VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 9421

Last change on this file since 9421 was 9421, checked in by vboxsync, 17 years ago

64 bits hidden selector base.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 154.4 KB
Line 
1/* $Id: VBoxRecompiler.c 9421 2008-06-05 13:17:00Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "exec-all.h"
29
30#include <VBox/rem.h>
31#include <VBox/vmapi.h>
32#include <VBox/tm.h>
33#include <VBox/ssm.h>
34#include <VBox/em.h>
35#include <VBox/trpm.h>
36#include <VBox/iom.h>
37#include <VBox/mm.h>
38#include <VBox/pgm.h>
39#include <VBox/pdm.h>
40#include <VBox/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/hwaccm.h>
43#include <VBox/patm.h>
44#include <VBox/csam.h>
45#include "REMInternal.h"
46#include <VBox/vm.h>
47#include <VBox/param.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57/* Don't wanna include everything. */
58extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
59extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
60extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
61extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
62extern void tlb_flush(CPUState *env, int flush_global);
63extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
64extern void sync_ldtr(CPUX86State *env1, int selector);
65extern int sync_tr(CPUX86State *env1, int selector);
66
67#ifdef VBOX_STRICT
68unsigned long get_phys_page_offset(target_ulong addr);
69#endif
70
71
72/*******************************************************************************
73* Defined Constants And Macros *
74*******************************************************************************/
75
76/** Copy 80-bit fpu register at pSrc to pDst.
77 * This is probably faster than *calling* memcpy.
78 */
79#define REM_COPY_FPU_REG(pDst, pSrc) \
80 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
81
82
83/*******************************************************************************
84* Internal Functions *
85*******************************************************************************/
86static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
87static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
88static void remR3StateUpdate(PVM pVM);
89
90static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
91static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
93static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
94static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96
97static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
98static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
100static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103
104
105/*******************************************************************************
106* Global Variables *
107*******************************************************************************/
108
109/** @todo Move stats to REM::s some rainy day we have nothing do to. */
110#ifdef VBOX_WITH_STATISTICS
111static STAMPROFILEADV gStatExecuteSingleInstr;
112static STAMPROFILEADV gStatCompilationQEmu;
113static STAMPROFILEADV gStatRunCodeQEmu;
114static STAMPROFILEADV gStatTotalTimeQEmu;
115static STAMPROFILEADV gStatTimers;
116static STAMPROFILEADV gStatTBLookup;
117static STAMPROFILEADV gStatIRQ;
118static STAMPROFILEADV gStatRawCheck;
119static STAMPROFILEADV gStatMemRead;
120static STAMPROFILEADV gStatMemWrite;
121static STAMPROFILE gStatGCPhys2HCVirt;
122static STAMPROFILE gStatHCVirt2GCPhys;
123static STAMCOUNTER gStatCpuGetTSC;
124static STAMCOUNTER gStatRefuseTFInhibit;
125static STAMCOUNTER gStatRefuseVM86;
126static STAMCOUNTER gStatRefusePaging;
127static STAMCOUNTER gStatRefusePAE;
128static STAMCOUNTER gStatRefuseIOPLNot0;
129static STAMCOUNTER gStatRefuseIF0;
130static STAMCOUNTER gStatRefuseCode16;
131static STAMCOUNTER gStatRefuseWP0;
132static STAMCOUNTER gStatRefuseRing1or2;
133static STAMCOUNTER gStatRefuseCanExecute;
134static STAMCOUNTER gStatREMGDTChange;
135static STAMCOUNTER gStatREMIDTChange;
136static STAMCOUNTER gStatREMLDTRChange;
137static STAMCOUNTER gStatREMTRChange;
138static STAMCOUNTER gStatSelOutOfSync[6];
139static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
140#endif
141
142/*
143 * Global stuff.
144 */
145
146/** MMIO read callbacks. */
147CPUReadMemoryFunc *g_apfnMMIORead[3] =
148{
149 remR3MMIOReadU8,
150 remR3MMIOReadU16,
151 remR3MMIOReadU32
152};
153
154/** MMIO write callbacks. */
155CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
156{
157 remR3MMIOWriteU8,
158 remR3MMIOWriteU16,
159 remR3MMIOWriteU32
160};
161
162/** Handler read callbacks. */
163CPUReadMemoryFunc *g_apfnHandlerRead[3] =
164{
165 remR3HandlerReadU8,
166 remR3HandlerReadU16,
167 remR3HandlerReadU32
168};
169
170/** Handler write callbacks. */
171CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
172{
173 remR3HandlerWriteU8,
174 remR3HandlerWriteU16,
175 remR3HandlerWriteU32
176};
177
178
179#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDWS) && defined(RT_ARCH_AMD64))
180/*
181 * Debugger commands.
182 */
183static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
184
185/** '.remstep' arguments. */
186static const DBGCVARDESC g_aArgRemStep[] =
187{
188 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
189 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
190};
191
192/** Command descriptors. */
193static const DBGCCMD g_aCmds[] =
194{
195 {
196 .pszCmd ="remstep",
197 .cArgsMin = 0,
198 .cArgsMax = 1,
199 .paArgDescs = &g_aArgRemStep[0],
200 .cArgDescs = ELEMENTS(g_aArgRemStep),
201 .pResultDesc = NULL,
202 .fFlags = 0,
203 .pfnHandler = remR3CmdDisasEnableStepping,
204 .pszSyntax = "[on/off]",
205 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
206 "If no arguments show the current state."
207 }
208};
209#endif
210
211
212/* Instantiate the structure signatures. */
213#define REM_STRUCT_OP 0
214#include "Sun/structs.h"
215
216
217
218/*******************************************************************************
219* Internal Functions *
220*******************************************************************************/
221static void remAbort(int rc, const char *pszTip);
222extern int testmath(void);
223
224/* Put them here to avoid unused variable warning. */
225AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
226#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
227//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
228/* Why did this have to be identical?? */
229AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
230#else
231AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
232#endif
233
234
235/**
236 * Initializes the REM.
237 *
238 * @returns VBox status code.
239 * @param pVM The VM to operate on.
240 */
241REMR3DECL(int) REMR3Init(PVM pVM)
242{
243 uint32_t u32Dummy;
244 unsigned i;
245
246 /*
247 * Assert sanity.
248 */
249 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
250 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
251 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
252#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
253 Assert(!testmath());
254#endif
255 ASSERT_STRUCT_TABLE(Misc);
256 ASSERT_STRUCT_TABLE(TLB);
257 ASSERT_STRUCT_TABLE(SegmentCache);
258 ASSERT_STRUCT_TABLE(XMMReg);
259 ASSERT_STRUCT_TABLE(MMXReg);
260 ASSERT_STRUCT_TABLE(float_status);
261 ASSERT_STRUCT_TABLE(float32u);
262 ASSERT_STRUCT_TABLE(float64u);
263 ASSERT_STRUCT_TABLE(floatx80u);
264 ASSERT_STRUCT_TABLE(CPUState);
265
266 /*
267 * Init some internal data members.
268 */
269 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
270 pVM->rem.s.Env.pVM = pVM;
271#ifdef CPU_RAW_MODE_INIT
272 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
273#endif
274
275 /* ctx. */
276 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
277 if (VBOX_FAILURE(rc))
278 {
279 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
280 return rc;
281 }
282 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
283
284 /* ignore all notifications */
285 pVM->rem.s.fIgnoreAll = true;
286
287 /*
288 * Init the recompiler.
289 */
290 if (!cpu_x86_init(&pVM->rem.s.Env))
291 {
292 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
293 return VERR_GENERAL_FAILURE;
294 }
295 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
296 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
297
298 /* allocate code buffer for single instruction emulation. */
299 pVM->rem.s.Env.cbCodeBuffer = 4096;
300 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
301 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
302
303 /* finally, set the cpu_single_env global. */
304 cpu_single_env = &pVM->rem.s.Env;
305
306 /* Nothing is pending by default */
307 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
308
309 /*
310 * Register ram types.
311 */
312 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
313 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
314 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
315 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
316 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
317
318 /* stop ignoring. */
319 pVM->rem.s.fIgnoreAll = false;
320
321 /*
322 * Register the saved state data unit.
323 */
324 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
325 NULL, remR3Save, NULL,
326 NULL, remR3Load, NULL);
327 if (VBOX_FAILURE(rc))
328 return rc;
329
330#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
331 /*
332 * Debugger commands.
333 */
334 static bool fRegisteredCmds = false;
335 if (!fRegisteredCmds)
336 {
337 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
338 if (VBOX_SUCCESS(rc))
339 fRegisteredCmds = true;
340 }
341#endif
342
343#ifdef VBOX_WITH_STATISTICS
344 /*
345 * Statistics.
346 */
347 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
348 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
349 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
350 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
351 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
352 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
353 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
354 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
355 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
356 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
357 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
358 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
359
360 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
361
362 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
363 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
364 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
365 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
366 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
367 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
368 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
369 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
370 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
371 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
372
373 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
374 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
375 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
376 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
377
378 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
379 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
380 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
383 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
384
385 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
386 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
387 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
388 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
389 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
390 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
391
392
393#endif
394
395#ifdef DEBUG_ALL_LOGGING
396 loglevel = ~0;
397#endif
398
399 return rc;
400}
401
402
403/**
404 * Terminates the REM.
405 *
406 * Termination means cleaning up and freeing all resources,
407 * the VM it self is at this point powered off or suspended.
408 *
409 * @returns VBox status code.
410 * @param pVM The VM to operate on.
411 */
412REMR3DECL(int) REMR3Term(PVM pVM)
413{
414 return VINF_SUCCESS;
415}
416
417
418/**
419 * The VM is being reset.
420 *
421 * For the REM component this means to call the cpu_reset() and
422 * reinitialize some state variables.
423 *
424 * @param pVM VM handle.
425 */
426REMR3DECL(void) REMR3Reset(PVM pVM)
427{
428 /*
429 * Reset the REM cpu.
430 */
431 pVM->rem.s.fIgnoreAll = true;
432 cpu_reset(&pVM->rem.s.Env);
433 pVM->rem.s.cInvalidatedPages = 0;
434 pVM->rem.s.fIgnoreAll = false;
435
436 /* Clear raw ring 0 init state */
437 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
438}
439
440
441/**
442 * Execute state save operation.
443 *
444 * @returns VBox status code.
445 * @param pVM VM Handle.
446 * @param pSSM SSM operation handle.
447 */
448static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
449{
450 LogFlow(("remR3Save:\n"));
451
452 /*
453 * Save the required CPU Env bits.
454 * (Not much because we're never in REM when doing the save.)
455 */
456 PREM pRem = &pVM->rem.s;
457 Assert(!pRem->fInREM);
458 SSMR3PutU32(pSSM, pRem->Env.hflags);
459 SSMR3PutMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
460 SSMR3PutU32(pSSM, ~0); /* separator */
461
462 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
463 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
464
465 /*
466 * Save the REM stuff.
467 */
468 SSMR3PutUInt(pSSM, pRem->cInvalidatedPages);
469 unsigned i;
470 for (i = 0; i < pRem->cInvalidatedPages; i++)
471 SSMR3PutGCPtr(pSSM, pRem->aGCPtrInvalidatedPages[i]);
472
473 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
474
475 return SSMR3PutU32(pSSM, ~0); /* terminator */
476}
477
478
479/**
480 * Execute state load operation.
481 *
482 * @returns VBox status code.
483 * @param pVM VM Handle.
484 * @param pSSM SSM operation handle.
485 * @param u32Version Data layout version.
486 */
487static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
488{
489 uint32_t u32Dummy;
490 uint32_t fRawRing0 = false;
491 LogFlow(("remR3Load:\n"));
492
493 /*
494 * Validate version.
495 */
496 if (u32Version != REM_SAVED_STATE_VERSION)
497 {
498 Log(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
499 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
500 }
501
502 /*
503 * Do a reset to be on the safe side...
504 */
505 REMR3Reset(pVM);
506
507 /*
508 * Ignore all ignorable notifications.
509 * (Not doing this will cause serious trouble.)
510 */
511 pVM->rem.s.fIgnoreAll = true;
512
513 /*
514 * Load the required CPU Env bits.
515 * (Not much because we're never in REM when doing the save.)
516 */
517 PREM pRem = &pVM->rem.s;
518 Assert(!pRem->fInREM);
519 SSMR3GetU32(pSSM, &pRem->Env.hflags);
520 SSMR3GetMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
521 uint32_t u32Sep;
522 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
523 if (VBOX_FAILURE(rc))
524 return rc;
525 if (u32Sep != ~0)
526 {
527 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
528 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
529 }
530
531 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
532 SSMR3GetUInt(pSSM, &fRawRing0);
533 if (fRawRing0)
534 pRem->Env.state |= CPU_RAW_RING0;
535
536 /*
537 * Load the REM stuff.
538 */
539 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
540 if (VBOX_FAILURE(rc))
541 return rc;
542 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
543 {
544 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
545 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
546 }
547 unsigned i;
548 for (i = 0; i < pRem->cInvalidatedPages; i++)
549 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
550
551 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
552 if (VBOX_FAILURE(rc))
553 return rc;
554
555 /* check the terminator. */
556 rc = SSMR3GetU32(pSSM, &u32Sep);
557 if (VBOX_FAILURE(rc))
558 return rc;
559 if (u32Sep != ~0)
560 {
561 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
562 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
563 }
564
565 /*
566 * Get the CPUID features.
567 */
568 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
569 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
570
571 /*
572 * Sync the Load Flush the TLB
573 */
574 tlb_flush(&pRem->Env, 1);
575
576#if 0 /** @todo r=bird: this doesn't make sense. WHY? */
577 /*
578 * Clear all lazy flags (only FPU sync for now).
579 */
580 CPUMGetAndClearFPUUsedREM(pVM);
581#endif
582
583 /*
584 * Stop ignoring ignornable notifications.
585 */
586 pVM->rem.s.fIgnoreAll = false;
587
588 return VINF_SUCCESS;
589}
590
591
592
593#undef LOG_GROUP
594#define LOG_GROUP LOG_GROUP_REM_RUN
595
596/**
597 * Single steps an instruction in recompiled mode.
598 *
599 * Before calling this function the REM state needs to be in sync with
600 * the VM. Call REMR3State() to perform the sync. It's only necessary
601 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
602 * and after calling REMR3StateBack().
603 *
604 * @returns VBox status code.
605 *
606 * @param pVM VM Handle.
607 */
608REMR3DECL(int) REMR3Step(PVM pVM)
609{
610 /*
611 * Lock the REM - we don't wanna have anyone interrupting us
612 * while stepping - and enabled single stepping. We also ignore
613 * pending interrupts and suchlike.
614 */
615 int interrupt_request = pVM->rem.s.Env.interrupt_request;
616 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
617 pVM->rem.s.Env.interrupt_request = 0;
618 cpu_single_step(&pVM->rem.s.Env, 1);
619
620 /*
621 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
622 */
623 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
624 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
625
626 /*
627 * Execute and handle the return code.
628 * We execute without enabling the cpu tick, so on success we'll
629 * just flip it on and off to make sure it moves
630 */
631 int rc = cpu_exec(&pVM->rem.s.Env);
632 if (rc == EXCP_DEBUG)
633 {
634 TMCpuTickResume(pVM);
635 TMCpuTickPause(pVM);
636 TMVirtualResume(pVM);
637 TMVirtualPause(pVM);
638 rc = VINF_EM_DBG_STEPPED;
639 }
640 else
641 {
642 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
643 switch (rc)
644 {
645 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
646 case EXCP_HLT:
647 case EXCP_HALTED: rc = VINF_EM_HALT; break;
648 case EXCP_RC:
649 rc = pVM->rem.s.rc;
650 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
651 break;
652 default:
653 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
654 rc = VERR_INTERNAL_ERROR;
655 break;
656 }
657 }
658
659 /*
660 * Restore the stuff we changed to prevent interruption.
661 * Unlock the REM.
662 */
663 if (fBp)
664 {
665 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
666 Assert(rc2 == 0); NOREF(rc2);
667 }
668 cpu_single_step(&pVM->rem.s.Env, 0);
669 pVM->rem.s.Env.interrupt_request = interrupt_request;
670
671 return rc;
672}
673
674
675/**
676 * Set a breakpoint using the REM facilities.
677 *
678 * @returns VBox status code.
679 * @param pVM The VM handle.
680 * @param Address The breakpoint address.
681 * @thread The emulation thread.
682 */
683REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
684{
685 VM_ASSERT_EMT(pVM);
686 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
687 {
688 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
689 return VINF_SUCCESS;
690 }
691 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
692 return VERR_REM_NO_MORE_BP_SLOTS;
693}
694
695
696/**
697 * Clears a breakpoint set by REMR3BreakpointSet().
698 *
699 * @returns VBox status code.
700 * @param pVM The VM handle.
701 * @param Address The breakpoint address.
702 * @thread The emulation thread.
703 */
704REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
705{
706 VM_ASSERT_EMT(pVM);
707 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
708 {
709 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
710 return VINF_SUCCESS;
711 }
712 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
713 return VERR_REM_BP_NOT_FOUND;
714}
715
716
717/**
718 * Emulate an instruction.
719 *
720 * This function executes one instruction without letting anyone
721 * interrupt it. This is intended for being called while being in
722 * raw mode and thus will take care of all the state syncing between
723 * REM and the rest.
724 *
725 * @returns VBox status code.
726 * @param pVM VM handle.
727 */
728REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
729{
730 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
731
732 /*
733 * Sync the state and enable single instruction / single stepping.
734 */
735 int rc = REMR3State(pVM);
736 if (VBOX_SUCCESS(rc))
737 {
738 int interrupt_request = pVM->rem.s.Env.interrupt_request;
739 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
740 Assert(!pVM->rem.s.Env.singlestep_enabled);
741#if 1
742
743 /*
744 * Now we set the execute single instruction flag and enter the cpu_exec loop.
745 */
746 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
747 rc = cpu_exec(&pVM->rem.s.Env);
748 switch (rc)
749 {
750 /*
751 * Executed without anything out of the way happening.
752 */
753 case EXCP_SINGLE_INSTR:
754 rc = VINF_EM_RESCHEDULE;
755 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
756 break;
757
758 /*
759 * If we take a trap or start servicing a pending interrupt, we might end up here.
760 * (Timer thread or some other thread wishing EMT's attention.)
761 */
762 case EXCP_INTERRUPT:
763 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
764 rc = VINF_EM_RESCHEDULE;
765 break;
766
767 /*
768 * Single step, we assume!
769 * If there was a breakpoint there we're fucked now.
770 */
771 case EXCP_DEBUG:
772 {
773 /* breakpoint or single step? */
774 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
775 int iBP;
776 rc = VINF_EM_DBG_STEPPED;
777 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
778 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
779 {
780 rc = VINF_EM_DBG_BREAKPOINT;
781 break;
782 }
783 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
784 break;
785 }
786
787 /*
788 * hlt instruction.
789 */
790 case EXCP_HLT:
791 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
792 rc = VINF_EM_HALT;
793 break;
794
795 /*
796 * The VM has halted.
797 */
798 case EXCP_HALTED:
799 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
800 rc = VINF_EM_HALT;
801 break;
802
803 /*
804 * Switch to RAW-mode.
805 */
806 case EXCP_EXECUTE_RAW:
807 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
808 rc = VINF_EM_RESCHEDULE_RAW;
809 break;
810
811 /*
812 * Switch to hardware accelerated RAW-mode.
813 */
814 case EXCP_EXECUTE_HWACC:
815 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
816 rc = VINF_EM_RESCHEDULE_HWACC;
817 break;
818
819 /*
820 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
821 */
822 case EXCP_RC:
823 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
824 rc = pVM->rem.s.rc;
825 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
826 break;
827
828 /*
829 * Figure out the rest when they arrive....
830 */
831 default:
832 AssertMsgFailed(("rc=%d\n", rc));
833 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
834 rc = VINF_EM_RESCHEDULE;
835 break;
836 }
837
838 /*
839 * Switch back the state.
840 */
841#else
842 pVM->rem.s.Env.interrupt_request = 0;
843 cpu_single_step(&pVM->rem.s.Env, 1);
844
845 /*
846 * Execute and handle the return code.
847 * We execute without enabling the cpu tick, so on success we'll
848 * just flip it on and off to make sure it moves.
849 *
850 * (We do not use emulate_single_instr() because that doesn't enter the
851 * right way in will cause serious trouble if a longjmp was attempted.)
852 */
853# ifdef DEBUG_bird
854 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
855# endif
856 int cTimesMax = 16384;
857 uint32_t eip = pVM->rem.s.Env.eip;
858 do
859 {
860 rc = cpu_exec(&pVM->rem.s.Env);
861
862 } while ( eip == pVM->rem.s.Env.eip
863 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
864 && --cTimesMax > 0);
865 switch (rc)
866 {
867 /*
868 * Single step, we assume!
869 * If there was a breakpoint there we're fucked now.
870 */
871 case EXCP_DEBUG:
872 {
873 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
874 rc = VINF_EM_RESCHEDULE;
875 break;
876 }
877
878 /*
879 * We cannot be interrupted!
880 */
881 case EXCP_INTERRUPT:
882 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
883 rc = VERR_INTERNAL_ERROR;
884 break;
885
886 /*
887 * hlt instruction.
888 */
889 case EXCP_HLT:
890 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
891 rc = VINF_EM_HALT;
892 break;
893
894 /*
895 * The VM has halted.
896 */
897 case EXCP_HALTED:
898 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
899 rc = VINF_EM_HALT;
900 break;
901
902 /*
903 * Switch to RAW-mode.
904 */
905 case EXCP_EXECUTE_RAW:
906 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
907 rc = VINF_EM_RESCHEDULE_RAW;
908 break;
909
910 /*
911 * Switch to hardware accelerated RAW-mode.
912 */
913 case EXCP_EXECUTE_HWACC:
914 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
915 rc = VINF_EM_RESCHEDULE_HWACC;
916 break;
917
918 /*
919 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
920 */
921 case EXCP_RC:
922 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
923 rc = pVM->rem.s.rc;
924 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
925 break;
926
927 /*
928 * Figure out the rest when they arrive....
929 */
930 default:
931 AssertMsgFailed(("rc=%d\n", rc));
932 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
933 rc = VINF_SUCCESS;
934 break;
935 }
936
937 /*
938 * Switch back the state.
939 */
940 cpu_single_step(&pVM->rem.s.Env, 0);
941#endif
942 pVM->rem.s.Env.interrupt_request = interrupt_request;
943 int rc2 = REMR3StateBack(pVM);
944 AssertRC(rc2);
945 }
946
947 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
948 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
949 return rc;
950}
951
952
953/**
954 * Runs code in recompiled mode.
955 *
956 * Before calling this function the REM state needs to be in sync with
957 * the VM. Call REMR3State() to perform the sync. It's only necessary
958 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
959 * and after calling REMR3StateBack().
960 *
961 * @returns VBox status code.
962 *
963 * @param pVM VM Handle.
964 */
965REMR3DECL(int) REMR3Run(PVM pVM)
966{
967 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
968 Assert(pVM->rem.s.fInREM);
969
970 int rc = cpu_exec(&pVM->rem.s.Env);
971 switch (rc)
972 {
973 /*
974 * This happens when the execution was interrupted
975 * by an external event, like pending timers.
976 */
977 case EXCP_INTERRUPT:
978 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
979 rc = VINF_SUCCESS;
980 break;
981
982 /*
983 * hlt instruction.
984 */
985 case EXCP_HLT:
986 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
987 rc = VINF_EM_HALT;
988 break;
989
990 /*
991 * The VM has halted.
992 */
993 case EXCP_HALTED:
994 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
995 rc = VINF_EM_HALT;
996 break;
997
998 /*
999 * Breakpoint/single step.
1000 */
1001 case EXCP_DEBUG:
1002 {
1003#if 0//def DEBUG_bird
1004 static int iBP = 0;
1005 printf("howdy, breakpoint! iBP=%d\n", iBP);
1006 switch (iBP)
1007 {
1008 case 0:
1009 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1010 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1011 //pVM->rem.s.Env.interrupt_request = 0;
1012 //pVM->rem.s.Env.exception_index = -1;
1013 //g_fInterruptDisabled = 1;
1014 rc = VINF_SUCCESS;
1015 asm("int3");
1016 break;
1017 default:
1018 asm("int3");
1019 break;
1020 }
1021 iBP++;
1022#else
1023 /* breakpoint or single step? */
1024 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1025 int iBP;
1026 rc = VINF_EM_DBG_STEPPED;
1027 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1028 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1029 {
1030 rc = VINF_EM_DBG_BREAKPOINT;
1031 break;
1032 }
1033 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1034#endif
1035 break;
1036 }
1037
1038 /*
1039 * Switch to RAW-mode.
1040 */
1041 case EXCP_EXECUTE_RAW:
1042 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1043 rc = VINF_EM_RESCHEDULE_RAW;
1044 break;
1045
1046 /*
1047 * Switch to hardware accelerated RAW-mode.
1048 */
1049 case EXCP_EXECUTE_HWACC:
1050 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1051 rc = VINF_EM_RESCHEDULE_HWACC;
1052 break;
1053
1054 /*
1055 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1056 */
1057 case EXCP_RC:
1058 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1059 rc = pVM->rem.s.rc;
1060 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1061 break;
1062
1063 /*
1064 * Figure out the rest when they arrive....
1065 */
1066 default:
1067 AssertMsgFailed(("rc=%d\n", rc));
1068 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1069 rc = VINF_SUCCESS;
1070 break;
1071 }
1072
1073 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1074 return rc;
1075}
1076
1077
1078/**
1079 * Check if the cpu state is suitable for Raw execution.
1080 *
1081 * @returns boolean
1082 * @param env The CPU env struct.
1083 * @param eip The EIP to check this for (might differ from env->eip).
1084 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1085 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1086 *
1087 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1088 */
1089bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1090{
1091 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1092 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1093 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1094
1095 /* Update counter. */
1096 env->pVM->rem.s.cCanExecuteRaw++;
1097
1098 if (HWACCMIsEnabled(env->pVM))
1099 {
1100 env->state |= CPU_RAW_HWACC;
1101
1102 /*
1103 * Create partial context for HWACCMR3CanExecuteGuest
1104 */
1105 CPUMCTX Ctx;
1106 Ctx.cr0 = env->cr[0];
1107 Ctx.cr3 = env->cr[3];
1108 Ctx.cr4 = env->cr[4];
1109
1110 Ctx.tr = env->tr.selector;
1111 Ctx.trHid.u64Base = env->tr.base;
1112 Ctx.trHid.u32Limit = env->tr.limit;
1113 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1114
1115 Ctx.idtr.cbIdt = env->idt.limit;
1116 Ctx.idtr.pIdt = env->idt.base;
1117
1118 Ctx.eflags.u32 = env->eflags;
1119
1120 Ctx.cs = env->segs[R_CS].selector;
1121 Ctx.csHid.u64Base = env->segs[R_CS].base;
1122 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1123 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1124
1125 Ctx.ss = env->segs[R_SS].selector;
1126 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1127 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1128 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1129
1130 /* Hardware accelerated raw-mode:
1131 *
1132 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1133 */
1134 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1135 {
1136 *piException = EXCP_EXECUTE_HWACC;
1137 return true;
1138 }
1139 return false;
1140 }
1141
1142 /*
1143 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1144 * or 32 bits protected mode ring 0 code
1145 *
1146 * The tests are ordered by the likelyhood of being true during normal execution.
1147 */
1148 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1149 {
1150 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1151 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1152 return false;
1153 }
1154
1155#ifndef VBOX_RAW_V86
1156 if (fFlags & VM_MASK) {
1157 STAM_COUNTER_INC(&gStatRefuseVM86);
1158 Log2(("raw mode refused: VM_MASK\n"));
1159 return false;
1160 }
1161#endif
1162
1163 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1164 {
1165#ifndef DEBUG_bird
1166 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1167#endif
1168 return false;
1169 }
1170
1171 if (env->singlestep_enabled)
1172 {
1173 //Log2(("raw mode refused: Single step\n"));
1174 return false;
1175 }
1176
1177 if (env->nb_breakpoints > 0)
1178 {
1179 //Log2(("raw mode refused: Breakpoints\n"));
1180 return false;
1181 }
1182
1183 uint32_t u32CR0 = env->cr[0];
1184 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1185 {
1186 STAM_COUNTER_INC(&gStatRefusePaging);
1187 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1188 return false;
1189 }
1190
1191 if (env->cr[4] & CR4_PAE_MASK)
1192 {
1193 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1194 {
1195 STAM_COUNTER_INC(&gStatRefusePAE);
1196 return false;
1197 }
1198 }
1199
1200 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1201 {
1202 if (!EMIsRawRing3Enabled(env->pVM))
1203 return false;
1204
1205 if (!(env->eflags & IF_MASK))
1206 {
1207 STAM_COUNTER_INC(&gStatRefuseIF0);
1208 Log2(("raw mode refused: IF (RawR3)\n"));
1209 return false;
1210 }
1211
1212 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1213 {
1214 STAM_COUNTER_INC(&gStatRefuseWP0);
1215 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1216 return false;
1217 }
1218 }
1219 else
1220 {
1221 if (!EMIsRawRing0Enabled(env->pVM))
1222 return false;
1223
1224 // Let's start with pure 32 bits ring 0 code first
1225 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1226 {
1227 STAM_COUNTER_INC(&gStatRefuseCode16);
1228 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1229 return false;
1230 }
1231
1232 // Only R0
1233 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1234 {
1235 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1236 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1237 return false;
1238 }
1239
1240 if (!(u32CR0 & CR0_WP_MASK))
1241 {
1242 STAM_COUNTER_INC(&gStatRefuseWP0);
1243 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1244 return false;
1245 }
1246
1247 if (PATMIsPatchGCAddr(env->pVM, eip))
1248 {
1249 Log2(("raw r0 mode forced: patch code\n"));
1250 *piException = EXCP_EXECUTE_RAW;
1251 return true;
1252 }
1253
1254#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1255 if (!(env->eflags & IF_MASK))
1256 {
1257 STAM_COUNTER_INC(&gStatRefuseIF0);
1258 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1259 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1260 return false;
1261 }
1262#endif
1263
1264 env->state |= CPU_RAW_RING0;
1265 }
1266
1267 /*
1268 * Don't reschedule the first time we're called, because there might be
1269 * special reasons why we're here that is not covered by the above checks.
1270 */
1271 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1272 {
1273 Log2(("raw mode refused: first scheduling\n"));
1274 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1275 return false;
1276 }
1277
1278 Assert(PGMPhysIsA20Enabled(env->pVM));
1279 *piException = EXCP_EXECUTE_RAW;
1280 return true;
1281}
1282
1283
1284/**
1285 * Fetches a code byte.
1286 *
1287 * @returns Success indicator (bool) for ease of use.
1288 * @param env The CPU environment structure.
1289 * @param GCPtrInstr Where to fetch code.
1290 * @param pu8Byte Where to store the byte on success
1291 */
1292bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1293{
1294 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1295 if (VBOX_SUCCESS(rc))
1296 return true;
1297 return false;
1298}
1299
1300
1301/**
1302 * Flush (or invalidate if you like) page table/dir entry.
1303 *
1304 * (invlpg instruction; tlb_flush_page)
1305 *
1306 * @param env Pointer to cpu environment.
1307 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1308 */
1309void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1310{
1311 PVM pVM = env->pVM;
1312
1313 /*
1314 * When we're replaying invlpg instructions or restoring a saved
1315 * state we disable this path.
1316 */
1317 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1318 return;
1319 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1320 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1321
1322 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1323
1324 /*
1325 * Update the control registers before calling PGMFlushPage.
1326 */
1327 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1328 pCtx->cr0 = env->cr[0];
1329 pCtx->cr3 = env->cr[3];
1330 pCtx->cr4 = env->cr[4];
1331
1332 /*
1333 * Let PGM do the rest.
1334 */
1335 int rc = PGMInvalidatePage(pVM, GCPtr);
1336 if (VBOX_FAILURE(rc))
1337 {
1338 AssertMsgFailed(("remR3FlushPage %x %x %x %d failed!!\n", GCPtr));
1339 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1340 }
1341 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1342}
1343
1344
1345/**
1346 * Called from tlb_protect_code in order to write monitor a code page.
1347 *
1348 * @param env Pointer to the CPU environment.
1349 * @param GCPtr Code page to monitor
1350 */
1351void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1352{
1353 Assert(env->pVM->rem.s.fInREM);
1354 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1355 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1356 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1357 && !(env->eflags & VM_MASK) /* no V86 mode */
1358 && !HWACCMIsEnabled(env->pVM))
1359 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1360}
1361
1362/**
1363 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1364 *
1365 * @param env Pointer to the CPU environment.
1366 * @param GCPtr Code page to monitor
1367 */
1368void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1369{
1370 Assert(env->pVM->rem.s.fInREM);
1371 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1372 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1373 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1374 && !(env->eflags & VM_MASK) /* no V86 mode */
1375 && !HWACCMIsEnabled(env->pVM))
1376 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1377}
1378
1379
1380/**
1381 * Called when the CPU is initialized, any of the CRx registers are changed or
1382 * when the A20 line is modified.
1383 *
1384 * @param env Pointer to the CPU environment.
1385 * @param fGlobal Set if the flush is global.
1386 */
1387void remR3FlushTLB(CPUState *env, bool fGlobal)
1388{
1389 PVM pVM = env->pVM;
1390
1391 /*
1392 * When we're replaying invlpg instructions or restoring a saved
1393 * state we disable this path.
1394 */
1395 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1396 return;
1397 Assert(pVM->rem.s.fInREM);
1398
1399 /*
1400 * The caller doesn't check cr4, so we have to do that for ourselves.
1401 */
1402 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1403 fGlobal = true;
1404 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1405
1406 /*
1407 * Update the control registers before calling PGMR3FlushTLB.
1408 */
1409 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1410 pCtx->cr0 = env->cr[0];
1411 pCtx->cr3 = env->cr[3];
1412 pCtx->cr4 = env->cr[4];
1413
1414 /*
1415 * Let PGM do the rest.
1416 */
1417 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1418}
1419
1420
1421/**
1422 * Called when any of the cr0, cr4 or efer registers is updated.
1423 *
1424 * @param env Pointer to the CPU environment.
1425 */
1426void remR3ChangeCpuMode(CPUState *env)
1427{
1428 int rc;
1429 PVM pVM = env->pVM;
1430
1431 /*
1432 * When we're replaying loads or restoring a saved
1433 * state this path is disabled.
1434 */
1435 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1436 return;
1437 Assert(pVM->rem.s.fInREM);
1438
1439 /*
1440 * Update the control registers before calling PGMR3ChangeMode()
1441 * as it may need to map whatever cr3 is pointing to.
1442 */
1443 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1444 pCtx->cr0 = env->cr[0];
1445 pCtx->cr3 = env->cr[3];
1446 pCtx->cr4 = env->cr[4];
1447
1448#ifdef TARGET_X86_64
1449 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1450 if (rc != VINF_SUCCESS)
1451 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1452#else
1453 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1454 if (rc != VINF_SUCCESS)
1455 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1456#endif
1457}
1458
1459
1460/**
1461 * Called from compiled code to run dma.
1462 *
1463 * @param env Pointer to the CPU environment.
1464 */
1465void remR3DmaRun(CPUState *env)
1466{
1467 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1468 PDMR3DmaRun(env->pVM);
1469 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1470}
1471
1472
1473/**
1474 * Called from compiled code to schedule pending timers in VMM
1475 *
1476 * @param env Pointer to the CPU environment.
1477 */
1478void remR3TimersRun(CPUState *env)
1479{
1480 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1481 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1482 TMR3TimerQueuesDo(env->pVM);
1483 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1484 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1485}
1486
1487
1488/**
1489 * Record trap occurance
1490 *
1491 * @returns VBox status code
1492 * @param env Pointer to the CPU environment.
1493 * @param uTrap Trap nr
1494 * @param uErrorCode Error code
1495 * @param pvNextEIP Next EIP
1496 */
1497int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1498{
1499 PVM pVM = env->pVM;
1500#ifdef VBOX_WITH_STATISTICS
1501 static STAMCOUNTER s_aStatTrap[255];
1502 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1503#endif
1504
1505#ifdef VBOX_WITH_STATISTICS
1506 if (uTrap < 255)
1507 {
1508 if (!s_aRegisters[uTrap])
1509 {
1510 s_aRegisters[uTrap] = true;
1511 char szStatName[64];
1512 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1513 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1514 }
1515 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1516 }
1517#endif
1518 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1519 if( uTrap < 0x20
1520 && (env->cr[0] & X86_CR0_PE)
1521 && !(env->eflags & X86_EFL_VM))
1522 {
1523#ifdef DEBUG
1524 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1525#endif
1526 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1527 {
1528 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1529 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1530 return VERR_REM_TOO_MANY_TRAPS;
1531 }
1532 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1533 pVM->rem.s.cPendingExceptions = 1;
1534 pVM->rem.s.uPendingException = uTrap;
1535 pVM->rem.s.uPendingExcptEIP = env->eip;
1536 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1537 }
1538 else
1539 {
1540 pVM->rem.s.cPendingExceptions = 0;
1541 pVM->rem.s.uPendingException = uTrap;
1542 pVM->rem.s.uPendingExcptEIP = env->eip;
1543 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1544 }
1545 return VINF_SUCCESS;
1546}
1547
1548
1549/*
1550 * Clear current active trap
1551 *
1552 * @param pVM VM Handle.
1553 */
1554void remR3TrapClear(PVM pVM)
1555{
1556 pVM->rem.s.cPendingExceptions = 0;
1557 pVM->rem.s.uPendingException = 0;
1558 pVM->rem.s.uPendingExcptEIP = 0;
1559 pVM->rem.s.uPendingExcptCR2 = 0;
1560}
1561
1562
1563/*
1564 * Record previous call instruction addresses
1565 *
1566 * @param env Pointer to the CPU environment.
1567 */
1568void remR3RecordCall(CPUState *env)
1569{
1570 CSAMR3RecordCallAddress(env->pVM, env->eip);
1571}
1572
1573
1574/**
1575 * Syncs the internal REM state with the VM.
1576 *
1577 * This must be called before REMR3Run() is invoked whenever when the REM
1578 * state is not up to date. Calling it several times in a row is not
1579 * permitted.
1580 *
1581 * @returns VBox status code.
1582 *
1583 * @param pVM VM Handle.
1584 *
1585 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1586 * no do this since the majority of the callers don't want any unnecessary of events
1587 * pending that would immediatly interrupt execution.
1588 */
1589REMR3DECL(int) REMR3State(PVM pVM)
1590{
1591 Log2(("REMR3State:\n"));
1592 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1593 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1594 register unsigned fFlags;
1595 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1596
1597 Assert(!pVM->rem.s.fInREM);
1598 pVM->rem.s.fInStateSync = true;
1599
1600 /*
1601 * Copy the registers which require no special handling.
1602 */
1603#ifdef TARGET_X86_64
1604 Assert(R_EAX == 0);
1605 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1606 Assert(R_ECX == 1);
1607 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1608 Assert(R_EDX == 2);
1609 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1610 Assert(R_EBX == 3);
1611 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1612 Assert(R_ESP == 4);
1613 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1614 Assert(R_EBP == 5);
1615 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1616 Assert(R_ESI == 6);
1617 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1618 Assert(R_EDI == 7);
1619 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1620 pVM->rem.s.Env.regs[8] = pCtx->r8;
1621 pVM->rem.s.Env.regs[9] = pCtx->r9;
1622 pVM->rem.s.Env.regs[10] = pCtx->r10;
1623 pVM->rem.s.Env.regs[11] = pCtx->r11;
1624 pVM->rem.s.Env.regs[12] = pCtx->r12;
1625 pVM->rem.s.Env.regs[13] = pCtx->r13;
1626 pVM->rem.s.Env.regs[14] = pCtx->r14;
1627 pVM->rem.s.Env.regs[15] = pCtx->r15;
1628
1629 pVM->rem.s.Env.eip = pCtx->rip;
1630
1631 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1632#else
1633 Assert(R_EAX == 0);
1634 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1635 Assert(R_ECX == 1);
1636 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1637 Assert(R_EDX == 2);
1638 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1639 Assert(R_EBX == 3);
1640 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1641 Assert(R_ESP == 4);
1642 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1643 Assert(R_EBP == 5);
1644 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1645 Assert(R_ESI == 6);
1646 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1647 Assert(R_EDI == 7);
1648 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1649 pVM->rem.s.Env.eip = pCtx->eip;
1650
1651 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1652#endif
1653
1654 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1655
1656 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1657 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1658 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1659 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1660 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1661 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1662 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1663 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1664 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1665
1666 /*
1667 * Clear the halted hidden flag (the interrupt waking up the CPU can
1668 * have been dispatched in raw mode).
1669 */
1670 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1671
1672 /*
1673 * Replay invlpg?
1674 */
1675 if (pVM->rem.s.cInvalidatedPages)
1676 {
1677 pVM->rem.s.fIgnoreInvlPg = true;
1678 RTUINT i;
1679 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1680 {
1681 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1682 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1683 }
1684 pVM->rem.s.fIgnoreInvlPg = false;
1685 pVM->rem.s.cInvalidatedPages = 0;
1686 }
1687
1688 /*
1689 * Registers which are rarely changed and require special handling / order when changed.
1690 */
1691 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1692 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1693 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1694 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1695 {
1696 if (fFlags & CPUM_CHANGED_FPU_REM)
1697 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1698
1699 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1700 {
1701 pVM->rem.s.fIgnoreCR3Load = true;
1702 tlb_flush(&pVM->rem.s.Env, true);
1703 pVM->rem.s.fIgnoreCR3Load = false;
1704 }
1705
1706 if (fFlags & CPUM_CHANGED_CR4)
1707 {
1708 pVM->rem.s.fIgnoreCR3Load = true;
1709 pVM->rem.s.fIgnoreCpuMode = true;
1710 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1711 pVM->rem.s.fIgnoreCpuMode = false;
1712 pVM->rem.s.fIgnoreCR3Load = false;
1713 }
1714
1715 if (fFlags & CPUM_CHANGED_CR0)
1716 {
1717 pVM->rem.s.fIgnoreCR3Load = true;
1718 pVM->rem.s.fIgnoreCpuMode = true;
1719 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1720 pVM->rem.s.fIgnoreCpuMode = false;
1721 pVM->rem.s.fIgnoreCR3Load = false;
1722 }
1723
1724 if (fFlags & CPUM_CHANGED_CR3)
1725 {
1726 pVM->rem.s.fIgnoreCR3Load = true;
1727 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1728 pVM->rem.s.fIgnoreCR3Load = false;
1729 }
1730
1731 if (fFlags & CPUM_CHANGED_GDTR)
1732 {
1733 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1734 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1735 }
1736
1737 if (fFlags & CPUM_CHANGED_IDTR)
1738 {
1739 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1740 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1741 }
1742
1743 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1744 {
1745 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1746 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1747 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1748 }
1749
1750 if (fFlags & CPUM_CHANGED_LDTR)
1751 {
1752 if (fHiddenSelRegsValid)
1753 {
1754 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1755 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1756 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1757 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1758 }
1759 else
1760 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1761 }
1762
1763 if (fFlags & CPUM_CHANGED_TR)
1764 {
1765 if (fHiddenSelRegsValid)
1766 {
1767 pVM->rem.s.Env.tr.selector = pCtx->tr;
1768 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1769 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1770 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1771 }
1772 else
1773 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1774
1775 /** @note do_interrupt will fault if the busy flag is still set.... */
1776 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1777 }
1778
1779 if (fFlags & CPUM_CHANGED_CPUID)
1780 {
1781 uint32_t u32Dummy;
1782
1783 /*
1784 * Get the CPUID features.
1785 */
1786 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1787 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1788 }
1789 }
1790
1791 /*
1792 * Update selector registers.
1793 * This must be done *after* we've synced gdt, ldt and crX registers
1794 * since we're reading the GDT/LDT om sync_seg. This will happen with
1795 * saved state which takes a quick dip into rawmode for instance.
1796 */
1797 /*
1798 * Stack; Note first check this one as the CPL might have changed. The
1799 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1800 */
1801
1802 if (fHiddenSelRegsValid)
1803 {
1804 /* The hidden selector registers are valid in the CPU context. */
1805 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1806
1807 /* Set current CPL */
1808 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1809
1810 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1811 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1812 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1813 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1814 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1815 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1816 }
1817 else
1818 {
1819 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1820 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1821 {
1822 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1823
1824 cpu_x86_set_cpl(&pVM->rem.s.Env, (pCtx->eflags.Bits.u1VM) ? 3 : (pCtx->ss & 3));
1825 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1826#ifdef VBOX_WITH_STATISTICS
1827 if (pVM->rem.s.Env.segs[R_SS].newselector)
1828 {
1829 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1830 }
1831#endif
1832 }
1833 else
1834 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1835
1836 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1837 {
1838 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1839 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1840#ifdef VBOX_WITH_STATISTICS
1841 if (pVM->rem.s.Env.segs[R_ES].newselector)
1842 {
1843 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1844 }
1845#endif
1846 }
1847 else
1848 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1849
1850 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1851 {
1852 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1853 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1854#ifdef VBOX_WITH_STATISTICS
1855 if (pVM->rem.s.Env.segs[R_CS].newselector)
1856 {
1857 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1858 }
1859#endif
1860 }
1861 else
1862 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1863
1864 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1865 {
1866 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1867 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1868#ifdef VBOX_WITH_STATISTICS
1869 if (pVM->rem.s.Env.segs[R_DS].newselector)
1870 {
1871 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1872 }
1873#endif
1874 }
1875 else
1876 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1877
1878 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1879 * be the same but not the base/limit. */
1880 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1881 {
1882 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1883 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1884#ifdef VBOX_WITH_STATISTICS
1885 if (pVM->rem.s.Env.segs[R_FS].newselector)
1886 {
1887 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1888 }
1889#endif
1890 }
1891 else
1892 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1893
1894 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1895 {
1896 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1897 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1898#ifdef VBOX_WITH_STATISTICS
1899 if (pVM->rem.s.Env.segs[R_GS].newselector)
1900 {
1901 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1902 }
1903#endif
1904 }
1905 else
1906 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1907 }
1908
1909 /* Update MSRs. */
1910 pVM->rem.s.Env.efer = pCtx->msrEFER;
1911 pVM->rem.s.Env.star = pCtx->msrSTAR;
1912 pVM->rem.s.Env.pat = pCtx->msrPAT;
1913#ifdef TARGET_X86_64
1914 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1915 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1916 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1917 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1918#endif
1919 /* Note that FS_BASE & GS_BASE are already synced; QEmu keeps them in the hidden selector registers.
1920 * So we basically assume the hidden registers are in sync with these MSRs (vt-x & amd-v). Correct??
1921 */
1922
1923 /*
1924 * Check for traps.
1925 */
1926 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1927 TRPMEVENT enmType;
1928 uint8_t u8TrapNo;
1929 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1930 if (VBOX_SUCCESS(rc))
1931 {
1932#ifdef DEBUG
1933 if (u8TrapNo == 0x80)
1934 {
1935 remR3DumpLnxSyscall(pVM);
1936 remR3DumpOBsdSyscall(pVM);
1937 }
1938#endif
1939
1940 pVM->rem.s.Env.exception_index = u8TrapNo;
1941 if (enmType != TRPM_SOFTWARE_INT)
1942 {
1943 pVM->rem.s.Env.exception_is_int = 0;
1944 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1945 }
1946 else
1947 {
1948 /*
1949 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1950 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1951 * for int03 and into.
1952 */
1953 pVM->rem.s.Env.exception_is_int = 1;
1954 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1955 /* int 3 may be generated by one-byte 0xcc */
1956 if (u8TrapNo == 3)
1957 {
1958 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1959 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1960 }
1961 /* int 4 may be generated by one-byte 0xce */
1962 else if (u8TrapNo == 4)
1963 {
1964 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1965 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1966 }
1967 }
1968
1969 /* get error code and cr2 if needed. */
1970 switch (u8TrapNo)
1971 {
1972 case 0x0e:
1973 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1974 /* fallthru */
1975 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1976 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1977 break;
1978
1979 case 0x11: case 0x08:
1980 default:
1981 pVM->rem.s.Env.error_code = 0;
1982 break;
1983 }
1984
1985 /*
1986 * We can now reset the active trap since the recompiler is gonna have a go at it.
1987 */
1988 rc = TRPMResetTrap(pVM);
1989 AssertRC(rc);
1990 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
1991 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
1992 }
1993
1994 /*
1995 * Clear old interrupt request flags; Check for pending hardware interrupts.
1996 * (See @remark for why we don't check for other FFs.)
1997 */
1998 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
1999 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2000 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2001 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2002
2003 /*
2004 * We're now in REM mode.
2005 */
2006 pVM->rem.s.fInREM = true;
2007 pVM->rem.s.fInStateSync = false;
2008 pVM->rem.s.cCanExecuteRaw = 0;
2009 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2010 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2011 return VINF_SUCCESS;
2012}
2013
2014
2015/**
2016 * Syncs back changes in the REM state to the the VM state.
2017 *
2018 * This must be called after invoking REMR3Run().
2019 * Calling it several times in a row is not permitted.
2020 *
2021 * @returns VBox status code.
2022 *
2023 * @param pVM VM Handle.
2024 */
2025REMR3DECL(int) REMR3StateBack(PVM pVM)
2026{
2027 Log2(("REMR3StateBack:\n"));
2028 Assert(pVM->rem.s.fInREM);
2029 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2030 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2031
2032 /*
2033 * Copy back the registers.
2034 * This is done in the order they are declared in the CPUMCTX structure.
2035 */
2036
2037 /** @todo FOP */
2038 /** @todo FPUIP */
2039 /** @todo CS */
2040 /** @todo FPUDP */
2041 /** @todo DS */
2042 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2043 pCtx->fpu.MXCSR = 0;
2044 pCtx->fpu.MXCSR_MASK = 0;
2045
2046 /** @todo check if FPU/XMM was actually used in the recompiler */
2047 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2048//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2049
2050#ifdef TARGET_X86_64
2051 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2052 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2053 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2054 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2055 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2056 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2057 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2058 pCtx->r8 = pVM->rem.s.Env.regs[8];
2059 pCtx->r9 = pVM->rem.s.Env.regs[9];
2060 pCtx->r10 = pVM->rem.s.Env.regs[10];
2061 pCtx->r11 = pVM->rem.s.Env.regs[11];
2062 pCtx->r12 = pVM->rem.s.Env.regs[12];
2063 pCtx->r13 = pVM->rem.s.Env.regs[13];
2064 pCtx->r14 = pVM->rem.s.Env.regs[14];
2065 pCtx->r15 = pVM->rem.s.Env.regs[15];
2066
2067 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2068
2069#else
2070 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2071 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2072 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2073 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2074 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2075 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2076 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2077
2078 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2079#endif
2080
2081 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2082
2083#ifdef VBOX_WITH_STATISTICS
2084 if (pVM->rem.s.Env.segs[R_SS].newselector)
2085 {
2086 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2087 }
2088 if (pVM->rem.s.Env.segs[R_GS].newselector)
2089 {
2090 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2091 }
2092 if (pVM->rem.s.Env.segs[R_FS].newselector)
2093 {
2094 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2095 }
2096 if (pVM->rem.s.Env.segs[R_ES].newselector)
2097 {
2098 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2099 }
2100 if (pVM->rem.s.Env.segs[R_DS].newselector)
2101 {
2102 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2103 }
2104 if (pVM->rem.s.Env.segs[R_CS].newselector)
2105 {
2106 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2107 }
2108#endif
2109 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2110 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2111 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2112 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2113 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2114
2115#ifdef TARGET_X86_64
2116 pCtx->rip = pVM->rem.s.Env.eip;
2117 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2118#else
2119 pCtx->eip = pVM->rem.s.Env.eip;
2120 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2121#endif
2122
2123 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2124 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2125 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2126 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2127
2128 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2129 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2130 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2131 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2132 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2133 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2134 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2135 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2136
2137 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2138 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2139 {
2140 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2141 STAM_COUNTER_INC(&gStatREMGDTChange);
2142 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2143 }
2144
2145 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2146 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2147 {
2148 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2149 STAM_COUNTER_INC(&gStatREMIDTChange);
2150 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2151 }
2152
2153 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2154 {
2155 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2156 STAM_COUNTER_INC(&gStatREMLDTRChange);
2157 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2158 }
2159 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2160 {
2161 pCtx->tr = pVM->rem.s.Env.tr.selector;
2162 STAM_COUNTER_INC(&gStatREMTRChange);
2163 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2164 }
2165
2166 /** @todo These values could still be out of sync! */
2167 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2168 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2169 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2170 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2171
2172 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2173 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2174 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2175
2176 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2177 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2178 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2179
2180 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2181 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2182 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2183
2184 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2185 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2186 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2187
2188 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2189 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2190 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2191
2192 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2193 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2194 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2195
2196 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2197 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2198 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2199
2200 /* Sysenter MSR */
2201 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2202 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2203 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2204
2205 /* System MSRs. */
2206 pCtx->msrEFER = pVM->rem.s.Env.efer;
2207 pCtx->msrSTAR = pVM->rem.s.Env.star;
2208 pCtx->msrPAT = pVM->rem.s.Env.pat;
2209#ifdef TARGET_X86_64
2210 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2211 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2212 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2213 pCtx->msrFSBASE = pVM->rem.s.Env.segs[R_FS].base;
2214 pCtx->msrGSBASE = pVM->rem.s.Env.segs[R_GS].base;
2215 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2216#endif
2217
2218 remR3TrapClear(pVM);
2219
2220 /*
2221 * Check for traps.
2222 */
2223 if ( pVM->rem.s.Env.exception_index >= 0
2224 && pVM->rem.s.Env.exception_index < 256)
2225 {
2226 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2227 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2228 AssertRC(rc);
2229 switch (pVM->rem.s.Env.exception_index)
2230 {
2231 case 0x0e:
2232 TRPMSetFaultAddress(pVM, pCtx->cr2);
2233 /* fallthru */
2234 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2235 case 0x11: case 0x08: /* 0 */
2236 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2237 break;
2238 }
2239
2240 }
2241
2242 /*
2243 * We're not longer in REM mode.
2244 */
2245 pVM->rem.s.fInREM = false;
2246 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2247 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2248 return VINF_SUCCESS;
2249}
2250
2251
2252/**
2253 * This is called by the disassembler when it wants to update the cpu state
2254 * before for instance doing a register dump.
2255 */
2256static void remR3StateUpdate(PVM pVM)
2257{
2258 Assert(pVM->rem.s.fInREM);
2259 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2260
2261 /*
2262 * Copy back the registers.
2263 * This is done in the order they are declared in the CPUMCTX structure.
2264 */
2265
2266 /** @todo FOP */
2267 /** @todo FPUIP */
2268 /** @todo CS */
2269 /** @todo FPUDP */
2270 /** @todo DS */
2271 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2272 pCtx->fpu.MXCSR = 0;
2273 pCtx->fpu.MXCSR_MASK = 0;
2274
2275 /** @todo check if FPU/XMM was actually used in the recompiler */
2276 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2277//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2278
2279#ifdef TARGET_X86_64
2280 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2281 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2282 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2283 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2284 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2285 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2286 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2287 pCtx->r8 = pVM->rem.s.Env.regs[8];
2288 pCtx->r9 = pVM->rem.s.Env.regs[9];
2289 pCtx->r10 = pVM->rem.s.Env.regs[10];
2290 pCtx->r11 = pVM->rem.s.Env.regs[11];
2291 pCtx->r12 = pVM->rem.s.Env.regs[12];
2292 pCtx->r13 = pVM->rem.s.Env.regs[13];
2293 pCtx->r14 = pVM->rem.s.Env.regs[14];
2294 pCtx->r15 = pVM->rem.s.Env.regs[15];
2295
2296 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2297#else
2298 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2299 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2300 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2301 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2302 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2303 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2304 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2305
2306 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2307#endif
2308
2309 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2310
2311 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2312 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2313 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2314 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2315 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2316
2317#ifdef TARGET_X86_64
2318 pCtx->rip = pVM->rem.s.Env.eip;
2319 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2320#else
2321 pCtx->eip = pVM->rem.s.Env.eip;
2322 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2323#endif
2324
2325 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2326 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2327 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2328 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2329
2330 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2331 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2332 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2333 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2334 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2335 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2336 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2337 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2338
2339 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2340 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2341 {
2342 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2343 STAM_COUNTER_INC(&gStatREMGDTChange);
2344 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2345 }
2346
2347 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2348 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2349 {
2350 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2351 STAM_COUNTER_INC(&gStatREMIDTChange);
2352 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2353 }
2354
2355 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2356 {
2357 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2358 STAM_COUNTER_INC(&gStatREMLDTRChange);
2359 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2360 }
2361 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2362 {
2363 pCtx->tr = pVM->rem.s.Env.tr.selector;
2364 STAM_COUNTER_INC(&gStatREMTRChange);
2365 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2366 }
2367
2368 /** @todo These values could still be out of sync! */
2369 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2370 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2371 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2372 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2373
2374 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2375 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2376 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2377
2378 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2379 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2380 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2381
2382 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2383 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2384 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2385
2386 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2387 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2388 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2389
2390 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2391 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2392 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2393
2394 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2395 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2396 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2397
2398 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2399 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2400 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2401
2402 /* Sysenter MSR */
2403 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2404 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2405 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2406
2407 /* System MSRs. */
2408 pCtx->msrEFER = pVM->rem.s.Env.efer;
2409 pCtx->msrSTAR = pVM->rem.s.Env.star;
2410 pCtx->msrPAT = pVM->rem.s.Env.pat;
2411#ifdef TARGET_X86_64
2412 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2413 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2414 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2415 pCtx->msrFSBASE = pVM->rem.s.Env.segs[R_FS].base;
2416 pCtx->msrGSBASE = pVM->rem.s.Env.segs[R_GS].base;
2417 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2418#endif
2419
2420}
2421
2422
2423/**
2424 * Update the VMM state information if we're currently in REM.
2425 *
2426 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2427 * we're currently executing in REM and the VMM state is invalid. This method will of
2428 * course check that we're executing in REM before syncing any data over to the VMM.
2429 *
2430 * @param pVM The VM handle.
2431 */
2432REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2433{
2434 if (pVM->rem.s.fInREM)
2435 remR3StateUpdate(pVM);
2436}
2437
2438
2439#undef LOG_GROUP
2440#define LOG_GROUP LOG_GROUP_REM
2441
2442
2443/**
2444 * Notify the recompiler about Address Gate 20 state change.
2445 *
2446 * This notification is required since A20 gate changes are
2447 * initialized from a device driver and the VM might just as
2448 * well be in REM mode as in RAW mode.
2449 *
2450 * @param pVM VM handle.
2451 * @param fEnable True if the gate should be enabled.
2452 * False if the gate should be disabled.
2453 */
2454REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2455{
2456 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2457 VM_ASSERT_EMT(pVM);
2458
2459 bool fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2460 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2461
2462 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2463
2464 pVM->rem.s.fIgnoreAll = fSaved;
2465}
2466
2467
2468/**
2469 * Replays the invalidated recorded pages.
2470 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2471 *
2472 * @param pVM VM handle.
2473 */
2474REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2475{
2476 VM_ASSERT_EMT(pVM);
2477
2478 /*
2479 * Sync the required registers.
2480 */
2481 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2482 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2483 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2484 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2485
2486 /*
2487 * Replay the flushes.
2488 */
2489 pVM->rem.s.fIgnoreInvlPg = true;
2490 RTUINT i;
2491 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2492 {
2493 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2494 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2495 }
2496 pVM->rem.s.fIgnoreInvlPg = false;
2497 pVM->rem.s.cInvalidatedPages = 0;
2498}
2499
2500
2501/**
2502 * Replays the invalidated recorded pages.
2503 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2504 *
2505 * @param pVM VM handle.
2506 */
2507REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2508{
2509 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2510 VM_ASSERT_EMT(pVM);
2511
2512 /*
2513 * Replay the flushes.
2514 */
2515 RTUINT i;
2516 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2517 pVM->rem.s.cHandlerNotifications = 0;
2518 for (i = 0; i < c; i++)
2519 {
2520 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2521 switch (pRec->enmKind)
2522 {
2523 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2524 REMR3NotifyHandlerPhysicalRegister(pVM,
2525 pRec->u.PhysicalRegister.enmType,
2526 pRec->u.PhysicalRegister.GCPhys,
2527 pRec->u.PhysicalRegister.cb,
2528 pRec->u.PhysicalRegister.fHasHCHandler);
2529 break;
2530
2531 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2532 REMR3NotifyHandlerPhysicalDeregister(pVM,
2533 pRec->u.PhysicalDeregister.enmType,
2534 pRec->u.PhysicalDeregister.GCPhys,
2535 pRec->u.PhysicalDeregister.cb,
2536 pRec->u.PhysicalDeregister.fHasHCHandler,
2537 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2538 break;
2539
2540 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2541 REMR3NotifyHandlerPhysicalModify(pVM,
2542 pRec->u.PhysicalModify.enmType,
2543 pRec->u.PhysicalModify.GCPhysOld,
2544 pRec->u.PhysicalModify.GCPhysNew,
2545 pRec->u.PhysicalModify.cb,
2546 pRec->u.PhysicalModify.fHasHCHandler,
2547 pRec->u.PhysicalModify.fRestoreAsRAM);
2548 break;
2549
2550 default:
2551 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2552 break;
2553 }
2554 }
2555}
2556
2557
2558/**
2559 * Notify REM about changed code page.
2560 *
2561 * @returns VBox status code.
2562 * @param pVM VM handle.
2563 * @param pvCodePage Code page address
2564 */
2565REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2566{
2567 int rc;
2568 RTGCPHYS PhysGC;
2569 uint64_t flags;
2570
2571 VM_ASSERT_EMT(pVM);
2572
2573 /*
2574 * Get the physical page address.
2575 */
2576 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2577 if (rc == VINF_SUCCESS)
2578 {
2579 /*
2580 * Sync the required registers and flush the whole page.
2581 * (Easier to do the whole page than notifying it about each physical
2582 * byte that was changed.
2583 */
2584 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2585 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2586 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2587 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2588
2589 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2590 }
2591 return VINF_SUCCESS;
2592}
2593
2594
2595/**
2596 * Notification about a successful MMR3PhysRegister() call.
2597 *
2598 * @param pVM VM handle.
2599 * @param GCPhys The physical address the RAM.
2600 * @param cb Size of the memory.
2601 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2602 */
2603REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2604{
2605 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2606 VM_ASSERT_EMT(pVM);
2607
2608 /*
2609 * Validate input - we trust the caller.
2610 */
2611 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2612 Assert(cb);
2613 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2614
2615 /*
2616 * Base ram?
2617 */
2618 if (!GCPhys)
2619 {
2620 phys_ram_size = cb;
2621 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2622#ifndef VBOX_STRICT
2623 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2624 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2625#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2626 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2627 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2628 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2629 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2630 AssertRC(rc);
2631 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2632#endif
2633 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2634 }
2635
2636 /*
2637 * Register the ram.
2638 */
2639 Assert(!pVM->rem.s.fIgnoreAll);
2640 pVM->rem.s.fIgnoreAll = true;
2641
2642#ifdef VBOX_WITH_NEW_PHYS_CODE
2643 if (fFlags & MM_RAM_FLAGS_RESERVED)
2644 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2645 else
2646 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2647#else
2648 if (!GCPhys)
2649 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2650 else
2651 {
2652 if (fFlags & MM_RAM_FLAGS_RESERVED)
2653 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2654 else
2655 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2656 }
2657#endif
2658 Assert(pVM->rem.s.fIgnoreAll);
2659 pVM->rem.s.fIgnoreAll = false;
2660}
2661
2662#ifndef VBOX_WITH_NEW_PHYS_CODE
2663
2664/**
2665 * Notification about a successful PGMR3PhysRegisterChunk() call.
2666 *
2667 * @param pVM VM handle.
2668 * @param GCPhys The physical address the RAM.
2669 * @param cb Size of the memory.
2670 * @param pvRam The HC address of the RAM.
2671 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2672 */
2673REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2674{
2675 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2676 VM_ASSERT_EMT(pVM);
2677
2678 /*
2679 * Validate input - we trust the caller.
2680 */
2681 Assert(pvRam);
2682 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2683 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2684 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2685 Assert(fFlags == 0 /* normal RAM */);
2686 Assert(!pVM->rem.s.fIgnoreAll);
2687 pVM->rem.s.fIgnoreAll = true;
2688
2689 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2690
2691 Assert(pVM->rem.s.fIgnoreAll);
2692 pVM->rem.s.fIgnoreAll = false;
2693}
2694
2695
2696/**
2697 * Grows dynamically allocated guest RAM.
2698 * Will raise a fatal error if the operation fails.
2699 *
2700 * @param physaddr The physical address.
2701 */
2702void remR3GrowDynRange(unsigned long physaddr)
2703{
2704 int rc;
2705 PVM pVM = cpu_single_env->pVM;
2706
2707 Log(("remR3GrowDynRange %VGp\n", physaddr));
2708 const RTGCPHYS GCPhys = physaddr;
2709 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2710 if (VBOX_SUCCESS(rc))
2711 return;
2712
2713 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2714 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2715 AssertFatalFailed();
2716}
2717
2718#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2719
2720/**
2721 * Notification about a successful MMR3PhysRomRegister() call.
2722 *
2723 * @param pVM VM handle.
2724 * @param GCPhys The physical address of the ROM.
2725 * @param cb The size of the ROM.
2726 * @param pvCopy Pointer to the ROM copy.
2727 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2728 * This function will be called when ever the protection of the
2729 * shadow ROM changes (at reset and end of POST).
2730 */
2731REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2732{
2733 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2734 VM_ASSERT_EMT(pVM);
2735
2736 /*
2737 * Validate input - we trust the caller.
2738 */
2739 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2740 Assert(cb);
2741 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2742 Assert(pvCopy);
2743 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2744
2745 /*
2746 * Register the rom.
2747 */
2748 Assert(!pVM->rem.s.fIgnoreAll);
2749 pVM->rem.s.fIgnoreAll = true;
2750
2751 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2752
2753 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2754
2755 Assert(pVM->rem.s.fIgnoreAll);
2756 pVM->rem.s.fIgnoreAll = false;
2757}
2758
2759
2760/**
2761 * Notification about a successful memory deregistration or reservation.
2762 *
2763 * @param pVM VM Handle.
2764 * @param GCPhys Start physical address.
2765 * @param cb The size of the range.
2766 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2767 * reserve any memory soon.
2768 */
2769REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2770{
2771 Log(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2772 VM_ASSERT_EMT(pVM);
2773
2774 /*
2775 * Validate input - we trust the caller.
2776 */
2777 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2778 Assert(cb);
2779 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2780
2781 /*
2782 * Unassigning the memory.
2783 */
2784 Assert(!pVM->rem.s.fIgnoreAll);
2785 pVM->rem.s.fIgnoreAll = true;
2786
2787 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2788
2789 Assert(pVM->rem.s.fIgnoreAll);
2790 pVM->rem.s.fIgnoreAll = false;
2791}
2792
2793
2794/**
2795 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2796 *
2797 * @param pVM VM Handle.
2798 * @param enmType Handler type.
2799 * @param GCPhys Handler range address.
2800 * @param cb Size of the handler range.
2801 * @param fHasHCHandler Set if the handler has a HC callback function.
2802 *
2803 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2804 * Handler memory type to memory which has no HC handler.
2805 */
2806REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2807{
2808 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2809 enmType, GCPhys, cb, fHasHCHandler));
2810 VM_ASSERT_EMT(pVM);
2811 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2812 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2813
2814 if (pVM->rem.s.cHandlerNotifications)
2815 REMR3ReplayHandlerNotifications(pVM);
2816
2817 Assert(!pVM->rem.s.fIgnoreAll);
2818 pVM->rem.s.fIgnoreAll = true;
2819
2820 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2821 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2822 else if (fHasHCHandler)
2823 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2824
2825 Assert(pVM->rem.s.fIgnoreAll);
2826 pVM->rem.s.fIgnoreAll = false;
2827}
2828
2829
2830/**
2831 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2832 *
2833 * @param pVM VM Handle.
2834 * @param enmType Handler type.
2835 * @param GCPhys Handler range address.
2836 * @param cb Size of the handler range.
2837 * @param fHasHCHandler Set if the handler has a HC callback function.
2838 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2839 */
2840REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2841{
2842 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2843 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2844 VM_ASSERT_EMT(pVM);
2845
2846 if (pVM->rem.s.cHandlerNotifications)
2847 REMR3ReplayHandlerNotifications(pVM);
2848
2849 Assert(!pVM->rem.s.fIgnoreAll);
2850 pVM->rem.s.fIgnoreAll = true;
2851
2852/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2853 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2854 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2855 else if (fHasHCHandler)
2856 {
2857 if (!fRestoreAsRAM)
2858 {
2859 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2860 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2861 }
2862 else
2863 {
2864 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2865 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2866 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2867 }
2868 }
2869
2870 Assert(pVM->rem.s.fIgnoreAll);
2871 pVM->rem.s.fIgnoreAll = false;
2872}
2873
2874
2875/**
2876 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2877 *
2878 * @param pVM VM Handle.
2879 * @param enmType Handler type.
2880 * @param GCPhysOld Old handler range address.
2881 * @param GCPhysNew New handler range address.
2882 * @param cb Size of the handler range.
2883 * @param fHasHCHandler Set if the handler has a HC callback function.
2884 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2885 */
2886REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2887{
2888 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2889 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2890 VM_ASSERT_EMT(pVM);
2891 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2892
2893 if (pVM->rem.s.cHandlerNotifications)
2894 REMR3ReplayHandlerNotifications(pVM);
2895
2896 if (fHasHCHandler)
2897 {
2898 Assert(!pVM->rem.s.fIgnoreAll);
2899 pVM->rem.s.fIgnoreAll = true;
2900
2901 /*
2902 * Reset the old page.
2903 */
2904 if (!fRestoreAsRAM)
2905 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2906 else
2907 {
2908 /* This is not perfect, but it'll do for PD monitoring... */
2909 Assert(cb == PAGE_SIZE);
2910 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2911 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2912 }
2913
2914 /*
2915 * Update the new page.
2916 */
2917 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2918 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2919 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2920
2921 Assert(pVM->rem.s.fIgnoreAll);
2922 pVM->rem.s.fIgnoreAll = false;
2923 }
2924}
2925
2926
2927/**
2928 * Checks if we're handling access to this page or not.
2929 *
2930 * @returns true if we're trapping access.
2931 * @returns false if we aren't.
2932 * @param pVM The VM handle.
2933 * @param GCPhys The physical address.
2934 *
2935 * @remark This function will only work correctly in VBOX_STRICT builds!
2936 */
2937REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2938{
2939#ifdef VBOX_STRICT
2940 if (pVM->rem.s.cHandlerNotifications)
2941 REMR3ReplayHandlerNotifications(pVM);
2942
2943 unsigned long off = get_phys_page_offset(GCPhys);
2944 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2945 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2946 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2947#else
2948 return false;
2949#endif
2950}
2951
2952
2953/**
2954 * Deals with a rare case in get_phys_addr_code where the code
2955 * is being monitored.
2956 *
2957 * It could also be an MMIO page, in which case we will raise a fatal error.
2958 *
2959 * @returns The physical address corresponding to addr.
2960 * @param env The cpu environment.
2961 * @param addr The virtual address.
2962 * @param pTLBEntry The TLB entry.
2963 */
2964target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2965{
2966 PVM pVM = env->pVM;
2967 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2968 {
2969 target_ulong ret = pTLBEntry->addend + addr;
2970 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
2971 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
2972 return ret;
2973 }
2974 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
2975 "*** handlers\n",
2976 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
2977 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
2978 LogRel(("*** mmio\n"));
2979 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
2980 LogRel(("*** phys\n"));
2981 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
2982 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
2983 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
2984 AssertFatalFailed();
2985}
2986
2987
2988/** Validate the physical address passed to the read functions.
2989 * Useful for finding non-guest-ram reads/writes. */
2990#if 1 /* disable if it becomes bothersome... */
2991# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
2992#else
2993# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
2994#endif
2995
2996/**
2997 * Read guest RAM and ROM.
2998 *
2999 * @param SrcGCPhys The source address (guest physical).
3000 * @param pvDst The destination address.
3001 * @param cb Number of bytes
3002 */
3003void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3004{
3005 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3006 VBOX_CHECK_ADDR(SrcGCPhys);
3007 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3008 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3009}
3010
3011
3012/**
3013 * Read guest RAM and ROM, unsigned 8-bit.
3014 *
3015 * @param SrcGCPhys The source address (guest physical).
3016 */
3017uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3018{
3019 uint8_t val;
3020 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3021 VBOX_CHECK_ADDR(SrcGCPhys);
3022 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3023 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3024 return val;
3025}
3026
3027
3028/**
3029 * Read guest RAM and ROM, signed 8-bit.
3030 *
3031 * @param SrcGCPhys The source address (guest physical).
3032 */
3033int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3034{
3035 int8_t val;
3036 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3037 VBOX_CHECK_ADDR(SrcGCPhys);
3038 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3039 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3040 return val;
3041}
3042
3043
3044/**
3045 * Read guest RAM and ROM, unsigned 16-bit.
3046 *
3047 * @param SrcGCPhys The source address (guest physical).
3048 */
3049uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3050{
3051 uint16_t val;
3052 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3053 VBOX_CHECK_ADDR(SrcGCPhys);
3054 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3055 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3056 return val;
3057}
3058
3059
3060/**
3061 * Read guest RAM and ROM, signed 16-bit.
3062 *
3063 * @param SrcGCPhys The source address (guest physical).
3064 */
3065int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3066{
3067 uint16_t val;
3068 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3069 VBOX_CHECK_ADDR(SrcGCPhys);
3070 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3071 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3072 return val;
3073}
3074
3075
3076/**
3077 * Read guest RAM and ROM, unsigned 32-bit.
3078 *
3079 * @param SrcGCPhys The source address (guest physical).
3080 */
3081uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3082{
3083 uint32_t val;
3084 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3085 VBOX_CHECK_ADDR(SrcGCPhys);
3086 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3087 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3088 return val;
3089}
3090
3091
3092/**
3093 * Read guest RAM and ROM, signed 32-bit.
3094 *
3095 * @param SrcGCPhys The source address (guest physical).
3096 */
3097int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3098{
3099 int32_t val;
3100 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3101 VBOX_CHECK_ADDR(SrcGCPhys);
3102 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3103 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3104 return val;
3105}
3106
3107
3108/**
3109 * Read guest RAM and ROM, unsigned 64-bit.
3110 *
3111 * @param SrcGCPhys The source address (guest physical).
3112 */
3113uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3114{
3115 uint64_t val;
3116 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3117 VBOX_CHECK_ADDR(SrcGCPhys);
3118 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3119 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3120 return val;
3121}
3122
3123
3124/**
3125 * Write guest RAM.
3126 *
3127 * @param DstGCPhys The destination address (guest physical).
3128 * @param pvSrc The source address.
3129 * @param cb Number of bytes to write
3130 */
3131void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3132{
3133 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3134 VBOX_CHECK_ADDR(DstGCPhys);
3135 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3136 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3137}
3138
3139
3140/**
3141 * Write guest RAM, unsigned 8-bit.
3142 *
3143 * @param DstGCPhys The destination address (guest physical).
3144 * @param val Value
3145 */
3146void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3147{
3148 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3149 VBOX_CHECK_ADDR(DstGCPhys);
3150 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3151 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3152}
3153
3154
3155/**
3156 * Write guest RAM, unsigned 8-bit.
3157 *
3158 * @param DstGCPhys The destination address (guest physical).
3159 * @param val Value
3160 */
3161void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3162{
3163 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3164 VBOX_CHECK_ADDR(DstGCPhys);
3165 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3166 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3167}
3168
3169
3170/**
3171 * Write guest RAM, unsigned 32-bit.
3172 *
3173 * @param DstGCPhys The destination address (guest physical).
3174 * @param val Value
3175 */
3176void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3177{
3178 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3179 VBOX_CHECK_ADDR(DstGCPhys);
3180 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3181 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3182}
3183
3184
3185/**
3186 * Write guest RAM, unsigned 64-bit.
3187 *
3188 * @param DstGCPhys The destination address (guest physical).
3189 * @param val Value
3190 */
3191void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3192{
3193 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3194 VBOX_CHECK_ADDR(DstGCPhys);
3195 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3196 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3197}
3198
3199#undef LOG_GROUP
3200#define LOG_GROUP LOG_GROUP_REM_MMIO
3201
3202/** Read MMIO memory. */
3203static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3204{
3205 uint32_t u32 = 0;
3206 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3207 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3208 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3209 return u32;
3210}
3211
3212/** Read MMIO memory. */
3213static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3214{
3215 uint32_t u32 = 0;
3216 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3217 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3218 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3219 return u32;
3220}
3221
3222/** Read MMIO memory. */
3223static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3224{
3225 uint32_t u32 = 0;
3226 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3227 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3228 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3229 return u32;
3230}
3231
3232/** Write to MMIO memory. */
3233static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3234{
3235 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3236 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3237 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3238}
3239
3240/** Write to MMIO memory. */
3241static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3242{
3243 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3244 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3245 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3246}
3247
3248/** Write to MMIO memory. */
3249static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3250{
3251 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3252 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3253 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3254}
3255
3256
3257#undef LOG_GROUP
3258#define LOG_GROUP LOG_GROUP_REM_HANDLER
3259
3260/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3261
3262static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3263{
3264 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3265 uint8_t u8;
3266 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3267 return u8;
3268}
3269
3270static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3271{
3272 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3273 uint16_t u16;
3274 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3275 return u16;
3276}
3277
3278static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3279{
3280 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3281 uint32_t u32;
3282 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3283 return u32;
3284}
3285
3286static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3287{
3288 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3289 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3290}
3291
3292static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3293{
3294 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3295 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3296}
3297
3298static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3299{
3300 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3301 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3302}
3303
3304/* -+- disassembly -+- */
3305
3306#undef LOG_GROUP
3307#define LOG_GROUP LOG_GROUP_REM_DISAS
3308
3309
3310/**
3311 * Enables or disables singled stepped disassembly.
3312 *
3313 * @returns VBox status code.
3314 * @param pVM VM handle.
3315 * @param fEnable To enable set this flag, to disable clear it.
3316 */
3317static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3318{
3319 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3320 VM_ASSERT_EMT(pVM);
3321
3322 if (fEnable)
3323 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3324 else
3325 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3326 return VINF_SUCCESS;
3327}
3328
3329
3330/**
3331 * Enables or disables singled stepped disassembly.
3332 *
3333 * @returns VBox status code.
3334 * @param pVM VM handle.
3335 * @param fEnable To enable set this flag, to disable clear it.
3336 */
3337REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3338{
3339 PVMREQ pReq;
3340 int rc;
3341
3342 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3343 if (VM_IS_EMT(pVM))
3344 return remR3DisasEnableStepping(pVM, fEnable);
3345
3346 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3347 AssertRC(rc);
3348 if (VBOX_SUCCESS(rc))
3349 rc = pReq->iStatus;
3350 VMR3ReqFree(pReq);
3351 return rc;
3352}
3353
3354
3355#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3356/**
3357 * External Debugger Command: .remstep [on|off|1|0]
3358 */
3359static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3360{
3361 bool fEnable;
3362 int rc;
3363
3364 /* print status */
3365 if (cArgs == 0)
3366 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3367 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3368
3369 /* convert the argument and change the mode. */
3370 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3371 if (VBOX_FAILURE(rc))
3372 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3373 rc = REMR3DisasEnableStepping(pVM, fEnable);
3374 if (VBOX_FAILURE(rc))
3375 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3376 return rc;
3377}
3378#endif
3379
3380
3381/**
3382 * Disassembles n instructions and prints them to the log.
3383 *
3384 * @returns Success indicator.
3385 * @param env Pointer to the recompiler CPU structure.
3386 * @param f32BitCode Indicates that whether or not the code should
3387 * be disassembled as 16 or 32 bit. If -1 the CS
3388 * selector will be inspected.
3389 * @param nrInstructions Nr of instructions to disassemble
3390 * @param pszPrefix
3391 * @remark not currently used for anything but ad-hoc debugging.
3392 */
3393bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3394{
3395 int i;
3396
3397 /*
3398 * Determin 16/32 bit mode.
3399 */
3400 if (f32BitCode == -1)
3401 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3402
3403 /*
3404 * Convert cs:eip to host context address.
3405 * We don't care to much about cross page correctness presently.
3406 */
3407 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3408 void *pvPC;
3409 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3410 {
3411 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3412
3413 /* convert eip to physical address. */
3414 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3415 GCPtrPC,
3416 env->cr[3],
3417 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3418 &pvPC);
3419 if (VBOX_FAILURE(rc))
3420 {
3421 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3422 return false;
3423 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3424 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3425 }
3426 }
3427 else
3428 {
3429 /* physical address */
3430 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
3431 if (VBOX_FAILURE(rc))
3432 return false;
3433 }
3434
3435 /*
3436 * Disassemble.
3437 */
3438 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3439 DISCPUSTATE Cpu;
3440 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3441 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3442 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3443 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3444 //Cpu.dwUserData[2] = GCPtrPC;
3445
3446 for (i=0;i<nrInstructions;i++)
3447 {
3448 char szOutput[256];
3449 uint32_t cbOp;
3450 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3451 return false;
3452 if (pszPrefix)
3453 Log(("%s: %s", pszPrefix, szOutput));
3454 else
3455 Log(("%s", szOutput));
3456
3457 pvPC += cbOp;
3458 }
3459 return true;
3460}
3461
3462
3463/** @todo need to test the new code, using the old code in the mean while. */
3464#define USE_OLD_DUMP_AND_DISASSEMBLY
3465
3466/**
3467 * Disassembles one instruction and prints it to the log.
3468 *
3469 * @returns Success indicator.
3470 * @param env Pointer to the recompiler CPU structure.
3471 * @param f32BitCode Indicates that whether or not the code should
3472 * be disassembled as 16 or 32 bit. If -1 the CS
3473 * selector will be inspected.
3474 * @param pszPrefix
3475 */
3476bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3477{
3478#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3479 PVM pVM = env->pVM;
3480
3481 /*
3482 * Determin 16/32 bit mode.
3483 */
3484 if (f32BitCode == -1)
3485 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3486
3487 /*
3488 * Log registers
3489 */
3490 if (LogIs2Enabled())
3491 {
3492 remR3StateUpdate(pVM);
3493 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3494 }
3495
3496 /*
3497 * Convert cs:eip to host context address.
3498 * We don't care to much about cross page correctness presently.
3499 */
3500 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3501 void *pvPC;
3502 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3503 {
3504 /* convert eip to physical address. */
3505 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3506 GCPtrPC,
3507 env->cr[3],
3508 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3509 &pvPC);
3510 if (VBOX_FAILURE(rc))
3511 {
3512 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3513 return false;
3514 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3515 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3516 }
3517 }
3518 else
3519 {
3520
3521 /* physical address */
3522 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3523 if (VBOX_FAILURE(rc))
3524 return false;
3525 }
3526
3527 /*
3528 * Disassemble.
3529 */
3530 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3531 DISCPUSTATE Cpu;
3532 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3533 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3534 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3535 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3536 //Cpu.dwUserData[2] = GCPtrPC;
3537 char szOutput[256];
3538 uint32_t cbOp;
3539 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3540 return false;
3541
3542 if (!f32BitCode)
3543 {
3544 if (pszPrefix)
3545 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3546 else
3547 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3548 }
3549 else
3550 {
3551 if (pszPrefix)
3552 Log(("%s: %s", pszPrefix, szOutput));
3553 else
3554 Log(("%s", szOutput));
3555 }
3556 return true;
3557
3558#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3559 PVM pVM = env->pVM;
3560 const bool fLog = LogIsEnabled();
3561 const bool fLog2 = LogIs2Enabled();
3562 int rc = VINF_SUCCESS;
3563
3564 /*
3565 * Don't bother if there ain't any log output to do.
3566 */
3567 if (!fLog && !fLog2)
3568 return true;
3569
3570 /*
3571 * Update the state so DBGF reads the correct register values.
3572 */
3573 remR3StateUpdate(pVM);
3574
3575 /*
3576 * Log registers if requested.
3577 */
3578 if (!fLog2)
3579 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3580
3581 /*
3582 * Disassemble to log.
3583 */
3584 if (fLog)
3585 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3586
3587 return VBOX_SUCCESS(rc);
3588#endif
3589}
3590
3591
3592/**
3593 * Disassemble recompiled code.
3594 *
3595 * @param phFileIgnored Ignored, logfile usually.
3596 * @param pvCode Pointer to the code block.
3597 * @param cb Size of the code block.
3598 */
3599void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3600{
3601 if (LogIs2Enabled())
3602 {
3603 unsigned off = 0;
3604 char szOutput[256];
3605 DISCPUSTATE Cpu;
3606
3607 memset(&Cpu, 0, sizeof(Cpu));
3608#ifdef RT_ARCH_X86
3609 Cpu.mode = CPUMODE_32BIT;
3610#else
3611 Cpu.mode = CPUMODE_64BIT;
3612#endif
3613
3614 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3615 while (off < cb)
3616 {
3617 uint32_t cbInstr;
3618 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3619 RTLogPrintf("%s", szOutput);
3620 else
3621 {
3622 RTLogPrintf("disas error\n");
3623 cbInstr = 1;
3624#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3625 break;
3626#endif
3627 }
3628 off += cbInstr;
3629 }
3630 }
3631 NOREF(phFileIgnored);
3632}
3633
3634
3635/**
3636 * Disassemble guest code.
3637 *
3638 * @param phFileIgnored Ignored, logfile usually.
3639 * @param uCode The guest address of the code to disassemble. (flat?)
3640 * @param cb Number of bytes to disassemble.
3641 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3642 */
3643void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3644{
3645 if (LogIs2Enabled())
3646 {
3647 PVM pVM = cpu_single_env->pVM;
3648
3649 /*
3650 * Update the state so DBGF reads the correct register values (flags).
3651 */
3652 remR3StateUpdate(pVM);
3653
3654 /*
3655 * Do the disassembling.
3656 */
3657 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3658 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3659 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3660 for (;;)
3661 {
3662 char szBuf[256];
3663 uint32_t cbInstr;
3664 int rc = DBGFR3DisasInstrEx(pVM,
3665 cs,
3666 eip,
3667 0,
3668 szBuf, sizeof(szBuf),
3669 &cbInstr);
3670 if (VBOX_SUCCESS(rc))
3671 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3672 else
3673 {
3674 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3675 cbInstr = 1;
3676 }
3677
3678 /* next */
3679 if (cb <= cbInstr)
3680 break;
3681 cb -= cbInstr;
3682 uCode += cbInstr;
3683 eip += cbInstr;
3684 }
3685 }
3686 NOREF(phFileIgnored);
3687}
3688
3689
3690/**
3691 * Looks up a guest symbol.
3692 *
3693 * @returns Pointer to symbol name. This is a static buffer.
3694 * @param orig_addr The address in question.
3695 */
3696const char *lookup_symbol(target_ulong orig_addr)
3697{
3698 RTGCINTPTR off = 0;
3699 DBGFSYMBOL Sym;
3700 PVM pVM = cpu_single_env->pVM;
3701 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3702 if (VBOX_SUCCESS(rc))
3703 {
3704 static char szSym[sizeof(Sym.szName) + 48];
3705 if (!off)
3706 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3707 else if (off > 0)
3708 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3709 else
3710 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3711 return szSym;
3712 }
3713 return "<N/A>";
3714}
3715
3716
3717#undef LOG_GROUP
3718#define LOG_GROUP LOG_GROUP_REM
3719
3720
3721/* -+- FF notifications -+- */
3722
3723
3724/**
3725 * Notification about a pending interrupt.
3726 *
3727 * @param pVM VM Handle.
3728 * @param u8Interrupt Interrupt
3729 * @thread The emulation thread.
3730 */
3731REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3732{
3733 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3734 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3735}
3736
3737/**
3738 * Notification about a pending interrupt.
3739 *
3740 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3741 * @param pVM VM Handle.
3742 * @thread The emulation thread.
3743 */
3744REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3745{
3746 return pVM->rem.s.u32PendingInterrupt;
3747}
3748
3749/**
3750 * Notification about the interrupt FF being set.
3751 *
3752 * @param pVM VM Handle.
3753 * @thread The emulation thread.
3754 */
3755REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3756{
3757 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3758 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3759 if (pVM->rem.s.fInREM)
3760 {
3761 if (VM_IS_EMT(pVM))
3762 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3763 else
3764 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3765 }
3766}
3767
3768
3769/**
3770 * Notification about the interrupt FF being set.
3771 *
3772 * @param pVM VM Handle.
3773 * @thread Any.
3774 */
3775REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3776{
3777 LogFlow(("REMR3NotifyInterruptClear:\n"));
3778 if (pVM->rem.s.fInREM)
3779 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3780}
3781
3782
3783/**
3784 * Notification about pending timer(s).
3785 *
3786 * @param pVM VM Handle.
3787 * @thread Any.
3788 */
3789REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3790{
3791#ifndef DEBUG_bird
3792 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3793#endif
3794 if (pVM->rem.s.fInREM)
3795 {
3796 if (VM_IS_EMT(pVM))
3797 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3798 else
3799 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3800 }
3801}
3802
3803
3804/**
3805 * Notification about pending DMA transfers.
3806 *
3807 * @param pVM VM Handle.
3808 * @thread Any.
3809 */
3810REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3811{
3812 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3813 if (pVM->rem.s.fInREM)
3814 {
3815 if (VM_IS_EMT(pVM))
3816 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3817 else
3818 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3819 }
3820}
3821
3822
3823/**
3824 * Notification about pending timer(s).
3825 *
3826 * @param pVM VM Handle.
3827 * @thread Any.
3828 */
3829REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3830{
3831 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3832 if (pVM->rem.s.fInREM)
3833 {
3834 if (VM_IS_EMT(pVM))
3835 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3836 else
3837 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3838 }
3839}
3840
3841
3842/**
3843 * Notification about pending FF set by an external thread.
3844 *
3845 * @param pVM VM handle.
3846 * @thread Any.
3847 */
3848REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3849{
3850 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3851 if (pVM->rem.s.fInREM)
3852 {
3853 if (VM_IS_EMT(pVM))
3854 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3855 else
3856 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3857 }
3858}
3859
3860
3861#ifdef VBOX_WITH_STATISTICS
3862void remR3ProfileStart(int statcode)
3863{
3864 STAMPROFILEADV *pStat;
3865 switch(statcode)
3866 {
3867 case STATS_EMULATE_SINGLE_INSTR:
3868 pStat = &gStatExecuteSingleInstr;
3869 break;
3870 case STATS_QEMU_COMPILATION:
3871 pStat = &gStatCompilationQEmu;
3872 break;
3873 case STATS_QEMU_RUN_EMULATED_CODE:
3874 pStat = &gStatRunCodeQEmu;
3875 break;
3876 case STATS_QEMU_TOTAL:
3877 pStat = &gStatTotalTimeQEmu;
3878 break;
3879 case STATS_QEMU_RUN_TIMERS:
3880 pStat = &gStatTimers;
3881 break;
3882 case STATS_TLB_LOOKUP:
3883 pStat= &gStatTBLookup;
3884 break;
3885 case STATS_IRQ_HANDLING:
3886 pStat= &gStatIRQ;
3887 break;
3888 case STATS_RAW_CHECK:
3889 pStat = &gStatRawCheck;
3890 break;
3891
3892 default:
3893 AssertMsgFailed(("unknown stat %d\n", statcode));
3894 return;
3895 }
3896 STAM_PROFILE_ADV_START(pStat, a);
3897}
3898
3899
3900void remR3ProfileStop(int statcode)
3901{
3902 STAMPROFILEADV *pStat;
3903 switch(statcode)
3904 {
3905 case STATS_EMULATE_SINGLE_INSTR:
3906 pStat = &gStatExecuteSingleInstr;
3907 break;
3908 case STATS_QEMU_COMPILATION:
3909 pStat = &gStatCompilationQEmu;
3910 break;
3911 case STATS_QEMU_RUN_EMULATED_CODE:
3912 pStat = &gStatRunCodeQEmu;
3913 break;
3914 case STATS_QEMU_TOTAL:
3915 pStat = &gStatTotalTimeQEmu;
3916 break;
3917 case STATS_QEMU_RUN_TIMERS:
3918 pStat = &gStatTimers;
3919 break;
3920 case STATS_TLB_LOOKUP:
3921 pStat= &gStatTBLookup;
3922 break;
3923 case STATS_IRQ_HANDLING:
3924 pStat= &gStatIRQ;
3925 break;
3926 case STATS_RAW_CHECK:
3927 pStat = &gStatRawCheck;
3928 break;
3929 default:
3930 AssertMsgFailed(("unknown stat %d\n", statcode));
3931 return;
3932 }
3933 STAM_PROFILE_ADV_STOP(pStat, a);
3934}
3935#endif
3936
3937/**
3938 * Raise an RC, force rem exit.
3939 *
3940 * @param pVM VM handle.
3941 * @param rc The rc.
3942 */
3943void remR3RaiseRC(PVM pVM, int rc)
3944{
3945 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
3946 Assert(pVM->rem.s.fInREM);
3947 VM_ASSERT_EMT(pVM);
3948 pVM->rem.s.rc = rc;
3949 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3950}
3951
3952
3953/* -+- timers -+- */
3954
3955uint64_t cpu_get_tsc(CPUX86State *env)
3956{
3957 STAM_COUNTER_INC(&gStatCpuGetTSC);
3958 return TMCpuTickGet(env->pVM);
3959}
3960
3961
3962/* -+- interrupts -+- */
3963
3964void cpu_set_ferr(CPUX86State *env)
3965{
3966 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
3967 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
3968}
3969
3970int cpu_get_pic_interrupt(CPUState *env)
3971{
3972 uint8_t u8Interrupt;
3973 int rc;
3974
3975 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
3976 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
3977 * with the (a)pic.
3978 */
3979 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
3980 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
3981 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
3982 * remove this kludge. */
3983 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
3984 {
3985 rc = VINF_SUCCESS;
3986 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
3987 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
3988 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
3989 }
3990 else
3991 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
3992
3993 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
3994 if (VBOX_SUCCESS(rc))
3995 {
3996 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
3997 env->interrupt_request |= CPU_INTERRUPT_HARD;
3998 return u8Interrupt;
3999 }
4000 return -1;
4001}
4002
4003
4004/* -+- local apic -+- */
4005
4006void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4007{
4008 int rc = PDMApicSetBase(env->pVM, val);
4009 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4010}
4011
4012uint64_t cpu_get_apic_base(CPUX86State *env)
4013{
4014 uint64_t u64;
4015 int rc = PDMApicGetBase(env->pVM, &u64);
4016 if (VBOX_SUCCESS(rc))
4017 {
4018 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4019 return u64;
4020 }
4021 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4022 return 0;
4023}
4024
4025void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4026{
4027 int rc = PDMApicSetTPR(env->pVM, val);
4028 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4029}
4030
4031uint8_t cpu_get_apic_tpr(CPUX86State *env)
4032{
4033 uint8_t u8;
4034 int rc = PDMApicGetTPR(env->pVM, &u8);
4035 if (VBOX_SUCCESS(rc))
4036 {
4037 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4038 return u8;
4039 }
4040 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4041 return 0;
4042}
4043
4044
4045/* -+- I/O Ports -+- */
4046
4047#undef LOG_GROUP
4048#define LOG_GROUP LOG_GROUP_REM_IOPORT
4049
4050void cpu_outb(CPUState *env, int addr, int val)
4051{
4052 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4053 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4054
4055 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4056 if (RT_LIKELY(rc == VINF_SUCCESS))
4057 return;
4058 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4059 {
4060 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4061 remR3RaiseRC(env->pVM, rc);
4062 return;
4063 }
4064 remAbort(rc, __FUNCTION__);
4065}
4066
4067void cpu_outw(CPUState *env, int addr, int val)
4068{
4069 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4070 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4071 if (RT_LIKELY(rc == VINF_SUCCESS))
4072 return;
4073 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4074 {
4075 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4076 remR3RaiseRC(env->pVM, rc);
4077 return;
4078 }
4079 remAbort(rc, __FUNCTION__);
4080}
4081
4082void cpu_outl(CPUState *env, int addr, int val)
4083{
4084 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4085 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4086 if (RT_LIKELY(rc == VINF_SUCCESS))
4087 return;
4088 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4089 {
4090 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4091 remR3RaiseRC(env->pVM, rc);
4092 return;
4093 }
4094 remAbort(rc, __FUNCTION__);
4095}
4096
4097int cpu_inb(CPUState *env, int addr)
4098{
4099 uint32_t u32 = 0;
4100 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4101 if (RT_LIKELY(rc == VINF_SUCCESS))
4102 {
4103 if (/*addr != 0x61 && */addr != 0x71)
4104 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4105 return (int)u32;
4106 }
4107 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4108 {
4109 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4110 remR3RaiseRC(env->pVM, rc);
4111 return (int)u32;
4112 }
4113 remAbort(rc, __FUNCTION__);
4114 return 0xff;
4115}
4116
4117int cpu_inw(CPUState *env, int addr)
4118{
4119 uint32_t u32 = 0;
4120 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4121 if (RT_LIKELY(rc == VINF_SUCCESS))
4122 {
4123 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4124 return (int)u32;
4125 }
4126 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4127 {
4128 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4129 remR3RaiseRC(env->pVM, rc);
4130 return (int)u32;
4131 }
4132 remAbort(rc, __FUNCTION__);
4133 return 0xffff;
4134}
4135
4136int cpu_inl(CPUState *env, int addr)
4137{
4138 uint32_t u32 = 0;
4139 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4140 if (RT_LIKELY(rc == VINF_SUCCESS))
4141 {
4142//if (addr==0x01f0 && u32 == 0x6b6d)
4143// loglevel = ~0;
4144 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4145 return (int)u32;
4146 }
4147 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4148 {
4149 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4150 remR3RaiseRC(env->pVM, rc);
4151 return (int)u32;
4152 }
4153 remAbort(rc, __FUNCTION__);
4154 return 0xffffffff;
4155}
4156
4157#undef LOG_GROUP
4158#define LOG_GROUP LOG_GROUP_REM
4159
4160
4161/* -+- helpers and misc other interfaces -+- */
4162
4163/**
4164 * Perform the CPUID instruction.
4165 *
4166 * ASMCpuId cannot be invoked from some source files where this is used because of global
4167 * register allocations.
4168 *
4169 * @param env Pointer to the recompiler CPU structure.
4170 * @param uOperator CPUID operation (eax).
4171 * @param pvEAX Where to store eax.
4172 * @param pvEBX Where to store ebx.
4173 * @param pvECX Where to store ecx.
4174 * @param pvEDX Where to store edx.
4175 */
4176void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4177{
4178 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4179}
4180
4181
4182#if 0 /* not used */
4183/**
4184 * Interface for qemu hardware to report back fatal errors.
4185 */
4186void hw_error(const char *pszFormat, ...)
4187{
4188 /*
4189 * Bitch about it.
4190 */
4191 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4192 * this in my Odin32 tree at home! */
4193 va_list args;
4194 va_start(args, pszFormat);
4195 RTLogPrintf("fatal error in virtual hardware:");
4196 RTLogPrintfV(pszFormat, args);
4197 va_end(args);
4198 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4199
4200 /*
4201 * If we're in REM context we'll sync back the state before 'jumping' to
4202 * the EMs failure handling.
4203 */
4204 PVM pVM = cpu_single_env->pVM;
4205 if (pVM->rem.s.fInREM)
4206 REMR3StateBack(pVM);
4207 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4208 AssertMsgFailed(("EMR3FatalError returned!\n"));
4209}
4210#endif
4211
4212/**
4213 * Interface for the qemu cpu to report unhandled situation
4214 * raising a fatal VM error.
4215 */
4216void cpu_abort(CPUState *env, const char *pszFormat, ...)
4217{
4218 /*
4219 * Bitch about it.
4220 */
4221 RTLogFlags(NULL, "nodisabled nobuffered");
4222 va_list args;
4223 va_start(args, pszFormat);
4224 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4225 va_end(args);
4226 va_start(args, pszFormat);
4227 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4228 va_end(args);
4229
4230 /*
4231 * If we're in REM context we'll sync back the state before 'jumping' to
4232 * the EMs failure handling.
4233 */
4234 PVM pVM = cpu_single_env->pVM;
4235 if (pVM->rem.s.fInREM)
4236 REMR3StateBack(pVM);
4237 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4238 AssertMsgFailed(("EMR3FatalError returned!\n"));
4239}
4240
4241
4242/**
4243 * Aborts the VM.
4244 *
4245 * @param rc VBox error code.
4246 * @param pszTip Hint about why/when this happend.
4247 */
4248static void remAbort(int rc, const char *pszTip)
4249{
4250 /*
4251 * Bitch about it.
4252 */
4253 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4254 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4255
4256 /*
4257 * Jump back to where we entered the recompiler.
4258 */
4259 PVM pVM = cpu_single_env->pVM;
4260 if (pVM->rem.s.fInREM)
4261 REMR3StateBack(pVM);
4262 EMR3FatalError(pVM, rc);
4263 AssertMsgFailed(("EMR3FatalError returned!\n"));
4264}
4265
4266
4267/**
4268 * Dumps a linux system call.
4269 * @param pVM VM handle.
4270 */
4271void remR3DumpLnxSyscall(PVM pVM)
4272{
4273 static const char *apsz[] =
4274 {
4275 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4276 "sys_exit",
4277 "sys_fork",
4278 "sys_read",
4279 "sys_write",
4280 "sys_open", /* 5 */
4281 "sys_close",
4282 "sys_waitpid",
4283 "sys_creat",
4284 "sys_link",
4285 "sys_unlink", /* 10 */
4286 "sys_execve",
4287 "sys_chdir",
4288 "sys_time",
4289 "sys_mknod",
4290 "sys_chmod", /* 15 */
4291 "sys_lchown16",
4292 "sys_ni_syscall", /* old break syscall holder */
4293 "sys_stat",
4294 "sys_lseek",
4295 "sys_getpid", /* 20 */
4296 "sys_mount",
4297 "sys_oldumount",
4298 "sys_setuid16",
4299 "sys_getuid16",
4300 "sys_stime", /* 25 */
4301 "sys_ptrace",
4302 "sys_alarm",
4303 "sys_fstat",
4304 "sys_pause",
4305 "sys_utime", /* 30 */
4306 "sys_ni_syscall", /* old stty syscall holder */
4307 "sys_ni_syscall", /* old gtty syscall holder */
4308 "sys_access",
4309 "sys_nice",
4310 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4311 "sys_sync",
4312 "sys_kill",
4313 "sys_rename",
4314 "sys_mkdir",
4315 "sys_rmdir", /* 40 */
4316 "sys_dup",
4317 "sys_pipe",
4318 "sys_times",
4319 "sys_ni_syscall", /* old prof syscall holder */
4320 "sys_brk", /* 45 */
4321 "sys_setgid16",
4322 "sys_getgid16",
4323 "sys_signal",
4324 "sys_geteuid16",
4325 "sys_getegid16", /* 50 */
4326 "sys_acct",
4327 "sys_umount", /* recycled never used phys() */
4328 "sys_ni_syscall", /* old lock syscall holder */
4329 "sys_ioctl",
4330 "sys_fcntl", /* 55 */
4331 "sys_ni_syscall", /* old mpx syscall holder */
4332 "sys_setpgid",
4333 "sys_ni_syscall", /* old ulimit syscall holder */
4334 "sys_olduname",
4335 "sys_umask", /* 60 */
4336 "sys_chroot",
4337 "sys_ustat",
4338 "sys_dup2",
4339 "sys_getppid",
4340 "sys_getpgrp", /* 65 */
4341 "sys_setsid",
4342 "sys_sigaction",
4343 "sys_sgetmask",
4344 "sys_ssetmask",
4345 "sys_setreuid16", /* 70 */
4346 "sys_setregid16",
4347 "sys_sigsuspend",
4348 "sys_sigpending",
4349 "sys_sethostname",
4350 "sys_setrlimit", /* 75 */
4351 "sys_old_getrlimit",
4352 "sys_getrusage",
4353 "sys_gettimeofday",
4354 "sys_settimeofday",
4355 "sys_getgroups16", /* 80 */
4356 "sys_setgroups16",
4357 "old_select",
4358 "sys_symlink",
4359 "sys_lstat",
4360 "sys_readlink", /* 85 */
4361 "sys_uselib",
4362 "sys_swapon",
4363 "sys_reboot",
4364 "old_readdir",
4365 "old_mmap", /* 90 */
4366 "sys_munmap",
4367 "sys_truncate",
4368 "sys_ftruncate",
4369 "sys_fchmod",
4370 "sys_fchown16", /* 95 */
4371 "sys_getpriority",
4372 "sys_setpriority",
4373 "sys_ni_syscall", /* old profil syscall holder */
4374 "sys_statfs",
4375 "sys_fstatfs", /* 100 */
4376 "sys_ioperm",
4377 "sys_socketcall",
4378 "sys_syslog",
4379 "sys_setitimer",
4380 "sys_getitimer", /* 105 */
4381 "sys_newstat",
4382 "sys_newlstat",
4383 "sys_newfstat",
4384 "sys_uname",
4385 "sys_iopl", /* 110 */
4386 "sys_vhangup",
4387 "sys_ni_syscall", /* old "idle" system call */
4388 "sys_vm86old",
4389 "sys_wait4",
4390 "sys_swapoff", /* 115 */
4391 "sys_sysinfo",
4392 "sys_ipc",
4393 "sys_fsync",
4394 "sys_sigreturn",
4395 "sys_clone", /* 120 */
4396 "sys_setdomainname",
4397 "sys_newuname",
4398 "sys_modify_ldt",
4399 "sys_adjtimex",
4400 "sys_mprotect", /* 125 */
4401 "sys_sigprocmask",
4402 "sys_ni_syscall", /* old "create_module" */
4403 "sys_init_module",
4404 "sys_delete_module",
4405 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4406 "sys_quotactl",
4407 "sys_getpgid",
4408 "sys_fchdir",
4409 "sys_bdflush",
4410 "sys_sysfs", /* 135 */
4411 "sys_personality",
4412 "sys_ni_syscall", /* reserved for afs_syscall */
4413 "sys_setfsuid16",
4414 "sys_setfsgid16",
4415 "sys_llseek", /* 140 */
4416 "sys_getdents",
4417 "sys_select",
4418 "sys_flock",
4419 "sys_msync",
4420 "sys_readv", /* 145 */
4421 "sys_writev",
4422 "sys_getsid",
4423 "sys_fdatasync",
4424 "sys_sysctl",
4425 "sys_mlock", /* 150 */
4426 "sys_munlock",
4427 "sys_mlockall",
4428 "sys_munlockall",
4429 "sys_sched_setparam",
4430 "sys_sched_getparam", /* 155 */
4431 "sys_sched_setscheduler",
4432 "sys_sched_getscheduler",
4433 "sys_sched_yield",
4434 "sys_sched_get_priority_max",
4435 "sys_sched_get_priority_min", /* 160 */
4436 "sys_sched_rr_get_interval",
4437 "sys_nanosleep",
4438 "sys_mremap",
4439 "sys_setresuid16",
4440 "sys_getresuid16", /* 165 */
4441 "sys_vm86",
4442 "sys_ni_syscall", /* Old sys_query_module */
4443 "sys_poll",
4444 "sys_nfsservctl",
4445 "sys_setresgid16", /* 170 */
4446 "sys_getresgid16",
4447 "sys_prctl",
4448 "sys_rt_sigreturn",
4449 "sys_rt_sigaction",
4450 "sys_rt_sigprocmask", /* 175 */
4451 "sys_rt_sigpending",
4452 "sys_rt_sigtimedwait",
4453 "sys_rt_sigqueueinfo",
4454 "sys_rt_sigsuspend",
4455 "sys_pread64", /* 180 */
4456 "sys_pwrite64",
4457 "sys_chown16",
4458 "sys_getcwd",
4459 "sys_capget",
4460 "sys_capset", /* 185 */
4461 "sys_sigaltstack",
4462 "sys_sendfile",
4463 "sys_ni_syscall", /* reserved for streams1 */
4464 "sys_ni_syscall", /* reserved for streams2 */
4465 "sys_vfork", /* 190 */
4466 "sys_getrlimit",
4467 "sys_mmap2",
4468 "sys_truncate64",
4469 "sys_ftruncate64",
4470 "sys_stat64", /* 195 */
4471 "sys_lstat64",
4472 "sys_fstat64",
4473 "sys_lchown",
4474 "sys_getuid",
4475 "sys_getgid", /* 200 */
4476 "sys_geteuid",
4477 "sys_getegid",
4478 "sys_setreuid",
4479 "sys_setregid",
4480 "sys_getgroups", /* 205 */
4481 "sys_setgroups",
4482 "sys_fchown",
4483 "sys_setresuid",
4484 "sys_getresuid",
4485 "sys_setresgid", /* 210 */
4486 "sys_getresgid",
4487 "sys_chown",
4488 "sys_setuid",
4489 "sys_setgid",
4490 "sys_setfsuid", /* 215 */
4491 "sys_setfsgid",
4492 "sys_pivot_root",
4493 "sys_mincore",
4494 "sys_madvise",
4495 "sys_getdents64", /* 220 */
4496 "sys_fcntl64",
4497 "sys_ni_syscall", /* reserved for TUX */
4498 "sys_ni_syscall",
4499 "sys_gettid",
4500 "sys_readahead", /* 225 */
4501 "sys_setxattr",
4502 "sys_lsetxattr",
4503 "sys_fsetxattr",
4504 "sys_getxattr",
4505 "sys_lgetxattr", /* 230 */
4506 "sys_fgetxattr",
4507 "sys_listxattr",
4508 "sys_llistxattr",
4509 "sys_flistxattr",
4510 "sys_removexattr", /* 235 */
4511 "sys_lremovexattr",
4512 "sys_fremovexattr",
4513 "sys_tkill",
4514 "sys_sendfile64",
4515 "sys_futex", /* 240 */
4516 "sys_sched_setaffinity",
4517 "sys_sched_getaffinity",
4518 "sys_set_thread_area",
4519 "sys_get_thread_area",
4520 "sys_io_setup", /* 245 */
4521 "sys_io_destroy",
4522 "sys_io_getevents",
4523 "sys_io_submit",
4524 "sys_io_cancel",
4525 "sys_fadvise64", /* 250 */
4526 "sys_ni_syscall",
4527 "sys_exit_group",
4528 "sys_lookup_dcookie",
4529 "sys_epoll_create",
4530 "sys_epoll_ctl", /* 255 */
4531 "sys_epoll_wait",
4532 "sys_remap_file_pages",
4533 "sys_set_tid_address",
4534 "sys_timer_create",
4535 "sys_timer_settime", /* 260 */
4536 "sys_timer_gettime",
4537 "sys_timer_getoverrun",
4538 "sys_timer_delete",
4539 "sys_clock_settime",
4540 "sys_clock_gettime", /* 265 */
4541 "sys_clock_getres",
4542 "sys_clock_nanosleep",
4543 "sys_statfs64",
4544 "sys_fstatfs64",
4545 "sys_tgkill", /* 270 */
4546 "sys_utimes",
4547 "sys_fadvise64_64",
4548 "sys_ni_syscall" /* sys_vserver */
4549 };
4550
4551 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4552 switch (uEAX)
4553 {
4554 default:
4555 if (uEAX < ELEMENTS(apsz))
4556 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4557 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4558 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4559 else
4560 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4561 break;
4562
4563 }
4564}
4565
4566
4567/**
4568 * Dumps an OpenBSD system call.
4569 * @param pVM VM handle.
4570 */
4571void remR3DumpOBsdSyscall(PVM pVM)
4572{
4573 static const char *apsz[] =
4574 {
4575 "SYS_syscall", //0
4576 "SYS_exit", //1
4577 "SYS_fork", //2
4578 "SYS_read", //3
4579 "SYS_write", //4
4580 "SYS_open", //5
4581 "SYS_close", //6
4582 "SYS_wait4", //7
4583 "SYS_8",
4584 "SYS_link", //9
4585 "SYS_unlink", //10
4586 "SYS_11",
4587 "SYS_chdir", //12
4588 "SYS_fchdir", //13
4589 "SYS_mknod", //14
4590 "SYS_chmod", //15
4591 "SYS_chown", //16
4592 "SYS_break", //17
4593 "SYS_18",
4594 "SYS_19",
4595 "SYS_getpid", //20
4596 "SYS_mount", //21
4597 "SYS_unmount", //22
4598 "SYS_setuid", //23
4599 "SYS_getuid", //24
4600 "SYS_geteuid", //25
4601 "SYS_ptrace", //26
4602 "SYS_recvmsg", //27
4603 "SYS_sendmsg", //28
4604 "SYS_recvfrom", //29
4605 "SYS_accept", //30
4606 "SYS_getpeername", //31
4607 "SYS_getsockname", //32
4608 "SYS_access", //33
4609 "SYS_chflags", //34
4610 "SYS_fchflags", //35
4611 "SYS_sync", //36
4612 "SYS_kill", //37
4613 "SYS_38",
4614 "SYS_getppid", //39
4615 "SYS_40",
4616 "SYS_dup", //41
4617 "SYS_opipe", //42
4618 "SYS_getegid", //43
4619 "SYS_profil", //44
4620 "SYS_ktrace", //45
4621 "SYS_sigaction", //46
4622 "SYS_getgid", //47
4623 "SYS_sigprocmask", //48
4624 "SYS_getlogin", //49
4625 "SYS_setlogin", //50
4626 "SYS_acct", //51
4627 "SYS_sigpending", //52
4628 "SYS_osigaltstack", //53
4629 "SYS_ioctl", //54
4630 "SYS_reboot", //55
4631 "SYS_revoke", //56
4632 "SYS_symlink", //57
4633 "SYS_readlink", //58
4634 "SYS_execve", //59
4635 "SYS_umask", //60
4636 "SYS_chroot", //61
4637 "SYS_62",
4638 "SYS_63",
4639 "SYS_64",
4640 "SYS_65",
4641 "SYS_vfork", //66
4642 "SYS_67",
4643 "SYS_68",
4644 "SYS_sbrk", //69
4645 "SYS_sstk", //70
4646 "SYS_61",
4647 "SYS_vadvise", //72
4648 "SYS_munmap", //73
4649 "SYS_mprotect", //74
4650 "SYS_madvise", //75
4651 "SYS_76",
4652 "SYS_77",
4653 "SYS_mincore", //78
4654 "SYS_getgroups", //79
4655 "SYS_setgroups", //80
4656 "SYS_getpgrp", //81
4657 "SYS_setpgid", //82
4658 "SYS_setitimer", //83
4659 "SYS_84",
4660 "SYS_85",
4661 "SYS_getitimer", //86
4662 "SYS_87",
4663 "SYS_88",
4664 "SYS_89",
4665 "SYS_dup2", //90
4666 "SYS_91",
4667 "SYS_fcntl", //92
4668 "SYS_select", //93
4669 "SYS_94",
4670 "SYS_fsync", //95
4671 "SYS_setpriority", //96
4672 "SYS_socket", //97
4673 "SYS_connect", //98
4674 "SYS_99",
4675 "SYS_getpriority", //100
4676 "SYS_101",
4677 "SYS_102",
4678 "SYS_sigreturn", //103
4679 "SYS_bind", //104
4680 "SYS_setsockopt", //105
4681 "SYS_listen", //106
4682 "SYS_107",
4683 "SYS_108",
4684 "SYS_109",
4685 "SYS_110",
4686 "SYS_sigsuspend", //111
4687 "SYS_112",
4688 "SYS_113",
4689 "SYS_114",
4690 "SYS_115",
4691 "SYS_gettimeofday", //116
4692 "SYS_getrusage", //117
4693 "SYS_getsockopt", //118
4694 "SYS_119",
4695 "SYS_readv", //120
4696 "SYS_writev", //121
4697 "SYS_settimeofday", //122
4698 "SYS_fchown", //123
4699 "SYS_fchmod", //124
4700 "SYS_125",
4701 "SYS_setreuid", //126
4702 "SYS_setregid", //127
4703 "SYS_rename", //128
4704 "SYS_129",
4705 "SYS_130",
4706 "SYS_flock", //131
4707 "SYS_mkfifo", //132
4708 "SYS_sendto", //133
4709 "SYS_shutdown", //134
4710 "SYS_socketpair", //135
4711 "SYS_mkdir", //136
4712 "SYS_rmdir", //137
4713 "SYS_utimes", //138
4714 "SYS_139",
4715 "SYS_adjtime", //140
4716 "SYS_141",
4717 "SYS_142",
4718 "SYS_143",
4719 "SYS_144",
4720 "SYS_145",
4721 "SYS_146",
4722 "SYS_setsid", //147
4723 "SYS_quotactl", //148
4724 "SYS_149",
4725 "SYS_150",
4726 "SYS_151",
4727 "SYS_152",
4728 "SYS_153",
4729 "SYS_154",
4730 "SYS_nfssvc", //155
4731 "SYS_156",
4732 "SYS_157",
4733 "SYS_158",
4734 "SYS_159",
4735 "SYS_160",
4736 "SYS_getfh", //161
4737 "SYS_162",
4738 "SYS_163",
4739 "SYS_164",
4740 "SYS_sysarch", //165
4741 "SYS_166",
4742 "SYS_167",
4743 "SYS_168",
4744 "SYS_169",
4745 "SYS_170",
4746 "SYS_171",
4747 "SYS_172",
4748 "SYS_pread", //173
4749 "SYS_pwrite", //174
4750 "SYS_175",
4751 "SYS_176",
4752 "SYS_177",
4753 "SYS_178",
4754 "SYS_179",
4755 "SYS_180",
4756 "SYS_setgid", //181
4757 "SYS_setegid", //182
4758 "SYS_seteuid", //183
4759 "SYS_lfs_bmapv", //184
4760 "SYS_lfs_markv", //185
4761 "SYS_lfs_segclean", //186
4762 "SYS_lfs_segwait", //187
4763 "SYS_188",
4764 "SYS_189",
4765 "SYS_190",
4766 "SYS_pathconf", //191
4767 "SYS_fpathconf", //192
4768 "SYS_swapctl", //193
4769 "SYS_getrlimit", //194
4770 "SYS_setrlimit", //195
4771 "SYS_getdirentries", //196
4772 "SYS_mmap", //197
4773 "SYS___syscall", //198
4774 "SYS_lseek", //199
4775 "SYS_truncate", //200
4776 "SYS_ftruncate", //201
4777 "SYS___sysctl", //202
4778 "SYS_mlock", //203
4779 "SYS_munlock", //204
4780 "SYS_205",
4781 "SYS_futimes", //206
4782 "SYS_getpgid", //207
4783 "SYS_xfspioctl", //208
4784 "SYS_209",
4785 "SYS_210",
4786 "SYS_211",
4787 "SYS_212",
4788 "SYS_213",
4789 "SYS_214",
4790 "SYS_215",
4791 "SYS_216",
4792 "SYS_217",
4793 "SYS_218",
4794 "SYS_219",
4795 "SYS_220",
4796 "SYS_semget", //221
4797 "SYS_222",
4798 "SYS_223",
4799 "SYS_224",
4800 "SYS_msgget", //225
4801 "SYS_msgsnd", //226
4802 "SYS_msgrcv", //227
4803 "SYS_shmat", //228
4804 "SYS_229",
4805 "SYS_shmdt", //230
4806 "SYS_231",
4807 "SYS_clock_gettime", //232
4808 "SYS_clock_settime", //233
4809 "SYS_clock_getres", //234
4810 "SYS_235",
4811 "SYS_236",
4812 "SYS_237",
4813 "SYS_238",
4814 "SYS_239",
4815 "SYS_nanosleep", //240
4816 "SYS_241",
4817 "SYS_242",
4818 "SYS_243",
4819 "SYS_244",
4820 "SYS_245",
4821 "SYS_246",
4822 "SYS_247",
4823 "SYS_248",
4824 "SYS_249",
4825 "SYS_minherit", //250
4826 "SYS_rfork", //251
4827 "SYS_poll", //252
4828 "SYS_issetugid", //253
4829 "SYS_lchown", //254
4830 "SYS_getsid", //255
4831 "SYS_msync", //256
4832 "SYS_257",
4833 "SYS_258",
4834 "SYS_259",
4835 "SYS_getfsstat", //260
4836 "SYS_statfs", //261
4837 "SYS_fstatfs", //262
4838 "SYS_pipe", //263
4839 "SYS_fhopen", //264
4840 "SYS_265",
4841 "SYS_fhstatfs", //266
4842 "SYS_preadv", //267
4843 "SYS_pwritev", //268
4844 "SYS_kqueue", //269
4845 "SYS_kevent", //270
4846 "SYS_mlockall", //271
4847 "SYS_munlockall", //272
4848 "SYS_getpeereid", //273
4849 "SYS_274",
4850 "SYS_275",
4851 "SYS_276",
4852 "SYS_277",
4853 "SYS_278",
4854 "SYS_279",
4855 "SYS_280",
4856 "SYS_getresuid", //281
4857 "SYS_setresuid", //282
4858 "SYS_getresgid", //283
4859 "SYS_setresgid", //284
4860 "SYS_285",
4861 "SYS_mquery", //286
4862 "SYS_closefrom", //287
4863 "SYS_sigaltstack", //288
4864 "SYS_shmget", //289
4865 "SYS_semop", //290
4866 "SYS_stat", //291
4867 "SYS_fstat", //292
4868 "SYS_lstat", //293
4869 "SYS_fhstat", //294
4870 "SYS___semctl", //295
4871 "SYS_shmctl", //296
4872 "SYS_msgctl", //297
4873 "SYS_MAXSYSCALL", //298
4874 //299
4875 //300
4876 };
4877 uint32_t uEAX;
4878 if (!LogIsEnabled())
4879 return;
4880 uEAX = CPUMGetGuestEAX(pVM);
4881 switch (uEAX)
4882 {
4883 default:
4884 if (uEAX < ELEMENTS(apsz))
4885 {
4886 uint32_t au32Args[8] = {0};
4887 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4888 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4889 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4890 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4891 }
4892 else
4893 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4894 break;
4895 }
4896}
4897
4898
4899#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
4900/**
4901 * The Dll main entry point (stub).
4902 */
4903bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
4904{
4905 return true;
4906}
4907
4908void *memcpy(void *dst, const void *src, size_t size)
4909{
4910 uint8_t*pbDst = dst, *pbSrc = src;
4911 while (size-- > 0)
4912 *pbDst++ = *pbSrc++;
4913 return dst;
4914}
4915
4916#endif
4917
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette