VirtualBox

source: vbox/trunk/src/recompiler/cpu-all.h@ 9008

Last change on this file since 9008 was 6546, checked in by vboxsync, 17 years ago

VBOX_WITH_NEW_PHYS_CODE changes mostly realted to REM. Killed a warning in cpu-exec.c.

  • Property svn:eol-style set to native
File size: 30.0 KB
Line 
1/*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20#ifndef CPU_ALL_H
21#define CPU_ALL_H
22
23#ifdef VBOX
24# ifndef LOG_GROUP
25# include <VBox/log.h>
26# define LOG_GROUP LOG_GROUP_REM
27# endif
28# include <VBox/pgm.h> /* PGM_DYNAMIC_RAM_ALLOC */
29#endif
30
31#if defined(__arm__) || defined(__sparc__)
32#define WORDS_ALIGNED
33#endif
34
35/* some important defines:
36 *
37 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
38 * memory accesses.
39 *
40 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
41 * otherwise little endian.
42 *
43 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
44 *
45 * TARGET_WORDS_BIGENDIAN : same for target cpu
46 */
47
48#include "bswap.h"
49
50#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
51#define BSWAP_NEEDED
52#endif
53
54#ifdef BSWAP_NEEDED
55
56static inline uint16_t tswap16(uint16_t s)
57{
58 return bswap16(s);
59}
60
61static inline uint32_t tswap32(uint32_t s)
62{
63 return bswap32(s);
64}
65
66static inline uint64_t tswap64(uint64_t s)
67{
68 return bswap64(s);
69}
70
71static inline void tswap16s(uint16_t *s)
72{
73 *s = bswap16(*s);
74}
75
76static inline void tswap32s(uint32_t *s)
77{
78 *s = bswap32(*s);
79}
80
81static inline void tswap64s(uint64_t *s)
82{
83 *s = bswap64(*s);
84}
85
86#else
87
88static inline uint16_t tswap16(uint16_t s)
89{
90 return s;
91}
92
93static inline uint32_t tswap32(uint32_t s)
94{
95 return s;
96}
97
98static inline uint64_t tswap64(uint64_t s)
99{
100 return s;
101}
102
103static inline void tswap16s(uint16_t *s)
104{
105}
106
107static inline void tswap32s(uint32_t *s)
108{
109}
110
111static inline void tswap64s(uint64_t *s)
112{
113}
114
115#endif
116
117#if TARGET_LONG_SIZE == 4
118#define tswapl(s) tswap32(s)
119#define tswapls(s) tswap32s((uint32_t *)(s))
120#define bswaptls(s) bswap32s(s)
121#else
122#define tswapl(s) tswap64(s)
123#define tswapls(s) tswap64s((uint64_t *)(s))
124#define bswaptls(s) bswap64s(s)
125#endif
126
127/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
128 endian ! */
129typedef union {
130 float64 d;
131#if defined(WORDS_BIGENDIAN) \
132 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
133 struct {
134 uint32_t upper;
135 uint32_t lower;
136 } l;
137#else
138 struct {
139 uint32_t lower;
140 uint32_t upper;
141 } l;
142#endif
143 uint64_t ll;
144} CPU_DoubleU;
145
146/* CPU memory access without any memory or io remapping */
147
148/*
149 * the generic syntax for the memory accesses is:
150 *
151 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
152 *
153 * store: st{type}{size}{endian}_{access_type}(ptr, val)
154 *
155 * type is:
156 * (empty): integer access
157 * f : float access
158 *
159 * sign is:
160 * (empty): for floats or 32 bit size
161 * u : unsigned
162 * s : signed
163 *
164 * size is:
165 * b: 8 bits
166 * w: 16 bits
167 * l: 32 bits
168 * q: 64 bits
169 *
170 * endian is:
171 * (empty): target cpu endianness or 8 bit access
172 * r : reversed target cpu endianness (not implemented yet)
173 * be : big endian (not implemented yet)
174 * le : little endian (not implemented yet)
175 *
176 * access_type is:
177 * raw : host memory access
178 * user : user mode access using soft MMU
179 * kernel : kernel mode access using soft MMU
180 */
181#ifdef VBOX
182
183void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb);
184uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys);
185int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys);
186uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys);
187int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys);
188uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys);
189int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys);
190uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys);
191int64_t remR3PhysReadS64(RTGCPHYS SrcGCPhys);
192void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb);
193void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val);
194void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val);
195void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val);
196void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val);
197
198#ifndef VBOX_WITH_NEW_PHYS_CODE
199void remR3GrowDynRange(unsigned long physaddr);
200#endif
201#if 0 /*defined(RT_ARCH_AMD64) && defined(VBOX_STRICT)*/
202# define VBOX_CHECK_ADDR(ptr) do { if ((uintptr_t)(ptr) >= _4G) __asm__("int3"); } while (0)
203#else
204# define VBOX_CHECK_ADDR(ptr) do { } while (0)
205#endif
206
207static inline int ldub_p(void *ptr)
208{
209 VBOX_CHECK_ADDR(ptr);
210 return remR3PhysReadU8((uintptr_t)ptr);
211}
212
213static inline int ldsb_p(void *ptr)
214{
215 VBOX_CHECK_ADDR(ptr);
216 return remR3PhysReadS8((uintptr_t)ptr);
217}
218
219static inline void stb_p(void *ptr, int v)
220{
221 VBOX_CHECK_ADDR(ptr);
222 remR3PhysWriteU8((uintptr_t)ptr, v);
223}
224
225static inline int lduw_le_p(void *ptr)
226{
227 VBOX_CHECK_ADDR(ptr);
228 return remR3PhysReadU16((uintptr_t)ptr);
229}
230
231static inline int ldsw_le_p(void *ptr)
232{
233 VBOX_CHECK_ADDR(ptr);
234 return remR3PhysReadS16((uintptr_t)ptr);
235}
236
237static inline void stw_le_p(void *ptr, int v)
238{
239 VBOX_CHECK_ADDR(ptr);
240 remR3PhysWriteU16((uintptr_t)ptr, v);
241}
242
243static inline int ldl_le_p(void *ptr)
244{
245 VBOX_CHECK_ADDR(ptr);
246 return remR3PhysReadU32((uintptr_t)ptr);
247}
248
249static inline void stl_le_p(void *ptr, int v)
250{
251 VBOX_CHECK_ADDR(ptr);
252 remR3PhysWriteU32((uintptr_t)ptr, v);
253}
254
255static inline void stq_le_p(void *ptr, uint64_t v)
256{
257 VBOX_CHECK_ADDR(ptr);
258 remR3PhysWriteU64((uintptr_t)ptr, v);
259}
260
261static inline uint64_t ldq_le_p(void *ptr)
262{
263 VBOX_CHECK_ADDR(ptr);
264 return remR3PhysReadU64((uintptr_t)ptr);
265}
266
267#undef VBOX_CHECK_ADDR
268
269/* float access */
270
271static inline float32 ldfl_le_p(void *ptr)
272{
273 union {
274 float32 f;
275 uint32_t i;
276 } u;
277 u.i = ldl_le_p(ptr);
278 return u.f;
279}
280
281static inline void stfl_le_p(void *ptr, float32 v)
282{
283 union {
284 float32 f;
285 uint32_t i;
286 } u;
287 u.f = v;
288 stl_le_p(ptr, u.i);
289}
290
291static inline float64 ldfq_le_p(void *ptr)
292{
293 CPU_DoubleU u;
294 u.l.lower = ldl_le_p(ptr);
295 u.l.upper = ldl_le_p(ptr + 4);
296 return u.d;
297}
298
299static inline void stfq_le_p(void *ptr, float64 v)
300{
301 CPU_DoubleU u;
302 u.d = v;
303 stl_le_p(ptr, u.l.lower);
304 stl_le_p(ptr + 4, u.l.upper);
305}
306
307#else /* !VBOX */
308
309static inline int ldub_p(void *ptr)
310{
311 return *(uint8_t *)ptr;
312}
313
314static inline int ldsb_p(void *ptr)
315{
316 return *(int8_t *)ptr;
317}
318
319static inline void stb_p(void *ptr, int v)
320{
321 *(uint8_t *)ptr = v;
322}
323
324/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
325 kernel handles unaligned load/stores may give better results, but
326 it is a system wide setting : bad */
327#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
328
329/* conservative code for little endian unaligned accesses */
330static inline int lduw_le_p(void *ptr)
331{
332#ifdef __powerpc__
333 int val;
334 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
335 return val;
336#else
337 uint8_t *p = ptr;
338 return p[0] | (p[1] << 8);
339#endif
340}
341
342static inline int ldsw_le_p(void *ptr)
343{
344#ifdef __powerpc__
345 int val;
346 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
347 return (int16_t)val;
348#else
349 uint8_t *p = ptr;
350 return (int16_t)(p[0] | (p[1] << 8));
351#endif
352}
353
354static inline int ldl_le_p(void *ptr)
355{
356#ifdef __powerpc__
357 int val;
358 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
359 return val;
360#else
361 uint8_t *p = ptr;
362 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
363#endif
364}
365
366static inline uint64_t ldq_le_p(void *ptr)
367{
368 uint8_t *p = ptr;
369 uint32_t v1, v2;
370 v1 = ldl_le_p(p);
371 v2 = ldl_le_p(p + 4);
372 return v1 | ((uint64_t)v2 << 32);
373}
374
375static inline void stw_le_p(void *ptr, int v)
376{
377#ifdef __powerpc__
378 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
379#else
380 uint8_t *p = ptr;
381 p[0] = v;
382 p[1] = v >> 8;
383#endif
384}
385
386static inline void stl_le_p(void *ptr, int v)
387{
388#ifdef __powerpc__
389 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
390#else
391 uint8_t *p = ptr;
392 p[0] = v;
393 p[1] = v >> 8;
394 p[2] = v >> 16;
395 p[3] = v >> 24;
396#endif
397}
398
399static inline void stq_le_p(void *ptr, uint64_t v)
400{
401 uint8_t *p = ptr;
402 stl_le_p(p, (uint32_t)v);
403 stl_le_p(p + 4, v >> 32);
404}
405
406/* float access */
407
408static inline float32 ldfl_le_p(void *ptr)
409{
410 union {
411 float32 f;
412 uint32_t i;
413 } u;
414 u.i = ldl_le_p(ptr);
415 return u.f;
416}
417
418static inline void stfl_le_p(void *ptr, float32 v)
419{
420 union {
421 float32 f;
422 uint32_t i;
423 } u;
424 u.f = v;
425 stl_le_p(ptr, u.i);
426}
427
428static inline float64 ldfq_le_p(void *ptr)
429{
430 CPU_DoubleU u;
431 u.l.lower = ldl_le_p(ptr);
432 u.l.upper = ldl_le_p(ptr + 4);
433 return u.d;
434}
435
436static inline void stfq_le_p(void *ptr, float64 v)
437{
438 CPU_DoubleU u;
439 u.d = v;
440 stl_le_p(ptr, u.l.lower);
441 stl_le_p(ptr + 4, u.l.upper);
442}
443
444#else
445
446static inline int lduw_le_p(void *ptr)
447{
448 return *(uint16_t *)ptr;
449}
450
451static inline int ldsw_le_p(void *ptr)
452{
453 return *(int16_t *)ptr;
454}
455
456static inline int ldl_le_p(void *ptr)
457{
458 return *(uint32_t *)ptr;
459}
460
461static inline uint64_t ldq_le_p(void *ptr)
462{
463 return *(uint64_t *)ptr;
464}
465
466static inline void stw_le_p(void *ptr, int v)
467{
468 *(uint16_t *)ptr = v;
469}
470
471static inline void stl_le_p(void *ptr, int v)
472{
473 *(uint32_t *)ptr = v;
474}
475
476static inline void stq_le_p(void *ptr, uint64_t v)
477{
478 *(uint64_t *)ptr = v;
479}
480
481/* float access */
482
483static inline float32 ldfl_le_p(void *ptr)
484{
485 return *(float32 *)ptr;
486}
487
488static inline float64 ldfq_le_p(void *ptr)
489{
490 return *(float64 *)ptr;
491}
492
493static inline void stfl_le_p(void *ptr, float32 v)
494{
495 *(float32 *)ptr = v;
496}
497
498static inline void stfq_le_p(void *ptr, float64 v)
499{
500 *(float64 *)ptr = v;
501}
502#endif
503#endif /* !VBOX */
504
505#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
506
507static inline int lduw_be_p(void *ptr)
508{
509#if defined(__i386__)
510 int val;
511 asm volatile ("movzwl %1, %0\n"
512 "xchgb %b0, %h0\n"
513 : "=q" (val)
514 : "m" (*(uint16_t *)ptr));
515 return val;
516#else
517 uint8_t *b = (uint8_t *) ptr;
518 return ((b[0] << 8) | b[1]);
519#endif
520}
521
522static inline int ldsw_be_p(void *ptr)
523{
524#if defined(__i386__)
525 int val;
526 asm volatile ("movzwl %1, %0\n"
527 "xchgb %b0, %h0\n"
528 : "=q" (val)
529 : "m" (*(uint16_t *)ptr));
530 return (int16_t)val;
531#else
532 uint8_t *b = (uint8_t *) ptr;
533 return (int16_t)((b[0] << 8) | b[1]);
534#endif
535}
536
537static inline int ldl_be_p(void *ptr)
538{
539#if defined(__i386__) || defined(__x86_64__)
540 int val;
541 asm volatile ("movl %1, %0\n"
542 "bswap %0\n"
543 : "=r" (val)
544 : "m" (*(uint32_t *)ptr));
545 return val;
546#else
547 uint8_t *b = (uint8_t *) ptr;
548 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
549#endif
550}
551
552static inline uint64_t ldq_be_p(void *ptr)
553{
554 uint32_t a,b;
555 a = ldl_be_p(ptr);
556 b = ldl_be_p(ptr+4);
557 return (((uint64_t)a<<32)|b);
558}
559
560static inline void stw_be_p(void *ptr, int v)
561{
562#if defined(__i386__)
563 asm volatile ("xchgb %b0, %h0\n"
564 "movw %w0, %1\n"
565 : "=q" (v)
566 : "m" (*(uint16_t *)ptr), "0" (v));
567#else
568 uint8_t *d = (uint8_t *) ptr;
569 d[0] = v >> 8;
570 d[1] = v;
571#endif
572}
573
574static inline void stl_be_p(void *ptr, int v)
575{
576#if defined(__i386__) || defined(__x86_64__)
577 asm volatile ("bswap %0\n"
578 "movl %0, %1\n"
579 : "=r" (v)
580 : "m" (*(uint32_t *)ptr), "0" (v));
581#else
582 uint8_t *d = (uint8_t *) ptr;
583 d[0] = v >> 24;
584 d[1] = v >> 16;
585 d[2] = v >> 8;
586 d[3] = v;
587#endif
588}
589
590static inline void stq_be_p(void *ptr, uint64_t v)
591{
592 stl_be_p(ptr, v >> 32);
593 stl_be_p(ptr + 4, v);
594}
595
596/* float access */
597
598static inline float32 ldfl_be_p(void *ptr)
599{
600 union {
601 float32 f;
602 uint32_t i;
603 } u;
604 u.i = ldl_be_p(ptr);
605 return u.f;
606}
607
608static inline void stfl_be_p(void *ptr, float32 v)
609{
610 union {
611 float32 f;
612 uint32_t i;
613 } u;
614 u.f = v;
615 stl_be_p(ptr, u.i);
616}
617
618static inline float64 ldfq_be_p(void *ptr)
619{
620 CPU_DoubleU u;
621 u.l.upper = ldl_be_p(ptr);
622 u.l.lower = ldl_be_p(ptr + 4);
623 return u.d;
624}
625
626static inline void stfq_be_p(void *ptr, float64 v)
627{
628 CPU_DoubleU u;
629 u.d = v;
630 stl_be_p(ptr, u.l.upper);
631 stl_be_p(ptr + 4, u.l.lower);
632}
633
634#else
635
636static inline int lduw_be_p(void *ptr)
637{
638 return *(uint16_t *)ptr;
639}
640
641static inline int ldsw_be_p(void *ptr)
642{
643 return *(int16_t *)ptr;
644}
645
646static inline int ldl_be_p(void *ptr)
647{
648 return *(uint32_t *)ptr;
649}
650
651static inline uint64_t ldq_be_p(void *ptr)
652{
653 return *(uint64_t *)ptr;
654}
655
656static inline void stw_be_p(void *ptr, int v)
657{
658 *(uint16_t *)ptr = v;
659}
660
661static inline void stl_be_p(void *ptr, int v)
662{
663 *(uint32_t *)ptr = v;
664}
665
666static inline void stq_be_p(void *ptr, uint64_t v)
667{
668 *(uint64_t *)ptr = v;
669}
670
671/* float access */
672
673static inline float32 ldfl_be_p(void *ptr)
674{
675 return *(float32 *)ptr;
676}
677
678static inline float64 ldfq_be_p(void *ptr)
679{
680 return *(float64 *)ptr;
681}
682
683static inline void stfl_be_p(void *ptr, float32 v)
684{
685 *(float32 *)ptr = v;
686}
687
688static inline void stfq_be_p(void *ptr, float64 v)
689{
690 *(float64 *)ptr = v;
691}
692
693#endif
694
695/* target CPU memory access functions */
696#if defined(TARGET_WORDS_BIGENDIAN)
697#define lduw_p(p) lduw_be_p(p)
698#define ldsw_p(p) ldsw_be_p(p)
699#define ldl_p(p) ldl_be_p(p)
700#define ldq_p(p) ldq_be_p(p)
701#define ldfl_p(p) ldfl_be_p(p)
702#define ldfq_p(p) ldfq_be_p(p)
703#define stw_p(p, v) stw_be_p(p, v)
704#define stl_p(p, v) stl_be_p(p, v)
705#define stq_p(p, v) stq_be_p(p, v)
706#define stfl_p(p, v) stfl_be_p(p, v)
707#define stfq_p(p, v) stfq_be_p(p, v)
708#else
709#define lduw_p(p) lduw_le_p(p)
710#define ldsw_p(p) ldsw_le_p(p)
711#define ldl_p(p) ldl_le_p(p)
712#define ldq_p(p) ldq_le_p(p)
713#define ldfl_p(p) ldfl_le_p(p)
714#define ldfq_p(p) ldfq_le_p(p)
715#define stw_p(p, v) stw_le_p(p, v)
716#define stl_p(p, v) stl_le_p(p, v)
717#define stq_p(p, v) stq_le_p(p, v)
718#define stfl_p(p, v) stfl_le_p(p, v)
719#define stfq_p(p, v) stfq_le_p(p, v)
720#endif
721
722/* MMU memory access macros */
723
724#if defined(CONFIG_USER_ONLY)
725/* On some host systems the guest address space is reserved on the host.
726 * This allows the guest address space to be offset to a convenient location.
727 */
728//#define GUEST_BASE 0x20000000
729#define GUEST_BASE 0
730
731/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
732#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
733#define h2g(x) ((target_ulong)(x - GUEST_BASE))
734
735#define saddr(x) g2h(x)
736#define laddr(x) g2h(x)
737
738#else /* !CONFIG_USER_ONLY */
739/* NOTE: we use double casts if pointers and target_ulong have
740 different sizes */
741#define saddr(x) (uint8_t *)(long)(x)
742#define laddr(x) (uint8_t *)(long)(x)
743#endif
744
745#define ldub_raw(p) ldub_p(laddr((p)))
746#define ldsb_raw(p) ldsb_p(laddr((p)))
747#define lduw_raw(p) lduw_p(laddr((p)))
748#define ldsw_raw(p) ldsw_p(laddr((p)))
749#define ldl_raw(p) ldl_p(laddr((p)))
750#define ldq_raw(p) ldq_p(laddr((p)))
751#define ldfl_raw(p) ldfl_p(laddr((p)))
752#define ldfq_raw(p) ldfq_p(laddr((p)))
753#define stb_raw(p, v) stb_p(saddr((p)), v)
754#define stw_raw(p, v) stw_p(saddr((p)), v)
755#define stl_raw(p, v) stl_p(saddr((p)), v)
756#define stq_raw(p, v) stq_p(saddr((p)), v)
757#define stfl_raw(p, v) stfl_p(saddr((p)), v)
758#define stfq_raw(p, v) stfq_p(saddr((p)), v)
759
760
761#if defined(CONFIG_USER_ONLY)
762
763/* if user mode, no other memory access functions */
764#define ldub(p) ldub_raw(p)
765#define ldsb(p) ldsb_raw(p)
766#define lduw(p) lduw_raw(p)
767#define ldsw(p) ldsw_raw(p)
768#define ldl(p) ldl_raw(p)
769#define ldq(p) ldq_raw(p)
770#define ldfl(p) ldfl_raw(p)
771#define ldfq(p) ldfq_raw(p)
772#define stb(p, v) stb_raw(p, v)
773#define stw(p, v) stw_raw(p, v)
774#define stl(p, v) stl_raw(p, v)
775#define stq(p, v) stq_raw(p, v)
776#define stfl(p, v) stfl_raw(p, v)
777#define stfq(p, v) stfq_raw(p, v)
778
779#define ldub_code(p) ldub_raw(p)
780#define ldsb_code(p) ldsb_raw(p)
781#define lduw_code(p) lduw_raw(p)
782#define ldsw_code(p) ldsw_raw(p)
783#define ldl_code(p) ldl_raw(p)
784
785#define ldub_kernel(p) ldub_raw(p)
786#define ldsb_kernel(p) ldsb_raw(p)
787#define lduw_kernel(p) lduw_raw(p)
788#define ldsw_kernel(p) ldsw_raw(p)
789#define ldl_kernel(p) ldl_raw(p)
790#define ldfl_kernel(p) ldfl_raw(p)
791#define ldfq_kernel(p) ldfq_raw(p)
792#define stb_kernel(p, v) stb_raw(p, v)
793#define stw_kernel(p, v) stw_raw(p, v)
794#define stl_kernel(p, v) stl_raw(p, v)
795#define stq_kernel(p, v) stq_raw(p, v)
796#define stfl_kernel(p, v) stfl_raw(p, v)
797#define stfq_kernel(p, vt) stfq_raw(p, v)
798
799#endif /* defined(CONFIG_USER_ONLY) */
800
801/* page related stuff */
802
803#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
804#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
805#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
806
807/* ??? These should be the larger of unsigned long and target_ulong. */
808extern unsigned long qemu_real_host_page_size;
809extern unsigned long qemu_host_page_bits;
810extern unsigned long qemu_host_page_size;
811extern unsigned long qemu_host_page_mask;
812
813#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
814
815/* same as PROT_xxx */
816#define PAGE_READ 0x0001
817#define PAGE_WRITE 0x0002
818#define PAGE_EXEC 0x0004
819#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
820#define PAGE_VALID 0x0008
821/* original state of the write flag (used when tracking self-modifying
822 code */
823#define PAGE_WRITE_ORG 0x0010
824
825void page_dump(FILE *f);
826int page_get_flags(target_ulong address);
827void page_set_flags(target_ulong start, target_ulong end, int flags);
828void page_unprotect_range(target_ulong data, target_ulong data_size);
829
830#define SINGLE_CPU_DEFINES
831#ifdef SINGLE_CPU_DEFINES
832
833#if defined(TARGET_I386)
834
835#define CPUState CPUX86State
836#define cpu_init cpu_x86_init
837#define cpu_exec cpu_x86_exec
838#define cpu_gen_code cpu_x86_gen_code
839#define cpu_signal_handler cpu_x86_signal_handler
840
841#elif defined(TARGET_ARM)
842
843#define CPUState CPUARMState
844#define cpu_init cpu_arm_init
845#define cpu_exec cpu_arm_exec
846#define cpu_gen_code cpu_arm_gen_code
847#define cpu_signal_handler cpu_arm_signal_handler
848
849#elif defined(TARGET_SPARC)
850
851#define CPUState CPUSPARCState
852#define cpu_init cpu_sparc_init
853#define cpu_exec cpu_sparc_exec
854#define cpu_gen_code cpu_sparc_gen_code
855#define cpu_signal_handler cpu_sparc_signal_handler
856
857#elif defined(TARGET_PPC)
858
859#define CPUState CPUPPCState
860#define cpu_init cpu_ppc_init
861#define cpu_exec cpu_ppc_exec
862#define cpu_gen_code cpu_ppc_gen_code
863#define cpu_signal_handler cpu_ppc_signal_handler
864
865#elif defined(TARGET_M68K)
866#define CPUState CPUM68KState
867#define cpu_init cpu_m68k_init
868#define cpu_exec cpu_m68k_exec
869#define cpu_gen_code cpu_m68k_gen_code
870#define cpu_signal_handler cpu_m68k_signal_handler
871
872#elif defined(TARGET_MIPS)
873#define CPUState CPUMIPSState
874#define cpu_init cpu_mips_init
875#define cpu_exec cpu_mips_exec
876#define cpu_gen_code cpu_mips_gen_code
877#define cpu_signal_handler cpu_mips_signal_handler
878
879#elif defined(TARGET_SH4)
880#define CPUState CPUSH4State
881#define cpu_init cpu_sh4_init
882#define cpu_exec cpu_sh4_exec
883#define cpu_gen_code cpu_sh4_gen_code
884#define cpu_signal_handler cpu_sh4_signal_handler
885
886#else
887
888#error unsupported target CPU
889
890#endif
891
892#endif /* SINGLE_CPU_DEFINES */
893
894void cpu_dump_state(CPUState *env, FILE *f,
895 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
896 int flags);
897
898DECLNORETURN(void) cpu_abort(CPUState *env, const char *fmt, ...);
899extern CPUState *first_cpu;
900extern CPUState *cpu_single_env;
901extern int code_copy_enabled;
902
903#define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
904#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
905#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
906#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
907#define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
908#define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
909#define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
910
911#ifdef VBOX
912/** Executes a single instruction. cpu_exec() will normally return EXCP_SINGLE_INSTR. */
913#define CPU_INTERRUPT_SINGLE_INSTR 0x0200
914/** Executing a CPU_INTERRUPT_SINGLE_INSTR request, quit the cpu_loop. (for exceptions and suchlike) */
915#define CPU_INTERRUPT_SINGLE_INSTR_IN_FLIGHT 0x0400
916/** VM execution was interrupted by VMR3Reset, VMR3Suspend or VMR3PowerOff. */
917#define CPU_INTERRUPT_RC 0x0800
918/** Exit current TB to process an external interrupt request (also in op.c!!) */
919#define CPU_INTERRUPT_EXTERNAL_EXIT 0x1000
920/** Exit current TB to process an external interrupt request (also in op.c!!) */
921#define CPU_INTERRUPT_EXTERNAL_HARD 0x2000
922/** Exit current TB to process an external interrupt request (also in op.c!!) */
923#define CPU_INTERRUPT_EXTERNAL_TIMER 0x4000
924/** Exit current TB to process an external interrupt request (also in op.c!!) */
925#define CPU_INTERRUPT_EXTERNAL_DMA 0x8000
926#endif /* VBOX */
927void cpu_interrupt(CPUState *s, int mask);
928void cpu_reset_interrupt(CPUState *env, int mask);
929
930int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
931int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
932void cpu_single_step(CPUState *env, int enabled);
933void cpu_reset(CPUState *s);
934
935/* Return the physical page corresponding to a virtual one. Use it
936 only for debugging because no protection checks are done. Return -1
937 if no page found. */
938target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
939
940#define CPU_LOG_TB_OUT_ASM (1 << 0)
941#define CPU_LOG_TB_IN_ASM (1 << 1)
942#define CPU_LOG_TB_OP (1 << 2)
943#define CPU_LOG_TB_OP_OPT (1 << 3)
944#define CPU_LOG_INT (1 << 4)
945#define CPU_LOG_EXEC (1 << 5)
946#define CPU_LOG_PCALL (1 << 6)
947#define CPU_LOG_IOPORT (1 << 7)
948#define CPU_LOG_TB_CPU (1 << 8)
949
950/* define log items */
951typedef struct CPULogItem {
952 int mask;
953 const char *name;
954 const char *help;
955} CPULogItem;
956
957extern CPULogItem cpu_log_items[];
958
959void cpu_set_log(int log_flags);
960void cpu_set_log_filename(const char *filename);
961int cpu_str_to_log_mask(const char *str);
962
963/* IO ports API */
964
965/* NOTE: as these functions may be even used when there is an isa
966 brige on non x86 targets, we always defined them */
967#ifndef NO_CPU_IO_DEFS
968void cpu_outb(CPUState *env, int addr, int val);
969void cpu_outw(CPUState *env, int addr, int val);
970void cpu_outl(CPUState *env, int addr, int val);
971int cpu_inb(CPUState *env, int addr);
972int cpu_inw(CPUState *env, int addr);
973int cpu_inl(CPUState *env, int addr);
974#endif
975
976/* memory API */
977
978#ifndef VBOX
979extern int phys_ram_size;
980extern int phys_ram_fd;
981extern int phys_ram_size;
982#else /* VBOX */
983extern RTGCPHYS phys_ram_size;
984/** This is required for bounds checking the phys_ram_dirty accesses. */
985extern uint32_t phys_ram_dirty_size;
986#endif /* VBOX */
987#if !defined(VBOX)
988extern uint8_t *phys_ram_base;
989#endif
990extern uint8_t *phys_ram_dirty;
991
992/* physical memory access */
993#define TLB_INVALID_MASK (1 << 3)
994#define IO_MEM_SHIFT 4
995#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
996
997#define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
998#define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
999#define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
1000#define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */
1001#if defined(VBOX) && !defined(VBOX_WITH_NEW_PHYS_CODE)
1002#define IO_MEM_RAM_MISSING (5 << IO_MEM_SHIFT) /* used internally, never use directly */
1003#endif
1004/* acts like a ROM when read and like a device when written. As an
1005 exception, the write memory callback gets the ram offset instead of
1006 the physical address */
1007#define IO_MEM_ROMD (1)
1008
1009typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
1010typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
1011
1012void cpu_register_physical_memory(target_phys_addr_t start_addr,
1013 unsigned long size,
1014 unsigned long phys_offset);
1015uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr);
1016int cpu_register_io_memory(int io_index,
1017 CPUReadMemoryFunc **mem_read,
1018 CPUWriteMemoryFunc **mem_write,
1019 void *opaque);
1020CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
1021CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
1022
1023void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
1024 int len, int is_write);
1025static inline void cpu_physical_memory_read(target_phys_addr_t addr,
1026 uint8_t *buf, int len)
1027{
1028 cpu_physical_memory_rw(addr, buf, len, 0);
1029}
1030static inline void cpu_physical_memory_write(target_phys_addr_t addr,
1031 const uint8_t *buf, int len)
1032{
1033 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
1034}
1035uint32_t ldub_phys(target_phys_addr_t addr);
1036uint32_t lduw_phys(target_phys_addr_t addr);
1037uint32_t ldl_phys(target_phys_addr_t addr);
1038uint64_t ldq_phys(target_phys_addr_t addr);
1039void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
1040void stb_phys(target_phys_addr_t addr, uint32_t val);
1041void stw_phys(target_phys_addr_t addr, uint32_t val);
1042void stl_phys(target_phys_addr_t addr, uint32_t val);
1043void stq_phys(target_phys_addr_t addr, uint64_t val);
1044
1045void cpu_physical_memory_write_rom(target_phys_addr_t addr,
1046 const uint8_t *buf, int len);
1047int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
1048 uint8_t *buf, int len, int is_write);
1049
1050#define VGA_DIRTY_FLAG 0x01
1051#define CODE_DIRTY_FLAG 0x02
1052
1053/* read dirty bit (return 0 or 1) */
1054static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
1055{
1056#ifdef VBOX
1057 if (RT_UNLIKELY((addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
1058 {
1059 Log(("cpu_physical_memory_is_dirty: %VGp\n", (RTGCPHYS)addr));
1060 /*AssertMsgFailed(("cpu_physical_memory_is_dirty: %VGp\n", (RTGCPHYS)addr));*/
1061 return 0;
1062 }
1063#endif
1064 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
1065}
1066
1067static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
1068 int dirty_flags)
1069{
1070#ifdef VBOX
1071 if (RT_UNLIKELY((addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
1072 {
1073 Log(("cpu_physical_memory_is_dirty: %VGp\n", (RTGCPHYS)addr));
1074 /*AssertMsgFailed(("cpu_physical_memory_is_dirty: %VGp\n", (RTGCPHYS)addr));*/
1075 return 0xff & dirty_flags; /** @todo I don't think this is the right thing to return, fix! */
1076 }
1077#endif
1078 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
1079}
1080
1081static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
1082{
1083#ifdef VBOX
1084 if (RT_UNLIKELY((addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
1085 {
1086 Log(("cpu_physical_memory_is_dirty: %VGp\n", (RTGCPHYS)addr));
1087 /*AssertMsgFailed(("cpu_physical_memory_is_dirty: %VGp\n", (RTGCPHYS)addr));*/
1088 return;
1089 }
1090#endif
1091 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
1092}
1093
1094void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1095 int dirty_flags);
1096void cpu_tlb_update_dirty(CPUState *env);
1097
1098void dump_exec_info(FILE *f,
1099 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
1100
1101/*******************************************/
1102/* host CPU ticks (if available) */
1103
1104#if defined(__powerpc__)
1105
1106static inline uint32_t get_tbl(void)
1107{
1108 uint32_t tbl;
1109 asm volatile("mftb %0" : "=r" (tbl));
1110 return tbl;
1111}
1112
1113static inline uint32_t get_tbu(void)
1114{
1115 uint32_t tbl;
1116 asm volatile("mftbu %0" : "=r" (tbl));
1117 return tbl;
1118}
1119
1120static inline int64_t cpu_get_real_ticks(void)
1121{
1122 uint32_t l, h, h1;
1123 /* NOTE: we test if wrapping has occurred */
1124 do {
1125 h = get_tbu();
1126 l = get_tbl();
1127 h1 = get_tbu();
1128 } while (h != h1);
1129 return ((int64_t)h << 32) | l;
1130}
1131
1132#elif defined(__i386__)
1133
1134static inline int64_t cpu_get_real_ticks(void)
1135{
1136 int64_t val;
1137 asm volatile ("rdtsc" : "=A" (val));
1138 return val;
1139}
1140
1141#elif defined(__x86_64__)
1142
1143static inline int64_t cpu_get_real_ticks(void)
1144{
1145 uint32_t low,high;
1146 int64_t val;
1147 asm volatile("rdtsc" : "=a" (low), "=d" (high));
1148 val = high;
1149 val <<= 32;
1150 val |= low;
1151 return val;
1152}
1153
1154#elif defined(__ia64)
1155
1156static inline int64_t cpu_get_real_ticks(void)
1157{
1158 int64_t val;
1159 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
1160 return val;
1161}
1162
1163#elif defined(__s390__)
1164
1165static inline int64_t cpu_get_real_ticks(void)
1166{
1167 int64_t val;
1168 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
1169 return val;
1170}
1171
1172#elif defined(__sparc_v9__)
1173
1174static inline int64_t cpu_get_real_ticks (void)
1175{
1176#if defined(_LP64)
1177 uint64_t rval;
1178 asm volatile("rd %%tick,%0" : "=r"(rval));
1179 return rval;
1180#else
1181 union {
1182 uint64_t i64;
1183 struct {
1184 uint32_t high;
1185 uint32_t low;
1186 } i32;
1187 } rval;
1188 asm volatile("rd %%tick,%1; srlx %1,32,%0"
1189 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1190 return rval.i64;
1191#endif
1192}
1193#else
1194/* The host CPU doesn't have an easily accessible cycle counter.
1195 Just return a monotonically increasing vlue. This will be totally wrong,
1196 but hopefully better than nothing. */
1197static inline int64_t cpu_get_real_ticks (void)
1198{
1199 static int64_t ticks = 0;
1200 return ticks++;
1201}
1202#endif
1203
1204/* profiling */
1205#ifdef CONFIG_PROFILER
1206static inline int64_t profile_getclock(void)
1207{
1208 return cpu_get_real_ticks();
1209}
1210
1211extern int64_t kqemu_time, kqemu_time_start;
1212extern int64_t qemu_time, qemu_time_start;
1213extern int64_t tlb_flush_time;
1214extern int64_t kqemu_exec_count;
1215extern int64_t dev_time;
1216extern int64_t kqemu_ret_int_count;
1217extern int64_t kqemu_ret_excp_count;
1218extern int64_t kqemu_ret_intr_count;
1219
1220#endif
1221
1222#ifdef VBOX
1223void tb_invalidate_virt(CPUState *env, uint32_t eip);
1224#endif /* VBOX */
1225
1226#endif /* CPU_ALL_H */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette