRsp.DWords.dw0;
1729 uTmpRsp.DWords.dw0 += cbItem;
1730 }
1731 else
1732 {
1733 GCPtrTop = uTmpRsp.Words.w0;
1734 uTmpRsp.Words.w0 += cbItem;
1735 }
1736 *puNewRsp = uTmpRsp.u;
1737 return GCPtrTop;
1738}
1739
1740
1741/**
1742 * Calculates the effective stack address for a push of the specified size as
1743 * well as the new temporary RSP value (upper bits may be masked).
1744 *
1745 * @returns Effective stack addressf for the push.
1746 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1747 * @param pTmpRsp The temporary stack pointer. This is updated.
1748 * @param cbItem The size of the stack item to pop.
1749 */
1750DECLINLINE(RTGCPTR) iemRegGetRspForPushEx(PCVMCPU pVCpu, PRTUINT64U pTmpRsp, uint8_t cbItem)
1751{
1752 RTGCPTR GCPtrTop;
1753
1754 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1755 GCPtrTop = pTmpRsp->u -= cbItem;
1756 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
1757 GCPtrTop = pTmpRsp->DWords.dw0 -= cbItem;
1758 else
1759 GCPtrTop = pTmpRsp->Words.w0 -= cbItem;
1760 return GCPtrTop;
1761}
1762
1763
1764/**
1765 * Gets the effective stack address for a pop of the specified size and
1766 * calculates and updates the temporary RSP.
1767 *
1768 * @returns Current stack pointer.
1769 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1770 * @param pTmpRsp The temporary stack pointer. This is updated.
1771 * @param cbItem The size of the stack item to pop.
1772 */
1773DECLINLINE(RTGCPTR) iemRegGetRspForPopEx(PCVMCPU pVCpu, PRTUINT64U pTmpRsp, uint8_t cbItem)
1774{
1775 RTGCPTR GCPtrTop;
1776 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1777 {
1778 GCPtrTop = pTmpRsp->u;
1779 pTmpRsp->u += cbItem;
1780 }
1781 else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
1782 {
1783 GCPtrTop = pTmpRsp->DWords.dw0;
1784 pTmpRsp->DWords.dw0 += cbItem;
1785 }
1786 else
1787 {
1788 GCPtrTop = pTmpRsp->Words.w0;
1789 pTmpRsp->Words.w0 += cbItem;
1790 }
1791 return GCPtrTop;
1792}
1793
1794/** @} */
1795
1796
1797/** @name FPU access and helpers.
1798 *
1799 * @{
1800 */
1801
1802
1803/**
1804 * Hook for preparing to use the host FPU.
1805 *
1806 * This is necessary in ring-0 and raw-mode context (nop in ring-3).
1807 *
1808 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1809 */
1810DECLINLINE(void) iemFpuPrepareUsage(PVMCPUCC pVCpu)
1811{
1812#ifdef IN_RING3
1813 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
1814#else
1815 CPUMRZFpuStatePrepareHostCpuForUse(pVCpu);
1816#endif
1817 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
1818}
1819
1820
1821/**
1822 * Hook for preparing to use the host FPU for SSE.
1823 *
1824 * This is necessary in ring-0 and raw-mode context (nop in ring-3).
1825 *
1826 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1827 */
1828DECLINLINE(void) iemFpuPrepareUsageSse(PVMCPUCC pVCpu)
1829{
1830 iemFpuPrepareUsage(pVCpu);
1831}
1832
1833
1834/**
1835 * Hook for preparing to use the host FPU for AVX.
1836 *
1837 * This is necessary in ring-0 and raw-mode context (nop in ring-3).
1838 *
1839 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1840 */
1841DECLINLINE(void) iemFpuPrepareUsageAvx(PVMCPUCC pVCpu)
1842{
1843 iemFpuPrepareUsage(pVCpu);
1844}
1845
1846
1847/**
1848 * Hook for actualizing the guest FPU state before the interpreter reads it.
1849 *
1850 * This is necessary in ring-0 and raw-mode context (nop in ring-3).
1851 *
1852 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1853 */
1854DECLINLINE(void) iemFpuActualizeStateForRead(PVMCPUCC pVCpu)
1855{
1856#ifdef IN_RING3
1857 NOREF(pVCpu);
1858#else
1859 CPUMRZFpuStateActualizeForRead(pVCpu);
1860#endif
1861 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
1862}
1863
1864
1865/**
1866 * Hook for actualizing the guest FPU state before the interpreter changes it.
1867 *
1868 * This is necessary in ring-0 and raw-mode context (nop in ring-3).
1869 *
1870 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1871 */
1872DECLINLINE(void) iemFpuActualizeStateForChange(PVMCPUCC pVCpu)
1873{
1874#ifdef IN_RING3
1875 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
1876#else
1877 CPUMRZFpuStateActualizeForChange(pVCpu);
1878#endif
1879 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
1880}
1881
1882
1883/**
1884 * Hook for actualizing the guest XMM0..15 and MXCSR register state for read
1885 * only.
1886 *
1887 * This is necessary in ring-0 and raw-mode context (nop in ring-3).
1888 *
1889 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1890 */
1891DECLINLINE(void) iemFpuActualizeSseStateForRead(PVMCPUCC pVCpu)
1892{
1893#if defined(IN_RING3) || defined(VBOX_WITH_KERNEL_USING_XMM)
1894 NOREF(pVCpu);
1895#else
1896 CPUMRZFpuStateActualizeSseForRead(pVCpu);
1897#endif
1898 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
1899}
1900
1901
1902/**
1903 * Hook for actualizing the guest XMM0..15 and MXCSR register state for
1904 * read+write.
1905 *
1906 * This is necessary in ring-0 and raw-mode context (nop in ring-3).
1907 *
1908 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1909 */
1910DECLINLINE(void) iemFpuActualizeSseStateForChange(PVMCPUCC pVCpu)
1911{
1912#if defined(IN_RING3) || defined(VBOX_WITH_KERNEL_USING_XMM)
1913 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
1914#else
1915 CPUMRZFpuStateActualizeForChange(pVCpu);
1916#endif
1917 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
1918
1919 /* Make sure any changes are loaded the next time around. */
1920 pVCpu->cpum.GstCtx.XState.Hdr.bmXState |= XSAVE_C_SSE;
1921}
1922
1923
1924/**
1925 * Hook for actualizing the guest YMM0..15 and MXCSR register state for read
1926 * only.
1927 *
1928 * This is necessary in ring-0 and raw-mode context (nop in ring-3).
1929 *
1930 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1931 */
1932DECLINLINE(void) iemFpuActualizeAvxStateForRead(PVMCPUCC pVCpu)
1933{
1934#ifdef IN_RING3
1935 NOREF(pVCpu);
1936#else
1937 CPUMRZFpuStateActualizeAvxForRead(pVCpu);
1938#endif
1939 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
1940}
1941
1942
1943/**
1944 * Hook for actualizing the guest YMM0..15 and MXCSR register state for
1945 * read+write.
1946 *
1947 * This is necessary in ring-0 and raw-mode context (nop in ring-3).
1948 *
1949 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1950 */
1951DECLINLINE(void) iemFpuActualizeAvxStateForChange(PVMCPUCC pVCpu)
1952{
1953#ifdef IN_RING3
1954 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
1955#else
1956 CPUMRZFpuStateActualizeForChange(pVCpu);
1957#endif
1958 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
1959
1960 /* Just assume we're going to make changes to the SSE and YMM_HI parts. */
1961 pVCpu->cpum.GstCtx.XState.Hdr.bmXState |= XSAVE_C_YMM | XSAVE_C_SSE;
1962}
1963
1964
1965/**
1966 * Stores a QNaN value into a FPU register.
1967 *
1968 * @param pReg Pointer to the register.
1969 */
1970DECLINLINE(void) iemFpuStoreQNan(PRTFLOAT80U pReg)
1971{
1972 pReg->au32[0] = UINT32_C(0x00000000);
1973 pReg->au32[1] = UINT32_C(0xc0000000);
1974 pReg->au16[4] = UINT16_C(0xffff);
1975}
1976
1977
1978/**
1979 * Updates the FOP, FPU.CS and FPUIP registers.
1980 *
1981 * @param pVCpu The cross context virtual CPU structure of the calling thread.
1982 * @param pFpuCtx The FPU context.
1983 */
1984DECLINLINE(void) iemFpuUpdateOpcodeAndIpWorker(PVMCPUCC pVCpu, PX86FXSTATE pFpuCtx)
1985{
1986 Assert(pVCpu->iem.s.uFpuOpcode != UINT16_MAX);
1987 pFpuCtx->FOP = pVCpu->iem.s.uFpuOpcode;
1988 /** @todo x87.CS and FPUIP needs to be kept seperately. */
1989 if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
1990 {
1991 /** @todo Testcase: making assumptions about how FPUIP and FPUDP are handled
1992 * happens in real mode here based on the fnsave and fnstenv images. */
1993 pFpuCtx->CS = 0;
1994 pFpuCtx->FPUIP = pVCpu->cpum.GstCtx.eip | ((uint32_t)pVCpu->cpum.GstCtx.cs.Sel << 4);
1995 }
1996 else if (!IEM_IS_LONG_MODE(pVCpu))
1997 {
1998 pFpuCtx->CS = pVCpu->cpum.GstCtx.cs.Sel;
1999 pFpuCtx->FPUIP = pVCpu->cpum.GstCtx.rip;
2000 }
2001 else
2002 *(uint64_t *)&pFpuCtx->FPUIP = pVCpu->cpum.GstCtx.rip;
2003}
2004
2005
2006
2007
2008
2009/**
2010 * Marks the specified stack register as free (for FFREE).
2011 *
2012 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2013 * @param iStReg The register to free.
2014 */
2015DECLINLINE(void) iemFpuStackFree(PVMCPUCC pVCpu, uint8_t iStReg)
2016{
2017 Assert(iStReg < 8);
2018 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
2019 uint8_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
2020 pFpuCtx->FTW &= ~RT_BIT(iReg);
2021}
2022
2023
2024/**
2025 * Increments FSW.TOP, i.e. pops an item off the stack without freeing it.
2026 *
2027 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2028 */
2029DECLINLINE(void) iemFpuStackIncTop(PVMCPUCC pVCpu)
2030{
2031 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
2032 uint16_t uFsw = pFpuCtx->FSW;
2033 uint16_t uTop = uFsw & X86_FSW_TOP_MASK;
2034 uTop = (uTop + (1 << X86_FSW_TOP_SHIFT)) & X86_FSW_TOP_MASK;
2035 uFsw &= ~X86_FSW_TOP_MASK;
2036 uFsw |= uTop;
2037 pFpuCtx->FSW = uFsw;
2038}
2039
2040
2041/**
2042 * Decrements FSW.TOP, i.e. push an item off the stack without storing anything.
2043 *
2044 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2045 */
2046DECLINLINE(void) iemFpuStackDecTop(PVMCPUCC pVCpu)
2047{
2048 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
2049 uint16_t uFsw = pFpuCtx->FSW;
2050 uint16_t uTop = uFsw & X86_FSW_TOP_MASK;
2051 uTop = (uTop + (7 << X86_FSW_TOP_SHIFT)) & X86_FSW_TOP_MASK;
2052 uFsw &= ~X86_FSW_TOP_MASK;
2053 uFsw |= uTop;
2054 pFpuCtx->FSW = uFsw;
2055}
2056
2057
2058
2059
2060DECLINLINE(int) iemFpuStRegNotEmpty(PVMCPUCC pVCpu, uint8_t iStReg)
2061{
2062 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
2063 uint16_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
2064 if (pFpuCtx->FTW & RT_BIT(iReg))
2065 return VINF_SUCCESS;
2066 return VERR_NOT_FOUND;
2067}
2068
2069
2070DECLINLINE(int) iemFpuStRegNotEmptyRef(PVMCPUCC pVCpu, uint8_t iStReg, PCRTFLOAT80U *ppRef)
2071{
2072 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
2073 uint16_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
2074 if (pFpuCtx->FTW & RT_BIT(iReg))
2075 {
2076 *ppRef = &pFpuCtx->aRegs[iStReg].r80;
2077 return VINF_SUCCESS;
2078 }
2079 return VERR_NOT_FOUND;
2080}
2081
2082
2083DECLINLINE(int) iemFpu2StRegsNotEmptyRef(PVMCPUCC pVCpu, uint8_t iStReg0, PCRTFLOAT80U *ppRef0,
2084 uint8_t iStReg1, PCRTFLOAT80U *ppRef1)
2085{
2086 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
2087 uint16_t iTop = X86_FSW_TOP_GET(pFpuCtx->FSW);
2088 uint16_t iReg0 = (iTop + iStReg0) & X86_FSW_TOP_SMASK;
2089 uint16_t iReg1 = (iTop + iStReg1) & X86_FSW_TOP_SMASK;
2090 if ((pFpuCtx->FTW & (RT_BIT(iReg0) | RT_BIT(iReg1))) == (RT_BIT(iReg0) | RT_BIT(iReg1)))
2091 {
2092 *ppRef0 = &pFpuCtx->aRegs[iStReg0].r80;
2093 *ppRef1 = &pFpuCtx->aRegs[iStReg1].r80;
2094 return VINF_SUCCESS;
2095 }
2096 return VERR_NOT_FOUND;
2097}
2098
2099
2100DECLINLINE(int) iemFpu2StRegsNotEmptyRefFirst(PVMCPUCC pVCpu, uint8_t iStReg0, PCRTFLOAT80U *ppRef0, uint8_t iStReg1)
2101{
2102 PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
2103 uint16_t iTop = X86_FSW_TOP_GET(pFpuCtx->FSW);
2104 uint16_t iReg0 = (iTop + iStReg0) & X86_FSW_TOP_SMASK;
2105 uint16_t iReg1 = (iTop + iStReg1) & X86_FSW_TOP_SMASK;
2106 if ((pFpuCtx->FTW & (RT_BIT(iReg0) | RT_BIT(iReg1))) == (RT_BIT(iReg0) | RT_BIT(iReg1)))
2107 {
2108 *ppRef0 = &pFpuCtx->aRegs[iStReg0].r80;
2109 return VINF_SUCCESS;
2110 }
2111 return VERR_NOT_FOUND;
2112}
2113
2114
2115/**
2116 * Updates the FPU exception status after FCW is changed.
2117 *
2118 * @param pFpuCtx The FPU context.
2119 */
2120DECLINLINE(void) iemFpuRecalcExceptionStatus(PX86FXSTATE pFpuCtx)
2121{
2122 uint16_t u16Fsw = pFpuCtx->FSW;
2123 if ((u16Fsw & X86_FSW_XCPT_MASK) & ~(pFpuCtx->FCW & X86_FCW_XCPT_MASK))
2124 u16Fsw |= X86_FSW_ES | X86_FSW_B;
2125 else
2126 u16Fsw &= ~(X86_FSW_ES | X86_FSW_B);
2127 pFpuCtx->FSW = u16Fsw;
2128}
2129
2130
2131/**
2132 * Calculates the full FTW (FPU tag word) for use in FNSTENV and FNSAVE.
2133 *
2134 * @returns The full FTW.
2135 * @param pFpuCtx The FPU context.
2136 */
2137DECLINLINE(uint16_t) iemFpuCalcFullFtw(PCX86FXSTATE pFpuCtx)
2138{
2139 uint8_t const u8Ftw = (uint8_t)pFpuCtx->FTW;
2140 uint16_t u16Ftw = 0;
2141 unsigned const iTop = X86_FSW_TOP_GET(pFpuCtx->FSW);
2142 for (unsigned iSt = 0; iSt < 8; iSt++)
2143 {
2144 unsigned const iReg = (iSt + iTop) & 7;
2145 if (!(u8Ftw & RT_BIT(iReg)))
2146 u16Ftw |= 3 << (iReg * 2); /* empty */
2147 else
2148 {
2149 uint16_t uTag;
2150 PCRTFLOAT80U const pr80Reg = &pFpuCtx->aRegs[iSt].r80;
2151 if (pr80Reg->s.uExponent == 0x7fff)
2152 uTag = 2; /* Exponent is all 1's => Special. */
2153 else if (pr80Reg->s.uExponent == 0x0000)
2154 {
2155 if (pr80Reg->s.uMantissa == 0x0000)
2156 uTag = 1; /* All bits are zero => Zero. */
2157 else
2158 uTag = 2; /* Must be special. */
2159 }
2160 else if (pr80Reg->s.uMantissa & RT_BIT_64(63)) /* The J bit. */
2161 uTag = 0; /* Valid. */
2162 else
2163 uTag = 2; /* Must be special. */
2164
2165 u16Ftw |= uTag << (iReg * 2); /* empty */
2166 }
2167 }
2168
2169 return u16Ftw;
2170}
2171
2172
2173/**
2174 * Converts a full FTW to a compressed one (for use in FLDENV and FRSTOR).
2175 *
2176 * @returns The compressed FTW.
2177 * @param u16FullFtw The full FTW to convert.
2178 */
2179DECLINLINE(uint16_t) iemFpuCompressFtw(uint16_t u16FullFtw)
2180{
2181 uint8_t u8Ftw = 0;
2182 for (unsigned i = 0; i < 8; i++)
2183 {
2184 if ((u16FullFtw & 3) != 3 /*empty*/)
2185 u8Ftw |= RT_BIT(i);
2186 u16FullFtw >>= 2;
2187 }
2188
2189 return u8Ftw;
2190}
2191
2192/** @} */
2193
2194
2195/** @name Memory access.
2196 *
2197 * @{
2198 */
2199
2200
2201/**
2202 * Checks whether alignment checks are enabled or not.
2203 *
2204 * @returns true if enabled, false if not.
2205 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2206 */
2207DECLINLINE(bool) iemMemAreAlignmentChecksEnabled(PVMCPUCC pVCpu)
2208{
2209 AssertCompile(X86_CR0_AM == X86_EFL_AC);
2210 return pVCpu->iem.s.uCpl == 3
2211 && (((uint32_t)pVCpu->cpum.GstCtx.cr0 & pVCpu->cpum.GstCtx.eflags.u) & X86_CR0_AM);
2212}
2213
2214/**
2215 * Checks if the given segment can be written to, raise the appropriate
2216 * exception if not.
2217 *
2218 * @returns VBox strict status code.
2219 *
2220 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2221 * @param pHid Pointer to the hidden register.
2222 * @param iSegReg The register number.
2223 * @param pu64BaseAddr Where to return the base address to use for the
2224 * segment. (In 64-bit code it may differ from the
2225 * base in the hidden segment.)
2226 */
2227DECLINLINE(VBOXSTRICTRC) iemMemSegCheckWriteAccessEx(PVMCPUCC pVCpu, PCCPUMSELREGHID pHid, uint8_t iSegReg, uint64_t *pu64BaseAddr)
2228{
2229 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
2230
2231 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2232 *pu64BaseAddr = iSegReg < X86_SREG_FS ? 0 : pHid->u64Base;
2233 else
2234 {
2235 if (!pHid->Attr.n.u1Present)
2236 {
2237 uint16_t uSel = iemSRegFetchU16(pVCpu, iSegReg);
2238 AssertRelease(uSel == 0);
2239 Log(("iemMemSegCheckWriteAccessEx: %#x (index %u) - bad selector -> #GP\n", uSel, iSegReg));
2240 return iemRaiseGeneralProtectionFault0(pVCpu);
2241 }
2242
2243 if ( ( (pHid->Attr.n.u4Type & X86_SEL_TYPE_CODE)
2244 || !(pHid->Attr.n.u4Type & X86_SEL_TYPE_WRITE) )
2245 && pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT )
2246 return iemRaiseSelectorInvalidAccess(pVCpu, iSegReg, IEM_ACCESS_DATA_W);
2247 *pu64BaseAddr = pHid->u64Base;
2248 }
2249 return VINF_SUCCESS;
2250}
2251
2252
2253/**
2254 * Checks if the given segment can be read from, raise the appropriate
2255 * exception if not.
2256 *
2257 * @returns VBox strict status code.
2258 *
2259 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2260 * @param pHid Pointer to the hidden register.
2261 * @param iSegReg The register number.
2262 * @param pu64BaseAddr Where to return the base address to use for the
2263 * segment. (In 64-bit code it may differ from the
2264 * base in the hidden segment.)
2265 */
2266DECLINLINE(VBOXSTRICTRC) iemMemSegCheckReadAccessEx(PVMCPUCC pVCpu, PCCPUMSELREGHID pHid, uint8_t iSegReg, uint64_t *pu64BaseAddr)
2267{
2268 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
2269
2270 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2271 *pu64BaseAddr = iSegReg < X86_SREG_FS ? 0 : pHid->u64Base;
2272 else
2273 {
2274 if (!pHid->Attr.n.u1Present)
2275 {
2276 uint16_t uSel = iemSRegFetchU16(pVCpu, iSegReg);
2277 AssertRelease(uSel == 0);
2278 Log(("iemMemSegCheckReadAccessEx: %#x (index %u) - bad selector -> #GP\n", uSel, iSegReg));
2279 return iemRaiseGeneralProtectionFault0(pVCpu);
2280 }
2281
2282 if ((pHid->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
2283 return iemRaiseSelectorInvalidAccess(pVCpu, iSegReg, IEM_ACCESS_DATA_R);
2284 *pu64BaseAddr = pHid->u64Base;
2285 }
2286 return VINF_SUCCESS;
2287}
2288
2289
2290/**
2291 * Maps a physical page.
2292 *
2293 * @returns VBox status code (see PGMR3PhysTlbGCPhys2Ptr).
2294 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2295 * @param GCPhysMem The physical address.
2296 * @param fAccess The intended access.
2297 * @param ppvMem Where to return the mapping address.
2298 * @param pLock The PGM lock.
2299 */
2300DECLINLINE(int) iemMemPageMap(PVMCPUCC pVCpu, RTGCPHYS GCPhysMem, uint32_t fAccess, void **ppvMem, PPGMPAGEMAPLOCK pLock)
2301{
2302#ifdef IEM_LOG_MEMORY_WRITES
2303 if (fAccess & IEM_ACCESS_TYPE_WRITE)
2304 return VERR_PGM_PHYS_TLB_CATCH_ALL;
2305#endif
2306
2307 /** @todo This API may require some improving later. A private deal with PGM
2308 * regarding locking and unlocking needs to be struct. A couple of TLBs
2309 * living in PGM, but with publicly accessible inlined access methods
2310 * could perhaps be an even better solution. */
2311 int rc = PGMPhysIemGCPhys2Ptr(pVCpu->CTX_SUFF(pVM), pVCpu,
2312 GCPhysMem,
2313 RT_BOOL(fAccess & IEM_ACCESS_TYPE_WRITE),
2314 pVCpu->iem.s.fBypassHandlers,
2315 ppvMem,
2316 pLock);
2317 /*Log(("PGMPhysIemGCPhys2Ptr %Rrc pLock=%.*Rhxs\n", rc, sizeof(*pLock), pLock));*/
2318 AssertMsg(rc == VINF_SUCCESS || RT_FAILURE_NP(rc), ("%Rrc\n", rc));
2319
2320 return rc;
2321}
2322
2323
2324/**
2325 * Unmap a page previously mapped by iemMemPageMap.
2326 *
2327 * @param pVCpu The cross context virtual CPU structure of the calling thread.
2328 * @param GCPhysMem The physical address.
2329 * @param fAccess The intended access.
2330 * @param pvMem What iemMemPageMap returned.
2331 * @param pLock The PGM lock.
2332 */
2333DECLINLINE(void) iemMemPageUnmap(PVMCPUCC pVCpu, RTGCPHYS GCPhysMem, uint32_t fAccess, const void *pvMem, PPGMPAGEMAPLOCK pLock)
2334{
2335 NOREF(pVCpu);
2336 NOREF(GCPhysMem);
2337 NOREF(fAccess);
2338 NOREF(pvMem);
2339 PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), pLock);
2340}
2341
2342#ifdef IEM_WITH_SETJMP
2343
2344/** @todo slim this down */
2345DECLINLINE(RTGCPTR) iemMemApplySegmentToReadJmp(PVMCPUCC pVCpu, uint8_t iSegReg, size_t cbMem, RTGCPTR GCPtrMem)
2346{
2347 Assert(cbMem >= 1);
2348 Assert(iSegReg < X86_SREG_COUNT);
2349
2350 /*
2351 * 64-bit mode is simpler.
2352 */
2353 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2354 {
2355 if (iSegReg >= X86_SREG_FS && iSegReg != UINT8_MAX)
2356 {
2357 IEM_CTX_IMPORT_JMP(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
2358 PCPUMSELREGHID const pSel = iemSRegGetHid(pVCpu, iSegReg);
2359 GCPtrMem += pSel->u64Base;
2360 }
2361
2362 if (RT_LIKELY(X86_IS_CANONICAL(GCPtrMem) && X86_IS_CANONICAL(GCPtrMem + cbMem - 1)))
2363 return GCPtrMem;
2364 iemRaiseGeneralProtectionFault0Jmp(pVCpu);
2365 }
2366 /*
2367 * 16-bit and 32-bit segmentation.
2368 */
2369 else if (iSegReg != UINT8_MAX)
2370 {
2371 /** @todo Does this apply to segments with 4G-1 limit? */
2372 uint32_t const GCPtrLast32 = (uint32_t)GCPtrMem + (uint32_t)cbMem - 1;
2373 if (RT_LIKELY(GCPtrLast32 >= (uint32_t)GCPtrMem))
2374 {
2375 IEM_CTX_IMPORT_JMP(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
2376 PCPUMSELREGHID const pSel = iemSRegGetHid(pVCpu, iSegReg);
2377 switch (pSel->Attr.u & ( X86DESCATTR_P | X86DESCATTR_UNUSABLE
2378 | X86_SEL_TYPE_READ | X86_SEL_TYPE_WRITE /* same as read */
2379 | X86_SEL_TYPE_DOWN | X86_SEL_TYPE_CONF /* same as down */
2380 | X86_SEL_TYPE_CODE))
2381 {
2382 case X86DESCATTR_P: /* readonly data, expand up */
2383 case X86DESCATTR_P | X86_SEL_TYPE_WRITE: /* writable data, expand up */
2384 case X86DESCATTR_P | X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ: /* code, read-only */
2385 case X86DESCATTR_P | X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_CONF: /* conforming code, read-only */
2386 /* expand up */
2387 if (RT_LIKELY(GCPtrLast32 <= pSel->u32Limit))
2388 return (uint32_t)GCPtrMem + (uint32_t)pSel->u64Base;
2389 Log10(("iemMemApplySegmentToReadJmp: out of bounds %#x..%#x vs %#x\n",
2390 (uint32_t)GCPtrMem, GCPtrLast32, pSel->u32Limit));
2391 break;
2392
2393 case X86DESCATTR_P | X86_SEL_TYPE_DOWN: /* readonly data, expand down */
2394 case X86DESCATTR_P | X86_SEL_TYPE_DOWN | X86_SEL_TYPE_WRITE: /* writable data, expand down */
2395 /* expand down */
2396 if (RT_LIKELY( (uint32_t)GCPtrMem > pSel->u32Limit
2397 && ( pSel->Attr.n.u1DefBig
2398 || GCPtrLast32 <= UINT32_C(0xffff)) ))
2399 return (uint32_t)GCPtrMem + (uint32_t)pSel->u64Base;
2400 Log10(("iemMemApplySegmentToReadJmp: expand down out of bounds %#x..%#x vs %#x..%#x\n",
2401 (uint32_t)GCPtrMem, GCPtrLast32, pSel->u32Limit, pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT16_MAX));
2402 break;
2403
2404 default:
2405 Log10(("iemMemApplySegmentToReadJmp: bad selector %#x\n", pSel->Attr.u));
2406 iemRaiseSelectorInvalidAccessJmp(pVCpu, iSegReg, IEM_ACCESS_DATA_R);
2407 break;
2408 }
2409 }
2410 Log10(("iemMemApplySegmentToReadJmp: out of bounds %#x..%#x\n",(uint32_t)GCPtrMem, GCPtrLast32));
2411 iemRaiseSelectorBoundsJmp(pVCpu, iSegReg, IEM_ACCESS_DATA_R);
2412 }
2413 /*
2414 * 32-bit flat address.
2415 */
2416 else
2417 return GCPtrMem;
2418}
2419
2420
2421/** @todo slim this down */
2422DECLINLINE(RTGCPTR) iemMemApplySegmentToWriteJmp(PVMCPUCC pVCpu, uint8_t iSegReg, size_t cbMem, RTGCPTR GCPtrMem)
2423{
2424 Assert(cbMem >= 1);
2425 Assert(iSegReg < X86_SREG_COUNT);
2426
2427 /*
2428 * 64-bit mode is simpler.
2429 */
2430 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
2431 {
2432 if (iSegReg >= X86_SREG_FS)
2433 {
2434 IEM_CTX_IMPORT_JMP(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
2435 PCPUMSELREGHID pSel = iemSRegGetHid(pVCpu, iSegReg);
2436 GCPtrMem += pSel->u64Base;
2437 }
2438
2439 if (RT_LIKELY(X86_IS_CANONICAL(GCPtrMem) && X86_IS_CANONICAL(GCPtrMem + cbMem - 1)))
2440 return GCPtrMem;
2441 }
2442 /*
2443 * 16-bit and 32-bit segmentation.
2444 */
2445 else
2446 {
2447 IEM_CTX_IMPORT_JMP(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
2448 PCPUMSELREGHID pSel = iemSRegGetHid(pVCpu, iSegReg);
2449 uint32_t const fRelevantAttrs = pSel->Attr.u & ( X86DESCATTR_P | X86DESCATTR_UNUSABLE
2450 | X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE | X86_SEL_TYPE_DOWN);
2451 if (fRelevantAttrs == (X86DESCATTR_P | X86_SEL_TYPE_WRITE)) /* data, expand up */
2452 {
2453 /* expand up */
2454 uint32_t GCPtrLast32 = (uint32_t)GCPtrMem + (uint32_t)cbMem;
2455 if (RT_LIKELY( GCPtrLast32 > pSel->u32Limit
2456 && GCPtrLast32 > (uint32_t)GCPtrMem))
2457 return (uint32_t)GCPtrMem + (uint32_t)pSel->u64Base;
2458 }
2459 else if (fRelevantAttrs == (X86DESCATTR_P | X86_SEL_TYPE_WRITE | X86_SEL_TYPE_DOWN)) /* data, expand up */
2460 {
2461 /* expand down */
2462 uint32_t GCPtrLast32 = (uint32_t)GCPtrMem + (uint32_t)cbMem;
2463 if (RT_LIKELY( (uint32_t)GCPtrMem > pSel->u32Limit
2464 && GCPtrLast32 <= (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff))
2465 && GCPtrLast32 > (uint32_t)GCPtrMem))
2466 return (uint32_t)GCPtrMem + (uint32_t)pSel->u64Base;
2467 }
2468 else
2469 iemRaiseSelectorInvalidAccessJmp(pVCpu, iSegReg, IEM_ACCESS_DATA_W);
2470 iemRaiseSelectorBoundsJmp(pVCpu, iSegReg, IEM_ACCESS_DATA_W);
2471 }
2472 iemRaiseGeneralProtectionFault0Jmp(pVCpu);
2473}
2474
2475#endif /* IEM_WITH_SETJMP */
2476
2477/**
2478 * Fakes a long mode stack selector for SS = 0.
2479 *
2480 * @param pDescSs Where to return the fake stack descriptor.
2481 * @param uDpl The DPL we want.
2482 */
2483DECLINLINE(void) iemMemFakeStackSelDesc(PIEMSELDESC pDescSs, uint32_t uDpl)
2484{
2485 pDescSs->Long.au64[0] = 0;
2486 pDescSs->Long.au64[1] = 0;
2487 pDescSs->Long.Gen.u4Type = X86_SEL_TYPE_RW_ACC;
2488 pDescSs->Long.Gen.u1DescType = 1; /* 1 = code / data, 0 = system. */
2489 pDescSs->Long.Gen.u2Dpl = uDpl;
2490 pDescSs->Long.Gen.u1Present = 1;
2491 pDescSs->Long.Gen.u1Long = 1;
2492}
2493
2494/** @} */
2495
2496
2497#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2498
2499/**
2500 * Gets CR0 fixed-0 bits in VMX non-root mode.
2501 *
2502 * We do this rather than fetching what we report to the guest (in
2503 * IA32_VMX_CR0_FIXED0 MSR) because real hardware (and so do we) report the same
2504 * values regardless of whether unrestricted-guest feature is available on the CPU.
2505 *
2506 * @returns CR0 fixed-0 bits.
2507 * @param pVCpu The cross context virtual CPU structure.
2508 */
2509DECLINLINE(uint64_t) iemVmxGetCr0Fixed0(PCVMCPUCC pVCpu)
2510{
2511 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
2512 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
2513
2514 static uint64_t const s_auCr0Fixed0[2] = { VMX_V_CR0_FIXED0, VMX_V_CR0_FIXED0_UX };
2515 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
2516 uint8_t const fUnrestrictedGuest = !!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
2517 uint64_t const uCr0Fixed0 = s_auCr0Fixed0[fUnrestrictedGuest];
2518 Assert(!(uCr0Fixed0 & (X86_CR0_NW | X86_CR0_CD)));
2519 return uCr0Fixed0;
2520}
2521
2522
2523/**
2524 * Sets virtual-APIC write emulation as pending.
2525 *
2526 * @param pVCpu The cross context virtual CPU structure.
2527 * @param offApic The offset in the virtual-APIC page that was written.
2528 */
2529DECLINLINE(void) iemVmxVirtApicSetPendingWrite(PVMCPUCC pVCpu, uint16_t offApic)
2530{
2531 Assert(offApic < XAPIC_OFF_END + 4);
2532
2533 /*
2534 * Record the currently updated APIC offset, as we need this later for figuring
2535 * out whether to perform TPR, EOI or self-IPI virtualization as well as well
2536 * as for supplying the exit qualification when causing an APIC-write VM-exit.
2537 */
2538 pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite = offApic;
2539
2540 /*
2541 * Flag that we need to perform virtual-APIC write emulation (TPR/PPR/EOI/Self-IPI
2542 * virtualization or APIC-write emulation).
2543 */
2544 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
2545 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE);
2546}
2547
2548#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
2549
2550#endif /* !VMM_INCLUDED_SRC_include_IEMInline_h */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette