VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 70000

Last change on this file since 70000 was 70000, checked in by vboxsync, 7 years ago

VMM: Nested Hw.virt: Make SVM intercept functions smarter. Avoids swapping of modified VMCB state in a lot of
tricky to detect situations and makes it a lot cleaner that the VMCB is only finally restored before the
#VMEXIT is done.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 295.5 KB
Line 
1/* $Id: HMSVMR0.cpp 70000 2017-12-08 05:57:18Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/asm-amd64-x86.h>
25#include <iprt/thread.h>
26
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/dbgf.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/tm.h>
32#include <VBox/vmm/gim.h>
33#include <VBox/vmm/apic.h>
34#include "HMInternal.h"
35#include <VBox/vmm/vm.h>
36#include "HMSVMR0.h"
37#include "dtrace/VBoxVMM.h"
38
39#define HMSVM_USE_IEM_EVENT_REFLECTION
40#ifdef DEBUG_ramshankar
41# define HMSVM_SYNC_FULL_GUEST_STATE
42# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
43# define HMSVM_ALWAYS_TRAP_PF
44# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
45#endif
46
47
48/*********************************************************************************************************************************
49* Defined Constants And Macros *
50*********************************************************************************************************************************/
51#ifdef VBOX_WITH_STATISTICS
52# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
53 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
54 if ((u64ExitCode) == SVM_EXIT_NPF) \
55 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
56 else \
57 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
58 } while (0)
59#else
60# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
61#endif
62
63/** If we decide to use a function table approach this can be useful to
64 * switch to a "static DECLCALLBACK(int)". */
65#define HMSVM_EXIT_DECL static int
66
67/** Macro for checking and returning from the using function for
68 * \#VMEXIT intercepts that maybe caused during delivering of another
69 * event in the guest. */
70#define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY() \
71 do \
72 { \
73 int rc = hmR0SvmCheckExitDueToEventDelivery(pVCpu, pCtx, pSvmTransient); \
74 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* likely */ } \
75 else if (rc == VINF_HM_DOUBLE_FAULT) \
76 return VINF_SUCCESS; \
77 else \
78 return rc; \
79 } while (0)
80
81/**
82 * Updates interrupt shadow for the current RIP.
83 */
84#define HMSVM_UPDATE_INTR_SHADOW(pVCpu, pCtx) \
85 do { \
86 /* Update interrupt shadow. */ \
87 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) \
88 && pCtx->rip != EMGetInhibitInterruptsPC(pVCpu)) \
89 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); \
90 } while (0)
91
92/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
93 * instruction that exited. */
94#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
95 do { \
96 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
97 (a_rc) = VINF_EM_DBG_STEPPED; \
98 } while (0)
99
100/** Assert that preemption is disabled or covered by thread-context hooks. */
101#define HMSVM_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
102 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
103
104/** Assert that we haven't migrated CPUs when thread-context hooks are not
105 * used. */
106#define HMSVM_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
107 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
108 ("Illegal migration! Entered on CPU %u Current %u\n", \
109 pVCpu->hm.s.idEnteredCpu, RTMpCpuId()));
110
111/** Assert that we're not executing a nested-guest. */
112#ifdef VBOX_WITH_NESTED_HWVIRT
113# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) Assert(!CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
114#else
115# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
116#endif
117
118/** Assert that we're executing a nested-guest. */
119#ifdef VBOX_WITH_NESTED_HWVIRT
120# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) Assert(CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
121#else
122# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
123#endif
124
125/**
126 * Exception bitmap mask for all contributory exceptions.
127 *
128 * Page fault is deliberately excluded here as it's conditional as to whether
129 * it's contributory or benign. Page faults are handled separately.
130 */
131#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
132 | RT_BIT(X86_XCPT_DE))
133
134/**
135 * Mandatory/unconditional guest control intercepts.
136 */
137#define HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS ( SVM_CTRL_INTERCEPT_INTR \
138 | SVM_CTRL_INTERCEPT_NMI \
139 | SVM_CTRL_INTERCEPT_INIT \
140 | SVM_CTRL_INTERCEPT_RDPMC \
141 | SVM_CTRL_INTERCEPT_CPUID \
142 | SVM_CTRL_INTERCEPT_RSM \
143 | SVM_CTRL_INTERCEPT_HLT \
144 | SVM_CTRL_INTERCEPT_IOIO_PROT \
145 | SVM_CTRL_INTERCEPT_MSR_PROT \
146 | SVM_CTRL_INTERCEPT_INVLPGA \
147 | SVM_CTRL_INTERCEPT_SHUTDOWN \
148 | SVM_CTRL_INTERCEPT_FERR_FREEZE \
149 | SVM_CTRL_INTERCEPT_VMRUN \
150 | SVM_CTRL_INTERCEPT_VMMCALL \
151 | SVM_CTRL_INTERCEPT_VMLOAD \
152 | SVM_CTRL_INTERCEPT_VMSAVE \
153 | SVM_CTRL_INTERCEPT_STGI \
154 | SVM_CTRL_INTERCEPT_CLGI \
155 | SVM_CTRL_INTERCEPT_SKINIT \
156 | SVM_CTRL_INTERCEPT_WBINVD \
157 | SVM_CTRL_INTERCEPT_MONITOR \
158 | SVM_CTRL_INTERCEPT_MWAIT \
159 | SVM_CTRL_INTERCEPT_XSETBV)
160
161/**
162 * Mandatory/unconditional nested-guest control intercepts.
163 */
164#define HMSVM_MANDATORY_NESTED_GUEST_CTRL_INTERCEPTS ( HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS \
165 | SVM_CTRL_INTERCEPT_SMI)
166
167/** @name VMCB Clean Bits.
168 *
169 * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
170 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
171 * memory.
172 *
173 * @{ */
174/** All intercepts vectors, TSC offset, PAUSE filter counter. */
175#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
176/** I/O permission bitmap, MSR permission bitmap. */
177#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
178/** ASID. */
179#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
180/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
181V_INTR_VECTOR. */
182#define HMSVM_VMCB_CLEAN_TPR RT_BIT(3)
183/** Nested Paging: Nested CR3 (nCR3), PAT. */
184#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
185/** Control registers (CR0, CR3, CR4, EFER). */
186#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
187/** Debug registers (DR6, DR7). */
188#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
189/** GDT, IDT limit and base. */
190#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
191/** Segment register: CS, SS, DS, ES limit and base. */
192#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
193/** CR2.*/
194#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
195/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
196#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
197/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
198PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
199#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
200/** Mask of all valid VMCB Clean bits. */
201#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
202 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
203 | HMSVM_VMCB_CLEAN_ASID \
204 | HMSVM_VMCB_CLEAN_TPR \
205 | HMSVM_VMCB_CLEAN_NP \
206 | HMSVM_VMCB_CLEAN_CRX_EFER \
207 | HMSVM_VMCB_CLEAN_DRX \
208 | HMSVM_VMCB_CLEAN_DT \
209 | HMSVM_VMCB_CLEAN_SEG \
210 | HMSVM_VMCB_CLEAN_CR2 \
211 | HMSVM_VMCB_CLEAN_LBR \
212 | HMSVM_VMCB_CLEAN_AVIC)
213/** @} */
214
215/** @name SVM transient.
216 *
217 * A state structure for holding miscellaneous information across AMD-V
218 * VMRUN/\#VMEXIT operation, restored after the transition.
219 *
220 * @{ */
221typedef struct SVMTRANSIENT
222{
223 /** The host's rflags/eflags. */
224 RTCCUINTREG fEFlags;
225#if HC_ARCH_BITS == 32
226 uint32_t u32Alignment0;
227#endif
228
229 /** The \#VMEXIT exit code (the EXITCODE field in the VMCB). */
230 uint64_t u64ExitCode;
231 /** The guest's TPR value used for TPR shadowing. */
232 uint8_t u8GuestTpr;
233 /** Alignment. */
234 uint8_t abAlignment0[7];
235
236 /** Whether the guest FPU state was active at the time of \#VMEXIT. */
237 bool fWasGuestFPUStateActive;
238 /** Whether the guest debug state was active at the time of \#VMEXIT. */
239 bool fWasGuestDebugStateActive;
240 /** Whether the hyper debug state was active at the time of \#VMEXIT. */
241 bool fWasHyperDebugStateActive;
242 /** Whether the TSC offset mode needs to be updated. */
243 bool fUpdateTscOffsetting;
244 /** Whether the TSC_AUX MSR needs restoring on \#VMEXIT. */
245 bool fRestoreTscAuxMsr;
246 /** Whether the \#VMEXIT was caused by a page-fault during delivery of a
247 * contributary exception or a page-fault. */
248 bool fVectoringDoublePF;
249 /** Whether the \#VMEXIT was caused by a page-fault during delivery of an
250 * external interrupt or NMI. */
251 bool fVectoringPF;
252} SVMTRANSIENT, *PSVMTRANSIENT;
253AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
254AssertCompileMemberAlignment(SVMTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
255/** @} */
256
257/**
258 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
259 */
260typedef enum SVMMSREXITREAD
261{
262 /** Reading this MSR causes a \#VMEXIT. */
263 SVMMSREXIT_INTERCEPT_READ = 0xb,
264 /** Reading this MSR does not cause a \#VMEXIT. */
265 SVMMSREXIT_PASSTHRU_READ
266} SVMMSREXITREAD;
267
268/**
269 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
270 */
271typedef enum SVMMSREXITWRITE
272{
273 /** Writing to this MSR causes a \#VMEXIT. */
274 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
275 /** Writing to this MSR does not cause a \#VMEXIT. */
276 SVMMSREXIT_PASSTHRU_WRITE
277} SVMMSREXITWRITE;
278
279/**
280 * SVM \#VMEXIT handler.
281 *
282 * @returns VBox status code.
283 * @param pVCpu The cross context virtual CPU structure.
284 * @param pMixedCtx Pointer to the guest-CPU context.
285 * @param pSvmTransient Pointer to the SVM-transient structure.
286 */
287typedef int FNSVMEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
288
289
290/*********************************************************************************************************************************
291* Internal Functions *
292*********************************************************************************************************************************/
293static void hmR0SvmSetMsrPermission(PSVMVMCB pVmcb, uint8_t *pbMsrBitmap, unsigned uMsr, SVMMSREXITREAD enmRead,
294 SVMMSREXITWRITE enmWrite);
295static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
296static void hmR0SvmLeave(PVMCPU pVCpu);
297
298/** @name \#VMEXIT handlers.
299 * @{
300 */
301static FNSVMEXITHANDLER hmR0SvmExitIntr;
302static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
303static FNSVMEXITHANDLER hmR0SvmExitInvd;
304static FNSVMEXITHANDLER hmR0SvmExitCpuid;
305static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
306static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
307static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
308static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
309static FNSVMEXITHANDLER hmR0SvmExitHlt;
310static FNSVMEXITHANDLER hmR0SvmExitMonitor;
311static FNSVMEXITHANDLER hmR0SvmExitMwait;
312static FNSVMEXITHANDLER hmR0SvmExitShutdown;
313static FNSVMEXITHANDLER hmR0SvmExitUnexpected;
314static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
315static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
316static FNSVMEXITHANDLER hmR0SvmExitMsr;
317static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
318static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
319static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
320static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
321static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
322static FNSVMEXITHANDLER hmR0SvmExitVIntr;
323static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
324static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
325static FNSVMEXITHANDLER hmR0SvmExitPause;
326static FNSVMEXITHANDLER hmR0SvmExitIret;
327static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
328static FNSVMEXITHANDLER hmR0SvmExitXcptNM;
329static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
330static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
331static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
332static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
333static FNSVMEXITHANDLER hmR0SvmExitXcptBP;
334#ifdef VBOX_WITH_NESTED_HWVIRT
335static FNSVMEXITHANDLER hmR0SvmExitXcptPFNested;
336static FNSVMEXITHANDLER hmR0SvmExitClgi;
337static FNSVMEXITHANDLER hmR0SvmExitStgi;
338static FNSVMEXITHANDLER hmR0SvmExitVmload;
339static FNSVMEXITHANDLER hmR0SvmExitVmsave;
340static FNSVMEXITHANDLER hmR0SvmExitInvlpga;
341static FNSVMEXITHANDLER hmR0SvmExitVmrun;
342static FNSVMEXITHANDLER hmR0SvmNestedExitXcptDB;
343static FNSVMEXITHANDLER hmR0SvmNestedExitXcptBP;
344#endif
345/** @} */
346
347static int hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient);
348#ifdef VBOX_WITH_NESTED_HWVIRT
349static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
350#endif
351
352
353/*********************************************************************************************************************************
354* Global Variables *
355*********************************************************************************************************************************/
356/** Ring-0 memory object for the IO bitmap. */
357RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
358/** Physical address of the IO bitmap. */
359RTHCPHYS g_HCPhysIOBitmap = 0;
360/** Pointer to the IO bitmap. */
361R0PTRTYPE(void *) g_pvIOBitmap = NULL;
362
363#ifdef VBOX_WITH_NESTED_HWVIRT
364/** Ring-0 memory object for the nested-guest MSRPM bitmap. */
365RTR0MEMOBJ g_hMemObjNstGstMsrBitmap = NIL_RTR0MEMOBJ;
366/** Physical address of the nested-guest MSRPM bitmap. */
367RTHCPHYS g_HCPhysNstGstMsrBitmap = 0;
368/** Pointer to the nested-guest MSRPM bitmap. */
369R0PTRTYPE(void *) g_pvNstGstMsrBitmap = NULL;
370#endif
371
372/**
373 * Sets up and activates AMD-V on the current CPU.
374 *
375 * @returns VBox status code.
376 * @param pCpu Pointer to the CPU info struct.
377 * @param pVM The cross context VM structure. Can be
378 * NULL after a resume!
379 * @param pvCpuPage Pointer to the global CPU page.
380 * @param HCPhysCpuPage Physical address of the global CPU page.
381 * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
382 * @param pvArg Unused on AMD-V.
383 */
384VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
385 void *pvArg)
386{
387 Assert(!fEnabledByHost);
388 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
389 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
390 Assert(pvCpuPage); NOREF(pvCpuPage);
391 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
392
393 NOREF(pvArg);
394 NOREF(fEnabledByHost);
395
396 /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
397 RTCCUINTREG fEFlags = ASMIntDisableFlags();
398
399 /*
400 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
401 */
402 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
403 if (u64HostEfer & MSR_K6_EFER_SVME)
404 {
405 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
406 if ( pVM
407 && pVM->hm.s.svm.fIgnoreInUseError)
408 {
409 pCpu->fIgnoreAMDVInUseError = true;
410 }
411
412 if (!pCpu->fIgnoreAMDVInUseError)
413 {
414 ASMSetFlags(fEFlags);
415 return VERR_SVM_IN_USE;
416 }
417 }
418
419 /* Turn on AMD-V in the EFER MSR. */
420 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
421
422 /* Write the physical page address where the CPU will store the host state while executing the VM. */
423 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
424
425 /* Restore interrupts. */
426 ASMSetFlags(fEFlags);
427
428 /*
429 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
430 * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
431 * upon VMRUN). Therefore, flag that we need to flush the TLB entirely with before executing any
432 * guest code.
433 */
434 pCpu->fFlushAsidBeforeUse = true;
435
436 /*
437 * Ensure each VCPU scheduled on this CPU gets a new ASID on resume. See @bugref{6255}.
438 */
439 ++pCpu->cTlbFlushes;
440
441 return VINF_SUCCESS;
442}
443
444
445/**
446 * Deactivates AMD-V on the current CPU.
447 *
448 * @returns VBox status code.
449 * @param pCpu Pointer to the CPU info struct.
450 * @param pvCpuPage Pointer to the global CPU page.
451 * @param HCPhysCpuPage Physical address of the global CPU page.
452 */
453VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
454{
455 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
456 AssertReturn( HCPhysCpuPage
457 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
458 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
459 NOREF(pCpu);
460
461 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
462 RTCCUINTREG fEFlags = ASMIntDisableFlags();
463
464 /* Turn off AMD-V in the EFER MSR. */
465 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
466 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
467
468 /* Invalidate host state physical address. */
469 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
470
471 /* Restore interrupts. */
472 ASMSetFlags(fEFlags);
473
474 return VINF_SUCCESS;
475}
476
477
478/**
479 * Does global AMD-V initialization (called during module initialization).
480 *
481 * @returns VBox status code.
482 */
483VMMR0DECL(int) SVMR0GlobalInit(void)
484{
485 /*
486 * Allocate 12 KB for the IO bitmap. Since this is non-optional and we always intercept all IO accesses, it's done
487 * once globally here instead of per-VM.
488 */
489 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
490 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
491 if (RT_FAILURE(rc))
492 return rc;
493
494 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
495 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
496
497 /* Set all bits to intercept all IO accesses. */
498 ASMMemFill32(g_pvIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
499
500#ifdef VBOX_WITH_NESTED_HWVIRT
501 /*
502 * Allocate 8 KB for the MSR permission bitmap for the nested-guest.
503 */
504 Assert(g_hMemObjNstGstMsrBitmap == NIL_RTR0MEMOBJ);
505 rc = RTR0MemObjAllocCont(&g_hMemObjNstGstMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
506 if (RT_FAILURE(rc))
507 return rc;
508
509 g_pvNstGstMsrBitmap = RTR0MemObjAddress(g_hMemObjNstGstMsrBitmap);
510 g_HCPhysNstGstMsrBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjNstGstMsrBitmap, 0 /* iPage */);
511
512 /* Set all bits to intercept all MSR accesses. */
513 ASMMemFill32(g_pvNstGstMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
514#endif
515
516 return VINF_SUCCESS;
517}
518
519
520/**
521 * Does global AMD-V termination (called during module termination).
522 */
523VMMR0DECL(void) SVMR0GlobalTerm(void)
524{
525 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
526 {
527 RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
528 g_pvIOBitmap = NULL;
529 g_HCPhysIOBitmap = 0;
530 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
531 }
532
533#ifdef VBOX_WITH_NESTED_HWVIRT
534 if (g_hMemObjNstGstMsrBitmap != NIL_RTR0MEMOBJ)
535 {
536 RTR0MemObjFree(g_hMemObjNstGstMsrBitmap, true /* fFreeMappings */);
537 g_pvNstGstMsrBitmap = NULL;
538 g_HCPhysNstGstMsrBitmap = 0;
539 g_hMemObjNstGstMsrBitmap = NIL_RTR0MEMOBJ;
540 }
541#endif
542}
543
544
545/**
546 * Frees any allocated per-VCPU structures for a VM.
547 *
548 * @param pVM The cross context VM structure.
549 */
550DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
551{
552 for (uint32_t i = 0; i < pVM->cCpus; i++)
553 {
554 PVMCPU pVCpu = &pVM->aCpus[i];
555 AssertPtr(pVCpu);
556
557 if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
558 {
559 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
560 pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
561 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
562 }
563
564 if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
565 {
566 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
567 pVCpu->hm.s.svm.pVmcb = NULL;
568 pVCpu->hm.s.svm.HCPhysVmcb = 0;
569 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
570 }
571
572 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
573 {
574 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
575 pVCpu->hm.s.svm.pvMsrBitmap = NULL;
576 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
577 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
578 }
579 }
580}
581
582
583/**
584 * Does per-VM AMD-V initialization.
585 *
586 * @returns VBox status code.
587 * @param pVM The cross context VM structure.
588 */
589VMMR0DECL(int) SVMR0InitVM(PVM pVM)
590{
591 int rc = VERR_INTERNAL_ERROR_5;
592
593 /*
594 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
595 */
596 uint32_t u32Family;
597 uint32_t u32Model;
598 uint32_t u32Stepping;
599 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
600 {
601 Log4(("SVMR0InitVM: AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
602 pVM->hm.s.svm.fAlwaysFlushTLB = true;
603 }
604
605 /*
606 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
607 */
608 for (VMCPUID i = 0; i < pVM->cCpus; i++)
609 {
610 PVMCPU pVCpu = &pVM->aCpus[i];
611 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
612 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
613 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
614 }
615
616 for (VMCPUID i = 0; i < pVM->cCpus; i++)
617 {
618 PVMCPU pVCpu = &pVM->aCpus[i];
619
620 /*
621 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
622 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
623 */
624 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
625 if (RT_FAILURE(rc))
626 goto failure_cleanup;
627
628 void *pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
629 pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
630 Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
631 ASMMemZeroPage(pvVmcbHost);
632
633 /*
634 * Allocate one page for the guest-state VMCB.
635 */
636 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
637 if (RT_FAILURE(rc))
638 goto failure_cleanup;
639
640 pVCpu->hm.s.svm.pVmcb = (PSVMVMCB)RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
641 pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
642 Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
643 ASMMemZeroPage(pVCpu->hm.s.svm.pVmcb);
644
645 /*
646 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
647 * SVM to not require one.
648 */
649 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
650 false /* fExecutable */);
651 if (RT_FAILURE(rc))
652 goto failure_cleanup;
653
654 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
655 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
656 /* Set all bits to intercept all MSR accesses (changed later on). */
657 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
658 }
659
660 return VINF_SUCCESS;
661
662failure_cleanup:
663 hmR0SvmFreeStructs(pVM);
664 return rc;
665}
666
667
668/**
669 * Does per-VM AMD-V termination.
670 *
671 * @returns VBox status code.
672 * @param pVM The cross context VM structure.
673 */
674VMMR0DECL(int) SVMR0TermVM(PVM pVM)
675{
676 hmR0SvmFreeStructs(pVM);
677 return VINF_SUCCESS;
678}
679
680
681/**
682 * Returns whether VMCB Clean Bits feature is supported.
683 *
684 * @param pVCpu The cross context virtual CPU structure.
685 * @param pCtx Pointer to the guest-CPU context.
686 */
687DECLINLINE(bool) hmR0SvmSupportsVmcbCleanBits(PVMCPU pVCpu, PCPUMCTX pCtx)
688{
689 PVM pVM = pVCpu->CTX_SUFF(pVM);
690#ifdef VBOX_WITH_NESTED_HWVIRT
691 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
692 {
693 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN)
694 && pVM->cpum.ro.GuestFeatures.fSvmVmcbClean;
695 }
696#else
697 RT_NOREF(pCtx);
698#endif
699 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN);
700}
701
702
703/**
704 * Returns whether decode-assist feature is supported.
705 *
706 * @param pVCpu The cross context virtual CPU structure.
707 * @param pCtx Pointer to the guest-CPU context.
708 */
709DECLINLINE(bool) hmR0SvmSupportsDecodeAssist(PVMCPU pVCpu, PCPUMCTX pCtx)
710{
711 PVM pVM = pVCpu->CTX_SUFF(pVM);
712#ifdef VBOX_WITH_NESTED_HWVIRT
713 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
714 {
715 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSIST)
716 && pVM->cpum.ro.GuestFeatures.fSvmDecodeAssist;
717 }
718#else
719 RT_NOREF(pCtx);
720#endif
721 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSIST);
722}
723
724
725/**
726 * Returns whether NRIP_SAVE feature is supported.
727 *
728 * @param pVCpu The cross context virtual CPU structure.
729 * @param pCtx Pointer to the guest-CPU context.
730 */
731DECLINLINE(bool) hmR0SvmSupportsNextRipSave(PVMCPU pVCpu, PCPUMCTX pCtx)
732{
733 PVM pVM = pVCpu->CTX_SUFF(pVM);
734#ifdef VBOX_WITH_NESTED_HWVIRT
735 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
736 {
737 return (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
738 && pVM->cpum.ro.GuestFeatures.fSvmNextRipSave;
739 }
740#else
741 RT_NOREF(pCtx);
742#endif
743 return RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
744}
745
746
747/**
748 * Sets the permission bits for the specified MSR in the MSRPM.
749 *
750 * @param pVmcb Pointer to the VM control block.
751 * @param pbMsrBitmap Pointer to the MSR bitmap.
752 * @param uMsr The MSR for which the access permissions are being set.
753 * @param enmRead MSR read permissions.
754 * @param enmWrite MSR write permissions.
755 */
756static void hmR0SvmSetMsrPermission(PSVMVMCB pVmcb, uint8_t *pbMsrBitmap, unsigned uMsr, SVMMSREXITREAD enmRead,
757 SVMMSREXITWRITE enmWrite)
758{
759 uint16_t offMsrpm;
760 uint32_t uMsrpmBit;
761 int rc = HMSvmGetMsrpmOffsetAndBit(uMsr, &offMsrpm, &uMsrpmBit);
762 AssertRC(rc);
763
764 Assert(uMsrpmBit < 0x3fff);
765 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
766
767 pbMsrBitmap += offMsrpm;
768 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
769 ASMBitSet(pbMsrBitmap, uMsrpmBit);
770 else
771 ASMBitClear(pbMsrBitmap, uMsrpmBit);
772
773 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
774 ASMBitSet(pbMsrBitmap, uMsrpmBit + 1);
775 else
776 ASMBitClear(pbMsrBitmap, uMsrpmBit + 1);
777
778 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
779}
780
781
782/**
783 * Sets up AMD-V for the specified VM.
784 * This function is only called once per-VM during initalization.
785 *
786 * @returns VBox status code.
787 * @param pVM The cross context VM structure.
788 */
789VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
790{
791 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
792 AssertReturn(pVM, VERR_INVALID_PARAMETER);
793 Assert(pVM->hm.s.svm.fSupported);
794
795 bool const fPauseFilter = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
796 bool const fPauseFilterThreshold = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
797 bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter && pVM->hm.s.svm.cPauseFilterThresholdTicks;
798
799 for (VMCPUID i = 0; i < pVM->cCpus; i++)
800 {
801 PVMCPU pVCpu = &pVM->aCpus[i];
802 PSVMVMCB pVmcb = pVM->aCpus[i].hm.s.svm.pVmcb;
803
804 AssertMsgReturn(pVmcb, ("Invalid pVmcb for vcpu[%u]\n", i), VERR_SVM_INVALID_PVMCB);
805
806 /* Initialize the #VMEXIT history array with end-of-array markers (UINT16_MAX). */
807 Assert(!pVCpu->hm.s.idxExitHistoryFree);
808 HMCPU_EXIT_HISTORY_RESET(pVCpu);
809
810 /* Always trap #AC for reasons of security. */
811 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT_32(X86_XCPT_AC);
812
813 /* Always trap #DB for reasons of security. */
814 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT_32(X86_XCPT_DB);
815
816 /* Trap exceptions unconditionally (debug purposes). */
817#ifdef HMSVM_ALWAYS_TRAP_PF
818 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
819#endif
820#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
821 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
822 pVmcb->ctrl.u32InterceptXcpt |= 0
823 | RT_BIT(X86_XCPT_BP)
824 | RT_BIT(X86_XCPT_DE)
825 | RT_BIT(X86_XCPT_NM)
826 | RT_BIT(X86_XCPT_UD)
827 | RT_BIT(X86_XCPT_NP)
828 | RT_BIT(X86_XCPT_SS)
829 | RT_BIT(X86_XCPT_GP)
830 | RT_BIT(X86_XCPT_PF)
831 | RT_BIT(X86_XCPT_MF)
832 ;
833#endif
834
835 /* Set up unconditional intercepts and conditions. */
836 pVmcb->ctrl.u64InterceptCtrl = HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS;
837
838 /* CR0, CR4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
839 pVmcb->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
840
841 /* CR0, CR4 writes must be intercepted for the same reasons as above. */
842 pVmcb->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
843
844 /* Intercept all DRx reads and writes by default. Changed later on. */
845 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
846 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
847
848 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
849 pVmcb->ctrl.IntCtrl.n.u1VIntrMasking = 1;
850
851 /* Ignore the priority in the virtual TPR. This is necessary for delivering PIC style (ExtInt) interrupts
852 and we currently deliver both PIC and APIC interrupts alike. See hmR0SvmInjectPendingEvent() */
853 pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
854
855 /* Set IO and MSR bitmap permission bitmap physical addresses. */
856 pVmcb->ctrl.u64IOPMPhysAddr = g_HCPhysIOBitmap;
857 pVmcb->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
858
859 /* No LBR virtualization. */
860 pVmcb->ctrl.u64LBRVirt = 0;
861
862 /* Initially set all VMCB clean bits to 0 indicating that everything should be loaded from the VMCB in memory. */
863 pVmcb->ctrl.u64VmcbCleanBits = 0;
864
865 /* The host ASID MBZ, for the guest start with 1. */
866 pVmcb->ctrl.TLBCtrl.n.u32ASID = 1;
867
868 /*
869 * Setup the PAT MSR (applicable for Nested Paging only).
870 * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
871 * so choose type 6 for all PAT slots.
872 */
873 pVmcb->guest.u64GPAT = UINT64_C(0x0006060606060606);
874
875 /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
876 pVmcb->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
877
878 /* Without Nested Paging, we need additionally intercepts. */
879 if (!pVM->hm.s.fNestedPaging)
880 {
881 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
882 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(3);
883 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(3);
884
885 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
886 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG
887 | SVM_CTRL_INTERCEPT_TASK_SWITCH;
888
889 /* Page faults must be intercepted to implement shadow paging. */
890 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
891 }
892
893#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
894 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH;
895#endif
896
897 /* Apply the exceptions intercepts needed by the GIM provider. */
898 if (pVCpu->hm.s.fGIMTrapXcptUD)
899 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(X86_XCPT_UD);
900
901 /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
902 if (fUsePauseFilter)
903 {
904 pVmcb->ctrl.u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
905 if (fPauseFilterThreshold)
906 pVmcb->ctrl.u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
907 }
908
909 /*
910 * The following MSRs are saved/restored automatically during the world-switch.
911 * Don't intercept guest read/write accesses to these MSRs.
912 */
913 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
914 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
915 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
916 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
917 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
918 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
919 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
920 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
921 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
922 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
923 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
924 }
925
926 return VINF_SUCCESS;
927}
928
929
930/**
931 * Gets a pointer to the currently active guest or nested-guest VMCB.
932 *
933 * @returns Pointer to the current context VMCB.
934 * @param pVCpu The cross context virtual CPU structure.
935 * @param pCtx Pointer to the guest-CPU context.
936 */
937DECLINLINE(PSVMVMCB) hmR0SvmGetCurrentVmcb(PVMCPU pVCpu, PCPUMCTX pCtx)
938{
939#ifdef VBOX_WITH_NESTED_HWVIRT
940 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
941 return pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
942#else
943 RT_NOREF(pCtx);
944#endif
945 return pVCpu->hm.s.svm.pVmcb;
946}
947
948
949/**
950 * Invalidates a guest page by guest virtual address.
951 *
952 * @returns VBox status code.
953 * @param pVM The cross context VM structure.
954 * @param pVCpu The cross context virtual CPU structure.
955 * @param GCVirt Guest virtual address of the page to invalidate.
956 */
957VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
958{
959 AssertReturn(pVM, VERR_INVALID_PARAMETER);
960 Assert(pVM->hm.s.svm.fSupported);
961
962 bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
963
964 /* Skip it if a TLB flush is already pending. */
965 if (!fFlushPending)
966 {
967 Log4(("SVMR0InvalidatePage %RGv\n", GCVirt));
968
969 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
970 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
971 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
972
973#if HC_ARCH_BITS == 32
974 /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
975 if (CPUMIsGuestInLongMode(pVCpu))
976 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
977 else
978#endif
979 {
980 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
981 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
982 }
983 }
984 return VINF_SUCCESS;
985}
986
987
988/**
989 * Flushes the appropriate tagged-TLB entries.
990 *
991 * @param pVCpu The cross context virtual CPU structure.
992 * @param pCtx Pointer to the guest-CPU or nested-guest-CPU context.
993 * @param pVmcb Pointer to the VM control block.
994 */
995static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMVMCB pVmcb)
996{
997#ifndef VBOX_WITH_NESTED_HWVIRT
998 RT_NOREF(pCtx);
999#endif
1000
1001 PVM pVM = pVCpu->CTX_SUFF(pVM);
1002 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
1003
1004 /*
1005 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
1006 * This can happen both for start & resume due to long jumps back to ring-3.
1007 *
1008 * We also force a TLB flush every time when executing a nested-guest VCPU as there is no correlation
1009 * between it and the physical CPU.
1010 *
1011 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
1012 * so we cannot reuse the ASIDs without flushing.
1013 */
1014 bool fNewAsid = false;
1015 Assert(pCpu->idCpu != NIL_RTCPUID);
1016 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1017 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes
1018#ifdef VBOX_WITH_NESTED_HWVIRT
1019 || CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
1020#endif
1021 )
1022 {
1023 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1024 pVCpu->hm.s.fForceTLBFlush = true;
1025 fNewAsid = true;
1026 }
1027
1028 /* Set TLB flush state as checked until we return from the world switch. */
1029 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
1030
1031 /* Check for explicit TLB flushes. */
1032 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1033 {
1034 pVCpu->hm.s.fForceTLBFlush = true;
1035 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
1036 }
1037
1038 /*
1039 * If the AMD CPU erratum 170, We need to flush the entire TLB for each world switch. Sad.
1040 * This Host CPU requirement takes precedence.
1041 */
1042 if (pVM->hm.s.svm.fAlwaysFlushTLB)
1043 {
1044 pCpu->uCurrentAsid = 1;
1045 pVCpu->hm.s.uCurrentAsid = 1;
1046 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1047 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1048
1049 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1050 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1051
1052 /* Keep track of last CPU ID even when flushing all the time. */
1053 if (fNewAsid)
1054 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1055 }
1056 else
1057 {
1058 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
1059 if (pVCpu->hm.s.fForceTLBFlush)
1060 {
1061 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
1062 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1063
1064 if (fNewAsid)
1065 {
1066 ++pCpu->uCurrentAsid;
1067
1068 bool fHitASIDLimit = false;
1069 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1070 {
1071 pCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
1072 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new ASID. */
1073 fHitASIDLimit = true;
1074 }
1075
1076 if ( fHitASIDLimit
1077 || pCpu->fFlushAsidBeforeUse)
1078 {
1079 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1080 pCpu->fFlushAsidBeforeUse = false;
1081 }
1082
1083 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
1084 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1085 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1086 }
1087 else
1088 {
1089 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
1090 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
1091 else
1092 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
1093 }
1094
1095 pVCpu->hm.s.fForceTLBFlush = false;
1096 }
1097 }
1098
1099 /* Update VMCB with the ASID. */
1100 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
1101 {
1102 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
1103 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
1104 }
1105
1106 AssertMsg(pVCpu->hm.s.idLastCpu == pCpu->idCpu,
1107 ("vcpu idLastCpu=%u pcpu idCpu=%u\n", pVCpu->hm.s.idLastCpu, pCpu->idCpu));
1108 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
1109 ("Flush count mismatch for cpu %u (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
1110 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
1111 ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
1112 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
1113 ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
1114
1115#ifdef VBOX_WITH_STATISTICS
1116 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
1117 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
1118 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
1119 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
1120 {
1121 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1122 }
1123 else
1124 {
1125 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
1126 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
1127 }
1128#endif
1129}
1130
1131
1132/** @name 64-bit guest on 32-bit host OS helper functions.
1133 *
1134 * The host CPU is still 64-bit capable but the host OS is running in 32-bit
1135 * mode (code segment, paging). These wrappers/helpers perform the necessary
1136 * bits for the 32->64 switcher.
1137 *
1138 * @{ */
1139#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1140/**
1141 * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
1142 *
1143 * @returns VBox status code.
1144 * @param HCPhysVmcbHost Physical address of host VMCB.
1145 * @param HCPhysVmcb Physical address of the VMCB.
1146 * @param pCtx Pointer to the guest-CPU context.
1147 * @param pVM The cross context VM structure.
1148 * @param pVCpu The cross context virtual CPU structure.
1149 */
1150DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
1151{
1152 uint32_t aParam[8];
1153 aParam[0] = RT_LO_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
1154 aParam[1] = RT_HI_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Hi. */
1155 aParam[2] = RT_LO_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
1156 aParam[3] = RT_HI_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Hi. */
1157 aParam[4] = VM_RC_ADDR(pVM, pVM);
1158 aParam[5] = 0;
1159 aParam[6] = VM_RC_ADDR(pVM, pVCpu);
1160 aParam[7] = 0;
1161
1162 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, RT_ELEMENTS(aParam), &aParam[0]);
1163}
1164
1165
1166/**
1167 * Executes the specified VMRUN handler in 64-bit mode.
1168 *
1169 * @returns VBox status code.
1170 * @param pVM The cross context VM structure.
1171 * @param pVCpu The cross context virtual CPU structure.
1172 * @param pCtx Pointer to the guest-CPU context.
1173 * @param enmOp The operation to perform.
1174 * @param cParams Number of parameters.
1175 * @param paParam Array of 32-bit parameters.
1176 */
1177VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp,
1178 uint32_t cParams, uint32_t *paParam)
1179{
1180 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
1181 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
1182
1183 NOREF(pCtx);
1184
1185 /* Disable interrupts. */
1186 RTHCUINTREG uOldEFlags = ASMIntDisableFlags();
1187
1188#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
1189 RTCPUID idHostCpu = RTMpCpuId();
1190 CPUMR0SetLApic(pVCpu, idHostCpu);
1191#endif
1192
1193 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
1194 CPUMSetHyperEIP(pVCpu, enmOp);
1195 for (int i = (int)cParams - 1; i >= 0; i--)
1196 CPUMPushHyper(pVCpu, paParam[i]);
1197
1198 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1199 /* Call the switcher. */
1200 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
1201 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1202
1203 /* Restore interrupts. */
1204 ASMSetFlags(uOldEFlags);
1205 return rc;
1206}
1207
1208#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
1209/** @} */
1210
1211
1212/**
1213 * Adds an exception to the intercept exception bitmap in the VMCB and updates
1214 * the corresponding VMCB Clean bit.
1215 *
1216 * @param pVmcb Pointer to the VM control block.
1217 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1218 */
1219DECLINLINE(void) hmR0SvmAddXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1220{
1221 if (!(pVmcb->ctrl.u32InterceptXcpt & RT_BIT(u32Xcpt)))
1222 {
1223 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(u32Xcpt);
1224 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1225 }
1226}
1227
1228
1229/**
1230 * Removes an exception from the intercept-exception bitmap in the VMCB and
1231 * updates the corresponding VMCB Clean bit.
1232 *
1233 * @param pVCpu The cross context virtual CPU structure.
1234 * @param pCtx Pointer to the guest-CPU context.
1235 * @param pVmcb Pointer to the VM control block.
1236 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1237 *
1238 * @remarks This takes into account if we're executing a nested-guest and only
1239 * removes the exception intercept if both the guest -and- nested-guest
1240 * are not intercepting it.
1241 */
1242DECLINLINE(void) hmR0SvmRemoveXcptIntercept(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMVMCB pVmcb, uint32_t u32Xcpt)
1243{
1244 Assert(u32Xcpt != X86_XCPT_DB);
1245 Assert(u32Xcpt != X86_XCPT_AC);
1246#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1247 if (pVmcb->ctrl.u32InterceptXcpt & RT_BIT(u32Xcpt))
1248 {
1249 bool fRemoveXcpt = true;
1250#ifdef VBOX_WITH_NESTED_HWVIRT
1251 /* Only remove the intercept if the nested-guest is also not intercepting it! */
1252 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
1253 {
1254 Assert(pCtx->hwvirt.svm.fHMCachedVmcb); NOREF(pCtx);
1255 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
1256 fRemoveXcpt = !(pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(u32Xcpt));
1257 }
1258#else
1259 RT_NOREF2(pVCpu, pCtx);
1260#endif
1261 if (fRemoveXcpt)
1262 {
1263 pVmcb->ctrl.u32InterceptXcpt &= ~RT_BIT(u32Xcpt);
1264 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1265 }
1266 }
1267#else
1268 RT_NOREF3(pVCpu, pCtx, pVmcb);
1269#endif
1270}
1271
1272
1273/**
1274 * Loads the guest (or nested-guest) CR0 control register into the guest-state
1275 * area in the VMCB.
1276 *
1277 * Although the guest CR0 is a separate field in the VMCB we have to consider
1278 * the FPU state itself which is shared between the host and the guest.
1279 *
1280 * @returns VBox status code.
1281 * @param pVCpu The cross context virtual CPU structure.
1282 * @param pVmcb Pointer to the VM control block.
1283 * @param pCtx Pointer to the guest-CPU context.
1284 *
1285 * @remarks No-long-jump zone!!!
1286 */
1287static void hmR0SvmLoadSharedCR0(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1288{
1289 uint64_t u64GuestCR0 = pCtx->cr0;
1290
1291 /* Always enable caching. */
1292 u64GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW);
1293
1294 /*
1295 * When Nested Paging is not available use shadow page tables and intercept #PFs (the latter done in SVMR0SetupVM()).
1296 */
1297 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
1298 {
1299 u64GuestCR0 |= X86_CR0_PG; /* When Nested Paging is not available, use shadow page tables. */
1300 u64GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
1301 }
1302
1303 /*
1304 * Guest FPU bits.
1305 */
1306 bool fInterceptNM = false;
1307 bool fInterceptMF = false;
1308 u64GuestCR0 |= X86_CR0_NE; /* Use internal x87 FPU exceptions handling rather than external interrupts. */
1309 if (CPUMIsGuestFPUStateActive(pVCpu))
1310 {
1311 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
1312 if (!(pCtx->cr0 & X86_CR0_NE))
1313 {
1314 Log4(("hmR0SvmLoadSharedCR0: Intercepting Guest CR0.MP Old-style FPU handling!!!\n"));
1315 fInterceptMF = true;
1316 }
1317 }
1318 else
1319 {
1320 fInterceptNM = true; /* Guest FPU inactive, #VMEXIT on #NM for lazy FPU loading. */
1321 u64GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
1322 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
1323 }
1324
1325 /*
1326 * Update the exception intercept bitmap.
1327 */
1328 if (fInterceptNM)
1329 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_NM);
1330 else
1331 hmR0SvmRemoveXcptIntercept(pVCpu, pCtx, pVmcb, X86_XCPT_NM);
1332
1333 if (fInterceptMF)
1334 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_MF);
1335 else
1336 hmR0SvmRemoveXcptIntercept(pVCpu, pCtx, pVmcb, X86_XCPT_MF);
1337
1338 pVmcb->guest.u64CR0 = u64GuestCR0;
1339 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1340}
1341
1342
1343/**
1344 * Loads the guest/nested-guest control registers (CR2, CR3, CR4) into the VMCB.
1345 *
1346 * @returns VBox status code.
1347 * @param pVCpu The cross context virtual CPU structure.
1348 * @param pVmcb Pointer to the VM control block.
1349 * @param pCtx Pointer to the guest-CPU context.
1350 *
1351 * @remarks No-long-jump zone!!!
1352 */
1353static int hmR0SvmLoadGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1354{
1355 PVM pVM = pVCpu->CTX_SUFF(pVM);
1356
1357 /*
1358 * Guest CR2.
1359 */
1360 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR2))
1361 {
1362 pVmcb->guest.u64CR2 = pCtx->cr2;
1363 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1364 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
1365 }
1366
1367 /*
1368 * Guest CR3.
1369 */
1370 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
1371 {
1372 if (pVM->hm.s.fNestedPaging)
1373 {
1374 PGMMODE enmShwPagingMode;
1375#if HC_ARCH_BITS == 32
1376 if (CPUMIsGuestInLongModeEx(pCtx))
1377 enmShwPagingMode = PGMMODE_AMD64_NX;
1378 else
1379#endif
1380 enmShwPagingMode = PGMGetHostMode(pVM);
1381
1382 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
1383 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1384 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1385 pVmcb->guest.u64CR3 = pCtx->cr3;
1386 }
1387 else
1388 {
1389 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1390 Log4(("hmR0SvmLoadGuestControlRegs: CR3=%#RX64 (HyperCR3=%#RX64)\n", pCtx->cr3, pVmcb->guest.u64CR3));
1391 }
1392
1393 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1394 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
1395 }
1396
1397 /*
1398 * Guest CR4.
1399 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
1400 */
1401 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
1402 {
1403 uint64_t u64GuestCR4 = pCtx->cr4;
1404 Assert(RT_HI_U32(u64GuestCR4) == 0);
1405 if (!pVM->hm.s.fNestedPaging)
1406 {
1407 switch (pVCpu->hm.s.enmShadowMode)
1408 {
1409 case PGMMODE_REAL:
1410 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1411 AssertFailed();
1412 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1413
1414 case PGMMODE_32_BIT: /* 32-bit paging. */
1415 u64GuestCR4 &= ~X86_CR4_PAE;
1416 break;
1417
1418 case PGMMODE_PAE: /* PAE paging. */
1419 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1420 /** Must use PAE paging as we could use physical memory > 4 GB */
1421 u64GuestCR4 |= X86_CR4_PAE;
1422 break;
1423
1424 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1425 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1426#ifdef VBOX_ENABLE_64_BITS_GUESTS
1427 break;
1428#else
1429 AssertFailed();
1430 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1431#endif
1432
1433 default: /* shut up gcc */
1434 AssertFailed();
1435 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1436 }
1437 }
1438
1439 pVmcb->guest.u64CR4 = u64GuestCR4;
1440 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1441
1442 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
1443 pVCpu->hm.s.fLoadSaveGuestXcr0 = (u64GuestCR4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
1444
1445 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
1446 }
1447
1448 return VINF_SUCCESS;
1449}
1450
1451
1452#ifdef VBOX_WITH_NESTED_HWVIRT
1453/**
1454 * Loads the nested-guest control registers (CR0, CR2, CR3, CR4) into the VMCB.
1455 *
1456 * @returns VBox status code.
1457 * @param pVCpu The cross context virtual CPU structure.
1458 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
1459 * @param pCtx Pointer to the guest-CPU context.
1460 *
1461 * @remarks No-long-jump zone!!!
1462 */
1463static int hmR0SvmLoadGuestControlRegsNested(PVMCPU pVCpu, PSVMVMCB pVmcbNstGst, PCPUMCTX pCtx)
1464{
1465 /*
1466 * Guest CR0.
1467 */
1468 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
1469 {
1470 pVmcbNstGst->guest.u64CR0 = pCtx->cr0;
1471 pVmcbNstGst->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1472 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
1473 }
1474
1475 return hmR0SvmLoadGuestControlRegs(pVCpu, pVmcbNstGst, pCtx);
1476}
1477#endif
1478
1479
1480/**
1481 * Loads the guest segment registers into the VMCB.
1482 *
1483 * @returns VBox status code.
1484 * @param pVCpu The cross context virtual CPU structure.
1485 * @param pVmcb Pointer to the VM control block.
1486 * @param pCtx Pointer to the guest-CPU context.
1487 *
1488 * @remarks No-long-jump zone!!!
1489 */
1490static void hmR0SvmLoadGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1491{
1492 /* Guest Segment registers: CS, SS, DS, ES, FS, GS. */
1493 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
1494 {
1495 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, CS, cs);
1496 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, SS, ss);
1497 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, DS, ds);
1498 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, ES, es);
1499 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs);
1500 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs);
1501
1502 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1503 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1504 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
1505 }
1506
1507 /* Guest TR. */
1508 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
1509 {
1510 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr);
1511 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
1512 }
1513
1514 /* Guest LDTR. */
1515 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
1516 {
1517 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
1518 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
1519 }
1520
1521 /* Guest GDTR. */
1522 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
1523 {
1524 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1525 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1526 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1527 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
1528 }
1529
1530 /* Guest IDTR. */
1531 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
1532 {
1533 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1534 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1535 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1536 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
1537 }
1538}
1539
1540
1541/**
1542 * Loads the guest MSRs into the VMCB.
1543 *
1544 * @param pVCpu The cross context virtual CPU structure.
1545 * @param pVmcb Pointer to the VM control block.
1546 * @param pCtx Pointer to the guest-CPU context.
1547 *
1548 * @remarks No-long-jump zone!!!
1549 */
1550static void hmR0SvmLoadGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1551{
1552 /* Guest Sysenter MSRs. */
1553 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1554 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1555 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1556
1557 /*
1558 * Guest EFER MSR.
1559 * AMD-V requires guest EFER.SVME to be set. Weird.
1560 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1561 */
1562 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_EFER_MSR))
1563 {
1564 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1565 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1566 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
1567 }
1568
1569 /* 64-bit MSRs. */
1570 if (CPUMIsGuestInLongModeEx(pCtx))
1571 {
1572 pVmcb->guest.FS.u64Base = pCtx->fs.u64Base;
1573 pVmcb->guest.GS.u64Base = pCtx->gs.u64Base;
1574 }
1575 else
1576 {
1577 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit from guest EFER otherwise AMD-V expects amd64 shadow paging. */
1578 if (pCtx->msrEFER & MSR_K6_EFER_LME)
1579 {
1580 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1581 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1582 }
1583 }
1584
1585 /** @todo The following are used in 64-bit only (SYSCALL/SYSRET) but they might
1586 * be writable in 32-bit mode. Clarify with AMD spec. */
1587 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1588 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1589 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1590 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1591 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1592}
1593
1594
1595/**
1596 * Loads the guest (or nested-guest) debug state into the VMCB and programs the
1597 * necessary intercepts accordingly.
1598 *
1599 * @param pVCpu The cross context virtual CPU structure.
1600 * @param pVmcb Pointer to the VM control block.
1601 * @param pCtx Pointer to the guest-CPU context.
1602 *
1603 * @remarks No-long-jump zone!!!
1604 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1605 */
1606static void hmR0SvmLoadSharedDebugState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1607{
1608 bool fInterceptMovDRx = false;
1609
1610 /*
1611 * Anyone single stepping on the host side? If so, we'll have to use the
1612 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1613 * the VMM level like the VT-x implementations does.
1614 */
1615 bool const fStepping = pVCpu->hm.s.fSingleInstruction;
1616 if (fStepping)
1617 {
1618 pVCpu->hm.s.fClearTrapFlag = true;
1619 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1620 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1621 }
1622 else
1623 Assert(!DBGFIsStepping(pVCpu));
1624
1625 if ( fStepping
1626 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1627 {
1628 /*
1629 * Use the combined guest and host DRx values found in the hypervisor
1630 * register set because the debugger has breakpoints active or someone
1631 * is single stepping on the host side.
1632 *
1633 * Note! DBGF expects a clean DR6 state before executing guest code.
1634 */
1635#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1636 if ( CPUMIsGuestInLongModeEx(pCtx)
1637 && !CPUMIsHyperDebugStateActivePending(pVCpu))
1638 {
1639 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1640 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
1641 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
1642 }
1643 else
1644#endif
1645 if (!CPUMIsHyperDebugStateActive(pVCpu))
1646 {
1647 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1648 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1649 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1650 }
1651
1652 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1653 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1654 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
1655 {
1656 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1657 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1658 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1659 pVCpu->hm.s.fUsingHyperDR7 = true;
1660 }
1661
1662 /** @todo If we cared, we could optimize to allow the guest to read registers
1663 * with the same values. */
1664 fInterceptMovDRx = true;
1665 Log5(("hmR0SvmLoadSharedDebugState: Loaded hyper DRx\n"));
1666 }
1667 else
1668 {
1669 /*
1670 * Update DR6, DR7 with the guest values if necessary.
1671 */
1672 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1673 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1674 {
1675 pVmcb->guest.u64DR7 = pCtx->dr[7];
1676 pVmcb->guest.u64DR6 = pCtx->dr[6];
1677 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1678 pVCpu->hm.s.fUsingHyperDR7 = false;
1679 }
1680
1681 /*
1682 * If the guest has enabled debug registers, we need to load them prior to
1683 * executing guest code so they'll trigger at the right time.
1684 */
1685 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1686 {
1687#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1688 if ( CPUMIsGuestInLongModeEx(pCtx)
1689 && !CPUMIsGuestDebugStateActivePending(pVCpu))
1690 {
1691 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1692 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1693 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
1694 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
1695 }
1696 else
1697#endif
1698 if (!CPUMIsGuestDebugStateActive(pVCpu))
1699 {
1700 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1701 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1702 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1703 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1704 }
1705 Log5(("hmR0SvmLoadSharedDebugState: Loaded guest DRx\n"));
1706 }
1707 /*
1708 * If no debugging enabled, we'll lazy load DR0-3. We don't need to
1709 * intercept #DB as DR6 is updated in the VMCB.
1710 *
1711 * Note! If we cared and dared, we could skip intercepting \#DB here.
1712 * However, \#DB shouldn't be performance critical, so we'll play safe
1713 * and keep the code similar to the VT-x code and always intercept it.
1714 */
1715#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1716 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
1717 && !CPUMIsGuestDebugStateActive(pVCpu))
1718#else
1719 else if (!CPUMIsGuestDebugStateActive(pVCpu))
1720#endif
1721 {
1722 fInterceptMovDRx = true;
1723 }
1724 }
1725
1726 Assert(pVmcb->ctrl.u32InterceptXcpt & RT_BIT_32(X86_XCPT_DB));
1727 if (fInterceptMovDRx)
1728 {
1729 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
1730 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
1731 {
1732 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
1733 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
1734 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1735 }
1736 }
1737 else
1738 {
1739 if ( pVmcb->ctrl.u16InterceptRdDRx
1740 || pVmcb->ctrl.u16InterceptWrDRx)
1741 {
1742 pVmcb->ctrl.u16InterceptRdDRx = 0;
1743 pVmcb->ctrl.u16InterceptWrDRx = 0;
1744 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1745 }
1746 }
1747 Log4(("hmR0SvmLoadSharedDebugState: DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
1748}
1749
1750
1751#ifdef VBOX_WITH_NESTED_HWVIRT
1752/**
1753 * Loads the nested-guest APIC state (currently just the TPR).
1754 *
1755 * @param pVCpu The cross context virtual CPU structure.
1756 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
1757 */
1758static void hmR0SvmLoadGuestApicStateNested(PVMCPU pVCpu, PSVMVMCB pVmcbNstGst)
1759{
1760 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE))
1761 {
1762 /* Always enable V_INTR_MASKING as we do not want to allow access to the physical APIC TPR. */
1763 pVmcbNstGst->ctrl.IntCtrl.n.u1VIntrMasking = 1;
1764 pVCpu->hm.s.svm.fSyncVTpr = false;
1765 pVmcbNstGst->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_TPR;
1766
1767 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
1768 }
1769}
1770#endif
1771
1772/**
1773 * Loads the guest APIC state (currently just the TPR).
1774 *
1775 * @returns VBox status code.
1776 * @param pVCpu The cross context virtual CPU structure.
1777 * @param pVmcb Pointer to the VM control block.
1778 * @param pCtx Pointer to the guest-CPU context.
1779 */
1780static int hmR0SvmLoadGuestApicState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1781{
1782 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE))
1783 return VINF_SUCCESS;
1784
1785 int rc = VINF_SUCCESS;
1786 PVM pVM = pVCpu->CTX_SUFF(pVM);
1787 if ( PDMHasApic(pVM)
1788 && APICIsEnabled(pVCpu))
1789 {
1790 bool fPendingIntr;
1791 uint8_t u8Tpr;
1792 rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
1793 AssertRCReturn(rc, rc);
1794
1795 /* Assume that we need to trap all TPR accesses and thus need not check on
1796 every #VMEXIT if we should update the TPR. */
1797 Assert(pVmcb->ctrl.IntCtrl.n.u1VIntrMasking);
1798 pVCpu->hm.s.svm.fSyncVTpr = false;
1799
1800 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
1801 if (pVM->hm.s.fTPRPatchingActive)
1802 {
1803 pCtx->msrLSTAR = u8Tpr;
1804 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
1805
1806 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
1807 if (fPendingIntr)
1808 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
1809 else
1810 {
1811 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1812 pVCpu->hm.s.svm.fSyncVTpr = true;
1813 }
1814 }
1815 else
1816 {
1817 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
1818 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
1819
1820 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we can deliver the interrupt to the guest. */
1821 if (fPendingIntr)
1822 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
1823 else
1824 {
1825 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
1826 pVCpu->hm.s.svm.fSyncVTpr = true;
1827 }
1828
1829 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
1830 }
1831 }
1832
1833 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
1834 return rc;
1835}
1836
1837
1838/**
1839 * Loads the exception interrupts required for guest (or nested-guest) execution in
1840 * the VMCB.
1841 *
1842 * @param pVCpu The cross context virtual CPU structure.
1843 * @param pVmcb Pointer to the VM control block.
1844 * @param pCtx Pointer to the guest-CPU context.
1845 */
1846static void hmR0SvmLoadGuestXcptIntercepts(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1847{
1848 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
1849 {
1850 /* Trap #UD for GIM provider (e.g. for hypercalls). */
1851 if (pVCpu->hm.s.fGIMTrapXcptUD)
1852 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_UD);
1853 else
1854 hmR0SvmRemoveXcptIntercept(pVCpu, pCtx, pVmcb, X86_XCPT_UD);
1855
1856 /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */
1857 if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
1858 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_BP);
1859 else
1860 hmR0SvmRemoveXcptIntercept(pVCpu, pCtx, pVmcb, X86_XCPT_BP);
1861
1862 /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmLoadSharedCR0(). */
1863 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
1864 }
1865}
1866
1867
1868#ifdef VBOX_WITH_NESTED_HWVIRT
1869/**
1870 * Loads the intercepts required for nested-guest execution in the VMCB.
1871 *
1872 * This merges the guest and nested-guest intercepts in a way that if the outer
1873 * guest intercepts an exception we need to intercept it in the nested-guest as
1874 * well and handle it accordingly.
1875 *
1876 * @param pVCpu The cross context virtual CPU structure.
1877 * @param pVmcbNstGst Pointer to the nested-guest VM control block.
1878 * @param pCtx Pointer to the guest-CPU context.
1879 */
1880static void hmR0SvmLoadGuestXcptInterceptsNested(PVMCPU pVCpu, PSVMVMCB pVmcbNstGst, PCPUMCTX pCtx)
1881{
1882 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
1883 {
1884 /* First, load the guest intercepts into the guest VMCB. */
1885 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
1886 hmR0SvmLoadGuestXcptIntercepts(pVCpu, pVmcb, pCtx);
1887
1888 /* Next, merge the intercepts into the nested-guest VMCB. */
1889 pVmcbNstGst->ctrl.u16InterceptRdCRx |= pVmcb->ctrl.u16InterceptRdCRx;
1890 pVmcbNstGst->ctrl.u16InterceptWrCRx |= pVmcb->ctrl.u16InterceptWrCRx;
1891
1892 /* Always intercept CR0, CR4 reads and writes as we alter them. */
1893 pVmcbNstGst->ctrl.u16InterceptRdCRx |= RT_BIT(0) | RT_BIT(4);
1894 pVmcbNstGst->ctrl.u16InterceptWrCRx |= RT_BIT(0) | RT_BIT(4);
1895
1896 /* Always intercept CR3 reads and writes without nested-paging as we load shadow page tables. */
1897 if (!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
1898 {
1899 pVmcbNstGst->ctrl.u16InterceptRdCRx |= RT_BIT(3);
1900 pVmcbNstGst->ctrl.u16InterceptWrCRx |= RT_BIT(3);
1901 }
1902
1903 /** @todo Figure out debugging with nested-guests, till then just intercept
1904 * all DR[0-15] accesses. */
1905 pVmcbNstGst->ctrl.u16InterceptRdDRx |= 0xffff;
1906 pVmcbNstGst->ctrl.u16InterceptWrDRx |= 0xffff;
1907
1908 pVmcbNstGst->ctrl.u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt;
1909 pVmcbNstGst->ctrl.u64InterceptCtrl |= pVmcb->ctrl.u64InterceptCtrl
1910 | HMSVM_MANDATORY_NESTED_GUEST_CTRL_INTERCEPTS;
1911
1912 /*
1913 * Remove control intercepts that we don't need while executing the nested-guest.
1914 *
1915 * VMMCALL when not intercepted raises a \#UD exception in the guest. However,
1916 * other SVM instructions like VMSAVE when not intercept can cause havoc on the
1917 * host as they can write to any location in physical memory, hence they always
1918 * need to be intercepted (they are included in HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS).
1919 */
1920 Assert( (pVmcbNstGst->ctrl.u64InterceptCtrl & HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS)
1921 == HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS);
1922 pVmcbNstGst->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_VMMCALL;
1923
1924 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS));
1925 }
1926}
1927#endif
1928
1929
1930/**
1931 * Sets up the appropriate function to run guest code.
1932 *
1933 * @returns VBox status code.
1934 * @param pVCpu The cross context virtual CPU structure.
1935 *
1936 * @remarks No-long-jump zone!!!
1937 */
1938static int hmR0SvmSetupVMRunHandler(PVMCPU pVCpu)
1939{
1940 if (CPUMIsGuestInLongMode(pVCpu))
1941 {
1942#ifndef VBOX_ENABLE_64_BITS_GUESTS
1943 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1944#endif
1945 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
1946#if HC_ARCH_BITS == 32
1947 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
1948 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
1949#else
1950 /* 64-bit host or hybrid host. */
1951 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
1952#endif
1953 }
1954 else
1955 {
1956 /* Guest is not in long mode, use the 32-bit handler. */
1957 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
1958 }
1959 return VINF_SUCCESS;
1960}
1961
1962
1963/**
1964 * Enters the AMD-V session.
1965 *
1966 * @returns VBox status code.
1967 * @param pVM The cross context VM structure.
1968 * @param pVCpu The cross context virtual CPU structure.
1969 * @param pCpu Pointer to the CPU info struct.
1970 */
1971VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1972{
1973 AssertPtr(pVM);
1974 AssertPtr(pVCpu);
1975 Assert(pVM->hm.s.svm.fSupported);
1976 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1977 NOREF(pVM); NOREF(pCpu);
1978
1979 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
1980 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1981
1982 pVCpu->hm.s.fLeaveDone = false;
1983 return VINF_SUCCESS;
1984}
1985
1986
1987/**
1988 * Thread-context callback for AMD-V.
1989 *
1990 * @param enmEvent The thread-context event.
1991 * @param pVCpu The cross context virtual CPU structure.
1992 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
1993 * @thread EMT(pVCpu)
1994 */
1995VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
1996{
1997 NOREF(fGlobalInit);
1998
1999 switch (enmEvent)
2000 {
2001 case RTTHREADCTXEVENT_OUT:
2002 {
2003 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2004 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2005 VMCPU_ASSERT_EMT(pVCpu);
2006
2007 /* No longjmps (log-flush, locks) in this fragile context. */
2008 VMMRZCallRing3Disable(pVCpu);
2009
2010 if (!pVCpu->hm.s.fLeaveDone)
2011 {
2012 hmR0SvmLeave(pVCpu);
2013 pVCpu->hm.s.fLeaveDone = true;
2014 }
2015
2016 /* Leave HM context, takes care of local init (term). */
2017 int rc = HMR0LeaveCpu(pVCpu);
2018 AssertRC(rc); NOREF(rc);
2019
2020 /* Restore longjmp state. */
2021 VMMRZCallRing3Enable(pVCpu);
2022 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
2023 break;
2024 }
2025
2026 case RTTHREADCTXEVENT_IN:
2027 {
2028 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2029 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
2030 VMCPU_ASSERT_EMT(pVCpu);
2031
2032 /* No longjmps (log-flush, locks) in this fragile context. */
2033 VMMRZCallRing3Disable(pVCpu);
2034
2035 /*
2036 * Initialize the bare minimum state required for HM. This takes care of
2037 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
2038 */
2039 int rc = HMR0EnterCpu(pVCpu);
2040 AssertRC(rc); NOREF(rc);
2041 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
2042
2043 pVCpu->hm.s.fLeaveDone = false;
2044
2045 /* Restore longjmp state. */
2046 VMMRZCallRing3Enable(pVCpu);
2047 break;
2048 }
2049
2050 default:
2051 break;
2052 }
2053}
2054
2055
2056/**
2057 * Saves the host state.
2058 *
2059 * @returns VBox status code.
2060 * @param pVM The cross context VM structure.
2061 * @param pVCpu The cross context virtual CPU structure.
2062 *
2063 * @remarks No-long-jump zone!!!
2064 */
2065VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
2066{
2067 NOREF(pVM);
2068 NOREF(pVCpu);
2069 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
2070 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
2071 return VINF_SUCCESS;
2072}
2073
2074
2075/**
2076 * Loads the guest state into the VMCB.
2077 *
2078 * The CPU state will be loaded from these fields on every successful VM-entry.
2079 * Also sets up the appropriate VMRUN function to execute guest code based on
2080 * the guest CPU mode.
2081 *
2082 * @returns VBox status code.
2083 * @param pVM The cross context VM structure.
2084 * @param pVCpu The cross context virtual CPU structure.
2085 * @param pCtx Pointer to the guest-CPU context.
2086 *
2087 * @remarks No-long-jump zone!!!
2088 */
2089static int hmR0SvmLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2090{
2091 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
2092
2093 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
2094 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
2095
2096 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
2097
2098 int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcb, pCtx);
2099 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestControlRegs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
2100
2101 hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcb, pCtx);
2102 hmR0SvmLoadGuestMsrs(pVCpu, pVmcb, pCtx);
2103
2104 pVmcb->guest.u64RIP = pCtx->rip;
2105 pVmcb->guest.u64RSP = pCtx->rsp;
2106 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
2107 pVmcb->guest.u64RAX = pCtx->rax;
2108
2109 rc = hmR0SvmLoadGuestApicState(pVCpu, pVmcb, pCtx);
2110 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
2111
2112 hmR0SvmLoadGuestXcptIntercepts(pVCpu, pVmcb, pCtx);
2113
2114 rc = hmR0SvmSetupVMRunHandler(pVCpu);
2115 AssertLogRelMsgRCReturn(rc, ("hmR0SvmSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
2116
2117 /* Clear any unused and reserved bits. */
2118 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
2119 | HM_CHANGED_GUEST_RSP
2120 | HM_CHANGED_GUEST_RFLAGS
2121 | HM_CHANGED_GUEST_SYSENTER_CS_MSR
2122 | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
2123 | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
2124 | HM_CHANGED_GUEST_LAZY_MSRS /* Unused. */
2125 | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
2126 | HM_CHANGED_SVM_RESERVED2
2127 | HM_CHANGED_SVM_RESERVED3
2128 | HM_CHANGED_SVM_RESERVED4);
2129
2130 /* All the guest state bits should be loaded except maybe the host context and/or shared host/guest bits. */
2131 AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
2132 || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
2133 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
2134
2135 Log4(("hmR0SvmLoadGuestState: CS:RIP=%04x:%RX64 EFL=%#x CR0=%#RX32 CR3=%#RX32 CR4=%#RX32\n", pCtx->cs.Sel, pCtx->rip,
2136 pCtx->eflags.u, pCtx->cr0, pCtx->cr3, pCtx->cr4));
2137 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
2138 return rc;
2139}
2140
2141
2142#ifdef VBOX_WITH_NESTED_HWVIRT
2143/**
2144 * Caches the nested-guest VMCB fields before we modify them for execution using
2145 * hardware-assisted SVM.
2146 *
2147 * @returns true if the VMCB was previously already cached, false otherwise.
2148 * @param pCtx Pointer to the guest-CPU context.
2149 *
2150 * @sa HMSvmNstGstVmExitNotify.
2151 */
2152static bool hmR0SvmVmRunCacheVmcb(PVMCPU pVCpu, PCPUMCTX pCtx)
2153{
2154 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
2155 PCSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2156 PCSVMVMCBSTATESAVE pVmcbNstGstState = &pVmcbNstGst->guest;
2157 PSVMNESTEDVMCBCACHE pNstGstVmcbCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
2158
2159 /*
2160 * Cache the nested-guest programmed VMCB fields if we have not cached it yet.
2161 * Otherwise we risk re-caching the values we may have modified, see @bugref{7243#c44}.
2162 *
2163 * Nested-paging CR3 is not saved back into the VMCB on #VMEXIT, hence no need to
2164 * cache and restore it, see AMD spec. 15.25.4 "Nested Paging and VMRUN/#VMEXIT".
2165 */
2166 bool const fWasCached = pCtx->hwvirt.svm.fHMCachedVmcb;
2167 if (!fWasCached)
2168 {
2169 pNstGstVmcbCache->u16InterceptRdCRx = pVmcbNstGstCtrl->u16InterceptRdCRx;
2170 pNstGstVmcbCache->u16InterceptWrCRx = pVmcbNstGstCtrl->u16InterceptWrCRx;
2171 pNstGstVmcbCache->u16InterceptRdDRx = pVmcbNstGstCtrl->u16InterceptRdDRx;
2172 pNstGstVmcbCache->u16InterceptWrDRx = pVmcbNstGstCtrl->u16InterceptWrDRx;
2173 pNstGstVmcbCache->u32InterceptXcpt = pVmcbNstGstCtrl->u32InterceptXcpt;
2174 pNstGstVmcbCache->u64InterceptCtrl = pVmcbNstGstCtrl->u64InterceptCtrl;
2175 pNstGstVmcbCache->u64CR0 = pVmcbNstGstState->u64CR0;
2176 pNstGstVmcbCache->u64CR3 = pVmcbNstGstState->u64CR3;
2177 pNstGstVmcbCache->u64CR4 = pVmcbNstGstState->u64CR4;
2178 pNstGstVmcbCache->u64EFER = pVmcbNstGstState->u64EFER;
2179 pNstGstVmcbCache->u64IOPMPhysAddr = pVmcbNstGstCtrl->u64IOPMPhysAddr;
2180 pNstGstVmcbCache->u64MSRPMPhysAddr = pVmcbNstGstCtrl->u64MSRPMPhysAddr;
2181 pNstGstVmcbCache->u64VmcbCleanBits = pVmcbNstGstCtrl->u64VmcbCleanBits;
2182 pNstGstVmcbCache->fVIntrMasking = pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking;
2183 pNstGstVmcbCache->TLBCtrl = pVmcbNstGstCtrl->TLBCtrl;
2184 pNstGstVmcbCache->NestedPagingCtrl = pVmcbNstGstCtrl->NestedPaging;
2185 pCtx->hwvirt.svm.fHMCachedVmcb = true;
2186 Log4(("hmR0SvmVmRunCacheVmcb: Cached VMCB fields\n"));
2187 }
2188
2189 return fWasCached;
2190}
2191
2192
2193/**
2194 * Sets up the nested-guest VMCB for execution using hardware-assisted SVM.
2195 *
2196 * @param pVCpu The cross context virtual CPU structure.
2197 * @param pCtx Pointer to the guest-CPU context.
2198 */
2199static void hmR0SvmVmRunSetupVmcb(PVMCPU pVCpu, PCPUMCTX pCtx)
2200{
2201 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
2202 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
2203
2204 /*
2205 * First cache the nested-guest VMCB fields we may potentially modify.
2206 */
2207 bool const fVmcbCached = hmR0SvmVmRunCacheVmcb(pVCpu, pCtx);
2208 if (!fVmcbCached)
2209 {
2210 /*
2211 * The IOPM of the nested-guest can be ignored because the the guest always
2212 * intercepts all IO port accesses. Thus, we'll swap to the guest IOPM rather
2213 * into the nested-guest one and swap it back on the #VMEXIT.
2214 */
2215 pVmcbNstGstCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
2216
2217 /*
2218 * Load the host-physical address into the MSRPM rather than the nested-guest
2219 * physical address (currently we trap all MSRs in the nested-guest).
2220 */
2221 pVmcbNstGstCtrl->u64MSRPMPhysAddr = g_HCPhysNstGstMsrBitmap;
2222
2223 /*
2224 * Use the same nested-paging as the "outer" guest. We can't dynamically
2225 * switch off nested-paging suddenly while executing a VM (see assertion at the
2226 * end of Trap0eHandler in PGMAllBth.h).
2227 */
2228 pVmcbNstGstCtrl->NestedPaging.n.u1NestedPaging = pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging;
2229 }
2230 else
2231 {
2232 Assert(pVmcbNstGstCtrl->u64IOPMPhysAddr == g_HCPhysIOBitmap);
2233 Assert(pVmcbNstGstCtrl->u64MSRPMPhysAddr = g_HCPhysNstGstMsrBitmap);
2234 Assert(RT_BOOL(pVmcbNstGstCtrl->NestedPaging.n.u1NestedPaging) == pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
2235 }
2236}
2237
2238
2239/**
2240 * Loads the nested-guest state into the VMCB.
2241 *
2242 * @returns VBox status code.
2243 * @param pVCpu The cross context virtual CPU structure.
2244 * @param pCtx Pointer to the guest-CPU context.
2245 *
2246 * @remarks No-long-jump zone!!!
2247 */
2248static int hmR0SvmLoadGuestStateNested(PVMCPU pVCpu, PCPUMCTX pCtx)
2249{
2250 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
2251
2252 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
2253 Assert(pVmcbNstGst);
2254
2255 hmR0SvmVmRunSetupVmcb(pVCpu, pCtx);
2256 hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcbNstGst, pCtx);
2257 hmR0SvmLoadGuestMsrs(pVCpu, pVmcbNstGst, pCtx);
2258
2259 pVmcbNstGst->guest.u64RIP = pCtx->rip;
2260 pVmcbNstGst->guest.u64RSP = pCtx->rsp;
2261 pVmcbNstGst->guest.u64RFlags = pCtx->eflags.u32;
2262 pVmcbNstGst->guest.u64RAX = pCtx->rax;
2263
2264 int rc = hmR0SvmLoadGuestControlRegsNested(pVCpu, pVmcbNstGst, pCtx);
2265 AssertRCReturn(rc, rc);
2266
2267 hmR0SvmLoadGuestApicStateNested(pVCpu, pVmcbNstGst);
2268 hmR0SvmLoadGuestXcptInterceptsNested(pVCpu, pVmcbNstGst, pCtx);
2269
2270 rc = hmR0SvmSetupVMRunHandler(pVCpu);
2271 AssertRCReturn(rc, rc);
2272
2273 /* Clear any unused and reserved bits. */
2274 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
2275 | HM_CHANGED_GUEST_RSP
2276 | HM_CHANGED_GUEST_RFLAGS
2277 | HM_CHANGED_GUEST_SYSENTER_CS_MSR
2278 | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
2279 | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
2280 | HM_CHANGED_GUEST_LAZY_MSRS /* Unused. */
2281 | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
2282 | HM_CHANGED_SVM_RESERVED2
2283 | HM_CHANGED_SVM_RESERVED3
2284 | HM_CHANGED_SVM_RESERVED4);
2285
2286 /* All the guest state bits should be loaded except maybe the host context and/or shared host/guest bits. */
2287 AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
2288 || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
2289 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
2290
2291 Log4(("hmR0SvmLoadGuestStateNested: CS:RIP=%04x:%RX64 EFL=%#x CR0=%#RX32 CR3=%#RX32 (HyperCR3=%#RX64) CR4=%#RX32 rc=%d\n",
2292 pCtx->cs.Sel, pCtx->rip, pCtx->eflags.u, pCtx->cr0, pCtx->cr3, pVmcbNstGst->guest.u64CR3, pCtx->cr4, rc));
2293 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
2294 return rc;
2295}
2296#endif
2297
2298
2299/**
2300 * Loads the state shared between the host and guest or nested-guest into the
2301 * VMCB.
2302 *
2303 * @param pVCpu The cross context virtual CPU structure.
2304 * @param pVmcb Pointer to the VM control block.
2305 * @param pCtx Pointer to the guest-CPU context.
2306 *
2307 * @remarks No-long-jump zone!!!
2308 */
2309static void hmR0SvmLoadSharedState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
2310{
2311 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2312 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2313
2314 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
2315 {
2316 hmR0SvmLoadSharedCR0(pVCpu, pVmcb, pCtx);
2317 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
2318 }
2319
2320 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
2321 {
2322 /** @todo Figure out stepping with nested-guest. */
2323 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
2324 hmR0SvmLoadSharedDebugState(pVCpu, pVmcb, pCtx);
2325 else
2326 {
2327 pVmcb->guest.u64DR6 = pCtx->dr[6];
2328 pVmcb->guest.u64DR7 = pCtx->dr[7];
2329 Log4(("hmR0SvmLoadSharedState: DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
2330 }
2331
2332 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
2333 }
2334
2335 /* Unused on AMD-V. */
2336 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
2337
2338 AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
2339 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
2340}
2341
2342
2343/**
2344 * Saves the guest (or nested-guest) state from the VMCB into the guest-CPU context.
2345 *
2346 * Currently there is no residual state left in the CPU that is not updated in the
2347 * VMCB.
2348 *
2349 * @returns VBox status code.
2350 * @param pVCpu The cross context virtual CPU structure.
2351 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
2352 * out-of-sync. Make sure to update the required fields
2353 * before using them.
2354 * @param pVmcb Pointer to the VM control block.
2355 */
2356static void hmR0SvmSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PCSVMVMCB pVmcb)
2357{
2358 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2359
2360 pMixedCtx->rip = pVmcb->guest.u64RIP;
2361 pMixedCtx->rsp = pVmcb->guest.u64RSP;
2362 pMixedCtx->eflags.u32 = pVmcb->guest.u64RFlags;
2363 pMixedCtx->rax = pVmcb->guest.u64RAX;
2364
2365 /*
2366 * Guest interrupt shadow.
2367 */
2368 if (pVmcb->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
2369 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
2370 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2371 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2372
2373 /*
2374 * Guest Control registers: CR2, CR3 (handled at the end) - accesses to other control registers are always intercepted.
2375 */
2376 pMixedCtx->cr2 = pVmcb->guest.u64CR2;
2377
2378 /*
2379 * Guest MSRs.
2380 */
2381 pMixedCtx->msrSTAR = pVmcb->guest.u64STAR; /* legacy syscall eip, cs & ss */
2382 pMixedCtx->msrLSTAR = pVmcb->guest.u64LSTAR; /* 64-bit mode syscall rip */
2383 pMixedCtx->msrCSTAR = pVmcb->guest.u64CSTAR; /* compatibility mode syscall rip */
2384 pMixedCtx->msrSFMASK = pVmcb->guest.u64SFMASK; /* syscall flag mask */
2385 pMixedCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase; /* swapgs exchange value */
2386 pMixedCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS;
2387 pMixedCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP;
2388 pMixedCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP;
2389
2390 /*
2391 * Guest segment registers (includes FS, GS base MSRs for 64-bit guests).
2392 */
2393 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, CS, cs);
2394 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, SS, ss);
2395 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, DS, ds);
2396 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, ES, es);
2397 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, FS, fs);
2398 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, GS, gs);
2399
2400 /*
2401 * Correct the hidden CS granularity bit. Haven't seen it being wrong in any other
2402 * register (yet).
2403 */
2404 /** @todo SELM might need to be fixed as it too should not care about the
2405 * granularity bit. See @bugref{6785}. */
2406 if ( !pMixedCtx->cs.Attr.n.u1Granularity
2407 && pMixedCtx->cs.Attr.n.u1Present
2408 && pMixedCtx->cs.u32Limit > UINT32_C(0xfffff))
2409 {
2410 Assert((pMixedCtx->cs.u32Limit & 0xfff) == 0xfff);
2411 pMixedCtx->cs.Attr.n.u1Granularity = 1;
2412 }
2413
2414#ifdef VBOX_STRICT
2415# define HMSVM_ASSERT_SEG_GRANULARITY(reg) \
2416 AssertMsg( !pMixedCtx->reg.Attr.n.u1Present \
2417 || ( pMixedCtx->reg.Attr.n.u1Granularity \
2418 ? (pMixedCtx->reg.u32Limit & 0xfff) == 0xfff \
2419 : pMixedCtx->reg.u32Limit <= UINT32_C(0xfffff)), \
2420 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", pMixedCtx->reg.u32Limit, \
2421 pMixedCtx->reg.Attr.u, pMixedCtx->reg.u64Base))
2422
2423 HMSVM_ASSERT_SEG_GRANULARITY(cs);
2424 HMSVM_ASSERT_SEG_GRANULARITY(ss);
2425 HMSVM_ASSERT_SEG_GRANULARITY(ds);
2426 HMSVM_ASSERT_SEG_GRANULARITY(es);
2427 HMSVM_ASSERT_SEG_GRANULARITY(fs);
2428 HMSVM_ASSERT_SEG_GRANULARITY(gs);
2429
2430# undef HMSVM_ASSERT_SEL_GRANULARITY
2431#endif
2432
2433 /*
2434 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the VMCB and uses that
2435 * and thus it's possible that when the CPL changes during guest execution that the SS DPL
2436 * isn't updated by AMD-V. Observed on some AMD Fusion CPUs with 64-bit guests.
2437 * See AMD spec. 15.5.1 "Basic operation".
2438 */
2439 Assert(!(pVmcb->guest.u8CPL & ~0x3));
2440 pMixedCtx->ss.Attr.n.u2Dpl = pVmcb->guest.u8CPL & 0x3;
2441
2442 /*
2443 * Guest TR.
2444 * Fixup TR attributes so it's compatible with Intel. Important when saved-states are used
2445 * between Intel and AMD. See @bugref{6208#c39}.
2446 * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
2447 */
2448 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, TR, tr);
2449 if (pMixedCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2450 {
2451 if ( pMixedCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
2452 || CPUMIsGuestInLongModeEx(pMixedCtx))
2453 pMixedCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
2454 else if (pMixedCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
2455 pMixedCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
2456 }
2457
2458 /*
2459 * Guest Descriptor-Table registers.
2460 */
2461 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, LDTR, ldtr);
2462 pMixedCtx->gdtr.cbGdt = pVmcb->guest.GDTR.u32Limit;
2463 pMixedCtx->gdtr.pGdt = pVmcb->guest.GDTR.u64Base;
2464
2465 pMixedCtx->idtr.cbIdt = pVmcb->guest.IDTR.u32Limit;
2466 pMixedCtx->idtr.pIdt = pVmcb->guest.IDTR.u64Base;
2467
2468 /*
2469 * Guest Debug registers.
2470 */
2471 if (!pVCpu->hm.s.fUsingHyperDR7)
2472 {
2473 pMixedCtx->dr[6] = pVmcb->guest.u64DR6;
2474 pMixedCtx->dr[7] = pVmcb->guest.u64DR7;
2475 }
2476 else
2477 {
2478 Assert(pVmcb->guest.u64DR7 == CPUMGetHyperDR7(pVCpu));
2479 CPUMSetHyperDR6(pVCpu, pVmcb->guest.u64DR6);
2480 }
2481
2482 /*
2483 * With Nested Paging, CR3 changes are not intercepted. Therefore, sync. it now.
2484 * This is done as the very last step of syncing the guest state, as PGMUpdateCR3() may cause longjmp's to ring-3.
2485 */
2486 if ( pVmcb->ctrl.NestedPaging.n.u1NestedPaging
2487 && pMixedCtx->cr3 != pVmcb->guest.u64CR3)
2488 {
2489 CPUMSetGuestCR3(pVCpu, pVmcb->guest.u64CR3);
2490 PGMUpdateCR3(pVCpu, pVmcb->guest.u64CR3);
2491 }
2492
2493 Log4(("hmR0SvmSaveGuestState: CS:RIP=%04x:%RX64 EFL=%#x CR0=%#RX32 CR3=%#RX32 CR4=%#RX32\n", pMixedCtx->cs.Sel,
2494 pMixedCtx->rip, pMixedCtx->eflags.u, pMixedCtx->cr0, pMixedCtx->cr3, pMixedCtx->cr4));
2495}
2496
2497
2498/**
2499 * Does the necessary state syncing before returning to ring-3 for any reason
2500 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
2501 *
2502 * @param pVCpu The cross context virtual CPU structure.
2503 *
2504 * @remarks No-long-jmp zone!!!
2505 */
2506static void hmR0SvmLeave(PVMCPU pVCpu)
2507{
2508 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2509 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2510 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2511
2512 /*
2513 * !!! IMPORTANT !!!
2514 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
2515 */
2516
2517 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
2518 if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu))
2519 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0); /** @todo r=ramshankar: This shouldn't be necessary, it's set in HMR0EnterCpu. */
2520
2521 /*
2522 * Restore host debug registers if necessary and resync on next R0 reentry.
2523 */
2524#ifdef VBOX_STRICT
2525 if (CPUMIsHyperDebugStateActive(pVCpu))
2526 {
2527 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb; /** @todo nested-guest. */
2528 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
2529 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
2530 }
2531#endif
2532 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */))
2533 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);/** @todo r=ramshankar: This shouldn't be necessary, it's set in HMR0EnterCpu. */
2534
2535 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
2536 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
2537
2538 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
2539 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
2540 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
2541 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
2542 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2543
2544 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
2545}
2546
2547
2548/**
2549 * Leaves the AMD-V session.
2550 *
2551 * @returns VBox status code.
2552 * @param pVCpu The cross context virtual CPU structure.
2553 */
2554static int hmR0SvmLeaveSession(PVMCPU pVCpu)
2555{
2556 HM_DISABLE_PREEMPT();
2557 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2558 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2559
2560 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
2561 and done this from the SVMR0ThreadCtxCallback(). */
2562 if (!pVCpu->hm.s.fLeaveDone)
2563 {
2564 hmR0SvmLeave(pVCpu);
2565 pVCpu->hm.s.fLeaveDone = true;
2566 }
2567
2568 /*
2569 * !!! IMPORTANT !!!
2570 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
2571 */
2572
2573 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
2574 /* Deregister hook now that we've left HM context before re-enabling preemption. */
2575 VMMR0ThreadCtxHookDisable(pVCpu);
2576
2577 /* Leave HM context. This takes care of local init (term). */
2578 int rc = HMR0LeaveCpu(pVCpu);
2579
2580 HM_RESTORE_PREEMPT();
2581 return rc;
2582}
2583
2584
2585/**
2586 * Does the necessary state syncing before doing a longjmp to ring-3.
2587 *
2588 * @returns VBox status code.
2589 * @param pVCpu The cross context virtual CPU structure.
2590 *
2591 * @remarks No-long-jmp zone!!!
2592 */
2593static int hmR0SvmLongJmpToRing3(PVMCPU pVCpu)
2594{
2595 return hmR0SvmLeaveSession(pVCpu);
2596}
2597
2598
2599/**
2600 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
2601 * any remaining host state) before we longjump to ring-3 and possibly get
2602 * preempted.
2603 *
2604 * @param pVCpu The cross context virtual CPU structure.
2605 * @param enmOperation The operation causing the ring-3 longjump.
2606 * @param pvUser The user argument (pointer to the possibly
2607 * out-of-date guest-CPU context).
2608 */
2609static DECLCALLBACK(int) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
2610{
2611 RT_NOREF_PV(pvUser);
2612
2613 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
2614 {
2615 /*
2616 * !!! IMPORTANT !!!
2617 * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
2618 * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
2619 */
2620 VMMRZCallRing3RemoveNotification(pVCpu);
2621 VMMRZCallRing3Disable(pVCpu);
2622 HM_DISABLE_PREEMPT();
2623
2624 /* Restore host FPU state if necessary and resync on next R0 reentry. */
2625 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
2626
2627 /* Restore host debug registers if necessary and resync on next R0 reentry. */
2628 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
2629
2630 /* Deregister the hook now that we've left HM context before re-enabling preemption. */
2631 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
2632 VMMR0ThreadCtxHookDisable(pVCpu);
2633
2634 /* Leave HM context. This takes care of local init (term). */
2635 HMR0LeaveCpu(pVCpu);
2636
2637 HM_RESTORE_PREEMPT();
2638 return VINF_SUCCESS;
2639 }
2640
2641 Assert(pVCpu);
2642 Assert(pvUser);
2643 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2644 HMSVM_ASSERT_PREEMPT_SAFE();
2645
2646 VMMRZCallRing3Disable(pVCpu);
2647 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2648
2649 Log4(("hmR0SvmCallRing3Callback->hmR0SvmLongJmpToRing3\n"));
2650 int rc = hmR0SvmLongJmpToRing3(pVCpu);
2651 AssertRCReturn(rc, rc);
2652
2653 VMMRZCallRing3Enable(pVCpu);
2654 return VINF_SUCCESS;
2655}
2656
2657
2658/**
2659 * Take necessary actions before going back to ring-3.
2660 *
2661 * An action requires us to go back to ring-3. This function does the necessary
2662 * steps before we can safely return to ring-3. This is not the same as longjmps
2663 * to ring-3, this is voluntary.
2664 *
2665 * @returns VBox status code.
2666 * @param pVM The cross context VM structure.
2667 * @param pVCpu The cross context virtual CPU structure.
2668 * @param pCtx Pointer to the guest-CPU context.
2669 * @param rcExit The reason for exiting to ring-3. Can be
2670 * VINF_VMM_UNKNOWN_RING3_CALL.
2671 */
2672static int hmR0SvmExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
2673{
2674 Assert(pVM);
2675 Assert(pVCpu);
2676 Assert(pCtx);
2677 HMSVM_ASSERT_PREEMPT_SAFE();
2678
2679 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
2680 VMMRZCallRing3Disable(pVCpu);
2681 Log4(("hmR0SvmExitToRing3: VCPU[%u]: rcExit=%d LocalFF=%#RX32 GlobalFF=%#RX32\n", pVCpu->idCpu, rcExit,
2682 pVCpu->fLocalForcedActions, pVM->fGlobalForcedActions));
2683
2684 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
2685 if (pVCpu->hm.s.Event.fPending)
2686 {
2687 hmR0SvmPendingEventToTrpmTrap(pVCpu);
2688 Assert(!pVCpu->hm.s.Event.fPending);
2689 }
2690
2691 /* Sync. the necessary state for going back to ring-3. */
2692 hmR0SvmLeaveSession(pVCpu);
2693 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2694
2695 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
2696 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
2697 | CPUM_CHANGED_LDTR
2698 | CPUM_CHANGED_GDTR
2699 | CPUM_CHANGED_IDTR
2700 | CPUM_CHANGED_TR
2701 | CPUM_CHANGED_HIDDEN_SEL_REGS);
2702 if ( pVM->hm.s.fNestedPaging
2703 && CPUMIsGuestPagingEnabledEx(pCtx))
2704 {
2705 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
2706 }
2707
2708 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
2709 if (rcExit != VINF_EM_RAW_INTERRUPT)
2710 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
2711
2712 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
2713
2714 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
2715 VMMRZCallRing3RemoveNotification(pVCpu);
2716 VMMRZCallRing3Enable(pVCpu);
2717
2718 /*
2719 * If we're emulating an instruction, we shouldn't have any TRPM traps pending
2720 * and if we're injecting an event we should have a TRPM trap pending.
2721 */
2722 AssertReturnStmt(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu),
2723 pVCpu->hm.s.u32HMError = rcExit,
2724 VERR_SVM_IPE_5);
2725 AssertReturnStmt(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu),
2726 pVCpu->hm.s.u32HMError = rcExit,
2727 VERR_SVM_IPE_4);
2728
2729 return rcExit;
2730}
2731
2732
2733/**
2734 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
2735 * intercepts.
2736 *
2737 * @param pVM The cross context VM structure.
2738 * @param pVCpu The cross context virtual CPU structure.
2739 * @param pVmcb Pointer to the VM control block.
2740 *
2741 * @remarks No-long-jump zone!!!
2742 */
2743static void hmR0SvmUpdateTscOffsetting(PVM pVM, PVMCPU pVCpu, PSVMVMCB pVmcb)
2744{
2745 bool fParavirtTsc;
2746 bool fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &pVmcb->ctrl.u64TSCOffset, &fParavirtTsc);
2747 if (fCanUseRealTsc)
2748 {
2749 pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_RDTSC;
2750 pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_RDTSCP;
2751 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
2752 }
2753 else
2754 {
2755 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_RDTSC;
2756 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_RDTSCP;
2757 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
2758 }
2759 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2760
2761 /** @todo later optimize this to be done elsewhere and not before every
2762 * VM-entry. */
2763 if (fParavirtTsc)
2764 {
2765 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
2766 information before every VM-entry, hence disable it for performance sake. */
2767#if 0
2768 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
2769 AssertRC(rc);
2770#endif
2771 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
2772 }
2773}
2774
2775
2776/**
2777 * Sets an event as a pending event to be injected into the guest.
2778 *
2779 * @param pVCpu The cross context virtual CPU structure.
2780 * @param pEvent Pointer to the SVM event.
2781 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
2782 * page-fault.
2783 *
2784 * @remarks Statistics counter assumes this is a guest event being reflected to
2785 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
2786 */
2787DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
2788{
2789 Assert(!pVCpu->hm.s.Event.fPending);
2790 Assert(pEvent->n.u1Valid);
2791
2792 pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
2793 pVCpu->hm.s.Event.fPending = true;
2794 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
2795
2796 Log4(("hmR0SvmSetPendingEvent: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
2797 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
2798}
2799
2800
2801/**
2802 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
2803 *
2804 * @param pVCpu The cross context virtual CPU structure.
2805 */
2806DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
2807{
2808 SVMEVENT Event;
2809 Event.u = 0;
2810 Event.n.u1Valid = 1;
2811 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2812 Event.n.u8Vector = X86_XCPT_UD;
2813 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2814}
2815
2816
2817/**
2818 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
2819 *
2820 * @param pVCpu The cross context virtual CPU structure.
2821 */
2822DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
2823{
2824 SVMEVENT Event;
2825 Event.u = 0;
2826 Event.n.u1Valid = 1;
2827 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2828 Event.n.u8Vector = X86_XCPT_DB;
2829 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2830}
2831
2832
2833/**
2834 * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
2835 *
2836 * @param pVCpu The cross context virtual CPU structure.
2837 * @param pCtx Pointer to the guest-CPU context.
2838 * @param u32ErrCode The error-code for the page-fault.
2839 * @param uFaultAddress The page fault address (CR2).
2840 *
2841 * @remarks This updates the guest CR2 with @a uFaultAddress!
2842 */
2843DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
2844{
2845 SVMEVENT Event;
2846 Event.u = 0;
2847 Event.n.u1Valid = 1;
2848 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2849 Event.n.u8Vector = X86_XCPT_PF;
2850 Event.n.u1ErrorCodeValid = 1;
2851 Event.n.u32ErrorCode = u32ErrCode;
2852
2853 /* Update CR2 of the guest. */
2854 if (pCtx->cr2 != uFaultAddress)
2855 {
2856 pCtx->cr2 = uFaultAddress;
2857 /* The VMCB clean bit for CR2 will be updated while re-loading the guest state. */
2858 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR2);
2859 }
2860
2861 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
2862}
2863
2864
2865/**
2866 * Sets a device-not-available (\#NM) exception as pending-for-injection into
2867 * the VM.
2868 *
2869 * @param pVCpu The cross context virtual CPU structure.
2870 */
2871DECLINLINE(void) hmR0SvmSetPendingXcptNM(PVMCPU pVCpu)
2872{
2873 SVMEVENT Event;
2874 Event.u = 0;
2875 Event.n.u1Valid = 1;
2876 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2877 Event.n.u8Vector = X86_XCPT_NM;
2878 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2879}
2880
2881
2882/**
2883 * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
2884 *
2885 * @param pVCpu The cross context virtual CPU structure.
2886 */
2887DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
2888{
2889 SVMEVENT Event;
2890 Event.u = 0;
2891 Event.n.u1Valid = 1;
2892 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2893 Event.n.u8Vector = X86_XCPT_MF;
2894 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2895}
2896
2897
2898/**
2899 * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
2900 *
2901 * @param pVCpu The cross context virtual CPU structure.
2902 */
2903DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
2904{
2905 SVMEVENT Event;
2906 Event.u = 0;
2907 Event.n.u1Valid = 1;
2908 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2909 Event.n.u8Vector = X86_XCPT_DF;
2910 Event.n.u1ErrorCodeValid = 1;
2911 Event.n.u32ErrorCode = 0;
2912 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2913}
2914
2915
2916/**
2917 * Injects an event into the guest upon VMRUN by updating the relevant field
2918 * in the VMCB.
2919 *
2920 * @param pVCpu The cross context virtual CPU structure.
2921 * @param pVmcb Pointer to the guest VM control block.
2922 * @param pCtx Pointer to the guest-CPU context.
2923 * @param pEvent Pointer to the event.
2924 *
2925 * @remarks No-long-jump zone!!!
2926 * @remarks Requires CR0!
2927 */
2928DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx, PSVMEVENT pEvent)
2929{
2930 NOREF(pVCpu); NOREF(pCtx);
2931
2932 pVmcb->ctrl.EventInject.u = pEvent->u;
2933 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
2934
2935 Log4(("hmR0SvmInjectEventVmcb: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
2936 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
2937}
2938
2939
2940
2941/**
2942 * Converts any TRPM trap into a pending HM event. This is typically used when
2943 * entering from ring-3 (not longjmp returns).
2944 *
2945 * @param pVCpu The cross context virtual CPU structure.
2946 */
2947static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
2948{
2949 Assert(TRPMHasTrap(pVCpu));
2950 Assert(!pVCpu->hm.s.Event.fPending);
2951
2952 uint8_t uVector;
2953 TRPMEVENT enmTrpmEvent;
2954 RTGCUINT uErrCode;
2955 RTGCUINTPTR GCPtrFaultAddress;
2956 uint8_t cbInstr;
2957
2958 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
2959 AssertRC(rc);
2960
2961 SVMEVENT Event;
2962 Event.u = 0;
2963 Event.n.u1Valid = 1;
2964 Event.n.u8Vector = uVector;
2965
2966 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
2967 if (enmTrpmEvent == TRPM_TRAP)
2968 {
2969 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2970 switch (uVector)
2971 {
2972 case X86_XCPT_NMI:
2973 {
2974 Event.n.u3Type = SVM_EVENT_NMI;
2975 break;
2976 }
2977
2978 case X86_XCPT_PF:
2979 case X86_XCPT_DF:
2980 case X86_XCPT_TS:
2981 case X86_XCPT_NP:
2982 case X86_XCPT_SS:
2983 case X86_XCPT_GP:
2984 case X86_XCPT_AC:
2985 {
2986 Event.n.u1ErrorCodeValid = 1;
2987 Event.n.u32ErrorCode = uErrCode;
2988 break;
2989 }
2990 }
2991 }
2992 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
2993 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2994 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
2995 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
2996 else
2997 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
2998
2999 rc = TRPMResetTrap(pVCpu);
3000 AssertRC(rc);
3001
3002 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
3003 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
3004
3005 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
3006}
3007
3008
3009/**
3010 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
3011 * AMD-V to execute any instruction.
3012 *
3013 * @param pVCpu The cross context virtual CPU structure.
3014 */
3015static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
3016{
3017 Assert(pVCpu->hm.s.Event.fPending);
3018 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
3019
3020 SVMEVENT Event;
3021 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3022
3023 uint8_t uVector = Event.n.u8Vector;
3024 uint8_t uVectorType = Event.n.u3Type;
3025 TRPMEVENT enmTrapType = HMSvmEventToTrpmEventType(&Event);
3026
3027 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
3028
3029 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
3030 AssertRC(rc);
3031
3032 if (Event.n.u1ErrorCodeValid)
3033 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
3034
3035 if ( uVectorType == SVM_EVENT_EXCEPTION
3036 && uVector == X86_XCPT_PF)
3037 {
3038 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
3039 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
3040 }
3041 else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
3042 {
3043 AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
3044 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
3045 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
3046 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
3047 }
3048 pVCpu->hm.s.Event.fPending = false;
3049}
3050
3051
3052/**
3053 * Checks if the guest (or nested-guest) has an interrupt shadow active right
3054 * now.
3055 *
3056 * @returns true if the interrupt shadow is active, false otherwise.
3057 * @param pVCpu The cross context virtual CPU structure.
3058 * @param pCtx Pointer to the guest-CPU context.
3059 *
3060 * @remarks No-long-jump zone!!!
3061 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
3062 */
3063DECLINLINE(bool) hmR0SvmIsIntrShadowActive(PVMCPU pVCpu, PCPUMCTX pCtx)
3064{
3065 /*
3066 * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
3067 * inhibit interrupts or clear any existing interrupt-inhibition.
3068 */
3069 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3070 {
3071 if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
3072 {
3073 /*
3074 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
3075 * AMD-V, the flag's condition to be cleared is met and thus the cleared state is correct.
3076 */
3077 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3078 return false;
3079 }
3080 return true;
3081 }
3082 return false;
3083}
3084
3085
3086/**
3087 * Sets the virtual interrupt intercept control in the VMCB which
3088 * instructs AMD-V to cause a \#VMEXIT as soon as the guest is in a state to
3089 * receive interrupts.
3090 *
3091 * @param pVmcb Pointer to the VM control block.
3092 */
3093DECLINLINE(void) hmR0SvmSetVirtIntrIntercept(PSVMVMCB pVmcb)
3094{
3095 if (!(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR))
3096 {
3097 pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 1; /* A virtual interrupt is pending. */
3098 pVmcb->ctrl.IntCtrl.n.u8VIntrVector = 0; /* Vector not necessary as we #VMEXIT for delivering the interrupt. */
3099 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VINTR;
3100 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
3101
3102 Log4(("Setting VINTR intercept\n"));
3103 }
3104}
3105
3106
3107#if 0
3108/**
3109 * Clears the virtual interrupt intercept control in the VMCB as
3110 * we are figured the guest is unable process any interrupts
3111 * at this point of time.
3112 *
3113 * @param pVmcb Pointer to the VM control block.
3114 */
3115DECLINLINE(void) hmR0SvmClearVirtIntrIntercept(PSVMVMCB pVmcb)
3116{
3117 if (pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR)
3118 {
3119 pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_VINTR;
3120 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS);
3121 Log4(("Clearing VINTR intercept\n"));
3122 }
3123}
3124#endif
3125
3126
3127/**
3128 * Sets the IRET intercept control in the VMCB which instructs AMD-V to cause a
3129 * \#VMEXIT as soon as a guest starts executing an IRET. This is used to unblock
3130 * virtual NMIs.
3131 *
3132 * @param pVmcb Pointer to the VM control block.
3133 */
3134DECLINLINE(void) hmR0SvmSetIretIntercept(PSVMVMCB pVmcb)
3135{
3136 if (!(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_IRET))
3137 {
3138 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_IRET;
3139 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
3140
3141 Log4(("Setting IRET intercept\n"));
3142 }
3143}
3144
3145
3146/**
3147 * Clears the IRET intercept control in the VMCB.
3148 *
3149 * @param pVmcb Pointer to the VM control block.
3150 */
3151DECLINLINE(void) hmR0SvmClearIretIntercept(PSVMVMCB pVmcb)
3152{
3153 if (pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_IRET)
3154 {
3155 pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_IRET;
3156 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS);
3157
3158 Log4(("Clearing IRET intercept\n"));
3159 }
3160}
3161
3162#ifdef VBOX_WITH_NESTED_HWVIRT
3163
3164
3165/**
3166 * Evaluates the event to be delivered to the nested-guest and sets it as the
3167 * pending event.
3168 *
3169 * @returns VBox strict status code.
3170 * @param pVCpu The cross context virtual CPU structure.
3171 * @param pCtx Pointer to the guest-CPU context.
3172 */
3173static VBOXSTRICTRC hmR0SvmEvaluatePendingEventNested(PVMCPU pVCpu, PCPUMCTX pCtx)
3174{
3175 Log4Func(("\n"));
3176
3177 Assert(!pVCpu->hm.s.Event.fPending);
3178
3179 bool const fGif = pCtx->hwvirt.svm.fGif;
3180 if (fGif)
3181 {
3182 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
3183
3184 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu, pCtx);
3185
3186 /*
3187 * Check if the nested-guest can receive NMIs.
3188 * NMIs are higher priority than regular interrupts.
3189 */
3190 /** @todo SMI. SMIs take priority over NMIs. */
3191 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI))
3192 {
3193 bool const fBlockNmi = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS);
3194 if (fBlockNmi)
3195 hmR0SvmSetIretIntercept(pVmcbNstGst);
3196 else if (fIntShadow)
3197 {
3198 /** @todo Figure this out, how we shall manage virt. intercept if the
3199 * nested-guest already has one set and/or if we really need it? */
3200 //hmR0SvmSetVirtIntrIntercept(pVmcbNstGst);
3201 }
3202 else
3203 {
3204 Log4(("Pending NMI\n"));
3205
3206 SVMEVENT Event;
3207 Event.u = 0;
3208 Event.n.u1Valid = 1;
3209 Event.n.u8Vector = X86_XCPT_NMI;
3210 Event.n.u3Type = SVM_EVENT_NMI;
3211
3212 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3213 hmR0SvmSetIretIntercept(pVmcbNstGst);
3214 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3215 return VINF_SUCCESS;
3216 }
3217 }
3218
3219 /*
3220 * Check if the nested-guest can receive external interrupts (generated by
3221 * the guest's PIC/APIC).
3222 *
3223 * External intercepts from the physical CPU are -always- intercepted when
3224 * executing using hardware-assisted SVM, see HMSVM_MANDATORY_NESTED_GUEST_CTRL_INTERCEPTS.
3225 *
3226 * External interrupts that are generated for the outer guest may be intercepted
3227 * depending on how the nested-guest VMCB was programmed by guest software.
3228 *
3229 * Physical interrupts always take priority over virtual interrupts,
3230 * see AMD spec. 15.21.4 "Injecting Virtual (INTR) Interrupts".
3231 */
3232 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3233 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3234 && !fIntShadow
3235 && !pVCpu->hm.s.fSingleInstruction
3236 && CPUMCanSvmNstGstTakePhysIntr(pVCpu, pCtx))
3237 {
3238 if (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_INTR)
3239 {
3240 Log4(("Intercepting external interrupt -> #VMEXIT\n"));
3241 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_INTR, 0, 0);
3242 }
3243
3244 uint8_t u8Interrupt;
3245 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3246 if (RT_SUCCESS(rc))
3247 {
3248 Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
3249
3250 SVMEVENT Event;
3251 Event.u = 0;
3252 Event.n.u1Valid = 1;
3253 Event.n.u8Vector = u8Interrupt;
3254 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3255
3256 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3257 }
3258 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3259 {
3260 /*
3261 * AMD-V has no TPR thresholding feature. We just avoid posting the interrupt.
3262 * We just avoid delivering the TPR-masked interrupt here. TPR will be updated
3263 * always via hmR0SvmLoadGuestState() -> hmR0SvmLoadGuestApicState().
3264 */
3265 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3266 }
3267 else
3268 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3269 }
3270
3271 /*
3272 * Check if the nested-guest can receive virtual (injected by VMRUN) interrupts.
3273 * We can safely call CPUMCanSvmNstGstTakeVirtIntr here as we don't cache/modify any
3274 * nested-guest VMCB interrupt control fields besides V_INTR_MASKING, see hmR0SvmVmRunCacheVmcb.
3275 */
3276 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST)
3277 && (pVmcbNstGstCache->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR)
3278 && CPUMCanSvmNstGstTakeVirtIntr(pCtx))
3279 {
3280 Log4(("Intercepting virtual interrupt -> #VMEXIT\n"));
3281 return IEMExecSvmVmexit(pVCpu, SVM_EXIT_VINTR, 0, 0);
3282 }
3283 }
3284
3285 return VINF_SUCCESS;
3286}
3287#endif
3288
3289
3290/**
3291 * Evaluates the event to be delivered to the guest and sets it as the pending
3292 * event.
3293 *
3294 * @param pVCpu The cross context virtual CPU structure.
3295 * @param pCtx Pointer to the guest-CPU context.
3296 *
3297 * @remarks Don't use this function when we are actively executing a
3298 * nested-guest, use hmR0SvmEvaluatePendingEventNested instead.
3299 */
3300static void hmR0SvmEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
3301{
3302 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
3303 Assert(!pVCpu->hm.s.Event.fPending);
3304
3305#ifdef VBOX_WITH_NESTED_HWVIRT
3306 bool const fGif = pCtx->hwvirt.svm.fGif;
3307#else
3308 bool const fGif = true;
3309#endif
3310 Log4Func(("fGif=%RTbool\n", fGif));
3311
3312 /*
3313 * If the global interrupt flag (GIF) isn't set, even NMIs and other events are blocked.
3314 * See AMD spec. Table 15-10. "Effect of the GIF on Interrupt Handling".
3315 */
3316 if (fGif)
3317 {
3318 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu, pCtx);
3319 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
3320 bool const fBlockNmi = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS);
3321 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
3322
3323 Log4Func(("fGif=%RTbool fBlockInt=%RTbool fIntShadow=%RTbool APIC/PIC_Pending=%RTbool\n", fGif, fBlockInt, fIntShadow,
3324 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
3325
3326 /** @todo SMI. SMIs take priority over NMIs. */
3327 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
3328 {
3329 if (fBlockNmi)
3330 hmR0SvmSetIretIntercept(pVmcb);
3331 else if (fIntShadow)
3332 hmR0SvmSetVirtIntrIntercept(pVmcb);
3333 else
3334 {
3335 Log4(("Pending NMI\n"));
3336
3337 SVMEVENT Event;
3338 Event.u = 0;
3339 Event.n.u1Valid = 1;
3340 Event.n.u8Vector = X86_XCPT_NMI;
3341 Event.n.u3Type = SVM_EVENT_NMI;
3342
3343 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3344 hmR0SvmSetIretIntercept(pVmcb);
3345 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
3346 return;
3347 }
3348 }
3349 else if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
3350 && !pVCpu->hm.s.fSingleInstruction)
3351 {
3352 /*
3353 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
3354 * a valid interrupt we -must- deliver the interrupt. We can no longer re-request it from the APIC.
3355 */
3356 if ( !fBlockInt
3357 && !fIntShadow)
3358 {
3359 uint8_t u8Interrupt;
3360 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
3361 if (RT_SUCCESS(rc))
3362 {
3363 Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
3364
3365 SVMEVENT Event;
3366 Event.u = 0;
3367 Event.n.u1Valid = 1;
3368 Event.n.u8Vector = u8Interrupt;
3369 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
3370
3371 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3372 }
3373 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
3374 {
3375 /*
3376 * AMD-V has no TPR thresholding feature. We just avoid posting the interrupt.
3377 * We just avoid delivering the TPR-masked interrupt here. TPR will be updated
3378 * always via hmR0SvmLoadGuestState() -> hmR0SvmLoadGuestApicState().
3379 */
3380 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
3381 }
3382 else
3383 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
3384 }
3385 else
3386 hmR0SvmSetVirtIntrIntercept(pVmcb);
3387 }
3388 }
3389}
3390
3391
3392/**
3393 * Injects any pending events into the guest or nested-guest.
3394 *
3395 * @param pVCpu The cross context virtual CPU structure.
3396 * @param pCtx Pointer to the guest-CPU context.
3397 * @param pVmcb Pointer to the VM control block.
3398 */
3399static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMVMCB pVmcb)
3400{
3401 Assert(!TRPMHasTrap(pVCpu));
3402 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3403
3404 bool const fIntShadow = hmR0SvmIsIntrShadowActive(pVCpu, pCtx);
3405
3406 /*
3407 * When executing the nested-guest, we avoid assertions on whether the
3408 * event injection is valid purely based on EFLAGS, as V_INTR_MASKING
3409 * affects the interpretation of interruptibility (see CPUMCanSvmNstGstTakePhysIntr).
3410 */
3411#ifndef VBOX_WITH_NESTED_HWVIRT
3412 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
3413#endif
3414
3415 if (pVCpu->hm.s.Event.fPending) /* First, inject any pending HM events. */
3416 {
3417 SVMEVENT Event;
3418 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3419 Assert(Event.n.u1Valid);
3420
3421#ifndef VBOX_WITH_NESTED_HWVIRT
3422 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3423 {
3424 Assert(!fBlockInt);
3425 Assert(!fIntShadow);
3426 }
3427 else if (Event.n.u3Type == SVM_EVENT_NMI)
3428 Assert(!fIntShadow);
3429 NOREF(fBlockInt);
3430#else
3431 Assert(!pVmcb->ctrl.EventInject.n.u1Valid);
3432#endif
3433
3434 Log4(("Injecting pending HM event\n"));
3435 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
3436 pVCpu->hm.s.Event.fPending = false;
3437
3438#ifdef VBOX_WITH_STATISTICS
3439 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
3440 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
3441 else
3442 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
3443#endif
3444 }
3445
3446 /*
3447 * Update the guest interrupt shadow in the guest or nested-guest VMCB.
3448 *
3449 * For nested-guests: We need to update it too for the scenario where IEM executes
3450 * the nested-guest but execution later continues here with an interrupt shadow active.
3451 */
3452 pVmcb->ctrl.u64IntShadow = !!fIntShadow;
3453}
3454
3455
3456/**
3457 * Reports world-switch error and dumps some useful debug info.
3458 *
3459 * @param pVM The cross context VM structure.
3460 * @param pVCpu The cross context virtual CPU structure.
3461 * @param rcVMRun The return code from VMRUN (or
3462 * VERR_SVM_INVALID_GUEST_STATE for invalid
3463 * guest-state).
3464 * @param pCtx Pointer to the guest-CPU context.
3465 */
3466static void hmR0SvmReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx)
3467{
3468 NOREF(pCtx);
3469 HMSVM_ASSERT_PREEMPT_SAFE();
3470 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
3471 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
3472
3473 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
3474 {
3475 hmR0DumpRegs(pVM, pVCpu, pCtx); NOREF(pVM);
3476#ifdef VBOX_STRICT
3477 Log4(("ctrl.u64VmcbCleanBits %#RX64\n", pVmcb->ctrl.u64VmcbCleanBits));
3478 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
3479 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
3480 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
3481 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
3482 Log4(("ctrl.u32InterceptXcpt %#x\n", pVmcb->ctrl.u32InterceptXcpt));
3483 Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl));
3484 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
3485 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
3486 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
3487
3488 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
3489 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
3490 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
3491
3492 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
3493 Log4(("ctrl.IntCtrl.u1VIrqPending %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqPending));
3494 Log4(("ctrl.IntCtrl.u7Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u7Reserved));
3495 Log4(("ctrl.IntCtrl.u4VIntrPrio %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIntrPrio));
3496 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
3497 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
3498 Log4(("ctrl.IntCtrl.u1VIntrMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIntrMasking));
3499 Log4(("ctrl.IntCtrl.u6Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
3500 Log4(("ctrl.IntCtrl.u8VIntrVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIntrVector));
3501 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
3502
3503 Log4(("ctrl.u64IntShadow %#RX64\n", pVmcb->ctrl.u64IntShadow));
3504 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
3505 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
3506 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
3507 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
3508 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
3509 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
3510 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
3511 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
3512 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
3513 Log4(("ctrl.NestedPaging %#RX64\n", pVmcb->ctrl.NestedPaging.u));
3514 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
3515 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
3516 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
3517 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
3518 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
3519 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
3520
3521 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
3522 Log4(("ctrl.u64LBRVirt %#RX64\n", pVmcb->ctrl.u64LBRVirt));
3523
3524 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
3525 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
3526 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
3527 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
3528 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
3529 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
3530 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
3531 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
3532 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
3533 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
3534 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
3535 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
3536 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
3537 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
3538 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
3539 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
3540 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
3541 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
3542 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
3543 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
3544
3545 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
3546 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
3547
3548 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
3549 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
3550 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
3551 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
3552
3553 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
3554 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
3555
3556 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
3557 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
3558 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
3559 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
3560
3561 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
3562 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
3563 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
3564 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
3565 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
3566 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
3567 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
3568
3569 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
3570 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
3571 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
3572 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
3573
3574 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
3575 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
3576 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
3577
3578 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
3579 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
3580 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
3581 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
3582 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
3583 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
3584 Log4(("guest.u64GPAT %#RX64\n", pVmcb->guest.u64GPAT));
3585 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
3586 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
3587 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
3588 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
3589 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
3590#endif /* VBOX_STRICT */
3591 }
3592 else
3593 Log4(("hmR0SvmReportWorldSwitchError: rcVMRun=%d\n", rcVMRun));
3594
3595 NOREF(pVmcb);
3596}
3597
3598
3599/**
3600 * Check per-VM and per-VCPU force flag actions that require us to go back to
3601 * ring-3 for one reason or another.
3602 *
3603 * @returns VBox status code (information status code included).
3604 * @retval VINF_SUCCESS if we don't have any actions that require going back to
3605 * ring-3.
3606 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
3607 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
3608 * interrupts)
3609 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
3610 * all EMTs to be in ring-3.
3611 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
3612 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
3613 * to the EM loop.
3614 *
3615 * @param pVM The cross context VM structure.
3616 * @param pVCpu The cross context virtual CPU structure.
3617 * @param pCtx Pointer to the guest-CPU context.
3618 */
3619static int hmR0SvmCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3620{
3621 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3622
3623 /* On AMD-V we don't need to update CR3, PAE PDPES lazily. See hmR0SvmSaveGuestState(). */
3624 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
3625 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
3626
3627 /* Update pending interrupts into the APIC's IRR. */
3628 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
3629 APICUpdatePendingInterrupts(pVCpu);
3630
3631 if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
3632 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
3633 || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
3634 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
3635 {
3636 /* Pending PGM C3 sync. */
3637 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
3638 {
3639 int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3640 if (rc != VINF_SUCCESS)
3641 {
3642 Log4(("hmR0SvmCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
3643 return rc;
3644 }
3645 }
3646
3647 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
3648 /* -XXX- what was that about single stepping? */
3649 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
3650 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
3651 {
3652 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
3653 int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
3654 Log4(("hmR0SvmCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
3655 return rc;
3656 }
3657
3658 /* Pending VM request packets, such as hardware interrupts. */
3659 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
3660 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
3661 {
3662 Log4(("hmR0SvmCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
3663 return VINF_EM_PENDING_REQUEST;
3664 }
3665
3666 /* Pending PGM pool flushes. */
3667 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
3668 {
3669 Log4(("hmR0SvmCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
3670 return VINF_PGM_POOL_FLUSH_PENDING;
3671 }
3672
3673 /* Pending DMA requests. */
3674 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
3675 {
3676 Log4(("hmR0SvmCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
3677 return VINF_EM_RAW_TO_R3;
3678 }
3679 }
3680
3681 return VINF_SUCCESS;
3682}
3683
3684
3685#ifdef VBOX_WITH_NESTED_HWVIRT
3686/**
3687 * Does the preparations before executing nested-guest code in AMD-V.
3688 *
3689 * @returns VBox status code (informational status codes included).
3690 * @retval VINF_SUCCESS if we can proceed with running the guest.
3691 * @retval VINF_* scheduling changes, we have to go back to ring-3.
3692 *
3693 * @param pVM The cross context VM structure.
3694 * @param pVCpu The cross context virtual CPU structure.
3695 * @param pCtx Pointer to the guest-CPU context.
3696 * @param pSvmTransient Pointer to the SVM transient structure.
3697 *
3698 * @remarks Same caveats regarding longjumps as hmR0SvmPreRunGuest applies.
3699 * @sa hmR0SvmPreRunGuest.
3700 */
3701static int hmR0SvmPreRunGuestNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3702{
3703 HMSVM_ASSERT_PREEMPT_SAFE();
3704
3705 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
3706 {
3707#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
3708 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
3709 return VINF_EM_RESCHEDULE_REM;
3710#endif
3711 }
3712 else
3713 return VINF_SVM_VMEXIT;
3714
3715 /* Check force flag actions that might require us to go back to ring-3. */
3716 int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
3717 if (rc != VINF_SUCCESS)
3718 return rc;
3719
3720 if (TRPMHasTrap(pVCpu))
3721 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
3722 else if (!pVCpu->hm.s.Event.fPending)
3723 {
3724 VBOXSTRICTRC rcStrict = hmR0SvmEvaluatePendingEventNested(pVCpu, pCtx);
3725 if (rcStrict != VINF_SUCCESS)
3726 return VBOXSTRICTRC_VAL(rcStrict);
3727 }
3728
3729 /*
3730 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
3731 * Just do it in software, see @bugref{8411}.
3732 * NB: If we could continue a task switch exit we wouldn't need to do this.
3733 */
3734 if (RT_UNLIKELY( !pVM->hm.s.svm.u32Features
3735 && pVCpu->hm.s.Event.fPending
3736 && SVM_EVENT_GET_TYPE(pVCpu->hm.s.Event.u64IntInfo) == SVM_EVENT_NMI))
3737 {
3738 return VINF_EM_RAW_INJECT_TRPM_EVENT;
3739 }
3740
3741 /*
3742 * Load the nested-guest state.
3743 */
3744 rc = hmR0SvmLoadGuestStateNested(pVCpu, pCtx);
3745 AssertRCReturn(rc, rc);
3746 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull); /** @todo Get new STAM counter for this? */
3747
3748 /* Ensure we've cached (and hopefully modified) the VMCB for execution using hardware SVM. */
3749 Assert(pCtx->hwvirt.svm.fHMCachedVmcb);
3750
3751 /*
3752 * No longjmps to ring-3 from this point on!!!
3753 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
3754 * This also disables flushing of the R0-logger instance (if any).
3755 */
3756 VMMRZCallRing3Disable(pVCpu);
3757
3758 /*
3759 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
3760 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
3761 *
3762 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
3763 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
3764 *
3765 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
3766 * executing guest code.
3767 */
3768 pSvmTransient->fEFlags = ASMIntDisableFlags();
3769 if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
3770 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
3771 {
3772 ASMSetFlags(pSvmTransient->fEFlags);
3773 VMMRZCallRing3Enable(pVCpu);
3774 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
3775 return VINF_EM_RAW_TO_R3;
3776 }
3777 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
3778 {
3779 ASMSetFlags(pSvmTransient->fEFlags);
3780 VMMRZCallRing3Enable(pVCpu);
3781 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
3782 return VINF_EM_RAW_INTERRUPT;
3783 }
3784
3785 /*
3786 * If we are injecting an NMI, we must set VMCPU_FF_BLOCK_NMIS only when we are going to execute
3787 * guest code for certain (no exits to ring-3). Otherwise, we could re-read the flag on re-entry into
3788 * AMD-V and conclude that NMI inhibition is active when we have not even delivered the NMI.
3789 *
3790 * With VT-x, this is handled by the Guest interruptibility information VMCS field which will set the
3791 * VMCS field after actually delivering the NMI which we read on VM-exit to determine the state.
3792 */
3793 if (pVCpu->hm.s.Event.fPending)
3794 {
3795 SVMEVENT Event;
3796 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3797 if ( Event.n.u1Valid
3798 && Event.n.u3Type == SVM_EVENT_NMI
3799 && Event.n.u8Vector == X86_XCPT_NMI
3800 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
3801 {
3802 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3803 }
3804 }
3805
3806 return VINF_SUCCESS;
3807}
3808#endif
3809
3810
3811/**
3812 * Does the preparations before executing guest code in AMD-V.
3813 *
3814 * This may cause longjmps to ring-3 and may even result in rescheduling to the
3815 * recompiler. We must be cautious what we do here regarding committing
3816 * guest-state information into the VMCB assuming we assuredly execute the guest
3817 * in AMD-V. If we fall back to the recompiler after updating the VMCB and
3818 * clearing the common-state (TRPM/forceflags), we must undo those changes so
3819 * that the recompiler can (and should) use them when it resumes guest
3820 * execution. Otherwise such operations must be done when we can no longer
3821 * exit to ring-3.
3822 *
3823 * @returns VBox status code (informational status codes included).
3824 * @retval VINF_SUCCESS if we can proceed with running the guest.
3825 * @retval VINF_* scheduling changes, we have to go back to ring-3.
3826 *
3827 * @param pVM The cross context VM structure.
3828 * @param pVCpu The cross context virtual CPU structure.
3829 * @param pCtx Pointer to the guest-CPU context.
3830 * @param pSvmTransient Pointer to the SVM transient structure.
3831 */
3832static int hmR0SvmPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3833{
3834 HMSVM_ASSERT_PREEMPT_SAFE();
3835 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
3836
3837 /* Check force flag actions that might require us to go back to ring-3. */
3838 int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
3839 if (rc != VINF_SUCCESS)
3840 return rc;
3841
3842 if (TRPMHasTrap(pVCpu))
3843 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
3844 else if (!pVCpu->hm.s.Event.fPending)
3845 hmR0SvmEvaluatePendingEvent(pVCpu, pCtx);
3846
3847 /*
3848 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
3849 * Just do it in software, see @bugref{8411}.
3850 * NB: If we could continue a task switch exit we wouldn't need to do this.
3851 */
3852 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending && (((pVCpu->hm.s.Event.u64IntInfo >> 8) & 7) == SVM_EVENT_NMI)))
3853 if (RT_UNLIKELY(!pVM->hm.s.svm.u32Features))
3854 return VINF_EM_RAW_INJECT_TRPM_EVENT;
3855
3856#ifdef HMSVM_SYNC_FULL_GUEST_STATE
3857 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
3858#endif
3859
3860 /* Load the guest bits that are not shared with the host in any way since we can longjmp or get preempted. */
3861 rc = hmR0SvmLoadGuestState(pVM, pVCpu, pCtx);
3862 AssertRCReturn(rc, rc);
3863 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
3864
3865 /*
3866 * If we're not intercepting TPR changes in the guest, save the guest TPR before the world-switch
3867 * so we can update it on the way back if the guest changed the TPR.
3868 */
3869 if (pVCpu->hm.s.svm.fSyncVTpr)
3870 {
3871 if (pVM->hm.s.fTPRPatchingActive)
3872 pSvmTransient->u8GuestTpr = pCtx->msrLSTAR;
3873 else
3874 {
3875 PCSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
3876 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
3877 }
3878 }
3879
3880 /*
3881 * No longjmps to ring-3 from this point on!!!
3882 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
3883 * This also disables flushing of the R0-logger instance (if any).
3884 */
3885 VMMRZCallRing3Disable(pVCpu);
3886
3887 /*
3888 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
3889 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
3890 *
3891 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
3892 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
3893 *
3894 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
3895 * executing guest code.
3896 */
3897 pSvmTransient->fEFlags = ASMIntDisableFlags();
3898 if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
3899 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
3900 {
3901 ASMSetFlags(pSvmTransient->fEFlags);
3902 VMMRZCallRing3Enable(pVCpu);
3903 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
3904 return VINF_EM_RAW_TO_R3;
3905 }
3906 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
3907 {
3908 ASMSetFlags(pSvmTransient->fEFlags);
3909 VMMRZCallRing3Enable(pVCpu);
3910 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
3911 return VINF_EM_RAW_INTERRUPT;
3912 }
3913
3914 /*
3915 * If we are injecting an NMI, we must set VMCPU_FF_BLOCK_NMIS only when we are going to execute
3916 * guest code for certain (no exits to ring-3). Otherwise, we could re-read the flag on re-entry into
3917 * AMD-V and conclude that NMI inhibition is active when we have not even delivered the NMI.
3918 *
3919 * With VT-x, this is handled by the Guest interruptibility information VMCS field which will set the
3920 * VMCS field after actually delivering the NMI which we read on VM-exit to determine the state.
3921 */
3922 if (pVCpu->hm.s.Event.fPending)
3923 {
3924 SVMEVENT Event;
3925 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3926 if ( Event.n.u1Valid
3927 && Event.n.u3Type == SVM_EVENT_NMI
3928 && Event.n.u8Vector == X86_XCPT_NMI
3929 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
3930 {
3931 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3932 }
3933 }
3934
3935 return VINF_SUCCESS;
3936}
3937
3938
3939#ifdef VBOX_WITH_NESTED_HWVIRT
3940/**
3941 * Prepares to run nested-guest code in AMD-V and we've committed to doing so. This
3942 * means there is no backing out to ring-3 or anywhere else at this point.
3943 *
3944 * @param pVM The cross context VM structure.
3945 * @param pVCpu The cross context virtual CPU structure.
3946 * @param pCtx Pointer to the guest-CPU context.
3947 * @param pSvmTransient Pointer to the SVM transient structure.
3948 *
3949 * @remarks Called with preemption disabled.
3950 * @remarks No-long-jump zone!!!
3951 */
3952static void hmR0SvmPreRunGuestCommittedNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3953{
3954 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3955 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3956 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3957 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
3958
3959 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
3960 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
3961
3962 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
3963 hmR0SvmInjectPendingEvent(pVCpu, pCtx, pVmcbNstGst);
3964
3965 if ( pVCpu->hm.s.fPreloadGuestFpu
3966 && !CPUMIsGuestFPUStateActive(pVCpu))
3967 {
3968 CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
3969 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
3970 }
3971
3972 /* Load the state shared between host and nested-guest (FPU, debug). */
3973 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
3974 hmR0SvmLoadSharedState(pVCpu, pVmcbNstGst, pCtx);
3975
3976 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT); /* Preemption might set this, nothing to do on AMD-V. */
3977 AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
3978
3979 /* Setup TSC offsetting. */
3980 RTCPUID idCurrentCpu = hmR0GetCurrentCpu()->idCpu;
3981 if ( pSvmTransient->fUpdateTscOffsetting
3982 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
3983 {
3984 hmR0SvmUpdateTscOffsetting(pVM, pVCpu, pVmcbNstGst);
3985 pSvmTransient->fUpdateTscOffsetting = false;
3986 }
3987
3988 /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
3989 if (idCurrentCpu != pVCpu->hm.s.idLastCpu)
3990 pVmcbNstGst->ctrl.u64VmcbCleanBits = 0;
3991
3992 /* Store status of the shared guest-host state at the time of VMRUN. */
3993#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
3994 if (CPUMIsGuestInLongModeEx(pCtx))
3995 {
3996 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
3997 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
3998 }
3999 else
4000#endif
4001 {
4002 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
4003 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
4004 }
4005 pSvmTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
4006
4007 /* The TLB flushing would've already been setup by the nested-hypervisor. */
4008 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
4009 hmR0SvmFlushTaggedTlb(pVCpu, pCtx, pVmcbNstGst);
4010 Assert(hmR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
4011
4012 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
4013
4014 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
4015 to start executing. */
4016
4017 /*
4018 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
4019 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
4020 *
4021 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
4022 */
4023 uint8_t *pbMsrBitmap = (uint8_t *)pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap);
4024 if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
4025 && !(pVmcbNstGst->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
4026 {
4027 hmR0SvmSetMsrPermission(pVmcbNstGst, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
4028 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
4029 uint64_t u64GuestTscAux = CPUMR0GetGuestTscAux(pVCpu);
4030 if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
4031 ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
4032 pSvmTransient->fRestoreTscAuxMsr = true;
4033 }
4034 else
4035 {
4036 hmR0SvmSetMsrPermission(pVmcbNstGst, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
4037 pSvmTransient->fRestoreTscAuxMsr = false;
4038 }
4039
4040 /*
4041 * If VMCB Clean bits isn't supported by the CPU or exposed by the guest,
4042 * mark all state-bits as dirty indicating to the CPU to re-load from VMCB.
4043 */
4044 bool const fSupportsVmcbCleanBits = hmR0SvmSupportsVmcbCleanBits(pVCpu, pCtx);
4045 if (!fSupportsVmcbCleanBits)
4046 pVmcbNstGst->ctrl.u64VmcbCleanBits = 0;
4047}
4048#endif
4049
4050
4051/**
4052 * Prepares to run guest code in AMD-V and we've committed to doing so. This
4053 * means there is no backing out to ring-3 or anywhere else at this
4054 * point.
4055 *
4056 * @param pVM The cross context VM structure.
4057 * @param pVCpu The cross context virtual CPU structure.
4058 * @param pCtx Pointer to the guest-CPU context.
4059 * @param pSvmTransient Pointer to the SVM transient structure.
4060 *
4061 * @remarks Called with preemption disabled.
4062 * @remarks No-long-jump zone!!!
4063 */
4064static void hmR0SvmPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4065{
4066 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4067 Assert(VMMR0IsLogFlushDisabled(pVCpu));
4068 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4069 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
4070
4071 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4072 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
4073
4074 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
4075 hmR0SvmInjectPendingEvent(pVCpu, pCtx, pVmcb);
4076
4077 if ( pVCpu->hm.s.fPreloadGuestFpu
4078 && !CPUMIsGuestFPUStateActive(pVCpu))
4079 {
4080 CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
4081 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
4082 }
4083
4084 /* Load the state shared between host and guest (FPU, debug). */
4085 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
4086 hmR0SvmLoadSharedState(pVCpu, pVmcb, pCtx);
4087
4088 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT); /* Preemption might set this, nothing to do on AMD-V. */
4089 AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
4090
4091 /* Setup TSC offsetting. */
4092 RTCPUID idCurrentCpu = hmR0GetCurrentCpu()->idCpu;
4093 if ( pSvmTransient->fUpdateTscOffsetting
4094 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
4095 {
4096 hmR0SvmUpdateTscOffsetting(pVM, pVCpu, pVmcb);
4097 pSvmTransient->fUpdateTscOffsetting = false;
4098 }
4099
4100 /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
4101 if (idCurrentCpu != pVCpu->hm.s.idLastCpu)
4102 pVmcb->ctrl.u64VmcbCleanBits = 0;
4103
4104 /* Store status of the shared guest-host state at the time of VMRUN. */
4105#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4106 if (CPUMIsGuestInLongModeEx(pCtx))
4107 {
4108 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
4109 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
4110 }
4111 else
4112#endif
4113 {
4114 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
4115 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
4116 }
4117 pSvmTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
4118
4119 /* Flush the appropriate tagged-TLB entries. */
4120 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
4121 hmR0SvmFlushTaggedTlb(pVCpu, pCtx, pVmcb);
4122 Assert(hmR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
4123
4124 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
4125
4126 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
4127 to start executing. */
4128
4129 /*
4130 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
4131 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
4132 *
4133 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
4134 */
4135 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
4136 if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
4137 && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
4138 {
4139 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
4140 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
4141 uint64_t u64GuestTscAux = CPUMR0GetGuestTscAux(pVCpu);
4142 if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
4143 ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
4144 pSvmTransient->fRestoreTscAuxMsr = true;
4145 }
4146 else
4147 {
4148 hmR0SvmSetMsrPermission(pVmcb, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
4149 pSvmTransient->fRestoreTscAuxMsr = false;
4150 }
4151
4152 /* If VMCB Clean bits isn't supported by the CPU, simply mark all state-bits as dirty, indicating (re)load-from-VMCB. */
4153 bool const fSupportsVmcbCleanBits = hmR0SvmSupportsVmcbCleanBits(pVCpu, pCtx);
4154 if (!fSupportsVmcbCleanBits)
4155 pVmcb->ctrl.u64VmcbCleanBits = 0;
4156}
4157
4158
4159/**
4160 * Wrapper for running the guest code in AMD-V.
4161 *
4162 * @returns VBox strict status code.
4163 * @param pVM The cross context VM structure.
4164 * @param pVCpu The cross context virtual CPU structure.
4165 * @param pCtx Pointer to the guest-CPU context.
4166 *
4167 * @remarks No-long-jump zone!!!
4168 */
4169DECLINLINE(int) hmR0SvmRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4170{
4171 /*
4172 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
4173 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
4174 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
4175 */
4176#ifdef VBOX_WITH_KERNEL_USING_XMM
4177 return hmR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
4178 pVCpu->hm.s.svm.pfnVMRun);
4179#else
4180 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
4181#endif
4182}
4183
4184
4185#ifdef VBOX_WITH_NESTED_HWVIRT
4186/**
4187 * Wrapper for running the nested-guest code in AMD-V.
4188 *
4189 * @returns VBox strict status code.
4190 * @param pVM The cross context VM structure.
4191 * @param pVCpu The cross context virtual CPU structure.
4192 * @param pCtx Pointer to the guest-CPU context.
4193 *
4194 * @remarks No-long-jump zone!!!
4195 */
4196DECLINLINE(int) hmR0SvmRunGuestNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4197{
4198 /*
4199 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
4200 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
4201 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
4202 */
4203#ifdef VBOX_WITH_KERNEL_USING_XMM
4204 return hmR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pCtx->hwvirt.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
4205 pVCpu->hm.s.svm.pfnVMRun);
4206#else
4207 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pCtx->hwvirt.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
4208#endif
4209}
4210
4211
4212/**
4213 * Performs some essential restoration of state after running nested-guest code in
4214 * AMD-V.
4215 *
4216 * @param pVM The cross context VM structure.
4217 * @param pVCpu The cross context virtual CPU structure.
4218 * @param pMixedCtx Pointer to the nested-guest-CPU context. The data maybe
4219 * out-of-sync. Make sure to update the required fields
4220 * before using them.
4221 * @param pSvmTransient Pointer to the SVM transient structure.
4222 * @param rcVMRun Return code of VMRUN.
4223 *
4224 * @remarks Called with interrupts disabled.
4225 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
4226 * unconditionally when it is safe to do so.
4227 */
4228static void hmR0SvmPostRunGuestNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
4229{
4230 RT_NOREF(pVM);
4231 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4232
4233 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
4234 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
4235
4236 /* TSC read must be done early for maximum accuracy. */
4237 PSVMVMCB pVmcbNstGst = pMixedCtx->hwvirt.svm.CTX_SUFF(pVmcb);
4238 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
4239 if (!(pVmcbNstGstCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
4240 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcbNstGstCtrl->u64TSCOffset);
4241
4242 if (pSvmTransient->fRestoreTscAuxMsr)
4243 {
4244 uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
4245 CPUMR0SetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
4246 if (u64GuestTscAuxMsr != pVCpu->hm.s.u64HostTscAux)
4247 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
4248 }
4249
4250 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
4251 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
4252 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4253
4254 Assert(!(ASMGetFlags() & X86_EFL_IF));
4255 ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
4256 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
4257
4258 /* Mark the VMCB-state cache as unmodified by VMM. */
4259 pVmcbNstGstCtrl->u64VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL;
4260
4261 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
4262 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
4263 {
4264 Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
4265 return;
4266 }
4267
4268 pSvmTransient->u64ExitCode = pVmcbNstGstCtrl->u64ExitCode; /* Save the #VMEXIT reason. */
4269 HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmcbNstGstCtrl->u64ExitCode);/* Update the #VMEXIT history array. */
4270 pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
4271 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
4272
4273 Assert(!pVCpu->hm.s.svm.fSyncVTpr);
4274 hmR0SvmSaveGuestState(pVCpu, pMixedCtx, pVmcbNstGst); /* Save the nested-guest state from the VMCB to the
4275 guest-CPU context. */
4276}
4277#endif
4278
4279/**
4280 * Performs some essential restoration of state after running guest code in
4281 * AMD-V.
4282 *
4283 * @param pVM The cross context VM structure.
4284 * @param pVCpu The cross context virtual CPU structure.
4285 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
4286 * out-of-sync. Make sure to update the required fields
4287 * before using them.
4288 * @param pSvmTransient Pointer to the SVM transient structure.
4289 * @param rcVMRun Return code of VMRUN.
4290 *
4291 * @remarks Called with interrupts disabled.
4292 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
4293 * unconditionally when it is safe to do so.
4294 */
4295static void hmR0SvmPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
4296{
4297 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
4298
4299 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
4300 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
4301
4302 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
4303 pVmcb->ctrl.u64VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
4304
4305 /* TSC read must be done early for maximum accuracy. */
4306 if (!(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
4307 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcb->ctrl.u64TSCOffset);
4308
4309 if (pSvmTransient->fRestoreTscAuxMsr)
4310 {
4311 uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
4312 CPUMR0SetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
4313 if (u64GuestTscAuxMsr != pVCpu->hm.s.u64HostTscAux)
4314 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
4315 }
4316
4317 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
4318 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
4319 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
4320
4321 Assert(!(ASMGetFlags() & X86_EFL_IF));
4322 ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
4323 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
4324
4325 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
4326 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
4327 {
4328 Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
4329 return;
4330 }
4331
4332 pSvmTransient->u64ExitCode = pVmcb->ctrl.u64ExitCode; /* Save the #VMEXIT reason. */
4333 HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmcb->ctrl.u64ExitCode); /* Update the #VMEXIT history array. */
4334 pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
4335 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
4336
4337 hmR0SvmSaveGuestState(pVCpu, pMixedCtx, pVmcb); /* Save the guest state from the VMCB to the guest-CPU context. */
4338
4339 if (RT_LIKELY(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID))
4340 {
4341 if (pVCpu->hm.s.svm.fSyncVTpr)
4342 {
4343 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
4344 if ( pVM->hm.s.fTPRPatchingActive
4345 && (pMixedCtx->msrLSTAR & 0xff) != pSvmTransient->u8GuestTpr)
4346 {
4347 int rc = APICSetTpr(pVCpu, pMixedCtx->msrLSTAR & 0xff);
4348 AssertRC(rc);
4349 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
4350 }
4351 else if (pSvmTransient->u8GuestTpr != pVmcb->ctrl.IntCtrl.n.u8VTPR)
4352 {
4353 int rc = APICSetTpr(pVCpu, pVmcb->ctrl.IntCtrl.n.u8VTPR << 4);
4354 AssertRC(rc);
4355 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
4356 }
4357 }
4358 }
4359}
4360
4361
4362/**
4363 * Runs the guest code using AMD-V.
4364 *
4365 * @returns VBox status code.
4366 * @param pVM The cross context VM structure.
4367 * @param pVCpu The cross context virtual CPU structure.
4368 * @param pCtx Pointer to the guest-CPU context.
4369 * @param pcLoops Pointer to the number of executed loops.
4370 */
4371static int hmR0SvmRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t *pcLoops)
4372{
4373 uint32_t const cMaxResumeLoops = pVM->hm.s.cMaxResumeLoops;
4374 Assert(pcLoops);
4375 Assert(*pcLoops <= cMaxResumeLoops);
4376
4377 SVMTRANSIENT SvmTransient;
4378 SvmTransient.fUpdateTscOffsetting = true;
4379
4380 int rc = VERR_INTERNAL_ERROR_5;
4381 for (;;)
4382 {
4383 Assert(!HMR0SuspendPending());
4384 HMSVM_ASSERT_CPU_SAFE();
4385
4386 /* Preparatory work for running guest code, this may force us to return
4387 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4388 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4389 rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
4390 if (rc != VINF_SUCCESS)
4391 break;
4392
4393 /*
4394 * No longjmps to ring-3 from this point on!!!
4395 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
4396 * This also disables flushing of the R0-logger instance (if any).
4397 */
4398 hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
4399 rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
4400
4401 /* Restore any residual host-state and save any bits shared between host
4402 and guest into the guest-CPU state. Re-enables interrupts! */
4403 hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
4404
4405 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4406 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4407 {
4408 if (rc == VINF_SUCCESS)
4409 rc = VERR_SVM_INVALID_GUEST_STATE;
4410 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
4411 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
4412 break;
4413 }
4414
4415 /* Handle the #VMEXIT. */
4416 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4417 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
4418 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
4419 rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
4420 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
4421 if (rc != VINF_SUCCESS)
4422 break;
4423 if (++(*pcLoops) >= cMaxResumeLoops)
4424 {
4425 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4426 rc = VINF_EM_RAW_INTERRUPT;
4427 break;
4428 }
4429 }
4430
4431 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4432 return rc;
4433}
4434
4435
4436/**
4437 * Runs the guest code using AMD-V in single step mode.
4438 *
4439 * @returns VBox status code.
4440 * @param pVM The cross context VM structure.
4441 * @param pVCpu The cross context virtual CPU structure.
4442 * @param pCtx Pointer to the guest-CPU context.
4443 * @param pcLoops Pointer to the number of executed loops.
4444 */
4445static int hmR0SvmRunGuestCodeStep(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t *pcLoops)
4446{
4447 uint32_t const cMaxResumeLoops = pVM->hm.s.cMaxResumeLoops;
4448 Assert(pcLoops);
4449 Assert(*pcLoops <= cMaxResumeLoops);
4450
4451 SVMTRANSIENT SvmTransient;
4452 SvmTransient.fUpdateTscOffsetting = true;
4453
4454 uint16_t uCsStart = pCtx->cs.Sel;
4455 uint64_t uRipStart = pCtx->rip;
4456
4457 int rc = VERR_INTERNAL_ERROR_5;
4458 for (;;)
4459 {
4460 Assert(!HMR0SuspendPending());
4461 AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
4462 ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
4463 (unsigned)RTMpCpuId(), *pcLoops));
4464
4465 /* Preparatory work for running guest code, this may force us to return
4466 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4467 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4468 rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
4469 if (rc != VINF_SUCCESS)
4470 break;
4471
4472 /*
4473 * No longjmps to ring-3 from this point on!!!
4474 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
4475 * This also disables flushing of the R0-logger instance (if any).
4476 */
4477 VMMRZCallRing3Disable(pVCpu);
4478 VMMRZCallRing3RemoveNotification(pVCpu);
4479 hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
4480
4481 rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
4482
4483 /*
4484 * Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state.
4485 * This will also re-enable longjmps to ring-3 when it has reached a safe point!!!
4486 */
4487 hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
4488 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4489 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4490 {
4491 if (rc == VINF_SUCCESS)
4492 rc = VERR_SVM_INVALID_GUEST_STATE;
4493 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
4494 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
4495 return rc;
4496 }
4497
4498 /* Handle the #VMEXIT. */
4499 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4500 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
4501 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hm.s.svm.pVmcb);
4502 rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
4503 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
4504 if (rc != VINF_SUCCESS)
4505 break;
4506 if (++(*pcLoops) >= cMaxResumeLoops)
4507 {
4508 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4509 rc = VINF_EM_RAW_INTERRUPT;
4510 break;
4511 }
4512
4513 /*
4514 * Did the RIP change, if so, consider it a single step.
4515 * Otherwise, make sure one of the TFs gets set.
4516 */
4517 if ( pCtx->rip != uRipStart
4518 || pCtx->cs.Sel != uCsStart)
4519 {
4520 rc = VINF_EM_DBG_STEPPED;
4521 break;
4522 }
4523 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
4524 }
4525
4526 /*
4527 * Clear the X86_EFL_TF if necessary.
4528 */
4529 if (pVCpu->hm.s.fClearTrapFlag)
4530 {
4531 pVCpu->hm.s.fClearTrapFlag = false;
4532 pCtx->eflags.Bits.u1TF = 0;
4533 }
4534
4535 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4536 return rc;
4537}
4538
4539#ifdef VBOX_WITH_NESTED_HWVIRT
4540/**
4541 * Runs the nested-guest code using AMD-V.
4542 *
4543 * @returns VBox status code.
4544 * @param pVM The cross context VM structure.
4545 * @param pVCpu The cross context virtual CPU structure.
4546 * @param pCtx Pointer to the guest-CPU context.
4547 * @param pcLoops Pointer to the number of executed loops. If we're switching
4548 * from the guest-code execution loop to this nested-guest
4549 * execution loop pass the remainder value, else pass 0.
4550 */
4551static int hmR0SvmRunGuestCodeNested(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t *pcLoops)
4552{
4553 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4554 Assert(pcLoops);
4555 Assert(*pcLoops <= pVM->hm.s.cMaxResumeLoops);
4556
4557 SVMTRANSIENT SvmTransient;
4558 SvmTransient.fUpdateTscOffsetting = true;
4559
4560 int rc = VERR_INTERNAL_ERROR_4;
4561 for (;;)
4562 {
4563 Assert(!HMR0SuspendPending());
4564 HMSVM_ASSERT_CPU_SAFE();
4565
4566 /* Preparatory work for running nested-guest code, this may force us to return
4567 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
4568 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
4569 rc = hmR0SvmPreRunGuestNested(pVM, pVCpu, pCtx, &SvmTransient);
4570 if (rc != VINF_SUCCESS)
4571 break;
4572
4573 /*
4574 * No longjmps to ring-3 from this point on!!!
4575 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
4576 * This also disables flushing of the R0-logger instance (if any).
4577 */
4578 hmR0SvmPreRunGuestCommittedNested(pVM, pVCpu, pCtx, &SvmTransient);
4579
4580 rc = hmR0SvmRunGuestNested(pVM, pVCpu, pCtx);
4581
4582 /* Restore any residual host-state and save any bits shared between host
4583 and guest into the guest-CPU state. Re-enables interrupts! */
4584 hmR0SvmPostRunGuestNested(pVM, pVCpu, pCtx, &SvmTransient, rc);
4585
4586 /** @todo This needs some work... we probably should cause a \#VMEXIT on
4587 * SVM_EXIT_INVALID and handle rc != VINF_SUCCESS differently. */
4588 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
4589 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
4590 {
4591 if (rc == VINF_SUCCESS)
4592 rc = VERR_SVM_INVALID_GUEST_STATE;
4593 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
4594 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
4595 break;
4596 }
4597
4598 /* Handle the #VMEXIT. */
4599 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
4600 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
4601 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
4602 rc = hmR0SvmHandleExitNested(pVCpu, pCtx, &SvmTransient);
4603 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
4604 if (rc != VINF_SUCCESS)
4605 break;
4606 if (++(*pcLoops) >= pVM->hm.s.cMaxResumeLoops)
4607 {
4608 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
4609 rc = VINF_EM_RAW_INTERRUPT;
4610 break;
4611 }
4612
4613 /** @todo handle single-stepping */
4614 }
4615
4616 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4617 return rc;
4618}
4619#endif
4620
4621
4622/**
4623 * Runs the guest code using AMD-V.
4624 *
4625 * @returns Strict VBox status code.
4626 * @param pVM The cross context VM structure.
4627 * @param pVCpu The cross context virtual CPU structure.
4628 * @param pCtx Pointer to the guest-CPU context.
4629 */
4630VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4631{
4632 Assert(VMMRZCallRing3IsEnabled(pVCpu));
4633 HMSVM_ASSERT_PREEMPT_SAFE();
4634 VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, pCtx);
4635
4636 uint32_t cLoops = 0;
4637 int rc;
4638#ifdef VBOX_WITH_NESTED_HWVIRT
4639 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
4640#endif
4641 {
4642 if (!pVCpu->hm.s.fSingleInstruction)
4643 rc = hmR0SvmRunGuestCodeNormal(pVM, pVCpu, pCtx, &cLoops);
4644 else
4645 rc = hmR0SvmRunGuestCodeStep(pVM, pVCpu, pCtx, &cLoops);
4646 }
4647#ifdef VBOX_WITH_NESTED_HWVIRT
4648 else
4649 {
4650 rc = VINF_SVM_VMRUN;
4651 }
4652
4653 /* Re-check the nested-guest condition here as we may be transitioning from the normal
4654 execution loop into the nested-guest, hence this is not placed in the 'else' part above. */
4655 if (rc == VINF_SVM_VMRUN)
4656 {
4657 rc = hmR0SvmRunGuestCodeNested(pVM, pVCpu, pCtx, &cLoops);
4658 if (rc == VINF_SVM_VMEXIT)
4659 rc = VINF_SUCCESS;
4660 }
4661#endif
4662
4663 /* Fixup error codes. */
4664 if (rc == VERR_EM_INTERPRETER)
4665 rc = VINF_EM_RAW_EMULATE_INSTR;
4666 else if (rc == VINF_EM_RESET)
4667 rc = VINF_EM_TRIPLE_FAULT;
4668
4669 /* Prepare to return to ring-3. This will remove longjmp notifications. */
4670 rc = hmR0SvmExitToRing3(pVM, pVCpu, pCtx, rc);
4671 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
4672 return rc;
4673}
4674
4675
4676#ifdef VBOX_WITH_NESTED_HWVIRT
4677/**
4678 * Determines whether an IOIO intercept is active for the nested-guest or not.
4679 *
4680 * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
4681 * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO.
4682 */
4683static bool hmR0SvmIsIoInterceptActive(void *pvIoBitmap, PSVMIOIOEXITINFO pIoExitInfo)
4684{
4685 const uint16_t u16Port = pIoExitInfo->n.u16Port;
4686 const SVMIOIOTYPE enmIoType = (SVMIOIOTYPE)pIoExitInfo->n.u1Type;
4687 const uint8_t cbReg = (pIoExitInfo->u >> SVM_IOIO_OP_SIZE_SHIFT) & 7;
4688 const uint8_t cAddrSizeBits = ((pIoExitInfo->u >> SVM_IOIO_ADDR_SIZE_SHIFT) & 7) << 4;
4689 const uint8_t iEffSeg = pIoExitInfo->n.u3SEG;
4690 const bool fRep = pIoExitInfo->n.u1REP;
4691 const bool fStrIo = pIoExitInfo->n.u1STR;
4692
4693 return HMSvmIsIOInterceptActive(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
4694 NULL /* pIoExitInfo */);
4695}
4696
4697
4698/**
4699 * Handles a nested-guest \#VMEXIT (for all EXITCODE values except
4700 * SVM_EXIT_INVALID).
4701 *
4702 * @returns VBox status code (informational status codes included).
4703 * @param pVCpu The cross context virtual CPU structure.
4704 * @param pCtx Pointer to the guest-CPU context.
4705 * @param pSvmTransient Pointer to the SVM transient structure.
4706 */
4707static int hmR0SvmHandleExitNested(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4708{
4709 HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
4710 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
4711 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
4712
4713#define HM_SVM_VMEXIT_NESTED(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
4714 VBOXSTRICTRC_TODO(IEMExecSvmVmexit(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2))
4715
4716 /*
4717 * For all the #VMEXITs here we primarily figure out if the #VMEXIT is expected
4718 * by the nested-guest. If it isn't, it should be handled by the (outer) guest.
4719 */
4720 PSVMVMCB pVmcbNstGst = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
4721 PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
4722 uint64_t const uExitCode = pVmcbNstGstCtrl->u64ExitCode;
4723 uint64_t const uExitInfo1 = pVmcbNstGstCtrl->u64ExitInfo1;
4724 uint64_t const uExitInfo2 = pVmcbNstGstCtrl->u64ExitInfo2;
4725
4726 Assert(uExitCode == pVmcbNstGstCtrl->u64ExitCode);
4727 switch (uExitCode)
4728 {
4729 case SVM_EXIT_CPUID:
4730 {
4731 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CPUID))
4732 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4733 return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
4734 }
4735
4736 case SVM_EXIT_RDTSC:
4737 {
4738 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSC))
4739 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4740 return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
4741 }
4742
4743 case SVM_EXIT_RDTSCP:
4744 {
4745 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSCP))
4746 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4747 return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
4748 }
4749
4750
4751 case SVM_EXIT_MONITOR:
4752 {
4753 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MONITOR))
4754 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4755 return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
4756 }
4757
4758 case SVM_EXIT_MWAIT:
4759 {
4760 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MWAIT))
4761 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4762 return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
4763 }
4764
4765 case SVM_EXIT_HLT:
4766 {
4767 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_HLT))
4768 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4769 return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
4770 }
4771
4772 case SVM_EXIT_MSR:
4773 {
4774 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MSR_PROT))
4775 {
4776 uint32_t const idMsr = pCtx->ecx;
4777 uint16_t offMsrpm;
4778 uint32_t uMsrpmBit;
4779 int rc = HMSvmGetMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
4780 if (RT_SUCCESS(rc))
4781 {
4782 void const *pvMsrBitmap = pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap);
4783 bool const fInterceptRead = ASMBitTest(pvMsrBitmap, (offMsrpm << 3) + uMsrpmBit);
4784 bool const fInterceptWrite = ASMBitTest(pvMsrBitmap, (offMsrpm << 3) + uMsrpmBit + 1);
4785
4786 if ( (fInterceptWrite && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
4787 || (fInterceptRead && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_READ))
4788 {
4789 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4790 }
4791 }
4792 else
4793 {
4794 /*
4795 * MSRs not covered by the MSRPM automatically cause an #VMEXIT.
4796 * See AMD-V spec. "15.11 MSR Intercepts".
4797 */
4798 Assert(rc == VERR_OUT_OF_RANGE);
4799 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4800 }
4801 }
4802 return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
4803 }
4804
4805 case SVM_EXIT_IOIO:
4806 {
4807 /*
4808 * Figure out if the IO port access is intercepted by the nested-guest.
4809 */
4810 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IOIO_PROT))
4811 {
4812 void *pvIoBitmap = pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap);
4813 SVMIOIOEXITINFO IoExitInfo;
4814 IoExitInfo.u = pVmcbNstGst->ctrl.u64ExitInfo1;
4815 bool const fIntercept = hmR0SvmIsIoInterceptActive(pvIoBitmap, &IoExitInfo);
4816 if (fIntercept)
4817 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4818 }
4819 return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
4820 }
4821
4822 case SVM_EXIT_EXCEPTION_14: /* X86_XCPT_PF */
4823 {
4824 PVM pVM = pVCpu->CTX_SUFF(pVM);
4825 if (pVM->hm.s.fNestedPaging)
4826 {
4827 uint32_t const u32ErrCode = pVmcbNstGstCtrl->u64ExitInfo1;
4828 uint64_t const uFaultAddress = pVmcbNstGstCtrl->u64ExitInfo2;
4829
4830 /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
4831 if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_PF))
4832 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, u32ErrCode, uFaultAddress);
4833
4834 /* If the nested-guest is not intercepting #PFs, forward the #PF to the nested-guest. */
4835 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
4836 return VINF_SUCCESS;
4837 }
4838 return hmR0SvmExitXcptPFNested(pVCpu, pCtx,pSvmTransient);
4839 }
4840
4841 case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
4842 {
4843 if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_NM))
4844 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4845 hmR0SvmSetPendingXcptNM(pVCpu);
4846 return VINF_SUCCESS;
4847 }
4848
4849 case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
4850 {
4851 if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_UD))
4852 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4853 hmR0SvmSetPendingXcptUD(pVCpu);
4854 return VINF_SUCCESS;
4855 }
4856
4857 case SVM_EXIT_EXCEPTION_16: /* X86_XCPT_MF */
4858 {
4859 if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_MF))
4860 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4861 hmR0SvmSetPendingXcptMF(pVCpu);
4862 return VINF_SUCCESS;
4863 }
4864
4865 case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
4866 {
4867 if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_DB))
4868 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4869 return hmR0SvmNestedExitXcptDB(pVCpu, pCtx, pSvmTransient);
4870 }
4871
4872 case SVM_EXIT_EXCEPTION_17: /* X86_XCPT_AC */
4873 {
4874 if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_AC))
4875 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4876 return hmR0SvmExitXcptAC(pVCpu, pCtx, pSvmTransient);
4877 }
4878
4879 case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
4880 {
4881 if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_BP))
4882 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4883 return hmR0SvmNestedExitXcptBP(pVCpu, pCtx, pSvmTransient);
4884 }
4885
4886 case SVM_EXIT_READ_CR0:
4887 case SVM_EXIT_READ_CR3:
4888 case SVM_EXIT_READ_CR4:
4889 {
4890 uint8_t const uCr = uExitCode - SVM_EXIT_READ_CR0;
4891 if (HMIsGuestSvmReadCRxInterceptSet(pVCpu, pCtx, uCr))
4892 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4893 return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
4894 }
4895
4896 case SVM_EXIT_WRITE_CR0:
4897 case SVM_EXIT_WRITE_CR3:
4898 case SVM_EXIT_WRITE_CR4:
4899 case SVM_EXIT_WRITE_CR8: /** @todo Shouldn't writes to CR8 go to V_TPR instead since we run with V_INTR_MASKING set?? */
4900 {
4901 uint8_t const uCr = uExitCode - SVM_EXIT_WRITE_CR0;
4902 Log4(("hmR0SvmHandleExitNested: Write CRx: u16InterceptWrCRx=%#x u64ExitCode=%#RX64 %#x\n",
4903 pVmcbNstGstCtrl->u16InterceptWrCRx, pSvmTransient->u64ExitCode, uCr));
4904
4905 if (HMIsGuestSvmWriteCRxInterceptSet(pVCpu, pCtx, uCr))
4906 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4907 return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
4908 }
4909
4910 case SVM_EXIT_PAUSE:
4911 {
4912 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_PAUSE))
4913 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4914 return hmR0SvmExitPause(pVCpu, pCtx, pSvmTransient);
4915 }
4916
4917 case SVM_EXIT_VINTR:
4918 {
4919 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VINTR))
4920 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4921 return hmR0SvmExitUnexpected(pVCpu, pCtx, pSvmTransient);
4922 }
4923
4924 case SVM_EXIT_INTR:
4925 {
4926 /* We shouldn't direct physical interrupts to the nested-guest. */
4927 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
4928 }
4929
4930 case SVM_EXIT_FERR_FREEZE:
4931 {
4932 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_FERR_FREEZE))
4933 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4934 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
4935 }
4936
4937 case SVM_EXIT_NMI:
4938 {
4939 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_NMI))
4940 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4941 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
4942 }
4943
4944 case SVM_EXIT_INVLPG:
4945 {
4946 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPG))
4947 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4948 return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
4949 }
4950
4951 case SVM_EXIT_WBINVD:
4952 {
4953 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_WBINVD))
4954 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4955 return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
4956 }
4957
4958 case SVM_EXIT_INVD:
4959 {
4960 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVD))
4961 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4962 return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
4963 }
4964
4965 case SVM_EXIT_RDPMC:
4966 {
4967 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDPMC))
4968 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4969 return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
4970 }
4971
4972 default:
4973 {
4974 switch (uExitCode)
4975 {
4976 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
4977 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
4978 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
4979 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
4980 {
4981 uint8_t const uDr = uExitCode - SVM_EXIT_READ_DR0;
4982 if (HMIsGuestSvmReadDRxInterceptSet(pVCpu, pCtx, uDr))
4983 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4984 return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
4985 }
4986
4987 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
4988 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
4989 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
4990 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
4991 {
4992 uint8_t const uDr = uExitCode - SVM_EXIT_WRITE_DR0;
4993 if (HMIsGuestSvmWriteDRxInterceptSet(pVCpu, pCtx, uDr))
4994 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
4995 return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
4996 }
4997
4998 /* The exceptions not handled here are already handled individually above (as they occur more frequently). */
4999 case SVM_EXIT_EXCEPTION_0: /*case SVM_EXIT_EXCEPTION_1:*/ case SVM_EXIT_EXCEPTION_2:
5000 /*case SVM_EXIT_EXCEPTION_3:*/ case SVM_EXIT_EXCEPTION_4: case SVM_EXIT_EXCEPTION_5:
5001 /*case SVM_EXIT_EXCEPTION_6:*/ /*case SVM_EXIT_EXCEPTION_7:*/ case SVM_EXIT_EXCEPTION_8:
5002 case SVM_EXIT_EXCEPTION_9: case SVM_EXIT_EXCEPTION_10: case SVM_EXIT_EXCEPTION_11:
5003 case SVM_EXIT_EXCEPTION_12: case SVM_EXIT_EXCEPTION_13: /*case SVM_EXIT_EXCEPTION_14:*/
5004 case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16: /*case SVM_EXIT_EXCEPTION_17:*/
5005 case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19: case SVM_EXIT_EXCEPTION_20:
5006 case SVM_EXIT_EXCEPTION_21: case SVM_EXIT_EXCEPTION_22: case SVM_EXIT_EXCEPTION_23:
5007 case SVM_EXIT_EXCEPTION_24: case SVM_EXIT_EXCEPTION_25: case SVM_EXIT_EXCEPTION_26:
5008 case SVM_EXIT_EXCEPTION_27: case SVM_EXIT_EXCEPTION_28: case SVM_EXIT_EXCEPTION_29:
5009 case SVM_EXIT_EXCEPTION_30: case SVM_EXIT_EXCEPTION_31:
5010 {
5011 uint8_t const uVector = uExitCode - SVM_EXIT_EXCEPTION_0;
5012 if (HMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, uVector))
5013 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5014 /** @todo Write hmR0SvmExitXcptGeneric! */
5015 return VERR_NOT_IMPLEMENTED;
5016 }
5017
5018 case SVM_EXIT_XSETBV:
5019 {
5020 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_XSETBV))
5021 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5022 return hmR0SvmExitXsetbv(pVCpu, pCtx, pSvmTransient);
5023 }
5024
5025 case SVM_EXIT_TASK_SWITCH:
5026 {
5027 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_TASK_SWITCH))
5028 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5029 return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
5030 }
5031
5032 case SVM_EXIT_IRET:
5033 {
5034 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IRET))
5035 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5036 return hmR0SvmExitIret(pVCpu, pCtx, pSvmTransient);
5037 }
5038
5039 case SVM_EXIT_SHUTDOWN:
5040 {
5041 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SHUTDOWN))
5042 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5043 return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
5044 }
5045
5046 case SVM_EXIT_SMI:
5047 {
5048 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SMI))
5049 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5050 return hmR0SvmExitUnexpected(pVCpu, pCtx, pSvmTransient);
5051 }
5052
5053 case SVM_EXIT_INIT:
5054 {
5055 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INIT))
5056 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5057 return hmR0SvmExitUnexpected(pVCpu, pCtx, pSvmTransient);
5058 }
5059
5060 case SVM_EXIT_VMMCALL:
5061 {
5062 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMMCALL))
5063 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5064 return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
5065 }
5066
5067 case SVM_EXIT_CLGI:
5068 {
5069 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CLGI))
5070 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5071 return hmR0SvmExitClgi(pVCpu, pCtx, pSvmTransient);
5072 }
5073
5074 case SVM_EXIT_STGI:
5075 {
5076 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_STGI))
5077 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5078 return hmR0SvmExitStgi(pVCpu, pCtx, pSvmTransient);
5079 }
5080
5081 case SVM_EXIT_VMLOAD:
5082 {
5083 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMLOAD))
5084 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5085 return hmR0SvmExitVmload(pVCpu, pCtx, pSvmTransient);
5086 }
5087
5088 case SVM_EXIT_VMSAVE:
5089 {
5090 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMSAVE))
5091 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5092 return hmR0SvmExitVmsave(pVCpu, pCtx, pSvmTransient);
5093 }
5094
5095 case SVM_EXIT_INVLPGA:
5096 {
5097 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPGA))
5098 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5099 return hmR0SvmExitInvlpga(pVCpu, pCtx, pSvmTransient);
5100 }
5101
5102 case SVM_EXIT_VMRUN:
5103 {
5104 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMRUN))
5105 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5106 return hmR0SvmExitVmrun(pVCpu, pCtx, pSvmTransient);
5107 }
5108
5109 case SVM_EXIT_RSM:
5110 {
5111 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RSM))
5112 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5113 hmR0SvmSetPendingXcptUD(pVCpu);
5114 return VINF_SUCCESS;
5115 }
5116
5117 case SVM_EXIT_SKINIT:
5118 {
5119 if (HMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SKINIT))
5120 return HM_SVM_VMEXIT_NESTED(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
5121 hmR0SvmSetPendingXcptUD(pVCpu);
5122 return VINF_SUCCESS;
5123 }
5124
5125 case SVM_EXIT_NPF:
5126 {
5127 /* We don't yet support nested-paging for nested-guests, so this should never really happen. */
5128 return hmR0SvmExitUnexpected(pVCpu, pCtx, pSvmTransient);
5129 }
5130
5131 default:
5132 {
5133 AssertMsgFailed(("hmR0SvmHandleExitNested: Unknown exit code %#x\n", pSvmTransient->u64ExitCode));
5134 pVCpu->hm.s.u32HMError = pSvmTransient->u64ExitCode;
5135 return VERR_SVM_UNKNOWN_EXIT;
5136 }
5137 }
5138 }
5139 }
5140 /* not reached */
5141
5142#undef HM_SVM_VMEXIT_NESTED
5143}
5144#endif
5145
5146
5147/**
5148 * Handles a guest \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
5149 *
5150 * @returns VBox status code (informational status codes included).
5151 * @param pVCpu The cross context virtual CPU structure.
5152 * @param pCtx Pointer to the guest-CPU context.
5153 * @param pSvmTransient Pointer to the SVM transient structure.
5154 */
5155static int hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5156{
5157 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
5158 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
5159
5160 /*
5161 * The ordering of the case labels is based on most-frequently-occurring #VMEXITs for most guests under
5162 * normal workloads (for some definition of "normal").
5163 */
5164 uint32_t u32ExitCode = pSvmTransient->u64ExitCode;
5165 switch (pSvmTransient->u64ExitCode)
5166 {
5167 case SVM_EXIT_NPF:
5168 return hmR0SvmExitNestedPF(pVCpu, pCtx, pSvmTransient);
5169
5170 case SVM_EXIT_IOIO:
5171 return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
5172
5173 case SVM_EXIT_RDTSC:
5174 return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
5175
5176 case SVM_EXIT_RDTSCP:
5177 return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
5178
5179 case SVM_EXIT_CPUID:
5180 return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
5181
5182 case SVM_EXIT_EXCEPTION_14: /* X86_XCPT_PF */
5183 return hmR0SvmExitXcptPF(pVCpu, pCtx, pSvmTransient);
5184
5185 case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
5186 return hmR0SvmExitXcptNM(pVCpu, pCtx, pSvmTransient);
5187
5188 case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
5189 return hmR0SvmExitXcptUD(pVCpu, pCtx, pSvmTransient);
5190
5191 case SVM_EXIT_EXCEPTION_16: /* X86_XCPT_MF */
5192 return hmR0SvmExitXcptMF(pVCpu, pCtx, pSvmTransient);
5193
5194 case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
5195 return hmR0SvmExitXcptDB(pVCpu, pCtx, pSvmTransient);
5196
5197 case SVM_EXIT_EXCEPTION_17: /* X86_XCPT_AC */
5198 return hmR0SvmExitXcptAC(pVCpu, pCtx, pSvmTransient);
5199
5200 case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
5201 return hmR0SvmExitXcptBP(pVCpu, pCtx, pSvmTransient);
5202
5203 case SVM_EXIT_MONITOR:
5204 return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
5205
5206 case SVM_EXIT_MWAIT:
5207 return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
5208
5209 case SVM_EXIT_HLT:
5210 return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
5211
5212 case SVM_EXIT_READ_CR0:
5213 case SVM_EXIT_READ_CR3:
5214 case SVM_EXIT_READ_CR4:
5215 return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
5216
5217 case SVM_EXIT_WRITE_CR0:
5218 case SVM_EXIT_WRITE_CR3:
5219 case SVM_EXIT_WRITE_CR4:
5220 case SVM_EXIT_WRITE_CR8:
5221 return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
5222
5223 case SVM_EXIT_PAUSE:
5224 return hmR0SvmExitPause(pVCpu, pCtx, pSvmTransient);
5225
5226 case SVM_EXIT_VMMCALL:
5227 return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
5228
5229 case SVM_EXIT_VINTR:
5230 return hmR0SvmExitVIntr(pVCpu, pCtx, pSvmTransient);
5231
5232 case SVM_EXIT_INTR:
5233 case SVM_EXIT_FERR_FREEZE:
5234 case SVM_EXIT_NMI:
5235 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
5236
5237 case SVM_EXIT_MSR:
5238 return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
5239
5240 case SVM_EXIT_INVLPG:
5241 return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
5242
5243 case SVM_EXIT_WBINVD:
5244 return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
5245
5246 case SVM_EXIT_INVD:
5247 return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
5248
5249 case SVM_EXIT_RDPMC:
5250 return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
5251
5252 default:
5253 {
5254 switch (pSvmTransient->u64ExitCode)
5255 {
5256 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
5257 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
5258 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
5259 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
5260 return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
5261
5262 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
5263 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
5264 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
5265 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
5266 return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
5267
5268 case SVM_EXIT_XSETBV:
5269 return hmR0SvmExitXsetbv(pVCpu, pCtx, pSvmTransient);
5270
5271 case SVM_EXIT_TASK_SWITCH:
5272 return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
5273
5274 case SVM_EXIT_IRET:
5275 return hmR0SvmExitIret(pVCpu, pCtx, pSvmTransient);
5276
5277 case SVM_EXIT_SHUTDOWN:
5278 return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
5279
5280 case SVM_EXIT_SMI:
5281 case SVM_EXIT_INIT:
5282 {
5283 /*
5284 * We don't intercept SMIs. As for INIT signals, it really shouldn't ever happen here.
5285 * If it ever does, we want to know about it so log the exit code and bail.
5286 */
5287 return hmR0SvmExitUnexpected(pVCpu, pCtx, pSvmTransient);
5288 }
5289
5290#ifdef VBOX_WITH_NESTED_HWVIRT
5291 case SVM_EXIT_CLGI: return hmR0SvmExitClgi(pVCpu, pCtx, pSvmTransient);
5292 case SVM_EXIT_STGI: return hmR0SvmExitStgi(pVCpu, pCtx, pSvmTransient);
5293 case SVM_EXIT_VMLOAD: return hmR0SvmExitVmload(pVCpu, pCtx, pSvmTransient);
5294 case SVM_EXIT_VMSAVE: return hmR0SvmExitVmsave(pVCpu, pCtx, pSvmTransient);
5295 case SVM_EXIT_INVLPGA: return hmR0SvmExitInvlpga(pVCpu, pCtx, pSvmTransient);
5296 case SVM_EXIT_VMRUN: return hmR0SvmExitVmrun(pVCpu, pCtx, pSvmTransient);
5297#else
5298 case SVM_EXIT_CLGI:
5299 case SVM_EXIT_STGI:
5300 case SVM_EXIT_VMLOAD:
5301 case SVM_EXIT_VMSAVE:
5302 case SVM_EXIT_INVLPGA:
5303 case SVM_EXIT_VMRUN:
5304#endif
5305 case SVM_EXIT_RSM:
5306 case SVM_EXIT_SKINIT:
5307 {
5308 hmR0SvmSetPendingXcptUD(pVCpu);
5309 return VINF_SUCCESS;
5310 }
5311
5312#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
5313 case SVM_EXIT_EXCEPTION_0: /* X86_XCPT_DE */
5314 /* SVM_EXIT_EXCEPTION_1: */ /* X86_XCPT_DB - Handled above. */
5315 case SVM_EXIT_EXCEPTION_2: /* X86_XCPT_NMI */
5316 /* SVM_EXIT_EXCEPTION_3: */ /* X86_XCPT_BP - Handled above. */
5317 case SVM_EXIT_EXCEPTION_4: /* X86_XCPT_OF */
5318 case SVM_EXIT_EXCEPTION_5: /* X86_XCPT_BR */
5319 /* SVM_EXIT_EXCEPTION_6: */ /* X86_XCPT_UD - Handled above. */
5320 /* SVM_EXIT_EXCEPTION_7: */ /* X86_XCPT_NM - Handled above. */
5321 case SVM_EXIT_EXCEPTION_8: /* X86_XCPT_DF */
5322 case SVM_EXIT_EXCEPTION_9: /* X86_XCPT_CO_SEG_OVERRUN */
5323 case SVM_EXIT_EXCEPTION_10: /* X86_XCPT_TS */
5324 case SVM_EXIT_EXCEPTION_11: /* X86_XCPT_NP */
5325 case SVM_EXIT_EXCEPTION_12: /* X86_XCPT_SS */
5326 case SVM_EXIT_EXCEPTION_13: /* X86_XCPT_GP */
5327 /* SVM_EXIT_EXCEPTION_14: */ /* X86_XCPT_PF - Handled above. */
5328 case SVM_EXIT_EXCEPTION_15: /* Reserved. */
5329 /* SVM_EXIT_EXCEPTION_16: */ /* X86_XCPT_MF - Handled above. */
5330 /* SVM_EXIT_EXCEPTION_17: */ /* X86_XCPT_AC - Handled above. */
5331 case SVM_EXIT_EXCEPTION_18: /* X86_XCPT_MC */
5332 case SVM_EXIT_EXCEPTION_19: /* X86_XCPT_XF */
5333 case SVM_EXIT_EXCEPTION_20: case SVM_EXIT_EXCEPTION_21: case SVM_EXIT_EXCEPTION_22:
5334 case SVM_EXIT_EXCEPTION_23: case SVM_EXIT_EXCEPTION_24: case SVM_EXIT_EXCEPTION_25:
5335 case SVM_EXIT_EXCEPTION_26: case SVM_EXIT_EXCEPTION_27: case SVM_EXIT_EXCEPTION_28:
5336 case SVM_EXIT_EXCEPTION_29: case SVM_EXIT_EXCEPTION_30: case SVM_EXIT_EXCEPTION_31:
5337 {
5338 /** @todo r=ramshankar; We should be doing
5339 * HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY here! */
5340 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
5341 SVMEVENT Event;
5342 Event.u = 0;
5343 Event.n.u1Valid = 1;
5344 Event.n.u3Type = SVM_EVENT_EXCEPTION;
5345 Event.n.u8Vector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
5346
5347 switch (Event.n.u8Vector)
5348 {
5349 case X86_XCPT_DE:
5350 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
5351 break;
5352
5353 case X86_XCPT_NP:
5354 Event.n.u1ErrorCodeValid = 1;
5355 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
5356 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
5357 break;
5358
5359 case X86_XCPT_SS:
5360 Event.n.u1ErrorCodeValid = 1;
5361 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
5362 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
5363 break;
5364
5365 case X86_XCPT_GP:
5366 Event.n.u1ErrorCodeValid = 1;
5367 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
5368 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
5369 break;
5370
5371 default:
5372 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit caused by exception %#x\n", Event.n.u8Vector));
5373 pVCpu->hm.s.u32HMError = Event.n.u8Vector;
5374 return VERR_SVM_UNEXPECTED_XCPT_EXIT;
5375 }
5376
5377 Log4(("#Xcpt: Vector=%#x at CS:RIP=%04x:%RGv\n", Event.n.u8Vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
5378 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
5379 return VINF_SUCCESS;
5380 }
5381#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
5382
5383 default:
5384 {
5385 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#x\n", u32ExitCode));
5386 pVCpu->hm.s.u32HMError = u32ExitCode;
5387 return VERR_SVM_UNKNOWN_EXIT;
5388 }
5389 }
5390 }
5391 }
5392 /* not reached */
5393}
5394
5395
5396#ifdef DEBUG
5397/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
5398# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
5399 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
5400
5401# define HMSVM_ASSERT_PREEMPT_CPUID() \
5402 do \
5403 { \
5404 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
5405 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
5406 } while (0)
5407
5408# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() \
5409 do { \
5410 AssertPtr(pVCpu); \
5411 AssertPtr(pCtx); \
5412 AssertPtr(pSvmTransient); \
5413 Assert(ASMIntAreEnabled()); \
5414 HMSVM_ASSERT_PREEMPT_SAFE(); \
5415 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
5416 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (uint32_t)pVCpu->idCpu)); \
5417 HMSVM_ASSERT_PREEMPT_SAFE(); \
5418 if (VMMR0IsLogFlushDisabled(pVCpu)) \
5419 HMSVM_ASSERT_PREEMPT_CPUID(); \
5420 } while (0)
5421#else /* Release builds */
5422# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() do { NOREF(pVCpu); NOREF(pCtx); NOREF(pSvmTransient); } while (0)
5423#endif
5424
5425
5426/**
5427 * Worker for hmR0SvmInterpretInvlpg().
5428 *
5429 * @return VBox status code.
5430 * @param pVCpu The cross context virtual CPU structure.
5431 * @param pCpu Pointer to the disassembler state.
5432 * @param pCtx The guest CPU context.
5433 */
5434static int hmR0SvmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTX pCtx)
5435{
5436 DISQPVPARAMVAL Param1;
5437 RTGCPTR GCPtrPage;
5438
5439 int rc = DISQueryParamVal(CPUMCTX2CORE(pCtx), pCpu, &pCpu->Param1, &Param1, DISQPVWHICH_SRC);
5440 if (RT_FAILURE(rc))
5441 return VERR_EM_INTERPRETER;
5442
5443 if ( Param1.type == DISQPV_TYPE_IMMEDIATE
5444 || Param1.type == DISQPV_TYPE_ADDRESS)
5445 {
5446 if (!(Param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
5447 return VERR_EM_INTERPRETER;
5448
5449 GCPtrPage = Param1.val.val64;
5450 VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), GCPtrPage);
5451 rc = VBOXSTRICTRC_VAL(rc2);
5452 }
5453 else
5454 {
5455 Log4(("hmR0SvmInterpretInvlPgEx invalid parameter type %#x\n", Param1.type));
5456 rc = VERR_EM_INTERPRETER;
5457 }
5458
5459 return rc;
5460}
5461
5462
5463/**
5464 * Interprets INVLPG.
5465 *
5466 * @returns VBox status code.
5467 * @retval VINF_* Scheduling instructions.
5468 * @retval VERR_EM_INTERPRETER Something we can't cope with.
5469 * @retval VERR_* Fatal errors.
5470 *
5471 * @param pVM The cross context VM structure.
5472 * @param pVCpu The cross context virtual CPU structure.
5473 * @param pCtx The guest CPU context.
5474 *
5475 * @remarks Updates the RIP if the instruction was executed successfully.
5476 */
5477static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
5478{
5479 /* Only allow 32 & 64 bit code. */
5480 if (CPUMGetGuestCodeBits(pVCpu) != 16)
5481 {
5482 PDISSTATE pDis = &pVCpu->hm.s.DisState;
5483 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
5484 if ( RT_SUCCESS(rc)
5485 && pDis->pCurInstr->uOpcode == OP_INVLPG)
5486 {
5487 rc = hmR0SvmInterpretInvlPgEx(pVCpu, pDis, pCtx);
5488 if (RT_SUCCESS(rc))
5489 pCtx->rip += pDis->cbInstr;
5490 return rc;
5491 }
5492 else
5493 Log4(("hmR0SvmInterpretInvlpg: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
5494 }
5495 return VERR_EM_INTERPRETER;
5496}
5497
5498
5499#ifdef HMSVM_USE_IEM_EVENT_REFLECTION
5500/**
5501 * Gets the IEM exception flags for the specified SVM event.
5502 *
5503 * @returns The IEM exception flags.
5504 * @param pEvent Pointer to the SVM event.
5505 *
5506 * @remarks This function currently only constructs flags required for
5507 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g. error-code
5508 * and CR2 aspects of an exception are not included).
5509 */
5510static uint32_t hmR0SvmGetIemXcptFlags(PCSVMEVENT pEvent)
5511{
5512 uint8_t const uEventType = pEvent->n.u3Type;
5513 uint32_t fIemXcptFlags;
5514 switch (uEventType)
5515 {
5516 case SVM_EVENT_EXCEPTION:
5517 /*
5518 * Only INT3 and INTO instructions can raise #BP and #OF exceptions.
5519 * See AMD spec. Table 8-1. "Interrupt Vector Source and Cause".
5520 */
5521 if (pEvent->n.u8Vector == X86_XCPT_BP)
5522 {
5523 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR;
5524 break;
5525 }
5526 if (pEvent->n.u8Vector == X86_XCPT_OF)
5527 {
5528 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_OF_INSTR;
5529 break;
5530 }
5531 /** @todo How do we distinguish ICEBP \#DB from the regular one? */
5532 RT_FALL_THRU();
5533 case SVM_EVENT_NMI:
5534 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5535 break;
5536
5537 case SVM_EVENT_EXTERNAL_IRQ:
5538 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5539 break;
5540
5541 case SVM_EVENT_SOFTWARE_INT:
5542 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5543 break;
5544
5545 default:
5546 fIemXcptFlags = 0;
5547 AssertMsgFailed(("Unexpected event type! uEventType=%#x uVector=%#x", uEventType, pEvent->n.u8Vector));
5548 break;
5549 }
5550 return fIemXcptFlags;
5551}
5552
5553#else
5554/**
5555 * Determines if an exception is a contributory exception.
5556 *
5557 * Contributory exceptions are ones which can cause double-faults unless the
5558 * original exception was a benign exception. Page-fault is intentionally not
5559 * included here as it's a conditional contributory exception.
5560 *
5561 * @returns true if the exception is contributory, false otherwise.
5562 * @param uVector The exception vector.
5563 */
5564DECLINLINE(bool) hmR0SvmIsContributoryXcpt(const uint32_t uVector)
5565{
5566 switch (uVector)
5567 {
5568 case X86_XCPT_GP:
5569 case X86_XCPT_SS:
5570 case X86_XCPT_NP:
5571 case X86_XCPT_TS:
5572 case X86_XCPT_DE:
5573 return true;
5574 default:
5575 break;
5576 }
5577 return false;
5578}
5579#endif /* HMSVM_USE_IEM_EVENT_REFLECTION */
5580
5581
5582/**
5583 * Handle a condition that occurred while delivering an event through the guest
5584 * IDT.
5585 *
5586 * @returns VBox status code (informational error codes included).
5587 * @retval VINF_SUCCESS if we should continue handling the \#VMEXIT.
5588 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought to
5589 * continue execution of the guest which will delivery the \#DF.
5590 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5591 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5592 *
5593 * @param pVCpu The cross context virtual CPU structure.
5594 * @param pCtx Pointer to the guest-CPU context.
5595 * @param pSvmTransient Pointer to the SVM transient structure.
5596 *
5597 * @remarks No-long-jump zone!!!
5598 */
5599static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5600{
5601 int rc = VINF_SUCCESS;
5602 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
5603
5604 Log4(("EXITINTINFO: Pending vectoring event %#RX64 Valid=%RTbool ErrValid=%RTbool Err=%#RX32 Type=%u Vector=%u\n",
5605 pVmcb->ctrl.ExitIntInfo.u, !!pVmcb->ctrl.ExitIntInfo.n.u1Valid, !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid,
5606 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, pVmcb->ctrl.ExitIntInfo.n.u3Type, pVmcb->ctrl.ExitIntInfo.n.u8Vector));
5607
5608 /* See AMD spec. 15.7.3 "EXITINFO Pseudo-Code". The EXITINTINFO (if valid) contains the prior exception (IDT vector)
5609 * that was trying to be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector). */
5610 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
5611 {
5612#ifdef HMSVM_USE_IEM_EVENT_REFLECTION
5613 IEMXCPTRAISE enmRaise;
5614 IEMXCPTRAISEINFO fRaiseInfo;
5615 bool const fExitIsHwXcpt = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_31;
5616 uint8_t const uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
5617 if (fExitIsHwXcpt)
5618 {
5619 uint8_t const uExitVector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
5620 uint32_t const fIdtVectorFlags = hmR0SvmGetIemXcptFlags(&pVmcb->ctrl.ExitIntInfo);
5621 uint32_t const fExitVectorFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5622 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
5623 }
5624 else
5625 {
5626 /*
5627 * If delivery of an event caused a #VMEXIT that is not an exception (e.g. #NPF) then we
5628 * end up here.
5629 *
5630 * If the event was:
5631 * - a software interrupt, we can re-execute the instruction which will regenerate
5632 * the event.
5633 * - an NMI, we need to clear NMI blocking and re-inject the NMI.
5634 * - a hardware exception or external interrupt, we re-inject it.
5635 */
5636 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
5637 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_SOFTWARE_INT)
5638 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
5639 else
5640 enmRaise = IEMXCPTRAISE_PREV_EVENT;
5641 }
5642
5643 switch (enmRaise)
5644 {
5645 case IEMXCPTRAISE_CURRENT_XCPT:
5646 case IEMXCPTRAISE_PREV_EVENT:
5647 {
5648 /* For software interrupts, we shall re-execute the instruction. */
5649 if (!(fRaiseInfo & IEMXCPTRAISEINFO_SOFT_INT_XCPT))
5650 {
5651 RTGCUINTPTR GCPtrFaultAddress = 0;
5652
5653 /* If we are re-injecting an NMI, clear NMI blocking. */
5654 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
5655 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5656
5657 /* Determine a vectoring #PF condition, see comment in hmR0SvmExitXcptPF(). */
5658 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
5659 pSvmTransient->fVectoringPF = true;
5660 else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION
5661 && uIdtVector == X86_XCPT_PF)
5662 {
5663 /*
5664 * If the previous exception was a #PF, we need to recover the CR2 value.
5665 * This can't happen with shadow paging.
5666 */
5667 GCPtrFaultAddress = pCtx->cr2;
5668 }
5669
5670 /*
5671 * Without nested paging, when uExitVector is #PF, CR2 value will be updated from the VMCB's
5672 * exit info. fields, if it's a guest #PF, see hmR0SvmExitXcptPF().
5673 */
5674 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
5675 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5676 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, GCPtrFaultAddress);
5677
5678 Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32 GCPtrFaultAddress=%#RX64\n",
5679 pVmcb->ctrl.ExitIntInfo.u, RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid),
5680 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, GCPtrFaultAddress));
5681 }
5682 break;
5683 }
5684
5685 case IEMXCPTRAISE_REEXEC_INSTR:
5686 {
5687 Assert(rc == VINF_SUCCESS);
5688 break;
5689 }
5690
5691 case IEMXCPTRAISE_DOUBLE_FAULT:
5692 {
5693 /*
5694 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
5695 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
5696 */
5697 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
5698 {
5699 pSvmTransient->fVectoringDoublePF = true;
5700 Assert(rc == VINF_SUCCESS);
5701 }
5702 else
5703 {
5704 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5705 hmR0SvmSetPendingXcptDF(pVCpu);
5706 rc = VINF_HM_DOUBLE_FAULT;
5707 }
5708 break;
5709 }
5710
5711 case IEMXCPTRAISE_TRIPLE_FAULT:
5712 {
5713 rc = VINF_EM_RESET;
5714 break;
5715 }
5716
5717 case IEMXCPTRAISE_CPU_HANG:
5718 {
5719 rc = VERR_EM_GUEST_CPU_HANG;
5720 break;
5721 }
5722
5723 default:
5724 {
5725 AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
5726 rc = VERR_SVM_IPE_2;
5727 break;
5728 }
5729 }
5730#else
5731 uint8_t uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
5732
5733 typedef enum
5734 {
5735 SVMREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
5736 SVMREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
5737 SVMREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
5738 SVMREFLECTXCPT_HANG, /* Indicate bad VM trying to deadlock the CPU. */
5739 SVMREFLECTXCPT_NONE /* Nothing to reflect. */
5740 } SVMREFLECTXCPT;
5741
5742 SVMREFLECTXCPT enmReflect = SVMREFLECTXCPT_NONE;
5743 bool fReflectingNmi = false;
5744 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION)
5745 {
5746 if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_31)
5747 {
5748 uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
5749
5750#ifdef VBOX_STRICT
5751 if ( hmR0SvmIsContributoryXcpt(uIdtVector)
5752 && uExitVector == X86_XCPT_PF)
5753 {
5754 Log4(("IDT: Contributory #PF idCpu=%u uCR2=%#RX64\n", pVCpu->idCpu, pCtx->cr2));
5755 }
5756#endif
5757
5758 if ( uIdtVector == X86_XCPT_BP
5759 || uIdtVector == X86_XCPT_OF)
5760 {
5761 /* Ignore INT3/INTO, just re-execute. See @bugref{8357}. */
5762 }
5763 else if ( uExitVector == X86_XCPT_PF
5764 && uIdtVector == X86_XCPT_PF)
5765 {
5766 pSvmTransient->fVectoringDoublePF = true;
5767 Log4(("IDT: Vectoring double #PF uCR2=%#RX64\n", pCtx->cr2));
5768 }
5769 else if ( uExitVector == X86_XCPT_AC
5770 && uIdtVector == X86_XCPT_AC)
5771 {
5772 enmReflect = SVMREFLECTXCPT_HANG;
5773 Log4(("IDT: Nested #AC - Bad guest\n"));
5774 }
5775 else if ( (pVmcb->ctrl.u32InterceptXcpt & HMSVM_CONTRIBUTORY_XCPT_MASK)
5776 && hmR0SvmIsContributoryXcpt(uExitVector)
5777 && ( hmR0SvmIsContributoryXcpt(uIdtVector)
5778 || uIdtVector == X86_XCPT_PF))
5779 {
5780 enmReflect = SVMREFLECTXCPT_DF;
5781 Log4(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
5782 uIdtVector, uExitVector));
5783 }
5784 else if (uIdtVector == X86_XCPT_DF)
5785 {
5786 enmReflect = SVMREFLECTXCPT_TF;
5787 Log4(("IDT: Pending vectoring triple-fault %#RX64 uIdtVector=%#x uExitVector=%#x\n",
5788 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
5789 }
5790 else
5791 enmReflect = SVMREFLECTXCPT_XCPT;
5792 }
5793 else
5794 {
5795 /*
5796 * If event delivery caused an #VMEXIT that is not an exception (e.g. #NPF) then reflect the original
5797 * exception to the guest after handling the #VMEXIT.
5798 */
5799 enmReflect = SVMREFLECTXCPT_XCPT;
5800 }
5801 }
5802 else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXTERNAL_IRQ
5803 || pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
5804 {
5805 enmReflect = SVMREFLECTXCPT_XCPT;
5806 fReflectingNmi = RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI);
5807
5808 if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_31)
5809 {
5810 uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
5811 if (uExitVector == X86_XCPT_PF)
5812 {
5813 pSvmTransient->fVectoringPF = true;
5814 Log4(("IDT: Vectoring #PF due to Ext-Int/NMI. uCR2=%#RX64\n", pCtx->cr2));
5815 }
5816 }
5817 }
5818 /* else: Ignore software interrupts (INT n) as they reoccur when restarting the instruction. */
5819
5820 switch (enmReflect)
5821 {
5822 case SVMREFLECTXCPT_XCPT:
5823 {
5824 /* If we are re-injecting the NMI, clear NMI blocking. */
5825 if (fReflectingNmi)
5826 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5827
5828 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
5829 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5830 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, 0 /* GCPtrFaultAddress */);
5831
5832 /* If uExitVector is #PF, CR2 value will be updated from the VMCB if it's a guest #PF. See hmR0SvmExitXcptPF(). */
5833 Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32\n", pVmcb->ctrl.ExitIntInfo.u,
5834 !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid, pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
5835 break;
5836 }
5837
5838 case SVMREFLECTXCPT_DF:
5839 {
5840 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5841 hmR0SvmSetPendingXcptDF(pVCpu);
5842 rc = VINF_HM_DOUBLE_FAULT;
5843 break;
5844 }
5845
5846 case SVMREFLECTXCPT_TF:
5847 {
5848 rc = VINF_EM_RESET;
5849 break;
5850 }
5851
5852 case SVMREFLECTXCPT_HANG:
5853 {
5854 rc = VERR_EM_GUEST_CPU_HANG;
5855 break;
5856 }
5857
5858 default:
5859 Assert(rc == VINF_SUCCESS);
5860 break;
5861 }
5862#endif /* HMSVM_USE_IEM_EVENT_REFLECTION */
5863 }
5864 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET || rc == VERR_EM_GUEST_CPU_HANG);
5865 NOREF(pCtx);
5866 return rc;
5867}
5868
5869
5870/**
5871 * Advances the guest RIP making use of the CPU's NRIP_SAVE feature if
5872 * supported, otherwise advances the RIP by the number of bytes specified in
5873 * @a cb.
5874 *
5875 * @param pVCpu The cross context virtual CPU structure.
5876 * @param pCtx Pointer to the guest-CPU context.
5877 * @param cb RIP increment value in bytes.
5878 *
5879 * @remarks Use this function only from \#VMEXIT's where the NRIP value is valid
5880 * when NRIP_SAVE is supported by the CPU, otherwise use
5881 * hmR0SvmAdvanceRipDumb!
5882 */
5883DECLINLINE(void) hmR0SvmAdvanceRipHwAssist(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
5884{
5885 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
5886 if (fSupportsNextRipSave)
5887 {
5888 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
5889 Assert(pVmcb->ctrl.u64NextRIP);
5890 AssertRelease(pVmcb->ctrl.u64NextRIP - pCtx->rip == cb); /* temporary, remove later */
5891 pCtx->rip = pVmcb->ctrl.u64NextRIP;
5892 }
5893 else
5894 pCtx->rip += cb;
5895
5896 HMSVM_UPDATE_INTR_SHADOW(pVCpu, pCtx);
5897}
5898
5899
5900#ifdef VBOX_WITH_NESTED_HWVIRT
5901/**
5902 * Gets the length of the current instruction if the CPU supports the NRIP_SAVE
5903 * feature. Otherwise, returns the value in @a cbLikely.
5904 *
5905 * @param pVCpu The cross context virtual CPU structure.
5906 * @param pCtx Pointer to the guest-CPU context.
5907 * @param cbLikely The likely instruction length.
5908 */
5909DECLINLINE(uint8_t) hmR0SvmGetInstrLengthHwAssist(PVMCPU pVCpu, PCPUMCTX pCtx, uint8_t cbLikely)
5910{
5911 Assert(cbLikely <= 15); /* See Intel spec. 2.3.11 "AVX Instruction Length" */
5912 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
5913 if (fSupportsNextRipSave)
5914 {
5915 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
5916 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
5917 Assert(cbInstr == cbLikely);
5918 return cbInstr;
5919 }
5920 return cbLikely;
5921}
5922#endif
5923
5924
5925/**
5926 * Advances the guest RIP by the number of bytes specified in @a cb. This does
5927 * not make use of any hardware features to determine the instruction length.
5928 *
5929 * @param pVCpu The cross context virtual CPU structure.
5930 * @param pCtx Pointer to the guest-CPU context.
5931 * @param cb RIP increment value in bytes.
5932 */
5933DECLINLINE(void) hmR0SvmAdvanceRipDumb(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
5934{
5935 pCtx->rip += cb;
5936 HMSVM_UPDATE_INTR_SHADOW(pVCpu, pCtx);
5937}
5938#undef HMSVM_UPDATE_INTR_SHADOW
5939
5940
5941/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
5942/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
5943/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
5944
5945/** @name \#VMEXIT handlers.
5946 * @{
5947 */
5948
5949/**
5950 * \#VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
5951 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
5952 */
5953HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5954{
5955 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5956
5957 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
5958 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
5959 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
5960 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
5961
5962 /*
5963 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to signal -before- the timer
5964 * fires if the current interrupt is our own timer or a some other host interrupt. We also cannot examine what
5965 * interrupt it is until the host actually take the interrupt.
5966 *
5967 * Going back to executing guest code here unconditionally causes random scheduling problems (observed on an
5968 * AMD Phenom 9850 Quad-Core on Windows 64-bit host).
5969 */
5970 Log4(("hmR0SvmExitIntr: CS:RIP=%04x:%RX64 EFL=%#x CR0=%#RX32 CR3=%#RX32 CR4=%#RX32\n", pCtx->cs.Sel, pCtx->rip,
5971 pCtx->eflags.u, pCtx->cr0, pCtx->cr3, pCtx->cr4));
5972 Log4(("eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
5973 "eip=%08x esp=%08x ebp=%08x\n"
5974 "cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x efl=%08x\n",
5975 pCtx->eax, pCtx->ebx, pCtx->ecx, pCtx->edx, pCtx->esi, pCtx->edi,
5976 pCtx->eip, pCtx->esp, pCtx->ebp,
5977 pCtx->cs.Sel, pCtx->ss.Sel, pCtx->ds.Sel, pCtx->es.Sel, pCtx->fs.Sel, pCtx->gs.Sel, pCtx->eflags.u32));
5978 return VINF_EM_RAW_INTERRUPT;
5979}
5980
5981
5982/**
5983 * \#VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional \#VMEXIT.
5984 */
5985HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5986{
5987 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5988
5989 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
5990 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
5991 int rc = VINF_SUCCESS;
5992 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
5993 return rc;
5994}
5995
5996
5997/**
5998 * \#VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional \#VMEXIT.
5999 */
6000HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6001{
6002 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6003
6004 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
6005 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
6006 int rc = VINF_SUCCESS;
6007 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6008 return rc;
6009}
6010
6011
6012/**
6013 * \#VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional \#VMEXIT.
6014 */
6015HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6016{
6017 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6018 PVM pVM = pVCpu->CTX_SUFF(pVM);
6019 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
6020 if (RT_LIKELY(rc == VINF_SUCCESS))
6021 {
6022 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
6023 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6024 }
6025 else
6026 {
6027 AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
6028 rc = VERR_EM_INTERPRETER;
6029 }
6030 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
6031 return rc;
6032}
6033
6034
6035/**
6036 * \#VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional \#VMEXIT.
6037 */
6038HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6039{
6040 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6041 PVM pVM = pVCpu->CTX_SUFF(pVM);
6042 int rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
6043 if (RT_LIKELY(rc == VINF_SUCCESS))
6044 {
6045 pSvmTransient->fUpdateTscOffsetting = true;
6046 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
6047 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6048 }
6049 else
6050 {
6051 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
6052 rc = VERR_EM_INTERPRETER;
6053 }
6054 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
6055 return rc;
6056}
6057
6058
6059/**
6060 * \#VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional \#VMEXIT.
6061 */
6062HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6063{
6064 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6065 int rc = EMInterpretRdtscp(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
6066 if (RT_LIKELY(rc == VINF_SUCCESS))
6067 {
6068 pSvmTransient->fUpdateTscOffsetting = true;
6069 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3);
6070 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6071 }
6072 else
6073 {
6074 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtscp failed with %Rrc\n", rc));
6075 rc = VERR_EM_INTERPRETER;
6076 }
6077 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
6078 return rc;
6079}
6080
6081
6082/**
6083 * \#VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional \#VMEXIT.
6084 */
6085HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6086{
6087 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6088 int rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
6089 if (RT_LIKELY(rc == VINF_SUCCESS))
6090 {
6091 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
6092 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6093 }
6094 else
6095 {
6096 AssertMsgFailed(("hmR0SvmExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
6097 rc = VERR_EM_INTERPRETER;
6098 }
6099 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
6100 return rc;
6101}
6102
6103
6104/**
6105 * \#VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional \#VMEXIT.
6106 */
6107HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6108{
6109 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6110 PVM pVM = pVCpu->CTX_SUFF(pVM);
6111 Assert(!pVM->hm.s.fNestedPaging);
6112 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
6113
6114 bool const fSupportsDecodeAssist = hmR0SvmSupportsDecodeAssist(pVCpu, pCtx);
6115 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
6116 if ( fSupportsDecodeAssist
6117 && fSupportsNextRipSave)
6118 {
6119 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
6120 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6121 RTGCPTR const GCPtrPage = pVmcb->ctrl.u64ExitInfo1;
6122 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, cbInstr, GCPtrPage);
6123 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6124 return VBOXSTRICTRC_VAL(rcStrict);
6125 }
6126
6127 int rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, pCtx); /* Updates RIP if successful. */
6128 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
6129 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6130 return rc;
6131}
6132
6133
6134/**
6135 * \#VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional \#VMEXIT.
6136 */
6137HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6138{
6139 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6140
6141 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 1);
6142 int rc = EMShouldContinueAfterHalt(pVCpu, pCtx) ? VINF_SUCCESS : VINF_EM_HALT;
6143 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6144 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
6145 if (rc != VINF_SUCCESS)
6146 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
6147 return rc;
6148}
6149
6150
6151/**
6152 * \#VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional \#VMEXIT.
6153 */
6154HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6155{
6156 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6157 int rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
6158 if (RT_LIKELY(rc == VINF_SUCCESS))
6159 {
6160 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3);
6161 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6162 }
6163 else
6164 {
6165 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
6166 rc = VERR_EM_INTERPRETER;
6167 }
6168 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
6169 return rc;
6170}
6171
6172
6173/**
6174 * \#VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional \#VMEXIT.
6175 */
6176HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6177{
6178 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6179 VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
6180 int rc = VBOXSTRICTRC_VAL(rc2);
6181 if ( rc == VINF_EM_HALT
6182 || rc == VINF_SUCCESS)
6183 {
6184 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3);
6185
6186 if ( rc == VINF_EM_HALT
6187 && EMMonitorWaitShouldContinue(pVCpu, pCtx))
6188 {
6189 rc = VINF_SUCCESS;
6190 }
6191 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6192 }
6193 else
6194 {
6195 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
6196 rc = VERR_EM_INTERPRETER;
6197 }
6198 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
6199 ("hmR0SvmExitMwait: EMInterpretMWait failed rc=%Rrc\n", rc));
6200 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
6201 return rc;
6202}
6203
6204
6205/**
6206 * \#VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN). Conditional
6207 * \#VMEXIT.
6208 */
6209HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6210{
6211 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6212 return VINF_EM_RESET;
6213}
6214
6215
6216/**
6217 * \#VMEXIT handler for unexpected exits. Conditional \#VMEXIT.
6218 */
6219HMSVM_EXIT_DECL hmR0SvmExitUnexpected(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6220{
6221 RT_NOREF(pCtx);
6222 AssertMsgFailed(("hmR0SvmExitUnexpected: ExitCode=%#RX64\n", pSvmTransient->u64ExitCode));
6223 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6224 return VERR_SVM_UNEXPECTED_EXIT;
6225}
6226
6227
6228/**
6229 * \#VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional \#VMEXIT.
6230 */
6231HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6232{
6233 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6234
6235 Log4(("hmR0SvmExitReadCRx: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6236 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0]);
6237
6238 bool const fSupportsDecodeAssist = hmR0SvmSupportsDecodeAssist(pVCpu, pCtx);
6239 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
6240 if ( fSupportsDecodeAssist
6241 && fSupportsNextRipSave)
6242 {
6243 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
6244 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6245 if (fMovCRx)
6246 {
6247 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6248 uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0;
6249 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6250 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
6251 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6252 return VBOXSTRICTRC_VAL(rcStrict);
6253 }
6254 /* else: SMSW instruction, fall back below to IEM for this. */
6255 }
6256
6257 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
6258 int rc = VBOXSTRICTRC_VAL(rc2);
6259 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3,
6260 ("hmR0SvmExitReadCRx: EMInterpretInstruction failed rc=%Rrc\n", rc));
6261 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
6262 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6263 return rc;
6264}
6265
6266
6267/**
6268 * \#VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional \#VMEXIT.
6269 */
6270HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6271{
6272 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6273
6274 uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0;
6275 Assert(iCrReg <= 15);
6276
6277 VBOXSTRICTRC rcStrict = VERR_SVM_IPE_5;
6278 bool fDecodedInstr = false;
6279 bool const fSupportsDecodeAssist = hmR0SvmSupportsDecodeAssist(pVCpu, pCtx);
6280 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
6281 if ( fSupportsDecodeAssist
6282 && fSupportsNextRipSave)
6283 {
6284 PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
6285 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
6286 if (fMovCRx)
6287 {
6288 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
6289 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
6290 Log4(("hmR0SvmExitWriteCRx: Mov CR%u w/ iGReg=%#x\n", iCrReg, iGReg));
6291 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
6292 fDecodedInstr = true;
6293 }
6294 /* else: LMSW or CLTS instruction, fall back below to IEM for this. */
6295 }
6296
6297 if (!fDecodedInstr)
6298 {
6299 Log4(("hmR0SvmExitWriteCRx: iCrReg=%#x\n", iCrReg));
6300 rcStrict = IEMExecOneBypassEx(pVCpu, CPUMCTX2CORE(pCtx), NULL);
6301 if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED
6302 || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED))
6303 rcStrict = VERR_EM_INTERPRETER;
6304 }
6305
6306 if (rcStrict == VINF_SUCCESS)
6307 {
6308 switch (iCrReg)
6309 {
6310 case 0: /* CR0. */
6311 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
6312 break;
6313
6314 case 3: /* CR3. */
6315 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
6316 break;
6317
6318 case 4: /* CR4. */
6319 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
6320 break;
6321
6322 case 8: /* CR8 (TPR). */
6323 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
6324 break;
6325
6326 default:
6327 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n",
6328 pSvmTransient->u64ExitCode, iCrReg));
6329 break;
6330 }
6331 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6332 }
6333 else
6334 Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_CHANGE_MODE || rcStrict == VINF_PGM_SYNC_CR3);
6335 return VBOXSTRICTRC_TODO(rcStrict);
6336}
6337
6338
6339/**
6340 * \#VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional
6341 * \#VMEXIT.
6342 */
6343HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6344{
6345 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6346 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
6347 PVM pVM = pVCpu->CTX_SUFF(pVM);
6348
6349 int rc;
6350 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
6351 {
6352 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
6353 Log4(("MSR Write: idMsr=%#RX32\n", pCtx->ecx));
6354
6355 /* Handle TPR patching; intercepted LSTAR write. */
6356 if ( pVM->hm.s.fTPRPatchingActive
6357 && pCtx->ecx == MSR_K8_LSTAR)
6358 {
6359 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
6360 {
6361 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
6362 int rc2 = APICSetTpr(pVCpu, pCtx->eax & 0xff);
6363 AssertRC(rc2);
6364 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
6365 }
6366 rc = VINF_SUCCESS;
6367 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
6368 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6369 return rc;
6370 }
6371
6372 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
6373 if (fSupportsNextRipSave)
6374 {
6375 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
6376 if (RT_LIKELY(rc == VINF_SUCCESS))
6377 {
6378 pCtx->rip = pVmcb->ctrl.u64NextRIP;
6379 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6380 }
6381 else
6382 AssertMsg( rc == VERR_EM_INTERPRETER
6383 || rc == VINF_CPUM_R3_MSR_WRITE, ("hmR0SvmExitMsr: EMInterpretWrmsr failed rc=%Rrc\n", rc));
6384 }
6385 else
6386 {
6387 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */));
6388 if (RT_LIKELY(rc == VINF_SUCCESS))
6389 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc); /* RIP updated by EMInterpretInstruction(). */
6390 else
6391 AssertMsg( rc == VERR_EM_INTERPRETER
6392 || rc == VINF_CPUM_R3_MSR_WRITE, ("hmR0SvmExitMsr: WrMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
6393 }
6394
6395 if (rc == VINF_SUCCESS)
6396 {
6397 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
6398 if ( pCtx->ecx >= MSR_IA32_X2APIC_START
6399 && pCtx->ecx <= MSR_IA32_X2APIC_END)
6400 {
6401 /*
6402 * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest(). When full APIC register
6403 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCB before
6404 * EMInterpretWrmsr() changes it.
6405 */
6406 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
6407 }
6408 else if (pCtx->ecx == MSR_K6_EFER)
6409 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
6410 else if (pCtx->ecx == MSR_IA32_TSC)
6411 pSvmTransient->fUpdateTscOffsetting = true;
6412 }
6413 }
6414 else
6415 {
6416 /* MSR Read access. */
6417 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
6418 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ);
6419 Log4(("MSR Read: idMsr=%#RX32\n", pCtx->ecx));
6420
6421 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
6422 if (fSupportsNextRipSave)
6423 {
6424 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
6425 if (RT_LIKELY(rc == VINF_SUCCESS))
6426 {
6427 pCtx->rip = pVmcb->ctrl.u64NextRIP;
6428 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6429 }
6430 else
6431 AssertMsg( rc == VERR_EM_INTERPRETER
6432 || rc == VINF_CPUM_R3_MSR_READ, ("hmR0SvmExitMsr: EMInterpretRdmsr failed rc=%Rrc\n", rc));
6433 }
6434 else
6435 {
6436 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0));
6437 if (RT_UNLIKELY(rc != VINF_SUCCESS))
6438 {
6439 AssertMsg( rc == VERR_EM_INTERPRETER
6440 || rc == VINF_CPUM_R3_MSR_READ, ("hmR0SvmExitMsr: RdMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
6441 }
6442 /* RIP updated by EMInterpretInstruction(). */
6443 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6444 }
6445 }
6446
6447 /* RIP has been updated by EMInterpret[Rd|Wr]msr() or EMInterpretInstruction(). */
6448 return rc;
6449}
6450
6451
6452/**
6453 * \#VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional \#VMEXIT.
6454 */
6455HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6456{
6457 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6458 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
6459
6460 /** @todo Stepping with nested-guest. */
6461 if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
6462 {
6463 /* We should -not- get this #VMEXIT if the guest's debug registers were active. */
6464 if (pSvmTransient->fWasGuestDebugStateActive)
6465 {
6466 AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
6467 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
6468 return VERR_SVM_UNEXPECTED_EXIT;
6469 }
6470
6471 /*
6472 * Lazy DR0-3 loading.
6473 */
6474 if (!pSvmTransient->fWasHyperDebugStateActive)
6475 {
6476 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
6477 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
6478
6479 /* Don't intercept DRx read and writes. */
6480 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
6481 pVmcb->ctrl.u16InterceptRdDRx = 0;
6482 pVmcb->ctrl.u16InterceptWrDRx = 0;
6483 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
6484
6485 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6486 VMMRZCallRing3Disable(pVCpu);
6487 HM_DISABLE_PREEMPT();
6488
6489 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
6490 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
6491 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
6492
6493 HM_RESTORE_PREEMPT();
6494 VMMRZCallRing3Enable(pVCpu);
6495
6496 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
6497 return VINF_SUCCESS;
6498 }
6499 }
6500
6501 /*
6502 * Interpret the read/writing of DRx.
6503 */
6504 /** @todo Decode assist. */
6505 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
6506 Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
6507 if (RT_LIKELY(rc == VINF_SUCCESS))
6508 {
6509 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
6510 /** @todo CPUM should set this flag! */
6511 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
6512 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
6513 }
6514 else
6515 Assert(rc == VERR_EM_INTERPRETER);
6516 return VBOXSTRICTRC_TODO(rc);
6517}
6518
6519
6520/**
6521 * \#VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional \#VMEXIT.
6522 */
6523HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6524{
6525 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6526 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
6527 int rc = hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
6528 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
6529 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
6530 return rc;
6531}
6532
6533
6534/**
6535 * \#VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional \#VMEXIT.
6536 */
6537HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6538{
6539 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6540
6541 /** @todo decode assists... */
6542 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
6543 if (rcStrict == VINF_IEM_RAISED_XCPT)
6544 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
6545
6546 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
6547 Log4(("hmR0SvmExitXsetbv: New XCR0=%#RX64 fLoadSaveGuestXcr0=%d (cr4=%RX64) rcStrict=%Rrc\n",
6548 pCtx->aXcr[0], pVCpu->hm.s.fLoadSaveGuestXcr0, pCtx->cr4, VBOXSTRICTRC_VAL(rcStrict)));
6549
6550 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6551 return VBOXSTRICTRC_TODO(rcStrict);
6552}
6553
6554
6555/**
6556 * \#VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional \#VMEXIT.
6557 */
6558HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6559{
6560 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6561
6562 /* I/O operation lookup arrays. */
6563 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
6564 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
6565 the result (in AL/AX/EAX). */
6566 Log4(("hmR0SvmExitIOInstr: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
6567
6568 PVM pVM = pVCpu->CTX_SUFF(pVM);
6569 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
6570
6571 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
6572 SVMIOIOEXITINFO IoExitInfo;
6573 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
6574 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
6575 uint32_t cbValue = s_aIOSize[uIOWidth];
6576 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
6577
6578 if (RT_UNLIKELY(!cbValue))
6579 {
6580 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
6581 return VERR_EM_INTERPRETER;
6582 }
6583
6584 VBOXSTRICTRC rcStrict;
6585 bool fUpdateRipAlready = false;
6586 if (IoExitInfo.n.u1STR)
6587 {
6588#ifdef VBOX_WITH_2ND_IEM_STEP
6589 /* INS/OUTS - I/O String instruction. */
6590 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
6591 * in EXITINFO1? Investigate once this thing is up and running. */
6592 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue,
6593 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r'));
6594 AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2);
6595 static IEMMODE const s_aenmAddrMode[8] =
6596 {
6597 (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1
6598 };
6599 IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7];
6600 if (enmAddrMode != (IEMMODE)-1)
6601 {
6602 uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
6603 if (cbInstr <= 15 && cbInstr >= 1)
6604 {
6605 Assert(cbInstr >= 1U + IoExitInfo.n.u1REP);
6606 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6607 {
6608 /* Don't know exactly how to detect whether u3SEG is valid, currently
6609 only enabling it for Bulldozer and later with NRIP. OS/2 broke on
6610 2384 Opterons when only checking NRIP. */
6611 bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu, pCtx);
6612 if ( fSupportsNextRipSave
6613 && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First)
6614 {
6615 AssertMsg(IoExitInfo.n.u3SEG == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1REP,
6616 ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3SEG, cbInstr, IoExitInfo.n.u1REP));
6617 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
6618 IoExitInfo.n.u3SEG, true /*fIoChecked*/);
6619 }
6620 else if (cbInstr == 1U + IoExitInfo.n.u1REP)
6621 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
6622 X86_SREG_DS, true /*fIoChecked*/);
6623 else
6624 rcStrict = IEMExecOne(pVCpu);
6625 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
6626 }
6627 else
6628 {
6629 AssertMsg(IoExitInfo.n.u3SEG == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3SEG));
6630 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
6631 true /*fIoChecked*/);
6632 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
6633 }
6634 }
6635 else
6636 {
6637 AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr));
6638 rcStrict = IEMExecOne(pVCpu);
6639 }
6640 }
6641 else
6642 {
6643 AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u));
6644 rcStrict = IEMExecOne(pVCpu);
6645 }
6646 fUpdateRipAlready = true;
6647
6648#else
6649 /* INS/OUTS - I/O String instruction. */
6650 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
6651
6652 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
6653 * in EXITINFO1? Investigate once this thing is up and running. */
6654
6655 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
6656 if (rcStrict == VINF_SUCCESS)
6657 {
6658 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6659 {
6660 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
6661 (DISCPUMODE)pDis->uAddrMode, cbValue);
6662 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
6663 }
6664 else
6665 {
6666 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
6667 (DISCPUMODE)pDis->uAddrMode, cbValue);
6668 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
6669 }
6670 }
6671 else
6672 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
6673#endif
6674 }
6675 else
6676 {
6677 /* IN/OUT - I/O instruction. */
6678 Assert(!IoExitInfo.n.u1REP);
6679
6680 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
6681 {
6682 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
6683 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
6684 }
6685 else
6686 {
6687 uint32_t u32Val = 0;
6688 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
6689 if (IOM_SUCCESS(rcStrict))
6690 {
6691 /* Save result of I/O IN instr. in AL/AX/EAX. */
6692 /** @todo r=bird: 32-bit op size should clear high bits of rax! */
6693 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
6694 }
6695 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
6696 HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
6697
6698 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
6699 }
6700 }
6701
6702 if (IOM_SUCCESS(rcStrict))
6703 {
6704 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
6705 if (!fUpdateRipAlready)
6706 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
6707
6708 /*
6709 * If any I/O breakpoints are armed, we need to check if one triggered
6710 * and take appropriate action.
6711 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
6712 */
6713 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
6714 * execution engines about whether hyper BPs and such are pending. */
6715 uint32_t const uDr7 = pCtx->dr[7];
6716 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
6717 && X86_DR7_ANY_RW_IO(uDr7)
6718 && (pCtx->cr4 & X86_CR4_DE))
6719 || DBGFBpIsHwIoArmed(pVM)))
6720 {
6721 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
6722 VMMRZCallRing3Disable(pVCpu);
6723 HM_DISABLE_PREEMPT();
6724
6725 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
6726 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
6727
6728 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, IoExitInfo.n.u16Port, cbValue);
6729 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
6730 {
6731 /* Raise #DB. */
6732 pVmcb->guest.u64DR6 = pCtx->dr[6];
6733 pVmcb->guest.u64DR7 = pCtx->dr[7];
6734 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
6735 hmR0SvmSetPendingXcptDB(pVCpu);
6736 }
6737 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
6738 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
6739 else if ( rcStrict2 != VINF_SUCCESS
6740 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
6741 rcStrict = rcStrict2;
6742 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
6743
6744 HM_RESTORE_PREEMPT();
6745 VMMRZCallRing3Enable(pVCpu);
6746 }
6747
6748 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
6749 }
6750
6751#ifdef VBOX_STRICT
6752 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
6753 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
6754 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE)
6755 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
6756 else
6757 {
6758 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
6759 * statuses, that the VMM device and some others may return. See
6760 * IOM_SUCCESS() for guidance. */
6761 AssertMsg( RT_FAILURE(rcStrict)
6762 || rcStrict == VINF_SUCCESS
6763 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
6764 || rcStrict == VINF_EM_DBG_BREAKPOINT
6765 || rcStrict == VINF_EM_RAW_GUEST_TRAP
6766 || rcStrict == VINF_EM_RAW_TO_R3
6767 || rcStrict == VINF_TRPM_XCPT_DISPATCHED
6768 || rcStrict == VINF_EM_TRIPLE_FAULT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
6769 }
6770#endif
6771 return VBOXSTRICTRC_TODO(rcStrict);
6772}
6773
6774
6775/**
6776 * \#VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional \#VMEXIT.
6777 */
6778HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6779{
6780 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6781 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
6782
6783 PVM pVM = pVCpu->CTX_SUFF(pVM);
6784 Assert(pVM->hm.s.fNestedPaging);
6785
6786 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
6787
6788 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
6789 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
6790 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
6791 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
6792
6793 Log4(("#NPF at CS:RIP=%04x:%#RX64 faultaddr=%RGp errcode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr, u32ErrCode));
6794
6795#ifdef VBOX_HM_WITH_GUEST_PATCHING
6796 /* TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions. */
6797 if ( pVM->hm.s.fTprPatchingAllowed
6798 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == XAPIC_OFF_TPR
6799 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
6800 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
6801 && !CPUMIsGuestInLongModeEx(pCtx)
6802 && !CPUMGetGuestCPL(pVCpu)
6803 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
6804 {
6805 RTGCPHYS GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
6806 GCPhysApicBase &= PAGE_BASE_GC_MASK;
6807
6808 if (GCPhysFaultAddr == GCPhysApicBase + XAPIC_OFF_TPR)
6809 {
6810 /* Only attempt to patch the instruction once. */
6811 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
6812 if (!pPatch)
6813 return VINF_EM_HM_PATCH_TPR_INSTR;
6814 }
6815 }
6816#endif
6817
6818 /*
6819 * Determine the nested paging mode.
6820 */
6821 PGMMODE enmNestedPagingMode;
6822#if HC_ARCH_BITS == 32
6823 if (CPUMIsGuestInLongModeEx(pCtx))
6824 enmNestedPagingMode = PGMMODE_AMD64_NX;
6825 else
6826#endif
6827 enmNestedPagingMode = PGMGetHostMode(pVM);
6828
6829 /*
6830 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
6831 */
6832 int rc;
6833 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
6834 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
6835 {
6836 /* If event delivery causes an MMIO #NPF, go back to instruction emulation as
6837 otherwise injecting the original pending event would most likely cause the same MMIO #NPF. */
6838 if (pVCpu->hm.s.Event.fPending)
6839 return VINF_EM_RAW_INJECT_TRPM_EVENT;
6840
6841 VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
6842 u32ErrCode);
6843 rc = VBOXSTRICTRC_VAL(rc2);
6844
6845 /*
6846 * If we succeed, resume guest execution.
6847 * If we fail in interpreting the instruction because we couldn't get the guest physical address
6848 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
6849 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
6850 * weird case. See @bugref{6043}.
6851 */
6852 if ( rc == VINF_SUCCESS
6853 || rc == VERR_PAGE_TABLE_NOT_PRESENT
6854 || rc == VERR_PAGE_NOT_PRESENT)
6855 {
6856 /* Successfully handled MMIO operation. */
6857 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
6858 rc = VINF_SUCCESS;
6859 }
6860 return rc;
6861 }
6862
6863 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
6864 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
6865 TRPMResetTrap(pVCpu);
6866
6867 Log4(("#NPF: PGMR0Trap0eHandlerNestedPaging returned %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
6868
6869 /*
6870 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
6871 */
6872 if ( rc == VINF_SUCCESS
6873 || rc == VERR_PAGE_TABLE_NOT_PRESENT
6874 || rc == VERR_PAGE_NOT_PRESENT)
6875 {
6876 /* We've successfully synced our shadow page tables. */
6877 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
6878 rc = VINF_SUCCESS;
6879 }
6880
6881 return rc;
6882}
6883
6884
6885/**
6886 * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional
6887 * \#VMEXIT.
6888 */
6889HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6890{
6891 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6892 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
6893
6894 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
6895 pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 0; /* No virtual interrupts pending, we'll inject the current one/NMI before reentry. */
6896 pVmcb->ctrl.IntCtrl.n.u8VIntrVector = 0;
6897
6898 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive interrupts/NMIs, it is now ready. */
6899 pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_VINTR;
6900 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
6901
6902 /* Deliver the pending interrupt/NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
6903 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
6904 return VINF_SUCCESS;
6905}
6906
6907
6908/**
6909 * \#VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional
6910 * \#VMEXIT.
6911 */
6912HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6913{
6914 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6915
6916 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
6917
6918#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
6919 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
6920#endif
6921
6922 /* Check if this task-switch occurred while delivering an event through the guest IDT. */
6923 if (pVCpu->hm.s.Event.fPending) /* Can happen with exceptions/NMI. See @bugref{8411}. */
6924 {
6925 /*
6926 * AMD-V provides us with the exception which caused the TS; we collect
6927 * the information in the call to hmR0SvmCheckExitDueToEventDelivery.
6928 */
6929 Log4(("hmR0SvmExitTaskSwitch: TS occurred during event delivery.\n"));
6930 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
6931 return VINF_EM_RAW_INJECT_TRPM_EVENT;
6932 }
6933
6934 /** @todo Emulate task switch someday, currently just going back to ring-3 for
6935 * emulation. */
6936 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
6937 return VERR_EM_INTERPRETER;
6938}
6939
6940
6941/**
6942 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
6943 */
6944HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6945{
6946 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6947 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmcall);
6948
6949 bool fRipUpdated;
6950 VBOXSTRICTRC rcStrict = HMSvmVmmcall(pVCpu, pCtx, &fRipUpdated);
6951 if (RT_SUCCESS(rcStrict))
6952 {
6953 /* Only update the RIP if we're continuing guest execution and not
6954 in the case of say VINF_GIM_R3_HYPERCALL. */
6955 if ( rcStrict == VINF_SUCCESS
6956 && !fRipUpdated)
6957 {
6958 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3 /* cbInstr */);
6959 }
6960
6961 /* If the hypercall or TPR patching changes anything other than guest's general-purpose registers,
6962 we would need to reload the guest changed bits here before VM-entry. */
6963 return VBOXSTRICTRC_VAL(rcStrict);
6964 }
6965
6966 hmR0SvmSetPendingXcptUD(pVCpu);
6967 return VINF_SUCCESS;
6968}
6969
6970
6971/**
6972 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
6973 */
6974HMSVM_EXIT_DECL hmR0SvmExitPause(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6975{
6976 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6977 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
6978 return VINF_EM_RAW_INTERRUPT;
6979}
6980
6981
6982/**
6983 * \#VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional \#VMEXIT.
6984 */
6985HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
6986{
6987 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
6988
6989 /* Clear NMI blocking. */
6990 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6991
6992 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
6993 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
6994 hmR0SvmClearIretIntercept(pVmcb);
6995
6996 /* Deliver the pending NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
6997 return VINF_SUCCESS;
6998}
6999
7000
7001/**
7002 * \#VMEXIT handler for page-fault exceptions (SVM_EXIT_EXCEPTION_14).
7003 * Conditional \#VMEXIT.
7004 */
7005HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7006{
7007 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7008 HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx);
7009
7010 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7011
7012 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
7013 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7014 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
7015 RTGCUINTPTR uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
7016 PVM pVM = pVCpu->CTX_SUFF(pVM);
7017
7018#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
7019 if (pVM->hm.s.fNestedPaging)
7020 {
7021 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7022 if (!pSvmTransient->fVectoringDoublePF)
7023 {
7024 /* A genuine guest #PF, reflect it to the guest. */
7025 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
7026 Log4(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RGv ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
7027 uFaultAddress, u32ErrCode));
7028 }
7029 else
7030 {
7031 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7032 hmR0SvmSetPendingXcptDF(pVCpu);
7033 Log4(("Pending #DF due to vectoring #PF. NP\n"));
7034 }
7035 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7036 return VINF_SUCCESS;
7037 }
7038#endif
7039
7040 Assert(!pVM->hm.s.fNestedPaging);
7041
7042#ifdef VBOX_HM_WITH_GUEST_PATCHING
7043 /* Shortcut for APIC TPR reads and writes; only applicable to 32-bit guests. */
7044 if ( pVM->hm.s.fTprPatchingAllowed
7045 && (uFaultAddress & 0xfff) == XAPIC_OFF_TPR
7046 && !(u32ErrCode & X86_TRAP_PF_P) /* Not present. */
7047 && !CPUMIsGuestInLongModeEx(pCtx)
7048 && !CPUMGetGuestCPL(pVCpu)
7049 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
7050 {
7051 RTGCPHYS GCPhysApicBase;
7052 GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
7053 GCPhysApicBase &= PAGE_BASE_GC_MASK;
7054
7055 /* Check if the page at the fault-address is the APIC base. */
7056 RTGCPHYS GCPhysPage;
7057 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
7058 if ( rc2 == VINF_SUCCESS
7059 && GCPhysPage == GCPhysApicBase)
7060 {
7061 /* Only attempt to patch the instruction once. */
7062 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
7063 if (!pPatch)
7064 return VINF_EM_HM_PATCH_TPR_INSTR;
7065 }
7066 }
7067#endif
7068
7069 Log4(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
7070 pCtx->rip, u32ErrCode, pCtx->cr3));
7071
7072 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
7073 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
7074 if (pSvmTransient->fVectoringPF)
7075 {
7076 Assert(pVCpu->hm.s.Event.fPending);
7077 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7078 }
7079
7080 TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
7081 int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
7082
7083 Log4(("#PF rc=%Rrc\n", rc));
7084
7085 if (rc == VINF_SUCCESS)
7086 {
7087 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
7088 TRPMResetTrap(pVCpu);
7089 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7090 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7091 return rc;
7092 }
7093 else if (rc == VINF_EM_RAW_GUEST_TRAP)
7094 {
7095 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7096
7097 if (!pSvmTransient->fVectoringDoublePF)
7098 {
7099 /* It's a guest page fault and needs to be reflected to the guest. */
7100 u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
7101 TRPMResetTrap(pVCpu);
7102 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
7103 }
7104 else
7105 {
7106 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7107 TRPMResetTrap(pVCpu);
7108 hmR0SvmSetPendingXcptDF(pVCpu);
7109 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
7110 }
7111
7112 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7113 return VINF_SUCCESS;
7114 }
7115
7116 TRPMResetTrap(pVCpu);
7117 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
7118 return rc;
7119}
7120
7121
7122/**
7123 * \#VMEXIT handler for device-not-available exceptions (SVM_EXIT_EXCEPTION_7).
7124 * Conditional \#VMEXIT.
7125 */
7126HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7127{
7128 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7129
7130 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7131 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7132 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7133
7134 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
7135 VMMRZCallRing3Disable(pVCpu);
7136 HM_DISABLE_PREEMPT();
7137
7138 int rc;
7139 /* If the guest FPU was active at the time of the #NM exit, then it's a guest fault. */
7140 if (pSvmTransient->fWasGuestFPUStateActive)
7141 {
7142 rc = VINF_EM_RAW_GUEST_TRAP;
7143 Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
7144 }
7145 else
7146 {
7147#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
7148 Assert(!pSvmTransient->fWasGuestFPUStateActive);
7149#endif
7150 rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu); /* (No need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
7151 Assert( rc == VINF_EM_RAW_GUEST_TRAP
7152 || ((rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED) && CPUMIsGuestFPUStateActive(pVCpu)));
7153 }
7154
7155 HM_RESTORE_PREEMPT();
7156 VMMRZCallRing3Enable(pVCpu);
7157
7158 if (rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED)
7159 {
7160 /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
7161 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
7162 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
7163 pVCpu->hm.s.fPreloadGuestFpu = true;
7164 }
7165 else
7166 {
7167 /* Forward #NM to the guest. */
7168 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
7169 hmR0SvmSetPendingXcptNM(pVCpu);
7170 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
7171 }
7172 return VINF_SUCCESS;
7173}
7174
7175
7176/**
7177 * \#VMEXIT handler for undefined opcode (SVM_EXIT_EXCEPTION_6).
7178 * Conditional \#VMEXIT.
7179 */
7180HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7181{
7182 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7183
7184 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7185 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7186 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7187
7188 int rc = VERR_SVM_UNEXPECTED_XCPT_EXIT;
7189 if (pVCpu->hm.s.fGIMTrapXcptUD)
7190 {
7191 uint8_t cbInstr = 0;
7192 VBOXSTRICTRC rcStrict = GIMXcptUD(pVCpu, pCtx, NULL /* pDis */, &cbInstr);
7193 if (rcStrict == VINF_SUCCESS)
7194 {
7195 /* #UD #VMEXIT does not have valid NRIP information, manually advance RIP. See @bugref{7270#c170}. */
7196 hmR0SvmAdvanceRipDumb(pVCpu, pCtx, cbInstr);
7197 rc = VINF_SUCCESS;
7198 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
7199 }
7200 else if (rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
7201 rc = VINF_SUCCESS;
7202 else if (rcStrict == VINF_GIM_R3_HYPERCALL)
7203 rc = VINF_GIM_R3_HYPERCALL;
7204 else
7205 Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
7206 }
7207
7208 /* If the GIM #UD exception handler didn't succeed for some reason or wasn't needed, raise #UD. */
7209 if (RT_FAILURE(rc))
7210 {
7211 hmR0SvmSetPendingXcptUD(pVCpu);
7212 rc = VINF_SUCCESS;
7213 }
7214
7215 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
7216 return rc;
7217}
7218
7219
7220/**
7221 * \#VMEXIT handler for math-fault exceptions (SVM_EXIT_EXCEPTION_16).
7222 * Conditional \#VMEXIT.
7223 */
7224HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7225{
7226 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7227
7228 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
7229 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7230 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
7231
7232 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
7233
7234 if (!(pCtx->cr0 & X86_CR0_NE))
7235 {
7236 PVM pVM = pVCpu->CTX_SUFF(pVM);
7237 PDISSTATE pDis = &pVCpu->hm.s.DisState;
7238 unsigned cbOp;
7239 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
7240 if (RT_SUCCESS(rc))
7241 {
7242 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
7243 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
7244 if (RT_SUCCESS(rc))
7245 pCtx->rip += cbOp;
7246 }
7247 else
7248 Log4(("hmR0SvmExitXcptMF: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
7249 return rc;
7250 }
7251
7252 hmR0SvmSetPendingXcptMF(pVCpu);
7253 return VINF_SUCCESS;
7254}
7255
7256
7257/**
7258 * \#VMEXIT handler for debug exceptions (SVM_EXIT_EXCEPTION_1). Conditional
7259 * \#VMEXIT.
7260 */
7261HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7262{
7263 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7264
7265 /* If this #DB is the result of delivering an event, go back to the interpreter. */
7266 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7267 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
7268 {
7269 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
7270 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7271 }
7272
7273 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
7274
7275 /* This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data breakpoint). However, for both cases
7276 DR6 and DR7 are updated to what the exception handler expects. See AMD spec. 15.12.2 "#DB (Debug)". */
7277 PVM pVM = pVCpu->CTX_SUFF(pVM);
7278 PSVMVMCB pVmcb = pVCpu->hm.s.svm.pVmcb;
7279 int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
7280 if (rc == VINF_EM_RAW_GUEST_TRAP)
7281 {
7282 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
7283 if (CPUMIsHyperDebugStateActive(pVCpu))
7284 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
7285
7286 /* Reflect the exception back to the guest. */
7287 hmR0SvmSetPendingXcptDB(pVCpu);
7288 rc = VINF_SUCCESS;
7289 }
7290
7291 /*
7292 * Update DR6.
7293 */
7294 if (CPUMIsHyperDebugStateActive(pVCpu))
7295 {
7296 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
7297 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
7298 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
7299 }
7300 else
7301 {
7302 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
7303 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
7304 }
7305
7306 return rc;
7307}
7308
7309
7310/**
7311 * \#VMEXIT handler for alignment check exceptions (SVM_EXIT_EXCEPTION_17).
7312 * Conditional \#VMEXIT.
7313 */
7314HMSVM_EXIT_DECL hmR0SvmExitXcptAC(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7315{
7316 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7317
7318 /** @todo if triple-fault is returned in nested-guest scenario convert to a
7319 * shutdown VMEXIT. */
7320 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7321
7322 SVMEVENT Event;
7323 Event.u = 0;
7324 Event.n.u1Valid = 1;
7325 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7326 Event.n.u8Vector = X86_XCPT_AC;
7327 Event.n.u1ErrorCodeValid = 1;
7328 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7329 return VINF_SUCCESS;
7330}
7331
7332
7333/**
7334 * \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_EXCEPTION_3).
7335 * Conditional \#VMEXIT.
7336 */
7337HMSVM_EXIT_DECL hmR0SvmExitXcptBP(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7338{
7339 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7340
7341 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7342
7343 int rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
7344 if (rc == VINF_EM_RAW_GUEST_TRAP)
7345 {
7346 SVMEVENT Event;
7347 Event.u = 0;
7348 Event.n.u1Valid = 1;
7349 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7350 Event.n.u8Vector = X86_XCPT_BP;
7351 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7352 }
7353
7354 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
7355 return rc;
7356}
7357
7358
7359#ifdef VBOX_WITH_NESTED_HWVIRT
7360/**
7361 * \#VMEXIT handler for #PF occuring while in nested-guest execution
7362 * (SVM_EXIT_EXCEPTION_14). Conditional \#VMEXIT.
7363 */
7364HMSVM_EXIT_DECL hmR0SvmExitXcptPFNested(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7365{
7366 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7367
7368 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7369
7370 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
7371 PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu, pCtx);
7372 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
7373 uint64_t const uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
7374
7375 Log4(("#PFNested: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode=%#RX32 CR3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
7376 pCtx->rip, u32ErrCode, pCtx->cr3));
7377
7378 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
7379 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
7380 if (pSvmTransient->fVectoringPF)
7381 {
7382 Assert(pVCpu->hm.s.Event.fPending);
7383 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7384 }
7385
7386 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
7387
7388 TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
7389 int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
7390
7391 Log4(("#PFNested: rc=%Rrc\n", rc));
7392
7393 if (rc == VINF_SUCCESS)
7394 {
7395 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
7396 TRPMResetTrap(pVCpu);
7397 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
7398 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7399 return rc;
7400 }
7401
7402 if (rc == VINF_EM_RAW_GUEST_TRAP)
7403 {
7404 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
7405
7406 if (!pSvmTransient->fVectoringDoublePF)
7407 {
7408 /* It's a nested-guest page fault and needs to be reflected to the nested-guest. */
7409 u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
7410 TRPMResetTrap(pVCpu);
7411 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
7412 }
7413 else
7414 {
7415 /* A nested-guest page-fault occurred during delivery of a page-fault. Inject #DF. */
7416 TRPMResetTrap(pVCpu);
7417 hmR0SvmSetPendingXcptDF(pVCpu);
7418 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
7419 }
7420
7421 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
7422 return VINF_SUCCESS;
7423 }
7424
7425 TRPMResetTrap(pVCpu);
7426 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
7427 return rc;
7428}
7429
7430
7431/**
7432 * \#VMEXIT handler for CLGI (SVM_EXIT_CLGI). Conditional \#VMEXIT.
7433 */
7434HMSVM_EXIT_DECL hmR0SvmExitClgi(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7435{
7436 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7437
7438 /** @todo Stat. */
7439 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClgi); */
7440 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
7441 VBOXSTRICTRC rcStrict = IEMExecDecodedClgi(pVCpu, cbInstr);
7442 return VBOXSTRICTRC_VAL(rcStrict);
7443}
7444
7445
7446/**
7447 * \#VMEXIT handler for STGI (SVM_EXIT_STGI). Conditional \#VMEXIT.
7448 */
7449HMSVM_EXIT_DECL hmR0SvmExitStgi(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7450{
7451 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7452
7453 /** @todo Stat. */
7454 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitStgi); */
7455 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
7456 VBOXSTRICTRC rcStrict = IEMExecDecodedStgi(pVCpu, cbInstr);
7457 return VBOXSTRICTRC_VAL(rcStrict);
7458}
7459
7460
7461/**
7462 * \#VMEXIT handler for VMLOAD (SVM_EXIT_VMLOAD). Conditional \#VMEXIT.
7463 */
7464HMSVM_EXIT_DECL hmR0SvmExitVmload(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7465{
7466 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7467
7468 /** @todo Stat. */
7469 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmload); */
7470 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
7471 VBOXSTRICTRC rcStrict = IEMExecDecodedVmload(pVCpu, cbInstr);
7472 if (rcStrict == VINF_SUCCESS)
7473 {
7474 /* We skip flagging changes made to LSTAR, STAR, SFMASK and other MSRs as they are always re-loaded. */
7475 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS
7476 | HM_CHANGED_GUEST_TR
7477 | HM_CHANGED_GUEST_LDTR);
7478 }
7479 return VBOXSTRICTRC_VAL(rcStrict);
7480}
7481
7482
7483/**
7484 * \#VMEXIT handler for VMSAVE (SVM_EXIT_VMSAVE). Conditional \#VMEXIT.
7485 */
7486HMSVM_EXIT_DECL hmR0SvmExitVmsave(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7487{
7488 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7489
7490 /** @todo Stat. */
7491 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmsave); */
7492 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
7493 VBOXSTRICTRC rcStrict = IEMExecDecodedVmsave(pVCpu, cbInstr);
7494 return VBOXSTRICTRC_VAL(rcStrict);
7495}
7496
7497
7498/**
7499 * \#VMEXIT handler for INVLPGA (SVM_EXIT_INVLPGA). Conditional \#VMEXIT.
7500 */
7501HMSVM_EXIT_DECL hmR0SvmExitInvlpga(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7502{
7503 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7504 /** @todo Stat. */
7505 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpga); */
7506 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
7507 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpga(pVCpu, cbInstr);
7508 return VBOXSTRICTRC_VAL(rcStrict);
7509}
7510
7511
7512/**
7513 * \#VMEXIT handler for STGI (SVM_EXIT_VMRUN). Conditional \#VMEXIT.
7514 */
7515HMSVM_EXIT_DECL hmR0SvmExitVmrun(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7516{
7517 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7518 /** @todo Stat. */
7519 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmrun); */
7520#if 0
7521 VBOXSTRICTRC rcStrict;
7522 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
7523 rcStrict = IEMExecDecodedVmrun(pVCpu, cbInstr);
7524 Log4(("IEMExecDecodedVmrun: returned %d\n", VBOXSTRICTRC_VAL(rcStrict)));
7525 if (rcStrict == VINF_SUCCESS)
7526 {
7527 rcStrict = VINF_SVM_VMRUN;
7528 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7529 }
7530 return VBOXSTRICTRC_VAL(rcStrict);
7531#endif
7532 return VERR_EM_INTERPRETER;
7533}
7534
7535
7536/**
7537 * Nested-guest \#VMEXIT handler for debug exceptions (SVM_EXIT_EXCEPTION_1).
7538 * Unconditional \#VMEXIT.
7539 */
7540HMSVM_EXIT_DECL hmR0SvmNestedExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7541{
7542 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7543
7544 /* If this #DB is the result of delivering an event, go back to the interpreter. */
7545 /** @todo if triple-fault is returned in nested-guest scenario convert to a
7546 * shutdown VMEXIT. */
7547 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7548 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
7549 {
7550 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
7551 return VINF_EM_RAW_INJECT_TRPM_EVENT;
7552 }
7553
7554 hmR0SvmSetPendingXcptDB(pVCpu);
7555 return VINF_SUCCESS;
7556}
7557
7558
7559/**
7560 * Nested-guest \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_EXCEPTION_3).
7561 * Conditional \#VMEXIT.
7562 */
7563HMSVM_EXIT_DECL hmR0SvmNestedExitXcptBP(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
7564{
7565 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
7566
7567 /** @todo if triple-fault is returned in nested-guest scenario convert to a
7568 * shutdown VMEXIT. */
7569 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
7570
7571 SVMEVENT Event;
7572 Event.u = 0;
7573 Event.n.u1Valid = 1;
7574 Event.n.u3Type = SVM_EVENT_EXCEPTION;
7575 Event.n.u8Vector = X86_XCPT_BP;
7576 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
7577 return VINF_SUCCESS;
7578}
7579
7580#endif /* VBOX_WITH_NESTED_HWVIRT */
7581
7582
7583/** @} */
7584
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette