VirtualBox

Changeset 104725 in vbox


Ignore:
Timestamp:
May 20, 2024 3:31:01 PM (10 months ago)
Author:
vboxsync
svn:sync-xref-src-repo-rev:
163286
Message:

VMM/NEM: Factor some bits common between x86 and arm64 KVM out into a template to reduce code duplication, bugref:10391

Location:
trunk/src/VBox/VMM/VMMR3
Files:
1 edited
1 copied

Legend:

Unmodified
Added
Removed
  • trunk/src/VBox/VMM/VMMR3/NEMR3Native-linux-armv8.cpp

    r104399 r104725  
    5454#include <sys/mman.h>
    5555#include <linux/kvm.h>
    56 
    57 /** @note This is an experiment right now and therefore is separate from the amd64 KVM NEM backend
    58  *        We'll see whether it would make sense to merge things later on when things have settled.
    59  */
    6056
    6157
     
    243239
    244240
    245 /**
    246  * Worker for nemR3NativeInit that gets the hypervisor capabilities.
    247  *
    248  * @returns VBox status code.
    249  * @param   pVM                 The cross context VM structure.
    250  * @param   pErrInfo            Where to always return error info.
    251  */
    252 static int nemR3LnxInitCheckCapabilities(PVM pVM, PRTERRINFO pErrInfo)
    253 {
    254     AssertReturn(pVM->nem.s.fdKvm != -1, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
    255 
    256     /*
    257      * Capabilities.
    258      */
    259     static const struct
    260     {
    261         const char *pszName;
    262         int         iCap;
    263         uint32_t    offNem      : 24;
    264         uint32_t    cbNem       : 3;
    265         uint32_t    fReqNonZero : 1;
    266         uint32_t    uReserved   : 4;
    267     } s_aCaps[] =
    268     {
    269 #define CAP_ENTRY__L(a_Define)           { #a_Define, a_Define,            UINT32_C(0x00ffffff), 0, 0, 0 }
    270 #define CAP_ENTRY__S(a_Define, a_Member) { #a_Define, a_Define, RT_UOFFSETOF(NEM, a_Member), RT_SIZEOFMEMB(NEM, a_Member), 0, 0 }
    271 #define CAP_ENTRY_MS(a_Define, a_Member) { #a_Define, a_Define, RT_UOFFSETOF(NEM, a_Member), RT_SIZEOFMEMB(NEM, a_Member), 1, 0 }
    272 #define CAP_ENTRY__U(a_Number)           { "KVM_CAP_" #a_Number, a_Number, UINT32_C(0x00ffffff), 0, 0, 0 }
    273 #define CAP_ENTRY_ML(a_Number)           { "KVM_CAP_" #a_Number, a_Number, UINT32_C(0x00ffffff), 0, 1, 0 }
    274 
    275         CAP_ENTRY__L(KVM_CAP_IRQCHIP),                       /* 0 */
    276         CAP_ENTRY__L(KVM_CAP_HLT),
    277         CAP_ENTRY__L(KVM_CAP_MMU_SHADOW_CACHE_CONTROL),
    278         CAP_ENTRY_ML(KVM_CAP_USER_MEMORY),
    279         CAP_ENTRY__L(KVM_CAP_SET_TSS_ADDR),
    280         CAP_ENTRY__U(5),
    281         CAP_ENTRY__L(KVM_CAP_VAPIC),
    282         CAP_ENTRY__L(KVM_CAP_EXT_CPUID),
    283         CAP_ENTRY__L(KVM_CAP_CLOCKSOURCE),
    284         CAP_ENTRY__L(KVM_CAP_NR_VCPUS),
    285         CAP_ENTRY_MS(KVM_CAP_NR_MEMSLOTS, cMaxMemSlots),     /* 10 */
    286         CAP_ENTRY__L(KVM_CAP_PIT),
    287         CAP_ENTRY__L(KVM_CAP_NOP_IO_DELAY),
    288         CAP_ENTRY__L(KVM_CAP_PV_MMU),
    289         CAP_ENTRY__L(KVM_CAP_MP_STATE),
    290         CAP_ENTRY__L(KVM_CAP_COALESCED_MMIO),
    291         CAP_ENTRY__L(KVM_CAP_SYNC_MMU),
    292         CAP_ENTRY__U(17),
    293         CAP_ENTRY__L(KVM_CAP_IOMMU),
    294         CAP_ENTRY__U(19), /* Buggy KVM_CAP_JOIN_MEMORY_REGIONS? */
    295         CAP_ENTRY__U(20), /* Mon-working KVM_CAP_DESTROY_MEMORY_REGION? */
    296         CAP_ENTRY__L(KVM_CAP_DESTROY_MEMORY_REGION_WORKS),   /* 21 */
    297         CAP_ENTRY__L(KVM_CAP_USER_NMI),
    298 #ifdef __KVM_HAVE_GUEST_DEBUG
    299         CAP_ENTRY__L(KVM_CAP_SET_GUEST_DEBUG),
    300 #endif
    301 #ifdef __KVM_HAVE_PIT
    302         CAP_ENTRY__L(KVM_CAP_REINJECT_CONTROL),
    303 #endif
    304         CAP_ENTRY__L(KVM_CAP_IRQ_ROUTING),
    305         CAP_ENTRY__L(KVM_CAP_IRQ_INJECT_STATUS),
    306         CAP_ENTRY__U(27),
    307         CAP_ENTRY__U(28),
    308         CAP_ENTRY__L(KVM_CAP_ASSIGN_DEV_IRQ),
    309         CAP_ENTRY__L(KVM_CAP_JOIN_MEMORY_REGIONS_WORKS),     /* 30 */
    310 #ifdef __KVM_HAVE_MCE
    311         CAP_ENTRY__L(KVM_CAP_MCE),
    312 #endif
    313         CAP_ENTRY__L(KVM_CAP_IRQFD),
    314 #ifdef __KVM_HAVE_PIT
    315         CAP_ENTRY__L(KVM_CAP_PIT2),
    316 #endif
    317         CAP_ENTRY__L(KVM_CAP_SET_BOOT_CPU_ID),
    318 #ifdef __KVM_HAVE_PIT_STATE2
    319         CAP_ENTRY__L(KVM_CAP_PIT_STATE2),
    320 #endif
    321         CAP_ENTRY__L(KVM_CAP_IOEVENTFD),
    322         CAP_ENTRY__L(KVM_CAP_SET_IDENTITY_MAP_ADDR),
    323 #ifdef __KVM_HAVE_XEN_HVM
    324         CAP_ENTRY__L(KVM_CAP_XEN_HVM),
    325 #endif
    326         CAP_ENTRY__L(KVM_CAP_ADJUST_CLOCK),
    327         CAP_ENTRY__L(KVM_CAP_INTERNAL_ERROR_DATA),           /* 40 */
    328 #ifdef __KVM_HAVE_VCPU_EVENTS
    329         CAP_ENTRY_ML(KVM_CAP_VCPU_EVENTS),
    330 #else
    331         CAP_ENTRY_MU(41),
    332 #endif
    333         CAP_ENTRY__L(KVM_CAP_S390_PSW),
    334         CAP_ENTRY__L(KVM_CAP_PPC_SEGSTATE),
    335         CAP_ENTRY__L(KVM_CAP_HYPERV),
    336         CAP_ENTRY__L(KVM_CAP_HYPERV_VAPIC),
    337         CAP_ENTRY__L(KVM_CAP_HYPERV_SPIN),
    338         CAP_ENTRY__L(KVM_CAP_PCI_SEGMENT),
    339         CAP_ENTRY__L(KVM_CAP_PPC_PAIRED_SINGLES),
    340         CAP_ENTRY__L(KVM_CAP_INTR_SHADOW),
    341 #ifdef __KVM_HAVE_DEBUGREGS
    342         CAP_ENTRY__L(KVM_CAP_DEBUGREGS),                     /* 50 */
    343 #endif
    344         CAP_ENTRY__L(KVM_CAP_X86_ROBUST_SINGLESTEP),
    345         CAP_ENTRY__L(KVM_CAP_PPC_OSI),
    346         CAP_ENTRY__L(KVM_CAP_PPC_UNSET_IRQ),
    347         CAP_ENTRY__L(KVM_CAP_ENABLE_CAP),
    348         CAP_ENTRY__L(KVM_CAP_PPC_GET_PVINFO),
    349         CAP_ENTRY__L(KVM_CAP_PPC_IRQ_LEVEL),
    350         CAP_ENTRY__L(KVM_CAP_ASYNC_PF),
    351         CAP_ENTRY__L(KVM_CAP_TSC_CONTROL),                   /* 60 */
    352         CAP_ENTRY__L(KVM_CAP_GET_TSC_KHZ),
    353         CAP_ENTRY__L(KVM_CAP_PPC_BOOKE_SREGS),
    354         CAP_ENTRY__L(KVM_CAP_SPAPR_TCE),
    355         CAP_ENTRY__L(KVM_CAP_PPC_SMT),
    356         CAP_ENTRY__L(KVM_CAP_PPC_RMA),
    357         CAP_ENTRY__L(KVM_CAP_MAX_VCPUS),
    358         CAP_ENTRY__L(KVM_CAP_PPC_HIOR),
    359         CAP_ENTRY__L(KVM_CAP_PPC_PAPR),
    360         CAP_ENTRY__L(KVM_CAP_SW_TLB),
    361         CAP_ENTRY__L(KVM_CAP_ONE_REG),                       /* 70 */
    362         CAP_ENTRY__L(KVM_CAP_S390_GMAP),
    363         CAP_ENTRY__L(KVM_CAP_TSC_DEADLINE_TIMER),
    364         CAP_ENTRY__L(KVM_CAP_S390_UCONTROL),
    365         CAP_ENTRY__L(KVM_CAP_SYNC_REGS),
    366         CAP_ENTRY__L(KVM_CAP_PCI_2_3),
    367         CAP_ENTRY__L(KVM_CAP_KVMCLOCK_CTRL),
    368         CAP_ENTRY__L(KVM_CAP_SIGNAL_MSI),
    369         CAP_ENTRY__L(KVM_CAP_PPC_GET_SMMU_INFO),
    370         CAP_ENTRY__L(KVM_CAP_S390_COW),
    371         CAP_ENTRY__L(KVM_CAP_PPC_ALLOC_HTAB),                /* 80 */
    372         CAP_ENTRY__L(KVM_CAP_READONLY_MEM),
    373         CAP_ENTRY__L(KVM_CAP_IRQFD_RESAMPLE),
    374         CAP_ENTRY__L(KVM_CAP_PPC_BOOKE_WATCHDOG),
    375         CAP_ENTRY__L(KVM_CAP_PPC_HTAB_FD),
    376         CAP_ENTRY__L(KVM_CAP_S390_CSS_SUPPORT),
    377         CAP_ENTRY__L(KVM_CAP_PPC_EPR),
    378         CAP_ENTRY_ML(KVM_CAP_ARM_PSCI),
    379         CAP_ENTRY_ML(KVM_CAP_ARM_SET_DEVICE_ADDR),
    380         CAP_ENTRY_ML(KVM_CAP_DEVICE_CTRL),
    381         CAP_ENTRY__L(KVM_CAP_IRQ_MPIC),                      /* 90 */
    382         CAP_ENTRY__L(KVM_CAP_PPC_RTAS),
    383         CAP_ENTRY__L(KVM_CAP_IRQ_XICS),
    384         CAP_ENTRY__L(KVM_CAP_ARM_EL1_32BIT),
    385         CAP_ENTRY__L(KVM_CAP_SPAPR_MULTITCE),
    386         CAP_ENTRY__L(KVM_CAP_EXT_EMUL_CPUID),
    387         CAP_ENTRY__L(KVM_CAP_HYPERV_TIME),
    388         CAP_ENTRY__L(KVM_CAP_IOAPIC_POLARITY_IGNORED),
    389         CAP_ENTRY__L(KVM_CAP_ENABLE_CAP_VM),
    390         CAP_ENTRY__L(KVM_CAP_S390_IRQCHIP),
    391         CAP_ENTRY__L(KVM_CAP_IOEVENTFD_NO_LENGTH),           /* 100 */
    392         CAP_ENTRY__L(KVM_CAP_VM_ATTRIBUTES),
    393         CAP_ENTRY_ML(KVM_CAP_ARM_PSCI_0_2),
    394         CAP_ENTRY__L(KVM_CAP_PPC_FIXUP_HCALL),
    395         CAP_ENTRY__L(KVM_CAP_PPC_ENABLE_HCALL),
    396         CAP_ENTRY__L(KVM_CAP_CHECK_EXTENSION_VM),
    397         CAP_ENTRY__L(KVM_CAP_S390_USER_SIGP),
    398         CAP_ENTRY__L(KVM_CAP_S390_VECTOR_REGISTERS),
    399         CAP_ENTRY__L(KVM_CAP_S390_MEM_OP),
    400         CAP_ENTRY__L(KVM_CAP_S390_USER_STSI),
    401         CAP_ENTRY__L(KVM_CAP_S390_SKEYS),                    /* 110 */
    402         CAP_ENTRY__L(KVM_CAP_MIPS_FPU),
    403         CAP_ENTRY__L(KVM_CAP_MIPS_MSA),
    404         CAP_ENTRY__L(KVM_CAP_S390_INJECT_IRQ),
    405         CAP_ENTRY__L(KVM_CAP_S390_IRQ_STATE),
    406         CAP_ENTRY__L(KVM_CAP_PPC_HWRNG),
    407         CAP_ENTRY__L(KVM_CAP_DISABLE_QUIRKS),
    408         CAP_ENTRY__L(KVM_CAP_X86_SMM),
    409         CAP_ENTRY__L(KVM_CAP_MULTI_ADDRESS_SPACE),
    410         CAP_ENTRY__L(KVM_CAP_GUEST_DEBUG_HW_BPS),
    411         CAP_ENTRY__L(KVM_CAP_GUEST_DEBUG_HW_WPS),            /* 120 */
    412         CAP_ENTRY__L(KVM_CAP_SPLIT_IRQCHIP),
    413         CAP_ENTRY__L(KVM_CAP_IOEVENTFD_ANY_LENGTH),
    414         CAP_ENTRY__L(KVM_CAP_HYPERV_SYNIC),
    415         CAP_ENTRY__L(KVM_CAP_S390_RI),
    416         CAP_ENTRY__L(KVM_CAP_SPAPR_TCE_64),
    417         CAP_ENTRY__L(KVM_CAP_ARM_PMU_V3),
    418         CAP_ENTRY__L(KVM_CAP_VCPU_ATTRIBUTES),
    419         CAP_ENTRY__L(KVM_CAP_MAX_VCPU_ID),
    420         CAP_ENTRY__L(KVM_CAP_X2APIC_API),
    421         CAP_ENTRY__L(KVM_CAP_S390_USER_INSTR0),              /* 130 */
    422         CAP_ENTRY__L(KVM_CAP_MSI_DEVID),
    423         CAP_ENTRY__L(KVM_CAP_PPC_HTM),
    424         CAP_ENTRY__L(KVM_CAP_SPAPR_RESIZE_HPT),
    425         CAP_ENTRY__L(KVM_CAP_PPC_MMU_RADIX),
    426         CAP_ENTRY__L(KVM_CAP_PPC_MMU_HASH_V3),
    427         CAP_ENTRY__L(KVM_CAP_IMMEDIATE_EXIT),
    428         CAP_ENTRY__L(KVM_CAP_MIPS_VZ),
    429         CAP_ENTRY__L(KVM_CAP_MIPS_TE),
    430         CAP_ENTRY__L(KVM_CAP_MIPS_64BIT),
    431         CAP_ENTRY__L(KVM_CAP_S390_GS),                       /* 140 */
    432         CAP_ENTRY__L(KVM_CAP_S390_AIS),
    433         CAP_ENTRY__L(KVM_CAP_SPAPR_TCE_VFIO),
    434         CAP_ENTRY__L(KVM_CAP_X86_DISABLE_EXITS),
    435         CAP_ENTRY_ML(KVM_CAP_ARM_USER_IRQ),
    436         CAP_ENTRY__L(KVM_CAP_S390_CMMA_MIGRATION),
    437         CAP_ENTRY__L(KVM_CAP_PPC_FWNMI),
    438         CAP_ENTRY__L(KVM_CAP_PPC_SMT_POSSIBLE),
    439         CAP_ENTRY__L(KVM_CAP_HYPERV_SYNIC2),
    440         CAP_ENTRY__L(KVM_CAP_HYPERV_VP_INDEX),
    441         CAP_ENTRY__L(KVM_CAP_S390_AIS_MIGRATION),            /* 150 */
    442         CAP_ENTRY__L(KVM_CAP_PPC_GET_CPU_CHAR),
    443         CAP_ENTRY__L(KVM_CAP_S390_BPB),
    444         CAP_ENTRY__L(KVM_CAP_GET_MSR_FEATURES),
    445         CAP_ENTRY__L(KVM_CAP_HYPERV_EVENTFD),
    446         CAP_ENTRY__L(KVM_CAP_HYPERV_TLBFLUSH),
    447         CAP_ENTRY__L(KVM_CAP_S390_HPAGE_1M),
    448         CAP_ENTRY__L(KVM_CAP_NESTED_STATE),
    449         CAP_ENTRY__L(KVM_CAP_ARM_INJECT_SERROR_ESR),
    450         CAP_ENTRY__L(KVM_CAP_MSR_PLATFORM_INFO),
    451         CAP_ENTRY__L(KVM_CAP_PPC_NESTED_HV),                 /* 160 */
    452         CAP_ENTRY__L(KVM_CAP_HYPERV_SEND_IPI),
    453         CAP_ENTRY__L(KVM_CAP_COALESCED_PIO),
    454         CAP_ENTRY__L(KVM_CAP_HYPERV_ENLIGHTENED_VMCS),
    455         CAP_ENTRY__L(KVM_CAP_EXCEPTION_PAYLOAD),
    456         CAP_ENTRY_MS(KVM_CAP_ARM_VM_IPA_SIZE, cIpaBits),
    457         CAP_ENTRY__L(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT),
    458         CAP_ENTRY__L(KVM_CAP_HYPERV_CPUID),
    459         CAP_ENTRY__L(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2),
    460         CAP_ENTRY__L(KVM_CAP_PPC_IRQ_XIVE),
    461         CAP_ENTRY__L(KVM_CAP_ARM_SVE),                       /* 170 */
    462         CAP_ENTRY__L(KVM_CAP_ARM_PTRAUTH_ADDRESS),
    463         CAP_ENTRY__L(KVM_CAP_ARM_PTRAUTH_GENERIC),
    464         CAP_ENTRY__L(KVM_CAP_PMU_EVENT_FILTER),
    465         CAP_ENTRY__L(KVM_CAP_ARM_IRQ_LINE_LAYOUT_2),
    466         CAP_ENTRY__L(KVM_CAP_HYPERV_DIRECT_TLBFLUSH),
    467         CAP_ENTRY__L(KVM_CAP_PPC_GUEST_DEBUG_SSTEP),
    468         CAP_ENTRY__L(KVM_CAP_ARM_NISV_TO_USER),
    469         CAP_ENTRY__L(KVM_CAP_ARM_INJECT_EXT_DABT),
    470         CAP_ENTRY__L(KVM_CAP_S390_VCPU_RESETS),
    471         CAP_ENTRY__L(KVM_CAP_S390_PROTECTED),                /* 180 */
    472         CAP_ENTRY__L(KVM_CAP_PPC_SECURE_GUEST),
    473         CAP_ENTRY__L(KVM_CAP_HALT_POLL),
    474         CAP_ENTRY__L(KVM_CAP_ASYNC_PF_INT),
    475         CAP_ENTRY__L(KVM_CAP_LAST_CPU),
    476         CAP_ENTRY__L(KVM_CAP_SMALLER_MAXPHYADDR),
    477         CAP_ENTRY__L(KVM_CAP_S390_DIAG318),
    478         CAP_ENTRY__L(KVM_CAP_STEAL_TIME),
    479         CAP_ENTRY__L(KVM_CAP_X86_USER_SPACE_MSR),            /* (since 5.10) */
    480         CAP_ENTRY__L(KVM_CAP_X86_MSR_FILTER),
    481         CAP_ENTRY__L(KVM_CAP_ENFORCE_PV_FEATURE_CPUID),      /* 190 */
    482         CAP_ENTRY__L(KVM_CAP_SYS_HYPERV_CPUID),
    483         CAP_ENTRY__L(KVM_CAP_DIRTY_LOG_RING),
    484         CAP_ENTRY__L(KVM_CAP_X86_BUS_LOCK_EXIT),
    485         CAP_ENTRY__L(KVM_CAP_PPC_DAWR1),
    486         CAP_ENTRY__L(KVM_CAP_SET_GUEST_DEBUG2),
    487         CAP_ENTRY__L(KVM_CAP_SGX_ATTRIBUTE),
    488         CAP_ENTRY__L(KVM_CAP_VM_COPY_ENC_CONTEXT_FROM),
    489         CAP_ENTRY__L(KVM_CAP_PTP_KVM),
    490         CAP_ENTRY__U(199),
    491         CAP_ENTRY__U(200),
    492         CAP_ENTRY__U(201),
    493         CAP_ENTRY__U(202),
    494         CAP_ENTRY__U(203),
    495         CAP_ENTRY__U(204),
    496         CAP_ENTRY__U(205),
    497         CAP_ENTRY__U(206),
    498         CAP_ENTRY__U(207),
    499         CAP_ENTRY__U(208),
    500         CAP_ENTRY__U(209),
    501         CAP_ENTRY__U(210),
    502         CAP_ENTRY__U(211),
    503         CAP_ENTRY__U(212),
    504         CAP_ENTRY__U(213),
    505         CAP_ENTRY__U(214),
    506         CAP_ENTRY__U(215),
    507         CAP_ENTRY__U(216),
    508     };
    509 
    510     LogRel(("NEM: KVM capabilities (system):\n"));
    511     int rcRet = VINF_SUCCESS;
    512     for (unsigned i = 0; i < RT_ELEMENTS(s_aCaps); i++)
    513     {
    514         int rc = ioctl(pVM->nem.s.fdKvm, KVM_CHECK_EXTENSION, s_aCaps[i].iCap);
    515         if (rc >= 10)
    516             LogRel(("NEM:   %36s: %#x (%d)\n", s_aCaps[i].pszName, rc, rc));
    517         else if (rc >= 0)
    518             LogRel(("NEM:   %36s: %d\n", s_aCaps[i].pszName, rc));
    519         else
    520             LogRel(("NEM:   %s failed: %d/%d\n", s_aCaps[i].pszName, rc, errno));
    521         switch (s_aCaps[i].cbNem)
    522         {
    523             case 0:
    524                 break;
    525             case 1:
    526             {
    527                 uint8_t *puValue = (uint8_t *)&pVM->nem.padding[s_aCaps[i].offNem];
    528                 AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0);
    529                 *puValue = (uint8_t)rc;
    530                 AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc));
    531                 break;
    532             }
    533             case 2:
    534             {
    535                 uint16_t *puValue = (uint16_t *)&pVM->nem.padding[s_aCaps[i].offNem];
    536                 AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0);
    537                 *puValue = (uint16_t)rc;
    538                 AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc));
    539                 break;
    540             }
    541             case 4:
    542             {
    543                 uint32_t *puValue = (uint32_t *)&pVM->nem.padding[s_aCaps[i].offNem];
    544                 AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0);
    545                 *puValue = (uint32_t)rc;
    546                 AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc));
    547                 break;
    548             }
    549             default:
    550                 rcRet = RTErrInfoSetF(pErrInfo, VERR_NEM_IPE_0, "s_aCaps[%u] is bad: cbNem=%#x - %s",
    551                                       i, s_aCaps[i].pszName, s_aCaps[i].cbNem);
    552                 AssertFailedReturn(rcRet);
    553         }
    554 
    555         /*
    556          * Is a require non-zero entry zero or failing?
    557          */
    558         if (s_aCaps[i].fReqNonZero && rc <= 0)
    559             rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_MISSING_FEATURE,
    560                                             "Required capability '%s' is missing!", s_aCaps[i].pszName);
    561     }
    562 
    563     /*
    564      * Get per VCpu KVM_RUN MMAP area size.
    565      */
    566     int rc = ioctl(pVM->nem.s.fdKvm, KVM_GET_VCPU_MMAP_SIZE, 0UL);
    567     if ((unsigned)rc < _64M)
    568     {
    569         pVM->nem.s.cbVCpuMmap = (uint32_t)rc;
    570         LogRel(("NEM:   %36s: %#x (%d)\n", "KVM_GET_VCPU_MMAP_SIZE", rc, rc));
    571     }
    572     else if (rc < 0)
    573         rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_MISSING_FEATURE, "KVM_GET_VCPU_MMAP_SIZE failed: %d", errno);
    574     else
    575         rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_INIT_FAILED, "Odd KVM_GET_VCPU_MMAP_SIZE value: %#x (%d)", rc, rc);
    576 
    577     /*
    578      * Init the slot ID bitmap.
    579      */
    580     ASMBitSet(&pVM->nem.s.bmSlotIds[0], 0);         /* don't use slot 0 */
    581     if (pVM->nem.s.cMaxMemSlots < _32K)
    582         ASMBitSetRange(&pVM->nem.s.bmSlotIds[0], pVM->nem.s.cMaxMemSlots, _32K);
    583     ASMBitSet(&pVM->nem.s.bmSlotIds[0], _32K - 1);  /* don't use the last slot */
    584 
    585     return rcRet;
    586 }
     241/* Forward declarations of things called by the template. */
     242static int nemR3LnxInitSetupVm(PVM pVM, PRTERRINFO pErrInfo);
     243
     244
     245/* Instantiate the common bits we share with the x86 KVM backend. */
     246#include "NEMR3NativeTemplate-linux.cpp.h"
    587247
    588248
     
    795455
    796456
    797 /** @callback_method_impl{FNVMMEMTRENDEZVOUS}   */
    798 static DECLCALLBACK(VBOXSTRICTRC) nemR3LnxFixThreadPoke(PVM pVM, PVMCPU pVCpu, void *pvUser)
    799 {
    800     RT_NOREF(pVM, pvUser);
    801     int rc = RTThreadControlPokeSignal(pVCpu->hThread, true /*fEnable*/);
    802     AssertLogRelRC(rc);
    803     return VINF_SUCCESS;
    804 }
    805 
    806 
    807 /**
    808  * Try initialize the native API.
    809  *
    810  * This may only do part of the job, more can be done in
    811  * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted().
    812  *
    813  * @returns VBox status code.
    814  * @param   pVM             The cross context VM structure.
    815  * @param   fFallback       Whether we're in fallback mode or use-NEM mode. In
    816  *                          the latter we'll fail if we cannot initialize.
    817  * @param   fForced         Whether the HMForced flag is set and we should
    818  *                          fail if we cannot initialize.
    819  */
    820 int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced)
    821 {
    822     RT_NOREF(pVM, fFallback, fForced);
    823     /*
    824      * Some state init.
    825      */
    826     pVM->nem.s.fdKvm = -1;
    827     pVM->nem.s.fdVm  = -1;
    828     for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
    829     {
    830         PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
    831         pNemCpu->fdVCpu = -1;
    832     }
    833 
    834     /*
    835      * Error state.
    836      * The error message will be non-empty on failure and 'rc' will be set too.
    837      */
    838     RTERRINFOSTATIC ErrInfo;
    839     PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo);
    840 
    841     /*
    842      * Open kvm subsystem so we can issue system ioctls.
    843      */
    844     int rc;
    845     int fdKvm = open("/dev/kvm", O_RDWR | O_CLOEXEC);
    846     if (fdKvm >= 0)
    847     {
    848         pVM->nem.s.fdKvm = fdKvm;
    849 
    850         /*
    851          * Check capabilities.
    852          */
    853         rc = nemR3LnxInitCheckCapabilities(pVM, pErrInfo);
    854         if (RT_SUCCESS(rc))
    855         {
    856             /*
    857              * Create an empty VM since it is recommended we check capabilities on
    858              * the VM rather than the system descriptor.
    859              */
    860             int fdVm = ioctl(fdKvm, KVM_CREATE_VM, pVM->nem.s.cIpaBits);
    861             if (fdVm >= 0)
    862             {
    863                 pVM->nem.s.fdVm = fdVm;
    864 
    865                 /*
    866                  * Set up the VM (more on this later).
    867                  */
    868                 rc = nemR3LnxInitSetupVm(pVM, pErrInfo);
    869                 if (RT_SUCCESS(rc))
    870                 {
    871                     /*
    872                      * Set ourselves as the execution engine and make config adjustments.
    873                      */
    874                     VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API);
    875                     Log(("NEM: Marked active!\n"));
    876                     PGMR3EnableNemMode(pVM);
    877 
    878                     /*
    879                      * Register release statistics
    880                      */
    881                     for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
    882                     {
    883                         PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
    884                         STAMR3RegisterF(pVM, &pNemCpu->StatImportOnDemand,      STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of on-demand state imports",      "/NEM/CPU%u/ImportOnDemand", idCpu);
    885                         STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturn,      STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of state imports on loop return", "/NEM/CPU%u/ImportOnReturn", idCpu);
    886                         STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturnSkipped, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of skipped state imports on loop return", "/NEM/CPU%u/ImportOnReturnSkipped", idCpu);
    887                         STAMR3RegisterF(pVM, &pNemCpu->StatImportPendingInterrupt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times an interrupt was pending when importing from KVM", "/NEM/CPU%u/ImportPendingInterrupt", idCpu);
    888                         STAMR3RegisterF(pVM, &pNemCpu->StatExportPendingInterrupt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times an interrupt was pending when exporting to KVM", "/NEM/CPU%u/ExportPendingInterrupt", idCpu);
    889                         STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn,   STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn", idCpu);
    890                         STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn1Loop, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-01-loop", idCpu);
    891                         STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn2Loops, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-02-loops", idCpu);
    892                         STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn3Loops, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-03-loops", idCpu);
    893                         STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn4PlusLoops, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-04-to-7-loops", idCpu);
    894                         STAMR3RegisterF(pVM, &pNemCpu->StatQueryCpuTick,        STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TSC queries",                  "/NEM/CPU%u/QueryCpuTick", idCpu);
    895                         STAMR3RegisterF(pVM, &pNemCpu->StatExitTotal,           STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "All exits",                  "/NEM/CPU%u/Exit", idCpu);
    896                         STAMR3RegisterF(pVM, &pNemCpu->StatExitIo,              STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_IO",                "/NEM/CPU%u/Exit/Io", idCpu);
    897                         STAMR3RegisterF(pVM, &pNemCpu->StatExitMmio,            STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_MMIO",              "/NEM/CPU%u/Exit/Mmio", idCpu);
    898                         STAMR3RegisterF(pVM, &pNemCpu->StatExitIntr,            STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTR",              "/NEM/CPU%u/Exit/Intr", idCpu);
    899                         STAMR3RegisterF(pVM, &pNemCpu->StatExitHypercall,       STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_HYPERCALL",         "/NEM/CPU%u/Exit/Hypercall", idCpu);
    900                         STAMR3RegisterF(pVM, &pNemCpu->StatExitDebug,           STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_DEBUG",             "/NEM/CPU%u/Exit/Debug", idCpu);
    901                         STAMR3RegisterF(pVM, &pNemCpu->StatExitBusLock,         STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_BUS_LOCK",          "/NEM/CPU%u/Exit/BusLock", idCpu);
    902                         STAMR3RegisterF(pVM, &pNemCpu->StatExitInternalErrorEmulation, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTERNAL_ERROR/EMULATION", "/NEM/CPU%u/Exit/InternalErrorEmulation", idCpu);
    903                         STAMR3RegisterF(pVM, &pNemCpu->StatExitInternalErrorFatal,     STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTERNAL_ERROR/*", "/NEM/CPU%u/Exit/InternalErrorFatal", idCpu);
    904                     }
    905 
    906                     /*
    907                      * Success.
    908                      */
    909                     return VINF_SUCCESS;
    910                 }
    911                 close(fdVm);
    912                 pVM->nem.s.fdVm = -1;
    913             }
    914             else
    915                 rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "KVM_CREATE_VM failed: %u", errno);
    916         }
    917         close(fdKvm);
    918         pVM->nem.s.fdKvm = -1;
    919     }
    920     else if (errno == EACCES)
    921         rc = RTErrInfoSet(pErrInfo, VERR_ACCESS_DENIED, "Do not have access to open /dev/kvm for reading & writing.");
    922     else if (errno == ENOENT)
    923         rc = RTErrInfoSet(pErrInfo, VERR_NOT_SUPPORTED, "KVM is not availble (/dev/kvm does not exist)");
    924     else
    925         rc = RTErrInfoSetF(pErrInfo, RTErrConvertFromErrno(errno), "Failed to open '/dev/kvm': %u", errno);
    926 
    927     /*
    928      * We only fail if in forced mode, otherwise just log the complaint and return.
    929      */
    930     Assert(RTErrInfoIsSet(pErrInfo));
    931     if (   (fForced || !fFallback)
    932         && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API)
    933         return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg);
    934     LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg));
    935     return VINF_SUCCESS;
    936 }
    937 
    938 
    939 /**
    940  * This is called after CPUMR3Init is done.
    941  *
    942  * @returns VBox status code.
    943  * @param   pVM                 The VM handle..
    944  */
    945 int nemR3NativeInitAfterCPUM(PVM pVM)
    946 {
    947     /*
    948      * Validate sanity.
    949      */
    950     AssertReturn(pVM->nem.s.fdKvm >= 0, VERR_WRONG_ORDER);
    951     AssertReturn(pVM->nem.s.fdVm >= 0, VERR_WRONG_ORDER);
    952     AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER);
    953 
    954     /** @todo */
    955 
    956     return VINF_SUCCESS;
    957 }
    958 
    959 
    960457int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
    961458{
     
    968465
    969466    return VINF_SUCCESS;
    970 }
    971 
    972 
    973 int nemR3NativeTerm(PVM pVM)
    974 {
    975     /*
    976      * Per-cpu data
    977      */
    978     for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
    979     {
    980         PVMCPU pVCpu = pVM->apCpusR3[idCpu];
    981 
    982         if (pVCpu->nem.s.fdVCpu != -1)
    983         {
    984             close(pVCpu->nem.s.fdVCpu);
    985             pVCpu->nem.s.fdVCpu = -1;
    986         }
    987         if (pVCpu->nem.s.pRun)
    988         {
    989             munmap(pVCpu->nem.s.pRun, pVM->nem.s.cbVCpuMmap);
    990             pVCpu->nem.s.pRun = NULL;
    991         }
    992     }
    993 
    994     /*
    995      * Global data.
    996      */
    997     if (pVM->nem.s.fdVm != -1)
    998     {
    999         close(pVM->nem.s.fdVm);
    1000         pVM->nem.s.fdVm = -1;
    1001     }
    1002 
    1003     if (pVM->nem.s.fdKvm != -1)
    1004     {
    1005         close(pVM->nem.s.fdKvm);
    1006         pVM->nem.s.fdKvm = -1;
    1007     }
    1008     return VINF_SUCCESS;
    1009 }
    1010 
    1011 
    1012 /**
    1013  * VM reset notification.
    1014  *
    1015  * @param   pVM         The cross context VM structure.
    1016  */
    1017 void nemR3NativeReset(PVM pVM)
    1018 {
    1019     RT_NOREF(pVM);
    1020 }
    1021 
    1022 
    1023 /**
    1024  * Reset CPU due to INIT IPI or hot (un)plugging.
    1025  *
    1026  * @param   pVCpu       The cross context virtual CPU structure of the CPU being
    1027  *                      reset.
    1028  * @param   fInitIpi    Whether this is the INIT IPI or hot (un)plugging case.
    1029  */
    1030 void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi)
    1031 {
    1032     RT_NOREF(pVCpu, fInitIpi);
    1033 }
    1034 
    1035 
    1036 /*********************************************************************************************************************************
    1037 *   Memory management                                                                                                            *
    1038 *********************************************************************************************************************************/
    1039 
    1040 
    1041 /**
    1042  * Allocates a memory slot ID.
    1043  *
    1044  * @returns Slot ID on success, UINT16_MAX on failure.
    1045  */
    1046 static uint16_t nemR3LnxMemSlotIdAlloc(PVM pVM)
    1047 {
    1048     /* Use the hint first. */
    1049     uint16_t idHint = pVM->nem.s.idPrevSlot;
    1050     if (idHint < _32K - 1)
    1051     {
    1052         int32_t idx = ASMBitNextClear(&pVM->nem.s.bmSlotIds, _32K, idHint);
    1053         Assert(idx < _32K);
    1054         if (idx > 0 && !ASMAtomicBitTestAndSet(&pVM->nem.s.bmSlotIds, idx))
    1055             return pVM->nem.s.idPrevSlot = (uint16_t)idx;
    1056     }
    1057 
    1058     /*
    1059      * Search the whole map from the start.
    1060      */
    1061     int32_t idx = ASMBitFirstClear(&pVM->nem.s.bmSlotIds, _32K);
    1062     Assert(idx < _32K);
    1063     if (idx > 0 && !ASMAtomicBitTestAndSet(&pVM->nem.s.bmSlotIds, idx))
    1064         return pVM->nem.s.idPrevSlot = (uint16_t)idx;
    1065 
    1066     Assert(idx < 0 /*shouldn't trigger unless there is a race */);
    1067     return UINT16_MAX; /* caller is expected to assert. */
    1068 }
    1069 
    1070 
    1071 /**
    1072  * Frees a memory slot ID
    1073  */
    1074 static void nemR3LnxMemSlotIdFree(PVM pVM, uint16_t idSlot)
    1075 {
    1076     if (RT_LIKELY(idSlot < _32K && ASMAtomicBitTestAndClear(&pVM->nem.s.bmSlotIds, idSlot)))
    1077     { /*likely*/ }
    1078     else
    1079         AssertMsgFailed(("idSlot=%u (%#x)\n", idSlot, idSlot));
    1080 }
    1081 
    1082 
    1083 
    1084 VMMR3_INT_DECL(int) NEMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvR3,
    1085                                                uint8_t *pu2State, uint32_t *puNemRange)
    1086 {
    1087     uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM);
    1088     AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED);
    1089 
    1090     Log5(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p pu2State=%p (%d) puNemRange=%p (%d) - idSlot=%#x\n",
    1091           GCPhys, cb, pvR3, pu2State, pu2State, puNemRange, *puNemRange, idSlot));
    1092 
    1093     struct kvm_userspace_memory_region Region;
    1094     Region.slot             = idSlot;
    1095     Region.flags            = 0;
    1096     Region.guest_phys_addr  = GCPhys;
    1097     Region.memory_size      = cb;
    1098     Region.userspace_addr   = (uintptr_t)pvR3;
    1099 
    1100     int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
    1101     if (rc == 0)
    1102     {
    1103         *pu2State   = 0;
    1104         *puNemRange = idSlot;
    1105         return VINF_SUCCESS;
    1106     }
    1107 
    1108     LogRel(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p, idSlot=%#x failed: %u/%u\n", GCPhys, cb, pvR3, idSlot, rc, errno));
    1109     nemR3LnxMemSlotIdFree(pVM, idSlot);
    1110     return VERR_NEM_MAP_PAGES_FAILED;
    1111 }
    1112 
    1113 
    1114 VMMR3_INT_DECL(bool) NEMR3IsMmio2DirtyPageTrackingSupported(PVM pVM)
    1115 {
    1116     RT_NOREF(pVM);
    1117     return true;
    1118 }
    1119 
    1120 
    1121 VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
    1122                                                   void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
    1123 {
    1124     Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p (%d) puNemRange=%p (%#x)\n",
    1125           GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, *pu2State, puNemRange, puNemRange ? *puNemRange : UINT32_MAX));
    1126     RT_NOREF(pvRam);
    1127 
    1128     if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
    1129     {
    1130         /** @todo implement splitting and whatnot of ranges if we want to be 100%
    1131          *        conforming (just modify RAM registrations in MM.cpp to test). */
    1132         AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p\n", GCPhys, cb, fFlags, pvRam, pvMmio2),
    1133                                     VERR_NEM_MAP_PAGES_FAILED);
    1134     }
    1135 
    1136     /*
    1137      * Register MMIO2.
    1138      */
    1139     if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
    1140     {
    1141         AssertReturn(pvMmio2, VERR_NEM_MAP_PAGES_FAILED);
    1142         AssertReturn(puNemRange, VERR_NEM_MAP_PAGES_FAILED);
    1143 
    1144         uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM);
    1145         AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED);
    1146 
    1147         struct kvm_userspace_memory_region Region;
    1148         Region.slot             = idSlot;
    1149         Region.flags            = fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES ? KVM_MEM_LOG_DIRTY_PAGES : 0;
    1150         Region.guest_phys_addr  = GCPhys;
    1151         Region.memory_size      = cb;
    1152         Region.userspace_addr   = (uintptr_t)pvMmio2;
    1153 
    1154         int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
    1155         if (rc == 0)
    1156         {
    1157             *pu2State   = 0;
    1158             *puNemRange = idSlot;
    1159             Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvMmio2=%p - idSlot=%#x\n",
    1160                   GCPhys, cb, fFlags, pvMmio2, idSlot));
    1161             return VINF_SUCCESS;
    1162         }
    1163 
    1164         nemR3LnxMemSlotIdFree(pVM, idSlot);
    1165         AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvMmio2=%p, idSlot=%#x failed: %u/%u\n",
    1166                                      GCPhys, cb, fFlags, pvMmio2, idSlot, errno, rc),
    1167                                     VERR_NEM_MAP_PAGES_FAILED);
    1168     }
    1169 
    1170     /* MMIO, don't care. */
    1171     *pu2State   = 0;
    1172     *puNemRange = UINT32_MAX;
    1173     return VINF_SUCCESS;
    1174 }
    1175 
    1176 
    1177 VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
    1178                                                  void *pvRam, void *pvMmio2, uint32_t *puNemRange)
    1179 {
    1180     RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, puNemRange);
    1181     return VINF_SUCCESS;
    1182 }
    1183 
    1184 
    1185 VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam,
    1186                                                void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
    1187 {
    1188     Log5(("NEMR3NotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p puNemRange=%p (%#x)\n",
    1189           GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, puNemRange, *puNemRange));
    1190     RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State);
    1191 
    1192     if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
    1193     {
    1194         /** @todo implement splitting and whatnot of ranges if we want to be 100%
    1195          *        conforming (just modify RAM registrations in MM.cpp to test). */
    1196         AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p\n", GCPhys, cb, fFlags, pvRam, pvMmio2),
    1197                                     VERR_NEM_UNMAP_PAGES_FAILED);
    1198     }
    1199 
    1200     if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
    1201     {
    1202         uint32_t const idSlot = *puNemRange;
    1203         AssertReturn(idSlot > 0 && idSlot < _32K, VERR_NEM_IPE_4);
    1204         AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, idSlot), VERR_NEM_IPE_4);
    1205 
    1206         struct kvm_userspace_memory_region Region;
    1207         Region.slot             = idSlot;
    1208         Region.flags            = 0;
    1209         Region.guest_phys_addr  = GCPhys;
    1210         Region.memory_size      = 0;    /* this deregisters it. */
    1211         Region.userspace_addr   = (uintptr_t)pvMmio2;
    1212 
    1213         int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
    1214         if (rc == 0)
    1215         {
    1216             if (pu2State)
    1217                 *pu2State = 0;
    1218             *puNemRange = UINT32_MAX;
    1219             nemR3LnxMemSlotIdFree(pVM, idSlot);
    1220             return VINF_SUCCESS;
    1221         }
    1222 
    1223         AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvMmio2=%p, idSlot=%#x failed: %u/%u\n",
    1224                                      GCPhys, cb, fFlags, pvMmio2, idSlot, errno, rc),
    1225                                     VERR_NEM_UNMAP_PAGES_FAILED);
    1226     }
    1227 
    1228     if (pu2State)
    1229         *pu2State = UINT8_MAX;
    1230     return VINF_SUCCESS;
    1231 }
    1232 
    1233 
    1234 VMMR3_INT_DECL(int) NEMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t uNemRange,
    1235                                                            void *pvBitmap, size_t cbBitmap)
    1236 {
    1237     AssertReturn(uNemRange > 0 && uNemRange < _32K, VERR_NEM_IPE_4);
    1238     AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, uNemRange), VERR_NEM_IPE_4);
    1239 
    1240     RT_NOREF(GCPhys, cbBitmap);
    1241 
    1242     struct kvm_dirty_log DirtyLog;
    1243     DirtyLog.slot         = uNemRange;
    1244     DirtyLog.padding1     = 0;
    1245     DirtyLog.dirty_bitmap = pvBitmap;
    1246 
    1247     int rc = ioctl(pVM->nem.s.fdVm, KVM_GET_DIRTY_LOG, &DirtyLog);
    1248     AssertLogRelMsgReturn(rc == 0, ("%RGp LB %RGp idSlot=%#x failed: %u/%u\n", GCPhys, cb, uNemRange, errno, rc),
    1249                           VERR_NEM_QUERY_DIRTY_BITMAP_FAILED);
    1250 
    1251     return VINF_SUCCESS;
    1252 }
    1253 
    1254 
    1255 VMMR3_INT_DECL(int)  NEMR3NotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags,
    1256                                                      uint8_t *pu2State, uint32_t *puNemRange)
    1257 {
    1258     Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp pvPages=%p fFlags=%#x\n", GCPhys, cb, pvPages, fFlags));
    1259     *pu2State = UINT8_MAX;
    1260 
    1261     /* Don't support puttint ROM where there is already RAM.  For
    1262        now just shuffle the registrations till it works... */
    1263     AssertLogRelMsgReturn(!(fFlags & NEM_NOTIFY_PHYS_ROM_F_REPLACE), ("%RGp LB %RGp fFlags=%#x\n", GCPhys, cb, fFlags),
    1264                           VERR_NEM_MAP_PAGES_FAILED);
    1265 
    1266     /** @todo figure out how to do shadow ROMs.   */
    1267 
    1268     /*
    1269      * We only allocate a slot number here in case we need to use it to
    1270      * fend of physical handler fun.
    1271      */
    1272     uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM);
    1273     AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED);
    1274 
    1275     *pu2State   = 0;
    1276     *puNemRange = idSlot;
    1277     Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp fFlags=%#x pvPages=%p - idSlot=%#x\n",
    1278           GCPhys, cb, fFlags, pvPages, idSlot));
    1279     RT_NOREF(GCPhys, cb, fFlags, pvPages);
    1280     return VINF_SUCCESS;
    1281 }
    1282 
    1283 
    1284 VMMR3_INT_DECL(int)  NEMR3NotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages,
    1285                                                     uint32_t fFlags, uint8_t *pu2State, uint32_t *puNemRange)
    1286 {
    1287     Log5(("NEMR3NotifyPhysRomRegisterLate: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n",
    1288           GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange));
    1289 
    1290     AssertPtrReturn(pvPages, VERR_NEM_IPE_5);
    1291 
    1292     uint32_t const idSlot = *puNemRange;
    1293     AssertReturn(idSlot > 0 && idSlot < _32K, VERR_NEM_IPE_4);
    1294     AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, idSlot), VERR_NEM_IPE_4);
    1295 
    1296     *pu2State = UINT8_MAX;
    1297 
    1298     /*
    1299      * Do the actual setting of the user pages here now that we've
    1300      * got a valid pvPages (typically isn't available during the early
    1301      * notification, unless we're replacing RAM).
    1302      */
    1303     struct kvm_userspace_memory_region Region;
    1304     Region.slot             = idSlot;
    1305     Region.flags            = 0;
    1306     Region.guest_phys_addr  = GCPhys;
    1307     Region.memory_size      = cb;
    1308     Region.userspace_addr   = (uintptr_t)pvPages;
    1309 
    1310     int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
    1311     if (rc == 0)
    1312     {
    1313         *pu2State   = 0;
    1314         Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp fFlags=%#x pvPages=%p - idSlot=%#x\n",
    1315               GCPhys, cb, fFlags, pvPages, idSlot));
    1316         return VINF_SUCCESS;
    1317     }
    1318     AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvPages=%p, idSlot=%#x failed: %u/%u\n",
    1319                                  GCPhys, cb, fFlags, pvPages, idSlot, errno, rc),
    1320                                 VERR_NEM_MAP_PAGES_FAILED);
    1321 }
    1322 
    1323 
    1324 VMMR3_INT_DECL(void) NEMR3NotifySetA20(PVMCPU pVCpu, bool fEnabled)
    1325 {
    1326     Log(("nemR3NativeNotifySetA20: fEnabled=%RTbool\n", fEnabled));
    1327     Assert(VM_IS_NEM_ENABLED(pVCpu->CTX_SUFF(pVM)));
    1328     RT_NOREF(pVCpu, fEnabled);
    1329 }
    1330 
    1331 
    1332 VMM_INT_DECL(void) NEMHCNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
    1333                                                         RTR3PTR pvMemR3, uint8_t *pu2State)
    1334 {
    1335     Log5(("NEMHCNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d pvMemR3=%p pu2State=%p (%d)\n",
    1336           GCPhys, cb, enmKind, pvMemR3, pu2State, *pu2State));
    1337 
    1338     *pu2State = UINT8_MAX;
    1339     RT_NOREF(pVM, enmKind, GCPhys, cb, pvMemR3);
    1340 }
    1341 
    1342 
    1343 void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
    1344 {
    1345     Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
    1346     RT_NOREF(pVM, enmKind, GCPhys, cb);
    1347 }
    1348 
    1349 
    1350 void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
    1351                                             RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
    1352 {
    1353     Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
    1354           GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
    1355     RT_NOREF(pVM, enmKind, GCPhysOld, GCPhysNew, cb, fRestoreAsRAM);
    1356 }
    1357 
    1358 
    1359 int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
    1360                                        PGMPAGETYPE enmType, uint8_t *pu2State)
    1361 {
    1362     Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
    1363           GCPhys, HCPhys, fPageProt, enmType, *pu2State));
    1364     RT_NOREF(pVM, GCPhys, HCPhys, fPageProt, enmType, pu2State);
    1365     return VINF_SUCCESS;
    1366 }
    1367 
    1368 
    1369 VMM_INT_DECL(void) NEMHCNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, RTR3PTR pvR3, uint32_t fPageProt,
    1370                                                   PGMPAGETYPE enmType, uint8_t *pu2State)
    1371 {
    1372     Log5(("NEMHCNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
    1373           GCPhys, HCPhys, fPageProt, enmType, *pu2State));
    1374     Assert(VM_IS_NEM_ENABLED(pVM));
    1375     RT_NOREF(pVM, GCPhys, HCPhys, pvR3, fPageProt, enmType, pu2State);
    1376 
    1377 }
    1378 
    1379 
    1380 VMM_INT_DECL(void) NEMHCNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
    1381                                               RTR3PTR pvNewR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
    1382 {
    1383     Log5(("nemHCNativeNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp pvNewR3=%p fPageProt=%#x enmType=%d *pu2State=%d\n",
    1384           GCPhys, HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType, *pu2State));
    1385     Assert(VM_IS_NEM_ENABLED(pVM));
    1386     RT_NOREF(pVM, GCPhys, HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType, pu2State);
    1387467}
    1388468
     
    23971477
    23981478
    2399 /** @page pg_nem_linux NEM/linux - Native Execution Manager, Linux.
     1479/** @page pg_nem_linux_armv8 NEM/linux - Native Execution Manager, Linux.
    24001480 *
    24011481 * This is using KVM.
  • trunk/src/VBox/VMM/VMMR3/NEMR3NativeTemplate-linux.cpp.h

    r104693 r104725  
    11/* $Id$ */
    22/** @file
    3  * NEM - Native execution manager, native ring-3 Linux backend.
     3 * NEM - Native execution manager, native ring-3 Linux backend, common bits for x86 and arm64.
    44 */
    55
    66/*
    7  * Copyright (C) 2021-2023 Oracle and/or its affiliates.
     7 * Copyright (C) 2021-2024 Oracle and/or its affiliates.
    88 *
    99 * This file is part of VirtualBox base platform packages, as
     
    2525 * SPDX-License-Identifier: GPL-3.0-only
    2626 */
    27 
    28 
    29 /*********************************************************************************************************************************
    30 *   Header Files                                                                                                                 *
    31 *********************************************************************************************************************************/
    32 #define LOG_GROUP LOG_GROUP_NEM
    33 #define VMCPU_INCL_CPUM_GST_CTX
    34 #include <VBox/vmm/nem.h>
    35 #include <VBox/vmm/iem.h>
    36 #include <VBox/vmm/em.h>
    37 #include <VBox/vmm/apic.h>
    38 #include <VBox/vmm/pdm.h>
    39 #include <VBox/vmm/trpm.h>
    40 #include "NEMInternal.h"
    41 #include <VBox/vmm/vmcc.h>
    42 
    43 #include <iprt/alloca.h>
    44 #include <iprt/string.h>
    45 #include <iprt/system.h>
    46 #include <iprt/x86.h>
    47 
    48 #include <errno.h>
    49 #include <unistd.h>
    50 #include <sys/ioctl.h>
    51 #include <sys/fcntl.h>
    52 #include <sys/mman.h>
    53 #include <linux/kvm.h>
    5427
    5528/*
     
    7144static int nemR3LnxInitCheckCapabilities(PVM pVM, PRTERRINFO pErrInfo)
    7245{
    73     AssertReturn(pVM->nem.s.fdVm != -1, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
     46    AssertReturn(pVM->nem.s.fdKvm != -1, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
    7447
    7548    /*
     
    9366
    9467        CAP_ENTRY__L(KVM_CAP_IRQCHIP),                       /* 0 */
     68#ifdef VBOX_VMM_TARGET_ARMV8
     69        CAP_ENTRY__L(KVM_CAP_HLT),
     70#else
    9571        CAP_ENTRY_ML(KVM_CAP_HLT),
     72#endif
    9673        CAP_ENTRY__L(KVM_CAP_MMU_SHADOW_CACHE_CONTROL),
    9774        CAP_ENTRY_ML(KVM_CAP_USER_MEMORY),
     
    143120        CAP_ENTRY__L(KVM_CAP_XEN_HVM),
    144121#endif
     122#ifdef VBOX_VMM_TARGET_ARMV8
     123        CAP_ENTRY__L(KVM_CAP_ADJUST_CLOCK),
     124#else
    145125        CAP_ENTRY_ML(KVM_CAP_ADJUST_CLOCK),
     126#endif
    146127        CAP_ENTRY__L(KVM_CAP_INTERNAL_ERROR_DATA),           /* 40 */
    147128#ifdef __KVM_HAVE_VCPU_EVENTS
    148129        CAP_ENTRY_ML(KVM_CAP_VCPU_EVENTS),
    149130#else
    150         CAP_ENTRY_MU(41),
     131        CAP_ENTRY__U(41),
    151132#endif
    152133        CAP_ENTRY__L(KVM_CAP_S390_PSW),
     
    161142        CAP_ENTRY__L(KVM_CAP_DEBUGREGS),                     /* 50 */
    162143#endif
     144#ifdef VBOX_VMM_TARGET_ARMV8
     145        CAP_ENTRY__L(KVM_CAP_X86_ROBUST_SINGLESTEP),
     146#else
    163147        CAP_ENTRY__S(KVM_CAP_X86_ROBUST_SINGLESTEP, fRobustSingleStep),
     148#endif
    164149        CAP_ENTRY__L(KVM_CAP_PPC_OSI),
    165150        CAP_ENTRY__L(KVM_CAP_PPC_UNSET_IRQ),
     
    168153        CAP_ENTRY_ML(KVM_CAP_XSAVE),
    169154#else
    170         CAP_ENTRY_MU(55),
     155        CAP_ENTRY__U(55),
    171156#endif
    172157#ifdef __KVM_HAVE_XCRS
    173158        CAP_ENTRY_ML(KVM_CAP_XCRS),
    174159#else
    175         CAP_ENTRY_MU(56),
     160        CAP_ENTRY__U(56),
    176161#endif
    177162        CAP_ENTRY__L(KVM_CAP_PPC_GET_PVINFO),
     
    205190        CAP_ENTRY__L(KVM_CAP_S390_CSS_SUPPORT),
    206191        CAP_ENTRY__L(KVM_CAP_PPC_EPR),
     192#ifdef VBOX_VMM_TARGET_ARMV8
     193        CAP_ENTRY_ML(KVM_CAP_ARM_PSCI),
     194        CAP_ENTRY_ML(KVM_CAP_ARM_SET_DEVICE_ADDR),
     195        CAP_ENTRY_ML(KVM_CAP_DEVICE_CTRL),
     196#else
    207197        CAP_ENTRY__L(KVM_CAP_ARM_PSCI),
    208198        CAP_ENTRY__L(KVM_CAP_ARM_SET_DEVICE_ADDR),
    209199        CAP_ENTRY__L(KVM_CAP_DEVICE_CTRL),
     200#endif
    210201        CAP_ENTRY__L(KVM_CAP_IRQ_MPIC),                      /* 90 */
    211202        CAP_ENTRY__L(KVM_CAP_PPC_RTAS),
     
    220211        CAP_ENTRY__L(KVM_CAP_IOEVENTFD_NO_LENGTH),           /* 100 */
    221212        CAP_ENTRY__L(KVM_CAP_VM_ATTRIBUTES),
     213#ifdef VBOX_VMM_TARGET_ARMV8
     214        CAP_ENTRY_ML(KVM_CAP_ARM_PSCI_0_2),
     215#else
    222216        CAP_ENTRY__L(KVM_CAP_ARM_PSCI_0_2),
     217#endif
    223218        CAP_ENTRY__L(KVM_CAP_PPC_FIXUP_HCALL),
    224219        CAP_ENTRY__L(KVM_CAP_PPC_ENABLE_HCALL),
     
    283278        CAP_ENTRY__L(KVM_CAP_HYPERV_ENLIGHTENED_VMCS),
    284279        CAP_ENTRY__L(KVM_CAP_EXCEPTION_PAYLOAD),
     280#ifdef VBOX_VMM_TARGET_ARMV8
     281        CAP_ENTRY_MS(KVM_CAP_ARM_VM_IPA_SIZE, cIpaBits),
     282#else
    285283        CAP_ENTRY__L(KVM_CAP_ARM_VM_IPA_SIZE),
     284#endif
    286285        CAP_ENTRY__L(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT),
    287286        CAP_ENTRY__L(KVM_CAP_HYPERV_CPUID),
     
    306305        CAP_ENTRY__L(KVM_CAP_S390_DIAG318),
    307306        CAP_ENTRY__L(KVM_CAP_STEAL_TIME),
     307#ifdef VBOX_VMM_TARGET_ARMV8
     308        CAP_ENTRY__L(KVM_CAP_X86_USER_SPACE_MSR),            /* (since 5.10) */
     309        CAP_ENTRY__L(KVM_CAP_X86_MSR_FILTER),
     310#else
    308311        CAP_ENTRY_ML(KVM_CAP_X86_USER_SPACE_MSR),            /* (since 5.10) */
    309312        CAP_ENTRY_ML(KVM_CAP_X86_MSR_FILTER),
     313#endif
    310314        CAP_ENTRY__L(KVM_CAP_ENFORCE_PV_FEATURE_CPUID),      /* 190 */
    311315        CAP_ENTRY__L(KVM_CAP_SYS_HYPERV_CPUID),
     
    341345    for (unsigned i = 0; i < RT_ELEMENTS(s_aCaps); i++)
    342346    {
    343         int rc = ioctl(pVM->nem.s.fdVm, KVM_CHECK_EXTENSION, s_aCaps[i].iCap);
     347        int rc = ioctl(pVM->nem.s.fdKvm, KVM_CHECK_EXTENSION, s_aCaps[i].iCap);
    344348        if (rc >= 10)
    345349            LogRel(("NEM:   %36s: %#x (%d)\n", s_aCaps[i].pszName, rc, rc));
     
    416420
    417421
    418 /**
    419  * Does the early setup of a KVM VM.
    420  *
    421  * @returns VBox status code.
    422  * @param   pVM                 The cross context VM structure.
    423  * @param   pErrInfo            Where to always return error info.
    424  */
    425 static int nemR3LnxInitSetupVm(PVM pVM, PRTERRINFO pErrInfo)
    426 {
    427     AssertReturn(pVM->nem.s.fdVm != -1, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
    428 
    429     /*
    430      * Enable user space MSRs and let us check everything KVM cannot handle.
    431      * We will set up filtering later when ring-3 init has completed.
    432      */
    433     struct kvm_enable_cap CapEn =
    434     {
    435         KVM_CAP_X86_USER_SPACE_MSR, 0,
    436         { KVM_MSR_EXIT_REASON_FILTER | KVM_MSR_EXIT_REASON_UNKNOWN | KVM_MSR_EXIT_REASON_INVAL, 0, 0, 0}
    437     };
    438     int rcLnx = ioctl(pVM->nem.s.fdVm, KVM_ENABLE_CAP, &CapEn);
    439     if (rcLnx == -1)
    440         return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "Failed to enable KVM_CAP_X86_USER_SPACE_MSR failed: %u", errno);
    441 
    442     /*
    443      * Create the VCpus.
    444      */
    445     for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
    446     {
    447         PVMCPU pVCpu = pVM->apCpusR3[idCpu];
    448 
    449         /* Create it. */
    450         pVCpu->nem.s.fdVCpu = ioctl(pVM->nem.s.fdVm, KVM_CREATE_VCPU, (unsigned long)idCpu);
    451         if (pVCpu->nem.s.fdVCpu < 0)
    452             return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "KVM_CREATE_VCPU failed for VCpu #%u: %d", idCpu, errno);
    453 
    454         /* Map the KVM_RUN area. */
    455         pVCpu->nem.s.pRun = (struct kvm_run *)mmap(NULL, pVM->nem.s.cbVCpuMmap, PROT_READ | PROT_WRITE, MAP_SHARED,
    456                                                    pVCpu->nem.s.fdVCpu, 0 /*offset*/);
    457         if ((void *)pVCpu->nem.s.pRun == MAP_FAILED)
    458             return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "mmap failed for VCpu #%u: %d", idCpu, errno);
    459 
    460         /* We want all x86 registers and events on each exit. */
    461         pVCpu->nem.s.pRun->kvm_valid_regs = KVM_SYNC_X86_REGS | KVM_SYNC_X86_SREGS | KVM_SYNC_X86_EVENTS;
    462     }
    463     return VINF_SUCCESS;
    464 }
    465 
    466 
    467422/** @callback_method_impl{FNVMMEMTRENDEZVOUS}   */
    468423static DECLCALLBACK(VBOXSTRICTRC) nemR3LnxFixThreadPoke(PVM pVM, PVMCPU pVCpu, void *pvUser)
     
    519474
    520475        /*
    521          * Create an empty VM since it is recommended we check capabilities on
    522          * the VM rather than the system descriptor.
     476         * Check capabilities.
    523477         */
    524         int fdVm = ioctl(fdKvm, KVM_CREATE_VM, 0UL /* Type must be zero on x86 */);
    525         if (fdVm >= 0)
     478        rc = nemR3LnxInitCheckCapabilities(pVM, pErrInfo);
     479        if (RT_SUCCESS(rc))
    526480        {
    527             pVM->nem.s.fdVm = fdVm;
    528 
    529481            /*
    530              * Check capabilities.
     482             * Create an empty VM since it is recommended we check capabilities on
     483             * the VM rather than the system descriptor.
    531484             */
    532             rc = nemR3LnxInitCheckCapabilities(pVM, pErrInfo);
    533             if (RT_SUCCESS(rc))
     485#ifdef VBOX_VMM_TARGET_ARMV8
     486            int fdVm = ioctl(fdKvm, KVM_CREATE_VM, pVM->nem.s.cIpaBits);
     487#else
     488            int fdVm = ioctl(fdKvm, KVM_CREATE_VM, 0UL /* Type must be zero on x86 */);
     489#endif
     490            if (fdVm >= 0)
    534491            {
     492                pVM->nem.s.fdVm = fdVm;
     493
    535494                /*
    536495                 * Set up the VM (more on this later).
     
    585544                    return VINF_SUCCESS;
    586545                }
     546                close(fdVm);
     547                pVM->nem.s.fdVm = -1;
    587548
    588549                /*
     
    590551                 */
    591552            }
    592             close(fdVm);
    593             pVM->nem.s.fdVm = -1;
     553            else
     554                rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "KVM_CREATE_VM failed: %u", errno);
    594555        }
    595         else
    596             rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "KVM_CREATE_VM failed: %u", errno);
    597556        close(fdKvm);
    598557        pVM->nem.s.fdKvm = -1;
     
    633592
    634593    /** @todo */
    635 
    636     return VINF_SUCCESS;
    637 }
    638 
    639 
    640 /**
    641  * Update the CPUID leaves for a VCPU.
    642  *
    643  * The KVM_SET_CPUID2 call replaces any previous leaves, so we have to redo
    644  * everything when there really just are single bit changes.  That said, it
    645  * looks like KVM update the XCR/XSAVE related stuff as well as the APIC enabled
    646  * bit(s), so it should suffice if we do this at startup, I hope.
    647  */
    648 static int nemR3LnxUpdateCpuIdsLeaves(PVM pVM, PVMCPU pVCpu)
    649 {
    650     uint32_t              cLeaves  = 0;
    651     PCCPUMCPUIDLEAF const paLeaves = CPUMR3CpuIdGetPtr(pVM, &cLeaves);
    652     struct kvm_cpuid2    *pReq = (struct kvm_cpuid2 *)alloca(RT_UOFFSETOF_DYN(struct kvm_cpuid2, entries[cLeaves + 2]));
    653 
    654     pReq->nent    = cLeaves;
    655     pReq->padding = 0;
    656 
    657     for (uint32_t i = 0; i < cLeaves; i++)
    658     {
    659         CPUMGetGuestCpuId(pVCpu, paLeaves[i].uLeaf, paLeaves[i].uSubLeaf, -1 /*f64BitMode*/,
    660                           &pReq->entries[i].eax,
    661                           &pReq->entries[i].ebx,
    662                           &pReq->entries[i].ecx,
    663                           &pReq->entries[i].edx);
    664         pReq->entries[i].function   = paLeaves[i].uLeaf;
    665         pReq->entries[i].index      = paLeaves[i].uSubLeaf;
    666         pReq->entries[i].flags      = !paLeaves[i].fSubLeafMask ? 0 : KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
    667         pReq->entries[i].padding[0] = 0;
    668         pReq->entries[i].padding[1] = 0;
    669         pReq->entries[i].padding[2] = 0;
    670     }
    671 
    672     int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_CPUID2, pReq);
    673     AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d cLeaves=%#x\n", rcLnx, errno, cLeaves), RTErrConvertFromErrno(errno));
    674 
    675     return VINF_SUCCESS;
    676 }
    677 
    678 
    679 int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
    680 {
    681     /*
    682      * Make RTThreadPoke work again (disabled for avoiding unnecessary
    683      * critical section issues in ring-0).
    684      */
    685     if (enmWhat == VMINITCOMPLETED_RING3)
    686         VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE, nemR3LnxFixThreadPoke, NULL);
    687 
    688     /*
    689      * Configure CPUIDs after ring-3 init has been done.
    690      */
    691     if (enmWhat == VMINITCOMPLETED_RING3)
    692     {
    693         for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
    694         {
    695             int rc = nemR3LnxUpdateCpuIdsLeaves(pVM, pVM->apCpusR3[idCpu]);
    696             AssertRCReturn(rc, rc);
    697         }
    698     }
    699 
    700     /*
    701      * Configure MSRs after ring-3 init is done.
    702      *
    703      * We only need to tell KVM which MSRs it can handle, as we already
    704      * requested KVM_MSR_EXIT_REASON_FILTER, KVM_MSR_EXIT_REASON_UNKNOWN
    705      * and KVM_MSR_EXIT_REASON_INVAL in nemR3LnxInitSetupVm, and here we
    706      * will use KVM_MSR_FILTER_DEFAULT_DENY.  So, all MSRs w/o a 1 in the
    707      * bitmaps should be deferred to ring-3.
    708      */
    709     if (enmWhat == VMINITCOMPLETED_RING3)
    710     {
    711         struct kvm_msr_filter MsrFilters = {0}; /* Structure with a couple of implicit paddings on 64-bit systems. */
    712         MsrFilters.flags = KVM_MSR_FILTER_DEFAULT_DENY;
    713 
    714         unsigned iRange = 0;
    715 #define MSR_RANGE_BEGIN(a_uBase, a_uEnd, a_fFlags) \
    716         AssertCompile(0x3000 <= KVM_MSR_FILTER_MAX_BITMAP_SIZE * 8); \
    717         uint64_t RT_CONCAT(bm, a_uBase)[0x3000 / 64] = {0}; \
    718         do { \
    719             uint64_t * const pbm = RT_CONCAT(bm, a_uBase); \
    720             uint32_t   const uBase = UINT32_C(a_uBase); \
    721             uint32_t   const cMsrs = UINT32_C(a_uEnd) - UINT32_C(a_uBase); \
    722             MsrFilters.ranges[iRange].base   = UINT32_C(a_uBase); \
    723             MsrFilters.ranges[iRange].nmsrs  = cMsrs; \
    724             MsrFilters.ranges[iRange].flags  = (a_fFlags); \
    725             MsrFilters.ranges[iRange].bitmap = (uint8_t *)&RT_CONCAT(bm, a_uBase)[0]
    726 #define MSR_RANGE_ADD(a_Msr) \
    727         do { Assert((uint32_t)(a_Msr) - uBase < cMsrs); ASMBitSet(pbm, (uint32_t)(a_Msr) - uBase); } while (0)
    728 #define MSR_RANGE_END(a_cMinMsrs) \
    729             /* optimize the range size before closing: */ \
    730             uint32_t cBitmap = cMsrs / 64; \
    731             while (cBitmap > ((a_cMinMsrs) + 63 / 64) && pbm[cBitmap - 1] == 0) \
    732                 cBitmap -= 1; \
    733             MsrFilters.ranges[iRange].nmsrs = cBitmap * 64; \
    734             iRange++; \
    735         } while (0)
    736 
    737         /* 1st Intel range: 0000_0000 to 0000_3000. */
    738         MSR_RANGE_BEGIN(0x00000000, 0x00003000, KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE);
    739         MSR_RANGE_ADD(MSR_IA32_TSC);
    740         MSR_RANGE_ADD(MSR_IA32_SYSENTER_CS);
    741         MSR_RANGE_ADD(MSR_IA32_SYSENTER_ESP);
    742         MSR_RANGE_ADD(MSR_IA32_SYSENTER_EIP);
    743         MSR_RANGE_ADD(MSR_IA32_CR_PAT);
    744         /** @todo more? */
    745         MSR_RANGE_END(64);
    746 
    747         /* 1st AMD range: c000_0000 to c000_3000 */
    748         MSR_RANGE_BEGIN(0xc0000000, 0xc0003000, KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE);
    749         MSR_RANGE_ADD(MSR_K6_EFER);
    750         MSR_RANGE_ADD(MSR_K6_STAR);
    751         MSR_RANGE_ADD(MSR_K8_GS_BASE);
    752         MSR_RANGE_ADD(MSR_K8_KERNEL_GS_BASE);
    753         MSR_RANGE_ADD(MSR_K8_LSTAR);
    754         MSR_RANGE_ADD(MSR_K8_CSTAR);
    755         MSR_RANGE_ADD(MSR_K8_SF_MASK);
    756         MSR_RANGE_ADD(MSR_K8_TSC_AUX);
    757         /** @todo add more? */
    758         MSR_RANGE_END(64);
    759 
    760         /** @todo Specify other ranges too? Like hyper-V and KVM to make sure we get
    761          *        the MSR requests instead of KVM. */
    762 
    763         int rcLnx = ioctl(pVM->nem.s.fdVm, KVM_X86_SET_MSR_FILTER, &MsrFilters);
    764         if (rcLnx == -1)
    765             return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
    766                               "Failed to enable KVM_X86_SET_MSR_FILTER failed: %u", errno);
    767     }
    768594
    769595    return VINF_SUCCESS;
     
    11861012    RT_NOREF(pVM, GCPhys, HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType, pu2State);
    11871013}
    1188 
    1189 
    1190 /*********************************************************************************************************************************
    1191 *   CPU State                                                                                                                    *
    1192 *********************************************************************************************************************************/
    1193 
    1194 /**
    1195  * Worker that imports selected state from KVM.
    1196  */
    1197 static int nemHCLnxImportState(PVMCPUCC pVCpu, uint64_t fWhat, PCPUMCTX pCtx, struct kvm_run *pRun)
    1198 {
    1199     fWhat &= pVCpu->cpum.GstCtx.fExtrn;
    1200     if (!fWhat)
    1201         return VINF_SUCCESS;
    1202 
    1203     /*
    1204      * Stuff that goes into kvm_run::s.regs.regs:
    1205      */
    1206     if (fWhat & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK))
    1207     {
    1208         if (fWhat & CPUMCTX_EXTRN_RIP)
    1209             pCtx->rip       = pRun->s.regs.regs.rip;
    1210         if (fWhat & CPUMCTX_EXTRN_RFLAGS)
    1211             pCtx->rflags.u  = pRun->s.regs.regs.rflags;
    1212 
    1213         if (fWhat & CPUMCTX_EXTRN_RAX)
    1214             pCtx->rax       = pRun->s.regs.regs.rax;
    1215         if (fWhat & CPUMCTX_EXTRN_RCX)
    1216             pCtx->rcx       = pRun->s.regs.regs.rcx;
    1217         if (fWhat & CPUMCTX_EXTRN_RDX)
    1218             pCtx->rdx       = pRun->s.regs.regs.rdx;
    1219         if (fWhat & CPUMCTX_EXTRN_RBX)
    1220             pCtx->rbx       = pRun->s.regs.regs.rbx;
    1221         if (fWhat & CPUMCTX_EXTRN_RSP)
    1222             pCtx->rsp       = pRun->s.regs.regs.rsp;
    1223         if (fWhat & CPUMCTX_EXTRN_RBP)
    1224             pCtx->rbp       = pRun->s.regs.regs.rbp;
    1225         if (fWhat & CPUMCTX_EXTRN_RSI)
    1226             pCtx->rsi       = pRun->s.regs.regs.rsi;
    1227         if (fWhat & CPUMCTX_EXTRN_RDI)
    1228             pCtx->rdi       = pRun->s.regs.regs.rdi;
    1229         if (fWhat & CPUMCTX_EXTRN_R8_R15)
    1230         {
    1231             pCtx->r8        = pRun->s.regs.regs.r8;
    1232             pCtx->r9        = pRun->s.regs.regs.r9;
    1233             pCtx->r10       = pRun->s.regs.regs.r10;
    1234             pCtx->r11       = pRun->s.regs.regs.r11;
    1235             pCtx->r12       = pRun->s.regs.regs.r12;
    1236             pCtx->r13       = pRun->s.regs.regs.r13;
    1237             pCtx->r14       = pRun->s.regs.regs.r14;
    1238             pCtx->r15       = pRun->s.regs.regs.r15;
    1239         }
    1240     }
    1241 
    1242     /*
    1243      * Stuff that goes into kvm_run::s.regs.sregs.
    1244      *
    1245      * Note! The apic_base can be ignored because we gets all MSR writes to it
    1246      *       and VBox always keeps the correct value.
    1247      */
    1248     bool fMaybeChangedMode = false;
    1249     bool fUpdateCr3        = false;
    1250     if (fWhat & (  CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_CR_MASK
    1251                  | CPUMCTX_EXTRN_EFER      | CPUMCTX_EXTRN_APIC_TPR))
    1252     {
    1253         /** @todo what about Attr.n.u4LimitHigh?   */
    1254 #define NEM_LNX_IMPORT_SEG(a_CtxSeg, a_KvmSeg) do { \
    1255             (a_CtxSeg).u64Base              = (a_KvmSeg).base; \
    1256             (a_CtxSeg).u32Limit             = (a_KvmSeg).limit; \
    1257             (a_CtxSeg).ValidSel = (a_CtxSeg).Sel = (a_KvmSeg).selector; \
    1258             (a_CtxSeg).Attr.n.u4Type        = (a_KvmSeg).type; \
    1259             (a_CtxSeg).Attr.n.u1DescType    = (a_KvmSeg).s; \
    1260             (a_CtxSeg).Attr.n.u2Dpl         = (a_KvmSeg).dpl; \
    1261             (a_CtxSeg).Attr.n.u1Present     = (a_KvmSeg).present; \
    1262             (a_CtxSeg).Attr.n.u1Available   = (a_KvmSeg).avl; \
    1263             (a_CtxSeg).Attr.n.u1Long        = (a_KvmSeg).l; \
    1264             (a_CtxSeg).Attr.n.u1DefBig      = (a_KvmSeg).db; \
    1265             (a_CtxSeg).Attr.n.u1Granularity = (a_KvmSeg).g; \
    1266             (a_CtxSeg).Attr.n.u1Unusable    = (a_KvmSeg).unusable; \
    1267             (a_CtxSeg).fFlags               = CPUMSELREG_FLAGS_VALID; \
    1268             CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &(a_CtxSeg)); \
    1269         } while (0)
    1270 
    1271         if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
    1272         {
    1273             if (fWhat & CPUMCTX_EXTRN_ES)
    1274                 NEM_LNX_IMPORT_SEG(pCtx->es, pRun->s.regs.sregs.es);
    1275             if (fWhat & CPUMCTX_EXTRN_CS)
    1276                 NEM_LNX_IMPORT_SEG(pCtx->cs, pRun->s.regs.sregs.cs);
    1277             if (fWhat & CPUMCTX_EXTRN_SS)
    1278                 NEM_LNX_IMPORT_SEG(pCtx->ss, pRun->s.regs.sregs.ss);
    1279             if (fWhat & CPUMCTX_EXTRN_DS)
    1280                 NEM_LNX_IMPORT_SEG(pCtx->ds, pRun->s.regs.sregs.ds);
    1281             if (fWhat & CPUMCTX_EXTRN_FS)
    1282                 NEM_LNX_IMPORT_SEG(pCtx->fs, pRun->s.regs.sregs.fs);
    1283             if (fWhat & CPUMCTX_EXTRN_GS)
    1284                 NEM_LNX_IMPORT_SEG(pCtx->gs, pRun->s.regs.sregs.gs);
    1285         }
    1286         if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
    1287         {
    1288             if (fWhat & CPUMCTX_EXTRN_GDTR)
    1289             {
    1290                 pCtx->gdtr.pGdt     = pRun->s.regs.sregs.gdt.base;
    1291                 pCtx->gdtr.cbGdt    = pRun->s.regs.sregs.gdt.limit;
    1292             }
    1293             if (fWhat & CPUMCTX_EXTRN_IDTR)
    1294             {
    1295                 pCtx->idtr.pIdt     = pRun->s.regs.sregs.idt.base;
    1296                 pCtx->idtr.cbIdt    = pRun->s.regs.sregs.idt.limit;
    1297             }
    1298             if (fWhat & CPUMCTX_EXTRN_LDTR)
    1299                 NEM_LNX_IMPORT_SEG(pCtx->ldtr, pRun->s.regs.sregs.ldt);
    1300             if (fWhat & CPUMCTX_EXTRN_TR)
    1301                 NEM_LNX_IMPORT_SEG(pCtx->tr, pRun->s.regs.sregs.tr);
    1302         }
    1303         if (fWhat & CPUMCTX_EXTRN_CR_MASK)
    1304         {
    1305             if (fWhat & CPUMCTX_EXTRN_CR0)
    1306             {
    1307                 if (pVCpu->cpum.GstCtx.cr0 != pRun->s.regs.sregs.cr0)
    1308                 {
    1309                     CPUMSetGuestCR0(pVCpu, pRun->s.regs.sregs.cr0);
    1310                     fMaybeChangedMode = true;
    1311                 }
    1312             }
    1313             if (fWhat & CPUMCTX_EXTRN_CR2)
    1314                 pCtx->cr2              = pRun->s.regs.sregs.cr2;
    1315             if (fWhat & CPUMCTX_EXTRN_CR3)
    1316             {
    1317                 if (pCtx->cr3 != pRun->s.regs.sregs.cr3)
    1318                 {
    1319                     CPUMSetGuestCR3(pVCpu, pRun->s.regs.sregs.cr3);
    1320                     fUpdateCr3 = true;
    1321                 }
    1322             }
    1323             if (fWhat & CPUMCTX_EXTRN_CR4)
    1324             {
    1325                 if (pCtx->cr4 != pRun->s.regs.sregs.cr4)
    1326                 {
    1327                     CPUMSetGuestCR4(pVCpu, pRun->s.regs.sregs.cr4);
    1328                     fMaybeChangedMode = true;
    1329                 }
    1330             }
    1331         }
    1332         if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
    1333             APICSetTpr(pVCpu, (uint8_t)pRun->s.regs.sregs.cr8 << 4);
    1334         if (fWhat & CPUMCTX_EXTRN_EFER)
    1335         {
    1336             if (pCtx->msrEFER != pRun->s.regs.sregs.efer)
    1337             {
    1338                 Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu,  pVCpu->cpum.GstCtx.msrEFER, pRun->s.regs.sregs.efer));
    1339                 if ((pRun->s.regs.sregs.efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
    1340                     PGMNotifyNxeChanged(pVCpu, RT_BOOL(pRun->s.regs.sregs.efer & MSR_K6_EFER_NXE));
    1341                 pCtx->msrEFER = pRun->s.regs.sregs.efer;
    1342                 fMaybeChangedMode = true;
    1343             }
    1344         }
    1345 #undef NEM_LNX_IMPORT_SEG
    1346     }
    1347 
    1348     /*
    1349      * Debug registers.
    1350      */
    1351     if (fWhat & CPUMCTX_EXTRN_DR_MASK)
    1352     {
    1353         struct kvm_debugregs DbgRegs = {{0}};
    1354         int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_DEBUGREGS, &DbgRegs);
    1355         AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
    1356 
    1357         if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
    1358         {
    1359             pCtx->dr[0] = DbgRegs.db[0];
    1360             pCtx->dr[1] = DbgRegs.db[1];
    1361             pCtx->dr[2] = DbgRegs.db[2];
    1362             pCtx->dr[3] = DbgRegs.db[3];
    1363         }
    1364         if (fWhat & CPUMCTX_EXTRN_DR6)
    1365             pCtx->dr[6] = DbgRegs.dr6;
    1366         if (fWhat & CPUMCTX_EXTRN_DR7)
    1367             pCtx->dr[7] = DbgRegs.dr7;
    1368     }
    1369 
    1370     /*
    1371      * FPU, SSE, AVX, ++.
    1372      */
    1373     if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx))
    1374     {
    1375         if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
    1376         {
    1377             fWhat |= CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE; /* we do all or nothing at all */
    1378 
    1379             AssertCompile(sizeof(pCtx->XState) >= sizeof(struct kvm_xsave));
    1380             int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_XSAVE, &pCtx->XState);
    1381             AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
    1382         }
    1383 
    1384         if (fWhat & CPUMCTX_EXTRN_XCRx)
    1385         {
    1386             struct kvm_xcrs Xcrs =
    1387             {   /*.nr_xcrs = */ 2,
    1388                 /*.flags = */   0,
    1389                 /*.xcrs= */ {
    1390                     { /*.xcr =*/ 0, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[0] },
    1391                     { /*.xcr =*/ 1, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[1] },
    1392                 }
    1393             };
    1394 
    1395             int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_XCRS, &Xcrs);
    1396             AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
    1397 
    1398             pCtx->aXcr[0] = Xcrs.xcrs[0].value;
    1399             pCtx->aXcr[1] = Xcrs.xcrs[1].value;
    1400         }
    1401     }
    1402 
    1403     /*
    1404      * MSRs.
    1405      */
    1406     if (fWhat & (  CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS
    1407                  | CPUMCTX_EXTRN_TSC_AUX        | CPUMCTX_EXTRN_OTHER_MSRS))
    1408     {
    1409         union
    1410         {
    1411             struct kvm_msrs Core;
    1412             uint64_t padding[2 + sizeof(struct kvm_msr_entry) * 32];
    1413         }                   uBuf;
    1414         uint64_t           *pauDsts[32];
    1415         uint32_t            iMsr        = 0;
    1416         PCPUMCTXMSRS const  pCtxMsrs    = CPUMQueryGuestCtxMsrsPtr(pVCpu);
    1417 
    1418 #define ADD_MSR(a_Msr, a_uValue) do { \
    1419             Assert(iMsr < 32); \
    1420             uBuf.Core.entries[iMsr].index    = (a_Msr); \
    1421             uBuf.Core.entries[iMsr].reserved = 0; \
    1422             uBuf.Core.entries[iMsr].data     = UINT64_MAX; \
    1423             pauDsts[iMsr] = &(a_uValue); \
    1424             iMsr += 1; \
    1425         } while (0)
    1426 
    1427         if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
    1428             ADD_MSR(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
    1429         if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
    1430         {
    1431             ADD_MSR(MSR_K6_STAR,    pCtx->msrSTAR);
    1432             ADD_MSR(MSR_K8_LSTAR,   pCtx->msrLSTAR);
    1433             ADD_MSR(MSR_K8_CSTAR,   pCtx->msrCSTAR);
    1434             ADD_MSR(MSR_K8_SF_MASK, pCtx->msrSFMASK);
    1435         }
    1436         if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
    1437         {
    1438             ADD_MSR(MSR_IA32_SYSENTER_CS,  pCtx->SysEnter.cs);
    1439             ADD_MSR(MSR_IA32_SYSENTER_EIP, pCtx->SysEnter.eip);
    1440             ADD_MSR(MSR_IA32_SYSENTER_ESP, pCtx->SysEnter.esp);
    1441         }
    1442         if (fWhat & CPUMCTX_EXTRN_TSC_AUX)
    1443             ADD_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
    1444         if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
    1445         {
    1446             ADD_MSR(MSR_IA32_CR_PAT, pCtx->msrPAT);
    1447             /** @todo What do we _have_ to add here?
    1448              * We also have: Mttr*, MiscEnable, FeatureControl. */
    1449         }
    1450 
    1451         uBuf.Core.pad   = 0;
    1452         uBuf.Core.nmsrs = iMsr;
    1453         int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_MSRS, &uBuf);
    1454         AssertMsgReturn(rc == (int)iMsr,
    1455                         ("rc=%d iMsr=%d (->%#x) errno=%d\n",
    1456                          rc, iMsr, (uint32_t)rc < iMsr ? uBuf.Core.entries[rc].index : 0, errno),
    1457                         VERR_NEM_IPE_3);
    1458 
    1459         while (iMsr-- > 0)
    1460             *pauDsts[iMsr] = uBuf.Core.entries[iMsr].data;
    1461 #undef ADD_MSR
    1462     }
    1463 
    1464     /*
    1465      * Interruptibility state and pending interrupts.
    1466      */
    1467     if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
    1468     {
    1469         fWhat |= CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI; /* always do both, see export and interrupt FF handling */
    1470 
    1471         struct kvm_vcpu_events KvmEvents = {0};
    1472         int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_VCPU_EVENTS, &KvmEvents);
    1473         AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_3);
    1474 
    1475         if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RIP)
    1476             pVCpu->cpum.GstCtx.rip = pRun->s.regs.regs.rip;
    1477 
    1478         CPUMUpdateInterruptShadowSsStiEx(&pVCpu->cpum.GstCtx,
    1479                                          RT_BOOL(KvmEvents.interrupt.shadow & KVM_X86_SHADOW_INT_MOV_SS),
    1480                                          RT_BOOL(KvmEvents.interrupt.shadow & KVM_X86_SHADOW_INT_STI),
    1481                                          pVCpu->cpum.GstCtx.rip);
    1482         CPUMUpdateInterruptInhibitingByNmi(&pVCpu->cpum.GstCtx, KvmEvents.nmi.masked != 0);
    1483 
    1484         if (KvmEvents.interrupt.injected)
    1485         {
    1486             STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportPendingInterrupt);
    1487             TRPMAssertTrap(pVCpu, KvmEvents.interrupt.nr, !KvmEvents.interrupt.soft ? TRPM_HARDWARE_INT : TRPM_SOFTWARE_INT);
    1488         }
    1489 
    1490         Assert(KvmEvents.nmi.injected == 0);
    1491         Assert(KvmEvents.nmi.pending  == 0);
    1492     }
    1493 
    1494     /*
    1495      * Update the external mask.
    1496      */
    1497     pCtx->fExtrn &= ~fWhat;
    1498     pVCpu->cpum.GstCtx.fExtrn &= ~fWhat;
    1499     if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
    1500         pVCpu->cpum.GstCtx.fExtrn = 0;
    1501 
    1502     /*
    1503      * We sometimes need to update PGM on the guest status.
    1504      */
    1505     if (!fMaybeChangedMode && !fUpdateCr3)
    1506     { /* likely */ }
    1507     else
    1508     {
    1509         /*
    1510          * Make sure we got all the state PGM might need.
    1511          */
    1512         Log7(("nemHCLnxImportState: fMaybeChangedMode=%d fUpdateCr3=%d fExtrnNeeded=%#RX64\n", fMaybeChangedMode, fUpdateCr3,
    1513               pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER) ));
    1514         if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER))
    1515         {
    1516             if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR0)
    1517             {
    1518                 if (pVCpu->cpum.GstCtx.cr0 != pRun->s.regs.sregs.cr0)
    1519                 {
    1520                     CPUMSetGuestCR0(pVCpu, pRun->s.regs.sregs.cr0);
    1521                     fMaybeChangedMode = true;
    1522                 }
    1523             }
    1524             if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR3)
    1525             {
    1526                 if (pCtx->cr3 != pRun->s.regs.sregs.cr3)
    1527                 {
    1528                     CPUMSetGuestCR3(pVCpu, pRun->s.regs.sregs.cr3);
    1529                     fUpdateCr3 = true;
    1530                 }
    1531             }
    1532             if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR4)
    1533             {
    1534                 if (pCtx->cr4 != pRun->s.regs.sregs.cr4)
    1535                 {
    1536                     CPUMSetGuestCR4(pVCpu, pRun->s.regs.sregs.cr4);
    1537                     fMaybeChangedMode = true;
    1538                 }
    1539             }
    1540             if (fWhat & CPUMCTX_EXTRN_EFER)
    1541             {
    1542                 if (pCtx->msrEFER != pRun->s.regs.sregs.efer)
    1543                 {
    1544                     Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu,  pVCpu->cpum.GstCtx.msrEFER, pRun->s.regs.sregs.efer));
    1545                     if ((pRun->s.regs.sregs.efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
    1546                         PGMNotifyNxeChanged(pVCpu, RT_BOOL(pRun->s.regs.sregs.efer & MSR_K6_EFER_NXE));
    1547                     pCtx->msrEFER = pRun->s.regs.sregs.efer;
    1548                     fMaybeChangedMode = true;
    1549                 }
    1550             }
    1551 
    1552             pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER);
    1553             if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
    1554                 pVCpu->cpum.GstCtx.fExtrn = 0;
    1555         }
    1556 
    1557         /*
    1558          * Notify PGM about the changes.
    1559          */
    1560         if (fMaybeChangedMode)
    1561         {
    1562             int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4,
    1563                                    pVCpu->cpum.GstCtx.msrEFER, false /*fForce*/);
    1564             AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1);
    1565         }
    1566 
    1567         if (fUpdateCr3)
    1568         {
    1569             int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3);
    1570             if (rc == VINF_SUCCESS)
    1571             { /* likely */ }
    1572             else
    1573                 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2);
    1574         }
    1575     }
    1576 
    1577     return VINF_SUCCESS;
    1578 }
    1579 
    1580 
    1581 /**
    1582  * Interface for importing state on demand (used by IEM).
    1583  *
    1584  * @returns VBox status code.
    1585  * @param   pVCpu       The cross context CPU structure.
    1586  * @param   fWhat       What to import, CPUMCTX_EXTRN_XXX.
    1587  */
    1588 VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
    1589 {
    1590     STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);
    1591     return nemHCLnxImportState(pVCpu, fWhat, &pVCpu->cpum.GstCtx, pVCpu->nem.s.pRun);
    1592 }
    1593 
    1594 
    1595 /**
    1596  * Exports state to KVM.
    1597  */
    1598 static int nemHCLnxExportState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, struct kvm_run *pRun)
    1599 {
    1600     uint64_t const fExtrn = ~pCtx->fExtrn & CPUMCTX_EXTRN_ALL;
    1601     Assert((~fExtrn & CPUMCTX_EXTRN_ALL) != CPUMCTX_EXTRN_ALL);
    1602 
    1603     /*
    1604      * Stuff that goes into kvm_run::s.regs.regs:
    1605      */
    1606     if (fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK))
    1607     {
    1608         if (fExtrn & CPUMCTX_EXTRN_RIP)
    1609             pRun->s.regs.regs.rip    = pCtx->rip;
    1610         if (fExtrn & CPUMCTX_EXTRN_RFLAGS)
    1611             pRun->s.regs.regs.rflags = pCtx->rflags.u;
    1612 
    1613         if (fExtrn & CPUMCTX_EXTRN_RAX)
    1614             pRun->s.regs.regs.rax    = pCtx->rax;
    1615         if (fExtrn & CPUMCTX_EXTRN_RCX)
    1616             pRun->s.regs.regs.rcx    = pCtx->rcx;
    1617         if (fExtrn & CPUMCTX_EXTRN_RDX)
    1618             pRun->s.regs.regs.rdx    = pCtx->rdx;
    1619         if (fExtrn & CPUMCTX_EXTRN_RBX)
    1620             pRun->s.regs.regs.rbx    = pCtx->rbx;
    1621         if (fExtrn & CPUMCTX_EXTRN_RSP)
    1622             pRun->s.regs.regs.rsp    = pCtx->rsp;
    1623         if (fExtrn & CPUMCTX_EXTRN_RBP)
    1624             pRun->s.regs.regs.rbp    = pCtx->rbp;
    1625         if (fExtrn & CPUMCTX_EXTRN_RSI)
    1626             pRun->s.regs.regs.rsi    = pCtx->rsi;
    1627         if (fExtrn & CPUMCTX_EXTRN_RDI)
    1628             pRun->s.regs.regs.rdi    = pCtx->rdi;
    1629         if (fExtrn & CPUMCTX_EXTRN_R8_R15)
    1630         {
    1631             pRun->s.regs.regs.r8     = pCtx->r8;
    1632             pRun->s.regs.regs.r9     = pCtx->r9;
    1633             pRun->s.regs.regs.r10    = pCtx->r10;
    1634             pRun->s.regs.regs.r11    = pCtx->r11;
    1635             pRun->s.regs.regs.r12    = pCtx->r12;
    1636             pRun->s.regs.regs.r13    = pCtx->r13;
    1637             pRun->s.regs.regs.r14    = pCtx->r14;
    1638             pRun->s.regs.regs.r15    = pCtx->r15;
    1639         }
    1640         pRun->kvm_dirty_regs |= KVM_SYNC_X86_REGS;
    1641     }
    1642 
    1643     /*
    1644      * Stuff that goes into kvm_run::s.regs.sregs:
    1645      *
    1646      * The APIC base register updating is a little suboptimal... But at least
    1647      * VBox always has the right base register value, so it's one directional.
    1648      */
    1649     uint64_t const uApicBase = APICGetBaseMsrNoCheck(pVCpu);
    1650     if (   (fExtrn & (  CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_CR_MASK
    1651                       | CPUMCTX_EXTRN_EFER      | CPUMCTX_EXTRN_APIC_TPR))
    1652         || uApicBase != pVCpu->nem.s.uKvmApicBase)
    1653     {
    1654         if ((pVCpu->nem.s.uKvmApicBase ^ uApicBase) & MSR_IA32_APICBASE_EN)
    1655             Log(("NEM/%u: APICBASE_EN changed %#010RX64 -> %#010RX64\n", pVCpu->idCpu, pVCpu->nem.s.uKvmApicBase, uApicBase));
    1656         pRun->s.regs.sregs.apic_base = uApicBase;
    1657         pVCpu->nem.s.uKvmApicBase    = uApicBase;
    1658 
    1659         if (fExtrn & CPUMCTX_EXTRN_APIC_TPR)
    1660             pRun->s.regs.sregs.cr8   = CPUMGetGuestCR8(pVCpu);
    1661 
    1662 #define NEM_LNX_EXPORT_SEG(a_KvmSeg, a_CtxSeg) do { \
    1663             (a_KvmSeg).base     = (a_CtxSeg).u64Base; \
    1664             (a_KvmSeg).limit    = (a_CtxSeg).u32Limit; \
    1665             (a_KvmSeg).selector = (a_CtxSeg).Sel; \
    1666             (a_KvmSeg).type     = (a_CtxSeg).Attr.n.u4Type; \
    1667             (a_KvmSeg).s        = (a_CtxSeg).Attr.n.u1DescType; \
    1668             (a_KvmSeg).dpl      = (a_CtxSeg).Attr.n.u2Dpl; \
    1669             (a_KvmSeg).present  = (a_CtxSeg).Attr.n.u1Present; \
    1670             (a_KvmSeg).avl      = (a_CtxSeg).Attr.n.u1Available; \
    1671             (a_KvmSeg).l        = (a_CtxSeg).Attr.n.u1Long; \
    1672             (a_KvmSeg).db       = (a_CtxSeg).Attr.n.u1DefBig; \
    1673             (a_KvmSeg).g        = (a_CtxSeg).Attr.n.u1Granularity; \
    1674             (a_KvmSeg).unusable = (a_CtxSeg).Attr.n.u1Unusable; \
    1675             (a_KvmSeg).padding  = 0; \
    1676         } while (0)
    1677 
    1678         if (fExtrn & CPUMCTX_EXTRN_SREG_MASK)
    1679         {
    1680             if (fExtrn & CPUMCTX_EXTRN_ES)
    1681                 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.es, pCtx->es);
    1682             if (fExtrn & CPUMCTX_EXTRN_CS)
    1683                 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.cs, pCtx->cs);
    1684             if (fExtrn & CPUMCTX_EXTRN_SS)
    1685                 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ss, pCtx->ss);
    1686             if (fExtrn & CPUMCTX_EXTRN_DS)
    1687                 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ds, pCtx->ds);
    1688             if (fExtrn & CPUMCTX_EXTRN_FS)
    1689                 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.fs, pCtx->fs);
    1690             if (fExtrn & CPUMCTX_EXTRN_GS)
    1691                 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.gs, pCtx->gs);
    1692         }
    1693         if (fExtrn & CPUMCTX_EXTRN_TABLE_MASK)
    1694         {
    1695             if (fExtrn & CPUMCTX_EXTRN_GDTR)
    1696             {
    1697                 pRun->s.regs.sregs.gdt.base  = pCtx->gdtr.pGdt;
    1698                 pRun->s.regs.sregs.gdt.limit = pCtx->gdtr.cbGdt;
    1699                 pRun->s.regs.sregs.gdt.padding[0] = 0;
    1700                 pRun->s.regs.sregs.gdt.padding[1] = 0;
    1701                 pRun->s.regs.sregs.gdt.padding[2] = 0;
    1702             }
    1703             if (fExtrn & CPUMCTX_EXTRN_IDTR)
    1704             {
    1705                 pRun->s.regs.sregs.idt.base  = pCtx->idtr.pIdt;
    1706                 pRun->s.regs.sregs.idt.limit = pCtx->idtr.cbIdt;
    1707                 pRun->s.regs.sregs.idt.padding[0] = 0;
    1708                 pRun->s.regs.sregs.idt.padding[1] = 0;
    1709                 pRun->s.regs.sregs.idt.padding[2] = 0;
    1710             }
    1711             if (fExtrn & CPUMCTX_EXTRN_LDTR)
    1712                 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ldt, pCtx->ldtr);
    1713             if (fExtrn & CPUMCTX_EXTRN_TR)
    1714                 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.tr, pCtx->tr);
    1715         }
    1716         if (fExtrn & CPUMCTX_EXTRN_CR_MASK)
    1717         {
    1718             if (fExtrn & CPUMCTX_EXTRN_CR0)
    1719                 pRun->s.regs.sregs.cr0   = pCtx->cr0;
    1720             if (fExtrn & CPUMCTX_EXTRN_CR2)
    1721                 pRun->s.regs.sregs.cr2   = pCtx->cr2;
    1722             if (fExtrn & CPUMCTX_EXTRN_CR3)
    1723                 pRun->s.regs.sregs.cr3   = pCtx->cr3;
    1724             if (fExtrn & CPUMCTX_EXTRN_CR4)
    1725                 pRun->s.regs.sregs.cr4   = pCtx->cr4;
    1726         }
    1727         if (fExtrn & CPUMCTX_EXTRN_EFER)
    1728             pRun->s.regs.sregs.efer   = pCtx->msrEFER;
    1729 
    1730         RT_ZERO(pRun->s.regs.sregs.interrupt_bitmap); /* this is an alternative interrupt injection interface */
    1731 
    1732         pRun->kvm_dirty_regs |= KVM_SYNC_X86_SREGS;
    1733     }
    1734 
    1735     /*
    1736      * Debug registers.
    1737      */
    1738     if (fExtrn & CPUMCTX_EXTRN_DR_MASK)
    1739     {
    1740         struct kvm_debugregs DbgRegs = {{0}};
    1741 
    1742         if ((fExtrn & CPUMCTX_EXTRN_DR_MASK) != CPUMCTX_EXTRN_DR_MASK)
    1743         {
    1744             /* Partial debug state, we must get DbgRegs first so we can merge: */
    1745             int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_DEBUGREGS, &DbgRegs);
    1746             AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
    1747         }
    1748 
    1749         if (fExtrn & CPUMCTX_EXTRN_DR0_DR3)
    1750         {
    1751             DbgRegs.db[0] = pCtx->dr[0];
    1752             DbgRegs.db[1] = pCtx->dr[1];
    1753             DbgRegs.db[2] = pCtx->dr[2];
    1754             DbgRegs.db[3] = pCtx->dr[3];
    1755         }
    1756         if (fExtrn & CPUMCTX_EXTRN_DR6)
    1757             DbgRegs.dr6 = pCtx->dr[6];
    1758         if (fExtrn & CPUMCTX_EXTRN_DR7)
    1759             DbgRegs.dr7 = pCtx->dr[7];
    1760 
    1761         int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_DEBUGREGS, &DbgRegs);
    1762         AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
    1763     }
    1764 
    1765     /*
    1766      * FPU, SSE, AVX, ++.
    1767      */
    1768     if (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx))
    1769     {
    1770         if (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
    1771         {
    1772             /** @todo could IEM just grab state partial control in some situations? */
    1773             Assert(   (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
    1774                    ==           (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE)); /* no partial states */
    1775 
    1776             AssertCompile(sizeof(pCtx->XState) >= sizeof(struct kvm_xsave));
    1777             int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_XSAVE, &pCtx->XState);
    1778             AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
    1779         }
    1780 
    1781         if (fExtrn & CPUMCTX_EXTRN_XCRx)
    1782         {
    1783             struct kvm_xcrs Xcrs =
    1784             {   /*.nr_xcrs = */ 2,
    1785                 /*.flags = */   0,
    1786                 /*.xcrs= */ {
    1787                     { /*.xcr =*/ 0, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[0] },
    1788                     { /*.xcr =*/ 1, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[1] },
    1789                 }
    1790             };
    1791 
    1792             int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_XCRS, &Xcrs);
    1793             AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
    1794         }
    1795     }
    1796 
    1797     /*
    1798      * MSRs.
    1799      */
    1800     if (fExtrn & (  CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS
    1801                   | CPUMCTX_EXTRN_TSC_AUX        | CPUMCTX_EXTRN_OTHER_MSRS))
    1802     {
    1803         union
    1804         {
    1805             struct kvm_msrs Core;
    1806             uint64_t padding[2 + sizeof(struct kvm_msr_entry) * 32];
    1807         }                   uBuf;
    1808         uint32_t            iMsr     = 0;
    1809         PCPUMCTXMSRS const  pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
    1810 
    1811 #define ADD_MSR(a_Msr, a_uValue) do { \
    1812             Assert(iMsr < 32); \
    1813             uBuf.Core.entries[iMsr].index    = (a_Msr); \
    1814             uBuf.Core.entries[iMsr].reserved = 0; \
    1815             uBuf.Core.entries[iMsr].data     = (a_uValue); \
    1816             iMsr += 1; \
    1817         } while (0)
    1818 
    1819         if (fExtrn & CPUMCTX_EXTRN_KERNEL_GS_BASE)
    1820             ADD_MSR(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
    1821         if (fExtrn & CPUMCTX_EXTRN_SYSCALL_MSRS)
    1822         {
    1823             ADD_MSR(MSR_K6_STAR,    pCtx->msrSTAR);
    1824             ADD_MSR(MSR_K8_LSTAR,   pCtx->msrLSTAR);
    1825             ADD_MSR(MSR_K8_CSTAR,   pCtx->msrCSTAR);
    1826             ADD_MSR(MSR_K8_SF_MASK, pCtx->msrSFMASK);
    1827         }
    1828         if (fExtrn & CPUMCTX_EXTRN_SYSENTER_MSRS)
    1829         {
    1830             ADD_MSR(MSR_IA32_SYSENTER_CS,  pCtx->SysEnter.cs);
    1831             ADD_MSR(MSR_IA32_SYSENTER_EIP, pCtx->SysEnter.eip);
    1832             ADD_MSR(MSR_IA32_SYSENTER_ESP, pCtx->SysEnter.esp);
    1833         }
    1834         if (fExtrn & CPUMCTX_EXTRN_TSC_AUX)
    1835             ADD_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
    1836         if (fExtrn & CPUMCTX_EXTRN_OTHER_MSRS)
    1837         {
    1838             ADD_MSR(MSR_IA32_CR_PAT, pCtx->msrPAT);
    1839             /** @todo What do we _have_ to add here?
    1840              * We also have: Mttr*, MiscEnable, FeatureControl. */
    1841         }
    1842 
    1843         uBuf.Core.pad   = 0;
    1844         uBuf.Core.nmsrs = iMsr;
    1845         int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_MSRS, &uBuf);
    1846         AssertMsgReturn(rc == (int)iMsr,
    1847                         ("rc=%d iMsr=%d (->%#x) errno=%d\n",
    1848                          rc, iMsr, (uint32_t)rc < iMsr ? uBuf.Core.entries[rc].index : 0, errno),
    1849                         VERR_NEM_IPE_3);
    1850     }
    1851 
    1852     /*
    1853      * Interruptibility state.
    1854      *
    1855      * Note! This I/O control function sets most fields passed in, so when
    1856      *       raising an interrupt, NMI, SMI or exception, this must be done
    1857      *       by the code doing the rasing or we'll overwrite it here.
    1858      */
    1859     if (fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
    1860     {
    1861         Assert(   (fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
    1862                ==           (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI));
    1863 
    1864         struct kvm_vcpu_events KvmEvents = {0};
    1865 
    1866         KvmEvents.flags = KVM_VCPUEVENT_VALID_SHADOW;
    1867         if (!CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx))
    1868         { /* probably likely */ }
    1869         else
    1870             KvmEvents.interrupt.shadow = (CPUMIsInInterruptShadowAfterSs()  ? KVM_X86_SHADOW_INT_MOV_SS : 0)
    1871                                        | (CPUMIsInInterruptShadowAfterSti() ? KVM_X86_SHADOW_INT_STI    : 0);
    1872 
    1873         /* No flag - this is updated unconditionally. */
    1874         KvmEvents.nmi.masked = CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx);
    1875 
    1876         if (TRPMHasTrap(pVCpu))
    1877         {
    1878             TRPMEVENT enmType = TRPM_32BIT_HACK;
    1879             uint8_t   bTrapNo = 0;
    1880             TRPMQueryTrap(pVCpu, &bTrapNo, &enmType);
    1881             Log(("nemHCLnxExportState: Pending trap: bTrapNo=%#x enmType=%d\n", bTrapNo, enmType));
    1882             if (   enmType == TRPM_HARDWARE_INT
    1883                 || enmType == TRPM_SOFTWARE_INT)
    1884             {
    1885                 KvmEvents.interrupt.soft     = enmType == TRPM_SOFTWARE_INT;
    1886                 KvmEvents.interrupt.nr       = bTrapNo;
    1887                 KvmEvents.interrupt.injected = 1;
    1888                 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExportPendingInterrupt);
    1889                 TRPMResetTrap(pVCpu);
    1890             }
    1891             else
    1892                 AssertFailed();
    1893         }
    1894 
    1895         int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_VCPU_EVENTS, &KvmEvents);
    1896         AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_3);
    1897     }
    1898 
    1899     /*
    1900      * KVM now owns all the state.
    1901      */
    1902     pCtx->fExtrn = CPUMCTX_EXTRN_KEEPER_NEM | CPUMCTX_EXTRN_ALL;
    1903 
    1904     RT_NOREF(pVM);
    1905     return VINF_SUCCESS;
    1906 }
    1907 
    1908 
    1909 /**
    1910  * Query the CPU tick counter and optionally the TSC_AUX MSR value.
    1911  *
    1912  * @returns VBox status code.
    1913  * @param   pVCpu       The cross context CPU structure.
    1914  * @param   pcTicks     Where to return the CPU tick count.
    1915  * @param   puAux       Where to return the TSC_AUX register value.
    1916  */
    1917 VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux)
    1918 {
    1919     STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick);
    1920     // KVM_GET_CLOCK?
    1921     RT_NOREF(pVCpu, pcTicks, puAux);
    1922     return VINF_SUCCESS;
    1923 }
    1924 
    1925 
    1926 /**
    1927  * Resumes CPU clock (TSC) on all virtual CPUs.
    1928  *
    1929  * This is called by TM when the VM is started, restored, resumed or similar.
    1930  *
    1931  * @returns VBox status code.
    1932  * @param   pVM             The cross context VM structure.
    1933  * @param   pVCpu           The cross context CPU structure of the calling EMT.
    1934  * @param   uPausedTscValue The TSC value at the time of pausing.
    1935  */
    1936 VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue)
    1937 {
    1938     // KVM_SET_CLOCK?
    1939     RT_NOREF(pVM, pVCpu, uPausedTscValue);
    1940     return VINF_SUCCESS;
    1941 }
    1942 
    1943 
    1944 VMM_INT_DECL(uint32_t) NEMHCGetFeatures(PVMCC pVM)
    1945 {
    1946     RT_NOREF(pVM);
    1947     return NEM_FEAT_F_NESTED_PAGING
    1948          | NEM_FEAT_F_FULL_GST_EXEC
    1949          | NEM_FEAT_F_XSAVE_XRSTOR;
    1950 }
    1951 
    1952 
    1953 
    1954 /*********************************************************************************************************************************
    1955 *   Execution                                                                                                                    *
    1956 *********************************************************************************************************************************/
    1957 
    1958 
    1959 VMMR3_INT_DECL(bool) NEMR3CanExecuteGuest(PVM pVM, PVMCPU pVCpu)
    1960 {
    1961     /*
    1962      * Only execute when the A20 gate is enabled as I cannot immediately
    1963      * spot any A20 support in KVM.
    1964      */
    1965     RT_NOREF(pVM);
    1966     Assert(VM_IS_NEM_ENABLED(pVM));
    1967     return PGMPhysIsA20Enabled(pVCpu);
    1968 }
    1969 
    1970 
    1971 bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
    1972 {
    1973     NOREF(pVM); NOREF(pVCpu); NOREF(fEnable);
    1974     return false;
    1975 }
    1976 
    1977 
    1978 void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
    1979 {
    1980     int rc = RTThreadPoke(pVCpu->hThread);
    1981     LogFlow(("nemR3NativeNotifyFF: #%u -> %Rrc\n", pVCpu->idCpu, rc));
    1982     AssertRC(rc);
    1983     RT_NOREF(pVM, fFlags);
    1984 }
    1985 
    1986 
    1987 DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChanged(PVM pVM, bool fUseDebugLoop)
    1988 {
    1989     RT_NOREF(pVM, fUseDebugLoop);
    1990     return false;
    1991 }
    1992 
    1993 
    1994 DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu, bool fUseDebugLoop)
    1995 {
    1996     RT_NOREF(pVM, pVCpu, fUseDebugLoop);
    1997     return false;
    1998 }
    1999 
    2000 
    2001 /**
    2002  * Deals with pending interrupt FFs prior to executing guest code.
    2003  */
    2004 static VBOXSTRICTRC nemHCLnxHandleInterruptFF(PVM pVM, PVMCPU pVCpu, struct kvm_run *pRun)
    2005 {
    2006     RT_NOREF_PV(pVM);
    2007 
    2008     /*
    2009      * Do not doing anything if TRPM has something pending already as we can
    2010      * only inject one event per KVM_RUN call.  This can only happend if we
    2011      * can directly from the loop in EM, so the inhibit bits must be internal.
    2012      */
    2013     if (!TRPMHasTrap(pVCpu))
    2014     { /* semi likely */ }
    2015     else
    2016     {
    2017         Assert(!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI)));
    2018         Log8(("nemHCLnxHandleInterruptFF: TRPM has an pending event already\n"));
    2019         return VINF_SUCCESS;
    2020     }
    2021 
    2022     /*
    2023      * First update APIC.  We ASSUME this won't need TPR/CR8.
    2024      */
    2025     if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
    2026     {
    2027         APICUpdatePendingInterrupts(pVCpu);
    2028         if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC
    2029                                       | VMCPU_FF_INTERRUPT_NMI  | VMCPU_FF_INTERRUPT_SMI))
    2030             return VINF_SUCCESS;
    2031     }
    2032 
    2033     /*
    2034      * We don't currently implement SMIs.
    2035      */
    2036     AssertReturn(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_SMI), VERR_NEM_IPE_0);
    2037 
    2038     /*
    2039      * In KVM the CPUMCTX_EXTRN_INHIBIT_INT and CPUMCTX_EXTRN_INHIBIT_NMI states
    2040      * are tied together with interrupt and NMI delivery, so we must get and
    2041      * synchronize these all in one go and set both CPUMCTX_EXTRN_INHIBIT_XXX flags.
    2042      * If we don't we may lose the interrupt/NMI we marked pending here when the
    2043      * state is exported again before execution.
    2044      */
    2045     struct kvm_vcpu_events KvmEvents = {0};
    2046     int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_VCPU_EVENTS, &KvmEvents);
    2047     AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
    2048 
    2049     if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RIP))
    2050         pRun->s.regs.regs.rip = pVCpu->cpum.GstCtx.rip;
    2051 
    2052     KvmEvents.flags |= KVM_VCPUEVENT_VALID_SHADOW;
    2053     if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_INHIBIT_INT))
    2054         KvmEvents.interrupt.shadow = !CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx) ? 0
    2055                                    :   (CPUMIsInInterruptShadowAfterSs()  ? KVM_X86_SHADOW_INT_MOV_SS : 0)
    2056                                      | (CPUMIsInInterruptShadowAfterSti() ? KVM_X86_SHADOW_INT_STI    : 0);
    2057     else
    2058         CPUMUpdateInterruptShadowSsStiEx(&pVCpu->cpum.GstCtx,
    2059                                          RT_BOOL(KvmEvents.interrupt.shadow & KVM_X86_SHADOW_INT_MOV_SS),
    2060                                          RT_BOOL(KvmEvents.interrupt.shadow & KVM_X86_SHADOW_INT_MOV_STI),
    2061                                          pRun->s.regs.regs.rip);
    2062 
    2063     if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_INHIBIT_NMI))
    2064         KvmEvents.nmi.masked = CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx);
    2065     else
    2066         CPUMUpdateInterruptInhibitingByNmi(&pVCpu->cpum.GstCtx, KvmEvents.nmi.masked != 0);
    2067 
    2068     /* KVM will own the INT + NMI inhibit state soon: */
    2069     pVCpu->cpum.GstCtx.fExtrn = (pVCpu->cpum.GstCtx.fExtrn & ~CPUMCTX_EXTRN_KEEPER_MASK)
    2070                               | CPUMCTX_EXTRN_KEEPER_NEM | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI;
    2071 
    2072     /*
    2073      * NMI? Try deliver it first.
    2074      */
    2075     if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))
    2076     {
    2077 #if 0
    2078         int rcLnx = ioctl(pVCpu->nem.s.fdVm, KVM_NMI, 0UL);
    2079         AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
    2080 #else
    2081         KvmEvents.flags      |= KVM_VCPUEVENT_VALID_NMI_PENDING;
    2082         KvmEvents.nmi.pending = 1;
    2083 #endif
    2084         VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
    2085         Log8(("Queuing NMI on %u\n", pVCpu->idCpu));
    2086     }
    2087 
    2088     /*
    2089      * APIC or PIC interrupt?
    2090      */
    2091     if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
    2092     {
    2093         if (pRun->s.regs.regs.rflags & X86_EFL_IF)
    2094         {
    2095             if (KvmEvents.interrupt.shadow == 0)
    2096             {
    2097                 /*
    2098                  * If CR8 is in KVM, update the VBox copy so PDMGetInterrupt will
    2099                  * work correctly.
    2100                  */
    2101                 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_APIC_TPR)
    2102                     APICSetTpr(pVCpu, (uint8_t)pRun->cr8 << 4);
    2103 
    2104                 uint8_t bInterrupt;
    2105                 int rc = PDMGetInterrupt(pVCpu, &bInterrupt);
    2106                 if (RT_SUCCESS(rc))
    2107                 {
    2108                     Assert(KvmEvents.interrupt.injected == false);
    2109 #if 0
    2110                     int rcLnx = ioctl(pVCpu->nem.s.fdVm, KVM_INTERRUPT, (unsigned long)bInterrupt);
    2111                     AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
    2112 #else
    2113                     KvmEvents.interrupt.nr       = bInterrupt;
    2114                     KvmEvents.interrupt.soft     = false;
    2115                     KvmEvents.interrupt.injected = true;
    2116 #endif
    2117                     Log8(("Queuing interrupt %#x on %u: %04x:%08RX64 efl=%#x\n", bInterrupt, pVCpu->idCpu,
    2118                           pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eflags.u));
    2119                 }
    2120                 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR) /** @todo this isn't extremely efficient if we get a lot of exits... */
    2121                     Log8(("VERR_APIC_INTR_MASKED_BY_TPR\n")); /* We'll get a TRP exit - no interrupt window needed. */
    2122                 else
    2123                     Log8(("PDMGetInterrupt failed -> %Rrc\n", rc));
    2124             }
    2125             else
    2126             {
    2127                 pRun->request_interrupt_window = 1;
    2128                 Log8(("Interrupt window pending on %u (#2)\n", pVCpu->idCpu));
    2129             }
    2130         }
    2131         else
    2132         {
    2133             pRun->request_interrupt_window = 1;
    2134             Log8(("Interrupt window pending on %u (#1)\n", pVCpu->idCpu));
    2135         }
    2136     }
    2137 
    2138     /*
    2139      * Now, update the state.
    2140      */
    2141     /** @todo skip when possible...   */
    2142     rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_VCPU_EVENTS, &KvmEvents);
    2143     AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
    2144 
    2145     return VINF_SUCCESS;
    2146 }
    2147 
    2148 
    2149 /**
    2150  * Handles KVM_EXIT_INTERNAL_ERROR.
    2151  */
    2152 static VBOXSTRICTRC nemR3LnxHandleInternalError(PVMCPU pVCpu, struct kvm_run *pRun)
    2153 {
    2154     Log(("NEM: KVM_EXIT_INTERNAL_ERROR! suberror=%#x (%d) ndata=%u data=%.*Rhxs\n", pRun->internal.suberror,
    2155          pRun->internal.suberror, pRun->internal.ndata, sizeof(pRun->internal.data), &pRun->internal.data[0]));
    2156 
    2157     /*
    2158      * Deal with each suberror, returning if we don't want IEM to handle it.
    2159      */
    2160     switch (pRun->internal.suberror)
    2161     {
    2162         case KVM_INTERNAL_ERROR_EMULATION:
    2163         {
    2164             EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTERNAL_ERROR_EMULATION),
    2165                              pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
    2166             STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInternalErrorEmulation);
    2167             break;
    2168         }
    2169 
    2170         case KVM_INTERNAL_ERROR_SIMUL_EX:
    2171         case KVM_INTERNAL_ERROR_DELIVERY_EV:
    2172         case KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON:
    2173         default:
    2174         {
    2175             EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTERNAL_ERROR_FATAL),
    2176                              pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
    2177             STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInternalErrorFatal);
    2178             const char *pszName;
    2179             switch (pRun->internal.suberror)
    2180             {
    2181                 case KVM_INTERNAL_ERROR_EMULATION:              pszName = "KVM_INTERNAL_ERROR_EMULATION"; break;
    2182                 case KVM_INTERNAL_ERROR_SIMUL_EX:               pszName = "KVM_INTERNAL_ERROR_SIMUL_EX"; break;
    2183                 case KVM_INTERNAL_ERROR_DELIVERY_EV:            pszName = "KVM_INTERNAL_ERROR_DELIVERY_EV"; break;
    2184                 case KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON: pszName = "KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON"; break;
    2185                 default:                                        pszName = "unknown"; break;
    2186             }
    2187             LogRel(("NEM: KVM_EXIT_INTERNAL_ERROR! suberror=%#x (%s) ndata=%u data=%.*Rhxs\n", pRun->internal.suberror, pszName,
    2188                     pRun->internal.ndata, sizeof(pRun->internal.data), &pRun->internal.data[0]));
    2189             return VERR_NEM_IPE_0;
    2190         }
    2191     }
    2192 
    2193     /*
    2194      * Execute instruction in IEM and try get on with it.
    2195      */
    2196     Log2(("nemR3LnxHandleInternalError: Executing instruction at %04x:%08RX64 in IEM\n",
    2197           pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip));
    2198     VBOXSTRICTRC rcStrict = nemHCLnxImportState(pVCpu,
    2199                                                 IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_INHIBIT_INT
    2200                                                  | CPUMCTX_EXTRN_INHIBIT_NMI,
    2201                                                 &pVCpu->cpum.GstCtx, pRun);
    2202     if (RT_SUCCESS(rcStrict))
    2203         rcStrict = IEMExecOne(pVCpu);
    2204     return rcStrict;
    2205 }
    2206 
    2207 
    2208 /**
    2209  * Handles KVM_EXIT_IO.
    2210  */
    2211 static VBOXSTRICTRC nemHCLnxHandleExitIo(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun)
    2212 {
    2213     /*
    2214      * Input validation.
    2215      */
    2216     Assert(pRun->io.count > 0);
    2217     Assert(pRun->io.size == 1 || pRun->io.size == 2 || pRun->io.size == 4);
    2218     Assert(pRun->io.direction == KVM_EXIT_IO_IN || pRun->io.direction == KVM_EXIT_IO_OUT);
    2219     Assert(pRun->io.data_offset < pVM->nem.s.cbVCpuMmap);
    2220     Assert(pRun->io.data_offset + pRun->io.size * pRun->io.count <= pVM->nem.s.cbVCpuMmap);
    2221 
    2222     /*
    2223      * We cannot easily act on the exit history here, because the I/O port
    2224      * exit is stateful and the instruction will be completed in the next
    2225      * KVM_RUN call.  There seems no way to avoid this.
    2226      */
    2227     EMHistoryAddExit(pVCpu,
    2228                      pRun->io.count == 1
    2229                      ? (  pRun->io.direction == KVM_EXIT_IO_IN
    2230                         ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_READ)
    2231                         : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_WRITE))
    2232                      : (  pRun->io.direction == KVM_EXIT_IO_IN
    2233                         ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_READ)
    2234                         : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_WRITE)),
    2235                      pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
    2236 
    2237     /*
    2238      * Do the requested job.
    2239      */
    2240     VBOXSTRICTRC    rcStrict;
    2241     RTPTRUNION      uPtrData;
    2242     uPtrData.pu8 = (uint8_t *)pRun + pRun->io.data_offset;
    2243     if (pRun->io.count == 1)
    2244     {
    2245         if (pRun->io.direction == KVM_EXIT_IO_IN)
    2246         {
    2247             uint32_t uValue = 0;
    2248             rcStrict = IOMIOPortRead(pVM, pVCpu, pRun->io.port, &uValue, pRun->io.size);
    2249             Log4(("IOExit/%u: %04x:%08RX64: IN %#x LB %u -> %#x, rcStrict=%Rrc\n",
    2250                   pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
    2251                   pRun->io.port, pRun->io.size, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
    2252             if (IOM_SUCCESS(rcStrict))
    2253             {
    2254                 if (pRun->io.size == 4)
    2255                     *uPtrData.pu32 = uValue;
    2256                 else if (pRun->io.size == 2)
    2257                     *uPtrData.pu16 = (uint16_t)uValue;
    2258                 else
    2259                     *uPtrData.pu8  = (uint8_t)uValue;
    2260             }
    2261         }
    2262         else
    2263         {
    2264             uint32_t const uValue = pRun->io.size == 4 ? *uPtrData.pu32
    2265                                   : pRun->io.size == 2 ? *uPtrData.pu16
    2266                                   :                      *uPtrData.pu8;
    2267             rcStrict = IOMIOPortWrite(pVM, pVCpu, pRun->io.port, uValue, pRun->io.size);
    2268             Log4(("IOExit/%u: %04x:%08RX64: OUT %#x, %#x LB %u rcStrict=%Rrc\n",
    2269                   pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
    2270                   pRun->io.port, uValue, pRun->io.size, VBOXSTRICTRC_VAL(rcStrict) ));
    2271         }
    2272     }
    2273     else
    2274     {
    2275         uint32_t cTransfers = pRun->io.count;
    2276         if (pRun->io.direction == KVM_EXIT_IO_IN)
    2277         {
    2278             rcStrict = IOMIOPortReadString(pVM, pVCpu, pRun->io.port, uPtrData.pv, &cTransfers, pRun->io.size);
    2279             Log4(("IOExit/%u: %04x:%08RX64: REP INS %#x LB %u * %#x times -> rcStrict=%Rrc cTransfers=%d\n",
    2280                   pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
    2281                   pRun->io.port, pRun->io.size, pRun->io.count, VBOXSTRICTRC_VAL(rcStrict), cTransfers ));
    2282         }
    2283         else
    2284         {
    2285             rcStrict = IOMIOPortWriteString(pVM, pVCpu, pRun->io.port, uPtrData.pv, &cTransfers, pRun->io.size);
    2286             Log4(("IOExit/%u: %04x:%08RX64: REP OUTS %#x LB %u * %#x times -> rcStrict=%Rrc cTransfers=%d\n",
    2287                   pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
    2288                   pRun->io.port, pRun->io.size, pRun->io.count, VBOXSTRICTRC_VAL(rcStrict), cTransfers ));
    2289         }
    2290         Assert(cTransfers == 0);
    2291     }
    2292     return rcStrict;
    2293 }
    2294 
    2295 
    2296 /**
    2297  * Handles KVM_EXIT_MMIO.
    2298  */
    2299 static VBOXSTRICTRC nemHCLnxHandleExitMmio(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun)
    2300 {
    2301     /*
    2302      * Input validation.
    2303      */
    2304     Assert(pRun->mmio.len <= sizeof(pRun->mmio.data));
    2305     Assert(pRun->mmio.is_write <= 1);
    2306 
    2307     /*
    2308      * We cannot easily act on the exit history here, because the MMIO port
    2309      * exit is stateful and the instruction will be completed in the next
    2310      * KVM_RUN call.  There seems no way to circumvent this.
    2311      */
    2312     EMHistoryAddExit(pVCpu,
    2313                      pRun->mmio.is_write
    2314                      ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE)
    2315                      : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ),
    2316                      pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
    2317 
    2318     /*
    2319      * Do the requested job.
    2320      */
    2321     VBOXSTRICTRC rcStrict;
    2322     if (pRun->mmio.is_write)
    2323     {
    2324         rcStrict = PGMPhysWrite(pVM, pRun->mmio.phys_addr, pRun->mmio.data, pRun->mmio.len, PGMACCESSORIGIN_HM);
    2325         Log4(("MmioExit/%u: %04x:%08RX64: WRITE %#x LB %u, %.*Rhxs -> rcStrict=%Rrc\n",
    2326               pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
    2327               pRun->mmio.phys_addr, pRun->mmio.len, pRun->mmio.len, pRun->mmio.data, VBOXSTRICTRC_VAL(rcStrict) ));
    2328     }
    2329     else
    2330     {
    2331         rcStrict = PGMPhysRead(pVM, pRun->mmio.phys_addr, pRun->mmio.data, pRun->mmio.len, PGMACCESSORIGIN_HM);
    2332         Log4(("MmioExit/%u: %04x:%08RX64: READ %#x LB %u -> %.*Rhxs rcStrict=%Rrc\n",
    2333               pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
    2334               pRun->mmio.phys_addr, pRun->mmio.len, pRun->mmio.len, pRun->mmio.data, VBOXSTRICTRC_VAL(rcStrict) ));
    2335     }
    2336     return rcStrict;
    2337 }
    2338 
    2339 
    2340 /**
    2341  * Handles KVM_EXIT_RDMSR
    2342  */
    2343 static VBOXSTRICTRC nemHCLnxHandleExitRdMsr(PVMCPUCC pVCpu, struct kvm_run *pRun)
    2344 {
    2345     /*
    2346      * Input validation.
    2347      */
    2348     Assert(   pRun->msr.reason == KVM_MSR_EXIT_REASON_INVAL
    2349            || pRun->msr.reason == KVM_MSR_EXIT_REASON_UNKNOWN
    2350            || pRun->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
    2351 
    2352     /*
    2353      * We cannot easily act on the exit history here, because the MSR exit is
    2354      * stateful and the instruction will be completed in the next KVM_RUN call.
    2355      * There seems no way to circumvent this.
    2356      */
    2357     EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_READ),
    2358                      pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
    2359 
    2360     /*
    2361      * Do the requested job.
    2362      */
    2363     uint64_t uValue = 0;
    2364     VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pRun->msr.index, &uValue);
    2365     pRun->msr.data = uValue;
    2366     if (rcStrict != VERR_CPUM_RAISE_GP_0)
    2367     {
    2368         Log3(("MsrRead/%u: %04x:%08RX64: msr=%#010x (reason=%#x) -> %#RX64 rcStrict=%Rrc\n", pVCpu->idCpu,
    2369               pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.reason, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
    2370         pRun->msr.error = 0;
    2371     }
    2372     else
    2373     {
    2374         Log3(("MsrRead/%u: %04x:%08RX64: msr=%#010x (reason%#x)-> %#RX64 rcStrict=#GP!\n", pVCpu->idCpu,
    2375               pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.reason, uValue));
    2376         pRun->msr.error = 1;
    2377         rcStrict = VINF_SUCCESS;
    2378     }
    2379     return rcStrict;
    2380 }
    2381 
    2382 
    2383 /**
    2384  * Handles KVM_EXIT_WRMSR
    2385  */
    2386 static VBOXSTRICTRC nemHCLnxHandleExitWrMsr(PVMCPUCC pVCpu, struct kvm_run *pRun)
    2387 {
    2388     /*
    2389      * Input validation.
    2390      */
    2391     Assert(   pRun->msr.reason == KVM_MSR_EXIT_REASON_INVAL
    2392            || pRun->msr.reason == KVM_MSR_EXIT_REASON_UNKNOWN
    2393            || pRun->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
    2394 
    2395     /*
    2396      * We cannot easily act on the exit history here, because the MSR exit is
    2397      * stateful and the instruction will be completed in the next KVM_RUN call.
    2398      * There seems no way to circumvent this.
    2399      */
    2400     EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_WRITE),
    2401                      pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
    2402 
    2403     /*
    2404      * Do the requested job.
    2405      */
    2406     VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pRun->msr.index, pRun->msr.data);
    2407     if (rcStrict != VERR_CPUM_RAISE_GP_0)
    2408     {
    2409         Log3(("MsrWrite/%u: %04x:%08RX64: msr=%#010x := %#RX64 (reason=%#x) -> rcStrict=%Rrc\n", pVCpu->idCpu,
    2410               pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.data, pRun->msr.reason, VBOXSTRICTRC_VAL(rcStrict) ));
    2411         pRun->msr.error = 0;
    2412     }
    2413     else
    2414     {
    2415         Log3(("MsrWrite/%u: %04x:%08RX64: msr=%#010x := %#RX64 (reason%#x)-> rcStrict=#GP!\n", pVCpu->idCpu,
    2416               pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.data, pRun->msr.reason));
    2417         pRun->msr.error = 1;
    2418         rcStrict = VINF_SUCCESS;
    2419     }
    2420     return rcStrict;
    2421 }
    2422 
    2423 
    2424 
    2425 static VBOXSTRICTRC nemHCLnxHandleExit(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun, bool *pfStatefulExit)
    2426 {
    2427     STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitTotal);
    2428     switch (pRun->exit_reason)
    2429     {
    2430         case KVM_EXIT_EXCEPTION:
    2431             AssertFailed();
    2432             break;
    2433 
    2434         case KVM_EXIT_IO:
    2435             STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIo);
    2436             *pfStatefulExit = true;
    2437             return nemHCLnxHandleExitIo(pVM, pVCpu, pRun);
    2438 
    2439         case KVM_EXIT_MMIO:
    2440             STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMmio);
    2441             *pfStatefulExit = true;
    2442             return nemHCLnxHandleExitMmio(pVM, pVCpu, pRun);
    2443 
    2444         case KVM_EXIT_IRQ_WINDOW_OPEN:
    2445             EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTTERRUPT_WINDOW),
    2446                              pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
    2447             STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIrqWindowOpen);
    2448             Log5(("IrqWinOpen/%u: %d\n", pVCpu->idCpu, pRun->request_interrupt_window));
    2449             pRun->request_interrupt_window = 0;
    2450             return VINF_SUCCESS;
    2451 
    2452         case KVM_EXIT_SET_TPR:
    2453             STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitSetTpr);
    2454             AssertFailed();
    2455             break;
    2456 
    2457         case KVM_EXIT_TPR_ACCESS:
    2458             STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitTprAccess);
    2459             AssertFailed();
    2460             break;
    2461 
    2462         case KVM_EXIT_X86_RDMSR:
    2463             STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitRdMsr);
    2464             *pfStatefulExit = true;
    2465             return nemHCLnxHandleExitRdMsr(pVCpu, pRun);
    2466 
    2467         case KVM_EXIT_X86_WRMSR:
    2468             STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitWrMsr);
    2469             *pfStatefulExit = true;
    2470             return nemHCLnxHandleExitWrMsr(pVCpu, pRun);
    2471 
    2472         case KVM_EXIT_HLT:
    2473             EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_HALT),
    2474                              pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
    2475             STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHalt);
    2476             Log5(("Halt/%u\n", pVCpu->idCpu));
    2477             return VINF_EM_HALT;
    2478 
    2479         case KVM_EXIT_INTR: /* EINTR */
    2480             EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTERRUPTED),
    2481                              pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
    2482             STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIntr);
    2483             Log5(("Intr/%u\n", pVCpu->idCpu));
    2484             return VINF_SUCCESS;
    2485 
    2486         case KVM_EXIT_HYPERCALL:
    2487             STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHypercall);
    2488             AssertFailed();
    2489             break;
    2490 
    2491         case KVM_EXIT_DEBUG:
    2492             STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitDebug);
    2493             AssertFailed();
    2494             break;
    2495 
    2496         case KVM_EXIT_SYSTEM_EVENT:
    2497             AssertFailed();
    2498             break;
    2499         case KVM_EXIT_IOAPIC_EOI:
    2500             AssertFailed();
    2501             break;
    2502         case KVM_EXIT_HYPERV:
    2503             AssertFailed();
    2504             break;
    2505 
    2506         case KVM_EXIT_DIRTY_RING_FULL:
    2507             AssertFailed();
    2508             break;
    2509         case KVM_EXIT_AP_RESET_HOLD:
    2510             AssertFailed();
    2511             break;
    2512         case KVM_EXIT_X86_BUS_LOCK:
    2513             STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitBusLock);
    2514             AssertFailed();
    2515             break;
    2516 
    2517 
    2518         case KVM_EXIT_SHUTDOWN:
    2519             AssertFailed();
    2520             break;
    2521 
    2522         case KVM_EXIT_FAIL_ENTRY:
    2523             LogRel(("NEM: KVM_EXIT_FAIL_ENTRY! hardware_entry_failure_reason=%#x cpu=%#x\n",
    2524                     pRun->fail_entry.hardware_entry_failure_reason, pRun->fail_entry.cpu));
    2525             EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_FAILED_ENTRY),
    2526                              pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
    2527             return VERR_NEM_IPE_1;
    2528 
    2529         case KVM_EXIT_INTERNAL_ERROR:
    2530             /* we're counting sub-reasons inside the function. */
    2531             return nemR3LnxHandleInternalError(pVCpu, pRun);
    2532 
    2533         /*
    2534          * Foreign and unknowns.
    2535          */
    2536         case KVM_EXIT_NMI:
    2537             AssertLogRelMsgFailedReturn(("KVM_EXIT_NMI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
    2538         case KVM_EXIT_EPR:
    2539             AssertLogRelMsgFailedReturn(("KVM_EXIT_EPR on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
    2540         case KVM_EXIT_WATCHDOG:
    2541             AssertLogRelMsgFailedReturn(("KVM_EXIT_WATCHDOG on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
    2542         case KVM_EXIT_ARM_NISV:
    2543             AssertLogRelMsgFailedReturn(("KVM_EXIT_ARM_NISV on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
    2544         case KVM_EXIT_S390_STSI:
    2545             AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_STSI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
    2546         case KVM_EXIT_S390_TSCH:
    2547             AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_TSCH on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
    2548         case KVM_EXIT_OSI:
    2549             AssertLogRelMsgFailedReturn(("KVM_EXIT_OSI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
    2550         case KVM_EXIT_PAPR_HCALL:
    2551             AssertLogRelMsgFailedReturn(("KVM_EXIT_PAPR_HCALL on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
    2552         case KVM_EXIT_S390_UCONTROL:
    2553             AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_UCONTROL on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
    2554         case KVM_EXIT_DCR:
    2555             AssertLogRelMsgFailedReturn(("KVM_EXIT_DCR on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
    2556         case KVM_EXIT_S390_SIEIC:
    2557             AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_SIEIC on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
    2558         case KVM_EXIT_S390_RESET:
    2559             AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_RESET on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
    2560         case KVM_EXIT_UNKNOWN:
    2561             AssertLogRelMsgFailedReturn(("KVM_EXIT_UNKNOWN on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
    2562         case KVM_EXIT_XEN:
    2563             AssertLogRelMsgFailedReturn(("KVM_EXIT_XEN on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
    2564         default:
    2565             AssertLogRelMsgFailedReturn(("Unknown exit reason %u on VCpu #%u at %04x:%RX64!\n", pRun->exit_reason, pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
    2566     }
    2567 
    2568     RT_NOREF(pVM, pVCpu, pRun);
    2569     return VERR_NOT_IMPLEMENTED;
    2570 }
    2571 
    2572 
    2573 VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu)
    2574 {
    2575     /*
    2576      * Try switch to NEM runloop state.
    2577      */
    2578     if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
    2579     { /* likely */ }
    2580     else
    2581     {
    2582         VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
    2583         LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
    2584         return VINF_SUCCESS;
    2585     }
    2586 
    2587     /*
    2588      * The run loop.
    2589      */
    2590     struct kvm_run * const  pRun                = pVCpu->nem.s.pRun;
    2591     const bool              fSingleStepping     = DBGFIsStepping(pVCpu);
    2592     VBOXSTRICTRC            rcStrict            = VINF_SUCCESS;
    2593     bool                    fStatefulExit       = false;  /* For MMIO and IO exits. */
    2594     for (unsigned iLoop = 0;; iLoop++)
    2595     {
    2596         /*
    2597          * Pending interrupts or such?  Need to check and deal with this prior
    2598          * to the state syncing.
    2599          */
    2600         if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_PIC
    2601                                      | VMCPU_FF_INTERRUPT_NMI  | VMCPU_FF_INTERRUPT_SMI))
    2602         {
    2603             /* Try inject interrupt. */
    2604             rcStrict = nemHCLnxHandleInterruptFF(pVM, pVCpu, pRun);
    2605             if (rcStrict == VINF_SUCCESS)
    2606             { /* likely */ }
    2607             else
    2608             {
    2609                 LogFlow(("NEM/%u: breaking: nemHCLnxHandleInterruptFF -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
    2610                 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
    2611                 break;
    2612             }
    2613         }
    2614 
    2615         /*
    2616          * Do not execute in KVM if the A20 isn't enabled.
    2617          */
    2618         if (PGMPhysIsA20Enabled(pVCpu))
    2619         { /* likely */ }
    2620         else
    2621         {
    2622             rcStrict = VINF_EM_RESCHEDULE_REM;
    2623             LogFlow(("NEM/%u: breaking: A20 disabled\n", pVCpu->idCpu));
    2624             break;
    2625         }
    2626 
    2627         /*
    2628          * Ensure KVM has the whole state.
    2629          */
    2630         if ((pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL) != CPUMCTX_EXTRN_ALL)
    2631         {
    2632             int rc2 = nemHCLnxExportState(pVM, pVCpu, &pVCpu->cpum.GstCtx, pRun);
    2633             AssertRCReturn(rc2, rc2);
    2634         }
    2635 
    2636         /*
    2637          * Poll timers and run for a bit.
    2638          *
    2639          * With the VID approach (ring-0 or ring-3) we can specify a timeout here,
    2640          * so we take the time of the next timer event and uses that as a deadline.
    2641          * The rounding heuristics are "tuned" so that rhel5 (1K timer) will boot fine.
    2642          */
    2643         /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
    2644          *        the whole polling job when timers have changed... */
    2645         uint64_t       offDeltaIgnored;
    2646         uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
    2647         if (   !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
    2648             && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
    2649         {
    2650             if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_WAIT, VMCPUSTATE_STARTED_EXEC_NEM))
    2651             {
    2652                 LogFlow(("NEM/%u: Entry @ %04x:%08RX64 IF=%d EFL=%#RX64 SS:RSP=%04x:%08RX64 cr0=%RX64\n",
    2653                          pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
    2654                          !!(pRun->s.regs.regs.rflags & X86_EFL_IF), pRun->s.regs.regs.rflags,
    2655                          pRun->s.regs.sregs.ss.selector, pRun->s.regs.regs.rsp, pRun->s.regs.sregs.cr0));
    2656                 TMNotifyStartOfExecution(pVM, pVCpu);
    2657 
    2658                 int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_RUN, 0UL);
    2659 
    2660                 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
    2661                 TMNotifyEndOfExecution(pVM, pVCpu, ASMReadTSC());
    2662 
    2663 #ifdef LOG_ENABLED
    2664                 if (LogIsFlowEnabled())
    2665                 {
    2666                     struct kvm_mp_state MpState = {UINT32_MAX};
    2667                     ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_MP_STATE, &MpState);
    2668                     LogFlow(("NEM/%u: Exit  @ %04x:%08RX64 IF=%d EFL=%#RX64 CR8=%#x Reason=%#x IrqReady=%d Flags=%#x %#lx\n", pVCpu->idCpu,
    2669                              pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->if_flag,
    2670                              pRun->s.regs.regs.rflags, pRun->s.regs.sregs.cr8, pRun->exit_reason,
    2671                              pRun->ready_for_interrupt_injection, pRun->flags, MpState.mp_state));
    2672                 }
    2673 #endif
    2674                 fStatefulExit = false;
    2675                 if (RT_LIKELY(rcLnx == 0 || errno == EINTR))
    2676                 {
    2677                     /*
    2678                      * Deal with the exit.
    2679                      */
    2680                     rcStrict = nemHCLnxHandleExit(pVM, pVCpu, pRun, &fStatefulExit);
    2681                     if (rcStrict == VINF_SUCCESS)
    2682                     { /* hopefully likely */ }
    2683                     else
    2684                     {
    2685                         LogFlow(("NEM/%u: breaking: nemHCLnxHandleExit -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
    2686                         STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
    2687                         break;
    2688                     }
    2689                 }
    2690                 else
    2691                 {
    2692                     int rc2 = RTErrConvertFromErrno(errno);
    2693                     AssertLogRelMsgFailedReturn(("KVM_RUN failed: rcLnx=%d errno=%u rc=%Rrc\n", rcLnx, errno, rc2), rc2);
    2694                 }
    2695 
    2696                 /*
    2697                  * If no relevant FFs are pending, loop.
    2698                  */
    2699                 if (   !VM_FF_IS_ANY_SET(   pVM,   !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK    : VM_FF_HP_R0_PRE_HM_STEP_MASK)
    2700                     && !VMCPU_FF_IS_ANY_SET(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
    2701                 { /* likely */ }
    2702                 else
    2703                 {
    2704 
    2705                     /** @todo Try handle pending flags, not just return to EM loops.  Take care
    2706                      *        not to set important RCs here unless we've handled an exit. */
    2707                     LogFlow(("NEM/%u: breaking: pending FF (%#x / %#RX64)\n",
    2708                              pVCpu->idCpu, pVM->fGlobalForcedActions, (uint64_t)pVCpu->fLocalForcedActions));
    2709                     STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPost);
    2710                     break;
    2711                 }
    2712             }
    2713             else
    2714             {
    2715                 LogFlow(("NEM/%u: breaking: canceled %d (pre exec)\n", pVCpu->idCpu, VMCPU_GET_STATE(pVCpu) ));
    2716                 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnCancel);
    2717                 break;
    2718             }
    2719         }
    2720         else
    2721         {
    2722             LogFlow(("NEM/%u: breaking: pending FF (pre exec)\n", pVCpu->idCpu));
    2723             STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPre);
    2724             break;
    2725         }
    2726     } /* the run loop */
    2727 
    2728 
    2729     /*
    2730      * If the last exit was stateful, commit the state we provided before
    2731      * returning to the EM loop so we have a consistent state and can safely
    2732      * be rescheduled and whatnot.  This may require us to make multiple runs
    2733      * for larger MMIO and I/O operations. Sigh^3.
    2734      *
    2735      * Note! There is no 'ing way to reset the kernel side completion callback
    2736      *       for these stateful i/o exits.  Very annoying interface.
    2737      */
    2738     /** @todo check how this works with string I/O and string MMIO. */
    2739     if (fStatefulExit && RT_SUCCESS(rcStrict))
    2740     {
    2741         STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn);
    2742         uint32_t const uOrgExit = pRun->exit_reason;
    2743         for (uint32_t i = 0; ; i++)
    2744         {
    2745             pRun->immediate_exit = 1;
    2746             int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_RUN, 0UL);
    2747             Log(("NEM/%u: Flushed stateful exit -> %d/%d exit_reason=%d\n", pVCpu->idCpu, rcLnx, errno, pRun->exit_reason));
    2748             if (rcLnx == -1 && errno == EINTR)
    2749             {
    2750                 switch (i)
    2751                 {
    2752                     case 0: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn1Loop); break;
    2753                     case 1: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn2Loops); break;
    2754                     case 2: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn3Loops); break;
    2755                     default: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn4PlusLoops); break;
    2756                 }
    2757                 break;
    2758             }
    2759             AssertLogRelMsgBreakStmt(rcLnx == 0 && pRun->exit_reason == uOrgExit,
    2760                                      ("rcLnx=%d errno=%d exit_reason=%d uOrgExit=%d\n", rcLnx, errno, pRun->exit_reason, uOrgExit),
    2761                                      rcStrict = VERR_NEM_IPE_6);
    2762             VBOXSTRICTRC rcStrict2 = nemHCLnxHandleExit(pVM, pVCpu, pRun, &fStatefulExit);
    2763             if (rcStrict2 == VINF_SUCCESS || rcStrict2 == rcStrict)
    2764             { /* likely */ }
    2765             else if (RT_FAILURE(rcStrict2))
    2766             {
    2767                 rcStrict = rcStrict2;
    2768                 break;
    2769             }
    2770             else
    2771             {
    2772                 AssertLogRelMsgBreakStmt(rcStrict == VINF_SUCCESS,
    2773                                          ("rcStrict=%Rrc rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict), VBOXSTRICTRC_VAL(rcStrict2)),
    2774                                          rcStrict = VERR_NEM_IPE_7);
    2775                 rcStrict = rcStrict2;
    2776             }
    2777         }
    2778         pRun->immediate_exit = 0;
    2779     }
    2780 
    2781     /*
    2782      * If the CPU is running, make sure to stop it before we try sync back the
    2783      * state and return to EM.  We don't sync back the whole state if we can help it.
    2784      */
    2785     if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
    2786         VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
    2787 
    2788     if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL)
    2789     {
    2790         /* Try anticipate what we might need. */
    2791         uint64_t fImport = CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI /* Required for processing APIC,PIC,NMI & SMI FFs. */
    2792                          | IEM_CPUMCTX_EXTRN_MUST_MASK /*?*/;
    2793         if (   (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
    2794             || RT_FAILURE(rcStrict))
    2795             fImport = CPUMCTX_EXTRN_ALL;
    2796 # ifdef IN_RING0 /* Ring-3 I/O port access optimizations: */
    2797         else if (   rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
    2798                  || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
    2799             fImport = CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS;
    2800         else if (rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
    2801             fImport = CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS;
    2802 # endif
    2803         else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC
    2804                                           | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
    2805             fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;
    2806 
    2807         if (pVCpu->cpum.GstCtx.fExtrn & fImport)
    2808         {
    2809             int rc2 = nemHCLnxImportState(pVCpu, fImport, &pVCpu->cpum.GstCtx, pRun);
    2810             if (RT_SUCCESS(rc2))
    2811                 pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
    2812             else if (RT_SUCCESS(rcStrict))
    2813                 rcStrict = rc2;
    2814             if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
    2815                 pVCpu->cpum.GstCtx.fExtrn = 0;
    2816             STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
    2817         }
    2818         else
    2819             STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
    2820     }
    2821     else
    2822     {
    2823         pVCpu->cpum.GstCtx.fExtrn = 0;
    2824         STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
    2825     }
    2826 
    2827     LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
    2828              pVCpu->cpum.GstCtx.rflags.u, VBOXSTRICTRC_VAL(rcStrict) ));
    2829     return rcStrict;
    2830 }
    2831 
    2832 
    2833 /** @page pg_nem_linux NEM/linux - Native Execution Manager, Linux.
    2834  *
    2835  * This is using KVM.
    2836  *
    2837  */
    2838 
Note: See TracChangeset for help on using the changeset viewer.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette